
This is a reproduction of a library book that was digitized  
by Google as part of an ongoing effort to preserve the  
information in books and make it universally accessible.

http://books.google.com

https://books.google.com/books?id=89dOAAAAMAAJ




 



 







Principles of

Knowledge

Representation

and

Reasoning:

Proceedings of the

Fourth International

Conference

(KR '94)



The Morgan Kaufmann Series in Representation and Reasoning

Series editor, Ronald J. Brachman (AT&T Bell Laboratories)

James Allen, James Hendler, and Austin Tate, editors

Readings in Planning (1990)

James F. Allen, Henry A. Kautz, Richard N. Pelavin,

and Josh D. Tenenberg

Reasoning About Plans ( 1 99 1 )

Ronald J. Brachman and Hector Levesque, editors

Readings in Knowledge Representation (1985)

Ernest Davis

Representations of Commonsense Knowledge (1990)

Thomas L. Dean and Michael P. Wellman

Planning and Control (1991)

Janet Kolodner

Case-Based Reasoning (1993)

Judea Pearl

Probabilistic Reasoning in Intelligent Systems:

Networks of Plausible Inference (1988)

Glenn Shafer and Judea Pearl, editors

Readings in Uncertain Reasoning (1990)

John Sowa, editor

Principles of Semantic Networks: Explorations in the

Representation of Knowledge (1991)

Daniel S. Weld and Johan de Kleer, editors

Readings in Qualitative Reasoning about Physical

Systems (1990)

David E. Wilkins

Practical Planning: Extending the Classical AI

Paradigm (1988)

Proceedings

Principles of Knowledge Representation & Reasoning:

Proceedings of the First International Conference

(KR '89)

Edited by Ronald J. Brachman, Hector J. Levesque,

and Raymond Reiter

Principles of Knowledge Representation & Reasoning:

Proceedings of the Second International Conference

(KR '91)

Edited by James Allen, Richard Fikes,

and Erik Sandewall

Principles of Knowledge Representation & Reasoning:

Proceedings of the Third International Conference

(KR '92)

Edited by Bernhard Nebel, Charles Rich,

and William Swartout

Principles of Knowledge Representation & Reasoning:

Proceedings of the Fourth International Conference

(KR '94)

Edited by Jon Doyle, Erik Sandewall, and Pietro Torasso

The Frame Problem in Artificial Intelligence:

Proceedings of the 1987 Conference

Edited by Frank M. Brown (1987)

Reasoning About Actions and Plans: Proceedings

of the 1986 Workshop

Edited by Michael P. Georgeff and Amy L. Lansky

(1987)

Theoretical Aspects ofReasoning and Knowledge:

Proceedings of the First Conference (TARK 1986)

Edited by Joseph P. Halpem

Theoretical Aspects ofReasoning and Knowledge:

Proceedings of the Second Conference (TARK 1988)

Edited by Moshe Y. Vardi

Theoretical Aspects ofReasoning and Knowledge:

Proceedings of the Third Conference (TARK 1990)

Edited by Rohit Parikh

Theoretical Aspects ofReasoning and Knowledge:

Proceedings of the Fourth Conference (TARK 1992)

Edited by Yoram Moses

Theoretical Aspects ofReasoning and Knowledge:

Proceedings of the Fifth Conference (TARK 1994)

Edited by Ronald Fagin



Principles of

Knowledge

Representation

and

Reasoning:

Proceedings of the

Fourth Ipjernational

Conference

(KR "94)

Edited by

Jon Doyle

(Massachusetts Institute

of Technology)

Erik Sandewall

(Linkoping University)

Pietro Torasso

(Universita di Torino)

Morgan Kaufmann Publishers, Inc.

San Francisco, California



- W

These proceedings were managed and produced for the organizers

of the KR '94 conference by Professional Book Center, Denver, Colorado.

The individual papers were submitted in camera-ready form by the contributing authors.

Morgan Kaufmann Publishers, Inc.

340 Pine Street, Sixth Floor

San Francisco, CA 94104

Library of Congress Cataloging-in-Publication Data

International Conference on Principles of Knowledge Representation and

Reasoning (4th : 1994 : Bonn, Germany)

Principles of knowledge representation and reasoning : proceedings

of the fourth international conference (KR'94), Bonn, Germany, May

24-27, 1994 / edited by Jon Doyle, Erik Sandewall, Pietro Torasso.

p. cm. — (The Morgan Kaufmann series in representation and

reasoning)

Includes bibliographical references and index.

ISBN 1-55860-328-X

1 . Knowledge representation (Information theory)—Congresses.

2. Reasoning—Congresses. I. Doyle, Jon. II. Sandewall, Erik.

III. Torasso, Pietro. IV. Title. V. Series.

Q387.I59 1994

006.3 '3—dc20 94-9421

CIP

Copyright © 1994 by Morgan Kaufmann Publishers, Inc.

All rights reserved.

Printed in the United States of America

No part of this publication may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means—electronic, mechanical, photocopying, recording, or

otherwise—without the prior written permission of the publisher.

94 95 96 97 4 3 2 1



Contents

Preface ix

Acknowledgments x

A Computational Account for a Description Logic of Time and Action 3

Alessandro Artale and Enrico Franconi (IRST, Italy)

Proofs in Context 15

Giuseppe Attardi and Maria Simi (Universita di Pisa, Italy)

An Integrated Implementation of Simulative, Uncertain and Metaphorical Reasoning about Mental States 27

J. A. Barnden, S. Helmreich, E. Iverson,

and G. C. Stein (New Mexico State University, USA)

Reasoning with Minimal Models: Efficient Algorithms and Applications 39

Rachel Ben-Eliyahu (Technion, Israel)

and Luigi Palopoli (Universitd delta Calabria, Italy)

Spatial Reasoning with Prepositional Logics 51

Brandon Bennett (University of Leeds, UK)

On the Relation Between Default and Modal Consequence Relations 63

Alexander Bochman (Bar-Han University, Israel)

Toward a Logic for Qualitative Decision Theory 75

Craig Boutilier (University of British Columbia, Canada)

Belief Ascription and Mental-Level Modelling 87

Ronen I. Brafman (Stanford University, USA)

and Moshe Tennenholtz (Technion, Israel)

Default Logic as a Query Language 99

Marco Cadoli (Universitd di Roma, Italy), Thomas Eiter

and Georg Gottlob (Technical University of Vienna, Austria)

A Unified Framework for Class-based Representation Formalisms 109

Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi (Universita di Roma, Italy)

Learning the Classic Description Logic: Theoretical and Experimental Results 121

William W. Cohen and Haym Hirsh (AT&T Bell Laboratories, USA)

Directional Resolution: The Davis-Putnam Procedure, Revisited 134

Rina Dechter and Irina Rish (University of California, Irvine, USA)

A General Approach to Specificity in Default Reasoning 146

James P. Delgrande (Simon Fraser University, Canada)

and Torsten H. Schaub (IRISA, France)

Action Representation for Interpreting Purpose Clauses in Natural Language Instructions 158

Barbara Di Eugenio (Carnegie Mellon University, USA)



vl Contents

Conditional Objects as Nonmonotonic Consequence Relations: Main Results 170

Didier Dubois and Henri Prade (Universiti Paul Sabatier, France)

Tractable Closed World Reasoning with Updates 178

Oren Etzioni, Keith Golden, Daniel Weld (University of Washington, USA)

A Knowledge-based Framework for Belief Change, Part II: Revision and Update 190

Mr Friedman (Stanford University, USA)

and Joseph Y. Halpern (IBM Almaden Research Center, USA)

On the Complexity of Conditional Logics 202

Mr Friedman (Stanford University, USA)

and Joseph Y. Halpern (IBM Almaden Research Center, USA)

An Efficient Method for Managing Disjunctions in Qualitative Temporal Reasoning 214

Alfonso Gerevini (IRST, Italy) and Lenhart Schubert (University of Rochester, USA)

GSAT and Dynamic Backtracking 226

Matthew L. Ginsberg (University of Oregon, USA)

and David A. McAllester (Massachusetts Institute of Technology, USA)

Representing Uncertainty in Simple Planners 238

Robert P. Goldman and Mark S. Boddy (Honeywell Technology Center, USA)

How Far Can We 'C? Defining a 'Doughnut' Using Connection Alone 246

N. M. Gotts (University of Leeds, UK)

An Ontology for Engineering Mathematics 258

Thomas R. Gruber and Gregory R. Olsen (Stanford University, USA)

An Ontology of Meta-Level Categories 270

Nicola Guarino and Massimiliano Carrara (LADSEB-CNR, Italy)

and Pierdaniele Giaretta (University of Padova, Italy)

Defeasible Reasoning with Structured Information 281

Anthony Hunter (Imperial College, UK)

On Positive Occurrences of Negation as Failure 293

Katsumi lnoue (Toyohashi University of Technology, Japan)

and Chiaki Sakama (ASTEM Research Institute of Kyoto, Japan)

Probabilistic Reasoning in Terminological Logics 305

Manfred Jaeger (Max Plank Institut fur Informatik, Germany)

On Multiagent Autoepistemic Logic—An Extrospective View 317

Yuejun J. Jiang (Imperial College, UK)

Refinement Search as a Unifying Framework for Analyzing Planning Algorithms 329

Subbarao Kambhampati (Arizona State University, USA)

Actions with Indirect Effects (Preliminary Report) 341

G. Neelakantan Kartha and Vladimir Lifschitz (University of Texas, USA)

An Application of Terminological Logics to Case-based Reasoning 351

Jana Koehler (German Research Center for Artificial Intelligence [DFKIJ, Germany)

Risk-Sensitive Planning with Probabilistic Decision Graphs 363

Sven Koenig and Reid G. Simmons (Carnegie Mellon University, USA)



Contents vii

Easy to be Hard: Difficult Problems for Greedy Algorithms 374

Kurt Konolige (SRI International, USA)

Complexity Results for First-Order Theories of Temporal Constraints 379

Manolis Koubarakis (National Technical University ofAthens, Greece)

Reasoning in Logic about Continuous Systems 391

Benjamin J. Kuipers and Benjamin Shults (University of Texas, USA)

Enhancing the Power of a Decidable First-Order Reasoner 403

Gerhard Lakemeyer and Susanne Meyer (University of Bonn, Germany)

Knowledge, Certainty, Belief, and Conditionalisation (Abbreviated Version) 415

Philippe Lamarre (IRIN, University de Nantes, France)

and Yoav Shoham (Stanford University, USA)

How to Progress a Database (and Why) I. Logical Foundations 425

Fangzhen Lin and Ray Reiter (University of Toronto, Canada)

Modalities Over Actions, I. Model Theory 437

L. Thorne McCarty (Rutgers University, USA)

Generating Tests Using Abduction 449

Sheila Mcllraith (University of Toronto, Canada)

Preferential Entailments for Circumscriptions 461

Yves Moinard (IRISA, France) and Raymond Rolland (IRMAR, France)

A Decision Method for Nonmomotonic Reasoning Based on Autoepistemic Reasoning 473

Ilkka Niemeld (Helsinki University of Technology, Finland)

A Framework for Part-of Hierarchies in Terminological Logics 485

Lin Padgham and Patrick Lambrix (Linkoping University, Sweden)

Means-End Plan Recognition—Towards a Theory of Reactive Recognition 497

Anand S. Rao (Australian Artificial Intelligence Institute, Australia)

Terminological Cycles and the Prepositional ^-Calculus 509

Klaus Schild (German Research Centerfor Artificial Intelligence [DFKI], Germany)

Near-Optimal Plans, Tractability, and Reactivity 521

Bart Selman (AT&T Bell Laboratories, USA)

Specification and Evaluation of Preferences Under Uncertainty 530

Sek-Wah Tan andJudea Pearl (University of California, Los Angeles, USA)

Making the Difference: A Subtraction Operation for Description Logics 540

Gunnar Teege (TU Munich, Germany)

Tractable Databases: How to Make Propositional Unit Resolution Complete Through Compilation 551

Alvaro del Val (Stanford University, USA)

The Role of Reversible Grammars in Translating Between Representation Languages 562

Jeffrey Van Baalen (University of Wyoming, USA)

and Richard E. Fikes (Stanford University, USA)

Constraint Tightness versus Global Consistency 572

Peter van Beek (University ofAlberta, Canada)

and Rina Dechter (University of California, Irvine, USA)



viii Contents

Honesty in Partial Logic 583

Wiebe van der Hoek (Utrecht University, Netherlands), Jan Jaspars

(CWI, Netherlands), and Elias Thijsse (Tilburg University, Netherlands)

Mutual Belief Revision (Preliminary Report) , 595

Ron van der Meyden (NTT Basic Research Labs, Japan)

REVISE: An Extended Logic Programming System for Revising Knowledge Bases 607

Carlos Viegas Damdsio and Luis Moniz Pereira (Universitd Nova de Lisboa,

Portugal) and Wolfgang Nejdl (RWTH Aachen, Germany)

Transmutations of Knowledge Systems 619

Mary-Anne Williams (University ofNewcastle, Australia)

INVITED TALKS

Knowledge Representation Issues in Integrated Planning and Learning Systems (abstract only) 633

Jaime Carbonell (Carnegie Mellon University, USA)

Non-Standard Theories of Uncertainty in Knowledge Representation and Reasoning 634

Didier Dubois and Henri Prade (Universite Paul Sabatier, France)

Beyond Ignorance-Based Systems (abstract only) 646

W. A. Woods (Sun Microsystems Laboratories, Inc., USA)

PANELS

Systems vs. Theory vs. ... : KR&R Research Methodologies (abstract only) 649

Moderator: Lin Padgham (Linkoping University, Sweden)

Exploiting Natural Language for Knowledge Representation and Reasoning (abstract only) 650

Moderator: Len Schubert (University ofRochester, USA)

Contributions by Topic 653

Author Index 655



Preface

This volume contains the papers presented at the Fourth International Conference on Principles of Knowledge Repre

sentation and Reasoning. The KR conferences have established themselves as the leading forum for timely, in-depth

presentation of progress in the theory and principles underlying the representation and computational manipulation of

knowledge. Following highly successful meetings in Toronto and Cambridge, Massachusetts, the conference convenes

this year in Bonn, outside of North America for the first time.

KR '94 continues the tradition of high standards for accepted papers established by the preceding three conferences. We

were encouraged by the high quality of the 272 extended abstracts submitted for review and of the 55 chosen for

publication. Receiving submissions from every continent, the conference continues to maintain and broaden its interna

tional character, with the proceedings presenting the work of authors from 15 countries.

This year's conference continues to move towards a suitable balance between theoretical work and implemented,

applied, and experimental work. Many program committee members emphasized this balance in their reviews, and the

papers below present excellent examples of such work. Observing great concern about methodological problems among

the program committee, we asked Lin Padgham to organize a panel discussion on this topic.

Many areas traditionally attracting strong KR interest remain well represented this year, including deduction and search,

description logics, theories of knowledge and belief, nonmonotonic reasoning and belief revision, action and time,

planning and decision-making, and reasoning about the physical world. The presence of planning and diagnosis dimin

ished, perhaps due to the appearance of new conferences and workshops devoted to these topics, while the presence of

other topics grew, including the relations between KR and other subfields of artificial intelligence. Some papers, includ

ing the invited talk by Didier Dubois, concern the integration of numeric and symbolic methods in preference modeling

and uncertainty, while others, including the invited talk by Jaime Carbonell, investigate connections between KR and

machine learning.

We also sought to strengthen ties between KR and related fields such as philosophy, linguistics, psychology, and

economics. While we did not move as far in this direction as hoped, we are glad to include papers along these lines in

the program, and were very fortunate to get Len Schubert to organize the panel discussion aimed at identifying ideas

from natural language and linguistics for exploitation in KR.

Jon Doyle

Program Co-Chair

Erik Sandewall

Conference Chair

Pietro Torasso

Program Co-Chair
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A Computational Account for a

Description Logic of Time and Action

Alessandro Artale* and Enrico Franconi

Knowledge Representation and Reasoning Lab.

IRST, 1-38050 Povo TN, Italy

{artale I franconijflirst . it

Abstract

A formal language for representing and rea

soning about time and action is presented. We

employ an action representation in the style

of Allen, where an action is represented by de

scribing the time course of events while the ac

tion occurs. In this sense, an action is defined

by means of temporal constraints on the world

states, which pertain to the action itself, and

on other more elementary actions occurring

over time. A distinction between action types

and individual actions is supported by the for

malism. Plans are seen as complex actions

whose properties possibly change with time.

The formal representation language used in

this paper is a description logic, and it is pro

vided with a well founded syntax, semantics

and calculus. Algorithms for the subsumption

and recognition tasks - forming the basis for

action management - are provided.

1 INTRODUCTION

The goal of this work is to investigate a formal frame

work that permits dealing with time, actions and plans

in a uniform way. As opposed to the most common ap

proaches to modeling actions as state change - e.g., the

formal models based on situation calculus [McCarthy

and Hayes, 1969], the STRiPS-like planning systems

[Lifschitz, 1987] - where actions are instantaneous and

defined as functions from one state to another, we pre

fer to explicitly introduce the notion of time by ad

mitting that actions take time, like in [Allen, 1991].

Allen builds a representation based on time, eliminat

ing the notion of state as encoded in the STRIPS-Iike

systems by means of preconditions - causes - and post

conditions - effects. This formalism is not intended to

capture any sense of causality, but it represents an ac

tion by describing the time course of events while the

action occurs. Besides, unlike STRIPS-Iike systems, an

action takes time: then, it is possible to define what is

'Current address: Ladseb-CNR, 1-35020 Padova PD,

Italy

true while the action is occurring. Different actions can

be concurrent or may overlap in time; effects of over

lapping actions can be different from the sum of their

individual effects; effects may not follow the action but

more complex temporal relations may hold. Starting

from a formal language able to express temporally re

lated objects, actions are represented through temporal

constraints on the world states, which pertain to the

action itself, and on other more primitive actions oc

curring over time. With respect to [Allen, 1991], our

formalism has a clear distinction between the language

for expressing action types (the conceptual level) and

the language for expressing individual actions (the as-

sertional level). Plans are built by temporally relating

action types in a compositional way using the tempo

ral constructors available in the language. In this way,

since the temporal relationships are proper operators of

the basic language, the distinction between actions and

plans disappears. As a matter of fact, we do not need

distinct languages for objects and states representation,

for time representation, for actions representation, and

for plans representation.

The basic temporal language we propose is a concept

language [Nebel, 1990], i.e. a description logic of the

KL-ONE family1, and it is inspired by the work of

[Schmiedel, 1990]. The use of a concept language to

represent directly action and plan descriptions allows

us to exploit the ideas developed in the concept lan

guages family, like procedures for subsumption, classifi

cation and instance recognition [Hollunder et ai, 1990;

Nebel, 1990]. In this paper we present a calculus to

check subsumption between actions types, and to rec

ognize which type of action has taken place at a certain

time interval from the observation of what is happening

in the world. A plan taxonomy based on subsumption

can be built, and it can play the role of a plan library

to be used for plan retrieval and plan recognition tasks

[Kautz, 1991].

Several temporal extensions of a concept language ex

ist in the literature: Claudio Bettini in [Bettini, 1992]

and [Bettini, 1993] proposes a variable-free extension

'Concept languages are also called Frame-Based Descrip

tion Languages, Term Subsumption Languages, Termino

logical Logics, Taxonomic Logics or Description Logics.
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with both existential and universal temporal quantifi

cation; [Devanbu and Litman, 1991] and [Weida and

Litman, 1992] - and recently [Weidaand Litman, 1994]

- propose a loose hybrid integration between concept

languages and respectively regular expressions and con

straint networks; [Schmiedel, 1990] proposes a very ex

pressive but undecidable language with variables and

temporal quantifiers; [Schild, 1993] proposes the em

bedding of point-based tense operators in a proposi-

tionally closed concept language - his ideas have been

applied in the BACK terminological representation sys

tem; [Lambrix and Ronnquist, 1993] study the combi

nation of the temporal logic LITE, where the notion of

object is revised from being an indivisible entity into

being a temporal structure of versions, and a termi

nological logic. In [Song and Cohen, 1991], temporal

constraints between actions and its decomposed sub-

actions - in the context of hierarchical planning - are

made explicit from the structure of the plan, in order

to improve the results of plan recognition.

Our proposal reduces the expressivity of [Schmiedel,

1990] in the direction of [Weida and Litman, 1992];

in this way, we obtain a decidable logic with a sound

and complete subsumption algorithm. However, while

[Weida and Litman, 1992] use two different formalisms

to represent actions and plans - a non temporal concept

language for describing actions and a second formal

ism to compose plans by adding temporal information

- we choose an extension of a description logic where

time operators are available directly as term construc

tors. This view implies an integration of a temporal do

main in the semantic structure where terms themselves

are interpreted, giving the formal way both for a well-

founded notion of subsumption and for proving sound

ness and completeness of the corresponding algorithm.

Moreover, we are able to build temporal structured ac

tions - as opposed to atomic actions - describing how

the world state changes because of the occurrence of

an action. In fact, our language allows for feature rep

resentation, as suggested in [Heinsohn et al., 1992], in

order to relate actions to states of the world.

The paper is organized as follows. The formal language

is first introduced, by presenting its syntax and seman

tics at both the concept and individual levels. The

subsumption and instance recognition problems are for

mally defined in this framework. Examples of applica

tion of the temporal language for action and plan repre

sentation and reasoning are presented in section 3. The

calculus is finally briefly revealed, by looking first to a

normal form for concept expressions, and then to the

algorithms for subsumption and instance recognition.

2 THE TEMPORAL LANGUAGE

We introduce in this section the temporal language.

Pursuing the ideas of [Schmiedel, 1990], an interval-

based temporal extension of concept languages is inves

tigated. A well founded syntax and semantics for the

language is given and a formal definition of the sub

sumption and recognition reasoning tasks is devised.

C,D —♦ E\ (non-temporal concept)

CnD | (conjunction)

cud 1 (disjunction)

c@x | (qualifier)

C[Y]©X | (substitutive qualifier)

0(X+) 32+.C (existential quantifier)

E,F A\ (atomic concept)

T| (top)

EnF\ (conjunction)

EUF | (disjunction)

Plq\ (agreement)

p : E (selection)

P, 9
—+

f\ (atomic feature)

*9\ (atomic parametric feature)

poq (feature chain)

n (X {R) Y) (temporal constraint)

R,S — R , S\ (disjunction)

s | mi | f | . . . (Allen's relations)

X,Y t|x|y|... (temporal variables)

Figure 1: Syntax rules for the temporal language.

Basic types of the language are concepts, individuals,

temporal variables and intervals. A concept is a descrip

tion gathering the common properties among a collec

tion of individuals. Concepts can describe entities of

the world, states, events. Temporal variables denote

intervals bound by temporal constraints, by means of

which abstract temporal patterns in the form of con

straint networks are expressed. Concepts (resp. indi

viduals) can be specified to hold at a certain interval

variable (resp. value) defined by the constraint net

work. In this way, action types (resp. individual ac

tions) can be represented in a uniform way by tempo

rally related concepts (resp. individuals).

Concept expressions (denoted by C, D) are built out

of atomic concepts (denoted by A), atomic features

(denoted by /), atomic parametric features (denoted

by -kg)2 and constrained interval variables (denoted by

X,Y) according to the abstract syntax rules of fig

ure l3. For the basic interval relations we use the same

notation as in [Allen, 1991]: before (b), meets (m), dur

ing (d), overlaps (o), starts (s), finishes (f), equal (=),

after (a), met-by (mi), contains (di), overlapped-by (oi),

started-by (si), finished-by (fi).

Temporal variables are introduced by the temporal exis

tential quantifier "O" . Variables appearing in temporal

constraints should be declared within the same tempo-

2 Names for atomic features and atomic parametric fea

tures are from the same alphabet of symbols; the * symbol

is not intended as operator, but only as differentiating the

two syntactic types.

3The syntax rules are expressed following the tradition

of concept languages [Hollunder et al., 1990]. It can be read

as, e.g. if C is a concept expression and X is a temporal

variable, then C@X is a concept expression.
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Boil-Spaghetti

Make-Spaghetti Boil

x jj

Figure 2: Temporal dependencies in the definition of

the Boil-Spaghetti action.

ral quantifier, with the exception of the special variable

|. Temporal variables appearing at the right hand side

of a "@" operator are called bindable. Concepts should

not include unbound (a.k.a. free) bindable variables,

with the exception of the special variable fl; a bindable

variable is said to be bound in a concept if it is de

clared at the nearest temporal quantifier in the body of

which it occurs. Moreover, in chained constructs of the

form ((C[Yi]@X1)[Y2]@X2 . . .) non bindable variables

should not appear more than once, with the exception

of the special variable f.

In this language, unlike [Schmiedel, 1990; Bettini,

1992], it is not possible to express the negated of the ex

istential temporal quantifier: it is argued that the dual

of O - i.e. the universal temporal quantifier □ - leads

the satisfiability problem - and the subsumption - for

the language to be undecidable [Halpern and Shoham,

1991; Venema, 1990; Bettini, 1993].

Concept expressions are interpreted in our logic over

pairs of temporal intervals and individuals (i,a), mean

ing that the individual a is in the extension of the con

cept at the interval i. If a concept is intended to denote

an action, then its interpretation can be seen as the set

of individual actions of that type occurring at some in

terval.

Within a concept, the special f variable refers to the

generic interval at which the concept itself holds4; in

the case of actions, it refers to the temporal interval at

which the action itself occurs. A concept holds at an

interval X if it is temporally qualified at X - written

C@X; in this way, every occurrence of jj embedded in

C is interpreted as the X variable. Since any concept is

implicitly temporally qualified at the special Jj variable,

it is not necessary to explicitly qualify concepts at #.

The temporal existential quantifier introduces interval

variables, related each other and possibly to the J vari

able in a way defined by the set of temporal constraints.

The informal meaning of a concept with a temporal

existential quantification can be understood with the

following examples in the action domain [Weida and

Litman, 1992].

Boil-Spaghetti =

Ox (x b jt). (Boil n Make-Spaghetti®*)

Boil-Spaghetti denotes, by definition, any action oc

curring at some interval such that an event of Boil

ing occurs at the same time and an event of type Ma

ke-Spaghetti occurs at some preceding interval. The

II interval could be understood as the occurring time

of the action type being defined: referring to it within

the definition is an explicit way to temporally relate

states and actions occurring in the world with respect

to the occurrence of the action itself. The temporal

constraint (x b 8) states that the interval denoted by

x should be before the interval denoted by |, i.e. the

occurrence interval of the action type Boil-Spaghetti.

Figure 2 shows the temporal dependencies of the inter

vals in which the concept Boil-Spaghetti holds.

As a more complex example, let Chef, Make-Spa

ghetti, Make-Fettuccine and Boil be atomic con

cepts, *AGEHT be an atomic parametric feature and y

be a temporal variable. We can describe the class of

"any action of a chef boiling pasta after having made

spaghetti or fettuccinf as:

Boil-Pasta =

Oy (v b »).

(★AGENT : Chef n Boil n

(Make-Spaghetti U Make-Fettuccine)@y)

The parametric feature *AGEHT plays the role of formal

parameter of the action type Boil-Pasta, mapping any

instance of the action itself to its own agent, indepen

dently from time. The occurrence time of the disjunc

tive action type Make-Spaghetti U Make- Fettuccine

is bound to the y interval, while the occurrence times

of *AGEHT:Chef , Boil and Boil-Pasta itself are implic

itly bound to the J interval. Please note that, whereas

the existence and identity of the *AGEHT of the action

is independent from time, it can be qualified differently

in different intervals of time, e.g the fact that it is a

Chef is necessarily true only at the | interval.

The temporal substitutive qualifier C[V]@A', renames

the variable V, within C, to X and it is a way of

making coreference between two temporal variables in

different scopes - i.e. declared in different temporal

quantifiers. This is useful when using already defined

concept names. As an example, Boil-Pasta could be

redefined by simply renaming the temporal variable x

within Boil-Spaghetti:

Boil-Pasta =

Oy (y b J). (*AGENT : Chef n

(Boil-Spaghetti[i]@y U

(Boil n Make-Fettuccine@y)))

The assertion Boil-Pasta(t, a) says that a is an in

dividual action of types Boil-Pasta and Boil at the

interval i, while it is either of type Make-Spaghetti or

of type Make-Fettuccine at some interval j preceding

i. Moreover, the same assertion implies that a is re

lated to an *AGENT , say 6, which is of type Chef at the

interval i:

Boil-Pasta(t, a)

3b. Boil(i, a) A *AGEIT(a, 6) A Chef(i, 6) A

3j. b(j, i) A (Make-Spaghetti(j, a) V

Make-Fettuccine(j, a))

4 This variable is usually called NOW. We prefer not to

adopt such a name, because it could be misleading.
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(s)f

(f)£

(mi)f

{R_, S)£

{x,n)£

tt = Ml A V < t>i}

t) = l)i A tli < tt}

{<[«,»],(«i,«il)€T?x7?|

« = »i}

(meaning of other Allen's relations)

(V:i«7^| v(jf (#) y)el.

(V(X),v(y))e(i?)£}

Figure 3: The temporal interpretation function.

AV,t,H = {a€A2
{t,a)£Ax}

i i

2.1 THE FORMAL SEMANTICS

We assume a linear, unbounded and dense temporal

structure T — (P,<), where V is a set of time points

and < is a strict total order on V. The interval set

of a structure T is defined as the set T< of all closed

intervals [v., v] = {x £ V \ u < x < v, u ^ v) in T.

An interpretation X = (T< , A1, ■2) consists of a set T<

(the interval set of the selected temporal structure T), a

set A1 (the domain of J) and a function ■* (the prim

itive interpretation function of I). The primitive in

terpretation is a function giving a meaning to atomic

concepts, features and parametric features:

Ax C T* x A1 ;

M^xA1)'*' A1 ;
kgi : A* A1

Atomic parametric features are interpreted as partial

functions; they differ from atomic features for being

independent from time.

To give a meaning to complex temporal and concep

tual expression, we introduce the temporal interpreta

tion function and the general interpretation function.

The temporal interpretation function £ depends on the

temporal structure T, and it_is definedjn figure 3. The

labeled directed graph (X,H), where X is a shorthand

for a set of variables - representing the nodes - and H

is a shorthand for a set of temporal constraints - repre

senting the arcs, is called temporal constraint network;

the temporal interpretation of a temporal constraint

network is the set of all assignments of the variables

which satisfy the temporal constraints. An assignment

of variables is a function V : X i—► T< associating an

interval value to each temporal variable. We will_write

(X, 2&){x,_tl ar3~<3 } to denote the subset of (X,1i)£

where the variable £; is mapped to the interval value .

A temporal constraint network is consistent if it admits

a non empty interpretation.

A general interpretation function v t «> Dased on a in

terpretation 1, an assignment of variables V, an in

terval t and a set of constraints H — {x\ >—►

over the assignments of inner variables, is defined in

such a way that the equations of figure 4 are satisfied.

The composition should be read from left to right, i.e.

JV,t,H — h ■ A i—► A_

Va. (a € dom ft «-»
{t, a) € dom fT) A

/«(a) = /r(t,a)

Ar

x
*9v,t,n

1 V,t,H

{CUD)l>tM

(CuD)Jv,t,n

(P°?)v,(,H

(p I qjv,t,H

(c@x)S,,iH

(C[Y]@X)l^n =

I X
Pv.t.n 0 Qv.t.n

{a e dompv.t.x I

Pv,t,nia) € £v,t,x}

{a € dompv.i^ n dom gv,t,w I

Pv,t,w(°) = 9v,t,w(a)}

(C[t]@X)littli

<

uV,t,X

UV,V(X),W

C1
v,«,Hu{y-v(Jt)}

<-/V,I,Hu{y.-V(X)}

if X = |,

V = I

if X y |,

V = I

if X = 1,

V * I

if X * I,

V * I
(0(X)B.C)5ilt„ = {aeAx|

3W.W€<X,7^u{^t)A

Figure 4: The general interpretation function.

(Pv,(,w°9v,(,w)(a) means9v,i,w(Pv,(,w(a))- The expres

sion dom /y ( w (respectively, domf1) denotes the do

main of the partial function /y , w (/z) - i.e., a subset

of A1 (T* x A1) for which (/J) is defined. In

tuitively, the general interpretation of a concept Cy , w

is the set of entities of the domain which are of type

C at the time interval t, with the assignment for the

free temporal variables in C given by V, and with the

constraints for the assignment of variables in the scope

of the outermost temporal quantifiers given by Ti.

In absence of free variables in the concept expression

- with the exception of J, we introduce the natural in

terpretation function C, being equivalent to the gen

eral interpretation function Cy , n with any V such

that V(jj) = t, and H — 0. The set of interpretations

{Cy ( n) obtained by varying X, V, t with a fixed H is

maximal wrt set inclusion if Ti = 0, i.e. the set of

natural interpretations includes any set of general in

terpretations with a fixed Ti. In fact, since Ti represents

a constraint in the assignment of variables, the uncon

strained set is the larger one.

An interpretation I is a model for a concept C if Cf ^ 0

for every /. If a concept has a model, then it is satisfi-

able, otherwise it is unsattsfiable. A concept C is sub

sumed by a concept D (written C C D) if Cf C Df for

every interpretation 1 and every interval t.

Concept definitions are introduced by terminological
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axioms of the form A = C. An interpretation I satisfies

A = C iff A1 = Cf, for every t. A terminology (TBox)

is a finite set of terminological axioms, with the restric

tion that an atomic concept may appear at most once in

the left-hand side of an axiom in the terminology, and

that the terminology may not contain cycles iNebel,

1990]. An interpretation I is a model for a TBox iff

it satisfies all terminological axioms in the TBox. An

expanded TBox, i.e. a terminology where each defini

tion does not make use of the other definitions, is ob

tained by applying an interpretation-preserving expan

sion procedure , i.e. substituting every defined concept

occurring in a definition with its defining term.

Please note that concepts in this language are always

satisfiable, with the proviso that the temporal con

straints introduced by the existential quantifiers are

consistent. This can be easily checked, after the reduc

tion of the concept into a normal form (see section 4),

by checking each resulting temporal constraint network

using some standard algorithm [van Beek and Cohen,

1990]. In the following we will consider satisfiable con

cepts only.

It is interesting to notice that only the relations s, f, mi

are really necessary in the concept language, because it

is possible to express any temporal relationship between

two distinct intervals using only these three relations

and their transposes si, fi, m [Halpern and Shoham,

1991]. In fact, the following equivalences hold:

Ox (z a J). C@x = Ox (x mi f). (Oy (y mi J). C@y)@x

Ox (x d J). C@x = Ox (x s J). (Oy (y f J). C@y) @x

Ox (x o J). C@x = Ox (x s |). (Oy (y fi |). C@y) @x

Ox (x = J). C@x = C

Other interesting equivalences are the following:

C=0()().C

c = c@t

C@X = C[t]@X

(C[X]@Y)[Z}@W = (C[Z]©W)[X]@Y

T = O(X) Ik. T

2.2 THE ASSERTIONAL LANGUAGE

We consider now assertions, i.e. predications on

temporally qualified individual entities; usually, they

are referred to as ABox statements. Let O be the

alphabet of symbols denoting individuals; an asser

tion is a statement of one of the following forms

C(i, a), p(i,a,b), *p(a,6), R(i,j), where C is a con

cept, p is a feature, *p is a parametric feature, R is a

temporal relation, a and b are in O and denote individ

uals, i and j denote intervals in T*.

In order to assign a meaning to the assertions, the in

terpretation function 1 is extended to individuals, so

that a1 6 A1 for each individual a £ O and a1 ^ b1

if a ^ b (Unique Name Assumption). Moreover, we in

tend ie to be an element of T£. The semantics of the

5The expansion procedure can be expensive [Nebel,

1990].

Make-Spaghetti » Boil

(before)

Figure 5: The graphical definition of the Boil-Spa

ghetti plan.

assertions is the following: C(i,a) is satisfied by an in

terpretation I iff a1 e CfE ; p(i, a, b) is satisfied by I iff

pfe(ax) = b1; *p(a,6) is satisfied by I iff ^(a1) = bx;

and R(i,j) is satisfied by I iff {i£ , j£) £ R£ .

A set E of ABox statements and TBox axioms is called

a knowledge base. An interpretation T is a model of E

iff every assertion and every terminological axiom of E

is satisfied by I. If E has a model, then it is satisfiable.

E logically implies an assertion a (written E (= a) if

a is satisfied by every model of E. Given a knowledge

base E, an individual a in O is said to be an instance

of a concept C at the interval i if E \= C(i, a).

3 ACTIONS AND PLANS

We show in this section how the temporal language

can be applied for action and plan representation using

some common domains, like the cooking domain [Weida

and Litman, 1992] and the block world domain [Allen,

1991]. While actions describe how the world is affected

by their occurrence, plans are described as a collection

of action types constrained by temporal relations. In

this way, a plan can be graphically represented as a

temporal constraint network, where nodes denote ac

tion types. At this level of representation, plans can be

seen as complex actions: since actions composing a plan

can be expanded, plans and actions are not structurally

different. This distinction is further elaborated in [Ar-

tale and Franconi, 1994], where each action composing

a plan is considered as a step referring to a different

individual action, and an appropriate function relates

a plan to its steps.

3.1 THE COOKING DOMAIN

The plan Boil-Spaghetti introduced in section 2 can

be depicted as in figure 5.

Boil-Spaghetti =

Ox (x b |). (Boil n Make-Spaghetti@x)

The definition employs the ]J interval to denote the oc

currence time of the plan itself; in this way, it is possible

to describe how different actions or states of the world

concurring to the definition of the plan are related to

it. This is why the variable j) is explicitly present in

the definition of Boil-Spaghetti, instead of a generic

variable: the Boil action should take place at the same

time of the plan itself.

The definition of a plan can be reused within the defi

nition of other plans; the plan Boil-Spaghetti defined

above is used in the definition of Assemble-Spaghet-

ti-Marinara (see figure 6):

Assemble-Spaghetti-Marinara =
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Boil-Spaghettis

(before)^£> Put-Together-SM

Make-Marinara"""""'^

Figure 6: The graphical definition of the Assem-

ble-Spaghetti-Marinara plan.

0(y 2 w) (y b w)(z b w). (Boil-Spaghetti@y n

Make-Marinara@z n

Put-Together-SM@tu)

In this case, precise temporal relations between the two

temporal constraint networks are asserted (figure 7):

the action Put-Together-SM takes place after the Boil

action. Observe that the occurrence interval of the plan

Assemble-Spaghetti-Marinara does not appear in the

figure, because it is not temporally related with any

other interval.

A plan subsuming Assemble-Spaghetti-Marinara is

the plan defined below Prepare-Spaghetti, supposing

that the action Make-Sauce subsumes Make-Marinara.

This means that among all the individual actions of the

type Prepare-Spaghetti there are all the individual

actions of type Assemble-Spaghetti-Marinara:

Prepare-Spaghetti =

O (y z) (). (Boil-Spaghetti@y n Make-Sauce@z)

Please note that Boil-Spaghetti does subsume neither

Prepare-Spaghetti nor Assemble-Spaghetti-Mari

nara, even if the former is part of the definition of these

latter. This could be better explained if we observe how

the Prepare-Spaghetti plan is expanded:

Prepare-Spaghetti =

O (x y z)(x b y). (Boil@y n Make-Spaghetti@;r n

Make-Sauce@z)

The effect of binding Boil-Spaghetti to the temporal

variable y has been that the Boil action occurs at the

interval y, which is possibly different from the occurring

time of Prepare-Spaghetti; while Boil-Spaghetti

and Boil actions take place necessarily at the same

time. Subsumption between Prepare-Spaghetti and

Boil-Spaghetti fails since different temporal relations

between the actions composing the two plans and the

plans themselves are specified. In particular, we can

observe that the plan Boil-Spaghetti denotes a nar

rower class than the plan

0(z y) (x b y). (Boil@y n Make-Spaghetti@x),

which subsumes each of Prepare-Spaghetti, Assem

ble-Spaghetti-Marinara and Boil-Spaghetti.

3.2 THE BLOCK WORLD DOMAIN

As a further example of the expressive power of the

temporal language, we show how to represent the Stack

action in the block world, as it is defined in [Allen,

1991]. A stacking action involves two blocks, which

should be both clear at the beginning; the central part

of the action consists of grasping one block; at the end,

Make-Marinara Put-Together-SM

z w

Boil-Spaghetti

-« *~

y

Make-Spaghetti Boil

x y

Figure 7: Temporal dependencies in the definition of

Assemble-Spaghetti-Marinara.

the blocks are one on top of the other, and the bottom

one is no more clear (figure 8).

Our representation borrows from the Rat system

[Heinsohn et al, 1992] the intuition of representing ac

tion parameters by means of partial functions mapping

from the action itself to the involved action parame

ter. In the language, these functions are called para

metric features. For example, the action Stack has

the parameters *0BJECT1 and *0BJECT2, representing

in some sense the objects which are involved in the

action independently from time. So, in the assertion

"*0BJECTl(a,6/ocfc-a)", block-a denotes the first ob

ject involved in the action a at any interval. On the

other hand, an assertion involving a (non-parametric)

feature, e.g. "DN(i, block-a, block-b)" , does not imply

anything about the truth value at intervals other than

t.

The concept definition makes use of temporal quali

fied concept expressions, including feature selections

and agreements. The expression (*0BJECT2 : Cle-

ar-Block)@a; means that the second parameter of the

action should be a Clear-Block at the interval denoted

by x\ (*OBJECTloON \ *0BJECT2)@y indicates that at

the interval y the object on which *0BJECT1 is placed

is *0BJECT2. The formal definition of the action Stack

is:

Stack = 0(x y z v w)

x fi |)(y mi fl)(z mi o jt)

w f jt)(u) mi v).

((*0BJECT2 : Clear-Block)@x n

(*OBJECTloON J *0BJECT2)@yn

(*0BJECT1 : Clear-Block)@w n

(*0BJECT1 : Hold-Block)<5)u> n

(*0BJECT1 : Clear-Block)@z)

The above concept does not state which properties are

the prerequisites for the stacking action or which prop

erties must be true whenever the action succeeds. What

this action intuitively states is that *0BJECT1 will be on

*0BJECT2 in a situation where both objects are clear at

the start of the action. Note that the world state de

scribed at the intervals denoted by v, w, z is the result

of an action of grasping a previously clear block:

Grasp = 0(x w z) (x o jt)(u> f ft)(u> mi x)(z mi J).

((★0BJECT1 : Clear-Block)@x n

(★0BJECT1 : Hold-Block)@u; n

(★OBJECT! : Clear-Block)@z)

(

(
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Stack(OBJl, 02)

—J *

Clear-Block (01) Hold-Block(Ol) Clear-Block(Ol)

w

Clear-Block(02) 011(01, 02)

x y

Figure 8: The definition of the Stack action.

We can redefine the Stack action by making use of the

Grasp action:

Stack = 0(x y u v) (x fi J)(y mi |)(u f J)(t> o J).

((★0BJECT2 : Clear-Block)®* n

(*0BJECTio0N | *0BJECT2)@y n

(Grasp[x]@t;)@u)

The temporal substitutive qualifier (Grasp[x]@u) re

names within the defined Grasp action the variable x

to v and it is a way of making coreference between two

temporal variables, while the temporal constraints pe

culiar to the renamed variable x are inherited by the

substituting interval v. The effect of temporally qual

ifying the grasping action at u is that the J variable

associated to the grasping action itself is bound to the

interval denoted by u - remember that the variable jj

used inside an action refers to the occurrence time of

the action itself. Because of this binding on the occur

rence time of the grasping action, the J variable in the

grasping action and the $ variable in the stacking action

denote different time intervals, so that the grasping ac

tion occurs at an interval finishing the occurrence time

of the stacking action.

Now we show how from a series of observations in the

world we can make action recognition, an inference ser

vice which computes if an individual action is an in

stance of an action type at a certain interval. Given the

following ABox, describing a world where blocks can be

clear, grasped and/or on each other and where a generic

individual action a is taking place at time interval ia

having the blocks block-a and block-b as its parameters:

*OBJECTl(a, block-a), *0BJECT2(a, block-b),

o(*l i *a), Clear-Block(«i , block-a),

fi(*2i *a)> Clear-Block(i2, block-b),

mi(i3>*i)> f(*3>Ja). Hold-Block(t3, block-a),

nfli(,4>*a)> Clear-Block(j4, block-a),

mi(»5, ia)i 0'('5) block-a, block-b)

then the system recognizes that in the context of a

knowledge base E, composed by the above ABox and

the definition of the Stack concept in the TBox, the

individual action a is an instance of the concept Stack

at the time interval ia, i.e. E (= Stack(ia,a).

4 THE CALCULUS

This section presents a calculus for the temporal con

cept language. We first look for a normal form of con-

C@XnD@X — (CnD)@X

p:(q:C) - (po q)j_ C

0(Xt) Ei. (Cn(0(Xa) Tc2. D)@X) -

0(X, al2) ®i w!Ea[X/fl. (CnD+[X/i\)

Cno(X)Tc.D -» 0(X)1t. (CnD)

if C doesn't contain variabJes

Comment: X i±i V returns the union of the sets X and Y,

where all the elements of Y occurring in X are renamed,

except for J; Z+ is intended to be the expression Z where

the same renaming has taken place.

Figure 9: Nondeterministic rewrite rules to transform

an arbitrary concept into an equivalent existential con

cept.

cepts, which will be useful for the subsumption and

instance recognition algorithms. Since the dimension

of the normal form of a concept can be exponential in

presence of concept disjunction, a way to compute an

effective normal form in the special case of absence of

concept disjunction is also devised. Section 4.1 consid

ers the language without concept disjunction; section

4.2 considers the full language.

4.1 NORMAL FORM AND SUBSUMPTION

Let us consider in this section the restricted language

without concept disjunction. Every concept of the

restricted language in an expanded TBox can be re

duced into an equivalent existential concept of the form:

0(X) %. (Ql@Xl n . ..HQn@Xn), where each Q' is a

non-temporal concept, i.e. it does not contain neither

temporal quantifiers nor temporal qualifiers - nor con

cept disjunctions. Figure 9 presents a set of rules for re

ducing a concept C into the existential form (efC), once

concept names and substitutive qualifiers have been ex

panded in C. A concept in existential form can be seen

as a conceptual temporal constraint network, i.e. a la

beled directed graph (X Q^X) where arcs are la

beled with a set of arbitrary temporal relationships -

representing their disjunction - and nodes are labeled

with nontemporal concepts.

Proposition 1 (Existential Form) Every concept

can be reduced into an equivalent existential concept by

applying the rules of figure 9, i.e. given a concept C,

Cy t = (efC)y t for every interpretation X, every as

signment V and every interval t.

Given a concept in existential form, the temporal com

pletion of the constraint network is computed:

Definition 1 (Temporal Completion) The tem

poral completion of a concept in existential form - the

Completed Existential Form, CEF - is obtained by se

quentially applying the following steps:
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• (Closure) The transitive closure of the Allen temporal

relations in the conceptual temporal constraint network

is computed (see e.g. [van Beek and Cohen, 1990]).

• (parameter introduction) New information is added

to each node because of the presence of parameters, as

the following rules show (the ~> symbol is intended in

such a way that each time the concept expression in

the left hand side appears at a top level conjunction in

some node of the temporal constraint network then the

right hand side represents the concept expression that

must be conjunctively added to all the other nodes):

*g\ o ■ ■ • o *g„ [o / [o p]] : C

~> *jio...o*j„ :T.

**}o...o*SU*rf°...o*ff2,

-v* -kg\ o . . . o I *g\ o . . . o +g2m.

*g\o...o *gi o f1 [o p1] | *g\ o . . .0 *g2n o f2 [o p2]

~» *g{ o . . . o : T I~l *g\ o . . . o *g2n : T.

• (— introduction) New temporal constraints with the

"=" relation are introduced, if they are not already

present, for every variable declared in the constraint

network and for the jt variable, by applying the following

rewrite rule:

oCxy^jj —

0(X)E(8 = 8) (* = x)(y = y)- -.C

• (= collapsing) For each equality temporal constraint,

collapse the equal nodes by applying the following

rewrite rule:

0(X)K(x = y).C - 0(X\{y})%/s].Clxh]

ifx^y and y ^ J □

Proposition 2 (Equivalence of CEF) Every con

cept in existential form can be reduced into an equiva

lent completed existential concept by applying the above

procedure.

The most relevant properties of a concept in CEF is

that all the admissible interval temporal relations are

explicit and the concept expression in each node is no

more refinable without changing the overall concept

meaning; this is stated by the following proposition.

Proposition 3 (Node Independence of CEF) Let

(X,7c\Q@X) be a conceptual temporal constraint net

work in its completed form (CEF); for all Q £ Q and

for all C 2 Q then (X, % (Q n C)@X)* t ^ {X, %

<2@X)y t for every interpretation 1, every assignment

V and every interval t.

Proof. The proposition states that the informa

tion in each node of the CEF is independent from

the information in the other nodes. In fact, (X , 7c,

(QnC)@X)$ t - (X, % Q@X)v,t if the concept ex

pression in one node implies new information in some

other node, since, for nontemporal concepts, adding in

formation means restricting the concept in some way.

We examine the only two cases in which the information

stated in a node adds new information in some other

node, and we show that these cases are covered by the

completion rules.

i. Nodes related only by means of the equal relations.

The (= collapsing) rule provides to collapse two con

temporary nodes conjoining the concept expressions of

each of them. Note that, thanks to the (Closure) rule,

all the possible equal temporal relations are made ex

plicit.

ii. Time-invariant information. Every time-invariant

information should spread over all the nodes. Only

parametric features and the T concept have a time-

invariant semantics: by induction, we prove that the

only time-invariant concepts are T, *gi o . . . o +gn : T,

*gi o . . . o -kgn I *j>! o . . . o *pm (with n,m > 1) or an

arbitrary conjunction of these terms. The (parameter

introduction) rule considers all the possible syntactical

cases of deduction concerning time-invariant concept

expressions. □

As an example, we show the completed existential form

of the previously introduced Stack action:

Stack =

0(x y v w z)

(x fi $)(y mi $)(v mi 8)(u> f $)(z o #)(y mi x)

(v mi x)(w f x)(z (o, d,s) x)(v (=,s,si) y)

(w m y)(z b y)(w m v)(z b v)(w mi z)

(tt = tt)(ar = x)(y = y)(v = v)(w = w){z = z).

((★0BJECT2 : Clear-Block n *0BJECT1 : T)@xU

(★0BJECT1 : Clear-Block n *0BJECT2 : T)@yn

(*0BJECTlo0H J. *QBJECT2)@t; n

(★0BJECT1 : Hold-Block n *OBJECT2 : T)@w n

(*0BJECT1 : Clear-Block n *0BJECT2 : T)@z)

As we have seen in section 2.1, a concept subsumes an

other just in case every possible instance of the second

is also an instance of the first, for every time inter

val. Concept subsumption in the temporal language

is reduced to concept subsumption between nontem

poral concepts and to subsumption between temporal

constraint networks. A similar general procedure was

first presented in [Weida and Litman, 1992], where the

language for nontemporal concepts is less expressive -

it does not include features nor parametric features.

Algorithms to compute subsumption between nontem

poral concepts - E\ C E2 - are well known, see e.g.

[Hollunder et ai, 1990J.

Definition 2 (Variable mapping) A variable map

ping is a total function M : X ■—► X such that

M($)_= I We_vvrite M{X) to intend {M{X) \

X £ X}, and_M{H) to intend {(M(X) {R) M(Y)) \

(X(R)Y)E'R}. a

Definition 3 (Temporal Constraint subsump

tion) A temporal constraint (Xi(R\)Y\) is said to

subsume a temporal constraint (A^.^)^) under a

generic variable mapping AI - written (Xi(Ri)Yi)

(X2 (R2) Y2) - if A4(Xi) = X2, M{YX) = Y2 and

(Ri)€ 5 for every temporal interpretation £ . O
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Proposition 4 (Xi(Ri)Yi) 3M (X2{R2)Y2) tf and

only if M{X\) = X2, M(Yi) = Y2 and the disjuncts

in R\ are a superset of the disjuncts in R2.

Proof. Follows from the observation that the 13 tem

poral relations are mutually disjoint and their union

covers the whole interval pairs space. □

Definition 4 (Temporal Constraint Network

subsumption) A temporal constraint network (Xi,

Hi) subsumes a temporal constraint network (X2, H2)

under a variable mapping M : X\ *-* X2, written

(Xu%) ^M (^2,K2>, if (M(Xi),M{%))e 2 (X2,

Tc2)£ for every temporal interpretation £. □

Propositions (X2,H2) iff there ex

ist a variable mapping M : X\ >—► X2 such that for

all X[,Y{ € X~i exist X? ,Y2n G ~X2 which satisfy

(X\ (R?) Y>) ?M (X^ (#?•") Y?).

Proof. " From the definition of interpretation of

a temporal constraint network, it is easy to see that

each assignment of variables V in the interpretation of

(Xi,1ii) is also an assignment in the interpretation of

(M(X2),M(R2)), since for all i,j (R\j)£ D {R2'n)£ .

"=> " Suppose that we are not able to find such a

mapping; then, by hypotheses, for each possible vari

able mapping there exist some i,j such that (R\'3)£ 2

(R™'n)£ ■ So, for each variable mapping we can build

an interpretation £* and an assignment V* such that

V* G (X2,H2)£' and V* g {M{Xi), A4(Ei))f* . But

this contradicts the assumption that (Xi,1ci) 3^

(X2,%). 'a

Definition 5 (S-mapping) A s-mapping from

a conceptual temporal constraint network (Xi, Hi,

Q@Xi) to a conceptual temporal constraint network

(X2, H2, Q@X2) is a variable mapping S : X\ *-* X2

such that the nontemporal concept labeling each node

in Xi subsumes the nontemporal concept_labeling_the

corresponding node in S(Xi), and (Xi,Hi) {X2,

%)■ " a

The last normalization procedure reduces the graph by

eliminating nodes with redundant information. This

final normalization step ends up with the concept in

the essential graph form, that will be the normal form

used for checking concept subsumption.

Definition 6 (Essential graph) The subgraph of

the CEF of a conceptual temporal constraint network

T = (X,H,Q@X) obtained by deleting the nodes la

beled only with time-invariant concept expressions -

with the exception of the jj node - is called essential

graph of T: (essT). □

Proposition 6 (Essential Graph Reduction) Ev

ery conceptual temporal constraint network in com

pleted existential form can be reduced into an equiva

lent essential graph, i.e. given a conceptual temporal

constraint network T, T$ t = (ess T)y ( for every in

terpretation T, every assignment V and every interval

t.

Definition 7 (Redundant Node) A node K in a

conceptual temporal constraint network (X, H, Q@X)

is redundant if the network resulting by deleting it

is equivalent to the original one: {X \ K, H\X-^K,

Q@X\x\K)v,t = (X>%Q®X)v,t for every interpreta

tion I, every assignment V and every interval t. □

Definition 8 (Mapping-Redundant Set) A set K

of nodes in a conceptual temporal constraint network

(X , H, Q@X) is a mapping-redundant set if there exists

a s-mapping S from (K, H\T, Q@X\W)$ t to (X \ ~K,

®\x\K> Q@X\x\l<)v,t> such that VA'i G K. S{Ki) =

Xj — 3H G H. H 3jd (Ki = Xj).

Proposition 7 A node in an essential graph is redun

dant if and only if it is in the maximal - wrt set inclu

sion - mapping-redundant set of the graph. Moreover,

the only other way to add redundant nodes to an essen

tial graph is to add time-invariant nodes.

The following theorem states that subsumption is de-

cidable and provides a sound and complete procedure to

compute it: first reduce the subsumer and the subsumee

in essential graph form, then look for a s-mapping be

tween the essential graphs by exhaustive search.

Theorem 1 (Concept subsumption) A conceptual

temporal constraint network Ti = (X\, H\, Q@X i)

subsumes a conceptual temporal constraint network

T2 = (X2, H2, Q@X2) - Ti □ T2 - iff there exists

a s-mapping from the essential graph of T\ to the es

sential graph ofT2.

Proof. " Follows from the soundness of TCN sub

sumption, from the soundness of the algorithm for com

puting the subsumption between nontemporal concepts

and from the semantics of the conceptual temporal con

straint networks.

" Suppose that such a s-mapping does not exist.

We can distinguish two main cases.

i) There is not a mapping M such that {Xi,Hi)

(X2,H2). By adding redundant nodes to T2, we ob

tain an equivalent conceptual temporal constraint net

work T2 = {X2,H2,Q@X2). Let us consider the ex

tended network in a way that there exists a variable

mapping A4* such that (Xi,Hi) 3jV/f* (-^ji^a)- Now,

for all possible M* , there is a node X\ G Xi such that

Mm(X[) = X{ with X{ g X2 and Q\ 2 Q{, since ei

ther Q\ is not in a time-invariant node - whereas Q\
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• (CuD)@X — C@XuD@X

• p:(CuD) p:CUp:D

• (Ci_u^)nD -* {Ci n D) u{C2 n D)

• o{X) n. (cud) - o(X) n.cu o(X) n. d

Figure 10: Nondeterministic rewrite rules for comput

ing the disjunctive form.

is in a time-invariant node - or Q2 is in the maximal

mapping-redundant set of - contradicting the hy

pothesis that the mapping M does not exist. Since the

construction of M* allows for the existence of a unique

V6 for both networks, then we can build an instance of

T2* which is not an instance of T\ .

ii) For each possible mapping M such that (Xi,

2Zi) (X 2,1^2) there will be always two nodes X{

and Xi such that M(X{) = X{ and Q\ 2 Q{. Since,

from proposition 3, the concept expression in each node

is independent from any concept expression of the other

nodes, we cannot refine the concept expression Q2,

looking for a subsumption relationships with Q\ . Be

sides, Q\ can not be eliminated - i.e. generalized to T -

from Ti, since the conditions of proposition 7 hold. So,

we can build an instance of T2 which is not an instance

of 7i.

Both cases contradict the assumption that Ti subsumes

T2. □

4.2 DISJUNCTIVE CONCEPTS

In this section we introduce the disjunction operator

and we show how to modify the calculus in order to

check subsumption. In the way of computing subsump

tion, we need a normal form for concepts. The nor

malization procedure is essentially the same as the one

reported in section 4.1. The figure 10 shows the rules

dealing explicitly with disjunction. Those, in addition

to the rules introduced in figure 9, reduce every concept

into an equivalent disjunctive concept of the form:

(O(X0 Ii.CjJU-U {0(Xn) 2c"n. Gn) U

#1 U • • • U Hm

where G; are conjunctions of concepts of the form

Hi@Xk , and each H does not contain neither temporal

quantifiers, nor temporal qualifiers, nor disjunctions.

Given a concept in disjunctive form, applying the tem

poral completion rules showed in section 4.1 to each

disjunct, we end up with an equivalent concept in com

pleted disjunctive form where the node independence

property is preserved. Then the essential graph form

is computed, obtaining a concept where each disjunct

does not contain time-invariant nodes. At this point,

we are able to compute the disjunctive normal form

(dnf C).

Definition 9 (Disjunctive Normal Form) The

disjunctive normal form of a concept is computed start

ing from its essential graph form and applying the fol

lowing nondeterministic rewrite rules to each disjunct:

• (Li introduction) Transform the conceptual tempo

ral constraint network into an equivalent disjunction

of conceptual temporal constraint networks containing

only basic temporal relationships:

0(X) (X1 (R,S) X2)7R.C -+ 0(X)(X! R X2)£.C U

o(x)(Xi s Xijn.c

• (\J elimination) If the disjunct is unsatisfiable - i.e.

the temporal constraint network associated with it is

inconsistent - then eliminate it. □

Proposition 8 (Equivalence of DNF) Every dis

junctive essential graph can be reduced into an equiv

alent disjunctive normal concept by applying the above

procedure.

A concept in disjunctive normal form can be seen as

the disjunction of several basic conceptual temporal con

straint networks, where arcs are labeled with basic tem

poral relationships and nodes are labeled with non-

temporal non-disjunctive concepts:

 

V-V

 

vo v-.-vo

Each basic conceptual temporal constraint network -

i.e. a disjunct of the normal form - has some inter

esting properties, which are crucial for the proofs of

the theorem: temporal constraints are always explicit,

i.e. any two intervals are related by a basic temporal

relation; there is no disjunction, neither implicit nor

explicit, neither in the conceptual part nor in the tem

poral part; the information in each node is independent

from the information in the other nodes. The following

theorem reduces subsumption between concepts in dis

junctive normal form into subsumption of disjunction-

free concepts, such that the results of theorem 1 can be

applied.

Theorem 2 (Concept subsumption) Let C — C\

U • • • U Cm and D = D\ U • • • U D„ be concepts in

disjunctive normal form; then C C D if and only

if ViSj.QCDj.

Proof. 7 Since it is easy to show that

Ci U . . . U C„ C D iff Vz'.C; C D

we need only to prove the restricted thesis

d C Di U • • • U Dn iff dQDiV ...VdQDn

6 Since subsumption is computed with respect to a fixed

evaluation time, V maps the different occurrences of J to the

same interval; this justifies the choice that M(t) = J.

7The proof of this theorem comes from an idea of Werner

Nutt.
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Every conceptual expression C, corresponds to an exis

tential quantified formula with one free variable. More

over, the matrices of such formulas are conjunctions of

positive predicates. Let us denote the formula corre

sponding to a concept d as C-(x). The functionality

of feature concept expressions can be expressed with

a set F of definite Horn clauses. The restricted thesis

holds - in the binary case - if and only if FU{C,"(a)} (=

Ci(a) V D'2(a), where a is a constant substituting the

free variable x and C,"(a) is obtained by skolemizing

the existential quantified variables. F U {C,"(a)} is

equivalent to a set of definite Horn clauses, which are

characterized by a minimal Herbrand model, say Hb-

Then:

F U {CV'(a)} h D[(a) V D'2(a) iff

HB \= D[(a)V D'2(a)

Since we are talking of a single model, D[{a) V D'2(a) is

valid in Hb if and only if either D[(a) or D'2(a) is valid

in HB- □

4.3 INSTANCE RECOGNITION

Given a knowledge base E, an interval i, an individual a

and a concept C, the instance recognition problem is to

test whether E f= C(i,a), i.e. the inference task check

ing if the individual is an instance of the concept at

the given time. We will only sketch here the procedure

for the instance recognition problem. The algorithm

first computes the most specialized concept expression

~ MSC? - for the individual a at the reference interval i.

The MSC? is a concept such that it instantiates the indi

vidual at the interval i, i.e. E \= MSC?(i, a), and it is the

most specific one, i.e. for every concept expression D

of the language satisfying E \= D(i, a) then MSC? C D.

The procedure computing the MSC? is a variant of the

well known abstraction procedure of concept languages

- see e.g. [Nebel, 1990; Lenzerini and Schaerf, 1991;

Donini and Era, 1992]. Even if we conjecture the com

pleteness of the procedure computing the MSC?, no for

mal proof is available.

Given the most specialized concept of every individual,

the instance recognition problem can be reduced to a

subsumption test: E \= C(i,a) if and only if MSC? C C.

For example, the most specialized concept for the indi

vidual action a at the reference interval ia with respect

to the ABox defined in section 3 is the following:

MSC° = 0(xi x2 x3 x4 x5)

(xi o tt)(x2 fi tt)(x3mi xi)

(x3 f |l)(x4 mi jt)(x5 mi |).

((★OBJECTi : Clear-Block)@xi n

(★0BJECT1 : Hold-Block)@x3 n

(★0BJECT1 : Clear-Block)@x4 n

(★0BJECT2 : Clear-Block)@x2 n

(★OBJECTloON | *0BJECT2)@x5)

Since MSC? C Stack, the individual action o is an in

stance of tne concept Stack at the time interval i„.

5 CONCLUSIONS

We have shown in this paper a formalism for repre

senting time, actions and plans in a uniform way. The

proposed temporal concept language allows for the rep

resentation of actions in the style of Allen: an action

can have parameters, which are the ties with the tem

poral evolution of the world, and an action is associ

ated over time with other actions. An action taxonomy

based on subsumption can be set up, and it can play

the role of a plan library for plan retrieval tasks. From

the observation of the evolution of the world state, the

type of the involved actions can be understood, for plan

recognition purposes.

Currently, the language is able to express a plan as an

action having possibly different properties through time

- i.e. as a complex activity. In [Artale and Franconi,

1994] a decomposition operator is introduced to distin

guish the different actions composing a plan. A plan

can be viewed as a hierarchical structure whose con

stituent actions could be seen as its distinct decompos

ing steps. Further research work within this approach

includes the treatment of temporally homogeneous, con-

catenable and countable concepts8. Homogeneity is use

ful to characterize the temporal behavior of world states

[Artale et ai, 1994]. The language can be successfully

extended in order to cope with problems characterized

by inertial - or persistent - properties. In this larger

framework, states can be represented as simple non-

temporal homogeneous and persistent concepts [Artale

and Franconi, 1994].
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Abstract

An analysis of some formal proofs appeared

in recent literature dealing with multiple the

ories, reveals that they are not always accu

rate: some steps are not properly accounted

for, lifting is use improperly, extra logical

constructions or unnecessary assumptions are

made. Many such problems appears due to

the involved mechanisms of reflection. We

show that proof in context can replace the

most common uses of reflection principles.

Proofs can be carried out by switching to

a context and reasoning within it. Context

switching however does not correspond to re

flection or reification but involves changing

the level of nesting of theory within another

theory. We introduce a generalised rule for

proof in context and a convenient notation

to express nesting of contexts, which allows

us to carry out reasoning in and across con

texts in a safe and natural way.

1 INTRODUCTION

A general notion of relativised truth can be useful for

reasoning in and about different theories in a formal

setting. For example to reason about the reasoning of

different agents, to model temporal evolution of knowl

edge, to split a large knowledge base into manageable

chunks or microtheories that can be related to each

other by means of lifting axioms.

There are several approaches to the formalization

of a notion of relativised truth: by means of a

predicate expressing "provability" like for example

PR(T,P) in (Weyhrauch 80) and demo(T,P) in

(Bowen-Kowalski 82), or with a notion of truth in

context like for example ist(c,p) in (Guha 91, Mc

Carthy 87, McCarthy 93, Buvac-Mason 93) and pc in

(Shoham 91), or with a notion of entailment from a set

of assumptions like in (P, vp) (Attardi-Simi 84, Simi 91 ,

Attardi-Simi 93).

Most of these are syntactic approaches where theo

ries can be modeled as collections of reified sentences

or sentence names in First Order Predicate Calculus.

The object theory is extended with a meta-theory con

sisting of sentences about sentences. The relation be

tween general validity and truth relativised to a sub-

theory is usually expressed by means of a pair of reflec

tion/reification rules. For example, (Kowalski-Kim 91)

use the following rules:

T\-P

pr h demo(T, P)

pr h demo(T,P)

(Reificationl)

(Reflection!)

which say that if formula P is derivable from the set

of sentences T, then demo(T, P) is derivable in the

meta-theory from theory pr and vice versa, where pr

is a theory containing a suitable axiomatisation of the

demo predicate.

Unfortunately carrying out proofs dealing with mul

tiple theories is not simple. When reasoning about

reasoning, one often needs to carry out some proof

steps within a different theory from the current one

and then to lift the conclusions back into the original

theory. The deductive rules required to carry out these

steps involve either reflection principles or some other

notion of proof in context. Reflection principles have

to be carefully restricted in order to avoid paradoxes.

Such restrictions however limit significantly their use

fulness and also defeat intuition while building proofs

in context. Standard formulations of the reflection

rules also assume explicit knowledge of the theory one

reasons about. This is not always the case for theo

ries representing agents or for theories which refer to

each other, as those required for expressing common

knowledge.

To illustrate some of the subtle issues involved when

performing proofs composed of subproofs in different

contexts, we examine two examples taken from the

recent literature.
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The first one is a solution to the three wise men puzzle

by Kowalski and Kim presented in (Kowalski-Kim 91)

where a rule of reification is used to lift a conclusion

from the object level to metalevel theory.

The second example was used by John McCarthy (Mc

Carthy 93) to illustrate the power of "lifting axioms" ,

which allow extrapolating facts from one theory to an

other and transforming them at the same time into a

different format. Even though no formal proof theory

was provided, the example was meant to suggest the

kind of proofs one would like to be able to perform.

In this case, things are complicated by the fact that

the proof is carried out in a natural deduction setting,

so there are pending assumption when switching from

one context to another.

The three approaches examined in the paper use three

slightly different notations for relativized truth, whose

correspondence is shown below:

demo(T, P) Kowalski

ist(T, P) McCarthy

i n (P, T) Attardi and Simi

After critically examining the examples, we will dis

cuss the formulation and use of the reflection rules

and argue that the meaning of context switching in

a natural deduction proof is just nesting or unnesting

of contexts. A notation is introduced to write more

readable proofs with context switching according to

this semantics.

2 DIFFICULTIES WITH PROOFS

IN CONTEXT

2.1 INCOMPLETE THEORIES

All standard formulations of the reflection rules re

quire the theory from which one reflects to be com

pletely specified and expressed by means of a term in

the meta-language. For instance the conclusion T I- P

from Reflectionl would not be meaningful unless T was

known.

While there are many useful finite theories that one

can handle with such rules, most interesting theories

turn out to be infinite or only partially specified. For

example theories involving axiom schemata or theo

ries which involve other theories in a mutually recur

sive fashion. A particular case of the latter are theo

ries used to express common knowledge among several

agents, where not only certain facts are known to ev

erybody, but also everybody is aware that everybody

knows them, and so on.

In order to deal with incomplete theories one must in

troduce names for theories and express what is known

about them by means of assertions.

For instance one could assert:

demo(T, P)

demo(T, Q)

However, if one wanted to conclude, given P,Q \- R,

that

demo(T, R)

reflection would not be applicable, since theory T in

not known. As we will see later, there could be other

means to achieve this conclusion.

When mutually recursive theories are allowed in our

language, one must account for them in the seman

tics of the logic. One way to do so is to use non well

founded sets (Aczel 88) as denotation for theories and

rely on Barwise solution lemma to ensure that solu

tions to the recursive equations exist.

A different approach is the one pursued in the theory

of viewpoints (Attardi-Simi 93), where viewpoints de

note recursive set of sentences and the interpretation

of in sentences is done in a layer by layer fashion so

as to properly account for paradoxical self referential

sentences.

Mutually recursive theories appear for instance in the

formulation of the three wise men puzzle.

2.1.1 The three wise men puzzle

The statement of this well known puzzle is the follow

ing (Kowalski-Kim 91).

A king, wishing to determine which of his

three wise men is the wisest, puts a white spot

on each of their forheads, and tells them that

at least one of the spots is white. The king ar

ranges the wise men in a circle so that they

can see and hear each other (but cannot see

their own spots) and asks each wise man in

turn what is the colour of his spot. The first

two say that they don't know, and the third

says that his spot is white.

We analyse the solution this puzzle presented in

(Kowalski-Kim 91) in the framework of the amal

gamated logic of Bowen and Kowalski (Bowen-

Kowalski 82), which is based on a meta-level predicate

demo which represent provability, and reflection rules

that link the meta-level and the object level.

The reflection rules used there are conservative and

safe: actually no additional facts can be proved which

could not be derived from the axiomatisation of demo.

The knowledge of each wise man is defined as a theory

which includes all the facts that are considered com

mon knowledge. This is done by "initializing" those
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theories with facts of the form demo(wiseo, ...), where

wiseo is meant to represent the theory containing the

common knowledge.

Moreover each theory wisei is equipped with addi

tional "rules" to enable each wise man to perform his

reasoning. In particular:

demo(T, P) A agent(T) P (Con/)

a "confidence" axiom, which makes any agent to be

lieve the conclusions of other agents he's aware of; and

three axioms for common knowledge:

demo(wnseo,P) A agent(T) => demo(T, P){Comml)

agent(wiseo) ( Comm2)

demo(uttse0,P Aagent(T) demo(T, P)){Comm3)

The last one is used to obtain that everybody knows

that everybody knows ... P, for any fact P which is

common knowledge.

The proof is performed in two stages: the first part

of the reasoning is done in theory wiseo to prove

white2 V whites (i.e. either the second or the third

man has a white spot on his head). This conclusion

is then lifted to wisez so that whites can be proved

there.

However wiseo is not an explicit theory, therefore reifi-

cation could not be used to lift the conclusion into

wises. A workaround for this problem is to build a

theory on purpose (let's call it WISEq) from the facts

of type demo(wiseo,x) present in wises- This step

remains however external to the logic.

Once whiteiV whites has been proved in WISEq, this

fact is lifted to wises to complete the proof. The au

thors justify this lifting step as an application of rule

Reificationl.

However Reification does not appear to be used prop

erly here. The conclusion reached in WISEq can in

deed be lifted to wises, but for a different reason.

Since WISEq contains those facts x for which wises

knows demo(unseo,x), then wises can repeat the same

proof himself, nested within demo(uttse0, ...), by re

peated applications of the rule

demo(r,P),PI-g

demo(T,Q)

(Proof in context)

which is a valid principle in most systems.

This sequence of steps can be generalised and ab

stracted in the following rule:

{x | demo(T,x)} h A

( Generalised proof in context)

\- demo(T,P)

which can replace reflection in many proofs.

There is however a more serious problem with the for-

malisation of the puzzle.

In order to ensure that WISEq is a finite set, the

authors use CommS, a strong common knowledge ax

iom. CommZ allows adding a single finite schema to

WISEq (i.e. PAagent(T) =► demo(T,P)) rather than

an infinite set of formulae generated recursively by a

more standard common knowledge axiom like:

demo(wiseo, P) A demo(unse0, agent(T)) =>■

demo(«;iseo,demo(T, P))

But the resulting formulation of common knowledge,

forbids the agents to have private beliefs, since any

thing that is believed would be believed to be believed

by anybody else. For example the second wise man

could reason that since the first wise man spot is white

then the first wise man must know. However, when the

first man says "I do not know" , he could logically de

rive anything, or at least become very confused. For

mally, in theory wisef.

(1) whitei (after all he can see it!)

(2) agent(wise2)

(3) P A agent(T) => demo(T, P)

(4) agent(wise\)

(5) demo(wise\, whitei)

(6) -<6err\o(wisei, whitei)

(Comm2, Conf)

( CommS)

(Comm2, Conf)

(1, 4, 3)

(Comm2, Conf)

The three wise men puzzle is also tackled in

(Nakashima, Peters, Schiitze, 1991) where a model for

the representation of common knowledge is presented

in the framework of situation theory.

Oddly, the authors claim that with a static (declar

ative) formalization of problems involving common

knowledge in their language it is impossible to build

proofs by contradiction, which is the most natural style

of reasoning to solve this puzzle. They argue that no

private knowledge is possible with their static model

and this leads them to develop a procedural model for

the representation of common knowledge.

Later we will present a solution to the three wise men

puzzle, where common knowledge is grouped in a sin

gle theory and lifting rules are provided for each agent

to access it. The advantages are a more compact state

ment of the problem which does not rely on "ad hoc"

initialization or on the fly construction of theories by

extra logical machinery and a proof which is more care

fully accounted for; moreover the formulation of com

mon knowledge is not so strong as to prevent private

knowledge and the solution does not make use of the

axiom of confidence which is altogether unnecessary.

Several solutions to the three wise men puzzle have

appeared in the literature, some of which quite reason

able; so our focus here is in the search for an adequate
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proof system within a very expressive logic enabling

us to carry out proofs with multiple theories in both a

sound and intuitive way.

2.2 LIFTING RULES AND NATURAL

DEDUCTION

In performing proofs involving multiple theories, one

would like to be able to move easily from one the

ory to another, reason within a theory with traditional

means, for instance by natural deduction, and then to

carry outside some of the consequences obtained.

One must be careful however, not to leave behind in

an innermost context essential assumptions and not to

extrapolate to an unrelated context.

We use of the following example, presented in (Mc

Carthy 93), to illustrate these issues.

A fixed theory, called AboveTheory, is used to rep

resent the basic facts about the blocks world which

do not depend on situations. One would like to make

these facts and their consequences available, in the ap

propriate form, in another theory where situations are

accounted for. The correspondence between these the

ories is established by axioms written in a certain con

text c.

We use here McCarthy's notation:

c : <f>

to express that statement (j> is true in the context c.

Context AboveTheory:

(1) Vx, y on(x,y) => above(x,y)

(2) Vx, y, z above(x, y) A above(y, z) above(x, z)

Context c:

(3) Vx,y,s on(x,y,s) <=> \st(c(s),on{x,y))

(4) Vx,j/,s above(x, y, s) ist(c(s),above(x, y))

(5) Vp, s \st(AboveTheory,p) => ist(c(s),p)

An outer context, Co, is also needed for lifting facts

deduced in AboveTheory or c, together with the fol

lowing lifting axioms:

(6) Co : \st(AboveTheory, x) iff AboveTheory : x

(7) Co : ist(c, x) iff c : x

The example consists in showing that, assuming:

Co : \st(c,on{A,B,S0))

one can prove:

Co : ist(c, above(A, B, So))

The proof goes as follows:

(8) Co : \st(c,on(A,B,So)) (assumption)

(9) c:on(A,B,S0) (7,8)

The outer context Co and axiom (7) are needed to lift

an assumption into c. Context Co plays the role of

a special context, where the the facts in other useful

theories are lifted to do the necessary reasoning.

(10) c : ist(c(50), on(A, B)) (9 and 3)

(11) c(50) : on(A,B) (10, entering c(S0))

This last step, apparently, implies a very strong reflec

tion, allowing a fact to be lifted P in a context c' from

the fact that ist(c',P) holds in another context. But

the indentation warns us that this is done in the con

text of some assumptions we should not forget about!

(12) c : ist(c(5o),Vx,y on(x, y) =>• above(x,y))

In order to prove the above line in c the fact

\st(AboveTheory,Vx,y on(x,y) =>• above{x,y)) should

be lifted into c in order to exploit (5). It is not enough

to lift it into Co- This really requires a strong ver

sion of reification, or rather, as we will argue later, an

additional axiom.

(13) c(50) : Vx, y on(x, y) => above(x, y)

(14) c(50) : above(A,B) (11 and 13)

(15) c : \st(c(S0),above(A,B))

A strong reification, apparently. This can be justified

only because c is the "enclosing box" in the natural

deduction proof; lifting in any context would not be

reasonable.

(16) c : ist(c(50), above{A, B)) above{A, B, S0) (4)

(17) c : above(A, B, S0) (15 and 16)

(18) Co : ist(c, above(A, B, S0)) (7)

3 A METHOD FOR PROOFS IN

CONTEXT

In order to discuss the problems and subtle issues

hinted in the previous sections, we introduce a for

mal deductive system for proofs in contexts developed

in connection with the theory of viewpoints (Attardi-

Simi 93).

Viewpoints are sets of reified sentences and the expres

sion \n('P',vp) means that a sentence P is entailed by

the set of assumptions represented by vp.1 The theory

of viewpoints is a reflective first order theory allowing

1More precisely 'P' is a term denoting sentence P, vp

a viewpoint constant, function or set of reified sentences,

and \n('P',vp) is true at a model M iff P is true in any

model of the sentences denoted by vp which is "coherent"

with M, i.e. interprets vp as M does.
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us to deal with implicit viewpoints (viewpoint con

stants and functions). A complete semantic account

of viewpoints is presented in (Attardi-Simi 93).

3.1 PROOF THEORY

The proof theory for viewpoints can be conveniently

presented in the style of natural deduction.

3.1.1 Inference rules for classical natural

deduction

The notation vp h P puts in evidence the pending as

sumptions in rules where some of the assumptions are

discharged, like for instance the rules of implication

introduction and negation introduction. When the

pending assumptions are the same in the antecedent

and consequent of a rule they are left implicit.

The rules for natural deduction are quite standard.

For example:

PQ

PAQ

(A /)

PAQ

P,Q

(A E)

are the rules for conjunction introduction and elimina

tion, respectively, and

vpU{P}\-Q

vp\-(P=>Q)

P,P^Q

(=> E)

are the rules for implication introduction and elimina

tion. The full set of classical rules used is presented in

the appendix.

3.1.2 Metalevel axioms and inference rules

The behaviour of in is characterized by the following

axioms and inference rules, which allow classical rea

soning to be performed inside any viewpoint.

The first axiom asserts that all the sentences con

stituent of a viewpoint hold in the viewpoint itself,

while the second establishes a principle which could

be called positive introspection, if we choose an epis-

temic interpretation for in.

in('P',{...,'P',...})

in('P\t;p) =*■ \n('\n('P' ,vp)' ,vp)

(Axl)

(Ax2)

Moreover we have a meta-inference rule for each clas

sical natural deduction inference rule. For example:

in('P>P),in('Q',t,p)

in('PAQ',i;p)

in('PAg>p)

in('P',t>p),in(Q',t;p)

(Meta A J)

{Meta A E)

■m('P',vp)\-\n('Q',vp)

in('P=> B',vp)

\n('P',vp)M'P^Q',vp)

mCQ',vp)

(Meta => J)

(Meta => E)

The full set of meta-inference rules is presented in the

appendix.

3.1.3 Reflection rules

The following are the reflection and reification rules

for the theory of viewpoints: they are more powerful

than those of (Bowen-Kowalski 82), but still safe from

paradoxes as discussed in (Attardi-Simi 91).

vpi h in('P',t;p2)

vpi U vp? \~ P

vp\-c P

h in('P',t;p)

(Reflection)

(Reification)

The notation he stands for "classically derivable" or

"derivable without using the reflection rules". Reifi

cation is a derived inference rule; in fact any proof

at the object level can be completely mirrored at the

metalevel using the meta-level inference rules. This

can be proved by induction on the length of a proof

steps, with the base case being provided by Axl.

3.1.4 Derived theorems and rules

As a consequence of reification and Axl, we have:

Theorem 1 in('P',t>p), for any logical theorem P and

viewpoint vp.

As a consequence of the strong version of reflection,

we have:

Theorem 2 in('P', {'Q'}) => (Q => P)

Moreover we can prove the following derived rule:

in('P>p),PI-cQ

in('Q',t;p)

(Proof in context)

which generalises to:

{x | \r\(x,vp)} \~c P ^ Generalised proof in context)

The antecedent of the rule corresponds to the condi

tion that in order to exploit a proof carried out in an

other context one must know at least that the premises

of the proof are in that context.

Moreover proofs in contexts can be performed at any

level of nesting.
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3.1.5 Entering and leaving contexts

Another useful mechanism to build proofs in context

is the ability to switch contexts and perform natural

deduction proofs within viewpoints. The safest way to

interpret context switching in the framework of natural

deduction proofs is simply to go one level deeper or

shallower in nesting, or in other words unnesting and

nesting.

This means for instance that in order to prove a sen

tence of the form

in('P',upi) (Axl)

one may pretend to move inside vpi, and perform a

proof using those facts which are present in vpi , i.e.

are of the form in('Q', vpi). If the formula P is itself of

the form in('it',up2) one will have to one level deeper

to prove R by using this time just facts of the form

inCinCS'.vftO'.rpa).

In their formalization of contexts (Buvac-Mason 93)

Buvac and Mason propose rules for context switching

which correspond to this idea, and introduce the nota

tion of sequences of contexts to represent the nesting of

several contexts. The rule they present is bidirectional

and reads as follows:

4>

hr ist(fci,</>)

(CS)

The index k represents a sequence of contexts, each one

nested within the previous, and the rule expresses that

a statement about the truth of <f> in a series of nested

contexts k can be turned into the fact <j> holding in the

series of contexts k * ki . Keeping track of the level of

nesting is crucial for the correctness of the rule.

Later we will provide safe rules for importing and

porting facts in a context.

ex-

4 A PROOF METHOD AND

NOTATION

Our proofs will become more readable and intuitive

with the aid of a graphical notation, which emphasises

the boundaries and nesting of contexts. The notation

we introduce is an extension of the box notation intro

duced by Kalish and Montague (Kalish-Montague 64).

4.1 RULES FOR CLASSICAL NATURAL

DEDUCTION

We show here some examples of proof schemas for clas

sical natural deduction.

The following schema corresponds to the rule of => I

and should be read as: "if assuming P you succeed in

proving Q, then you have proved P => Q" .

P (ossum.)

P=>Q

Similarly, the schema corresponding to the inference

rule of -i / is the following:

P (assum.)

Q

-<3

-.p

The box notation is useful to visualise the scope of the

assumptions made during a natural deduction proof.

In performing a proof within a box one can use facts

proved or assumed in the same box or in enclosing

boxes. Facts cannot be exported from within a box to

an enclosing or unrelated box.

4.2 RULES FOR PROOFS IN CONTEXT

For proofs in context we introduce a different kind

of box, with a double border, to suggest boundaries

which are more difficult to traverse. The double box

represents a viewpoint, i.e. a theory, whose assump

tions, if known, are listed in the heading of the box. If

the assumptions are not known the name of the view

point is shown. The only two rules for bringing facts

in and out of a double box are the rules corresponding

to unnesting and nesting.

Importing a fact in a viewpoint:

in(P>p)

(unnesting)

 

Exporting a fact from a viewpoint:

vp

(nesting)

The only way to import a fact P in a double box vp

is to have a statement in(P',t;p) in the environment

immediately outside the box. Symmetrically you can

obtain \n('P',vp) in the environment immediately out

side a double box vp if P appeara in a line immedi

ately inside the double box (not inside a further single
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or double box within the double box). Note that to

import a fact in nested double boxes an appropriate

number of crossing double lines must be justified.

According to Axl, the assumptions of a viewpoint can

also be used inside the viewpoint:

{'Pi-

Pi,.. .,pn

Introducing in, in the case of explicit viewpoints:

in('P'){'P/,.../P;})

The meta-inference rules justify the possibility of car

rying on regular natural deduction proofs within a

double box. For example the Meta -> / inference rule,

for negation introduction in context, justifies the fol

lowing deduction schema:

p (assum.)

Q

in('-iP',t;p)

which is just a combination of the schemas introduced

above for classical negation introduction and nesting.

Despite the appearances, the justification for this

schema is not obvious and it is worth elaboration. The

above schema is valid as long as the following deduc

tion schema is valid in the environment outside the

box:

in('P',i;p) (ass.)

\n('Q',vp)

in(^Q>p)

inp-^vp)

with the restriction that only facts of the form

in(. . . , vp), in addition to the assumption, are allowed

in the proofs of Q and its negation within vp. In fact

the only way to import facts in the double box is by

unnesting.

Let us therefore suppose that only the facts:

m('Pt,vp)

in('P>p)

where used. Then it is also a fact that

in('P A Pi A ... A P'k, vp) h in('Q A -■£?', vp)

But then, by the sound inference rule of Meta -> I, we

can derive

in('-.(PAPi A... APfe)',up)

and, since we also have

in('Pj A... AP^vp)

we can obtain, by proof in context:

in('-P',«p)

So this schema provides us a mean to carry out proofs

by contradiction, as were sought by Nakashima, which

we will use in the solution of the three wise men puzzle.

4.3 THE LIFTING EXAMPLE REVISITED

Exploiting the proof method and notation just intro

duced we can present a rational reconstruction of Mc

Carthy's example, filling in some assumptions which

where missing in the original version. To simplify

the notation, from now on we will drop the quota

tion marks used to represent meta-level sentences. The

statement of the problem is summarised in Figure 1.

The lifting axiom (1) was missing in the sketch of proof

presented by McCarthy (McCarthy 93) but it is nec

essary in order to lift

in(Vx, y on(x,y) => above(x,y),AboveTheory)

from Co to c where it can be exploited by axiom (6).

Without this additional assumption step (10) below

could not be accounted for by any sound rule, produc

ing a case of improper lifting.

The full proof appears in Figure 2.

Generalising from this example, we conjecture that, in

any sound system for proof in context, the only way

to transfer facts between two unrelated contexts is to

exploit lifting axioms in a context which is external to

both of them.

Let us call an autolifting statement a sentence in a

theory T\ which enables to lift into 7\ all or a group

of facts from another theory T2. An example of au

tolifting could be the statement Vp in(p, T%) p. For

instance, we might want to use a single axiom within
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Co

(1) Vp in(p, AboveTheory) => in(in(p, AboveTheory),c)

AboveTheory

(2) Vx,j/ on(x,y) aixwe(x,y)

(3) Vx, y, z above(x, y) A afccwe(y, z) =>• above(x, z)

(4) Vx,y,s on(x,y,s) & \n{on(x,y),c(s))

(5) Vx,y,s above(x, y, s) ■£> in(o6owe(x, y),c(s))

(6) Vp, s in(p, AboveTheory) in(p, c(s))

Figure 1. Statement of the lifting problem

Co

(7) \n(on(A,B,S0),c) (assumption)

(8) on(A,B,S0)

(9) \n(on(A,B),c(S0))

(10) in(Vx, y on(x,y) => above(x,y), AboveTheory)

(11) in(Vx,y on(x,y) a6ot>e(x,y),c(S0))

(unnesting, 7)

(8 and 4)

(2, nesting, 1, unnesting)

(proof in context, 6 and 10)

c(50)

(12) on(A,B) (unnesting, 9)

(13) Vx,y on(x,y) => akwe(x,y) (unnesting, 11)

(14) a6<we(A,B) (proof in context, 12 and 13)

(15) \n(above{A,B),c(S0))

(16) \T\iabove{A,B),c(So))

(17) above{A, B, SQ)

above(A, B, So)

(nesting, 14)

(instance of 5)

(proof in context, 15 and 16)

(18) \n(above{A,B,S0),c)

Figure 2. Proof of the lifting problem
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context c of McCarthy's example, to enable to transfer

there all the facts from AboveTheory. This however

seems to be possible only when T\ is an outermost con

text of T2, so that a fact p in T2 can be exported by

nesting into T\.

We conjecture that, if T\ and T2 are not related (as

the case of c and AboveTheory in the example) no

autolifting is possible in any reasonable formal system

for proof in context. Obviously it is possible to assert

in Ti individual statements taken from T2, but this

would not provide the ability to transfer wholesale a

theory into another, which is an essential feature of a

general mechanism of contexts.

4.4 THE THREE WISE MEN REVISITED

With the tools just developed, we are able to present

a solution to the three wise men puzzle in a fairly

straightforward way. Notice that there is no need for

axioms like confidence or wiseness used in other solu

tions. The following viewpoints are used.

wise\ \ viewpoint of the first wise man

wise?: viewpoint of the second wise man

wisez'. viewpoint of the third wise man

CK: viewpoint including the common knowledge.

The predicate whitei means the color of the spot of

wise man i is white. The common knowledge view

point is shown in Figure 3.

Two axioms, external to the CK and wise men view

points are needed for the wise men to obtain the com

mon knowledge.

(1) Vx \n(x,CK) =>

in(x,«rtsei) A \n(x, wise^) A in(x, wises)

(2) Vx in (x, CK) =S>

in(in(x,tuisei) A in(x,tytse2) A in(x, wise3), CK)

Axioms (1) and (2) provide a proper account of com

mon knowledge, allowing to derive the commonly

known facts in any viewpoint, no matter how nested.

In particular axiom (2) is used to achieve the appropri

ate level of nesting in CK, axiom (1) to lift from the

CK viewpoint to any other viewpoint. The details of

the derivation of common knowledge are omitted from

the proof.

We can formally account, as shown in Figure 4, for

the reasoning of the third wise man after the first and

second one have spoken. The third wise man is in fact

able to prove that his spot is white.

A common approach to the representation of nested

beliefs is to introduce explicitly a number of different

theories according to the different views that an agent

has of other agents. In the three wise men puzzle we

would have the theory that wise-s has about wise2,

the theory that wise$ has about the theory that wise^

has about wise\ , . . . and so on. The construction of

tower of theories, one being "meta" for the one below,

is what justifies the use of reflection and reification

principles to transfer information between them.

It seems to us very unnatural to be forced to conceive

from the beginning an appropriate number of theo

ries according to the number of agents and the nesting

level of the reasoning which is required: in this sim

ple puzzle, which requires a nesting level of three, one

should theoretically conceive of 27 different theories

(even without considering the evolution of time).

Our solution is not radically different but, we believe,

more natural. The nesting of viewpoints implicitly

takes care of the different perspectives.

5 CONCLUSIONS

We have shown that proofs in contexts are difficult by

pointing out delicate or unclear steps in proofs found

in the literature. We presented our own, hopefully

correct, version of the same proofs. Paradoxically, if

our solution were wrong, we would have made this

point even stronger.

The constructive part of this paper aims at providing

a proof method for checking proofs in context when

implicit contexts are allowed. We present a set of in

ference rules based on the theory of viewpoints and

a method for their application which expands on the

box notation introduced by Kalish and Montague for

natural deduction.

We suggest a reformulation of the reflection rules more

suitable to deal with partially specified theories or

contexts and give an account of what "entering" and

"leaving" a context should be in the setting of natural

deduction proofs.
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A APPENDIX

A.l Inference rules for classical natural

deduction

P,Q

Pr\Q

PAQ

P,Q

vpU{P} j- Q

vp\-(P=>Q)

p,p^Q

Q

P

PVQ,QVP

vp\- PvQ,vpU{P} \-C,vpU{Q} h C

vp\-C

vpU{P}\- Q,vpU{P}\-

vp\-^P

Vy . P[y/x)

(AT)

(A E)

(v/)

(V E)

hi)

(V7)

where the notation P[y/x] stands for P with all the

free occurrences of variable x substituted by t and y is

a new variable not occurring in P.

Vi . P

P[t/x]

P[tM

3x . P

vpi h 3x . P, vpi U P[y/x] h Q

vpi h Q

(V£)

(3E)

where Q does not contain the newly introduced vari

able y.

A.2 Metalevel axioms and inference rules

in('P',{...,'F',...})

\n('P',vp) =» in('in('P',up)',up)

\n(P',vp)M'Q',vp)

\n(PAQ',vp)

\n('PAQ',vp)

\n(P',vp)M'Q>,vp)

(Axl)

{Ax2)

{Meta A I)

{Meta A E)
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m('P',vp)\-m('Q',vp)

\n('P^Q',vp)

\n('P',vp)M'P^Q',vp)

\n('Q>,vp)

M'P',vp)

in('PV<2',rp),inOQvP',T>p)

in('PvQ',t>p)

\n{'P',vp) h \n('R',vp)

m{'Q',vp)\-\n{'R',vp)

in('R',vp)

\n('P',vp) h inj'Q A^Q',vp)

\n('^P',vp)

\n{'^P',vp)

\n('P',vp)

inCVy .P[y/x]',vp)

in('Vs . P',vp)

\n{'P[t/x]',vp)

m{'P[t/x]',vp)

in('3x . P',vp)

vpi \- in('3i . P',vp2)

vpi U \n{'P[y/x]',vp2) h inCQ'.vpz)

vpi \- \n{!Q',vp2)

(Meta =s> I)

(Meta => E)

{Meta V I)

{Meta V E)

{Meta -i I)

{Meta -i £)

(Meta V i)

(Meta V £0

(Meta 3 I)

{Meta 3 E)
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Abstract

An unprecedented combination of simula

tive and metaphor based reasoning about be

liefs is achieved in an AI system, ATT-Meta.

Much mundane discourse about beliefs pro

ductively uses conceptual metaphors such as

MIND AS CONTAINER and IDEAS AS IN

TERNAL UTTERANCES, and ATT-Meta's

metaphor-based reasoning accordingly leads

to crucial discourse comprehension decisions.

ATT-Meta's non-metaphorical mode of belief

reasoning includes simulative reasoning (SR).

In ATT-Meta, metaphor-based reasoning can

block and otherwise influence the course of

SR.

1 INTRODUCTION

In spoken and written discourse, mental states and

processes are often described with the aid of com-

monsense models of mind. These models are largely

metaphorical, and the metaphorical descriptions often

convey information, about the quality of the mental

states, that is important for understanding the dis

course. In particular, the descriptions can clarify how

agents can fail to draw even quite obvious conclusions

from their beliefs. Accordingly, as a step towards mak

ing mental state reasoning more realistic, refined and

powerful, we have developed a system, ATT-Meta, for

reasoning about mental states reported in small frag

ments of discourse, paying attention to metaphorical

descriptions. The reasoning part of the system cur

rently has an advanced prototype implementation in

Quintus Prolog.

As an example of the phenomena of interest, consider

the following passage: Veronica was preparing for her

dinner party. Her brother's recipe had said to fry the

mushrooms for one hour. She did thts even though

in the recesses of her mind she believed the recipe to

be wrong. We claim that this last sentence manifests

the conceptual metaphor of MIND AS PHYSICAL

SPACE. Under this metaphor, the mind is a physical

space within which ideas or thinking events/situations

can lie at particular locations. The ideas and thinkings

are often themselves conceived metaphorically as phys

ical objects, events or situations. As we will see below,

the use of this metaphor in the passage makes a con

siderable difference to what it can be reasonably taken

to convey. It metaphor affects the balance of reason

ableness between possible explanations of the disparity

between Veronica's following of the recipe and her be

lief that it was wrong. If no metaphor, or a different

one, had been used, then the balance would have been

different.

ATT-Meta's main contributions are that it enriches

mental state representation/reasoning by bringing in

the commonsense models of mental states that people

actually use, and it integrates metaphor-based reason

ing about mental states with simulative reasoning (SR)

about mental states. It thereby constrains SR in useful

and novel ways.

The plan of the paper is as follows. Section 2 expands

on the role of metaphor in discourse understanding.

Section 3 informally sketches the reasoning ATT-Meta

does on some example discourse fragments. Sections 4

to 7 provide many representation and reasoning details

underlying the account in section 3. The present paper

is a natural sequel to Barnden (1989, 1992).

2 METAPHORS OF MIND

Metaphors in discourse affect an understander's task

of obtaining a coherent understanding. This is clear

from, e.g., Hobbs (1990), Martin (1990) and others.

Here we expand on the recipe example given above.

Consider the discourse fragment (1), and contrast

some possible continuations of it, namely (la-c):

(1) Veronica was preparing for her dinner party. Her

brother's recipe had said to fry the mushrooms for one

hour.

(la) She did this even though she believed the recipe

to be wrong.



28 J. A. Barnden, S. Helmreich, E. Iverson, and G. C. Stein

(lb) She did this even though in the recesses of her

mind she believed the recipe to be wrong.

(lc) She did this even though she thought, "The

recipe's wrong."

Here (la) contains an ordinary, non-metaphorical men

tal state description. Sentence (lb) manifests the

MIND AS PHYSICAL SPACE conceptual metaphor,

explicitly referring to a specific subregion of the whole

"space" of the mind. (See, e.g., Lakoff 1993 for the

notion of conceptual metaphor as opposed to mere lin

guistic manifestations of metaphor.) Ideas or thinking

episodes in one subregion can be incompatible with

ideas in another. For instance, one subregion can con

tain the thought that a recipe is wrong, whereas an

other can contain the thought that the recipe is right.

Alternatively, thoughts in one subregion can simply be

absent from another.

In (lc) we see the conceptual metaphor of IDEAS

AS INTERNAL UTTERANCES (following Barnden

1992). A thinking episode is portrayed as inner speech

within the agent (or, more rarely, as inner non-speech

utterances). The thinking episode is necessarily an

occurrent event happening at a particular moment in

time (as opposed to a long-term believing), is con

scious, is usually a "forefront" thought as opposed to

being in the background, and, in cases like lc, is usu

ally confident as opposed to being tentative. We take

IDEAS AS INTERNAL UTTERANCES to be a spe

cial case of MIND AS PHYSICAL SPACE, with the in

ternal utterance being an event that takes place within

the "space" of the agent's mind. MIND AS PHYSI

CAL SPACE and IDEAS AS INTERNAL UTTER

ANCES are two of the metaphors to which we have

paid most attention in our work. Two others, MIND

PARTS AS PERSONS and IDEAS AS MODELS, are

omitted from this paper for brevity, but see Barnden

(1989, 1992). There are many commonly-used, impor

tant metaphors of mind. See, for example, Lakoff et a I.

(1991) (and Barnden 1989, 1992 for further metaphors

and citations).

If one looked only at (lb,c,d) one might dispute the

above claims about metaphor, saying that those sen

tences just involved canned forms of language. How

ever, consider the following productive variants of

them:

(lb') She did this [i.e. followed the instruction] after

forcibly shoving the idea that the recipe was wrong to

a murky corner of her mind.

(lc') She did this even while whining to herself, "Oh

no, this damned recipe 's wrong. "

Consider also the immense potential for further vary

ing these, e.g. using verbs other than "shove"

and "whine" or physical location phrases other than

"murky corner." The most economical explanation of

the sense that (lb'.c') and their further variants make

is that they appeal to the metaphors we mentioned

above. Then, for uniformity and continuity, it is a

short step to saying that (lb,c) also manifest those

metaphors, though in a more pallid way. If one wanted

to maintain that (lb) was not metaphorical, one would

have to claim, for instance, that "recesses," and the

overwhelming majority of, if not all, words that can

be used to mean physical subregions of various sorts,

also happened to have literal mental meanings. And,

one would have to account for why the regularities in

the way the words are used to describe the mind are

analogous to regularities in their physical usage. An

example of such a regularity is that words such as "re

cesses" and "corner" convey related meanings when

applied to the mind, much as they do when applied to

physical space. These considerations are similar to the

arguments used by Lakoff (1993).

(lc) does differ markedly from (lc') in not using an

ordinary verb of speech. However, we make three ob

servations. First, people commonly experience some

thoughts as "inner speech," so that it is fair to take

(lc) as saying that Veronica was experiencing inner

speech. Secondly, the verb "think" is in fact often

used to portray speech in the following way: "Veron

ica thought aloud that the recipe was wrong." Thirdly,

the idea that (lc) really is suggesting speech is re

inforced by the effect of introducing the evaluative

adjective "damned" into the quotation in (lc). One

might question whether (lc) implies inner speech as

opposed to inner writing. We plump for speech as be

ing a far more likely implication, given that it is very

common to find thought-description sentences using

phrases such as "said to himself," "debated within her

self', etc., and relatively rare to find ones that convey

inner writing; also, the sentence forms used within the

quote marks appear to be more typical of speech than

writing.

In (la-c) there is a disparity between Veronica's obey

ing the recipe and her belief in its incorrectness. The

different ways the belief is described lead to different

degrees of plausibility for various possible explanations

of the disparity. One reasonable interpretation for (lb)

is that Veronica's wrong-recipe belief was only min

imally involved, if at all, in her conscious thinking,

so that she did not consciously think (to any signifi

cant degree) that she was following a recipe that was

incorrect. By contrast, continuation (lc) places the

wrong-recipe belief squarely in her conscious thinking,

so it seems much more likely that Veronica deliberately

went against her own strong doubts, for some reason.

For example, she might have been ordered to follow

the recipe. We are not saying that an explanation for

(lc) could not hold for (lb), or vice versa. Rather, our

point is that the balance of reasonableness is different

between (lc) and (lb). The non-metaphorical (la) is

vaguer in its implications than (lb,c), but (lc)-type

explanations seem more likely than (lb)-type ones.
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3 SKETCH OF REASONING

Here we informally and partially outline the main rea

soning steps ATT-Meta takes for examples (1-la), (1-

lb) and (1-lc), conveying the rough flavor of its SR

and metaphor-based reasoning and of their intimate

interaction. We will touch on ATT-Meta's unusual

feature of distinguishing conscious belief as an impor

tant special case of belief. The section also illustrates

the uncertainty and defeasibility of ATT-Meta's rea

soning, largely apparent below through the use of the

qualifier "presumably."

3.1 OVERALL STRATEGY AND

SIMULATIVE REASONING

We take (1-la) first. It is given that Veronica followed

the recipe. (ATT-Meta currently always trusts the

discourse sentences to be true.) ATT-Meta infers from

this that

(2) presumably, Veronica consciously believed she was

following it

via a rule that says that if someone does an action then

(s)he is, presumably, conscious of doing so. It is also

given that Veronica believes the recipe to be wrong.

From this ATT-Meta uses simulative reasoning (SR)

to infer that

(3) presumably, she believed it was not good to follow

it.

(We use "not good" here in the sense of "not con

ducive to achieving the recipe's normal purpose.")

The process is basically as follows. In a special

Veronica-simulation environment, ATT-Meta adopts

the premise that the recipe is wrong. We call this en

vironment a simulation pretence cocoon. Using a rule

that says that if a body of instructions is wrong it

is not good to follow it, ATT-Meta infers within the

cocoon that

(3'): it is not good to follow the recipe.

Concomitantly, ATT-Meta infers (3). Further, within

the cocoon ATT-Meta adopts the following premise,

because of (2):

(2'): Veronica follows the recipe.1

Then, within the cocoon ATT-Meta infers the conjunc

tion of (2') and (3'), namely

(4'): Veronica follows the recipe AND it's not good to

follow the recipe.

1 Since ATT-Meta is simulating Veronica, it would be

better to couch this premise as "I am following the recipe."

However, the ATT-Meta implementation does not yet use

the treatment of indexicals that we have developed (but do

not present here). This deficiency does not get in the way

of the issues that are our main concern.

Concomitantly, it infers that, presumably, Veronica

believes this conjunction. Notice here that an SR

conclusion such as this one or (3) is always qualified

by "presumably," reflecting the fact that ATT-Meta

merely presumes that the agent does the necessary in-

ferencing.

Now, ATT-Meta has the following rule:

(R.l) IF someone is following a set of instructions

and believes it to be wrong THEN, presumably, (s)he

consciously believes that.

Therefore, ATT-Meta infers that Veronica's belief in

the wrongness of the recipe was presumably conscious.

Thus, both premises used in the simulation cocoon

(namely: the recipe is wrong; Veronica follows the

recipe) reflect conscious beliefs of Veronica's. As a

result, ATT-Meta presumes that any belief resulting

from the simulation is also conscious. Therefore, the

main result of the belief reasoning is

(4) presumably, Veronica consciously believed that:

she follows the recipe AND it's not good to follow the

recipe.

This feeds into a rule that can be paraphrased as fol

lows:

(R.2) IF agent X does action A and consciously be

lieves that [(s)he does A AND it's not good to do A]

THEN, presumably, the explanation is that (s)he has

a special reason for doing A despite having that con

scious belief.

Thus, ATT-Meta is able to infer the main result of the

example, namely:

(5) presumably, Veronica had a special reason for fol

lowing the recipe even though consciously believing that

[she's following the recipe AND it is not good to follow

it].

3.2 METAPHOR-BASED REASONING

We now turn to (1-lc), which involves simpler reason

ing than (1— lb) does. ATT-Meta's general approach

to metaphor is to "pretend" to take a metaphorical

utterance at face value (i.e literally). That is, in the

case of (lc), ATT-Meta pretends that

(P) there luas a real utterance of "The recipe's wrong"

within Veronica's mind,

where also ATT-Meta pretends Veronica's mind was

a PHYSICAL SPACE. The pretences are embodied

as the adoption of P as a premise within a special

environment that we call a metaphorical pretence co

coon for Veronica's-IDEAS AS INTERNAL UTTER

ANCES. Now, the real force of such cocoons is that

inference can take place within them, much as within

simulation cocoons. This will happen for (1-lb). How

ever, in the present example, the only important action

that ATT-Meta bases on the metaphor is to use the
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following "transfer rule" linking certain metaphorical

cocoons to reality:

(TR.1) IF [within a cocoon for agent X's-IDEAS AS

INTERNAL UTTERANCES there is an utterance of

a declarative sentence S within X's mind\ THEN, pre

sumably, X consciously believes the proposition stated

byS.

Thus, ATT-Meta infers that, presumably, Veronica

consciously believed the recipe to be wrong. Thus,

the remainder of the reasoning is essentially the same

as that for (1-la), and ATT-Meta again constructs the

main result (5). (There is a sense in which (5) is more

strongly supported in the (1-lc) case than in the (1 -

la) case, because of general principles concerning the

specificity of inferences. However, this matter is still

under investigation.)

Notice that it is only within the metaphorical pre

tence cocoon that ATT-Meta takes Veronica's mind

to be a physical space. ATT-Meta could have infor

mation outside the cocoon saying or implying that no

mind is a physical space. However, this generaliza

tion, as instantiated to Veronica, is overridden by the

proposition within the cocoon that Veronica's mind is

a physical space. (The reason for this is given below.)

Also, propositions about Veronica's mind within the

cocoon have no effect on reasoning outside the cocoon

unless explicitly exported by a transfer rule. Thus,

the within-cocoon proposition that Veronica's mind is

a physical space does not cause trouble outside the

cocoon.

In case (1-lc), the metaphor-based reasoning was min

imal, and furthermore did not interact with SR very

much. Things are markedly different in the case of

(1— lb). ATT-Meta still tries to do the same SR about

Veronica as above. However, one of the steps, namely

the one that constructs the conjunction (4') within the

simulation cocoon, is blocked from occurring. The rea

son for this is as follows.

Suppose ATT-Meta comes to a within-cocoon conclu

sion Q, and that this was directly based on within-

cocoon propositions Ql, Qn. ATT-Meta concomi

tantly sets up the external conclusion that the agent

(X) presumably believes Q, as was implied above.

However, another action is to record that this con

clusion is dependent upon the hypothesis that

(I) X performs an inference step yielding Q from Ql,

Qn.

This hypothesis is, normally, deemed by ATT-Meta to

be presumably true. It turns out that for examples (1 -

la) and (1-c) there is nothing that defeats this pre

sumption. However, one use of metaphor-based rea

soning in ATT-Meta is precisely to defeat presump

tions of form (I). If an instance of I is defeated then

ATT-Meta abandons the conclusion that X presum

ably believes Q (unless Q has other support, e.g. other

instances of I). If ATT-Meta abandons this conclusion

then it concomitantly abolishes Q within the simula

tion cocoon. Two instances of I are set up in case

(1-lb):

(1.1) Veronica performed an inference step yielding

[it is not good to follow the recipe] from [the recipe

is wrong];

(1.2) Veronica performed an inference step yielding

[Veronica follows the recipe AND it is not good to fol

low the recipe] from [Veronica follows the recipe] and

[it is not good to follow the recipe].

Now, part of ATT-Meta's understanding of the MIND

AS PHYSICAL SPACE metaphor is:

(TR.2) X's performing an inference process yielding

Q from Ql, Qn corresponds metaphorically to Ql,

Qn physically interacting within X's mind space

to produce Q. (If n is 1 then Q arises just out of Ql,

without an interaction with something else.)

This principle is couched in a set of transfer rules anal

ogous in form to TR.l. In addition, ATT-Meta has a

rule purely about physical interactions that says

(R.3) IF some things are spatially separated from each

other, rather than being close together, THEN, pre

sumably, they do not interact.

Another purely physical rule is

(R.4) IF Ql,..., Qn physically interact to produce Q

and the Pi are all within a particular region R, THEN,

presumably, Q is in R.

Other parts of ATT-Meta's understanding of the

metaphor are the following transfer principles:

(TR.3) X believing P corresponds to the thinking-that-

P being at some position in X's mind-space;

(TR.4) X consciously believing P corresponds to X's

mind having a front region and the thinking-that-P be

ing in that region;

(TR.5) IF a thinking occurs in the recesses of X's

mind THEN, presumably, it is not conscious.

ATT-Meta sets up a metaphorical pretence cocoon for

Veronica's-MIND AS PHYSICAL SPACE. ATT-Meta

takes (lb) at face value and adopts the within-cocoon

premise that in the recesses of this space there was

the thought that the recipe is wrong. As before, ATT-

Meta performs the SR step that concludes, within the

simulation cocoon, that it is not good to follow the

recipe. Hence, by TR.2 it also infers that, within

Veronica's mind-space, the thought that the recipe is

wrong physically produced the thought that it is not

good to follow it. By R.4, it follows that the latter

thought was also in the recesses of Veronica's mind.

However, ATT-Meta infers as in (1-la) that presum

ably Veronica consciously believed that she was fol

lowing the recipe. Hence, by TR.4, the thought that
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Veronica follows the recipe was in the front of her

mind. ATT-Meta takes the front and the recesses to

be distant from each other (relative to the size of the

mind-space). Therefore, ATT-Meta uses R.3 within

the metaphorical pretence cocoon to infer that the

thought that Veronica follows the recipe did not in

teract with the thought that it is not good to follow

the recipe. Via TR.2, this undermines 1.2. As a result,

the conjunction (4;) [Veronica follows the recipe AND

it is not good to follow the recipe] is abolished from

the SR cocoon. Concomitantly, the proposition that

Veronica believed this conjunction is abolished. (1.1,

on the other hand, is not undermined.)

Recall that in (1-la) ATT-Meta inferred that, pre

sumably, Veronica consciously believed the recipe to

be wrong. This inference is attempted also in case ( 1-

lb). However, it is defeated indirectly by the given in

formation that the thought that the recipe was wrong

was in the recesses of her mind, which supports via

TR.5 the hypothesis that the belief was not conscious.

This support for this hypothesis is judged to be more

specific, and therefore stronger, than the support for

the hypothesis that the belief was conscious.

All in all, (4) is defeated in case (1-lb) — ATT-Meta

does not conclude it. In fact, because of a closed-world

provision about belief in section 6, ATT-Meta comes

to the stronger conclusion that Veronica actually failed

to believe the conjunction (4'). This then allows the

following rule to proceed:

(R.5) IF agent X does action A, believes that it's not

good to do A, but fails to believe that [X does A AND

it's not good to do .4/ THEN, presumably, this failure

explains the apparent disparity between X's action and

belief.

Thus, ATT-Meta is able to infer the main result of the

example, namely:

(6) presumably, the explanation for the apparent dis

parity concerning Veronica is that she failed to believe

that [Veronica follows the recipe AND the recipe is

wrong].

Finally, it turns out that ATT-Meta does arrive at

some weak support for (6) in cases (1-la) and (1—lc),

and conversely comes up with some weak support for

(5) in case (1-lb). This reflects our point in section

2 that the metaphors affect the balance of reasonable

ness of explanations, and do not totally discount par

ticular explanations.

4 REPRESENTATION SCHEME

ATT-Meta'8 representations are expressions in a first-

order logic with equality and with set description de

vices (that are syntactic sugar for first-order expres

sions). The logic is episodic, in that terms can denote

"episodes" and sets of them. Our logical representa

tions are similar in spirit to those of Hobbs (1990),

Schubert & Hwang (1990) and Wilensky (1991). They

are, overall, closest to Wilensky's, but the treatment

of belief is similar to Hobbs' and different from those

of Wilensky and Schubert & Hwang. In common with

Schubert & Hwang, we take an episode to be any sort

of situation, event or process. An episode has a time,

which can be an instant, a bounded interval, or an

unbounded interval. Time instants and time intervals

are just objects in the domain (of the intended inter

pretation), just like any other object. We have no

space here to go into the detail of the handling of time

or causation, and in any case ATT-Meta's reasoning

about time is currently limited. The detail we do give

here is just what is most directly relevant to the aim

of this paper (i.e. to explain ATT-Meta's mixing of

belief reasoning and metaphor-based reasoning).

Objects in the domain can be "non-certain" or "cer

tain." For instance, the episode of John kissing Mary

at <some time> could be non-certain. That is, ATT-

Meta would not take the kissing to be necessarily real.

The basic type of term for denoting an episode is il

lustrated by:

#ep(Kissing, r, John, Mary) .

Kissing denotes the set of all conceivable kissing

episodes, r is some term denoting a specific time inter

val, and the other arguments denote particular entities

(which can be non-certain). We assume that a kissing

episode is uniquely specified by the time interval and

the identity of the participants. If a kissing episode

has other aspects, for instance a manner, then these

can be specified on the side, as i: e = #ep (Kissing,

. . .) A manner(e) = lovingly, for some constant

or variable e.

Episodes with the same time as each other can be com

pounded by conjunction and disjunction, using func

tion symbols #ep-conj and #ep-disj. For example,

the term

#ep-conj (#ep(Being-Happy , r, John),

#ep(Being-Sad, r, Bill))

denotes the episode of John being happy and Bill be

ing sad at/over r. Episode disjunction and negation

is similar. There is also a way for expressing quantifi-

cational episodes, such as the episode of John loving

each of his sisters over interval i, or the episode of some

person in a given room laughing at John during inter

val i. The quantificational apparatus is simple, but its

design required attention to subtleties raised by hav

ing to allow for non-certain episodes and other entities.

For instance, the episode of all dogs being happy over

interval r must be defined independently of which enti

ties really are dogs (according to ATT-Meta) but must

instead map all conceivable being-a-dog situations to

corresponding being-happy situations.
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Non-certain entities episodes can have the status of

Possible, Suggested or Presumed. Possible means that

the episode may be real (its negation is not certain).

Suggested means there is some reason to think the

episode is real. Presumed means ATT-Meta is pre

suming the episode is real. These degrees of uncer

tainty are stated by means of predications such as

#presumed(#ep(Kissing, . . .)).2 Any formulae at

the top level in the system are (implicitly) certain —

it is only episodes (and other domain entities) that are

qualified as to certainty.

We now turn to mental states, concentrating here ex

clusively on the central case of belief. We have sev

eral modes of belief representation, one default mode

and various different modes corresponding to different

metaphors of mind used in mental state descriptions.

The default mode is used, for instance, when a be

lief is reported non-metaphorically, as in "Bill believes

that John was ill on <some date>." Under the de

fault mode, this state of belief is cast as an episode of

Bill being in a particular relationship to the episode

of John being ill on the date in question. The formula

we use is

#certain(

#ep(#Believing-Certain, now, Bill,

#ep(Being-Ill, John, r)))

where r denotes the time interval for the specified date,

now denotes some time interval including the current

instant, and #Certain-Believing denotes the set of

all conceivable episodes of an agent believing some

thing with certainty. Notice the two different layers of

certainty qualification: ATT-Meta has one degree of

certainty that Bill had the belief, and Bill, if he does

have the belief, has his own degree of certainty. The

two layers are independent, so that we might alterna

tively have

#suggested(

#ep(#Believing-Presumed, now, Bill,

#ep(Being-Ill, John, r))).

Note that we take Bill's being certain of some

thing as implying that he presumes it (i.e. he

"believes-presumed" it), and believing-presumed sim

ilarly implies believing-suggested. Conscious be

lief is represented similarly, but using episode kinds

#Consciously-Believing-Certain, etc.

Finally, we sketch the most important aspect of t he

representation, which is how ATT-Meta expresses be

lief states that are described metaphorically in the

input discourse. The basic principle here is that of

metaphor-infused representation. That is, ATT-Meta

Elsewhere we have called the Suggested and Pre

sumed ratings by the names PERHAPS and DEFAULT

respectively.

pretends to take the metaphorical descriptions liter

ally, and uses the ordinary episode kinds that are

used within the source domain (or "vehicle") of the

metaphor. For example, consider the sentence, The

idea that Sally is clever is in Xavier's mind. In line

with our comments on the productivity of metaphor

in section 2, we take this sentence to be a manifesta

tion of MIND AS PHYSICAL SPACE. The encoding

of the sentence is

[WITHIN Xavier' s-MIHD AS PHYSICAL SPACE cocoon

#certain(

#ep-conj (

#ep(Being-Physical-Object-Type, t, i),

#ep(Being-Physical-Space, t, m) ,

#ep(Being-Mind-Of , t, m, Xavier),

#ep(Inst-Being-Physically-In, t , i ,m) ,

#ep (Being-Agent ' s-Certain-Idea-01 , t , Xavier , i ,

#ep (Being-Clever, t, Sally))) .

]

where t, i, etc. are Skolem constants. Here

Inst-Being-Physically-In is the set of all conceiv

able situations of an instance of some physical-object

type being physically in something. The idea (denoted

by i) of Sally's (certainly) being clever is stated to be

a physical-object type, Xavier's mind (m) is stated to

be a physical space, and and instance of i is stated to

be physically in m.

We therefore do not represent the meaning of the

sentence by translating the metaphorical input into

non-metaphorical internal representations: the inter

nal representations are themselves metaphorical. Note

that we are not saying that ATT-Meta really believes

that, say, an idea is a physical-object type — in a sense

ATT-Meta merely pretends temporarily to believe it,

because the representation is within the stated cocoon.

Below, two propositions are complements iff one is the

negation of the other. Also, a given proposition is ei

ther a piece of knowledge in ATT-Meta's own knowl

edge base or is a proposition derived directly from the

discourse. In the latter case it has a rating of Certain.

5 REASONING BASICS

ATT-Meta's reasoning is centered on a goal-directed,

backwards-chaining usage of production rules that link

episodes to episodes (rather than formulae to formu

lae). Each rule has the form

<LHS> —► [<qualifier>] <RHS>,

where the LHS is a list of episode-denoting terms (typ

ically of the form #ep( . . . ) possibly containing free

variables, the RHS is one such term, and <qualifier> is

one of Suggested, Presumed, or Certain. Also, a term

e, or a sublist of terms on the LHS, can be embed

ded in a metaphorical cocoon designator as follows:
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[WITHIH-COCOON x- f* e] . Here x is an (agent-

denoting) term (usually a variable) and \i is the name

of a metaphor such as MIND AS PHYSICAL SPACE.

An (unrealistic) example of a rule is

#ep(Loving, t, x, y) , #ep(Being-Boy , t, x)

—► [Presumed] #ep(Being-Hungry , t, x) .

This says that any boy who loves something at/over

some time t is, presumably, hungry at/over t. Sup

pose ATT-Meta is investigating the proposition that

Mark is hungry during a time interval denoted by

some term r. Then it sets up the episode-term

#ep(Being-Hungry , r, Mark) as a subgoal. (We use

the term "proposition" loosely to mean an episode-

denoting term that has either been given a rating of

at least Possible, or is an existing reasoning goal.) It

finds the above rule, and instantiates its t and x vari

ables to now and Mark. Suppose ATT-Meta already

has the formulae

#certain(Loving, r, Mark, Mary)

#certain(Being-Boy , r, Mark).

As a result, ATT-Meta creates the for

mula #presumed(#ep(Being-Hungry, t, Mark)). If

there were other rules also providing evidence for the

Mark-hungry goal, then the qualifier assigned would

be the maximum of the qualifiers suggested by the in

dividual rules, where Suggested is less then Presumed

which is less than Certain.

Also, the LHS terms can match with Suggested and

Presumed episodes, not just Certain ones as in our

example. Then the qualifier suggested by the rule for

the RHS episode is the minimum of the certainty levels

picked up by the LHS terms and the <qualifier> in

the rule itself. So, if is only Suggested that Mark loves

Mary, then from the rule it would only get a Suggested

rating for Mark being hungry.

When ATT-Meta investigates a goal-episode (e.g.

Mark being hungry), it automatically investigates its

negation as well. Suppose there are rules that could

provide evidence for the negation (so an RHS could

have the form #ep-neg(#ep(Being-Hungry, t, x)).

Let us say that the maximum of the confidence lev

els for the original hypothesis is P, and the maximum

for the negated hypothesis is N. (Each of N or P is

always at least Suggested.) Then ATT-Meta proceeds

as follows: If P and N are both Certain, then a genuine

error condition has arisen and ATT-Meta halts. Oth

erwise, if one is Certain, then it prevails and the other

goal is deleted. Otherwise, both the original goal and

its negation are given ratings by the following rating

reconciliation scheme: if one or both of P, N are Sug

gested then they are accepted as the certainty levels

of the two hypotheses; and if P, N are both Presumed,

then, unless there is reason to prefer one presumption

over the other, both hypotheses are "downgraded" by

being given a rating of Suggested. Currently, the only

way in which a one presumption can be preferred over

another is through a specificity comparison heuristic.

We are actively investigating the question of how to

compare specificity. We describe here one crude, pre

liminary approach that we are experimenting with.

The defined more-specific-than relation is irreflexive

and antisymmetric, but it is not transitive and is there

fore not a partial order. It is not yet clear how impor

tant this deficiency is.

Let R be a rule that contributed a Presumed rating to

a proposition P. Then the set of propositions to which

R was applied is an immediate basis (IB) for P. Also, if

P is a given proposition, then one IB for P is just {P}.

It may have other IBs because a given proposition may

also be supported by rules.

With Q as above, we give prefermce to Q over (J if

the support for Q is more Q-specific than the support

for Qj. The support for a proposition SI is more Q-

specific than the support for a proposition S2 j/fsome

IB for SI is more Q-specific than some IB for S2 and

not less Q-specific than any IB for S2, and any IB for

S2 that is more Q-specific than some for SI is also less

Q-specific than some for SI. (Our more-specific-than

relation is relative to Q because of condition (b) below.

"Q-specific" is synonymous with "Q-specific") )

IB1 is more Q-specific than IB2 iff each proposition

P in IB2 is either in IB1 or less Q-specific than IB1

and there is a proposition in IB1\IB2 that is not less

Q-specific than IB2. Proposition P is less Q-specific

than proposition set IB iff

(a) P can be derived just from IB but the propositions

in IB cannot all be derived just from P; or:

(b) neither of P, IB can be derived just from the other,

and some proposition in IB is "closer" to Q than P is

(see below); or:

(c) neither of P, IB can be derived just from the other,

P is incomparable as to Q-closeness with each propo

sition in IB, and the support for P is less Q-specific

than the support for some proposition in IB.

PI is closer than P2 to Q under the following condi

tions:

(bl) Q is about (exactly) one agent X's mental state,

PI is about X's mental state, but P2 is not; or

(b2) Q is about one agent X's mental state, PI is about

X, but P2 is not.

Derivability in (a) is examined using heuristically lim

ited techniques; and note that the derivability check

is a matter of examining the implementation's inter-

proposition dependency links rather than undertaking

more reasoning. The recursion introduced by (c) must

be limited because of circularities, notably those in

troduced by {P} being an IB of P when P is a given
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proposition. Provision (b) is closely tailored to the

purposes of ATT-Meta, but it is a special case of a

general principle: if one is trying to establish some

thing, Q, and some proposition PI is closer in subject

matter to Q than some other proposition P2 is, then

one should tend to give more weight to PI than to P2.

In turn, this general principle is a natural generaliza

tion of the normal overriding-of-inheritance principle

commonly employed in semantic networks. For a given

node, closer ancestors are closer in subject matter to

the node than more distant ancestors are. Aboutness

in (bl,2) is assessed in a simple, crude way.

As an example of the use of the Q-specificity heuristic,

consider the hypothesis in the (1-lc) example in sec

tion 2 that Veronica consciously believed that she was

following the recipe. Let this be Q. Q gets an initial

Presumed rating only via rule R.l from the propo

sitions that (i) she followed the recipe and (ii) she

believed the recipe to be wrong. Here (i) is a given

proposition (with no rule-based support) and (ii) is

derived by one rule application from the given propo

sition that (iii) she believed in the recesses of her mind

that the recipe was wrong. On the other hand, not-Q

(i.e. Q) gets an initial Presumed rating from (iii) via

TR.5 only. So, the only IB for Q is {(i),(ii)} and the

only IB for not-Q is {(iii)}. Here (ii) is less Q-specific

than {(iii)} since (ii) is derivable from just (iii) (but

not vice versa). Also, (i) is less Q-specific than {(iii)}

by condition (bl) above. It is also easy to see that

(iii) is not less Q-specific than {(i),(ii)}. Therefore,

Q's only IB is more Q-specific than Q's only IB, and

only Q is downgraded to Suggested.

Finally, we can only briefly mention an important

truth-maintenance algorithm used in the implemen

tation. Because of the common phenomenon of circu

larities in the inter-hypothesis derivation graph, and

because of the above downgrading of Presumed rat

ings to Suggested, ATT-Meta must sometimes traverse

parts of the graph, adjusting confidence ratings in or

der to satisfy some constraints. The updating is done

lazily (i.e., on demand). (Cf. the lazy type of ATMS

studied by Kelleher & van der Gaag 1993).

6 BELIEF REASONING

The central, but not the only, mode of belief rea

soning in ATT-Meta is simulative reasoning (SR).

SR has been proposed by a number of investigators

as a relatively efficient technique for reasoning about

agents' beliefs (Ballim k Wilks 1991, Chalupsky 1993,

Creary 1979, Dinsmore 1991, Haas 1986, Konolige

1986, Moore 1973; although Konolige describes as sim

ulation what we call explicit meta-reasoning, and calls

SR a form of "attachment"). An SR system can in

tuitively be described as going into the agent's belief

space, and reasoning within it by means of the system's

own inference rules, acting on beliefs in the space;

it then counts resulting conclusions as beliefs of the

agent (perhaps only defeasibly). SR can also be de

scribed as the system pretending temporarily to adopt

the agent's beliefs. SR is in contrast to using axioms or

rules that constitute a meta-theory of agents' reason

ing. The advantages of SR are discussed in some detail

in Haas (1986) and Barnden (in press), and include the

point that SR allows any style of base-level reasoning

used by the system for ordinary purposes to be easily

attributed to an agent, without the need for a separate

meta-theory for each such style of reasoning — abduc

tion, induction, ATT-Meta-style defeasible/uncertain

reasoning, or whatever.

ATT-Meta's SR is procedurally complex. We therefore

describe it informally, though still precisely. First we

give a thumbnail sketch. The SR proceeds in a back

wards, goal-directed way. Suppose ATT-Meta is inves

tigating the hypothesis that X believes-/?o P, where po

is one of the confidence ratings from Possible to Cer

tain. ATT-Meta strips off the "X believes-/>o" to get

the reasoning goal P within a simulation cocoon for X.

In the implementation, placing a proposition within a

simulation cocoon consists of tagging it with the iden

tity of the believer, X. In its normal way, ATT-Meta

also investigates the complement P of P within the co

coon. Hence, the SR might end up concluding that X

believes P rather than P.

Currently, any of ATT-Meta's own rules can be used

within the X-simulation cocoon (i.e. can be applied to

X-tagged propositions, yielding X-tagged conclusions).

However, in contrast with some other SR schemes,

ATT-Meta's own propositions are not ascribed (by de

fault) to the believer, i.e. imported into the cocoon.

(This reflects a very recent change in our approach. In

fact, a provision at the end of this section embodies

an opposite to default ascription.) Rather, the only

way for a proposition Q to enter the cocoon from out

side is via a proposition (outside the cocoon) of the

form [X believes-p Q] for some p. Further, Q cannot

be inserted in the cocoon unless ATT-Meta's rating

for [X believes-p Q] is Presumed or Certain. This is

to limit the complexity of reasoning and to boost its

definiteness. In practice, ATT-Meta has many rules

that can lead to propositions of form [X believes-p Q] ,

for general classes of agent. An example is a rule we

appealed to in section 3, saying that if an agent X

performs an action then, presumably, X consciously

believes (s)he does so. (A further rule is needed here

to go from conscious belief to belief simpltciter.) No

tice that conclusions from such rules can be defeated

by other information. For instance, the conclusion of

the rule just mentioned could be defeated by a given

Certain proposition that X does not believe (s)he per

forms the action. Also, conclusions from SR can defeat

the conclusions of such rules, or vice versa (depending

on which way specificity comparisons go).

Let Q be P, P or a subgoal used in the reasoning within
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the cocoon towards P or P . If Q is given rating p by

reasoning within the cocoon, then the proposition that

X believes-p Q is given a rating of Presumed outside

the cocoon, barring interference from reasoning out

side the cocoon.

Now we provide a complete description of the process.

It schema instance complex, but, as we will explain,

for much of the time in practice only simple special

cases arise. With Q as above, the steps of the process

applied to Q and Q are in outline as follows. After the

outline we will provide the detail.

(A) : Simulation proper. Because the reasoning is

backwards, we assume that all reasoning towards Q

and Q has been done (by recursive application of the

process we are now describing), and in particular that

their ratings have been reconciled with each other. No

tice that one of Q, Q~ may have been eliminated by a

Certain rating for the other.

(B) : Exiernalization. Q and Q are "externalized" to

create hypotheses, outside the cocoon, of the following

types:

(i) X believes-// Q

(ii) not(X believes-// Q)

(iii) X believes-// Q

(iv) not(X believes-/?' Q)

for various ratings p' related to the ratings for Q and

Q. The propositions of types (i) to (iv) are given par

ticular preliminary ratings.

(C) : Non-simulaiive phase. The hypotheses intro

duced in (B) are now investigated by ordinary reason

ing outside the cocoon, using any rules that address

those hypotheses. (Of course, some of the hypotheses

may coincide with given propositions.) In particular,

special rules that mutually constrain propositions of

types (i) to (iv) are available. In this phase, a propo

sition introduced by (B) can have its rating upgraded

or downgraded, or can be eliminated altogether.

(D) : Consciousness attribution. There may be a goal

to show that Q is consciously believed by X, not just

believed. If so, and Q still exists and resulted within

the cocoon from conscious beliefs, then that goal is

given support.

(E) : Re-internalization. If any proposition of form [X

believes-/) Q] still exists and has rating at least Pre

sumed, then the final rating given to Q inside the co

coon is the maximum of the p values in such proposi

tions. Similarly for Q. If no [X believes-/? Q/Q~] exists

anymore, then Q/Q (resp.) is eliminated from the co

coon.

The following fleshes out steps (A) to (D) of the above

outline. (We use informal IF-THEN descriptions of

rules, but they are straightforwardly expressible in the

formalism).

(For A) Ratings for Q and Q~ contributed by individ

ual rules are reconciled with each other in the normal

way, except that a Certain/Certain clash results only

in the SR for X being halted, rather than in a global

system error. (A more sophisticated possible action is

mentioned below as a future research item.)

(B.l) If Q is still present and has rating p, then for

each rule that contributed to Q within the cocoon by

being applied to some propositions Qi to Qn with rat

ings pi to pn, the following goal is set up outside the

cocoon, with an initial rating of Presumed:

(I.Q) X does-inference-step to Q with rating p from

Qi, • • Qn with ratings px to pn.

(Cf. schema (I) in section 3.) And, [X believes-/? Q] is

regarded as having been supported by the rule

(R.Q) IF ...(I.Q) as above ... AND X believes-/?! Qx

AND ... AND X believes-/),, Q„ THEN [Cer

tainly] X believes-/) Q.

Since, by recursion over the process we are describing,

the Qj do not exist in the cocoon unless X believes

them to some degree, [X believes-/) Q] is given some

degree of support by R.Q, using the normal scheme for

ratings management in rule application. Normally, I.Q

keeps its rating of Presumed, but it is investigated in

the normal way and could be upgraded, downgraded

or eliminated.

Q is dealt with similarly, possibly giving rise to anal

ogous propositions (I.Q) and rule (R.Q~).

(B.2) Suppose Q has rating Suggested inside the co

coon, and this resulted from a downgrade because of

conflict with Q. Then ATT-Meta regards the following

rules as having been applied, for each (I.Q) produced

by step (B) for which p = Presumed:

(R'.Q) IF ...(I.Q) as above ... AND X believes-/?! Qi

AND ... AND X believes-/)n Q„ THEN [Cer

tainly] not(X believes-Presumed Q~).

Q is treated similarly.

(For C) The special rules mentioned above are defined

by the following schemata, p and />' stand for any

ratings where p> // > Possible.

(RBI) IF Y believes-/. B THEN [Certainly]

Y believes-// B

(RBI') IF not(Y believes-/)' B) THEN [Certainly]

not(V believes-/) B)

(RB2) IF Y believes-Certain B THEN [Presumably]

not(y believes-Possible B)

(RB2') IF y believes-Possible B THEN [Presumably]

not(y believes-Certain B)
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(RB3) IF Y believes-Presumed B THEN [Presumabl

not(Y believes-Presumed B).

A Presumed/Presumed clash between X believes-/? Q'

and not(X believes-/? Q'), where Q' is either Q or Q,

is treated in the normal way.

Once the reasoning of this phase is complete, ATT-

Meta applies a closed-world assumption to X's belief

in Q and X's belief in Q. If p is the maximum rating

such that [X believes-p Q] has a rating of Presumed or

Certain, then ATT-Meta gives a Presumed rating to

not[X believes/?' Q] for each p' higher than p (unless

that proposition already has a rating of Presumed or

Certain). Similarly for Q.

(For D) Consciousness attribution is handled in part

by a "conscious" counterpart for each rule of type

(R.Q) or (R.Gj) as defined in (B.l). This counterpart

just has "believes" replaced by "consciously believes"

throughout. In addition, ordinary non-simulative rea

soning within (C) can lead directly to conclusions

of form [X consciously-believes Q], or similarly with

Q. In particular, we have made use of rules such

as the following for specific sorts of belief B: IF Y

believes-/? B AND Y is conscious THEN [Presumably]

Y consciously-believes-/? B.

That completes the description of SR. Although the

process is quite complicated in general, it is in prac

tice relatively unusual for both (A) and (C) to involve

a significant amount of processing. If (A) does do so

but (C) does not, then essentially (B) and (D) leave

the results of (A) unchanged. Conversely, if (C) in

volves significant reasoning but (A) and (B) are trivial

because Q and Q find no support within the cocoon,

then essentially (D) just strips off belief layers from

positive belief propositions established by (C). Also,

the process is optimized by means of special processing

steps in the implementation. For instance, the RB...

and (R.Q) rules are not explicit in the implementation.

When both (A) and (C) are significant, some interest

ing effects can arise. In particular, a downgrade during

(A) of Q or Q because of a Presumed/Presumed clash

within the cocoon can be reversed by (C). For exam

ple, there might be a given, Certain proposition that

X believes-Presumed Q, preventing a downgrade of Q.

The prevention happens thus: during (C), that given

proposition defeats the Presumed proposition arising

from (B.2) that X does not believe-Presumed Q. As a

result, during (D), Q is given a rating of Presumed.

During (C), a Presumed/Presumed conflict between

a proposition of one of the forms (i) to (iv) and its

complement can bring in a specificity comparison, as

normal. The rules of form (R.Q), (R.Q), (R' <3) and

(R'.Q) allow the comparison to look back to the way

that the believings on the LHSs of those rules were es

tablished, with the reasoning within the cocoon being

invisible to the process.

The SR scheme as described can also be used with

SR, allowing nested belief to be handled. However, we

have not yet intensively investigated this matter.

ATT-Meta's top-level reasoning goal when faced with

discourse fragments like (1-la/b/c/d) in section 2 is

currently set by hand and is to the effect that some

disparity in the discourse is resolved because of expla

nation e, where e is a variable in the goal and is bound

as a result of satisfying the goal. Such goals match the

RHSs of rules such as R.2 and R.5 in section 2. The

disparity is currently not detected by ATT-Meta itself.

7 METAPHORICAL REASONING

Hypotheses of form (I.Q) above (or, of course, I.Q)

introduced by steps (B.l) and (B.2) of SR provide a

means whereby meta-reasoning about an agent's in

dividual reasoning steps can be applied to affect the

course of SR. Such reasoning might downgrade or up

grade those hypotheses, thus affecting the strength of

the conclusions reached by rules such as (R.Q). We

have studied metaphor-based reasoning that affects (in

fact, only ever downgrades) the hypotheses (I.Q), but,

in principle, non-metaphorical reasoning could also do

so. In particular, limitations on the amount of rea

soning the agent is assumed to be able to do could be

brought into the picture.

We concentrate here on the effect of metaphor on hy

potheses (I.Q), but a metaphor-based inference can

also say something direct about an agent's belief. For

instance, in section 3, an IDEAS AS INTERNAL UT

TERANCES inference directly produced the conclu

sion that a particular belief was conscious.

When a hypothesis (I.Q) is created, one sort of rule

that might attack it (i.e. support its negation) is a

metaphorical "transfer" rule such as TR.2 in section

3. Through the ordinary process of backwards rule us

age, this causes subgoals to be set up inside the (X,M)

metaphorical pretence cocoon specified by the rule, if

that cocoon exists. Here X is the agent and M is the

name of the metaphor. A special action is to try to

establish whether the cocoon exists. Currently, the co

coon only exists if a metaphorical belief representation

(as at the end of section 4) has been set up as a direct

result of one the sentences in the input discourse. If

the cocoon does not exist, then the transfer rule fails.

If the cocoon does exist, then the presence of a proposi

tion P within it is simply noted in the implementation

by tagging a copy of P with (X,M). When the cocoon

is created, one or more standard premises are inserted.

For instance, if M is MIND AS PHYSICAL SPACE,

then the cocoon will contain the Certain premise that

X's mind is a physical space. Also, other premises

resulting directly from the input discourse can be in

serted. For instance, the discourse might say that a

particular idea is in X's mind. We call these discourse

premises for the cocoon. Currently all such premises
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are Certain.

Reasoning within the cocoon is as normal, with a small

but important change to the rating-reconciliation

scheme. The reasoning within the cocoon (i.e. mediat

ing between (X,M)-tagged propositions) can use any of

ATT-Meta's rules, but because of its goal-directedness

it will ordinarily just use rules peculiar to the vehicle

domain of M. Subgoals resulting from within-cocoon

rule consideration can also be addressed (supported

or attacked) by transfer rules. In turn, these rules

can lead to rule consideration entirely outside the co

coon. In this way, metaphor-based reasoning is in

timately and context-sensitively combined with non-

metaphorical reasoning.

Knowledge outside the cocoon can conflict with knowl

edge inside, as pointed out in section 3. For instance,

ATT-Meta may have the rule (R) that a mind is

Certainly not a physical space. This rule's Certain

conclusion in X's case would conflict with the stan

dard premise mentioned above as being in the cocoon.

To handle this problem, we simply make the follow

ing change to the rating-reconciliation scheme as used

within the cocoon: when considering a subgoal Q and

its complement Q where the preliminary rating for the

latter is Certain, if Q has support (however indirectly)

from a standard cocoon premise, discourse premise for

the cocoon, and/or transfer rules, whereas Q does not

have such support, then the Certain rating for Q is first

downgraded to Presumed. (Notice that this does not

affect cases where both or neither of Q, Q have sup

port of the type mentioned.) As a result, the ordinary

operation of ATT-Meta's rating_ reconciliation scheme

can cause the downgrading of Q to Suggested only, or

its elimination. Elimination would happen with Q be

ing that X's mind is a physical space, since this is a

standard cocoon premise and therefore Certain. This

defeats Q~'s original Certain rating because that is first

downgraded to Presumed.

Finally, observe that there may be more than one hy

pothesis (I.Q) for a given Q, because Q may be sup

ported within SR in more than one way. It could be

that metaphor-based reasoning only downgrades one

such hypothesis. Then, the rating of the proposition

[X believes-p Q] supported by rules of form R.Q is

not, after all, affected. Also, in principle, an (I.Q)

could have completely independent support from non-

metaphorical, non-simulative reasoning, and this sup

port might defeat the support from metaphor-based

reasoning.

8 CONCLUSION

ATT-Meta differs from other work on belief represen

tation/reasoning mainly by taking account of the im

portant phenomenon of metaphorical descriptions of

mental states in discourse. In particular, these descrip

tions can clarify the way in which an agent believes

something (as opposed to specifying what is believed).

Such ways of believing can make a major difference

in discourse understanding, for instance by explaining

how agents can fail to see consequences of their be

liefs. Also, ATT-Meta is unique in having a systematic

and well-motivated way of constraining the application

of SR, namely by integrating it with metaphor-based

reasoning. The SR and metaphor-based reasoning are

completely integrated into a powerful and practical un

certain/defeasible reasoning framework. The SR is un

usual in distinguishing conscious belief as an important

special case.

ATT-Meta is one of the few implemented, or de

tailed theoretical, schemes for significant metaphor-

based reasoning. (Others are Hobbs 1990 and Martin

1990.) We integrate metaphor-based reasoning into an

uncertain reasoning framework much as Hobbs does,

except that he uses abductive framework. In addition,

our scheme for metaphor-based reasoning is much like

that of Hobbs, in that it usually proceeds by apply

ing concepts and rules from the metaphor vehicle di

rectly to the target items, rather than by translating

them into target-domain concepts and rules. Some of

the advantages of the approach are discussed in Barn-

den (1992). ATT-Meta differs from Hobbs' and Mar

tin's work in being concerned only with metaphors of

mind. Nevertheless, there is nothing in our approach

that is peculiar to metaphors of mind, as opposed to

metaphors for other abstract matters. ATT-Meta cur

rently handles only metaphor that is conventional to

it. Our work therefore differs from, e.g., that of Fass

(1991) and Iverson & Helmreich (1992), who are con

cerned with working out the nature of novel(to-the-

system) metaphors encountered in sentences.

Nevertheless, ATT-Meta can be creative in its use of

any given metaphor, because any source-domain fact

or rule can be opportunistically used during metaphor-

based reasoning. For example, consider the sentence

"One part of Veronica was insisting that the recipe

was wrong." We take this to exhibit what we call the

MIND PARTS AS PERSONS metaphor. Given that a

normal inference from the fact that a real person insists

something that some interlocutor of that person has

said something that conflicts with it, ATT-Meta can

conclude (within a metaphorical pretence cocoon) that

some non-mentioned part of Veronica has said that the

recipe was correct, and therefore presumably believes

this. Notice that there is no need here for any transfer

rule to impinge on the notion of insisting. In this way,

all the richness of metaphor vehicle (source) domains

is available for use. This point is strengthened by the

fact that the knowledge bases we have built up for the

metaphor vehicles are not contrived for metaphorical

use, but are designed to support ordinary reasoning

within those domains. For instance, the physical rules

in section 3 are commonsensical rules that are useful

for ordinary physical reasoning.
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In future work, we hope to address the following issues

among others: a formal Q-specification of the intended

interpretation of the episodic logic; a more powerful

specificity heuristic; and a more sophisticated treat

ment of Certain/Certain clashes within SR — e.g.,

one possibility is for the system to postulate a MIND

AS PHYSICAL SPACE view of the agent, even if this

is not directly indicated by the discourse, and then

place the clashing propositions in different mind re

gions. Also, ATT-Meta provides a promising frame

work for various interesting ways of nesting different

types of reasoning. The nesting of metaphor-based

within simulative reasoning allows the ascription of

metaphorical thinking about mental states to agents.

This is a useful addition to ordinary nested belief rea

soning. The nesting of belief reasoning, including SR,

within metaphor-based reasoning allows SR to be ap

plied to metaphorical "persons" in a metaphor vehicle.

The nesting of metaphor-based reasoning inside itself

allows the handling of chained metaphor (where as

pects of a metaphor vehicle are themselves conceived

metaphorically).

In this work we have had to adopt provisional solutions

to a number of difficult problems, both in representa

tion and reasoning, aside from SR and metaphor-based

reasoning themselves. For example, we have had to

deal with the de-dicto/de-re distinction, indexicality in

beliefs, complex episodes, representation of time and

causality, and defeasible reasoning. Our solutions to

these issues are to some extent orthogonal to the main

principles of simulative and metaphor-based reasoning

that we have adopted, and are subject to change.
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Abstract

Reasoning with minimal models is at the

heart of many knowledge representation sys

tems. Yet it turns out that this task is

formidable, even when very simple theories

are considered. In this paper we introduce

the elimination algorithm, which performs in

polynomial time minimal model finding and

minimal model checking for a significant sub

class of CNF theories which we call head-

cycle-free (HCF) theories. We then show how

variations of the elimination algorithm can be

applied for answering queries posed on dis

junctive knowledgebases and disjunctive de

fault theories in an efficient way. Finally, us

ing techniques developed in database theory,

we argue that the tractable subsets identified

in this paper are quite expressive.

1 Introduction

Computing minimal models is an essential task in

many artificial intelligence reasoning systems, includ

ing circumscription [McCarthy, 1980, McCarthy, 1986,

Lifshitz, 1985], default logic [Reiter, 1980], and min

imal diagnosis [de Kleer et al., 1992], and in an

swering queries posed on logic programs (under

stable model semantics [Gelfond and Lifschitz, 1991,

Bell et al., 1991]) and deductive databases (under the

generalized closed-world assumption [Minker, 1982]).

The ultimate goal in these systems is to produce plau

sible inferences, not to compute minimal models. How

ever, efficient algorithms for computing minimal mod

els can substantially speed up inference in these sys

tems.

Special cases of this task have been studied in the di

agnosis literature and, more recently, the logic pro-
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student at the Cognitive Systems Lab, Computer Science

Department, UCLA, Los Angeles, California, USA.

Luigi Palopoli

DEIS

Universita della Calabria

87036 Rende (CS), Italy
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gramming literature. For instance, algorithms used in

many diagnosis systems [de Kleer and Williams, 1987,

de Kleer et al., 1992] are highly complex in the worst

case: to find a minimal diagnosis, they first compute

all prime implicates of a theory and then find a min

imal cover of the prime implicates. The first task

is output exponential, while the second is NP-hard.

Therefore, in the diagnosis literature, researchers have

often compromised completeness by using heuristic ap

proaches. The work in the logic programming litera

ture (e.g., [Bell et al., 1991]) has focused on using effi

cient optimization techniques, such as linear program

ming, for computing minimal models. A limitation of

this approach is that it does not address the issue of

worst-case and average-case complexities.

Surprisingly, and perhaps due to its inherent dif

ficulty, the problem has received a formal analy

sis only recently [Papadimitriou, 1991, Cadoli, 1991,

Cadoli, 1992, Kolaitis and Papadimitriou, 1990,

Eiter and Gottlob, 1993, Chen and Toda, 1993,

Ben-Eliyahu and Dechter, 1993]. Given a proposi-

tional CNF theory T and an atom A in T, the following

tasks (and others) have been considered:

model finding Find a minimal model for T.

model checking Check whether a given

interpretation1 is a minimal model for T.

minimal entailment Is A true in all the minimal

models of T?

minimal membership Is A true in at least one min

imal model of T?

Unfortunately, the results of the formal work on the

complexities of reasoning with minimal models are

very discouraging. It turns out that even when

the theory is positive, that is, when the theory has

no clause where all the literals are negative, these

questions are very hard to answer: model finding is

P7Vp[°(lo«n)l-hard [Cadoli, 1992] (and positive theo-

1 We take an interpretation to be an assignment of truth

values to the atoms in the theory.
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ries always have a minimal model!)2 model check

ing is co-NP-complete [Cadoli, 1991], minimal entail

ment is co-NP-complete, and minimal membership is

X^-complete [Eiter and Gottlob, 1993].

In this paper we introduce a basic property that turns

out to characterize classes for which the above prob

lems and other related problems can be solved more

efficiently. The property is head-cycle freeness. The

idea is simple: a clause3 can be viewed as having a

direction — from the negative to the positive literals.

This direction is made explicit in the way clauses are

represented in logic programs. We can then associate

a dependency graph with each theory: each atom is a

node in the graph, and there is an arc directed from A

to B iff there is a clause where A appears negative and

B positive. Then a theory will be called head-cycle free

(HCF) iff in its dependency graph there is no directed

cycle that goes through two different atoms that ap

pear positive in the same clause. Head-cycle freeness

can be checked in quadratic time in the size of the

theory.

We will show that for positive HCF theories, most

of the above problems are manageable: model find

ing and model checking can be done in 0(n2) time,

where n is the size of the theory, and minimal mem

bership is NP-complete. However, [Eiter, 1993] has

shown that for the minimal entailment problem, being

HCF does not help — the problem is co-NP-complete

even if you restrict the theories to being HCF. Our

results can be generalized quite naturally to compute

minimal Herbrand models of a significant subclass of

first-order CNF theories.

We will also show applications of the results we have

on CNF theories for answering queries on knowl

edgebases that use disjunctive rules. More specifi

cally, we will show an algorithm that computes effi

ciently a stable model of an HCF stratified disjunc

tive knowledgebase4. If the knowledgebase is proposi-

tional, the algorithm computes a stable model in time

polynomial in the size of the knowledgebase. We will

also demonstrate how we can use this algorithm for

answering queries posed on disjunctive default theo

ries.

The last important question that we address is how

significant or, in other words, expressive is this class

of tractable theories. In database theory, the expres

sive power of query languages is a much-studied topic.

Ideally, we would like to have a language that is easy

to compute but yet capable of expressing powerful

2 [Chen and Toda, 1993] have recently characterized the

complexity of model finding as a NPMV//OptP[01og n]-

complete task.

In this section, a clause is a disjunction of literals. In

the sequel we will use a different syntax.

4Stable models and stratified knowledgebases will be

defined in the following sections.

queries. Using techniques developed in database the

ory, we argue that the tractable subsets identified in

this paper are quite expressive.

2 The elimination algorithm for HCF

theories

In this section we introduce the elimination algorithm

(EA), which can be used to perform both model check

ing and model finding on an HCF positive proposi-

tional theory in polynomial time.

We will refer to a theory as a set of clauses of the form

Ax AA2 A...A/im D Ci VC2V...VC„ (1)

where all the A's and the C's are atoms5. The expres

sion to the left of the D is called the body of the clause,

while the expression to the right of the D is called the

head of the clause. We assume that all the C's are dif

ferent. A theory is called positive if for every clause

n > 0. In this section we deal with positive theories,

unless stated otherwise. When n = 0 we take it as if

the clause is A\ A A2 A ... A Am 3 false. When m = 0

we take it as if the clause is true D Ci V C2 V ... V Cn.

With every theory T we associate a directed graph Gj,

called the dependency graph of T, in which (a) each

atom in T is a node, and (b) there is an arc directed

from a node A to a node C iff there is a clause in T in

which A is one of the A,-'s and C is one of the C<'s.

As mentioned before, model finding for posi

tive theories is Pyvpl°(lo«n>l-hard, model check

ing is co-NP-complete, and minimal membership is

Ej-complete. We will show that most of these prob

lems are easier for the class of HCF theories. A theory

T is HCF iff there is no clause of the form (1) in T

such that for some d and Cj, i ^ j, Gt contains a

directed cycle involving C,- and Cj. So, for example,

the theory A D B, B D A, A V B is not HCF, while

the theory A D B, B D A, A V C is HCF.

Fact 2.1 Head-cycle freeness of a theory of size6 n

can be checked in time 0(n2).

Clearly, just any model for a positive theory can be

found very easily — take, for example, the set of all

atoms in the theory. What is difficult is finding a min

imal model for the theory. Roughly speaking, the idea

behind the EA is as follows: we pick a model of the the

ory and then eliminate from this model all the atoms

that we know will not be part of one of the minimal

5Note that the syntax of (1) is a bit unusual for a clause;

usually, the equivalent notation -iAi V -1A2 V ... V ->Am V

Ci V Ci V ... V C„ is used. We chose the first notation

because it is closer to the way clauses are represented in

knowledgebases.

8The size of a theory is the number of symbols it

contains.
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EA(T)

Input: A positive HCF theory T. Output: A minimal

model for T.

1. M := a model of T; M' := 0.

2. Let A be the set of all clauses in T violated by M'

such that for each fi € A |head(6, M)| = 1.

If A = 0, go to step 3.

Else, let X := (J head(«, M); M' := M' + X;

M:=M-X;

repeat step 2.

3. Let A be the set of all clauses in T violated by M'

such that for each 6 € A, |head(6, M)\ > 2.

If A = 0, return M' .

Else, let H := U4eAl»ead(«, M) and let X C H be a

nonempty source of H in the dependency graph of

T; let M := M — X; go to step 2.

Figure 1: The elimination algorithm for HCF theories

models that are subsets of this model (Hence the name

of the algorithm).

Given a directed graph G and a set of nodes Y in the

graph, X C Y will be called a source ofY iff (a) all

the nodes in X are in the same strongly connected

component7 in G, and (b) for each node A in V — X,

there is no directed path in G from A to any of the

nodes in X. Intuitively, if X is a source of Y in a

dependency graph of some theory, then none of the

atoms in Y —X can be used to derive any of the atoms

in X. During the execution of the EA, we sometimes

need to eliminate from a model that is not minimal a

subset of a set of atoms. We always delete a source of

this set to prevent a situation where atoms that were

already eliminated turn out to be part of a minimal

model.

A set of atoms satisfies the body of a clause iff all the

atoms in the body of the clause belong to this set. A

set of atoms violates a clause iff the set satisfies the

body of the clause but none of the atoms in the head

of the clause belongs to the set. A set of atoms X is a

model of a theory if none of its clauses is violated by

X. A model X of a theory T is minimal if there is no

Y C X which is also a model of T. Given a set X,

|X| denotes the cardinality of X. The EA is shown in

Figure 1. It uses the function head(), which is defined

as follows: given a clause 6 and a set of atoms M,

head(6, M) is the set of all atoms in M that belong to

the head of 6.

The proof of the next theorem appears in the appenix.

The proofs of the rest of the claims appear in the full

version of the paper [Ben-Eliyahu and Palopoli, 1993].

7 A strongly connected component C of a directed graph

G is a maximal subgraph of G such that for each pair of

nodes vi and «2 in C, C contains both a directed path from

v\ to t»2 and a directed path from vi to v\ .

Theorem 2.2 (the EA is correct) The EA gener

ates a minimal model of the input theory.

Theorem 2.3 (nondeterministic completeness)

// M is a minimal model of an HCF theory T, then

there is an execution of the EA that outputs M.

Theorem 2.4 (complexity) The EA for HCF the

ories runs in time 0(n ), where n is the size of the

theory.

The following example demonstrates how the EA

works.

Example 2.5 Suppose we have the theory

I. a V 6 2. bD a 3. aVc

And suppose we start the EA with M = {a,b,c}. At

step 1 of the EA, M' = 0. At step 2 we get that

A = 0, because the clauses violated by M' are the first

and third clauses, but both atoms in their head belong

to M . Since A is empty, we go to step 3, and in step

3 we get A := {a V 6, a V c}. Since {6} is a source

of {a, 6, c} fnoie that {c} is also a source), we delete

{b} from M and are left with M = {a,c}, and we go

to step 2. In step 2 we now get A = {a V 6}, so we

add {a} to M' and delete {a} from M, which leaves us

with M' = {a} and M = {c}. We then repeat step 2,

but this time we get A = 0 (because none of the rules

is violated by M') and so we go to step 3. In step 3 we

also have A = 0, so the EA in this case returns {a}.

Indeed, {a} is a minimal model for the theory above.

The previous example is of a theory having only one

minimal model. In the next example, the theory has

several minimal models.

Example 2.6 Suppose we have the theory

1. a V6

2. c V6

3. a Vc

And suppose we start the EA with M = {a, 6, c}. At

step 1 of the EA, M' = 0. At step 2, we get that

A = 0, iecause although all the clauses are violated by

M', all the atoms in their head belong to M. Since

A is empty, we go to step 3, and in step 3 we get

A := {all the clauses). Since both {a} and {6} and

{c} are source of {a, b, c), we can delete from M any

one of them. Suppose we delete {&}. We are left with

M = {a,c}, and we go to step 2. In step 2, we now get

A = {a V 6, 6 V c}, so we add {a, c} to M' and delete

{a,c} from M, which leaves us u>i/A M' = {a,c} and

M = 0. We then repeat step 2, but this lime we get

A = 0, so we go to step 3. In step 3, we also have

A = 0, so the EA in this case returns {a,c}. Indeed,

{a,c} is a minimal model for the theory above. It is

easy to see that the EA could return {a, 6} or {6, c},

had we selected {c} or {a} as a source, respectively.
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With minor modifications, the EA can also be used for

model checking. This is due to the fact that if we start

executing the EA with M initialized to some minimal

model, this will be the model that it outputs. Hence:

Theorem 2.7 The EA solves model checking for pos

itive HCF theories in time 0(n2), where n is the size

of the theory.

Also minimal membership is easier for HCF theories

than in general:

Theorem 2.8 Minimal membership for the class of

positive HCF theories is NP-complete6.

Before closing this section, we would like to address an

important issue raised by [Dechter, 1993]. Instead of

representing a theory as a set of clauses of the form (1),

we could have represented a theory as a set of clauses

of the form

Ai A A2 A ... A Am A ->BX A -iB2 A ... A ->Bk D C (2)

where all the A's, the S's, and the C's are atoms9.

We could then identify the class of stratified theories

in a way that is parallel to the way stratified knowl

edgebases are defined10. It is well known that if a

logic program is stratified, a minimal model for this

program (namely, the one coinciding with its perfect

model) can be found in linear time [Apt et al., 1988].

Therefore, it is quite immediate that a minimal model

for stratified theories can be found also in linear time.

But what is the relation between HCF theories and

stratified theories? Our conclusion is that HCF theo

ries are strictly more general than stratified theories.

By a simple local syntactic transformation, namely,

by moving all the B's to the head (as disjunctions),

every stratified theory (with no clauses with empty

heads) can be converted into a positive HCF theory.

For example, the stratified theory {->a D 6, ->6 3 c} is

logically equivalent to the HCF theory {a V 6,6 V c}.

However, as the following example illustrates, there is

no such straightforward local translation of positive

HCF theories into stratified theories.11.

Example 2.9 Consider the following HCF theory T:

aV6, a D c 6Vc

The following theory, T', is obtained by moving all but

one of the atoms from the head of the clause to the

'Membership in NP was already shown in

[Ben-Eliyahu and Dechter, 1992]; we show NP-hardness.

9[Schaerf, 1993] advocates a semantics for positive dis

junctive databases which is based on considering all normal

logic programs that can be obtained from the database us

ing this transformation.

I0For a formal definition of stratification see next section.

"Actually, another variation of the elimination algo

rithm can be used for finding for each HCF theory an equiv

alent stratified theory that can be obtained by shifting all

but one of the atoms from the head to the body.

body:

->6 D a, aDc ->c D 6

However, T* is not stratified.

Moreover, note that while the algorithm for strati

fied theories will yield one specific model, the EA

is capable of generating any minimal model and

can also be used for model checking. Another

interesting observation is that the class of Horn

theories, for which a unique minimal model can

be found in linear time [Dowling and Gallier, 1984,

Itai and Makowsky, 1987], intersects the class of HCF

theories but neither of these classes includes one

other12.

3 The elimination algorithm for

first-order HCF theories

In this section we show how we can generalize the EA

so that it can be used to perform efficiently both model

checking and model finding on a first-order positive

HCF theory.

One way to go is to write an algorithm that is similar

to the one presented in figure 1 but works on first-

order theories. If we restrict our attention to positive

theories only, such an algorithm would work exactly

like the algorithm we present in the next section. In

this section, however, we present a different variation

of the EA. The version presented here does not re

quire to construct an arbitrary model before finding a

minimal one.

We will now refer to a theory as a set of clauses of the

form

V(Xlt...,Xn)ArAA7A...AAm D d V C2 V ... V C„ (3)

where all the A's and the C's are atoms in & first-order

language with no function symbols, and X\ , Xn are

all the variables that appear in the clause. We will

often write (3) simply as

Ai A^A...AAm D Ci VC2 V...VC„, (4)

keeping in mind that all the variables are universally

quantified. The definitions of head, body, and posi

tive theories are the same as for propositional theories.

In the expression p{X\, ...,X„), p is called a predicate

name.

As in the propositional case, with every theory T we

associate a directed graph C?t, called the dependency

graph of T, in which (a) each predicate name in T is

a node and (b) there is an arc directed from a node A

to a node C iff there is a clause in T in which A is a

"Consider, for example, the theories Ti = {a}, Ti =

{-•a}, T3 = {a V6): Ti is both Horn and positive HCF, Tj

is Horn but not positive, and T3 is positive HCF but not

Horn.
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EA^(T)

Input: A safe first-order positive HCF theory T. Out

put: A minimal Herbrand model for T.

1. M := 0.

2. Let A be the set of all instances of definite clauses in

T not satisfied by M. If A = 0, go to step 3.

Else, let X := (J<6A head(«); M := M + X;

repeat step 2.

3. Let A be the set of all instances of disjunctive clauses

in T not satisfied by M . If A = 0, return M.

Else, let H := Ui€A name-head(6), and let X C H

be a nonempty source of all the predicate names in

H in the dependency graph of T; from each 6 in T,

delete from the head all atoms with predicate names

that appear in X; goto step 2.

Figure 2: The elimination algorithm for safe first-order

HCF theories

predicate name in one of the Ai 's and C is a predicate

name in one of the C, 's.

A theory will be called safe if each of its rules is safe. A

rule is safe iff all the variables that appear in its head

also appear in its body. In this section we assume that

theories are safe and positive. A theory T is HCF iff

there is no clause of the form (3) in T such that for

some Ci and Cj, i ^ j, Gt contains a directed cycle

involving the predicate name of d and the predicate

name of Cj .

Fact 3.1 Head-cycle freeness of a theory of size13 n

can be checked in time 0(n2).

3.1 Model finding

In figure 2 we present a variation of the EA, called

EA^- (T for "first-order"), that computes a minimal

Herbrand model 14 of a positive first-order HCF the

ory. The algorithm EA^- uses the functions head() and

name-headQ. Given a clause 6, head(6) will return

the set of atoms that appear in the head of 6, and

name-head(6) will return the set of predicate names

that appear in the head of 6. Thus, for example, if

6 = a(X)Vb(X)<—c(X), head(6) = {a(X),b(X)},

and name-head(6) = {a, b).

A clause is called definite iff it contains exactly one

atom in the head. We call a clause disjunctive iff it

contains at least two atoms in the head.

The size of a theory is the number of symbols it

contains.

14The set of all atoms constructed using predicate names

and constants from a given theory T is called a Herbrand

base of T. A Herbrand model of T is a subset of the Her

brand base that satisfies all the instances of the clauses of

the theory.

The proofs for the following claims appear in the full

version of the paper [Ben-Eliyahu and Palopoli, 1993].

Theorem 3.2 (EA^- is correct) EA? generates a

minimal Herbrand model of the input theory.

The following example shows how EAf works.

Example 3.3 Suppose we have the theory

1. a(s) V b(s) 2. b(X) D a(X)

3. a(s) V c(s) 4. a(X) D d(X)

At step 1 of the EA, M = 0. At step 2 we get

that A = 0, because the clauses thai are violated

by M are 1 and S but they are not definite. Since

A is empty, we go to step S, and in step S we get

A = {a(s) V 6(s), a(s) V c(s)}. Since {6} is a source

of {a,b,c} (note that {c} is also a source), we delete

{b(s)} from clause 1, and are left with the theory

{a{s),b(X) D a(X),a(s)Vc(s),a(X) D d(X)}, and we

go to step 2. In step 2 we now get A = {a(«)}(

so we add a(s) to M , and repeat step 2. Since now

M = {a(s)}, the only instance of a clause violated

by M is a(s) D d(s) (which we get by instantiating

X to s in clause 4)- So we add d(s) to M and get

M = {a(s),d(s)}. Since there are no more instances

of a clause violated by M , the algorithm will stop and

return M. Indeed, {a(s),d(s)} is a minimal Herbrand

model for the theory above.

The complexity of the EA for first-order HCF theories

can be analyzed using the same principles by which

the data complexity of a query language over a rela

tional database under some fixed semantics is defined

[Vardi, 1982].

A given safe first-order theory T can be divided into

two disjoint sets [Reiter, 1978]: the intentional com

ponent, which represents the reasoning component of

the theory, and the extensional component, which rep

resents the collection of facts in the theory. For our

purposes, the extensional part of a given theory T,

denoted Te, is the set of all clauses with an empty

body and grounded atoms only in the head, and the

intentional part of T, denoted T[, is simply T — Te.

For example, in the theory presented in example 3.3,

clauses 1 and 3 form the extensional component, and

clauses 2 and 4 form the intentional component. If we

analyze how the complexity of EA^ changes when we

fix T\ and vary Te, we discover the following:

Theorem 3.4 Using the algorithm EA?, a minimal

model of a safe first-order HCF theory T(Te) =

Ti\JTe can be found in time polynomial in the size

ofTE.

Note that this variation of the EA is not nondeter-

ministically complete, that is, there are some minimal

models that cannot be generated by this algorithm.
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model-check(T, M)

Input: A safe first-order positive HCF theory T, and a

Herbrand model M. Output: If M is a minimal

Herbrand model for T — YES, else — NO.

1. M' :=0.

2. Let A be the set of all instances of clauses in T vi

olated by M. If A ^ 0 return NO (* M is not a

model *).

3. Let A be the set of all instances of clauses in T vio

lated by M' such that for each 6 € A, \head(6,M)\

== 1. If A = 0, go to step 4.

Else, let X := \JS€A head(«, M); M' := M' + X;

repeat step 3.

4. If M == W return YES; else, return NO.

Figure 3: Model checking for safe first-order HCF the

ories

Consider, for example, the theory T = {aVc, 6Ac D a}.

Clearly, both {a} and {c} are minimal models of T,

but since {c} is a source of {a} in the dependency

graph of T, the model {c} will never be generated by

the algorithm in figure 2. Note, however, that both

the algorithm in figure 1, and the algorithm in figure

4 (Section 4.1) are nondeterministically complete and

that both have an execution that outputs {c}. We con

jecture that algorithm EA^ can generate any minimal

model that is also a minimal model of a stratified the

ory which is logically equivalent to the input theory.

3.2 Model checking

The algorithm model-check in figure 3 performs model

checking for safe first-order positive HCF theories.

Note that in contrast with the EA in figure 1 this

algorithm does not use the dependency graph of the

theory.

Theorem 3.5 (correctness) Given an HCF safe

theory T and a Herbrand model M , model-check(T, M)

will return YES iff M is a minimal Herbrand model of

T.

Again, by distingushing between the extensional and

intentional componenets of the theory, we can show

that algorithm model check is efficient.

Theorem 3.6 (complexity) Model checking for a

safe first-order HCF theory T(TE) = TE\JTj can be

done in time polynomial in the size ofTs-

4 Applications of the elimination

algorithm

4.1 Application to disjunctive

knowledgebases

In this section we will show that a variation of the EA

can be used to efficiently answer queries posed on dis

junctive knowledgebases. We will refer to a disjunctive

knowledgebase (DKB) as a finite set of rules of the form

Ci | C2 | ... | Cn*—Al,...,Am,notB1,...,notBk (5)

where all the A's, the B's, and the C's are atoms over

a first-order language with no function symbols. With

out loss of generality, we assume that all of the C's are

different. The symbol " | " is used instead of the clas

sical "V" in order to emphasize that here disjunction

is used in a slightly different manner than in classical

logic. The S's are called negative predicates, the A's

— positive predicates.

A DKB is a positive DKB iff lb = 0. A DKB will

be called safe if each of its rules is safe. A rule

is safe iff all the variables that appear in its head

or in negative predicates in its body appear also in

positive predicates in its body. So, for example,

the rule 6(X)<—not a(X) is not safe, while the rule

b(X)<—c(X), not a(X) is. In this section we restrict

our attention to safe DKBs. The dependency graph of

a DKB KB, denoted Gj(g, is defined similarly to that

of a theory: Each predicate name in KB is a node, and

there is an arc directed from a node A to a node C iff

there is a rule in KB in which A is a predicate name

in one of the Ai 's and C is a predicate name in one of

the Ci 's. Note that when we construct the dependency

graph, the B, 's in (5) are ignored. A Head-cycle-free

DKB (HDKB) is also defined in analogy to HCF theo

ries: a DKB KB is HCF iff there is no rule of the form

(5) in KB such that for some d and C,-, i £ j, Gr

contains a directed cycle involving the predicate name

of d and the predicate name of Cj .

Fact 4.1 Head-cycle freeness of a DKB of size n can

be checked in time 0(n2).

Following [Przymusinski, 1988], we define a stratified

DKB (SDKB) to be a DKB where it is possible to

partition the set S of predicate names into subsets

{So, ■ • • ,Sr], called strata, such that for each rule 6

of the form (5),

1. all the C's that appear in the head of 6 have the

same stratum index c,

2. the strata indexes associated with the A's are

smaller than or equal to c, and

3. the strata indexes associated with the B's are

strictly smaller than c.

So, each SDKB KB is associated with at least one

partition of its predicate names into strata. For every

feasible stratification {5o,. .,5r} of KB's predicate

names (r > 1), we can partition the rules of KB into

corresponding subsets {KBi, . . ., KBr) such that KBi

contains the rules having in their heads predicates that

are in the stratum 5,-. (We assume w.l.o.g. that So

contains the predicates not appearing in the head of

any rule.)

A model for a DKB is a subset M of its Herbrand
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EA*(KB)

Input: An SHDKB KB.

Output: A stable model for KB.

1. Partition KB into strata KB\, . . . , KBT.

2. M :- 0.

3. For i:=l to r, do:

(a) Let Aj be the set of all instances of rules

from KBi that are not satisfied by M.

(b) Eliminate all the negative literals from the

rules in A,.

(c) M' := EA(Ai U {P<— | P € M}).

If M' £ M, then set M := M' and goto

step 3 (a).

base15 having the property that, for every rule in the

grounded knowledgebase, if all the atoms in the body

of the rule belong to M , then at least one of the atoms

in the head of the rule belongs to M .

Several different semantics have been proposed

for DKBs [Przymusinski, 1988, Przymusinski, 1991,

C. Baral and Minker, 1991,

Gelfond and Lifschitz, 1991, Dix, 1992]. Notably, all

these semantics agree on identifying the minimal mod

els of a positive DKB to define its intended meaning.

The same holds for stratified knowledgebases: all the

semantics that handle SDKBs agree on identifying the

stable models of a SKDB as its intended meaning. In

tuitively, a model for a DKB is stable if it is minimal

and if you can prove each atom in the model using the

rules in the knowledgebase. Formally:

Definition 4.2 (stable model)

[Gelfond and Lifschitz, 1991]

Suppose KB is a variable-free DKB. If KB has no oc

currence of "not ", then the set of all its stable models

is the set of all its minimal models.

If "not " occurs in KB, then its stable models are de

fined as follows: for any subset S of the atoms in KB,

define KB? to be the DKB obtained from KB by delet

ing

1. all formulas of the form "not B" where B £ S

from the body of each rule and

2. each rule that has in its body a formula "not B"

for some B € S.

If S is one of the minimal models of KB5 (KBS has

no "not "), then we say that S is a stable model of

KB. To apply the definition to a DKB with variables,

we first have to replace each rule with its grounded

instances.

A DKB may have none or several stable models. We

claim that sometimes it is enough to compute only

one arbitrary stable model of a DKB. For example,

consider the following DKB KB that solves the 3-

colorability of a graph represented in an obvious way

by the relations vertex() and edge() (g, y, and r stands

for green, yellow, and red, respectively):

color(X,g) \ color(X,r) \ color(X,y)<—vertex(X)

ERROR*—edge(X, Y), color(X, Z), color(Y, Z)

color(X, r)<—vertex{X), ERROR

color(X, y)<—vertex(X), ERROR

color(X,g)<—vertex(X), ERROR

The reader can verify that the graph is not 3-colorable

iff every stable model of KB contains the atom ER

ROR, and if the graph is colorable, each of the stable

15 Roughly speaking, the Herbrand base of a knowledge

base is the set of all grounded atoms that can be formed

out of symbols appearing in the knowledgebase.

Figure 4: The elimination algorithm for SHDKBs

models of KB will encode a legal coloring of the graph.

Therefore, to solve the 3-colorability of a graph, it is

enough to compute an arbitrary stable model of KB.

The previous DKB is not HCF. Here is an example of

a HDKB:

Example 4.3 The CEO of a company decides that a

Christmas sweepstakes is to be held, with one prize of

10,000 dollars to be divided among the winners; the

only constraint is that no two winners be employed

by the same department. Each stable model of the

following stratified HDKB encodes a feasible outcome

of the sweepstakes, and therefore it is enough to con

sider one arbitrary stable model of the knowledgebase.

The knowledgebase assumes the existence of the 2-

place predicate inDep, where inDep(Z), X) is true iff

X works in department D16.

eliminate(X) \ eliminate'Y) <— inDep(D,X),

inDep(D,Y),

X±Y

candidate(X) <— inDep(D,X),

not eliminate(X)

win(X) | noWin(X) <— candidate(X)

In figure 4 we show an algorithm called EA*, which

computes one arbitrary stable model of a stratified

HDKB (denoted SHDKB). The basic idea is to par

tition the DKB according to its stratification and then

call the EA on each subset in the order implied by the

stratification.

Note that EA* calls the EA as a subroutine. In fact,

any other polynomial algorithm capable of computing

one minimal model of a propositional positive HCF

"In the full paper [Ben-Eliyahu and Palopoli, 1993] we

analyze in detail how this knowledgebase performs this

task.
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theory could be used in place of the EA without influ

encing any of the properties of EA*. As yet, however,

the EA is the only algorithm that we know of that can

perform this task in polynomial time on the entire class

of propositional positive HCF theories. Properties of

EA* are summarized next.

Theorem 4.4 Let KB be an SHDKB. Then:

1. (correctness) EA* generates a stable model of

KB.

2. (nondeterministic completeness) If M is a

stable model of KB, then there is an execution of

the EA* that outputs M.

Corollary 4.5 Let KB be a nondisjunctive stratified

knowledgebase. Then EA*(KB) yields the unique sta

ble model for KB.

The following example shows how the EA* works.

Example 4.6 Suppose that we have the following

stratified knowledgebase KB:

1. a(s) | b(s)<— 2. c(X)<—b(X), not a(X)

3. a(r)|6(r)«— I d(X) | e(X)—c(X)

Assume we adopt the following stratification: So = 0,

Si = {a, b}, S2 = {c,d,e}. At step 1 of the EA*, we

compute the rule stratification. In this case, KB\ con

sists of the first and third rules, and KB2 consists of

rules 2 and 4- After setting M = 0 (step 2), we start

the for loop in step 3. In step 3a, Ai is set to KB\, and

it is not changed after step 3b. In step 3c, we apply

the EA to Ai. Assume that EA(Ai) = {a(r),6(s)}.

Since we get M' ^ M, we set M to {a(r),b(s)} and

go to step 3a. Since now both rules in KB\ are sat

isfied by M , nothing is changed in steps 3b and 3c

and we repeat the for loop in step 3 with i = 2. In

step 3a, A2 is instantiated to {c(s)<—b(s)not a(s)}.

In step 3b, A2 is set to be {c(s)<—b(s)} (since a(s) is

not in M), and in step 3c, the EA is called to find a

minimal model of the theory {a(r), 6(s), c(s)«—b(s)}.

The EA will then return {a(r), 6(s), c(s)}, and since

M' ^ M we go to step Sa. A2 will be now set to

{d(s) I e(s)<—c(s)}, and it will not be changed in step

3b. In step 3c, the EA will be called with the the

ory {a(r), 6(s), c(s), d(s) | e(s)<—c(s)}, and suppose

that it will return {a(r), 6(s), c(s), d(s)}. Again, we

get that M' ^ M and will go to step 3a. This time,

A2 will be set to 0 in steps 3a and 3b and therefore

the algorithm will stop with M unchanged. Indeed,

{a(r), 6(s), c(s), d(s)} is a minimal model of KB. The

reader can verify that for every other minimal Her-

brand model of KB, there is an execution of EA* that

returns this model.

As in the case of first-order theories (Section 3), a

given SHDKB KB can be divided into two disjoint

sets [Reiter, 1978]: the intentional component, which

represents the reasoning component of the knowledge

base, and the extensional component, which represents

the collection of facts in the database. For our pur

poses, the extensional part of a given KDB KB, de

noted KBe, is the set of body-free rules such that all

the predicates that appear in the head are grounded,

and the intentional part of KB, denoted KBj, is sim

ply KB — KBe- If we analyze how the complexity of

the EA* changes when we fix KBj and vary KBe , we

discover the following:

Theorem 4.7 Using the EA*, a stable model of an

SHDKB KB(KBe) = KB^KBe can be found in time

polynomial in the size of KBe-

When applied to propositional SHDKBs, EA* is poly

nomial in the size of the entire knowledgebase:

Theorem 4.8 Using the EA*, a stable model of a

propositional SHDKB can be found in time 0(n2),

where n is the size of the knowledgebase.

4.2 Application to disjunctive default logic

Disjunctive default logic is a generalization of Reiter's

default logic introduced by [Gelfond et al., 1991] in or

der to overcome some of the difficulties that Reiter's

default logic has when dealing with disjunctive infor

mation. Gelfond et al. define a disjunctive default

theory as a set of disjunctive defaults. A disjunctive

default is an expression of the form

a: Pi,..., fin

7,|...|7m (6)

where a, B\,.. .,/?„, and 7i,...,7m are quantifier-

free formulas in some first-order language. Gelfond

et al. define an extension for a disjunctive default the

ory A to be one of the minimal deductively closed set

of sentences E' satisfying the condition17 that, for any

grounded instance of a default (6) from A, if a 6 E'

and ->8n £ E, then for some 1 < i < m,

H € E>.

Let us now consider the subset of disjunctive default

theories that we call disjunctive default programs. A

disjunctive default program (DDP) is a set of defaults

of the form

Ai A ... A Am : ->Bi,...,->Bk f_,

Ci\...\Cn (<)

in which each of the A's, the S's, and the C's is

an atom with no function symbols and n > 0. Each

such DDP A can be associated with a DKB KB& by

replacing each default of the form (7) with the rule

Ci|...|C„<—Ai,...,Am, not Bi, not Bk.

The following theorem implies that all the techniques

and complexity results established with respect to

DKBs also apply to DDPs.

Theorem 4.9 [Gelfond et al., 1991] Let A be a

DDP. The logical closure of E is an extension of A

iff E is a stable model of KB& .

Note the appearance of E in the condition.
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So, in particular, we can conclude that for the class of

DDPs computing an extension is

checking whether a set of atoms is an extension is co-

NP-hard, and deciding whether an atom belongs to

some extension is Sj-hard.

Let us call a DDP compleiely ordered iff its correspond

ing DKB is stratified and head-cycle free18. Then, us

ing the results in previous sections, we can identify

subclasses of DDPs that are more manageable than

the whole class of DDPs.

Theorem 4.10 Let A be a prepositional compleiely

ordered DDP, and let n be its size19. Then:

1. An extension for A can be found in time 0(n2).

2. We can check whether a set of atoms is an exten

sion of A in time 0(n2).

3. Deciding whether an atom belongs to some exten

sion of A is NP-complete.

Using the results of [Ben-Eliyahu and Dechter, 1992],

one can easily show that each completely ordered DDP

A corresponds to a default theory A' in the sense of

Reiter, such that E is an extension of A iff it is an

extension of A'. Using this observation, we show in

the full paper how theorem 4.10 leads to the discovery

of tractable subsets of Reiter's default theories.

The results of this paper can also be extended to deal

with first-order disjunctive default theories, using the

same principles by which the EA for CNF proposi-

tional theories was generalized to deal with first-order

theories.

5 Expressive power of stratified

knowledgebases

Since we can compute a stable model of an SHDKB in

polynomial time, it is clear that unless we discover that

P — NP, we cannot encode either NP-hard or co-NP-

hard problems in an SHDKB in such a way that any

stable model of the SHDKB will provide a solution

to the problem. Nevertheless, we will show in this

section that the class of SHDKBs (under stable model

semantics) is quite expressive. We believe that this

indicates that the class of HCF theories identified in

Sections 2 and 3 are a significant subclass of all CNF

theories.

The expressive power of logic languages has been given

a lot of attention in database theory recently (see

[Abiteboul and Vianu, 1992] for a survey). Follow

ing the database theory approach, we define a (non-

deterministic) query to be a generic transformation

from an input database to a set of output relations,

each of which denotes a possible outcome of the query

on the database. For the sake of this exposition, we

18In the full paper we define "completely ordered" DDPs

directly, i. e. , without first mapping them to their corre

sponding knowledgebases.

19We measure the size of a DDP by the number of sym

bols it contains.

will assume that a database is a relational database

that can be viewed as a knowledgebase in an obvious

way (i. e. , each relation is a predicate name, and each

tuple (ci,...,c„) in the relation P is represented by

a body-free rule P{c\, . . .,cn)<—). We can also con

versely look at a set of atoms as denoting a relational

database, in the obvious way.

A knowledgebase can be viewed as a mapping of an

input database into a set of output databases. Given

an input database DB and a knowledgebase KB, the

set of output databases is defined (under the stable

model semantics) to be the set of all stable mod

els of KB\JDB. Viewing the knowledgebase as such

a mapping, we shall say that an SHDKB KB ex

presses a query Q (under the stable model seman

tics) iff, for every database DB, (R G Q(DB))

(3M stable model of DB\JKB such that R € M). We

shall say that an SHDKB KB weakly expresses

a query Q (under the stable model semantics)

iff, for every database DB, (R £ Q(DB)) =►

(3M stable model of DB\JKB such that R 6 M).

Less formally, we will say that an SHDKB KB (resp.

weakly) expresses a query Q under the stable model

semantics iff for every database DB, every (resp. some)

stable model(s) of KB\JDB encodes a possible result

of the query, and, conversely, each possible result of

the query is encoded in some stable model.

Stratified knowledgebases (under the stable model

semantics) are capable of expressing all polyno

mial time computable queries if a total ordering

of the domain (the set of all constants in the

input database) is provided [Papadimitriou, 1985,

Ben-Eliyahu and Palopoli, 1994]. So, in the case

where this ordering is available, SHDKB's under sta

ble model semantics would express all polynomial time

queries, since the class of SHDKBs is a superset of

the class of stratified knowledgebases. However, it

is known that stratified knowledgebases are not ex

pressive enough to "construct" an ordering on the do

main if the ordering is not available. We leave it open

whether SHDKBs are expressive enough to construct

such an ordering. In the full paper we show that

any polynomial time query can be weakly expressed

by an SHDKB under the stable model semantics20.

The above discussion is summarized in the following

theorem:

Theorem 5.1

J. For every polynomial time computable query Q

there exists an SHDKB KB that weakly ex

presses Q under the stable model semantics.

2. For every polynomial time computable query Q

over an input database with an ordered domain,

20The proof is based on simulating the well-known

witness operator [Abiteboul and Vianu, 1992] using an

SHDKB.
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there exists an SHDKB KB thai expresses Q un

der the stable model semantics.

6 Related work

The class of head-cycle-free DKBs was introduced by

[Ben-Eliyahu and Dechter, 1992], where it was shown

that queries on propositional HDKBs can be answered

by solving the classical satisfiability problem. Cadoli

[Cadoli, 1992, Cadoli, 1991] has described a partition

of the set of propositional theories into classes for

which model rinding and model checking is tractable

or NP-hard. His partition is based on considering the

set of logical relations that correspond to the theory,

and it is not clear whether these tractable classes can

be identified effectively. Other efficient algorithms for

finding minimal models of propositional CNF theories

can be found in [Ben-Eliyahu and Dechter, 1993]. The

expressive power of the tractable subsets identified in

both of the above works was not analyzed yet.

7 Conclusion

The task of computing minimal models is of interest to

the AI community as well as to the logic programming

community. In circumscription, default logic, diagno

sis, and commonsense reasoning in general, the task

of computing minimal models has been proven to be

crucial to speeding up the reasoning process.

In this paper we have introduced the elimination al

gorithm, which performs in polynomial time minimal

model finding and minimal model checking for a sig

nificant subclass of CNF theories. We have demon

strated how variations of the elimination algorithm can

be applied for answering queries posed on disjunctive

knowledgebases and disjunctive default theories in an

efficient way, and we have shown that the tractable

classes identified in this paper are quite expressive.

It has been argued that sometimes it is useful to use

a "vivid" form of the knowledge in order to perform

deductions rapidly, where a vivid form of a theory

would be some data structure in which the informa

tion is stored in a way that enables fast answers to

commonly asked queries [Levesque, 1986]. One ap

pealing idea, suggested by [Halpern and Vardi, 1991],

[Papadimitriou, 1991], and others, is that a vivid

form of a theory need only be a model of the the

ory. In this case, deduction can be replaced by

model checking, which is often the much easier task.

Since a theory might have an exponential number

of models, only the models that "best" represent

the theory, namely, the models that are the clos

est to the real world, should be selected. One ap

proach, adopted in circumscription, for example, is

to select the minimal models of a theory as its vivid

form. We argue, as do others [Giannotti et al., 1991,

Sacca and Zaniolo, 1990, Abiteboul et al., 1990], that

sometimes even only one arbitrary minimal model of

a theory can be used for fast query answering. The

work presented here is a step toward efficient imple

mentation of such ideas.

Appendix

A Proofs

First, we need to present some definitions and known

theorems.

Following [Ben-Eliyahu and Dechter, 1992], we define

a proof of an atom to be a sequence of clauses that can

be used to derive the atom from the theory. Formally,

an atom A has a proof w.r.t. a set of atoms M and

a theory T iff there is a sequence of clauses 6i,...,6„

from T such that

1. for each clause 6i, one and only one of the atoms

that appear in its head belongs to M (this atom

will be denoted />m(^i))>

2. A = hM(6n),

3. the body of each is satisfied by M, and

4. 6\ has an empty body and, for each t > 1, each

atom that appears positive in the body of 5, is

equal to h\f(6j) for some 1 < j < i.

The following theorem, by Ben-Eliyahu and Dechter,

will be used to prove the correctness of the elimination

algorithm:

Theorem A.l [Ben-Eliyahu and Dechter, 1992] A

set of atoms M is a minimal model of an HCF the

ory Tiff

1. M satisfies each clause in T, and

2. for each atom A in M, there is a proof of A w.r.t

T and M.

Proof of Theorem 2.2

First, we prove the following Lemma:

Lemma A.2 The following invariants hold through

out the execution of the algorithm EA:

1. Every atom in M' has a proof w.r.t M' and T.

2. For each clause violated by M', there is an atom

in its head that belongs to M .

It is easy to observe that claim no. 1 holds - we start

the algorithm with M' = 0 and whenever we add an

atom A to M' it is the case that there is a clause 6

in T such that all the atoms in the body of 6 belong

to M' and A is the only atom in the head of 6 which

belong to M[jM'. Atoms are added to M' only if they

belong to M . Therefore, we conclude each atom in M'

there is a proof w.r.t T and A/'.

Claim no. 2 sure holds when we finish step 1 of the

algorithm, because M is a model of T. Now we will

show that if the claim holds just before we execute

the command "M := M — X" in steps 2 and 3 , it

holds after we execute this command. Suppose we have
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executed the command M := M —X in step 2. Divide

the group of clauses violated by M' before executing

the command into two groups: in group A there are

all the clauses violated by M' which have and atom

from X in their head. In group B there are clauses

violated by M' which do not have an atom from X in

their head. Since just before executing the command

M := M-X in step 2 we did M' := M' + X, group A

must be empty. Since before executing M :— M — X

for each clause in group B there was an atom in its

head that belonged to M, also after executing M :=

M —X it must be the case that for each atom in group

B there was an atom in its head that belongs to M .

Now, suppose we execute the command M := M — X

in step 3. Note that before executing this command it

is the case that all the clauses in A, the set of all clauses

violated by M , has at least two atoms that belong to

M. Now, it cannot be the case that there are two

atoms from the head of the same clause that belong to

X, because T is head-cycle-free and all the atoms in X

are in the same strongly connected component in the

dependency graph of T. So it must be the case that

after executing the command M := M — X in step 3

claim no. 2 holds.

Now to the proof of theorem 2.2:

It is easy to see that the elimination algorithm termi

nates. It is enough to show then that when the al

gorithm terminates, M' is a minimal model of T. By

Theorem A.l, it is enough to show that when the EA

terminates,

1. M' is a model, and

2. every atom in M' has a proof w.r.t M' and T.

We proved in Lemma A.2 that (2) holds. In view of

Lemma A.2 (2), it is easy to see that (1) holds as well.

Hence, M' is a minimal model of T. □
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Abstract

I present a method for reasoning about spa

tial relationships on the basis of entailments

in propositional logic. Formalisms for rep

resenting topological and other spatial in

formation (e.g. [2] [10] [11]) have gener

ally employed the lst-order predicate cal

culus. Whilst this language is much more

expressive than 0-order (propositional) cal

culi it is correspondingly harder to reason

with. Hence, by encoding spatial relation

ships in a propositional representation auto

mated reasoning becomes more effective. I

specify representations in both classical and

intuitionistic propositional logic, which — to

gether with well-defined meta-level reasoning

algorithms — provide for efficient reasoning

about a large class of spatial relations.

1 INTRODUCTION

This work has developed out of research done by Ran-

dell, Cui and Cohn (henceforth RCC) on formalising

spatial and temporal concepts used in describing phys

ical situations [11]. A set of classical lst-order logic

axioms has been formulated in which a large num

ber of spatial and temporal relations can be defined

[10]. One problem with this formalism is that com

puting inferences in the theory is far from easy — see

e.g. [12]. Of course one can use any general purpose

lst-order theorem prover, but the complexity of the

theory means that for many significant problems this

approach is impractical.

In this paper I present an alternative approach to the

logical representation of spatial relationships. Whilst

the system of relations that are represented is essen

tially the same as that identified by the RCC work,

the way in which they are represented is substantially

different. Rather than using lst-order logic, spatial re

lations are encoded into purely propositional formulae

together with certain meta-level constraints concern

ing entailments between these formulae. I show first

how a limited set of relations can be defined by means

of classical propositional logic and then show how by

using intuitionistic logic a more expressive representa

tion is obtained.

The main motivation for using this alternative ap

proach is that automated reasoning becomes far more

efficient. In fact, given a finite set of spatial rela

tionships characterisable in the propositional repre

sentation, there is an effective procedure for deciding

whether this set describes a possible situation.

This paper can be regarded as a response to the chal

lenge laid down in [12] (Computing Transitivity Tables:

a challenge for automated theorem provers). However

the approach taken is quite different from that envis

aged in [12] in that, rather than enhancing or adapting

a lst-order theorem prover to suit the domain of spa

tial reasoning, a substantially different logical system

is used to reason about this domain.

Since the taxonomy of spatial relations which I rep

resent is identical to a family of relations dealt with

in the RCC work, I use the same names to refer to

these relations. Figure 1 gives 2-dimensional examples

of the set of 8 jointly exhaustive and pairwise-disjoint

relations which forms the basis of a lattice of topolog

ical relations definable in the RCC formalism (see [10]

for more details) .

0 0©©

DC(A, B) EC(A,B) TPP(A,B) TPP~'(A,B)

 

PO(A,B) EQ(A,B) NTPP(A.B) NTPP-'(/l, B)

Figure 1: Basic Relations in the RCC Theory
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1.1 PRELIMINARY DEFINITIONS

We shall need some precise terminology for referring

to topological relationships and expressions describing

those relationships:

• A space is a non-empty set. (In the intended in

terpretation the space will be the set of points

constituting Cartesian 3 dimensional space.)1

• A situation is a triple (U , E, /) , where U is a space,

E is a set of constant symbols and / is an assign

ment function which maps each constant in E to

a subset of U.

• A situation-description is a triple (£, E, 0), where

£ is a logical language whose vocabulary includes

the constant symbols E and whose semantics in

terprets these symbols as denoting sets; 0 is a

theory expressed in £.

• A situation (U , E, /) exemplifies a situation-

description (£, E, 0) iff the assignment / of sub

sets of U to the constants E (together with some

auxiliary assignment to any non-logical symbols

of £ occurring in 0 but not in E) satisfies 0 ac

cording to the semantics of £. 2

• A situation-description (£,E,0) is impossible iff

it is not exemplified by any situation (U , E, /).

2 TOPOLOGICAL

INTERPRETATION OF

PROPOSITIONAL LOGIC

There is a close connection between classical proposi-

tional calculus, which I shall refer to as Co, and set

theory [8, pl4]. The simplest semantics for Co is to

take propositions as denoting truth values and to cor

relate the connectives with truth functions. However,

if we interpret propositional letters as denoting arbi

trary subsets of some universal set U and the connec

tives -i, A and V respectively as the set operations

complement, intersection and union then the classical

tautologies will be those formulae whose value is U

whatever the assignment of set values to propositional

letters. To give content to this interpretation one can

regard U as a set of all possible worlds. Then propo

sitional letters denote the set of worlds in which they

are true.

'We shall later adopt a richer notion of space: what

mathematicians call a topological space. This is a pair

where t is a function which maps subsets of U to

their interiors.

2This exemplification relation is very similar to but

slightly more general than the usual satisfaction relation

between models and theories. It allows one to speak of

models as satisfying (exemplifying) descriptions given in a

number of different formal languages.

This semantics can be formally characterised as fol

lows: a model for the logic Co is a structure, {U,V, d),

where U is a non-empty set, V is a denumerably in

finite set of propositional constants, and d is a deno

tation function which assigns to each constant in V

a subset of U. The domain of d is extended to all

Co formulae formed from the propositional constants

by stipulating that:

1. d^P) = dJP)

2. d{P A Q) = d(P) n d(Q)

3. d{P V Q) = d{P) U d(Q)

where for any set S, S is the set of all elements of U

which are not elements of S.

Intuitively, tautologous formulae ought to be true in

any possible world; and indeed it can be shown that

F is a theorem of Co if and only if d(F) = U in all

models.

This interpretation induces a simple correspondence

between propositional formulae and set-terms — i.e.

terms comprised of set-constants combined with the

operations: union, intersection and complement. I

use the notation c<r^ST to refer to the mapping be

tween propositional formulae and set^terms; thus we

can write e.g. (P V ->Q) Co—ST (PuQ)-

I now introduce some further notation in order to state

the theorem which provides the foundation for my rea

soning system.

• A universal set-equation is an expression of the

form 4> = U which asserts that the set-term <t>

denotes the set of all elements in the universe..

• Pi,...,Pn ^co Pq means that in the calculus,

Co , the formula Pq is entailed by the set of formu

lae, {Pi, . . ., Pn}. (Thus ^c<> P means that P is

a theorem of Co .)

• Ei,...,E„ \=s Eo, where Eq, . . . , En are set-

equation, means that in any model for which

the equations E\,...,E„ hold, the equation Eo

also holds. (^=5 E means that E holds in every

model.)

It can then be shown that:

Theorem 1 Ply...,Pn \=Co Po

if and only if n\ = U, . . . , irn = U ^=s *o — U,

where Pi c^ST f« for each i.

I first establish that:

Lemma 1 // \=c0 P then t= U , where

Pc^ST t.

Proof: If P is a tautology then if it is converted

to conjunctive normal form (CNF) each conjunct will
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Table 1: Definitions of Four Topological Relations in Co

Relation Description Set Equation Model Constraint

DR(X,Y)

P(X,Y)

X and y are discrete xnY = u -(X A Y)

X^Y

Y -+X

X Y

X is part of Y XUY=U

XUY=U

(X UY)n{XUY)=U

Y is part of X

EQ(X,Y) X and y are equal

contain a pair of complementary literals (L and ~*L).

Set-terms can also be converted to an analogous nor

mal form, intersection normal form (INF): by means

of simple re-write rules any set-term can be expressed

as an intersection of unions of set-constants and their

complements.

If a set-term corresponds to a tautological proposition

then when expressed in INF each union in the expres

sion must contain some pair, r and r, of a set constant

and its complement. So whatever the assignment to

the set constants each union and hence the intersec

tion of these unions will have the value U. This ensures

that lemma 1 must hold. □

I now return to the proof of theorem 1.

Proof: If Pi,...,Pn ^co Po then the formula

(Pi A ... AP„)4 Pp must be a tautology; hence, by

lemma 1, the equation t% fl . . . O tn U <o= W must hold.

But in any model satisfying ti =£/,...,<„ — U one

must have t\ n . . . n tn = 0. Therefore to = U.

On the other hand suppose P\,...,Pn )fcc<> Po', this

means that there is some truth-functional assignment,

/, under which P\,.. .,Pn are all true whilst Po is

false. Given such an assignment we construct a set

assignment, s, such that s(P)= U if f(P) —true and

s(P) = 0 if f(P) =false. Clearly, the values of com

plex set-terms under s will correspond directly with

the truth values of the associated propositions under /.

Hence s is an assignment such that t% = U, . . . , tn = U

and t0 = 0. So fi = U, ...,<„ = U £s t0=U.D

This correspondence theorem allows us to use classical

propositional formulae to reason about universal set-

equations.

2.1 FROM POSSIBLE WORLDS TO

SPATIAL CONSTRAINTS

The basis of the topological representation system pre

sented below is to exploit this semantics of proposi

tional logic in terms of sets; but rather than taking U

to be a set of possible worlds, U will be interpreted as

a space of points and propositional letters will thus be

interpreted as referring to regions within that space.

A universal set-equation can be regarded as a con

straint on possible models — i.e. possible assignments

of subsets of U to set-constants. If the set-constants

denote regions, this allows one to specify relationships

between these regions. For example the constraint

A U B= U will be satisfied by all and only those mod

els in which set A is a subset of set B — i.e. region

A is part of region B. In terms of Co this constraint

could be represented by the formula ->A V B (or equiv

alent^ A -t B). Thus, if Cute refers to the language

whose expressions are all universal set-equations, a set

of these equations can form the 0 component of a

situation-description, (Cuse, E, 0).

3 DEFINING TOPOLOGICAL

RELATIONS

The basic method is as follows: certain constraints as

sociated with topological relationships are represented

by propositional formulae; further constraints are then

added at the meta-level in terms of restrictions on en

tailments of these formulae. A topological relation

is thus defined by a set of formula called model con

straints together with a further set of formulae called

entailment constraints. A situation involving a num

ber of topological relations is possible if and only if the

set of model-constraints associated with all of the rela

tions does not entail any of the entailment constraint

formulae.

3.1 MODEL CONSTRAINTS

Suppose we have a situation in which a region A is

part of another region B. Then the union of B with

the complement of A must fill the entire space, U .

This can be represented by the set equation AL)B= U .

Hence because of the correspondence with Co we can

represent this as ->A V B (or equivalently A —> B).

This formula is the model constraint associated with

the situation A is part of B since in any model A —► B

denotes U if and only if A is part of B.

By means of such formulae four topological relations

can be defined as shown in table 1. The relations de

fined here strictly correspond to the RCC relations

of the same names only if we constrain all proposi

tional letters to denote non-null regions. This rules

out pathological cases such as where X is part of Y

and X and Y are also discrete, which is only possi
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ble if X is null. More will be said about null regions

below.

3.2 ENTAILMENT CONSTRAINTS

As it stands, our representation is very limited: many

simple spatial relations cannot be denned solely by

means of universal set-equations specifying model con

straints. For example the relation PP(X, Y), X is

a proper part of Y cannot be so expressed. Never

theless, informally this relation can be defined quite

straightforwardly as that relation which holds when

ever P(X,Y) is true but not EQ(X,Y). So it would

seem that we can characterise the proper part rela

tion if we can find a way to represent the absence of a

relation which we can already define.

We must now ask how the negations of Co model con

straints should be represented. Take for example

->P(X,Y) (X is not part of Y). Suppose we simply

negate the model-constraint corresponding to P(X, Y);

we would then get —> Y). But this formula corre

sponds to the set equation X U Y= U or equivalently

X f"l Y= U ; and this will only hold when X= U and

Y = 0. So we see that the negation of a model-

constraint formula does not correspond to the absence

of the relation enforced by that constraint.

In terms of sets, what we really wanted to represent

was X U V ^ It which is the direct negation of the

set equation for P(X, Y). But negating the formula in

the prepositional representation does not give us this

because such a negation is interpreted as a complement

operation on the set-term rather than a negation of the

whole equation. This means that the absence of the

relations defined so far cannot be represented directly

as model-constraints.

We need to increase the expressive capabilities of our

representation language so we can represent situations

in which we specify not only that a number of universal

set-equations hold but also that certain such equations

do not hold. Thus, we employ the language £„»ei of

universal set-equations and inequalities. A situation-

description in this language is a structure (£UJe,-, E, 0)

where 0 is a set of universal set-equations and inequal

ities which are negations of universal set-equations.

Such a situation description can be represented by a

pair (M , £) where M and £ are sets of Co formulae

obtained respectively from the set-terms involved in

the set-equations and inequalities in 0 according to

Ctr±ST. The language consisting of pairs of sets of

Co formulae will be called Cq .

3.3 CONSISTENCY OF Cjf SITUATION

DESCRIPTIONS

What we now need is a method of determining from a

pair of formula sets, (M,£), whether the correspond

ing situation-description, (£„,,.,, E, 0), is possible.

Suppose 0 is a set {mi = U,...,mj = U, t\ ^

W,...,e* ^ U} then 0 describes an impossible situ

ation if and only if the following entailment holds:

mi = U, . . . , mj = U f=s ei = U V ... V ek=U

The r.h.s. is a disjunction of set-equations and as such

cannot be translated into a union at the level of set-

terms (just as negating a set equation is not equivalent

to applying the complement operation to its set term).

However, it can be established that in the domain of

sets, entailments of this kind are convex 3 in the sense

of [9]. A class of entailments is convex iff whenever

r \= <t>\ V. . . V <j>n then r ^ (/>,-, for some t in 1 ... n.

Consider the entailment associated with the impos

sibility of 0. Suppose none of the disjuncts on the

r.h.s. are entailed by the equations on the l.h.s.. This

means that for each disjunct e,= i/ there is a model,

(Ui,V,di) in which it is false whilst all the l.h.s. equa

tions are true. We can assume that the universes for

each of these models are disjoint. We now construct

a new model, (U»,V,d,), such that U* = (J, W. an(I

d.(X) = U^d^X). The Hi's thus form discrete sub-

spaces oiU*. A consideration of this new model will

reveal that it provides a counter-example to the en

tailment, since it must satisfy all the l.h.s. equations

whilst making each of the disjuncts on the r.h.s. false.

Thus the r.h.s. will be entailed if and only if at least

one of the disjuncts is individually entailed. So for

each e, we need to check whether

mi = U, . . . , rrij = U ^5 e,- = U

Thus, because of the equivalence between ^5 and en

tailment between corresponding Co formulae given by

Theorem 1, we have the following:

Theorem 2 A Cq representation {M,£) corresponds

to a possible situation description (specified in Cutei)

if and only if there is no formula F € £ such that

M \=coF.

This theorem should make clear why the formulae in

the set £ are called entailment constraints.

3.4 THE RCC RELATIONS DEFINED

We can now give Cq representations for a significant

sub-class of the RCC relations. Let us first look at

how the situation type "A is a proper part of B" is

represented. We can say that PP(^4, B) holds when A

is part of B but the two regions are not equal. This

gives us the equality A U B = U and the inequality

(A U B) ("I (.4 U B) ^ U. Also as noted above, to rule

out cases where either A or B is the null set, we also

need A ^ U and B ^ U. Equalities are encoded as

3 Note that later in the paper I use the term convex with

its ordinary sense, as a property of the surface of a region.

Hopefully this will not cause too much confusion.
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Table 2: A Five Relation Basis Defined in C$

Relation Model Constraint Entailment Constraints

DR(X,Y)

PO{X,Y)

PP(X,Y)

-(X A Y) -JC, ny

^ v ->y, i -+ y, y -4 -Of, -.y

y x, -x, -.y

x -> y, -x, -.y

-.x, -.y

pp-^x.y)

x -+y

y -* x

EQ(X,Y) X Y

model-constraints and inequalities as entailment con

straints so our propositional representation for the re

lation PP(A, B) is the pair

({A->B}t{A**Bt-A,-*B}).

The Cq" representation allows us to define five jointly

exhaustive and pairwise disjoint topological relations

from the RCC lattice of spatial relations. The defini

tions are shown in table 2.

The model constraint associated with a relation is the

strongest formula which holds in all models in which

the relation holds. The entailment constraints serve

to exclude cases which, although consistent with the

model constraint are incompatible with the relation.

Thus the entailment constraints correspond to model

constraints of other relations (plus the non-null con

straints). The relation PO has no model constraint

and is defined by excluding all of the other relations.

Certain entailment constraints which one might expect

to be required can be eliminated or weakened because

they are indirectly captured by other constraints. For

example, in table 2 the entailment constraint A f» B,

which occurred in the representation of PP worked

out above, is replaced by the weaker formula B —¥ A,

since in the presence of the model constraint A —¥ B,

B —t A would immediately entail A B.

4 REASONING WITH C+

By making use of the results obtained so far one can

use a Co theorem prover as the basis of an effective

automated spatial reasoning system. For clarity I con

cisely summarise the consistency checking algorithm

for Cq . Given a situation description consisting of a

set of relations of the form R(a, /?), where R is one of

the relations characterisable in Cq , and a and /? are

constants denoting regions, the following simple algo

rithm will decide whether the description describes a

possible situation:

• For each relation il,(a,-, /?,•) in the situation de

scription find the corresponding propositional rep

resentation (Mi, Si).

• Construct the overall Cq representation

(UiM, Uft).

• For each formula F G Ui ft use a classical propo

sitional theorem prover to determine whether the

entailment (Jt- Mi (=c« F holds.

• If any of the entailments determined in the last

step does hold then the situation is impossible.

For example we may want to know whether the fol

lowing situation is possible: A, is a proper part of B;

B is disjoint with C; and, A is a proper part of C.

The Cq representations of the three spatial relations

are respectively:

UA^B},{B-> A, -iA, -.£}>,

(HflAC)},H,nC}),

({A^C},{C->A,^A,^C}).

So the overall Cq representation is

({4 -> B, -i(J3 A C),A -> C},

{B -> A,C -* A,-.A,-rB,-C}).

We determine that this situation is impossible since

A -> B, -.(£ AC), A->C \=Co ~*A.

4.1 DETERMINING ENTAILMENTS

Computing inconsistency of situations is a special case

of determining entailments between situation descrip

tions characterisable in Cq . To refer to such an entail

ment, I shall use the notation (M,£) ^=c+ (M',£').

We can express the meaning of this as an entailment

between set-equations corresponding to the formulae

in the Cq representation:

mi= U A ... A mh= U A ex / U A . . . A e, ^ U

N

mi= U A ... A m}= U A e\ ^ U A . . . A e'k ^ U

If we then bring the r.h.s. over to the left and move

the resulting negation inwards we get:

m1= U A ... A mh= U A ei ^ U A . . . A e,- ^ U A

(mi ±U V...Vmjjt« V e[=U V...V e'k=U) \=s

To show the validity of this we must show that

whichever of the equations in the disjunction is cho

sen the resulting equation set is inconsistent. This is

equivalent to showing that:

for all p G M' we have (M , £ U {p}) (=c+

and for all q G £' we have (M U {q}, £) \=c+
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Table 3: Composition table for the 5 relation basis

DR PO EQ PP PP"1

DR * DR V PO v PP DR DR v PO v PP DR

PO DR v PO v PP"1 * PO PO V PP DR V PO V PP-1

EQ DR PO EQ PP PP"1

PP DR DR v PO v PP PP PP *

PP-1 DR v PO v PP"1 PO V PP"1 PP"1 0
pp-i

Another equivalent way of expressing these which is

more convenient from the point of view of actually

calculating the entailments is the following:

Theorem 3 (M,£) \=c+ (M',€') iff

either (M,£) \=c+

or ( for all p G M' : (M,{p})\=c}

and for all q £ £' : (MU {q}, £) (=c+ ;

Determining the validity of a Cq entailment has thus

been reduced to determining the impossibility of cer

tain situation descriptions derived from the constraints

involved; and we already know that a description is im

possible iff one of its entailment constraints is entailed

by its model constraints.

4.2 COMPUTING LOCI OF

COMPOSITION

Given a particular theory 0 supporting a set B of

mutually exhaustive and pairwise disjoint dyadic re

lations (a basis set), for each pair of relations Ri and

R.2 taken from B, the locus of composition 4 of Ri and

i?2, Comp(R\, R2), is the disjunction of all relations #3

in B, such that, for arbitrary individual constants a,

b, c, the formula Ri(a,b) A R2(b,c) A Rz(a,c) is con

sistent with 0. In other words Comp(Ri, R2) is the

disjunction of all possible base relations which could

hold between a and c. Computing loci of composition

for spatial relations is the "challenge for automated

theorem provers" proposed in [12].

By using the consistency algorithm described above,

the Cq representation enables loci of composition

for spatial relations to be computed very efficiently.

What is here called the locus of composition is the

same as what in [12] was referred to as the 'transitive

closure' of two base relations. This terminology derives

from Allen's 'transitivity table' for temporal intervals [1].

However, 'transitive closure' already has a meaning differ

ent from what is intended here, so a new term is required

to avoid potential confusion. In describing the more gen

eral problem of determining possible values of unknown

relations in the context of a partial situation description I

have adopted the phrase 'locus of an unspecified relation'.

The 'locus of composition' is a special case of such a locus.

Given R\ and R2, which are members of some ba

sis set B, one simply checks for all values of R3

taken from B, whether the situation described by

Ri(a,b), R2(b,c), i?3(a, c) is possible. Table 3 gives

the loci of composition for the 5 relation basis

{DR, PO, PP, PP-1, EQ}. The symbol V stands for

the disjunction of all 5 relations. This table was com

puted in under 6.7 seconds on a Sparc 1 workstation.

5 MORE EXPRESSIVENESS WITH

INTUITIONISTIC LOGIC

In his paper "Sentential Calculus and Topology" [13]

Tarski has shown that the intuitionist propositional

calculus (henceforth Xq ) can be given an interpreta

tion in which propositional letters correspond to open

sets within a topological space.

The spatial interpretation of intuitionistic logic re

quires a richer notion of a space than the classical.

Specifically, whereas before a space was simply a set

of elements, a space is now a set of elements for which

the notions of interior and closure are defined for each

subset of spatial elements.

A topological space can be described by a structure

(U,i), where U is an arbitrary set of elements whose

topology is defined by a function i which maps each

subset of U to another subset of U, its interior, i must

satisfy certain well known axioms (see e.g. [6, p. 129]).

The closure of a set c(X) is defined as equivalent to

5.1 INTERPRETATION OF 10

The topological interpretation of Iq is very similar to

the interpretation of Co given above. Again proposi

tional formulae will denote subsets of a space, although

admissible subsets will be limited to those which are

open under the topology of the space. A set X is open

if and only if i(X) = X.

A model for Tq is a structure (U, i, V, d), where U is a

non-empty set, i is a function satisfying the appropri

ate axioms, which maps subsets of U to their interiors,

V is a denumerably infinite set of propositional con

stants, and d is a denotation function which assigns to
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each constant in V an open subset of U. The domain

of d is extended to all To formulae formed from these

variables by stipulating that:

1. d(~P) = i(5(P))5

2. d{P A Q) = d(P) n d(Q)

3. d(P V Q) = d(P) U <f(Q)

4. t/(P=>Q) = i(d(P)U<i(Q))

where for any set 5, 5 is the set of all elements of U

which are not elements of S.

Just as for the classical logic we can consider the topo

logical interpretation of To as associating each intu-

itionistic formula with a set-term; but set-terms may

now contain the interior operator. I refer to the map

ping between To formulae and set-terms induced by

this interpretation with the notation ij=*ST.

Tarski's "Second Principal Theorem" [13, p.448] es

tablishes that a propositional formula is a theorem of

lo if and only if the corresponding set-term has the

value U in any topological space under any assignment

of open sets to the set constants occurring in the term.

The proof of this is fairly involved and is not recon

structed. I use the notation '(-/„' to denote entailment

in lo and '^t' to denote topological entailment — i.e.

entailment between set-equations which may contain

the interior operator, t. Tarski's theorem can then be

written formally as:

Theorem 4 h/0 P if and only if \=t x= U ,

where P /d^ST n. 6

In using To to represent spatial relations we shall ex

ploit very similar correspondence relations to those

holding between the Co and the Boolean algebra of

sets. In order to secure the correspondence between

entailment in To and entailment between set equations

in the topological algebra of sets, we need to gener

alise Tarski's result to a correspondence between en

tailments:

Theorem 5 Px , . . . , P„ \-Io P0

if and only if Ky= U , . . . , n„= U *"o= U

Proof: The positive half is simple:

An Jo entailment Pi,...,P„ r-/0 P0 holds iff h/0

(Pi A . . . A P„ ) => Po , so by Theorem 4 we have

5Under this interpretation one can see why the law of

excluded middle fails_in intuitionistic logic. A V ~ A is

interpreted as A U t( A ). But the union of A with its ex

terior, t( A ), does not exhaust the space, since the points

in c(A) — A, the boundary of A, are neither included in A

nor its exterior.

6This theorem holds for any topology whatsoever.

Adding conditions to the topology would mean the cor

responding logic would be stronger. The limiting case is

the discrete topology corresponding to classical logic.

^=T n . . . fl 7T„ U 7To)= U . But if a set has Was

its interior then it must be equal to U, so the equa

tion (ttj D . . . D 7rnU7r0)= U must hold in every model.

Thus whenever jr,= U for t = 1 . . .n we must also have

7T0 = U — in other words x\= U , . . . , irn= U \=-t ""0 =

U.

Suppose on the other hand P\, . . . , Pn l//0 P0. Theo

rem 4 gives us Y^T i(7ri D . . . D tt„ U 7r0) = U, which

means that there is some model, M = (U,i,V,d), in

which there is at least one element of ir\ l~l . . . n nn

which is not an element of jto. On the basis of this

model we now construct a model M! = (U' , »' ,V , d')

whose universe, U' is the set denoted by ttj fl . . . fl n„

in M. We set i'(X) = i(X) for all X C U' and for

all propositional constants P, we set d'(Pi) = d(Pi) fl

U' . The interpretations of the logical operators given

above will ensure that for all formulae F, d'(F) =

d(F)r\W.

Thus in particular for each i — 1 . . . n, d'(Pi) = d(P,)D

U' = iTiDU' = U'; i.e. in the new model all antecedent

formulae denote the universe. We also have d'(Po) —

d(Po)r\W = tto^W . Furthermore, we know that there

is at least one element of U' which is not an element

of tt0. This means that d'(Po) / I/1; so M' provides

a counter-example to the entailment. This concludes

the proof of theorem 5. □

5.2 To REPRESENTATION OF RCC

RELATIONS

We can now translate the topological relations defined

by lst-order logic in the RCC system into a 0-order

representation in which intuitionistic formulae repre

sent constraints on possible situations.

The basis of the interpretation is as follows:

• A region is identified with an open set of points.

(So regions are denoted by propositional letters in

the To representation.)

• Regions overlap if they share at least one point.

• Regions are connected if their closures share at

least one point.

This interpretation is in accord with that suggested for

the RCC theory in [10].

Because the topological interpretation of To involves

set-terms containing the interior operator, t, it allows

us to make some distinctions which are not possible

with the classical calculus. In particular we can now

distinguish the case where two non-overlapping regions

are connected (i.e. touch at one or more points) from

that in which they are totally disconnected. And, in

a similar manner, we can specify whether a region

which is a proper part of another is a tangential or

non-tangential proper part.
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Table 4: Some RCC Relations Denned in l£ (including the 8 relation basis)

Relation Model Constraint Entailment Constraints

DC(X,Y)

EC(X,Y)

PO(X,Y)

~x v ~y ~x, ~y

~ x v ~y, ~x, ~y

~(XAy), A:=>y, y =>x, ~y

~X V Y, Y =>x, ~x, ~y

~yvx, x=>y, ~y

y x, ~x, ~y

x=>y, ~y

~a\ ~y

~(X A Y)

TPP(A\y) X=>Y

Y =>XTpp-^x.y)

NTPP(x.y) ~x v y

~y v x

x»y

NTPP-^X.y)

EQ(X,Y)

C(X,Y) ~x v ~y,~x,~y

~x,~y,~zEQ(X,sum(y,Z)) Xo(YV Z)

If two regions share no points they cannot overlap (al

though they may be connected). In such a case the

equation i( X C\Y )=U must hold; this can be repre

sented by the To formula ~{X AY). In lo (unlike Co)

this formula is not equivalent to ~ X V_ ~ Y . _The lat

ter corresponds to the set-equation »'( X )Ui( Y )= U ,

which says that the union of the exteriors of two re

gions exhaust the space. If the regions touch at one

or more points, then these points of contact will not

be in the exterior of either region so this equation will

not hold. Hence the second (stronger) formula can be

employed as a model constraint to describe situations

where two regions are completely disconnected.

5.3 THE I0+ REPRESENTATION

LANGUAGE

To represent relations using lo we can use essentially

the same type of encoding as we employed for Co. As

before, restrictions on possible models corresponding

to the presence of topological relationships between re

gions are enforced by means of model constraints and

entailment constraints. The role of these two types

of constraint in reasoning about situations is exactly

as in the classical case. In fact the arguments given

in sections 3.2, 3.3 and 4.1 regarding the representa

tion of negative constraints and the correct procedures

for reasoning in Cq apply equally when lo is employed

as a language for representing set equations. Most of

the arguments rely only upon the correspondence ex

pressed in theorem 1 , so parallel arguments for lo can

be given on the basis of theorem 5. The convexity

property shown in section 3.3 can also be similarly

demonstrated for the topological interpretation of lo-

Hence we already have the apparatus for reasoning

with the language 1q , whose expressions are pairs of

sets of lo formulae specifying model-constraints and

entailment-constraints. Counterparts of theorems 2

and 3 apply to the language Xq as well as to Cq .

Table 4 gives the Iq representation of each of the 8

basic relations shown in figure 1. The definition of C

plus another example using the RCC function sum are

also given. That the model constraints given in this ta

ble must hold if the corresponding RCC relation holds

is easily verified by considering the interpretation of

the formulae given in section 5.1. As with Cq, the

set of entailment constraints represent negative condi

tions needed to exclude unwanted situations which are

compatible with the model-constraint.

6 IMPLEMENTATION OF A

1% REASONING SYSTEM

A spatial reasoner using this technique has been imple

mented in Prolog using a Horn clause representation

of a restricted Gentzen calculus for lo and a look-up

table to translate topological relations into the appro

priate model and entailment constraints. Running on

a Sparc 1 workstation the program generated the full

composition table for the 8 base relations shown in

Figure 1 in under 244 seconds.

This is a substantial improvement over the method

described in [12]. In generating the table given there,

the theorem prover Otter [7] was used, working with

the lst-order axiomatisation of the RCC theory. Ot

ter took a total of 2460 seconds to prove the required

theorems but some proofs required human assistance

(addition of hand chosen lemmas and restriction of

the set of axioms used) . Furthermore this method in

volves not only theorem proving but also model build

ing in order to ensure the minimality of table entries

(see [12]) and this is also computationally intensive.

This method cannot really compete with reasoning us

ing the Iq representation, since unlike no decision

procedure is known for the lst-order RCC theory.

6.1 THEOREM PROVING IN I0

Clearly, to use Xq as a representation language for ef

fective spatial reasoning we need to be able to reason

efficiently in lo- Theorem proving in lo is decidable

but potentially very hard (see [5]). A proof-theory
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for the language can be specified in terms of a sim

ple cut-free Gentzen sequent calculus which is only a

slight modification of the corresponding classical sys

tem. The formalisation I use is essentially the same as

that given in [4].

Theorem proving in the lo sequent calculus is more

complex than that of Co: in Co all connectives can be

eliminated deterministically because the rules produce

Boolean combinations of sequents which are logically

equivalent to the original sequent. However with cer

tain rules in the Jo calculus the resulting combination

of proofs is not necessarily provable even if the original

sequent is valid. In other words the rule gives a suf

ficient but not necessary condition for validity. Con

sequently theorem proving in lo is non-deterministic

and involves a much larger search space.

However, given that the representation of many spa

tial constraints involves only a very limited class of

lo formulae, much of the potential complexity of the

orem proving can be avoided. This is achieved by em

ploying a proof system which, although not complete

for the full language of lo, is complete for sequents

containing only formulae used to represent the RCC

spatial relations. Specifically, we need handle formulae

of the following forms: ~ X, ~X V ~y, ~(X A Y),

X =>Y,~X VY.

Given this restriction, the non-deterministic and ex

tremely computationally expensive rule for eliminating

implications from the left hand side of a sequent can

be replaced by other rules which can be applied deter

ministically (space does not permit a fuller explana

tion). Use of this restricted proof system dramatically

increases the effectiveness of reasoning in 1$ .

7 EXTENDING THE

REPRESENTATION

In the rest of the paper I indicate how the

Tq representation can be extended to incorporate ex

tra concepts which are not directly reducible to Xq but

for which we do have a set of axioms specified in the

(more expressive) lst-order classical logic, C\. To il

lustrate the method I show how the notions of 'inside'

and 'outside' can be represented.

7.1 'INSIDE' AND 'OUTSIDE'

Following the approach taken in [10] I define the re

lations 'inside' and 'outside' in terms of a convex-hull

operator which is introduced as a new primitive. The

convex-hull, conv(X), of a region X can be informally

defined as that region which would be enclosed by a

taught rubber membrane stretched around X. 7 In

7More formally, in terms of point sets, conv(X) is

the closure of X with respect to the relation of between-

terms of the relations P(x,y) (x is a part of y) and

TP(x, y) (x is a tangential part of y) and C(x, y) (x

is connected to y) an axiomatisation of conv(x), the

convex-hull operator can be given in C\ as follows:

1. VxTP(x,conv(x))

2. Vx[conv(conv(x)) = conv(x)]

3. VxVy[P(x,y) P(conv(x),conv(y))]

4. VxVy[conv(x) = conv(y) C(x,y)]8

Whether these axioms are indeed faithful in charac

terising the convex-hull is not completely certain. The

first three are very simple and undoubtably true. 4)

is more difficult to see. It states that, if two (finite)

regions have the same convex-hull they must be con

nected.

To show this I introduce the notion of the convex-hull

defining points of a (finite) region. These are points in

the closure of a region which do not lie between any

two other points in its closure. Such points will always

lie on the surface of a region (i.e. c(X) — X) and will

always be points where the surface is convex.

The convex-hull defining points of a region uniquely

determine its convex-hull. Also every convex-hull has

a unique set of defining points. Consequently, two re

gions have the same convex-hull if and only if they have

the same defining points. We may also note that an n

dimensional region must have at least n + 1 defining

points. From these observations it is clear that if two

regions have the same convex-hull then their closures

must share certain points; they must have at least the

convex-hull defining points in common. This being so,

regions with the same convex-hull must be connected.

So there are compelling arguments for the truth of

all the axioms given above. What is less certain is

whether this axiom set is complete: it is possible that

there are properties (expressible in terms of C and

conv) of the convex-hull in Euclidean space that are

not captured. If this were the case then there would

be situation descriptions consistent with the axioms

but impossible under the intended interpretation of

the conv operator9.

7.2 RELATIONS DEFINABLE WITH conv

A large number of new binary relations can be defined

in terms of the conv together with other RCC relations.

nets, that is conv(X) = {x : 3y3z[y € X A z £

X A B(y, x, z)]}, where B(x, y, z) means that point y lies

on the straight line between x and z.

8 Actually this is not necessarily true for infinite regions.

9One way to demonstrate adequacy of the axioms would

be to show that they are faithful to the interpretation in

terms of the betweenness relation, which has a straightfor

ward algebraic definition in a model which is a Cartesian

space over the real numbers (see [14]).
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For example [10] gives the following definitions:

• \NS\DE(X,Y)=def DR(X,Y) AP(A",conv(Y))

• P-INSIDE(X,Y) =deJ

DR(X,y)APO(A-,conv(y))

• OUTSIDER, y) =deJ DR(A-,conv(y)) 10

More generally by combining the 8 basic RCC relation

with the conv operator we can specify a total of 84

relations of the form i?i(X, Y) A fl2(*,conv(Y)) A

R3{conv(X),Y) A iL,(conv(Jr), conv(Y)).

To keep the number of relations dealt with manage

able, I identify a set of 18 mutually exclusive re

lations which are refinements of the DR. Follow

ing [10] I represent these by expressions of the form

[cr\, a?, r](X, Y), where <T\ is either T, 'P' or 'O' ac

cording as either INSIDER, Y), P-INSIDE(X, Y) or

OUTSIDER, y); <72 refers to the corresponding in

verse relation (i.e. one of these 3 relations but

with the arguments reversed); and r is either 'D' or

'E' according to whether the regions are completely

disconnected or externally connected. Thus, for

example, [P,I,E](X,Y) means that P-INSIDE(X, Y),

INSIDE(y,A") and EC(X,Y).

Actually the relation [I,I,D](X, Y) is impossible, since

if two regions are both inside each other they must

share the same convex-hull and therefore, according

to axiom 4., must be connected. Thus we can identify

a basis of 23 pairwise disjoint and mutually exhaus

tive relations consisting of the 17 possible refinements

of DR, plus the six remaining relations of the RCC 8

relation basis.

7.3 ENCODING conv IN !+

Suppose we treat the expression conv(y) simply as re

ferring to an arbitrary region. Then the relation IN-

SIDE(X,Y) as defined above could be represented by

two model constraints: ~(X A Y) and X ^-conv(Y),

corresponding to DR(X, Y), and P(X, conv(y)), re

spectively. So we can assimilate references to convex-

hulls into the Iq representation simply by introduc

ing propositional expressions of the form conv(X) into

To formulae. But, as regards correct reasoning, this is

inadequate, since the meaning of conv(X) relative to

X is not fixed — they are just two regions.

This can be remedied by adding extra constraints to

Ig" situation representations which enforce the axioms

given above. This extra information means that situ

ations which are inconsistent in virtue of these axioms

can be detected by means of a Xq theorem prover. In

so far as the axioms adequately characterise the in

tended interpretation of conv this will serve to fix the

meaning of the operator.

,0Note that these relations are not purely topological,

since they aire not preserved by rubber deformations of the

regions involved.

Axiom 1. can be enforced as follows: for each re

gion X mentioned in the initial situation description,

augment the description with extra model and en

tailment constraints corresponding to the situation

TP(X,conv(A')). Any model which satisfies this ex

tended model will clearly satisfy axiom 1 .

Axiom 2. is taken into account implicitly. In enforcing

axiom 1. we introduce extra regions into the situation

description corresponding to the convex-hulls of each

region in the initial description. Axiom 2. tells us that

these are the only additional regions we need consider,

since iterating the conv functions does not produce any

more new regions.

Treatment of axioms 3. and 4. is encompassed by a gen

eral procedure which enables enforcement of all axioms

of the form:

Vx1(... ,«„[*(*! ,...,*„) *(X1,...,X„)])

where $(xi,...,zn) and 9{x\ , . . . , x„) specify situa

tions which can be described by means of Xq .

To test whether a given Xq situation description satis

fies such an axiom an iterative fixed-point method can

be used:

• Test the Xq description for consistency

• Check whether some instance of the antecedent

is entailed by an the initial description. This in

volves translating $(. . .) intolo" and substituting

all combinations of constants occurring in the de

scription for the free variables.

• If any such $(•■•) is entailed add the correspond

ing Xq representation of ¥(. . .), under the same

substitution, to the situation description.

• Repeat until either the situation description be

comes inconsistent or no new information is added

by the previous step.

This process must terminate; and if the final situa

tion description is still consistent then clearly the ax

iom is satisfiable, since for all substitutions either the

antecedent is not entailed by the description or the

consequent has been explicitly added.

Clearly the convex-hull axioms 3. and 4. are of the

form which can be captured in this manner. In fact,

since their antecedents are quite simple, they can be

enforced quite efficiently.

7.4 AN AUTOMATICALLY GENERATED

23 RELATION COMPOSITION TABLE

Table 5 gives the full composition table (i.e. table

of loci of composition) for the basis of 23 relations

described in section 7.2. If Ri(A,B) and R2{B,C),

where Ri is the relation specified in the left hand col

umn and i?2 is specified along the top, the correspond

ing table entry encodes the possible values of the rela

tion Ra(A, C). Each of the 23 relations is represented
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Table 5: Loci of Composition for a Basis of 23 Spatial Relations

Rel. Rep.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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by one of the two symbols '*' and V at a certain posi

tion in a 3 x 4 matrix. These representations are shown

in the second column. Table entries are constructed

by superimposing the representations for each of the

possible relations. Where '★' and 'o' should both be

present in the same position, the symbol V is used.

The table was generated using meta-level enforce

ment of the conv axioms in a Prolog implemented

Iq" reasoning program. It was produced in 3h 31mins

on a Sparc 10 workstation. Such a table has hith

erto never been computed by a proof oriented method.

[3] contains a similar table constructed using a model

building approach but it has subsequently been found

that the table given there is too strict in that it rules

out certain configurations, which are in fact possible

for 3D spatial regions. My table has not been found

to contain any false entries.

8 CONCLUSIONS

I have shown how a significant family of spatial re

lations can be represented in a logical representation

which is decidable. The computational effectiveness of

this representation has been demonstrated by gener

ating tables of loci of composition for a number of sets

of spatial relations.

The divergence between expressiveness and tractabil-

ity of logical languages is perhaps the greatest obstacle

to the development of AI systems. I believe that this

problem can be mitigated to some extent by ensuring

that the expressive power of a representation does not

exceed what is really needed. In particular, much of

the power of lst-order logic is unnecessary for reason

ing in many domains. Hence, it is likely that encod

ing information in a (non-classical) propositional logic

rather than lst-order calculus may provide a mecha

nism for effective reasoning in other areas of knowledge

representation.

There are many ways in which the system presented

here could be enhanced. The efficiency of the system

could be improved by optimising its theorem proving

performance. Also expressivity could be increased by

developing a more general framework for meta-level

enforcement of lst-order axioms.

I am currently exploring the possibility of using the

modal logic 54 for spatial reasoning. This may well

prove to be better suited to the task than 1q.
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Abstract

The notion of a default consequence relation

is introduced as a generalization of both de

fault and modal formalizations of nonmono

tonic reasoning. It is used to study a general

problem of correspondence between these two

formalisms. As is shown, in many cases each

of them can be translated into the other.

1 INTRODUCTION

In this paper we will attempt a systematic study of

the relation between default and modal formalizations

of nonmonotonic reasoning. To this end, we consider

first the reformulation of both default logic and modal

nonmonotonic logics as proof systems involving rules,

or sequents, with the form

a : b Ih A,

where a and b are finite sets of propositions. The in

formal interpretation of such sequents will be, "If all

propositions from a are assumed (or believed) to hold

and no proposition from 6 is assumed to hold, then

infer A." Sets of default sequents satisfying certain

conditions will be called default consequence relations.

Such consequence relations can in fact be considered as

a generalization of Reiter's default logic. The main dis

tinctive feature of our formalization is an explicit use

of 'meta-rules' allowing to infer new default sequents

from given ones. It turns out that for extensions and

other 'preferred' objects relevant to our study there

are important structural rules that preserve these ob

jects, and hence such rules can be safely added to any

consequence relation. Though we do not reach com

pleteness in this way, there are reasons to believe that

certain sets of such rules provide a primary character

ization of 'logical paradigms' behind different kinds of

nonmonotonic reasoning.

As the next step, we introduce the notion of a modal

default consequence relation. These relations will be

defined in a language with a modal operator, but oth

erwise will involve the same rules as default conse

quence relations. Modal default consequence relations

turn out to be an especially suitable tool for studying

modal nonmonotonic reasoning. Thus, both autoepis-

temic reasoning ([14]) and reasoning with 'negative'

introspection ([9,11,13]) acquire a natural characteri

zation in this framework.

As we show in [1], under certain reasonable conditions

modal consequence relations can be reduced to the as

sociated nonmodal default consequence relations in a

way that in some well-defined sense preserves the ba

sic nonmonotonic objects. These results will be used

here in order to establish a two-way correspondence

between modal and default formalizations. Thus, for

a number of modal nonmonotonic logics that appear

in the literature, we will give a representation in terms

of modal default consequence relations. We will show

also how and under what conditions objective default

consequence relations can be faithfully embedded into

modal ones. These latter results provide a natural

generalization of Truszczyriski's results (see [19,20])

concerning modal translation of defaults. Finally, we

will demonstrate that the modal logic K45, associated

with autoepistemic reasoning, is in some strong sense

equivalent to a certain nonmodal default consequence

relation.

Due to space limitations, proofs of all the new results

presented here will appear elsewhere.

2 DEFAULT CONSEQUENCE

RELATIONS

In this section, we will introduce the notion of a de

fault consequence relation. It will be defined as a set

of default sequents of the above form satisfying certain

rules that allow to infer new sequents from given ones.

In fact, it is these rules that make a set of defaults

a proof system. Defaults as such do not bear infor

mation about when and how they can be applied on

their heads. For ordinary inference rules, this informa
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tion can be embodied in the form of 'meta-rules' that

produce new inference rules from given ones (this is ac

tually the main idea behind various sequent calculi).

Default consequence relations is an attempt to extend

this idea on (nonmonotonic) inference rules that in

volve as their premises not only what is assumed to

hold, but also what is assumed not to hold.

We will presuppose that default consequence relations

are defined in a propositional language with a prede

fined notion of a logical (deductive) consequence. In

this paper we will assume that it is an ordinary classi

cal consequence. The corresponding deductive conse

quence operator will be denoted, as usual, by Th.

Definition 2.1 A set of default sequents with the

form a : b lh A, where a, 6 are finite sets of propo

sitions and A a proposition, will be called a default

consequence relation if it satisfies the following two

rules

(Monotonicity) If a : b lh A and a C a', b C 6', then

a' : b' lh A.

(Deductive Closure) If A G Th(c) and a : 6 II- C,,

for any C, G c, then a : b lh A.

Default consequence relations can indeed be consid

ered as relations, that is relations between pairs of

premise sets, on the one hand, and propositions in

conclusions, on the other. Propositions from the first

premise set will be called positive premises, while those

from the second premise set—negative premises. The

rules (Monotonicity) and (Deductive Closure) provide

a primary constraint on our understanding of default

sequents. (Monotonicity) says, in effect, that default

sequents are applicable in all contexts in which their

premises hold. Note that this immediately distinguish

default rules from, e.g., preferential entailment that

restrict applicability of rules to 'preferred' contexts in

which the premises hold. (Deductive Closure) is less

controversial; it says that deductive consequences of

provable propositions are also provable.

Though default consequence relations were defined

only for finite sets of premises, the definition can be

easily extended to arbitrary sets of premises by stipu

lating that for any possibly infinite sets of propositions

u and v,

u : v lh A if and only if a : b\r A,

for some finite a, 6 such that a C u, 6 C v. This

stipulation also ensures that default consequence rela

tions will satisfy the compactness property. Hence, in

treating infinite sets of premises, we will assume that

compactness holds.

The general notion of a default consequence relation

is rather uninformative. It is only a frame that can be

'filled' by additional rules that would provide a more

tight description of our intuitions about nonmonotonic

reasoning. As we will see, there is no single system

that reflects adequately all our intuitions. In fact,

different nonmonotonic constructions admit different,

even incompatible, reasoning paradigms. Below we

will consider a number of rules and conditions that

will form the basis for a subsequent classification of

various kinds of default reasoning.

To begin with, we introduce the following rule:

.„ . a:b\rA a,A:b\tB

{Cut) a-b¥B

The rule (Cut) reflects a kind of cumulativity of de

fault reasoning in the sense that it permits the use of

inferred propositions as additional positive premises in

the proof. As we will see, the rule allows to avoid ex

plicit iterative constructions commonly used in defin

ing nonmonotonic objects. Consequently, a default

consequence relation will be called iterative if it satis

fies (Cut).

The following axiom states that no proposition can

serve as both a positive and negative premise in a

proof:

(Consistency) A : A lh J.,

where J. denotes the proposition "False". The axiom

implies that consistent pairs of premise sets must be

disjoint. Though this requirement is not universally

acceptable (it does not hold, for example, in some se

mantics for logic programming), it will hold for all sys

tems we will consider in this paper.

The following pair of rules reflect the requirement of

deductive closure for positive and negative premises,

respectively.

(Positive Closure)

AeTh(a) a, .4:611-5

a : 611- B

(Negative Closure) If B G Th(c) and a : b,d lh A,

for any C, G c, then a : b, B lh A.

(Positive Closure) implies that deductive consequences

of positive premises can be safely used as additional

positive premises, while (Negative Closure) says that

if we reject a proposition, we must reject at least one

proposition from any set of propositions that implies

it deductively.

One of the main consequences of the above rules is

the possibility of replacment of deductively equivalent

formulas both in positive and in negative premises.

Note that, in the classical case, (Negative Closure) can

be shown to be equivalent to the following three simple

rules1 :

(1) |:iilH.

'Similar rules can also be given for (Positive Closure)

and (Deductive CLosure).
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(2) If B follows deductively from A and a : 6, A lh C,

then a : b, B lh C.

(3)

b,A\\-C a:b,B\rC

a:b,AABU-C

All the rules and conditions considered so far will hold

in all basic systems discussed in the paper. Now we

turn to considering rules that make a difference. The

first is the following Reflexivity axiom:

(Reflexivity) A : 0 lh A.

Despite its apparent plausibility, the axiom does not

hold for some natural interpretations of default se-

quents (e.g., when the premises represent propositions

that are or are not believed, while conclusions are as

sumed to be true). Still, there exists an instance of

the axiom that will be assumed to hold:

(Positive Consistency)

J_ : 0 lh J_.

(Positive Consistency) implies, in particular, that con

sistent pairs of premise sets must include consistent

sets of positive premises.

The second controversial rule is a rule that permits

'reasoning by cases'(cf. [16]):

. v a,B:b\rA a : 6, B lh A

(Fact0™3) 77b¥A ■

The rule implies, in effect, that contexts of reasoning

are complete (two-valued) with respect to positive and

negative assumptions. It turns out to be characteristic

of autoepistemic reasoning (see below).

Again, there is an important weaker form of 'factoring'

that will hold for all systems considered in the paper.

(Negative Factoring)

0,5:611-1 a:b,B\\-A

a : b lh A

The rule says that if it is inconsistent to assume a

proposition as a positive premise, then it can be as

sumed as an additional negative premise. In fact, the

rule can be seen as a realization of the 'negation as

inconsistency' principle suggested in [5].

What will happen if we accept all the rules given

above? Before we answer this question, let us intro

duce the following definition.

Definition 2.2 A default consequence relation will be

called stable if it satisfies (Cut), (Consistency), (Re

flexivity) and (Factoring).

It can be shown that the above four rules imply both

(Positive Closure) and (Negative Closure). Hence, sta

ble consequence relations satisfy all the above rules.

Unfortunately, the following theorem shows that stable

default consequence relations constitute a limit case—

they are already monotonic. To be more exact, they

are equivalent to (monotonic) Scott consequence rela

tions. A binary relation a h b between sets of proposi

tions is called a Scott consequence relation (see [4]) if

it satisfies the following conditions:

(Reflexivity) A\- A;

(Monotoniciiy) If a h b and a C a', b C b', then

a' h 6';

(Cut)

a h b,A a, A h 6

ah~6 '

Theorem 2.1 Let lh be a stable consequence relation.

Define the following consequence relation between sets

of propositions:

a r> b = a : Hh X.

Then h> is a Scott consequence relation and a : b lh A

if and only if a h> 6, A.

A distinctive feature of stable consequence relations, a

feature that makes them inappropriate as a basis for

nonmonotonic reasonig systems, is the validity of the

following rule:

(Symmetry)

a : b,BU- A

a :b,A\\- B'

It is this rule that actually reduces default-type

sequents to monotonic disjunctive, or 'multiple-

conclusion', rules. Nevertheless, we will see that stable

consequence relations constitute an important 'upper

bound' on reasonable nonmonotonic systems. In other

words, for reasons that will become clear from what

follows, all such systems should contain only rules that

are also valid for stable consequence relations.

The main lesson from the theorem is that in order

to obtain nontrivial nonmonotonic consequence rela

tions, we must reject one of the four rules constituting

the definition of a stable consequence relation. As we

will show below, default logic and modal nonmono

tonic logics give rise to two basic kinds of reasoning.

One of them, which is associated with autoepistemic

logic, involve rejection of (Reflexivity) and accept the

rest of the rules. The second kind of reasoning is as

sociated with default logic and modal nonmonotonic

logics based on 'negative introspection'; it is charac

terized by rejecting (Factoring). Consequently, we in

troduce the following definitions:

Definition 2.3 A default consequence relation will be

called autoepistemic if it satisfies (Cut), (Consistency),

(Positive Closure) and (Factoring) and strongly au

toepistemic if it also satisfies (Positive Consistency).
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Definition 2.4 A default consequence relation will be

called reflexive if it satisfies (Cut), (Consistency), (Re-

flexivity), (Negative Closure) and (Negative Factor

ing).

Below we are going to consider these systems in

detail2.

2.1 AUTOEPISTEMIC CONSEQUENCE

RELATIONS

The majority of nonmonotonic formalisms have two

components. The first component is the logical frame

work, e.g., some modal logic or a set of defaults. The

second component involves a stipulation what sets of

propositions we should consider as intended, or 'pre

ferred' ones. For Reiter's default logic these are ex

tensions, while for autoepistemic logic it is stable sets

and stable expansions. The relation between these two

components is usually more complex than in the mono-

tonic case. In usual, monotonic, logical systems the

set of all theories (that is, sets of propositions closed

with respect to the rules of the system) determines

in turn the source provability relation. Unfortunately,

this useful property of mutual determination holds nei

ther for default logic nor for modal nonmonotonic for

malisms. In both these cases different systems may de

termine the same set of 'preferred' objects and hence

the same nonmonotonic inference. What complicates

matters still further is that, in general, the set of such

objects does not change monotonically with the growth

of the underlying system. However, we will show that

both for default logic and modal nonmonotonic logics

there are rules that preserve 'preferred' sets of propo

sitions. Such rules can be considered as providing a

primary characterization of 'logical paradigms' behind

these systems of nonmonotonic reasoning.

We will begin with autoepistemic logic. Let Cn(u : v)

denote the set of all consequences of the pair of sets

(u,t>), u the complement of u. The following defini

tion gives a description of the key concepts involved in

autoepistemic reasoning.

Definition 2.5 Let lh be a default consequence rela

tion.

1. A set of propositions u will be called stable in lh

(or IKstable) if it is deductively closed and satis

fies the following condition:

Cn(u : u) C u;

2. u will be called an expansion in lh (or Ih-

expansion) if

u = Cn(u : u).

2A11 the results in the next two sections, except for The

orem 2.5, were proved in [1].

As we have said, usually sets of 'preferred' nonmono

tonic objects do not change monotonically with the

growth of the source system. Still, the following

lemma, proved in [1], shows that under certain con

ditions we may have more regular behavior.

Lemma 2.2 Let Ihi and lt~2 be two default conse

quence relations.

1. //lr-iClr-2, then any ll-2-sia6/e set is \\-i-stable.

2. //ll"iCII-2 and Ihi and l("2 have the same stable

sets, then any Ihi- expansion is a lh 2- expansion.

The lemma shows that the set of stable sets diminishes

monotonically with the growth of a consequence rela

tion (this indicates that stable sets are actually mono-

tonic objects) and that in any interval in which this

set is not changing, the set of expansions grows mono

tonically with the growth of the consequence relation.

These facts make it possible to demonstrate that the

rules of autoepistemic consequence relations preserve

the objects in question.

For an arbitrary consequence relation lh, we let lhae

(lh,oe, lh*) denote the least autoepistemic (resp., the

least strongly autoepistemic and the least stable) con

sequence relation containing lh. These consequence re

lations can be described alternatively as consequence

relations obtained from lh by adding the appropriate

rules and axioms.

The following theorem shows that, as far as only stable

sets are involved, stable consequence relations form a

representative class:

Theorem 2.3 For any default consequence relation

lh, lh* is the greatest consequence relation having the

same stable sets as lh.

As we said earlier, stable sets behave essentially as

monotonic objects. In fact, they can be considered as

sets of propositions that are closed with respect to the

sequents of a default consequence relation in the sense

that if positive premises of a sequent belong to a stable

set u and negative premises do not belong to u, then

the conclusion must belong to u. In fact, the set of

stable sets can be seen as providing a primary charac

terization of a default consequence relation; adding or

deleting rules or sequents that change this set involves

a significant change of the information embodied in a

consequence relation. This gives rise to a natural con

straint on the rules we might consider acceptable in

various applications of nonmonotonic reasoning: any

such rule should be valid in stable consequence rela

tions. In other words, it must follow from the four

basic rules involved in their definition—(Cut), (Con

sistency), (Reflexivity) and (Factoring).

The next theorem shows that autoepistemic conse

quence relations in general form a representative class

with respect to both stable sets and expansions.
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Theorem 2.4 For any default consequence relation

It-,

/. Ihae has the same stable sets and expansions as lh;

2. Ih'ae has the same stable sets and consistent ex

pansions as lh.

As an immediate consequence of Lemma 2.2, we ob

tain that any consequence relation that contains lh and

is included in lhae has the same stable sets and expan

sions as lh. Consequently, addition of any of the rules

involved in the definition of an autoepistemic conse

quence relation does not change stable sets and ex

pansions. Similarly, (Positive Consistency) does not

change stable sets and consistent expansions, and (Re-

flexivity) does not change stable sets.

It is easy to show that, in any consequence relation

satisfying (Reflexivity), expansions coincide with sta

ble sets (since for such relations u C Cn(u : v), for

any u, v). Thus, (Reflexivity) does not preserve ex

pansions. Moreover, even a weaker form of reflexiv

ity, (Positive Consistency), always forces the set of all

propositions to be an expansion, though it preserves

consistent expansions.

The main conclusion that can be made from the

above results is that autoepistemic consequence rela

tions provide an admissible framework for autoepis

temic reasoning. In the next section we will present a

similar result for default logic.

2.2 DEFAULT LOGIC AND REFLEXIVE

CONSEQUENCE RELATIONS

Reiter ([15]) defines a default theory as a pair A =

(W, D), where W is a set of propositions and D a set

of default rules of the form A : MB\ MSt/C.

The connection between default theories and default

consequence relations can be established by represent

ing propositions from W as sequents 0 : 0 lh A and

default rules from D as sequents

A:->Blt...,->Bk lh C.

This translation will be denoted by tr(A). As can be

seen, it agrees with the informal meaning of default

sequents given in the Introduction. Note also that the

translation is reversible, provided we replace sets of

positive premises in default sequents by their conjunc

tions. In other words, a default sequent A\, . . .,An :

B\ , . . . , Bk lh C is representable by a default

Ai A • • A An : M-.S! , . . . , M^Bk/C.

Reiter 's default logic is based on the notion of exten

sion. As is well-known, extensions can be defined using

a certain iterative construction (see [15], Theorem 2.1).

It turns out that this construction can be captured in

our system through the use of the rule (Cut) given

above. The following definition gives a formalization

of the notion of extension in the framework of iterative

consequence relations, that is, default consequence re

lations satisfying (Cut).

Definition 2.6 Let lh be an iterative consequence re

lation. A set of propositions u will be called an exten

sion in lh (or Ih-extension) if

u = Cn(0 : u).

It can be shown that if lh is an iterative consequence

relation, then any Ih-extension is a Ih-expansion (and

hence a Ih-stable set). The following theorem shows

that iterative consequence relations and Ih-extensions

provide a proper generalization of Reiter 's default

logic.

Theorem 2.5 Let A be a default theory and lhA the

least iterative consequence relation containing tr(A).

Then extensions of A coincide with lh^-extensions.

Just as for the case of expansions, iterative conse

quence relations are not determined uniquely by their

extensions. But the following lemma (also proved in

[1]) shows that in cases when the set of stable sets re

mains the same, the set of extensions also grows with

the growth of the consequence relation.

Lemma 2.6 Let Ihj and lf-2 be iterative consequence

relations. If IhiClhj and lh- 1 and ll~2 have the same

stable sets, then any \\-\-extension is a lh2-er<ension.

The lemma allows us to single out rules that preserve

extensions. It turns out that reflexive consequence

relations (see Definition 2.4) provide an admissible

framework for extension-based default reasoning.

We let lhr denote the least reflexive consequence re

lation containing lh. In other words, this is a conse

quence relation obtained from lh by adding the appro

priate rules.

Theorem 2.7 For any iterative consequence relation

lh, lhr has the same stable sets and extensions as lh.

It can be shown that the rule (Factoring) does not

preserve extensions. On the other hand, as we already

mentioned, (Reflexivity) obliterates the distinction be

tween stable sets and expansions. This indicates that

expansion- and extension-based kinds of nonmono

tonic reasoning are in some sense incompatible—each

admits inference steps that are inadmissible in the

other. However, the rules common to both autoepis

temic and reflexive consequence relations clearly pre

serve all the objects we have considered, i.e. stable

sets, expansions and extensions. This suggests the fol

lowing definition.

Definition 2.7 An iterative consequence relation will

be called introspective if it satisfies (Consistency),
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(Positive Closure), (Negative Closure), (Positive Con

sistency) and (Negative Factoring).

Introspective consequence relations 'own' some useful

features that are common to autoepistemic and re

flexive consequence relations, most important of them

being the possibility of replacing deductively equiva

lent premises, both positive and negative ones (this is

a consequence of Positive and Negative Closure). In

addition, introspective consequence relations form a

representative class with respect to all three kinds of

objects we have considered.

3 MODAL DEFAULT

CONSEQUENCE RELATIONS

In this section we will introduce the notion of a modal

default consequence relation. As we will see, modal

default consequence relations provide a natural gener

alization of modal nonmonotonic logics.

Let Cl be the set of all propositions in a propositional

language with a modal operator L. For any set of

propositions « from Cl, we let Lu denote the set of

all propositions of the form LA, where A G «. The

notation ->u will have a similar meaning.

Definition 3.1 A default consequence relation in Cl

will be called modal if it satisfies the following two

modal axioms:

A : 0 Ih LA 0 : A Ih -.LA.

If we interpret L as an operator of belief, the two ax

ioms imply, in effect, that positive premises of any

sequent include propositions that are believed and

negative premises include propositions that are not

believed3. Consequently, the following understanding

of default sequents a : b Ih A in modal default conse

quence relations will be appropriate: "If all proposi

tions from a are believed and all propositions from b

are not believed, then infer A" . This interpretation is

in agreement with the following strengthening of the

notion of a modal consequence relation:

Definition 3.2 A modal default consequence relation

will be called regular if it satisfies the following two

rules:

a:bU-LA a,A:b\\-B

a:6lhfl

a:b\\--^LA a:b,A\\-B

a : b\r B

Regular consequence relations admit a natural inter

pretation similar to an autoepistemic interpretation

proposed for autoepistemic logic (see [14]). By an MD-

interpretation we will mean any consistent deductively

3 Note that any modal default consequence relation sat

isfies (Consistency).

closed set in Cl- For any MD-interpretation u we de

fine the following two sets:

uL = {B\LB G v) uL = {B\^LB G u}

The set ul can be naturally interpreted as the set of

propositions that are believed in u, while u as the set

of propositions that are not believed in u. Note that,

in contrast to autoepistemic logic, the interpretation

is partial with respect to modal propositions. Now, for

any set of MD-interpretations T, we define the follow

ing consequence relation, denoted by Ihy:

(Vti G T)(a CuLAbCuL=>Aeu).

Informally, a default sequent a : b Ihy A is valid if

and only if, for any MD-interpretation u from T, if all

propositions from a are believed in u and all propo

sitions from 6 are not believed in u, then A holds in

u.

It is easy to show that Ir-y is a regular consequence re

lation. Moreover, the following theorem shows that

such interpretation-based default consequence rela

tions provide a complete characterization of regular

modal consequence relations.

'Theorem 3.1 For any regular default consequence re

lation l(- there exists a set of theories T such that

lh=lhT.

As the theorem shows, even regular default conse

quence relations are determined by arbitrary deduc

tively closed sets of modal formulas. This show, in

particular, that modal default consequence relations

in general have no 'modal content' in the sense that

they impose no restriction whatsoever on the modal

operator. However, we will see that additional rules

of the kind described earlier correspond to well-known

modal axioms for L.

Now we will show that modal default consequence re

lations can be considered as a generalization of modal

nonmonotonic logics. To begin with, note that the

modal axioms imply that Ih-stable sets in modal de

fault consequence relations are stable sets in the usual

sense, that is, they are deductively closed sets satisfy

ing the following two conditions:

• If A G ti, then LA G w;

• If A $ u, then -<LA G «.

Let ll-u denote the least modal default consequence re

lation containing a set of (modal) propositions u (that

is, 0 : 0 II- A, for any A G ti). Clearly, lhu is simply

the set of all sequents obtained from u by applying

the two axioms and two rules of modal default con

sequence relations. The following simple lemma was

proved in [1]:

Lemma 3.2 a : b lhu A if and only tfA G Th(uULaU

-.L6).
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As an immediate consequence of this lemma, we obtain

that lhu-stable sets are those deductively closed sets of

propositions s that satisfy the condition

Th(u U Ls U ->Z,s) C s.

Thus, lhu-stable sets are exactly stable sets containing

u (see [14]). Similarly, ll-u-expansions are sets satisfy

ing the condition

s = Th(uU LsU~>Ls),

and hence they coincide with Moore's stable expan

sions of u. Thus, Moore's autoepistemic logic can

be adequately translated into the framework of modal

default consequence relations. Furthermore, applying

now Theorem 2.4, we can infer that autoepistemic logic

can be faithfully represented by means of modal au

toepistemic consequence relations. In the next section

we will complete the picture by demonstrating that

the latter exactly correspond to consequence relations

based on the modal logic K45.

Now we will turn to modal nonmonotonic logics in gen

eral. It is easy to show that the rule (Cut) in modal de

fault consequence relations implies the following rule:

• x a : 6 lh A

(Necessitation) ———

a : b It- LA

(In fact, it can be shown that for regular consequence

relations the two rules are equivalent.) Thus, (Cut)

captures the effect of the necessitation rule A/LA in

modal logics.

Let S be a modal logic containing the necessitation

rule. We will say that a modal default consequence

relation is an S- consequence relation if it is an iterative

consequence relation such that if A is an instance of

a modal axiom from S, then 0 : 0 lh A. For any set

of propositions u, let ll-f be the least 5-consequence

relation containing u. This consequence relation can

also be described as the set of all sequents obtained

from u by using the axioms of S, the axioms and rules

of modal default consequence relations and the (Cut)

rule. The following lemma was also proved in [1]:

Lemma 3.3 a : b Ihf A if and only if A G Cns(u U

LaU~<Lb).

As a consequence of the lemma, we obtain that Ihf-

extensions are sets of propositions satisfying the fol

lowing condition:

s = Cns(u U -iLs).

Thus, I hf-extensions coincide with 5-expansions of u

as denned in [11] (see also [13]). It follows that a modal

nonmonotonic reasoning based on 'negative introspec

tion' can be also represented in terms of modal default

consequence relations and the notion of IKextension.

Moreover, Theorem 2.7 implies that reflexive conse

quence relations provide an adequate framework for

reasoning of this kind. In the next section we will con

sider how and to what extent various modal axioms

influence such a reasoning.

3.1 MODAL CONSEQUENCE RELATIONS

VS. MODAL NONMONOTONIC

LOGICS

In this section we will consider the correspondence be

tween modal nonmonotonic logics and their associated

default consequence relations. It follows from the re

sults described above that in order to provide a char

acterization of modal consequence relations that can

serve as representations of modal nonmonotonic logics,

we may restrict our attention to consequence relations

that are generated by sets of (modal) propositions.

Definition 3.3 A modal default consequence relation

lh will be called prime if it coincides with the least

iterative consequence relation containing Cn(0 : 0).

It is easy to show that a modal consequence relation is

prime if and only if it is the least iterative consequence

relation containing some set of propositions. As has

been said, the rule (Cut), that characterizes iterative

consequence relations, is equivalent to the modal ne

cessitation rule. Consequently, Lemma 3.3 could be

replaced by a more general

Lemma 3.4 IH is a prime consequence relation if and

only if, for any a, b and A, a : b II- A is equivalent to

A G CnN(Cn(0 : 0) U La U ->L6),

where CnN denotes the provability operator o/N.

The lemma shows that, in general, prime modal de

fault consequence relations correspond to modal non

monotonic logics based on the pure logic of necessi

tation N, that is, a modal logic that has no proper

modal axioms and the necessitation rule as the only

additional modal rule (see [3]).

An important consequence of the lemma is the follow

ing

Theorem 3.5 Any prime modal default consequence

relation is regular.

The set Cn(0 : 0) may include all instances of modal

axioms characterizing various modal logics. An impor

tant question that arises here is to what extent differ

ent modal axioms appearing in Cn(0 : 0) influence the

general properties of the corresponding consequence

relation, since, as is well-known, different modal logics

may determine the same nonmonotonic inference—see

[9]. In the rest of this section we will give represen

tation results for a number of well-known modal non

monotonic logics. It will turn out that most of them

posses a simple and natural characterization in terms

of different structural rules that hold in the associated

default consequence relations.

We begin with demonstrating that prime K4-

consequence relations can be characterized as conse

quence relations that satisfy certain deduction rules.
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Theorem 3.6 II- is a prime K4- consequence relation

if and only if it is iterative, satisfies (Positive Closure)

and the following two modal deduction rules:

(Positive Deduction)

A, a : b\r B

a :6lh LA-+B'

( Weak Negative Deduction)

a:A,b\hB

a : 6lh -iL±AL->LA-* B'

The theorem gives an example of a correspondence be

tween rules of default consequence relations and usual

modal axioms. Note that, given (Positive Deduction),

the (Positive Closure) rule can be shown to be equiv

alent to the modal K axiom.

The two deduction rules are rules that permit propo

sitions to be transferred from premises to conclusions.

Note that these rules are reversible. Consequently, by

successive applications of these rules, any sequent can

be transformed to a provable proposition:

Corollary 3.7 For prime K4-consequence relations,

any default sequent A\,...,An '■ B\,...,Bm lh C is

equivalent to a provable formula

LAi A • • • A LAn A [A->L1]

A L->LBi A • • A L-<LBm -* C.

(where the conjunct ->L1. is present only if the set of

negative premises is not empty).

It can be shown that prime K4-consequence relations

satisfy all the rules of introspective consequence re

lations, except (Positive Consistency). Adding the

latter amounts to addition of the modal D axiom

LA -* ^L^A.

Theorem 3.8 The following conditions are equiva

lent:

1. lh is a prime KD4- consequence relation;

2. lh is iterative, satisfies (Positive Closure), (Posi

tive Deduction) and the following rule:

(Negative Deduction)

a:A,b\\-B

a : b lh L^LA — B '

3. lh is introspective and satisfies (Positive Deduc

tion).

Prime KD4-consequence relations satisfy a more

strong rule of negative deduction that does not in

clude the conjunct ->_L. Note also that, in view of

(3), the new rule is actually a consequence of (Positive

Deduction) and the rules of introspective consequence

relation. Thus, we have

Corollary 3.9 For prime KD4-consequence rela

tions, any sequent Ai,...,An : B\, ■ ■ ■ ,Bm lh C is

equivalent to a provable formula

L^! A • • • A LAn A L^LBi A • • • A L^LBm -» C.

As can be seen, taking into account the correspondence

between default sequents and ordinary default rules

described earlier as tr(A), the above transformation of

default sequents into modal formulas is in fact identical

with the modal translation of defaults suggested by

Truszczyriski in [20]. It should be noted, however, that

the above Corollary restricts the applicability of this

translation to introspective consequence relations. We

will return to this translation below when studying the

possibility of embedding default consequence relations

into modal ones.

Replacing the D axiom by the more strong reflexivity

axiom LA —► A amounts to adding the (Reflexivity)

rule. Consequently, we obtain the following character

ization of prime S4-consequence relations:

Theorem 3.10 lh is a prime S4-consequence relation

if and only if it is a reflexive consequence relation sat

isfying (Positive Deduction).

Now we will consider autoepistemic consequence re

lations. It turns out that in prime K4-consequence

relations the rule (Factoring) is equivalent to the

modal 5 axiom ->LA —> L~>LA. Moreover, we have

that prime K45-consequence relations actually coin

cide with modal autoepistemic consequence relations.

Theorem 3.11 The following conditions are equiva

lent:

1. lh is a prime K4 5-consequence relation;

2. lh is iterative and satisfies (Positive Deduction)

and the following rule:

(Strong Negative Deduction)

a.A,b\VB

a : 6 IK ->LA — B'

3. lh is a modal autoepistemic consequence relation.

Prime K45-consequence relations validate a still more

strong rule of negative deduction. Note, however, that,

since prime K45-consequence relations coincide with

autoepistemic consequence relations, this time both

(Positive Deduction) and the new negative deduction

rule are consequences of the rules of modal autoepis

temic consequence relations.

Corollary 3.12 For prime K4 5-consequence rela

tions, any sequent A\,...,An : B\,...,Bm lh C is

equivalent to a provable formula

LAi A • • • A LAn A ->LBi A • • • A -<LBm — C.
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Since (Positive Consistency) is equivalent to the D ax

iom and (Reflexivity) is equivalent to the modal re-

flexivity axiom, an immediate consequence of the last

theorem is the following characterization of strongly

autoepistemic and stable consequence relations.

Corollary 3.13 A lh is a prime KD45-consequence

relation if and only if it is a strongly autoepistemic

consequence relation.

Corollary 3.14 lh is a prime S5-consequence rela

tion if and only if it is a stable consequence relation.

The equivalence of prime S5 and stable consequence

relations can now be combined with Theorem 2.1, and

we obtain that prime S5-consequence relations are

equivalent to Scott consequence relations. This fact

can be seen as the source of nonmonotonic degener

ation of modal nonmonotonic reasoning based on S5

(cf. [18]).

To end this section, we introduce still another impor

tant consequence relation.

As has been shown, stable consequence relations are

already monotonic. It turns out that there are two

weaker, nontrivial systems that are in some sense max

imal. As was proved by Schwarz in [17], nonmonotonic

modal logics based on KD45 and SW5 are maximal

nonmonotonic logics satisfying certain natural condi

tions. Schwarz proposed to treat nonmonotonic SW5

as a plausible candidate for nonmonotonic logic of

knowledge.

As we have demonstrated, the first nonmonotonic logic

corresponds to strongly autoepistemic consequence re

lations. It turns out that the characteristic axiom of

SW5, the so-called 'weak' 5 axiom

A A -<LA -» L-<LA,

is equivalent in our system to the following rule:

(Conditional Factoring)

a,B:b\\-A a:b,B\rA

a:b\\-B-*A '

We will say that a default consequence relation is

strongly reflexive if it is reflexive and satisfies (Con

ditional Factoring). We have the following result:

Theorem 3.15 lh is a prime SW5- consequence re

lation if and only if it is a regular strongly reflexive

consequence relation.

The results of this section show that there is a remark

able correspondence between major structural types of

default consequence relations and well-known modal

nonmonotonic logics. This correspondence can also be

considered as a justification of the claim that partic

ular modal axioms, as distinct from ordinary modal

propositions, are important for modal nonmonotonic

reasoning only to the extent they influence the struc

tural properties of the associated modal consequence

relations.

4 REDUCTIONS AND

EMBEDDINGS

We let C0 denote the subset of Ci consisting of all

propositions without occurrences of L; such proposi

tions will be called objective. For any set of proposi

tions u from Cl, we let u„ denote the set u n C0 and

tJ0 the set C0 \ u. Note that, for any modal default

consequence relation lh, its restriction to C0 is clearly

an objective default consequence relation having the

same structural rules as lh. We will denote this objec

tive subrelation by 0lh.

All nonmonotonic objects we have considered in this

paper were stable sets, and it is well-known that the

latter are uniquely determined by their objective sub

sets (kernels). This suggests a possibility of reducing

modal nonmonotonic reasoning to nonmodal one. The

only question here is whether the reasoning about the

kernels can be accomplished entirely in a nonmodal

framework. This was the question we considered in

[1]. The main result proved there amounted to demon

strating that if lh is a modal introspective consequence

relation and u a stable set, then

• u is a Ih-stable set iff u0 is a 0lh-stable set;

• u is a Ih-expansion iff u0 is a 0lh-expansion;

• u is a ground Ih-extension if and only if u„ is a

„lh-extension.

(Ground extensions are extensions which are stably

minimal, that is, there is no Ih-stable set v such that

V0 C ti0)

These results can be reformulated as saying that, for

consequence relations that are introspective, the re

duction of modal consequence relations to their ob

jective subrelations provides an adequate translation

with respect to stable sets, expansions and ground ex

tensions. As to extensions in general, it was shown

that, for any introspective consequence relation lh, we

can construct an objective strongly autoepistemic con

sequence relation such that its stable sets coincide with

kernels of Ih-stable sets and its expansions are exactly

kernels of Ih-extensions.

Since introspective consequence relations form a rep

resentative class of consequence relations with respect

to the key nonmonotonic objects, the above reduction

provides, in fact, the crucial step in a general transla

tion from modal nonmonotonic logics to default logics.

It shows that objective subrelations of modal intro

spective consequence relations embody all the essential

information about the corresponding modal nonmono

tonic objects.
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We will consider below the reverse problem, namely

the problem of translating, or embedding, objective

default consequence relations into the corresponding

(prime) modal consequence relations.

It turns out that the maximal 'host' modal logic for ob

jective introspective consequence relations is the logic

determined by the following Kripke frames: the set of

worlds M is the union of three disjoint sets Mi , Mi

and M3 (where M3 ^ 0) and the accessibility relation

is [(Mi U M2) x (M2 U M3)] U (M3 x M3). We will

denote this logic by KD4I. This logic contains KD4

and is included in both S4F (see [19]) and KD45.

It is in fact equivalent to the logic KD4 3B3 in the

classification of [2] .

Theorem 4.1 Any objective introspective conse

quence relation coincides with the objective subrelation

of some prime KD4I-consequence relation.

In view of the above mentioned results, the embedding

is faithful with respect to stable sets, expansions and

ground extensions. Note also that in view of Corol

lary 3.9, objective sequents in KD4I-consequence re

lations are equivalent to their Truszczyriski's trans

lations. Thus, it can be said that Truszczyriski's

translation of defaults generates an exact translation

of objective introspective consequence relations into

prime KD4I-consequence relations. Moreover, it fol

lows from Theorem 3.8 that prime KD4-consequence

relations are already introspective. Consequently, any

modal logic in the range (KD4—KD4I) can serve as

a host logic for such a translation.

The importance of the above theorem lies not only

in demonstrating that defaults can be translated into

modal formulas. What is even more important is that

it can be used to show that extension of objective

introspective consequence relations to modal KD4I-

consequence relations is conservative with respect to

provability of objective sequents. In other words, addi

tion of the modal axioms of KD4I to an objective in

trospective consequence relation cannot result in prov

ability of some new objective sequents. Formally, we

have

Theorem 4.2 Let s be an arbitrary set of objective se

quents, lh? the least objective introspective consequence

relation containing s, and \bl the least prime KD4I-

consequence relation containing s. Then

lh|= 0\r\.

The theorem says that, given a set of objective se

quents s, an objective sequent is provable from s us

ing all the rules and modal axioms that hold in prime

KD4I-consequence relations if and only if it is prov

able from s using only the basic rules of introspective

consequence relations. This result complements the

results about reduction of introspective consequence

relations to their objective subrelations, discussed ear

lier in this section, by showing that the latter are au

tonomous with respect to provability of objective se

quents.

Another consequence of the above embedding theo

rem is the following result for reflexive consequence

relations:

Theorem 4.3 Any objective reflexive consequence re

lation coincides with the objective subrelation of some

prime S4f- consequence relation.

Again, Theorem 3.10 implies that any modal logic in

the interval (S4—S4F) is appropriate for such an em

bedding.

The next theorem shows that, as can be expected, the

logic SW5 is a modal counterpart of strongly reflexive

consequence relations.

Theorem 4.4 Any objective strongly reflexive conse

quence relation coincides with the objective subrelation

of some prime SW5-consequence relation.

Theorem 3.15 can be used this time to show that SW5

is the only logic that permits the embedding.

Note that the above two theorems also imply that the

corresonding objective consequence relations are con

servative with respect to their associated modal con

sequence relations.

Finally, we will consider autoepistemic consequence re

lations.

Theorem 4.5 Any objective (strongly) autoepistemic

consequence relation coincides with the objective sub-

relation of some prime K(D)4 5- consequence relation.

As the following theorem shows, for autoepistemic con

sequence relations we have a perfect match between

objective and modal variants.

Theorem 4.6 Two modal autoepistemic consequence

relations having the same objective subrelations coin

cide.

The theorem implies that there is a one-to-one corre

spondence between prime K45-consequence relations

and objective autoepistemic consequence relations. In

other words, we have a full-fledged equivalence be

tween autoepistemic logic and a particular kind of ob

jective default consequence relations. In fact, we have

more. As Konolige demonstrated, for any set of modal

propositions there exists a K45-equivalent set of dis

junctive clauses without nested occurrences of L (see

[6], Proposition 3.9). Now, taking into account the

deduction rules that hold for prime K45-consequence

relations (see Corollary 3.12), any such clause

->LAi V • • • V ->An V LBi V • • • V LBm V C
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can be transformed into an objective sequent

A\ , . . . , An '■ B\ , . . . , Bm Ih C.

Thus, any set of modal propositions can be assigned

an 'autoepistemicaly equivalent' set of objective se-

quents. For a set of propositions a, let a* denote the

corresponding set of objective sequents. The following

theorem shows that provability in K45 is reducible to

provability of objective sequents in autoepistemic con

sequence relations.

Theorem 4.7 For any set of modal propositions a

and any proposition A, A is provable from a in K^5

if and only if any sequent from {A}' is provable from

a' using the rules of an (objective) autoepistemic con

sequence relation.

This result shows, in fact, that the modal logic K45 it

self is reducible to objective autoepistemic consequence

relations. As a corollary, we also have a reduction of

modal logics KD45 and S5 to objective strongly au

toepistemic and stable consequence relations, respec

tively.

5 CONCLUSIONS

We see the notion of a default consequence relation

as the main contribution of the paper. As the re

sults presented above demonstrate, it can be consid

ered as a natural generalization of default logic, on

the one hand, and modal nonmonotonic logics, on the

other. Moreover, default consequence relations have

given us a convenient 'common ground' for studying

the relationship between these two formalizations of

nonmonotonic reasoning. It should be noted, that the

suggested translation, or embedding, of different kinds

of objective default consequence relations into the cor

responding modal logics (as well as the reverse reduc

tions described in [1]) have an advantage over earlier

attempts in that they are not restricted as such to

particular 'preferred' nonmonotonic objects. Rather,

they establish a direct correspondence between modal

and default-based formalizations of different kinds of

nonmonotonic reasoning.

Both default and modal nonmonotonic formalisms

have advantages of their own. For nonmodal de

fault systems it is mainly conceptual simplicity and

avoidance of nested layers of modalities. For modal

formalisms it is convenience of working with familar

modal constructions, for which the underlying theory

and semantics already exist. As the results of the pa

per show, in most cases we can freely choose each of

these formalisms.

There are many other possibilities of using the sug

gested formalism of default consequence relations. We

will mention here only one such possibility. Instead

of using a single modal operator both for positive and

negative assumptions, we may consider bimodal de

fault consequence relations defined in the language

with two modal operators, say K and not such that,

roughly, K is intended to characterize positive assump

tions and not is 'responsible' for negative assumptions

(nonmonotonic systems of this kind were suggested

in [7] and [8]). Consequently, the two modal axioms

of modal default consequence relations should be re

placed by the following pair of axioms:

A:<bVrKA 0 : A Ih not A.

The main distinctive feature of such systems, as com

pared with ordinary modal default consequence rela

tions, is that the Consistency principle, A : A Ih ±, is

no longer valid. (As we mentioned, (Consistency) is an

immediate consequence of the two original modal ax

ioms.) Such rules as (Cut), (Positive Closure) and (Re-

flexivity) will characterize now only the K operator,

while, e.g., (Negative Closure) will impose a (normal

ity) constraint on not. Rules that involve both posi

tive and negative premises, such as (Consistency) and

(Factoring), will characterize the relation between the

two opertors. Note, for example, that a modal axiom

KA —»• ->noti4 implies (Consistency), while (Factor

ing) implies ->not.A —* KA. Finally, it is interesting

to note that rejection of Consistency creates a possi-

bilty of nontrivial systems that use both (Reflexivity)

and (Factoring)4, a possibility that were excluded in

the present paper.

4A system of this kind is suggested, in fact, in [16] as a

basic logical paradigm for logic programming.



74 A. Bochman

References

1. A. Bochman (1993) Modal nonmonotonic logics de-

modalized. Annals of Mathematics and Artificial In

telligence (to appear).

2. R. A. Bull and K. Segerberg (1984). Basic modal

logic. In D. Gabbay and F. Guenthner (eds.) Hand

book of Philosophical Logic, 1-88, Dordrecht: D. Rei-

del.

3. M. C. Fitting, W. Marek, and M. Truszczyriski

(1992). The pure logic of necessitation. J. of Logic

and Computation bf 2:349-373.

4. D. M. Gabbay (1976). Investigations in Modal and

Tense Logics. Dordrecht: D. Reidel.

5. D. M. Gabbay and H. J. Sergot (1986). Negation

as inconsistency. J. of Logic Programming 1:1-35.

6. K. Konolige (1988). On the relation between de

fault and autoepistemic logic. Artificial Intelligence

35:343-382.

7. V. Lifschitz (1991). Nonmonotonic databases and

epistemic queries. In J. Myopoulos and R. Reiter

(eds.) Proceedings of International Joint Conference

on Artificial Intelligence, 381-386. San Mateo, Calif.:

Morgan Kaufmann.

8. F. Lin and Y. Shoham (1992). A logic of knowl

edge and justified assumptions. Artificial Intelligence

57:271-289.

9. W. Marek, G. F. Shvarts, and M. Truszczyriski

(1991). Modal nonmonotonic logics: ranges, charac

terization, computation. In Proc. Second Interna

tional Conference on Principles of Knowledge Rep

resentation and Reasoning, KR'91 , 395-404. Cam

bridge, MA: MIT Press. A revised and expanded ver

sion appeared in J. of the ACM (1993) 40:963-990.

10. W. Marek and M. Truszczyriski (1989). Relat

ing autoepistemic and default logics. In Principles

of Knowledge Representation and Reasoning, 276-288.

San Mateo, Calif.: Morgan Kaufmann.

11. W. Marek and M. Truszczyriski (1990). Modal

logic for default reasoning. Annals of Mathematics and

Artificial Intelligence 1:275-302.

12. W. Marek and M. Truszczyriski (1992). More on

modal aspects of default logic. Fundamenta Informat-

icae 17:99-116.

13. D. McDermott (1982). Nonmonotonic logic II:

Nonmonotonic modal theories. Journal of the ACM

29:33-57.

14. R. C. Moore (1985). Semantical considerations on

non-monotonic logic. Artificial Intelligence 25:75-94.

15. R. Reiter (1980). A logic for default reasoning.

Artificial Intelligence 13:81-132.

16. J. S. Schlipf (1992). Formalizing a logic for logic

programming. Annals of Mathematics and Artificial

Intelligence 5:279-302.

17. G. Schwarz (1992). Reflexive autoepistemic logic.

Fundamenta Informaticae 17:157-173.

18. M. Tiomkin and M. Kaminski (1991). Non

monotonic default modal logics. Journal of the ACM

38:963-984.

19. M. Truszczyriski (1991). Modal interpretations of

default logic. In J. Myopoulos and R. Reiter (eds.)

Proceedings of International Joint Conference on Ar

tificial Intelligence, 393-398. San Mateo, Calif.: Mor

gan Kaufmann.

20. M. Truszczyriski (1991). Embedding default

logic into modal nonmonotonic logics. In A. Nerode,

W. Marek and V. Subramanian (eds.), Logic Program

ming and Non-Monotonic Reasoning , 151-165. Cam

bridge Mass.: The MIT Press.



75

Toward a Logic for Qualitative Decision Theory

Craig Boutilier

Department of Computer Science

University of British Columbia

Vancouver, British Columbia

CANADA, V6T 1Z4

email: cebly@cs.ubc.ca

Abstract

We present a logic for representing and reasoning with

qualitative statements of preference and normality and

describe how these may interact in decision making

under uncertainty. Our aim is to develop a logical

calculus that employs the basic elements of classical

decision theory, namely probabilities, utilities and ac

tions, but exploits qualitative information about these

elements directly for the derivation of goals. Prefer

ences and judgements of normality are captured in a

modal/conditional logic, and a simple model of action

is incorporated. Without quantitative information, de

cision criteria other than maximum expected utility are

pursued. We describe how techniques for conditional

default reasoning can be used to complete information

about both preferences and normality judgements, and

we show how maximin and maximax strategies can be

expressed in our logic.

1 Introduction

We typically expect a rational agent to behave in a manner

that best furthers its own interests. However, an artificial

agent might be expected to act in the best interests of a user

(or designer) who has somehow communicated its wishes

to the agent. In the usual approaches to planning in AI, a

planning agent is provided with a description of some state

of affairs, a goal state, and charged with the task of discov

ering (or performing) some sequence of actions to achieve

that goal. This notion of goal can be found in the earli

est work on planning and persists in more recent work on

intention and commitment [10]. In most realistic settings,

however, an agent will frequently encounter goals that it

cannot achieve. As pointed out by Doyle and Wellman

[12] an agent possessing only simple goal descriptions has

no guidance for choosing an alternative goal state toward

which it should strive.

Straightforward goal-driven behavior tends to be inflexible:

an agent told to ensure that part A and part B are at location

L by 5PM will be unable to do anything if it cannot locate

B or if something prevents it from reaching L by 5PM. One

might suppose that the agent should at least deliver A to L

as close to 5PM as possible. While such partial fulfillment

ofdeadline goals [ 1 6] undoubtedly arises frequently is prac

tice, more general mechanisms will often be required. If A

and B can't be delivered, perhaps alternate parts C and D

should be; or if the SPM deadline can't be met, the agent

should wait until next week. To this end, a recent trend in

planning has been the incorporation of decision-theoretic

methods for constructing optimal plans [11]. Decision the

ory provides most of the basic concepts we need for rational

decision making, in particular, the ability to specify arbi

trary preferences over circumstances or outcomes. This

allows desired outcomes or goals (and hence appropriate

behaviors) to vary with context.

Most decision-theoretic analysis is set within the frame

work ofmaximum expected utility (MEU). One impediment

to the general use of such decision-theoretic tools is the re

quirement to have both numerical probabilities and utilities

associated with the possible outcomes of actions. It is quite

conceivable that such information is not readily available to

the agent. We can often expect users to present information

in a qualitative manner, including qualitative preferences

over outcomes (one outcome or proposition is preferred to

another) and qualitative probabilities (describing the rela

tive likelihood of propositions or outcomes). The ability to

reason directly with such qualitative constraints is therefore

crucial. An appropriate knowledge representation scheme

will allow the expression of constraints of this form and

allow one to logically derive goals and reasonable courses

of action, to the extent the given information allows.1

'While the foundations of decision theory are, in fact, based

on such qualitative preferences [26, 29], the move to numerical

utilities (and probabilities) requires that a preferences and likeli

hoods be calibrated by means of questions concerning acceptable

exchanges between outcomes and lotteries. For an agent behaving

according to the preferences of some user, this requires that either

a) the user's preferences be so completely specified that such cal

culations can be made; or b) the user (or the source of preference

information) be available to be queried about preference informa

tion as the need arises. Furthermore, a complete calibration of

just the preference ranking, in the most fortunate circumstances,

requires a number of queries at least as large as the number of pos

sible worlds (exponential in the number of prepositional atoms).

Such a mechanism is also often criticized because the queries re
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In this paper, we describe a logic and natural possible worlds

semantics for representing and reasoning with qualitative

probabilities and preferences, and suggest several reason

ing strategies for qualitative decision making using this

logic. We can represent conditional preferences, allowing

(derived) goals to depend on context. Furthermore, these

conditional preferences are defeasible: I might have a gen

eral preference for the proposition A (e.g., that parts be

delivered to customers on time) but have a more specific

"defeating" preference for -<A if a customer's account is

past due. Semantically, preferences will be captured by an

ordering over possible worlds, corresponding to an ordinal

value function. The logic that captures such default pref

erences will exactly match existing conditional logics for

default reasoning and belief revision [4, 7, 8]. Furthermore,

the component of the logic for capturing qualitative prob

abilities will be isomorphic, with a (separate) normality

ordering on worlds representing their relative likelihood.

In order to strengthen possible conclusions, we will also

present reasoning strategies for completing information

about preferences and likelihoods, in essence, making as

sumptions about unstated constraints. In addition, we de

scribe several ways of making decisions with such com

pleted information. These decision making strategies are

motivated by the fact that the scales of normality and pref

erence on which worlds are ranked are incomparable. This

reflects the fact that user specified constraints provide qual

itative information about the structure of the two rankings,

not their relative magnitudes. We will discuss conditions

under which decisions are sound in this framework.

In Section 2, we present the basic logic of preferences and

its semantics, and show how existing techniques for con

ditional default reasoning can be used to make various as

sumptions about incomplete preference orderings. In Sec

tion 3, we add normality orderings to our semantics and

describe a logic for dealing with both orderings. We de

scribe the derivation of ideal goal states, roughly, the best

situations an agent can hope for given certain fixed circum

stances. This generalizes the usual notion of a goal in AI,

for such goals are context-dependent and defeasible, and

can be derived from more basic information rather than

simply being asserted directly by a user. Such goals do not

take into account the ability of an agent to change the fixed

circumstances from which they are derived, nor the poten

tial inability of an agent to achieve a goal. In Section 4, we

explore a more realistic notion of goal that accounts for a

simple form of ability. In planning, as in the decision theory,

the ultimate aim is to derive appropriate actions to be per

formed that will achieve derived goal states. The ability of

an agent to affect the world will have a tremendous impact

on the actual goal states it attempts to achieve. One feature

that becomes clear in our model is that, given incomplete

knowledge, various behavioral strategies can emerge. We

show how these can be expressed in our logic. Finally, in

Section 5, we point out some related work, and on-going

quire answers to which a user does not have ready access or might

be uncertain [13].

investigations into how the trade-offs between utility and

probability can be captured in a qualitative manner. We also

point out some interesting connections to deontic logic.

2 Conditional Preferences

A goal is typically taken to be some proposition that we

desire an agent to make true. Semantically, a goal can be

viewed as a set of possible worlds, those states of affairs

that satisfy the goal proposition [10]. Intuitively, if we ig

nore considerations of ability, the set of goal worlds should

be those considered most desirable by an agent (or its de

signer). To achieve all goals is to ensure that the actual

world lies within this desirable set.

Unfortunately, goals are not always achievable. My robot's

goal to bring me coffee may be thwarted by a broken coffee

maker. Robust behavior requires that the robot be aware of

desirable alternatives ("If you can't bring me coffee, bring

me tea"). Furthermore, goals may be defeated for reasons

other than inability. It is often natural to specify general

goals, but list exceptional circumstances that make the goal

less desirable than the alternatives. For instance, a gen

eral preference for delivering parts within 24 hours may

be overridden when the account is past due (which may in

turn be overridden if the customer is important enough). To

capture these ideas, we propose a generalization of stan

dard goal semantics. Rather than a categorical distinction

between desirable and undesirable situations, we will rank

worlds according to their degree ofpreference. The most

preferred worlds correspond to goal states in the classical

sense. However, when such states are unreachable, a rank

ing on alternatives becomes necessary. Such a ranking can

be viewed as an ordinal value function.

The basic concept of interest will be the notion of condi

tional preference. We write I(B\A), read "ideally B given

A," to indicate that the truth ofB is preferred, given A. This

holds exactly when B is true at each ofthe most preferred of

those worlds satisfying A. From a practical point of view,

I(B\A) means that if the agent (only) knows A, and the

truth of A is fixed (beyond its control), then the agent ought

to ensure B. Otherwise, should ->B come to pass, the agent

will end up in a less than desirable ,4-world. The statement

can be roughly interpreted as "If A, do £." We propose

a bimodal logic CO for conditional preferences using only

unary modal operators. The presentation is brief. Further

details can be found in [3, 7].

2.1 The Logic CO

We assume a prepositional bimodal language Lb over a set

of atomic prepositional variables P, with the usual classical

connectives and two modal operators □ and □. Our possible

worlds semantics for preference is based on the class of

CO-models, of the form M — {W, <, <p), where W is a set

of possible worlds, <p is a valuation function, and < is a
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Figure 1: A COmodel

transitive connected binary relation on W? Thus, < is a

total preorder over W. In other words, W consists of a set

of <-equivalence classes or clusters of equally preferred

worlds, with these clusters being totally ordered by <. We

take < to represent an ordering of preference: v < w just

in case v is at least as preferred as w. This ordering is

taken to reflect the desirability of situations, however this is

to be interpreted (e.g., personal utility, moral acceptability,

etc.).3 Figure 1 illustrates a typical COmodel. The truth

conditions for the modal connectives are

1. M \=w Oa iff for each v such that v < w, M ^=v a.

2. M \=w 6a iff for each v such that w < v, M \=v a.

□a is true at a world w just in case a is true at all worlds

at least as preferred as w, while 5a holds just when a

holds at all less preferred worlds. The dual "possibility"

connectives are defined as usual: Oa =df ->o->a means

a is true at some equally or more preferred world; and

5a =<« -«5-.a means a is true at some less preferred

world. Ba Da A 6a and 5a =df Oa V 5a mean a

is true at all worlds and at some world, respectively. The

logic CO is axiomatized in [3, 7] (see also Section 4).

22 Expressing Conditional Preferences

We now define a conditional connective /(— | — ) to express

conditional preferences. I(B\A) can be read as "In the

most preferred situations where A holds, B holds as well,"

or "If A then ideally B." Intuitively, I(B\A) should hold

just when B holds at the most ideal .4-worlds.4 These truth

conditions can be expressed in Lb (see [3, 7]):

I(B\A) B-.A V $(A A 0(A D B)). (1)

This can be thought of, as a first approximation, as ex

pressing "If A then an agent ought to ensure that B" for

Relation < is connected iff w < votv < w for all v, w.

3While w < v usually means v is a preferred outcome, the

usual convention in AI is to "prefer" minimal models, hence we

take w < v to mean to is preferred.

Of course, nothing in our models forces the existence of such

minimal A-worids, but our definition is adequate in this case as

well [7]. The conditional holds vacuously when A is false at all

worlds.

making B true ensures an agent ends up in the best pos

sible A-situation. We note that an absolute preference A,

capturing the standard unconditional goal semantics, can be

expressed as I(A\T), or equivalently, <$OA. We abbrevi

ate this as 1(A) and read this as "ideally A". This can be

read as expressing an unconditional desire for A to be true.

The model in Figure 1 satisfies I(B\A) and I(A = B).

The dual ofpreference gives a notion of toleration or "don't

care conditions." If ~>I(->B\A) holds, then in the most

preferred A-situations it is not required that ->B. This

means there are ideal A-worlds where B holds, or that B is

"tolerable" given A. We abbreviate this sentence T(B\A).

Loosely, we can think of this as asserting that an agent is

permitted to do B if A. Unconditional toleration is denoted

T(A) and stands for ->/(-i-A), or equivalently, 6OA5 We

note that the relative preference of two propositions can be

expressed directly in CO. We write A <p B to mean A is

at least as preferred as B (intuitively, the best A-worlds are

at least as good as the best 5-worlds), and define it as:

A<P B =df 6(fl d OA)

Another useful notion is that of strict preference. If some

proposition is more desirable than its negation no matter

what other circumstances hold (e.g., deliveries to customer

C must be on time), we can assert

6(C D OC)

which ensures that every C-world Is preferred to any ~>C-

world. Of course, we cannot a priori abolish such situa

tions, for they may occur due to events beyond an agent's

control, and the relative preference of these strictly dispre-

ferred worlds is important. But in achieving stated goals

condition ->C will be avoided if at all possible. These strict

preferences can also be combined and prioritized [8].

The properties of the connective / are identical to those of

the conditional connective =*> defined in [2, 7] for default

reasoning (see also Section 4). They are distinguished sim

ply by their reading and the interpretation of the underlying

ordering <. As one should expect, absolute preferences, as

well as preferences in any fixed context, must be consistent,

for the following is a theorem ofCO (for any possible A):

I(B\A) D ^B\A)

However, an agent's preferences needn't be complete, for

T(B\A) A T(->B\A) is generally consistent. The property

ofpreferential detachment holds in CO:

I(B\A) A 1(A) D 1(B)

However, the principle offactual detachment

I(B\A)AA D 1(B)

'ideality and toleration are dual in exactly the sense that ne

cessity and possibility are. In deontic contexts, the connectives /

and T can be profitably interpreted as expressing some form of

obligation and permission, respectively (see Section S).
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Figure 2: Possible Interpretations of Preferences

is not valid. This has implications for the manner in which

an agent should derive its actual preferences in a given

situation, as we describe in the next section.

The most important feature is that preferences are condi

tional and can var^ with context. I can consistently assert

I(U\R) and I(U\R), that my agent should take an umbrella

if it's raining, and leave it home if not. The potential goals

or subgoals U or ->U depend on context and need not be

asserted categorically. Furthermore, these conditionals are

defeasible: I can consistently assert that I(U) without fear

of contradicting I(U\R). Notice that these two statements

allow the conclusion I(R) to be drawn — the agent can

derive its (or my) preference for sunny weather.

This defeasibility also allows one to assert, together with the

previous conditionals, I(U \R A D), that an umbrella is not

desired ifI drive a car to work (£>) instead ofwalking

Such a theory induces a partial structure like that illustrated

in Figure 2(a). As above, this entails I{-^D\R). However,

is this conclusion truly intended? On the surface, it seems

reasonable to accept all three preference statements, but

allow the assertion that I prefer to drive when it's raining.

Yet I(D\R) contradicts these other premises.

The (intuitive) source of the inconsistency is the statement

I(U\R). If I prefer to drive when it's raining, and prefer

not to have an umbrella when I drive, then I should not

assert that at the most ideal fl-worlds, U holds. At the

most ideal JJ-worlds, D (hence ->U) holds. Intuitively,

the preference for U given R only holds when I do not

drive; thus, I(U\RA -*D) holds but I(U\R) does not (see

Figure 2(b)). Figure 2(a), which validates I(U\R), seems

appropriate when I prefer walking to driving, even when

it's raining.

We notice, however, that the assertion I(U\R), I prefer an

umbrella when it's raining, seems (potentially) appropriate

even when Figure 2(b) is the intended model. This might

be the case if I am usually unable to drive to work. Even if

I prefer to drive, I probably won't be able to, so my stated

preference for U given R might reflect this fact. In this

case, the typical ii-worid is one in which ->D holds, and

hence one in which U should hold: my robot should bring

an umbrella along. Very often stated preferences do not ex

press ideal preferences. Rather, they may incorporate into

the stated context (here, R) certain assumptions or default

conclusions (such as ->D), and thus express a preference

conditioned on this extended context (R A ->D). The in

tended assertion I(U\R A ~iD) is perfectly consistent with

Figure 2(b), but it may be abbreviated as I(U\R) if the

default conclusion ->D is understood. It is therefore crucial

to realize that linguistically stated preferences can be come

in different varieties. A statement I{U\R) expresses an

ideal preference: in the best possible i?-worlds U is true.

Other varieties, such as those where the user has considered

the default consequences of a proposition before expressing

conditional preference, require the additional machinery we

introduce in Sections 3 and 4.6

23 Defeasible Reasoning with Preferences

The conditional logic of preferences we have proposed

above is similar to the (purely semantic) proposal put forth

by Hansson [17] for deontic reasoning (reasoning about

obligation and permission). In our logic, one may simply

think of I(B\A) as expressing a conditional obligation to

see to it that B holds if A does. Loewer and Belzer [22]

have criticized this semantics "since it does not contain

the resources to express actual obligations and no way of

inferring actual obligations from conditional ones." In par

ticular, they argue that any deontic logic should validate

something like factual detachment, not just deontic detach

ment (the deontic analog of preferential detachment). The

criticism applies equally well to our preference logic —

one cannot logically derive actual preferences — because

the principle of factual detachment does not hold. Factual

detachment expresses the idea that if there is a conditional

preference for B given A, and A is actually the case, then

there is an actual preference for B. While the inference is

a reasonable one, we do not expect, nor do we want it to

hold logically because it threatens the natural defeasibility

of our conditionals. For instance, if R and I(U\R) entailed

U, so too would R, D, I(U\R) and I(U\RAD). Defeasible

conditional preferences could not be expressed.

Various logics havebeen proposed to capture factual detach

ment in the deontic setting, and recently several complex

default reasoning schemes have been applied to this prob

lem [18, 20]. We propose a simple solution based on the

following observation: to determine preferences based on

certain actual facts, we consider only the most ideal worlds

satisfying those facts, rather than all worlds satisfying those

facts. Let KB be a knowledge base containing statements

of conditional preference and actual facts. Given that such

facts actually obtain, the ideal situations are those most

preferred worlds satisfying KB. This suggests a straightfor

ward mechanism for determining actual preferences. We

simply ask for those propositions a such that

Vco I{a\KB)

'Similarly, one can impose this alternate interpretation on di

rect statements of preference A <p B, as Jeffrey [19] does. On

our definition, A <p B means the best A-worlds are preferred,

whereas Jeffrey defines such a statement to mean the expected

utility of all A-worlds is greater than that for B.
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Figure 3: The Compact Preference Ordering

This is precisely the preliminary scheme for conditional

default reasoning suggested in [3]. This mechanism un

fortunately has a serious drawback: seemingly irrelevant

factual information, or information about the consequences

ofactions, can paralyze the derivation of actual preferences.

Example Let P denote that a certain part is painted, B that

it's blemished, and S that it's destined for shipment to

a specific warehouse. Let D, E and F denote possible

locations for a certain piece of equipment. If

KB = {I(P\B),B}

then the actual preference P is derivable using the

scheme suggested above. However, it is not deriv

able from KB1 — KB U {5}. Because conditionals

are_defeasible, it is consistent (with KB1) to assert

I(P\B A S), although intuitively 5 is irrelevant to

this preference.

Again consider KB with actual preference P. Suppose

a painting action that achieves P requires the equip

ment in question to be moved, making either D, E or

F true. Evenjhough not stated, one can consistently

assert I(P A D\B), I(P A E\B) or I(P A F\B). Thus

the agent cannot show that any of the moves D, E or

F is tolerated — it cannot decide what to do.

In this example, the fact that I(P\B) is the only stated

preference suggests that other factors are irrelevant to the

relative preference of situations. Intuitively, these factors

should be discounted. Unless stated otherwise, the part

should be painted regardless of its destination and the man

ner in which P is achieved (D, E or F) is not of concern.

One possible way to deal with this difficulty is to make

certain assumptions about the preference ordering. In par

ticular, it is possible to adopt the default reasoning scheme

System Z [23] in this context. Given a set of conditional

constraints, System Z enforces the assumption that worlds

are assumed to be as preferred as possible consistent with

these constraints. In other words, worlds are pushed down

as far as possible in the preference ordering, "gravitating"

toward absolute preference. In our example, the model

induced by this assumption is shown in Figure 3. (For

convenience we assume that I(P\B) and that D, E and

F are mutually exclusive.) Any ->J5-world that satisfies

P is deemed acceptable, regardless of the truth of the ir

relevant factors. The technical details of System Z may

be found in [23], and in [3] we describe how the Z-model

for any conditional theory can be axiomatized in CO. The

important features of this model are: a) the assumption in

duces a unique, "most compact" preference ordering; and

b) the consequences associated with these assumptions can

sometimes be efficiently computed.

Is the assumption that worlds are preferred unless stated

otherwise reasonable? For instance. Tan and Pearl [28]

argue that worlds should gravitate toward "indifference"

rather than preference. We cannot, of course, make sense

of such a suggestion in our framework, since we do not

have a bipolar scale (where outcomes can be good, bad or

neutral).' However, even ifan "assumption ofindifference"

were technically feasible, we claim that the "assumption of

preference" is the the right one in our setting.

Recall that we wish to use preferences to determine the

set of goal states for a given context C. These are simply

the most preferred C-worlds according to our ranking; call

this set Pref(C). If the agent brings about any of these

situations, it will have behaved correctly. A conditional

preference I(A\C) constrains the set Pref(C) to contain

only .A-worlds. Thus an agent will attempt to bring about

some A A C-world when C holds. But which A AC-

world is the right one? With no further information, System

Z will set PreftC) = \\A A C||; all A A C-worlds will

be assumed to be equally acceptable. This seems to be

appropriate: with no further information, any course of

action that makes A true should be judged to be as good

as any other. Any other assumption, such as gravitation

of worlds toward indifference, must make the set Pref[C)

smaller than \\A A C||. For example, if we rule out worlds

satisfying a from Pref[C), then PreflC) = \\A A C A -n*||.

This requires that an agent striving for Pref(C) make -**

true as well as A. This imposes unnecessary and unjustified

restrictions on the agent's goals, or on the manner in which

it decides to achieve them.

Notice that when worlds gravitate toward preference, our

agent becomes indifferent toward most propositions. By

maximizing the size of PreftC) (subject to the constraint

that A be true), we minimize the number of propositions

an agent will care about or attempt to make true in context

C. In our example, if A A C \f a and AAC\f ->a, then

T(a\C) and T(->a\C) will both be true in the Z-model.

Such indifference toward propositions in a given context

seems to be the most appropriate assumption.

In [3, 4] we characterize System Z, in a default reasoning

context, as embodying the principle of conditional only

knowing. When certain beliefs are stated, either actual

Note that in classical decision theory, such distinctions do not

exist An outcome cannot be good or bad, nor can an agent be

indifferent toward an outcome, in isolation; it can only be judged

relative to other outcomes. An agent can adopt an attitude of

indifference toward a proposition, as we explain below.
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or conditional, System Z ensures that only propositions

that can be shown to be believed (in a given context) are

actually believed. We show this to be a generalization of

the notion of only knowing often adopted in belief logics

[21] that accounts for defeasible beliefs. In the preference

setting, System Z captures the analogous assumption of

"only preferring." Those preferences that can be derived in

a given context C are assumed to be the only propositions

the agent prefers or cares about in that context.

Certain problems with System Zhavebeen shown to arise in

default reasoning. These problems occur when reasoning

about preferences as well. For example, if we have two

independent (absolute) preferences 1(A) and 1(B), System

Z will sanction both T(A\->B) and T(-iA\->B); once the

preference for B has been violated, one cannot ensure that

A is still preferred. Various modifications to System Z have

been proposed to deal with such problems, for instance, the

"rule counting" systems of [15, 5]. Such solutions can be

applied in this setting as well, but the assumption of "only

preferring" lies at the heart of these solutions as well.

We should point out that, while our presentation will assume

a unique preference ordering, the definitions to follow do

not require this assumption. We are typically given a set

of conditional premises of the form /(B|A), plus other

modal sentences constraining the ordering. Unless these

premises form a "complete" theory, there will be a space of

permissible orderings. A defeasible reasoning scheme such

as System Z can be used to complete this ordering, but we

do not require the use of a single ordering— the definitions

presented below can be re-interpreted to capture truth in all

permissible orderings (i.e., consequence in QDT).

3 Default Knowledge

We should not require that goals be based only on "certain"

beliefs in KB, but on reasonable default conclusions as well.

Consider the following preference ordering with atoms R (it

will rain), U (have umbrella) and C (it'scloudy). Assuming

C A R is impossible, we have:

{CRU, CRU} < CRU < {C~RU, CRU) < CRU

Suppose, furthermore, that it usually rains when its cloudy.

If KB = {C}, according to our notion of actual preference

in the last section, the agent prefers R and U — in the

best KB-world it doesn't rain despite the clouds. However,

we cannot use factual preferences (given KB) directly to

determine goals. Ideally, the agent would like to ensure

that it doesn't rain and that it doesn't bring its umbrella.

However, clearly the agent can do nothing to make sure R

holds (we return to this in the next section). Given this, the

"goal" U seems to be wrong. Once C is known, the agent

should expect R and act accordingly.

As in decision theory, actions should be based not just on

preferences (utilities), but also on the likelihood (proba

bility) of outcomes. In order to capture this intuition in a

qualitative setting, we propose a logic that has two order

ings, one for preferences and one representing the degree

of normality or expectation associated with a world.

The logic QDT, a step toward a qualitative decision theory,

is characterized by the class of QDT-models, of the form

M = (W,<P,<N,<p)

where W is a set of worlds (with valuation function y>).

<p is a transitive, connected preference ordering on W,

and <n is a transitive, connected normality ordering on

W. We interpret w <p v as above, and take w <n v to

mean w is at least as normal a situation as v (or is at least as

expected). The submodels formed by restricting attention

to either relation are clearly CO-models. The language of

QDT contains four modal operators: DP, BP are given the

usual truth conditions over <j>; and O//, Off are interpreted

using <n. The conditional I(B\A) is defined as previously,

using Dp, Dp. A new normative conditional connective

=> is defined in exactly the same fashion using DN, DN:

A => B =df QN-iAV$N(AADN(AD B)) (2)

The sentence A => B means B is true at the most normal

A-worlds, and can be viewed as a default rule. This con

ditional is exactly that defined in [3, 7], and the associated

logic is equivalent to a number of other systems (e.g., the

qualitative probabilistic logic of [14]). QDT can be axiom-

atized using the following axioms and inference rules for

both the preference operators DP,DP and the normality

operators DN, B^:

K D(A DB)D (DA D DB)

K' 6(A D B) D (Ba D DB)

TDADA

4 DA D DDA

SAD DOA

H 3(OA A DB) D B(A V B)

Nec From A infer DA.

MP From A D B and A infer B

We require the following axiom to capture their interaction:

PN DNA = BPA

Theorem 1 The logic QDT is sound and complete with

respect to the class of QDT-models.

Given a QDT-model and a (finite) set of facts KB, we de

fine the default closure of KB to be (where Lew. is our

propositional sublanguage)

Cl(KB) = {a £ LOT : KB => a}

That is, those propositions a that are normally true given

KB form the agent's set of default conclusions. As with

preferences, we base our presentation on a unique model
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determining a unique set of default conclusions. For in

stance, System Z is one mechanism for defining a unique

normality ordering. However, as with preferences, this as

sumption is not necessary. We assume (for simplicity of

presentation) that Cl(KB) is finitely specifiable and take it

to be a single prepositional sentence.8

An agent ought to act not as if only KB were true, but also as

if its default beliefs Cl(KB) were true. Given a model M,

as a first approximation of a definition of goal, we define an

ideal goal (wj.t. KB) to be any a € LCpl such that

M |= I(a\Cl(KB))

The ideal goal set is the set of all such a. Intuitively, the

ideal goals are those sentences that must be true if the agent

is to find itselfin a best possible situation satisfying Cl{KB).

In our previous example, where KB = {C}, we have that

Cl(KB) = CAR and the agent's goals are those sentences

entailed by C A R A U. It should be clear that ideal goals

are conditional and defeasible; for instance, given CAR,

the agent has the ideal goal U.

This formulation does not provide any indication as to what

an agent should do in order to achieve these ideal goals.

This will require the introduction of actions and ability (see

the next section). For instance, notice that the ideal goal set

is deductively closed, and we should not expect an agent to

have to consider each member of this set individually. The

notion of a sufficient condition for achieving all ideal goals

can be defined in QDT and will prove useful later.

Definition Let X be some proposition. C is a sufficient

condition given X iff C A X is satisfiable and M \=

Op(X D Op(X D -C)).

Intuitively, a sufficient condition C guarantees that an agent

is in some best possible X-world. Thus, ifX is some fixed,

unchangeable context, ensuring proposition C means the

agent has done the best it could.

Proposition 2 Let C be a sufficient condition given X and

letw\= C AX. Then v <P w only ifv £ X.

With respect to Cl(KB), ideal goals are necessary conditions

for ensuring the best situation. A sufficient condition C for

Cl(KB) guarantees the entire ideal goal set is satisfied.9

Proposition 3 If C is a sufficient condition for Cl(KB),

then M \= C ACl(KB) D afor all ideal goals a.

We will explore a detailed example in the next section. We

also examine the "priority" given to defaults over prefer

ences implicit in this scheme, where Cl(KB) is constructed

before the preference ranking is consulted.

8A sufficient condition for this property is that each "cluster" of

equally normal worlds in <n corresponds to a finitely specifiable

theory. This is the case in, e.g.. System Z [3].

'Hector Levesque (personal communication) has suggested

that sufficiency is the crucial "operator."

4 Ability and Incomplete Knowledge

The definition of an ideal goal given KB embodies the idea

that an agent should attempt to achieve the best possible

situation consistent with what it knows (as well as what it

conjectures by default). However, as we have emphasized,

this is suitable only when KB is fixed. If the agent can

change the truth of certain elements in KB, ideal goals may

be too restrictive. Thus, some notion of action and ability

must come into play in goal derivation. Actions must also

play a role ifwe are to derive what an agent should do, rather

than simply what it should achieve. Indeed, the term "goal"

is often interpreted in this way. This is especially important

when we notice that the set of propositions an agent should

achieve will always be deductively closed. Finally, actions

must play a role in factoring out unachievable desires. For

instance, an agent might prefer that it not rain; but this is

something over which it has no control. Though it is an

ideal outcome, to call this a goal is unreasonable.

4.1 Controllable Propositions

To capture distinctions of this sort, we introduce a simple

model of action and ability and demonstrate its influence on

conditional goals. We ignore the complexities required to

deal with effects, preconditions and such, in order to focus

attention on the structure and interaction of ability and goal

determination.

We partition our atomic propositions into two classes: P =

CuC. Those atoms A G C are controllable, atoms over

which the agent has direct influence. _Jhe only actions

available to the agent are do(A) and do(A), which make A

true or false, for every A G C. To keep the treatment simple,

we assume actions have no effects other than to change the

truth value of A. The atom U (have umbrella) is an example

of a controllable atom. Atoms in ? are uncontrollable, for

example, R (it will rain).

Definition For any set of atomic variables V, let V(P) be

the set of truth assignments to this set. If v G V(V)

and w G V(Q) for disjoint sets V, Q, then v;w G

V(V U Q) denotes the obvious extended assignment.

We can now distinguish three types of propositions:

Definition A_proposition a is controllable iff, for every

u G V(C), there is some v € V(C) and w G V(C)

such that v;u\= a and w; u ^ ->a.

A proposition a is influenceable iff, for some « G

V(C), there is some v G V(C) and u; G V(C) such

that v; u f= a and w; « |= -<a.

a is uninfluenceable iff it is not influenceable.

Intuitively, since atoms in C are within complete control of

the agent, it can ensure the truth or the falsity of any con

trollable proposition a, according to its desirability, sim

ply by bringing about an appropriate truth assignment. If

A, B G C then A V B and A A B are controllable. If a
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Figure 4: User Preferences

is influenceable, we call the assignment utoCa context

for a; intuitively, should such a contextjiold, a can be

controlled by the agent. If A € C, X € C then A V X is

influenceable but not controllable: in context X the agent

cannot do anything about the truth of A V X, but in context

X the agent can make AvX true or false through do(A) or

do(yl). Note that all controllables are influenceable. In this

example, X is uninfluenceable. The category of control

lability into which a proposition falls is easily determined

by writing it in minimal DNF. Let PI(q) denote the set of

prime implicants of a.

Proposition 4 a) a is controllable iffeach clause in PI(a)

contains some literalfrom C and some clause contains only

literalsfrom C. b) a is influenceable iff some literalfrom

C appears in PI(a). c) a is uninfluenceable iff no literal

from C appears in PI(a).

43, Complete Knowledge

Given the distinction between controllable and uncontrol

lable propositions, we want to define goals so that an agent

is required to do only those things within its control. A

first attempt might simply be to restrict the ideal goal set as

defined above to controllable propositions. The following

example shows this to be inadequate.

Example Consider five atoms: O, it is overcast; R, it

will rain; C, I have coffee; T, I have tea; and

H, my office thermostat is set high. My robot has

the default information O => R. The robot knows

KB = {0,H,C,T}: it is overcast and the ther

mostat is turned down. Its closure is Cl(KB) =

{O, R,~H,(?,T}. It can control the three atoms C,

T and H. Its preference ordering is designed to re

spect my preferences: when it's raining I prefer tea

when I arrive and the thermostat set high, otherwise

I prefer coffee and the thermostat set low. Thus, we

have the preference ordering illustrated in Figure 4.

(We assume O, R do not contribute directly to prefer

ence, and that priority has been given to C and T over

H. We also allow the possibility that both C and T

together satisfy a preference for either.) The robot has

to decide what to do before I arrive at the office.

It should be clear that the robot should not determine its

goals by considering the ideal situations satisfying Cl(KB).

In such situations, since H is known, H is true and in

deed, it is a simple theorem ofQDT that I(a\a). Thus, the

robot concludes that H should be true. This is clearly mis

taken, for considering only the best situations in which one's

knowledge of controllables is true prevents one from deter

mining whether changing those controllables could lead to

a better situation. Since any controllable proposition can be

changed if required, we do not require an agent to restrict

attention to those situations where KB or Cl(KB) is true.

The fact that H is known should not unduly influence what

are considered to be the best alternatives— H can be made

true if that is what's best.

Of course, the goals of an agent must still be constrained by

known uninfluenceable propositions. The agent should not

reject all of its knowledge. For example, if the preference

ordering above were modified to reflect my preference for

R, the agent should not base its goals on this preference

if it knows R. Making R false is beyond its control, and

it goals should determined by restricting attention to R-

worlds. Thus we insist that the best situations satisfying

known uninfluenceable propositions be considered.

Notice that we should not ignore the truth of controllables

when making default predictions. The prior truth value of

a controllable might provide some indication of the truth

of an uncontrollable; and we must take into account these

uncontrollables when deciding which alternatives are pos

sible, before deciding which are best. In this example, we

might imagine that the default O R doesn't hold, but

that O AH => R does: if it is overcast, then the thermostat

is set high because I anticipated rain before I left last night.

Our agent must use the truth of this controllable atom H

to determine the truth of the uncontrollable R, which in

turn will influence its decisions.10 Once accounted for in

forming Cl(KB), H can safely be ignored.

This leads to the following formulation ofgoals that account

for ability. We again assume a QDT-model M and sets C,

C. The uninfluenceable beliefset of an agent is

UI{KB) = {a e Cl(KB) : a is uninfluenceable}

For the time being, we assume that UI(KB) is complete:

the truth value of all uncontrollable atoms is known. This

set of beliefs determines an agent's goals.

Definition Proposition a is a complete knowledge (CK)

goal iff M |= /(a| UI(KB)) and a is controllable.

l0If a controllable provides some indication of the truth of an

uncontrollable or another controllable, (e.g., H => R) we should

think of this as an evidential rule rather than a causal rule. Given

our assumption about the independence of atoms in C, we must

take all such rules to be evidential (e.g., changing the thermostat

will not alter the chance of rain). This can be generalized using a

more reasonable conditional representation, and ultimately should

incorporate causal structure. Note the implicit temporal aspect

here; propositions should be thought of as fluents. We can avoid

an explicit temporal representation by assuming that preference is

solely a function of the truth values of fluents.
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As with ideal goals, the set of CK-goals is deductively

closed and should be viewed as a set ofnecessary conditions

in any rational course ofaction. Ofcourse, goals can only be

affected by atomic actions, so we will typicallybe interested

in a set of actions that is guaranteed to achieve each CK-

goal. An (atomic) action set is any set of controllable

literals. If A is such a set we use it also to denote the

conjunction of its elements. An atomic goal set is any

action set A that guarantees each CK-goal; that is

M (= UI(KB)AADa

for each CK-goal a. Clearly, such any atomic goal set

determines a reasonable course of action. Of course, such

action sets can be determined by appeal to sufficiency.

Theorem 5 Let A be some atomic action set. Then A is a

goal set iffA is a sufficient conditionfor UI(KB).

In our example above, where the robot knows O, possible

atomic goal sets are {T, H} and {C, T, H). Typically, we

will be interested in minimal goals sets, since these require

the fewest actions to achieve ideality. We may impose

other metrics and preferences on goals sets as well (e.g.,

associating costs with various actions). Notice that the

preference for tea does not prevent the robot from bringing

coffee. However, such constraints can easily be imposed

on the preference ordering. Furthermore, disjunctive goals

and "integrity constraints" pose no difficulty. If I have no

preference for coffee or tea, but prefer exactly oneof the

two, the generated atomic goal sets will be {C,T} and

{C, T). The set {C, T) is not a goal set in this case.

With default information and controllability in place, wecan

briefly return to the alternative interpretation of preference

statements suggested in Section 2. The assertion "I pre

fer an umbrella when it's raining" can now be interpreted

as I(U\UI({R})). Together with the "pure" preferences

I(D\R) and I(U\D) (and other background information as

before), one can conclude R => ->D.

In our goal derivation scheme, a certain priority is given

to defaults over preferences. Goals are determined by first

constructing the default consequences of KB, and then de

ciding what to do based on this knowledge as if it were

certain. In a truly decision-theoretic setting acting on the

basis of uncertain information is a function not only of its

likelihood, but also the consequences of being incorrect.

For instance, in our framework we might have the default

rule R => S, if I run across the freeway I will cross safely.

If this allows me to arrive at my destination five minutes

sooner than had I crossed at a crosswalk, the default as

sumption S will ensure that I run across the freeway: I

won't (by default) get hit by a car and I will arrive sooner.

In general, the (drastic) consequences ofbeing wrong in this

regard must be traded off against the probability of being

right. If the five minutes saved is not worth the risk, then I

decide to go to the crosswalk.

To express this tradeoff we must assume that the qualitative

scales of preference and normality are calibrated somehow,

and nothing in the constraints expressed by the user in our

setting allows such an assumption. In the concluding sec

tion we discuss "qualitative" ways around this problem.

However, the scheme presented here has a certain naive

appeal, which may be partly due to the observation that

defaults are usually expressed with such considerations in

mind [27, 25]. Furthermore, the scheme is conceptually

simple in that it embodies a principle analogous to the sep

arability of state estimation and control [11]. An agent

can calculate what is (probably) true of the world and sub

sequently and independently base its decisions upon these

beliefs. Finally, our scheme is applicable when likelihood

and preference information is truly qualitative and explicit

calibration of the orderings is not feasible. We can describe

some conditions under which the assumption ofseparability

is appropriate.

The logic of conditional normality statements can be given

a probabilistic interpretation as described in [7]. In particu

lar, the purely conditional fragment is equivalent to Adam's

system of t-semantics, which has also been applied to the

representation of defaults [14]. This means that there is a

probability assignment that ensures that every default rule

A => B corresponds to an assertion of high conditional

probability P(B\A) > 1 - 1, for any e > 0. Thus, we may

assume that a user chooses default rules with such a param

eter in mind, and that P(Cl(KB)\KB) > 1 - e. We can

also assume that the preference ordering is "constructed"

by clustering together worlds that have actual utility within

some reasonably small range, and treating distinct clusters

as separated by a reasonably large gap in utility. Thus, the

user can treat certain outcomes as having (more or less) in

distinguishable utility. Outcomes in different clusters have

sufficiently different utilities. To analyze the appropriate

ness of our goal derivation scheme, we make this assump

tion precise by assigning a point utility to each clus

ter in the preference ordering. Let 6 denote the smallest

gap 6i - 6i+i between any two adjacent point utilities (the

"smallest perceptiblechange" in utility) and let A = 6o-6„

denote the magnitude of the possible range in utility.

Goals (or decisions) are determined with respect to a given

KB, which induces a decision problem in the obvious fash

ion: given UI(KB) what is an optimal action set? Let U*

denote the expected utility of an optimal action under the

assumptions above, and let EU(A) denote the expected

utility of arbitrary action set A. For any goal set A, we

want to compare EU(A) to U* . We consider a special case

first. A degenerate KB is one for which every action set

applied to UI(KB) leads to an equally desirable outcome

— UI(KB) allows no decisions to be distinguished. Since

only unlikely circumstances (that contradict default conclu

sions) can influence the choice of action, our scheme cannot

generally be optimal in this case, but the error is bounded

by the probability of default violation:

Proposition 6 If KB induces a degenerate decision prob

lem, then U* — EU(A) < eAfor any goal set A.
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Degenerate problems will be rare: we imagine some differ

entiation among decisions is possible most of the time. If

this is the case, then we have U*— EU(A) < eA-(l-e)6.

Proposition 7 If KB is nondegenerate, any goal set A is

an optimal decision 1/5(1 - e) > eA.

This gives some idea of the circumstances under which the

assumption of separability is sound. Of course, it is un

reasonable to only reason with qualitative constraints that

meet these stringent requirements. But they do suggest

useful abstractions for ordinary goal derivation, and the

degree to which these conditions are approximated gives

reasonable assurance of good decisions. Thus, the separa

bility assumption provides a computationally manageable

procedure for finding "satisficing" solutions.

43 Incomplete Knowledge

The goals described above seem reasonable, in accord with

the general maxim "do the best thing possible consistent

with your knowledge." We dubbed such goals "CK-goals"

because they seem correct when an agent has complete

knowledge ofthe world (or at least ofuncontrollable atoms).

But CK-goals do not always determine the best course of

action if an agent's knowledge is incomplete. Consider the

preferences in the umbrella example and an agent with an

empty knowledge base. For all the agent knows it could rain

or not (it has no indication either way). Using CK-goals,

the agent ought to do(U), for the best situation consistent

with KB = 0 is RU. Leaving its umbrella is the best choice

should it turn out not to rain; but should it rain, the agent

has ensured the worst possible outcome. It is not clear that

U should be a goal. Indeed, one might expect U to be a

goal, for no matter how R turns out, the agent has avoided

the worst outcome.

In the MEU framework, once can deal with such uncer

tainty easily; but qualitatively, when trying to do as much

as possible with strictly ordinal value information, a dif

ferent approach is required. The scales of preference and

normality are unknown and incomparable. It is clear, in the

presence of incomplete knowledge, that there are various

strategies for determining goals. CK-goals form merely

one alternative. Such a strategy is opportunistic, or opti

mistic. Clearly it maximizes potential gain, for it allows

the possibility of the agent ending up with the best possi

ble outcome. In certain domains this might be a prudent

choice (for example, where a cooperative agent determines

the outcome of uncontrollables). Of course, another strat

egy might be the cautious strategy that minimizes potential

loss.1 1 This too can be captured in our logic.

Let a complete action set be any complete truth assignment

to the atoms in C. These are the alternativecourses of action

available. To minimize potential loss, we must consider the

These alternatives are analogs of the maximax and maximin

decision criteria for decision making without outcome probabili

ties (under strict uncertainty [13]).

worst possible outcome for each alternative, and pick those

with the "best" worst outcomes. If A\, Ai art complete

action sets, A\ is as good as Ai (Ai < Ai) iff

M |= $p(A2 A UI(KB) A ^P(Ai A UI(KB)))

Intuitively, if Ai < A% then the worst worlds satisfying

A\ are at least as preferred as those satisfying Ai (in the

context UI(KB)). It is not hard to see that < forms a

transitive, connected preference relation on action sets. The

best actions sets are those minimal in this ordering <. To

determine the best action sets, however, we do not need to

compare all action sets in a pairwise fashion:

Theorem 8 Ai is a best action set iffM\= Ai < ->Ai.

This holds because the negation of a complete action set

(a complete conjunction of literals) is consistent with any

other complete action set. If an agent chooses other than a

best action set, it opens the possibility for a worse outcome:

Theorem 9 Let Ai be a best action setfor KB and Aj be

any complete action set. For any w \= UI(KB) A At, there

is some v (= UI(KB) A Aj such that w <p v.

Now, we say a is a cautious goal iff

V{Ai : Ai is a best action set } \= a

In this way, if (say) A A B and A A ->B are best action sets,

then A is a goal but B is not. Simply doing A (and letting

B run its natural course) is sufficient. This notion of goal

has controllability built in (ignoring tautologies). In our

example above, U is a cautious goal.

Wecannot expect best action sets, in general, to be sufficient

in the same sense that CK-goal sets are. The potential for

desirable and undesirable outcomes makes it impossible to

ensure best outcomes consistent with UI(KB). However,

we can show that if there is some action set that is sufficient

for KB then all best action sets will be sufficient.

Proposition 10 Ifsome action setAforKB is CK-sufficient

for KB, then every best action set is CK-sufficient.

Hence, CK-sufficiency can be applied even in the case of in

complete knowledge. Its applicability implies that possible

outcomes of unknown uncontrollables have no influence on

preference: all relevant factors are known.

The cautious strategy seems applicable in a situation where

one expects the worst possible outcome, for example, in a

game against an adversary. Once the agent has performed

its action, it expects the worst possible outcome, so there is

no advantage to discriminating among the candidate (best)

action sets: all have equally good worst outcomes. How

ever, it's not clear that this is the best strategy if the outcome

of uncontrollables is essentially "random." If outcomes are

simply determined by the natural progression of events,

then one should be more selective. We think of nature as

neither benevolent (a cooperative agent) or malevolent (an

adversary). Therefore, even if we decide to be cautious
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(choosing among best action sets), we should account for

the fact that a worst outcome might not occur: we should

choose the action sets that take advantage of this fact.

Observations

It should be clear that if an agent can observe the truth

values ofcertain unknown propositions before it acts, it can

improve its decisions. In many cases, it will make the worst

outcomes better and change the actions chosen. To continue

the "umbrella" example, suppose R and C are unknown.

The agent's cautious goal is then U. If it were in the agent's

power to determine C or C before acting, its actions could

change. Observing C indicates theimpossibility of R, and

the agent could then decide to do(U).

Space limitations preclude a deep discussion, but briefly,

we can distinguish two types of uncontrollable atoms: ob-

servables and unobservables. Suppose KB determines a

best action set Ab- Intuitively, the observation of some

unknown uncontrollable atom O is worthwhile if it can

potentially change the agent's goal set. Cautious and op

timistic goals must be treated differently. Assume first a

cautious strategy. Note that a goal set accounts for some

worst outcome which must include either O or O. Thus, an

observation can never be guaranteed to change the agent's

decision: it may "validate" its cautious approach. In our

example, observing C will not change the agent's decision,

but observing (7 will. We say atom O has value iMs is not

a best action set for one of KB U {0} or KB U In this

case, observing O is worthwhile since it might (depending

on its actual truth value) change the agent's goal set. This is

a qualitative analog of value ofinformation. Of course, we

cannot quantify the potential value of making an observa

tion; but we may compare the relative values of two pieces

of information O and P. For simplicity, assume that posi

tive observations O and P are the "improving" outcomes.

Let Ao and Ap be best action sets for O and P. The value

of O is as great as that of P just when

M \= $p{ApAUI(Kmj{P})r\^P(Aor\UI(KBU{0})))

A similar treatment of optimistic goals can be given,

where the valuable observations are undesired outcomes

that change appropriate action. Observation Ohas value iff

-iI(AB \UI(KB U {O}) or -*I(AB \UI(KB U {O}) hold.

5 Concluding Remarks

Related Work

Other attempts to define goals using preferences bear some

relationship to our system. Doyle and Wellman [12] define

goals that exhibit a conditional aspect like ours. Roughly, B

is a goal given A just when AA B is preferred to A A ->B for

anyfixed circumstance. For instance, if such a relationship

holds A A B should be preferred given C, given ->C, and so

on. Such goals incorporate a ceteris paribus assumption:

B is preferred to ->B given A, all else being equal. This

guarantees that doing B will lead to a better situation when

ever A holds. Our conditional goals are much weaker. No

such assurances can be provided. Intuitively, if B is a goal

given A, then doing B will lead to a better situation, all

else being normal. However, this permits defeasible goals,

affording greater flexibility and naturalness of expression.

Only factors directly relevant to utility need be stated, and

others are assumed to be irrelevant. In addition, our goals

incorporate elements of controllability.

Pearl [24] has proposed a system using much the same

underlying logical apparatus as ours. However, condi

tional statements are taken to impose specific constraints

on utility and probability distributions, allowing expected

utility calculations (with "order of magnitude" values) to

be performed. While this allows stronger conclusions to

be reached in general, it makes stronger demands on the

input information as well. Thus, the system cannot be con

strued as truly qualitative, so in a sense the aim here is

different. Tan and Pearl [28] introduce a somewhat more

qualitative system. It handles quantified conditional desires

(adopting the machinery ofqualitativeprobability [14]). To

account for likelihood, they adopt our model of closing un

der default consequence before consulting preferences. In

completely specified preferences induce a "compact" model

where worlds gravitate toward neutrality, but as noted ear

lier, this is not an obviously useful strategy. Furthermore,

conditional preferences are given a ceteris paribus inter

pretation along the lines of Doyle and Wellman. Aside

from the unknown impact on the computation of compact

rankings, their particular semantics is of questionable value

for representing conditional preferences. For example, a

preference for A given A V B requires that ->A A ->B be

dispreferred. In our semantics, a conditional preference

given any a imposes no constraints on the degree of pref

erence of -ia-worlds.

Our representation ofpreferences draws much from work on

deontic logic, where preference may be determined by some

legal or moral code. Indeed, our logic can be applied to such

problems [6]. However, the slogan that characterizes ideal

goals, "do the best given what you know," is accepted in

much work on the derivation of obligations. Just as in

the derivation of goals, such a mechanism is not generally

appropriate. Some work in deontic logic has recently begun

to incorporate, as we do here, default information [20, 1].

Summary

We have presented a logic QDT for representing quali

tative preference and likelihood information. We have

shown how defeasible conditional preferences can be ex

pressed, and described several methods for goal derivation

based on the assumption that priority be given to defaults.

There are a number of ways in which this work can be ex

tended. Clearly, the account of action and ability is naive.

An object-level characterization of actions with true causal

structure can be added to the conditional framework [24] to

make goal derivation more realistic.

The assumption of separability and priority ofdefault infor

mation must be relaxed in many circumstances. In order to

allow reasonable decisions to be made, a logic that allows
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tradeoffs of likelihood and preference to be expressed in a

qualitative fashion is desirable. For instance, if I instruct my

robot that it should run across the street (instead of crossing

at the crosswalk) to save three minutes while fetching my

coffee, it can safely deduce that running across the street

is worth the risk if a courier deadline is involved. I have

implicitly calibrated part of its preference and normality

rankings with each other. We are currently exploring how

such mechanisms to reason directly with such qualitative

tradeoff information [9]. This can be viewed as a mecha

nism to deal with imperatives, and propagate the implicit

knowledge in such commands to other contexts.

Related to this is a fuller investigation of the different forms

preference information might take in such a setting. As

mentioned earlier, user preferences might be stated inde

pendently of typicality information, or might incorporate

expected circumstances and controllability information. A

well-developed logic for these and other "entangled" con

straints is certainly worth pursuing.
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Abstract

Models of agents that employ formal notions

of mental states are useful and often easier

to construct than models at the symbol (e.g.,

programming language) or physical (e.g., me

chanical) level. However, to enjoy these ben

efits, we must first supply a coherent picture

of mental-level models. What is required is

a description of the various components of

the mental level, their dynamics, their inter

relations, and their relations with the agent's

behavior. Only then will we have a complete

semantics for mental notions. The goal of

the first part of this paper is to provide this

picture.

The second part of this paper concentrates

specifically on belief ascription. We address

two fundamental unresolved problems. Our

mental-level model addresses the question of

grounding: where do beliefs come from, i.e.,

what links a system's symbol or physical level

with its beliefs? Our characterization of a

class of goal-seeking agents goes towards ad

dressing the question of adequacy: when can

we treat an entity as having beliefs? In ad

dition, we look at general assumptions that

can help constrain the set of beliefs an agent

can be ascribed. Together, these results sup

ply a basis for agent modelling using mental

states.

1 INTRODUCTION

Abstractions play an important role in our reasoning

ability. Arguably, the most fundamental abstraction

we use involves modelling other entities as having men

tal states. We use it to model other biological entities

and perhaps even ourselves; it may even be used in

modelling complex mechanical entities. Indeed, Allen

Newel, in a famous paper [Newell, 1980], argues that

intelligent systems can be (approximately) described

at a level higher than the symbol (e.g., programming

language) level and the physical level, which he calls

the knowledge level.

Having a mental-level model offers many advantages.

First, it allows us to describe a system's behavior with

out a detailed description of its lower-level, e.g., its

implementation as machine code, or its physical com

ponents. A mental-level model is also much more ac

cessible and intuitive to us. We can, therefore, use

it to critique a system by looking at its beliefs and

asking ourselves whether they make sense. Similarly,

we can examine a system's goals and criticize them.

And while a model at the symbol or physical level re

quires detailed knowledge that is often not available,

we can usually construct a mental model of an agent

by observing its behavior or by using general knowl

edge about the typical behaviors of this agent. An un

derstanding of the way this behavior is implemented

within this agent is not necessary, as we know from our

experience. This makes possible the task of predict

ing an agent's behavior without access to its program.

And as John McCarthy says [McCarthy, 1979],

(Ascription of mental states) is useful when

the ascription helps us understand the struc

ture of the machine, its past or future behav

ior, or how to repair and improve it. It is

perhaps never required even for humans, but

expressing reasonably briefly what is actually

known about the state of a machine ... may

require ascribing mental qualities.

In order to use this abstraction we must provide the

foundations required for modelling agents at the men

tal level. First, we need good models of the mental

level, i.e., its components, the way they interact, the

way they change over time, the manner in which they

determine the agent's behavior and their relation with

the lower level descriptions of an agent. This supplies

what we call the grounding of the mental notions. Sec

ondly, we must find criteria for determining whether

an entity can be described at this level. This is the

adequacy problem. Having answered these questions
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we can specifically address the theoretical and practi

cal questions of how to ascribe a mental state to an

entity, based on the available information. Typically

this information includes the observable behavior of

this entity and additional background information.

In this paper we attempt to address these problems.

We develop a formal model of the mental level, which

is motivated by work in decision theory [Luce and

Raiffa, 1957] and the work of [Rosenschein, 1985] and

[Halpern and Moses, 1990] on knowledge ascription.

The model is quite simple and intuitive. It uses a num

ber of components: beliefs, utilities, and a decision-

strategy to construct a mental-level model. This model

relates these components among themselves and with

the agent's behavior. It is built upon a lower-level de

scription of the agent, which we will call the physical

level.

We start with a static model. In this model the agent

associates with each possible action a number of plau

sible outcomes, which depend on the agent's beliefs.

The agent assigns a utility to each outcome, repre

senting the relative desirability of this outcome. The

agent then uses its decision strategy to choose an ac

tion based on the utilities of this action's outcomes.

Based on the static model we develop a more dynamic

model that also takes into account the issue of be

lief change, and provide two interesting representa

tion theorems. These theorems relate certain patterns

of belief change with a static representation of belief

based upon partial and total pre-orders. This model

supplies the grounding of the mental notions we use.

With this model at hand we proceed to specifically

examine the problem of belief ascription. We show a

class of goal-seeking agents that can be ascribed belief

in our framework, addressing the adequacy problem.

Unfortunately, it is often the case that we cannot as

cribe an agent unique beliefs based on the available

information. We examine this issue and suggest two

general heuristics for choosing among multiple candi

dates. Together these results provide a basis for agent

modelling using mental states.

1.1 A MOTIVATING EXAMPLE

To introduce the problem of belief ascription and the

motivation behind our proposed solution, we present

the following example.

Say we only care about four sets of worlds, described

by the propositions cold and rainy. Our agent, Alice,

has an accurate thermostat at home, but no windows.

In a coldArainy world, there are two worlds Alice con

siders possible: coldArainy and coldA-irainy. Because

in all her possible worlds cold holds, Alice knows that

it is cold. In general, to determine what Alice knows,

we construct her set of possible worlds. [Halpern and

Moses, 1990] shows us how we can construct this set

given an appropriate description of Alice.

Alice does not know that it is rainy, but does she be

lieve that it is rainy? It seems, that to answer this

question, more information is required. So suppose

we see Alice leaving home without an umbrella. This

seems to indicate that she does not believe it is rainy,

for otherwise she would have taken an umbrella. So

based on Alice's action we have deduced her beliefs.

However, to do so we implicitly assumed that Alice

does not like getting wet and that she had the choice

of taking an umbrella. That is, we used information

regarding Alice's desires and possible choices of action.

Let's be more precise. The following matrix describes

the outcome of Alice's two possible actions.

rainy ->rainy

take umbrella dry, heavy dry,heavy,look stupid

leave umbrella wet,light dry.light

Suppose that Alice's preferences are described by the

following utility function:

1 rainy -rainy

take umbrella 5 -1

leave umbrella -4 10

A belief that -<rainy is the only plausible world would

adequately explain Alice's behavior, as it will make

the choice of leaving the umbrella the preferred one.

Are other beliefs consistent with her behavior? Well,

she could not believe rainy to be the only plausible

world, for then she would have taken the umbrella.

Could she consider both worlds plausible? The answer

depends on her decision criterion. If she prefers to be

on the safe side, employing a maximin strategy, which

attempts to maximize the worst case outcome, then

had she believed both worlds to be plausible, she would

have taken the umbrella (with a worst case payoff of

— 1) rather than leaving it (with a worst case payoff of

—4). But if Alice follows the principle of indifference,

which takes the average payoff across plausible states,

belief in both states is consistent, since leaving the

umbrella has a better average payoff (3) than taking

it (2).

Overview The next section describes a mental-level

model based upon the notions of knowledge, belief, de

cision criteria, and utilities. In Section 3 this model is

used to define belief ascription. As we will see, often

we cannot ascribe unique beliefs to an agent, and in

Section 4 we suggest how one can narrow the choice

of appropriate belief ascriptions. In Section 5 we add

time to the static model of Section 2, enabling us to

investigate the issue of belief change in Section 6. In

Section 7, having described a dynamic picture of the

mental level, we characterize a class of agents to which

belief can be ascribed using this model. Section 8 con

cludes with a discussion of related work and some of

our assumptions.
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2 THE FRAMEWORK

Starting with a physical level description of a sys

tem containing a single agent and an environment, we

review knowledge ascription, following [Halpern and

Moses, 1990]. Then, we introduce a number of new

elements, beliefs, decision criteria, and utilities, and

relate them to the agent's behavior. To make our defi

nitions clear we will accompany them with a simplified

version of McCarthy's famous thermostats example.

Example 1 In [McCarthy, 1979], McCarthy shows

how we often ascribe mental states to simple devices,

thermostats in that case. Our goal is to formalize this

informal discussion. We assume that we have a ther

mostat in a room that controls the flow of hot water

into that room's radiator. The thermostat can either

turn-on or shut-off the hot water supply to this radia

tor. It chooses its action based on whether it senses the

temperature of the room to be above or below a certain

threshold value.

2.1 THE PHYSICAL LEVEL AND

KNOWLEDGE

An agent is described by a set of possible (local) states

and a set of possible actions. The agent functions

within an environment, which may also be in one of

a number of states. We refer to the state of the sys

tem, i.e., that of both the agent and the environment

as a global state. W.l.o.g., we will assume that the

environment does not perform actions. The effects of

the agent's actions are a (deterministic) function of its

state and the environment's state.1 This effect is de

scribed by the transition function. Together, the agent

and the environment constitute a state machine with

two components, with transitions at each state corre

sponding to the agent's possible actions. It may be the

case that not all combinations of an agent's local state

and an environment's state are possible. Those global

states that are possible are called possible worlds.

Definition 1 An agent is a pair A — (La,Aa),

where LA is the agent's set of local states and AA

is its set of actions. Lg is the environment's set of

possible states. A global state is a pair {lA,lg) £

LA x Lg. The set of possible worlds is a subset

S of the set of global states LA x Lg. A context2

C = (r), consists of the transition function, r :

(LA x Lg) xAA^ (LA x Lg).

A context specifies the environment (since Lg is im

plicit in t) and the effects of the agent's actions on

1 A framework in which the environment does act can be

mapped into this framework using richer state descriptions

and larger sets of states, a common practice in game theory.

2Though context is an overloaded term, its use here

seems appropriate, following [Fagin et al., 1994].

the whole system. Later on, when we add time to the

picture it will also specify the possible starting points

of a system.

Example 1 (continued): For our thermostat LA =

{—,+}. — corresponds to the case when the thermo

stat indicates a temperature that is less than the desired

room temperature and + corresponds to a temperature

greater or equal to the desired room temperature. How

ever, we take into account the fact that the thermo

stat may be mistaken in its measurement of the room's

temperature, which is indeed one of the situations Mc

Carthy considers. The thermostat's actions, AA, are

{turn-on, shut-off}. The environment's states, Lg,

are {cold,ok,hot}. We do not assume any necessary

relation between the states of the thermostat and the

environment. Therefore the set of possible worlds is

exactly LA x Lg. We chose the following transition

function:

cold ok hot

turn-on ok hot hot

shut-off cold ok ok

In our example, the result of an action does not depend

on the state of the thermostat. To simplify matters

we assume that the thermostat is not affected by its

actions, although this does not matter in this example.

Knowledge can be ascribed to the agent using the no

tion of a local state. An agent can distinguish between

two worlds in S if and only if its state in them, is dif

ferent. Therefore, an agent whose local state is / can

rule out as impossible all worlds in which his local

state would have been different, but cannot rule out

worlds in S in which his local state would have been

/. Knowledge corresponds to what holds in all worlds

the agent cannot distinguish from the actual world.

Definition 2 The set of worlds possible at /,

PW(l), is {w € S : the agent's local state in w is I}.

The agent knows ip at w € S if <p holds in all worlds

in PW(l), where I is its local state at w.

Example 1 (continued): While the thermostat, by

definition, knows its local state, it knows nothing about

the room's temperature. This stems from the fact that

in our model we allowed for the possibility of a mea

surement error by the thermostat, making all elements

of LA x Lg possible, e.g., (—,hot) is a possible world.

If truth assignments (for some given language) are at

tached to each world in S and a world s' is defined to

be accessible from s whenever the agent's local states

in s and s' are identical, we obtain the familiar 55

Kripke structure.
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The agent's observed, or programmed behavior is de

scribed by the protocol.

Definition 3 A protocol for an agent A is a func

tion Vj^ : L4 -» Aj{.

Example 1 (continued): Our thermostat follows the

following protocol:

state -
+

action turn-on shut-off

2.2 THE AGENCY HYPOTHESIS

What is belief? Belief is part of an abstract description

of the agent's state. It sums up the agent's view of the

world, and is a basis for decision making. Therefore,

we make belief a function of the agent's local state,

represented by a belief assignment, which assigns to

each local state a nonempty subset of the set of pos

sible worlds. These worlds are the worlds the agent

considers plausible.

Definition 4 A beliefassignment is a function, B :

La — 2s, such that for all I : B(l) ^ 0 and B(l) C

PW(l).

Example 1 (continued): One possible belief assign

ment, which would probably make the thermostat's

designer happy, is B(-) = {—,cold} and B(+) =

{+, hot}. From now on we will ignore the agent's local

state in the description of the global state and write,

e.g., B(+) = {hot}.

While knowledge (or PW(l)) defines what is theoret

ically possible, belief defines what, in the eyes of the

agent, is the set of worlds that should be taken into

consideration. We remark, that (after adding interpre

tations to each world) this approach yields a KDAh

belief operator.3

However, our view is that belief really makes sense as

part of a fuller description of the agent's mental level.

In order to describe this mental level and to relate it to

the agent's behavior, additional notions are required.

We start with the agent's preference order over the set

of possible states, represented by a utility function.

This preference order embodies the agent's desires.

Definition 5 A utility function is a function

u : S -+ R.

It is well known ([von Neumann and Morgenstern,

1944]) that a utility function can represent preference

Incidentally, this gives a relation between knowledge

and belief similar to the one proposed by Kraus and

Lehmann in [Kraus and Lehmann, 1988].

orders satisfying certain assumptions, which in this pa

per we will accept. This means that for any two states

si,S2'. si is preferred over s2 iff «(«i) > «(«2)-

Example 1 (continued): The goal of our thermostat

is for the room temperature to be ok. This can be rep

resented by a utility function which assigns 0 to global

states in which the environment's state (i.e., the room

temperature) is hot or cold, and which assigns 1 to

those states in which the environment's state is ok.

When the exact state of the world is known, the re

sult of following some protocol, V, is also precisely

known. (Remember that actions have deterministic

effects). We can therefore evaluate a protocol by look

ing at the utility of the state it would generate at the

actual world. However, due to uncertainty about the

state of the world, the agent considers a number of

states to be possible. It can then subjectively assess

V in a local state / by a vector whose elements are the

utilities of the plausible states V generates, i.e., the

worlds generated by using V at B(l).

Definition 6 Given a context C and a belief assign

ment, B, with an arbitrary, fixed, order on the set

B(l), for every I; the perceived outcome of a proto

col V in I is a tuple whose kth element is the utility of

the state generated by applying V in C, starting from

the kth state of B(l). 4

Example 1 (continued): We can construct the follow

ing table for the thermostats possible actions:

cold ok hot

turn-on 1 0 0

shut-off 0 1 1

If the thermostat 'knew' the precise state of the world,

e.g., that it is cold, it would have no trouble choos

ing the action turn-on as most preferred. When there

is uncertainty, e.g., B(l) — {cold, ok}, the thermostat

associates a perceived outcome of (1,0) with the ac

tion turn-on, and a perceived outcome of (0, 1) with

the action shut-off.

While utilities are easily compared, it is not a-priori

clear how to compare perceived outcomes, thus, how

to choose among protocols. A strategy for choice un

der uncertainty is required, which depends on e.g., the

agent's attitude towards risk. This strategy is repre

sented by the decision criterion, a function taking a

set of perceived outcomes, returning the set of most

preferred among them.

Definition 7 A decision criterion is a function

P ■ U„eN2E" - Un€N2*" (i.e. from/to sets of

For simplicity we assume a finite number of states. In

the general case we use functions instead of tuples, elimi

nating the need to order B(l).
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equal length tuples of reals), such that for all U €

Un6>2«"/,(W)CW.

Two decision criteria we have encountered are max-

imin, which chooses the tuples in which the worst

case outcome is maximal, and the principle of indif

ference which prefers tuples whose average outcome is

maximal5 (A fuller discussion of decision criteria ap

pears in [Luce and RaifTa, 1957, Brafman and Tennen-

holtz, 1994]).

Returning to the example of Section 1, if Alice con

siders two worlds plausible, rainy and -rainy, at

this order, the perceived outcome of the action take

umbrella is (5,-1), while the perceived outcome of

leave umbrella is (—4, 10). If Alice uses maximin she

prefers (5, —1), with a worst case outcome of —1, over

(—4,10), with a worst case outcome of —4. She will

therefore take the umbrella. Under the principle of

indifference, Alice prefers (—4, 10), with an average

utility of 3, over (5, —1), with an average utility of 2,

and will leave the umbrella. Notice how the perceived

outcome depends on Alice's beliefs. Had Alice believed

only -irainy to be plausible, the perceived outcome of

take umbrella would be a singleton, (—1).

We remark that decision criteria such as maximin can

be employed with preference relations satisfying as

sumptions weaker than those of [von Neumann and

Morgenstern, 1944].

We come to a key definition that ties all of the com

ponents we have discussed so far.

Definition 8 The agency hypothesis: the agent

follows a protocol whose perceived outcome is most

preferred (according to the agent's decision criterion)

among the set of perceived outcomes of all possible

protocols.6

The agency hypothesis takes the view of a rational bal

ance among the agent's beliefs, utilities, decision cri

terion and behavior. It states that the agent chooses

actions whose perceived outcome is maximal according

to its decision criterion. Thus, the choice of the pro

tocol is dependent upon B(l) and u, which define the

perceived outcome, and p, which helps choose among

the different protocols, based on their perceived out

come. The agency hypothesis states that these com

ponents are related via this 'rationality' constraint.

5 With an infinite set of tuples, maximin and the prin

ciple of indifference may not have a set of most preferred

tuples. This is fixed by, for example, choosing some cutoff

point.

8The agent's possible protocols, are implicitly defined

by the set of actions Aj^ (cf. Def. 1).

3 ASCRIBING BELIEF

We now show how belief can be ascribed according to

our framework. We will assume that we are ascrib

ing a complete belief assignment to an agent, i.e., one

that is defined in all local states. In many applica

tions one can only ascribe partial belief assignments,

e.g., if observations of the agent's actions exist only in

some states. It is quite straightforward to generalize

our discussion to this case.

Belief can be ascribed once we have certain informa

tion regarding the agent. We see this information as

putting the agent in some (extended) context, which

specifies some of the elements of the rational balance

we have just discussed. Our strategy is to look for

belief assignments confirming the agency hypothesis.

That is, beliefs that would lead an entity satisfying

the agency hypothesis to act according to the given

protocol when its utilities and decision criterion are

as given. This is a process of constraint satisfaction,

where our belief assignment is constrained by the given

extended context.

Definition 9 An extended context is a 3-tuple,

C = (r, u,p) (where, r,u and p are as previously de

fined). Given an extended context C, a belief assign

ment B is consistent with ,4's protocol, Vj^, if it

confirms the agency hypothesis regarding A.

It is clear that this approach could be used to assign

other mental states that are part of the agency hypoth

esis, e.g., we can ascribe goals (i.e., utilities) based on

the agent's beliefs, decision criterion, and actions. We

have chosen to concentrate on belief assignment. (This

choice is discussed in Section 8.) The problem of belief

ascription can now be formally stated as:

In an extended context C, what belief assign

ments are consistent with the agent's proto

col, if any?

Example 1 (continued): Given our knowledge of the

thermostat, what beliefs can we assign it? We know

the thermostat's protocol and goals. We will assume

that its decision criterion simply prefers tuples that

are not dominated by another tuple. Given this, we

have the following constraints on the thermostat's be

liefs: B(-) D {cold} and at least one of ok or hot are

in B(+). If the thermostat's beliefs violate these con

straints, the perceived outcome of the action prescribed

by its protocol would be strictly less preferred than the

perceived outcome of the other action.

Example 2 A simple game The following tree de

scribes a one-person decision problem based on a game

that appears in [Kreps and Wilson, 1982]:



92 R. I. Brafman and M. Tennenholtz

 

Initially the agent decides whether to choose Y or N.

If Y is chosen a payoff of 1 is obtained, otherwise the

environment chooses either y, with a payoff of 0 to the

agent, or n, with a payoff of x > 1. While game theo

reticians are mostly concerned with how games should

be played when the environment is another rational

agent, we ask a simple question: what can we say if

we observed the agent 's first move to be N? This is

an interesting question because it is easy to construct

a two person game based on this decision problem, in

which N is not a 'rational' move. Such behavior, while

perhaps irrational in some sense, can still be under

stood as rational given certain beliefs, e.g., that the

environment will play n.

The following payoff matrix describes the agent's de

cision problem (the different states of the world corre

spond to the environment's behavior if N is played):

y n

Y l 1

N 0 X

Having chosen N, if the agent's decision criterion is

maximin then regardless of the value of x, the agent

must believe that the environment will play n. Belief

that y is plausible is inconsistent with the agent's be

havior, since it would imply that Y should be chosen.

In the case of the principle of indifference, if x < 2,

N is chosen only if the agent believes only n to be

plausible. If x > 2 then a belief that both worlds are

plausible would also cause N to be preferred.

Another decision criterion is minmax regret. The re

gret of performing action ACT in a state s is the dif

ference between the best that can be done in state s and

the actual payoff of ACT in s. This decision criterion

prefers actions whose maximal regret is minimal. Here

is the 'regret ' matrix for our decision problem:

y n

Y 0 x - 1

N l 0

For an agent following minmax regret, if x < 2 the

agent must believe n to follow N, otherwise it may

believe either n or{n,y}.

4 CHOOSING AMONG BELIEF

ASSIGNMENTS

As we observed in the thermostat example, there are

often more than one consistent belief assignment. This

is not surprising, as we often require additional as

sumptions to ascribe unique beliefs to agents, or we

may need some lower level, implementation dependent,

information. Dennett [Dennett, 1987] paraphrases the

Duhemian thesis in this area, saying that belief and de

sire attribution are under-determined by the available

data.

Indeed, one way of obtaining a unique belief assign

ment in the thermostat example would be to use a bet

ter model. That is, by using domain specific informa

tion. Assume, for instance, that the thermostat prefers

not to change the course of action it is pursuing, if the

result is not expected to improve its utility, i.e., if cur

rently it is supplying hot water to the radiator then, all

other things being equal, it prefers not to change this

and shut-off the water supply. This assumption can

be incorporated into our model by adding the course

of action pursued into the state description and ap

propriately changing the utility function to reflect the

above consideration. In that case we may be able to

limit the number of consistent belief assignments

However, there are also domain independent assump

tions and preferences that we can make when ascribing

beliefs. These assumptions narrow down our choice,

without changing the model used. We look at two

such assumptions.

A common bias is to favor models that offer adequate

explanation of the data. This is the idea behind the

following:

Definition 10 A consistent belief assignment is

choice complete (within an extended context) if for

all local states, the decision criterion returns a unique

perceived outcome.

Assume that in all local states no two protocols have

the exact same perceived outcome. In that case, given

a consistent choice complete belief assignment, no pro

tocol is as preferred as the actual protocol. Thus, the

agent will not be indifferent among a number of most

preferred protocols. In this sense, a choice complete

belief assignment fully explains/justifies the agent's

choice of action.

Example 1 (continued): We have seen that any belief

assignment for state — that includes the state cold is

consistent. There are 4 such possibilities. However,

only one of them, B(-) = {cold} is choice complete.

Given this belief assignment the agent must choose the

action turn-on, while given any of the other S belief

assignments, the agent is indifferent to the choice be

tween turn-on and shut-off.
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A different modelling bias is toward greater general

ity. Given a number of belief assignments that explain

some behavior equally well, the preference is for those

making fewer assumptions regarding the agent's be

liefs. That is, belief assignments in which fewer worlds

are ruled out.

Definition 11 A belief assignment B is more gen

eral than B' i/Vi € : B'(l) C B(l) and B £ B' .

Given a set of belief assignments, B, B £ B is a most

general belief assignment (mgb) w.r.t. B if there is no

B' 6 B such that B' is more general than B.

Example 1 (continued): Any belief assignment that

is a non-empty subset of {ok, hot} is choice complete

for the state +. However, the most general choice

complete belief assignment for that state is precisely

{ok, hot}.

In the sequel we will usually assume that either the

generality bias is accepted or the combination of both

which prefers the most general in the set of consistent,

choice complete, belief assignments. As the following

lemma shows, in some sense, the latter is the best we

can do in terms of assigning beliefs that do not make

the agent's actions arbitrary.

Lemma 1 If B is most general choice complete, the

decision criterion satisfies the sure-thing principle7,

and in local state I two protocols have the same per

ceived outcome, then there is no choice complete belief

assignment under which their perceived outcome in I

differs.

Example 1 (continued): To summerize, we have the

following unique most general choice complete belief

assignment for the thermostat:

state -
+

belief cold not-cold

5 ADDING TIME

Because we assumed that the thermostat has no mem

ory nor that the environment has some special dy

namics, we were able to model them without explicitly

introducing time. However, time is essential for rea

sonably modelling many situation. Indeed the added

dimension of time allows us to examine the way the

mental state of an agent changes as it obtains new

information.

We incorporate time by adding the notion of a run,

a description of a full history of the system, and the

7That is, if it chooses v out of {v, «} then it chooses

vow out of {v o w,uo w}, where o is the concatenation

operator.

notion of an initial global state, a state from which the

system can start out.

Definition 12 Let Go C Lj^ x Lg be the set of ini

tial (global) states. A run is a sequence of states

so,s\,... such that Si G x Lg, s0 6 Go onrf

(Vifc > 0) (3a € AA) : r(st_i,a) = «t.8 The ex

tended system, ft, is the set of all possible runs.

Having changed from static states to runs, we must

redefined some of our basic notions.

Definition 13 The set of possible worlds, S = {s\s

is a global state appearing in a run in H } . A context

is redefined as C = (r, Go) and an extended context

is redefined as C = (r, Go,v,p). We redefine the utility

function as u : H —► R.

Applying a protocol V at a state s will generate a

unique run r whose initial state is s, where each state

of r is obtained by performing the action prescribed

by V at the previous state. This allows us to maintain

the notion of a perceived outcome because we can now

associate a utility with each protocol at each state, the

utility of the run that this protocol induces at that

state.9

One last adjustment; we defined a belief assignment as

a function B : Lj^ —* 2s . This definition will make it

hard for us to investigate belief change, i.e., the rela

tions between an agent's beliefs at different states of a

run. For example, if the agent has a clock, then its lo

cal state at two consecutive states of a run will differ,

because in each the clock's value would be different;

consequently, the states the agent considers plausible

at these local states would be disjoint. Rather than

add additional atemporal elements, such as an explicit

language, we overcome this problem by redefining a be

lief assignment as assigning possible runs, rather than

possible worlds, i.e., B : —► H. Because runs are

atemporal object, this choice makes the fundamental

changes in an agent's beliefs more clearly visible. 10

6 BELIEF CHANGE

With time added to our model, we must start consid

ering how the agent's mental state changes over time.

Belief ascription, as currently defined, allows erratic

change across local states. An extreme example would

be an agent whose local state changes from I to I', such

that PW(l) = PW(V), yet B(l) n B(l') = 0. Part of

8 Finite runs are modelled by runs in which 3nVm s„ =

'Notice the this requires extending the utility function

over suffixes of runs. This is quite straightforward given

our deterministic model of the environment.

10The interested reader may consult [Friedman and

Halpern, 1994], where belief change is investigated from

this perspective.
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Figure 1: The change in an agent's local state after

performing actions a and a', respectively.

our conception of agents involves an expectation that

their beliefs should change in a 'sensible' way ([Al-

chourron et al., 1985]). Constraints on belief change

across states are also of immense importance if we are

to be able to predict an agent's behavior. Having as

cribed beliefs to the agent based on past actions we

must have such constraints to deduce the agent's cur

rent beliefs. Having deduced the new beliefs, we can

use them to predict the agent's choice of action.

We will look at two patterns of belief change that

we find reasonable and prove two representation the

orems. The theorems show that there are two ways

of viewing these restrictions, either as constraints on

new beliefs imposed by the previous beliefs and the

new information, or as requiring a general static way

of representing the agent's beliefs. We can then incor

porate these restrictions into our model by requiring

a belief assignment to be consistent in the static sense

of Definition 9, and to exhibit the desired pattern of

belief change. This will redefine the problem of belief

ascription for agents that can acquire new information

while acting.

In what follows we will assume that the agent has per

fect recall, i.e., its local state contains all previous local

states. This describes agents that do not forget. How

ever, much of the following development also makes

sense when the agent has only partial memory of past

states. Perfect recall implies that an agent's local state

changes from one state to the next. Therefore, any two

states on the same run are distinguishable.

6.1 ADMISSIBILITY

Consider the following restriction on belief change: if

my new information does not preclude all of the runs

I previously considered plausible, I will consider plau

sible all runs previously considered plausible, that are

consistent with this new information.

We can illustrate this using Figure 1. The agent is

initially in local state /, where the possible runs are

u,v,w and y. Assume that B(l) = {u,w}. After per

forming action a the agent finds itself in state l\. If the

agent's beliefs are admissible then = {«}. How

ever, assume that B(l) = {u, v) and the agent arrives

at /2 after performing a. Now we cannot say anything

about the agent's beliefs at /2, even if its beliefs are

admissible (except of course B(li) C {w, y}).

Definition 14 A belief assignment B is

admissible,11 if for local states 1,1' such that I' fol

lows I on some run: whenever PW{l')C\B(l) ^ 0 then

B(l') = PW(l')nB(l); otherwise I' is called a revision

state and B(l') C PW{1') is otherwise not restricted.

If we were to assume that the worlds here are models

of some theory then, in syntactic terms, admissibility

corresponds to conjoining the new data with the ex

isting beliefs, whenever this is consistent. It is closely

related to the probabilistic idea of conditioning our

beliefs upon new information. Most work on belief re

vision makes additional requirements on beliefs follow

ing inconsistent information (what we call a revision

state). We will return to this issue in the end of this

section.

We can shed additional light on this restriction by

the following representation theorem. This theorem

shows that we can either ascribe the agent beliefs that

change locally in accordance to the admissibility re

quirement or we can ascribe the agent a more complex

static ranking structure that uniquely determines its

beliefs in each state. That is at each state / the set

B(l) is exactly the set of elements in PW(l) that are

minimal w.r.t. this ranking.

Definition 15 A well founded ranking r of a set

Q is a mapping from Q to a well ordered set O. Given

a subset Q' ofQ, the elements minimal in Q' are those

that have the minimal rank, i.e., are assigned the low

est element of O by r.

A ranking of Q associates each member of Q with the

group of other members having the same rank and

orders these groups according to the rank assigned to

them. In general one speaks of a total pre-order with

a minimal element. The elements of lower rank are

considered to be better, more preferred, or more likely.

Theorem 1 Assuming perfect recall, a belief assign

ment B is admissible iff there is a ranking function r

(i.e., a total pre-order) on the possible runs such that

B(l) = {* G PW(l) : sis r-minimal in PW(l)}.

6.2 WEAK ADMISSIBILITY

The requirement that belief assignments be admissi

ble may seem too strong. A weaker requirement is the

following: if my new state is consistent with a run I

believed before, I should still believe in that run's pos

sibility. However, unlike when my belief assignment is

"This is not to be confused with the notion of admissi

bility in game theory.
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admissible, once I learn that a run I considered plau

sible before is in fact impossible, I may additionally

consider plausible runs which I did not consider plau

sible before. However, if what I learn only reaffirm my

previous beliefs, i.e., I only learn that a run I did not

believe plausible is completely impossible, my beliefs

should not change. Formally:

Definition 16 A belief assignment is weakly ad

missible if when a local state I' follows I,

1. B(l') D B(l) n PW(l').

2. IfB(l) C PW(l') then B(l') = B(l)

Looking at Figure 1 again, if the agent believed in «, w

in / and its state changes to /i then it may believe ei

ther in u or in u, v. However, if the agent only believed

u to be plausible in /, then at l\ its only consistent be

lief is in u.

Fortunately, we can again relate the ascription of

weakly admissible beliefs to that of ascribing a static

partially ordered belief structures. Again, this struc

ture determines the agent's beliefs at / by choosing the

minimal elements of PW(l) according to this struc

ture.

Definition 17 A partial pre-order on Q is a partial

subset ofQxQ that is reflexive and transitive.

Theorem 2 The beliefs of an agent with perfect re

call are weakly admissible iff there is a partial order

< on the set of possible runs, such that its beliefs at

I correspond to the minimal runs in PW(l) according

to <.

Patterns of beliefs change similar to ours emerge in the

work of other researches (e.g., [Friedman and Halpern,

1994, Lamarre and Shoham, 1994]). Indeed, relations

between belief revision and belief update, and repre

sentations using partial and total pre-orders are well

known. It was shown in [Katsuno and Mendelzon,

1991b] that any revision operator that satisfies the

AGM postulates ([Alchourron et ai, 1985]) can be rep

resented using a ranking of the set of possible states.

We require less to obtain the same representation.

The reason for this, besides our assumption of per

fect recall, is our emphasis on belief ascription, rather

than on prescribing belief change. The need for ad

ditional requirements arises when counter-factual rea

soning has to be accounted for. Then, given a certain

state, all ways in which it can be revised must be ac

counted for. On the other hand, we are not asking the

question of how the agent's beliefs would look like if it

were to take a different action than the one prescribed

by its protocol; we only need to explain the particular

actions performed by the agent at different states.

7 EXISTENCE - GOAL SEEKING

AGENTS

But when does a belief assignment exist? From the

point of view of modelling this question is crucial, and

Savage's answer to it ([Savage, 1972]), provides much

of the foundation of statistics and economic modelling.

In order to model programs, machines, or humans, us

ing the various abstract mental states investigated in

AI, it is important to recognize the conditions under

which these modelling tools can be used.

Examining Savage's work we see that he is able to as

cribe likelihood and utilities by imposing certain con

sistency restrictions on the agent's actions. We will

follow a similar path. We first restrict ourselves to

a certain class of extended contexts and then require

the agent's protocol to satisfy two restrictions. We will

show that an agent satisfying these restrictions and op

erating in the given class of extended contexts, can be

ascribed a unique most general choice complete belief

assignment.

The contexts we examine here are of a special kind that

is quite natural in many AI applications. Local states

are of two types, goal states and non-goal states. Runs

are finite and their utility is determined by the last

local state, i.e., 1 if it is a goal state, and 0 otherwise.

We have a distinguished action, HALT, whose utility

(or more precisely, that of its outcome) in a goal state

is 1 and 0 otherwise.

We define two rationality postulates on protocols, that

embody a notion of a goal-seeking agent. The rational

effort postulate says that the agent must halt when

ever it is in a goal state, or when it is impossible to

reach a goal state. The rational despair postulate says

that to halt the agent must either be in the goal or be

able to show a possible world under which he can never

reach the goal. Notice that these postulates refer to

the set PW(l) describing the agent's knowledge, rather

than to B(l) (preventing possible circularity later).

Rational Effort Postulate The protocol in a local

state / is either HALT or weakly dominates HALT.

Rational Despair Postulate The protocol in a non-

goal local state / is HALT only if for some s e PW(l)

there is no protocol that achieves the goal.

We will call an agent satisfying these postulates who

operates in the contexts described above and whose

decision criterion is consistent with weak dominance

(i.e., if v is preferred over v' then v' does not weakly

dominate v ), a goal-seeking agent.

Theorem 3 If A is a goal seeking agent then it can

be ascribed a unique most general admissible belief as-

laLet v(t) be the t'th element of v. We say that v' weakly

dominates v if Vt w'(t') > v(i) and 3i «'(•') > v(i).
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signment and a unique most general choice complete

belief assignment.

Many people view rational choice as equivalent to ex

pected utility maximization under some probability

distribution. While we find the probabilistic approach

most appropriate in many contexts, we do not share

this view (see the following discussion). Indeed, we

show that, in 0/1 utility contexts any behavior consis

tent with expected utility maximization under some

probability distribution can be attributed belief in our

framework. Let us define a B-type agent as one whose

beliefs are represented by a (subjective) probability as

signment, whose preferences are represented by a 0/1

utility function, and whose decision criterion is based

on expected utility maximization w.r.t these probabil

ity and utility assignments. However, we require that

when no action has an expected utility greater than 0

then HALT is performed.

Corollary 1 An agent that can be modelled as a B-

type agent is a goal-seeking agent, and consequently,

can be viewed as a perceived outcome maximizer, us

ing some admissible belief assignment and a decision

criterion consistent with weak dominance.

8 DISCUSSION

To conclude we re-examine the work presented in this

paper and some related research.

8.1 RE-EXAMINING THE FRAMEWORK

The ability to model agents at the mental level is most

likely required for any form of artificial intelligence.

However, as an abstraction it is already useful for more

mundane modelling tasks. It is extremely important in

multi-agent domains, as agents must construct mod

els of other agents, but it is also useful as a means of

describing and analyzing systems at an abstract, yet

highly intuitive, level. As such, a model of the men

tal level should strive to be simple and intuitive. Yet,

it must also be precisely formulated with sound foun

dations. We believe that the framework we presented

meets these criteria.

Beside presenting a model of the mental level, our work

attempts to specifically improve our understanding of

belief ascription. Belief, in our framework, represents

the agent's subjective information on the outside world

that is utilized in decision making. We modelled beliefs

as a function of the agent's local state, for otherwise,

the actual state of the world would affect its beliefs,

without affecting its state. We suggested two meth

ods for narrowing the choice among candidate belief

assignments and defined a class of goal-seeking agents

that can be ascribed belief in our framework. Addi

tional results, presented in [Brafman and Tennenholtz,

1994], provide conditions under which the criteria for

choosing among belief assignments yield a unique be

lief assignment. Also discussed there are algorithms for

ascribing admissible and weakly-admissible beliefs and

conditions under which belief ascription is tractable.

One may ask why do we emphasize belief ascription,

when the framework supplies the basis for ascribing

utilities or a decision criterion. Ascription of these

notions is certainly important, but there are a num

ber of reasons for our choice. Belief and knowledge

are by far the most extensively researched mental

states within AI and philosophy (e.g. [Kripke, 1963,

Katsuno and Mendelzon, 1991a, Alchourron et ai,

1985, Goldzmidt and Pearl, 1992, Boutilier, 1992, del

Val and Shoham, 1992, Lamarre and Shoham, 1994,

Friedman and Halpern, 1994]), and it is therefore im

portant to understand where they come from and how

to ascribe them. Moreover, mental-level modelling is

often used by us to construct rough descriptive models.

It is often the case that an agent's goals are known.

This suffices to supply rough estimates of utilities.

Knowing an agent's decision criteria seems harder, but

we have shown that for 'reasonable' protocols in 0/1

utility contexts, beliefs can be ascribed based on the

trivial assumption that the agent prefers weakly dom

inant tuples. These contexts are natural in many CS

applications. Additionally, while the plausible worlds

for an agent in different situations may be unrelated,

the decision criterion is almost constant. Observing

an agent's decision criterion in one case seems a good

indicator of its decision criterion in other cases. Nat

urally, in normative applications, such as analysis of

protocols, the designer can readily provide all the re

quired information.

8.2 RELATED WORK

There has been some important research on ascribing

mental states to agents. One major research area is

plan ascription, an important task in discourse under

standing and multi-agent systems (e.g.,[Kautz, 1990,

Konolige and Pollack, 1989, Pollack, 1990]). The

aims of the work on plan ascription is more spe

cific than ours and plans are often ascribed based

on utterances (e.g., [Konolige and Pollack, 1989]).

More specifically, Konolige ([Konolige, 1990]) has done

some theoretical work on explanatory belief ascrip

tion. His work looks at the question of how to ex

plain known beliefs of an agent by ascribing this agent

additional beliefs. His work implicitly assumes a high-

level agent into whose beliefs we have some access,

usually through the utterances of that agent. He

then explains these beliefs based on other, ascribed,

beliefs. This work does not deal with the general

problem of belief ascription. Both [Konolige, 1990,

Konolige and Pollack, 1989] have a somewhat syntac

tic flavor, due to the use of argumentation systems

and derivational models. In contrast, our framework

does not employ some of the stronger techniques used
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in these papers, but addresses more basic issues and

is based upon a more general semantic model of the

mental level. We believe that it can provide the foun

dations for belief ascription based on utterances, if ut

terances are treated as speech acts [Austin, 1962].

Most influential on our work was the knowledge ascrip

tion framework of [Halpern and Moses, 1990]. This

work defines a formal notion of knowledge that is

grounded in the state space description of a system.

The set of possible worlds of an agent then emerges

from the notion of a local state. We have built our

framework upon their framework. Closely related is

the work of [Rosenschein, 1985] on situated automata,

which defines knowledge in a similar manner.

The work of Savage [Savage, 1972] on subjective prob

ability and choice theory is closely related to our work.

This work shows that given the preferences of an agent

over possible actions, where these preferences satisfy

certain constraints, the agent can be viewed as act

ing as an expected utility maximizer under ascribed

(probabilistic) beliefs and utilities. This work is ex

tremely elegant, yet it has some limitations from our

perspective. First, it is probabilistic, while much work

on knowledge and belief within AI, CS, and philos

ophy is discrete. This means that it cannot provide

the foundation for these notions of belief. Secondly,

there are serious practical problems with its applica

tion to our setting. Savage requires a total pre-order

on the set of all possible acts, i.e., all functions from

initial states to outcomes, many of which are purely

fictional acts. This information will not be available

to an observer of the system, nor will it be easy for

a designer to come up with it. Another assumption

is that the state description is rich, i.e., that for any

natural n, there exists a partition of the set of states

into n subsets, all of which are equally likely. This

means that the number of states must be infinite. In

addition, expected utility maximization has been crit

icized as a normatively inadequate decision criterion

(see [Kyburg, 1988] and other papers in [Gardenfors

and Sahlin, 1988]). It is certainly inadequate descrip

tively, as many studies have shown (e.g. extensive

work by Tversky cf. [Shafrir and Tversky, 1992]) and

is therefore problematic in modelling other agents.

In contrast, we believe that our formalism is better

suited for many modelling tasks in AI and CS. Our

framework is discrete, thus relevant to the body of

work on discrete notions of belief. It also requires

much less information. We only assume awareness of

the agent's actual protocol ( e.g., through observations

or as a given specification), and knowledge of the pos

sible alternatives, that is, the agent's set of possible

actions. It does not require complete knowledge of

the preference relation among other protocols, nor the

additional richness assumption on the set of states.

Moreover, as we remarked earlier, it is straightforward

to apply our ideas when only part of the protocol is

known, for example, when we have seen the agent act

only in a subset of its set of possible local states.

Another advantage of our framework is that it leaves

the decision criterion as a parameter. This gives us

added modelling flexibility. On the one hand, our no

tion of a decision criterion can be easily generalized

for our framework to cover expected utility maximiza

tion as a special case. On the other hand, decision

criteria that allow for notions of preference that do

not satisfy the Von Neumann-Morgenstern axioms are

possible. This flexibility is useful for descriptive pur

poses, because we may want to model different classes

of entities. But even for normative purposes one may

wish to relax these requirements. For example, we

may want our agent to act as if some goal's utility is

infinitely greater than any other, e.g., the preservation

of human life. This can only be done if we relax the

Von Neumann-Morgenstern axioms.

We have stressed the problem of grounding before. Re

search on abstract mental states is certainly impor

tant. Yet, notions such as 'beliefs', 'goals'/intentions',

etc., are more meaningful if they can be embedded in

some concrete setting. A major contribution of the

work of [Halpern and Moses, 1990, Rosenschein, 1985]

is supplying this concrete setting, showing how it arises

in distributed systems and in situated agents.

In his 1985 Computers and Thoughts speech

[Levesque, 1986b], Levesque spoke about making be

lievers out of computers, thus supplying a concrete

interpretation of belief. However, the actions of the

systems Levesque is referring to, all have to do with

answering queries. This serves as a means of abstract

ing the constraint that (for a meaningful investigation

of knowledge representation schemes) the system's ac

tions depend on the content of the data-structures used

to represent knowledge (see also [Levesque, 1986a, p.

258]). This abstract view is extremely fruitful as a

means of understanding the task of knowledge repre

sentation. However, most systems (computer, mechan

ical or biological) are situated in some environment.

Their goal is usually much more general than correctly

representing it, although that may be useful. Their

actions range from writing into files to changing the

temperature of a room. If we do not de-contextualize

beliefs by ignoring the agent's actions, goals, etc., we

will be able to obtain a better understanding of these

systems. We can ascribe beliefs to a system if it is

acting as though these are its beliefs. We see our main

conceptual contributing in making the notion of belief

concrete, by placing it in the context of actions, goals

and decisions.
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Abstract

Research in NMR has focused largely on

the idea of representing knowledge about the

world via rules that are generally true but

can be defeated. Even if relational databa

ses are nowadays the main tool for storing

very large sets of data, the approach of using

non-monotonic formalisms as relational da

tabase query languages has been investiga

ted to a much smaller extent. In this work

we propose a novel application of default lo

gic by introducing a default query language

(DQL) for finite relational databases, which

is based on default rules. The main result

of this paper is that DQL is as expressive as

SOav, the existential universal fragment of

second order logic. This result is not only

of theoretical importance: We show queries

-which are useful in practice- that can be

expressed with DQL and cannot with other

query languages based on non-monotonic lo

gics such as DATALOG7toj/e . Another result

in this paper concerns the combined comple

xity of DQL, i.e., when it is assumed that the

query is part of the input; for this problem,

NEXPTIMENP-completeness is shown.

1 INTRODUCTION

For the purpose of Knowledge Representation, non

monotonic reasoning (NMR henceforth) formalisms

can be used in two different ways:

• as languages for representing knowledge about the

world, via rules that are generally true but can

be defeated. Retrieving information from a non

monotonic knowledge base of this kind amounts

to prove a theorem.

As an example, we can use default logic to state

that "birds generally fly". In order to prove that

Tweety the bird flies we try to prove that a specific

formula follows -in the default logic semantics-

from the set of general rules plus a set of specific

facts;

• as relational database query languages. Retrie

ving information amounts to computing the set of

tuples belonging to an intensional relation, star

ting from some extensional relations.

As an example, we can query a relational database by

means of a DATALOG" program -i.e., a DATALOG

program with negated literals in the body of the rules-

equipped with a specific semantics for negation.

Research in NMR has focused largely on the former

idea, and remarkable results about the computational

complexity of several formalisms have been obtained

by many authors (cf. [Cadoli and Schaerf, 1993] for a

survey on this topic).

Even if relational databases are nowadays the main

tool for storing very large sets of data, the latter ap

proach has been investigated to a much smaller extent.

One of the most important aspects of a query language

for relational databases is its expressive power, i.e., the

set of relations that we can compute by querying. The

expressive power of relational database query langua

ges has been studied for some twenty years now (cf.

[Kannelakis, 1990]). Research has focused mainly on

monotonic query languages, i.e., languages such that

if the extensional relations grow then the intensional

ones grow as well.

Recently some interesting works investigating the ex

pressive power of non-monotonic query languages ap

peared. Kolaitis and Papadimitriou study in [Kolai-

tis and Papadimitriou, 1991] the expressive power of

two semantics for DATALOG"" programs. In particu

lar they prove that DATALOG"1 with fixpoint seman

tics is as expressive as SOa , the existential fragment of

second order logic. Schlipf proves in [Schlipf, 1990] an

analogous result for DATALOG"' with stable model se

mantics (DATALOG7<0jj« henceforth). Sacca gives in

[Sacca, 1993] further insight on the expressive power of

DATALOG7tail<. Van Gelder analyzes in [Van Gelder,
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1989] the expressive power of DATALOC with well-

founded semantics. In all these papers, databases are

modeled as finite structures, i.e., finite interpretations

of theories.

In this work we are concerned with default logic as a

query language. Default logic [Reiter, 1980] is one of

the most popular NMR formalisms and has been ex

tensively investigated both from the semantical and

the computational point of view. It has also been pro

posed in [Bidoit and Froidevaux, 1991] as a tool for

inferencing in logical databases (i.e., databases which

are theories). Anyway the behavior of default logic on

finite structures has not been analyzed so far.

Here we propose a novel application of default logic by

introducing a default query language (DQL) for finite

relational databases, which is based on default rules.

The main result of this paper is that DQL is more ex

pressive than DATALOG7<aj/e. In particular DQL is

as expressive as SOgy, the existential universal frag

ment of second order logic. This result is not only of

theoretical importance: We show queries -which are

useful in practice- that can be expressed with DQL

and cannot with DATALOG7Mj|e • Our queries are

taken from the realm of economics.

An alternative way of describing our main result is

to say that DQL "captures" the complexity class E£

of the polynomial hierarchy, while DATALOG7,a4/e

"just" captures the class NP. Therefore DQL is more

expressive than DATALOG;taMe provided Y?2 / NP,

i.e., provided the polynomial hierarchy does not col

lapse -a property that has been widely conjectured

and that will be assumed throughout this work.

We remind that Ej-completeness of credulous pro-

[tositional default reasoning has been recently proven

Gottlob, 1992; Stillman, 1992]. It is therefore import

ant to remark that the expressive power of a language

is not necessarily the same as its complexity. As an ex

ample, a language which does not capture NP -even if

it has an underlying NP-complete problem- has been

shown by Stewart in [Stewart, 1991].

Another result shown in this paper concerns the com

bined complexity of DQL, i.e., when it is assumed

that the query is part of the input; in particular,

NEXPTIMENp-completeness is proven.

The structure of the paper is the following. In Sec

tion 2 we give the definition of the query language

DQL, providing syntax, semantics and some simple

examples. In Section 3 we give a formal proof of the

fact that DQL captures Ej. In Section 4 we show how

to use DQL for expressing queries to a relational data

base. In particular we show queries relative to a (some

what simplified) economic world that are expressible

in DQL but are not expressible in DATALOG7«ane .

In Section 5 we briefly address the issue of combined

complexity of DQL, and in Section 6 we draw some

conclusions.

2 DEFINITION OF DQL

2.1 SYNTAX

A database schema (cf. [Ullman, 1988]) R is a finite

set {J?i, . . . , Rn) of relation schemata. A relation

schema Ri has a name N{ and a finite list of attribu

tes Li = (Ai Mi}- I* wul sometimes be denoted

as Ri(Ai, ...fAii). The number /,• is the arity of the

relation schema Ri. We assume that there is an un

derlying set U of objects that can be used in relations

(the so-called domain). The domain U is arbitrarily

large but finite. Given a relation schema Ri, a rela

tion instance is a set of tuples of the form (ai , . . . , df .),

where aj G U (1 < j < /,). A database instance W is a

set of relation instances. The set of objects occurring

in a database (the so-called active domain) is a subset

-possibly not strict- of U.

An open default (cf. [Reiter, 1980]) is a sentence of the

form

«(«):/?(y)

T(«)

where x,y and z are (not necessarily disjoint) lists

of individual variables and a(x),/9(y), j(z) are

quantifier-free formulae of first order logic (without

functions) such that the free variables are those in x,

y, and z.

A DQL Input/Output query Q is a set of open de

fault rules plus a set of output relation schemata S =

{Si, ...,Sm}. The set of predicate symbols occurring

in the defaults of Q contains all the names of the re

lation schemata of the database (the extensional re

lations) and possibly other symbols (the intentional

relations). Output relations are intensional. The in

tuitive meaning of the query is the following: We want

to compute all tuples in the 5< relations which can be

inferred under the credulous default semantics. (See

the next section for a formal definition.) In particular

we apply the credulous default semantics to the propo

sitions! instantiation of the open defaults in the query,

plus the database.

A DQL boolean query is a set of open default rules

plus a ground formula 7. The intuitive meaning of the

query is the following: We want to know whether 7

follows -under the credulous default semantics- from

the propositional instantiation of the defaults in the

query plus the database.

Example 1: (Tweety flies) We have two relation

schemes BIRD and SMALL-WINGS which both have

a single attribute NAME. The database instance W\

is as in the following table:
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BIRD NAME

Tweety

Sam

Fred

SMALL-WINGS NAME

TreT

The I/O query is the following set of defaults D\:

( bird(x) : ->abnormal(x) : ->abnormal(x)

\ flies(x) ' -iabnormal(x) '

bird(x) A small-wings(x)

abnormal(x)

plus the unary relation FLIES(NAME). The relational

database states that Tweety, Sam, and Fred are birds.

The query is made out of three open defaults. The

first one states that an object that is provably a bird

-and that cannot be proven to be abnormal- flies by

default. The second default states that objects that

cannot be proven to be abnormal should be regarded

as not abnormal. The third default states the rule that

objects that are provably birds and have small wings

are abnormal. The intuitive meaning of the query is

that we want to know the set of flying objects.

The boolean query has the same set of defaults, plus

the ground formula flies(Tweety). The intuitive mea

ning of the query is that we want to know whether

Tweety flies or not. d

2.2 SEMANTICS

Let W be a database instance over the set of relation

schemata {Ri,...,Rn}. For each relation instance iZ,-,

let iiilW^ be the set of tuples in W belonging to Ri. We

denote as COMP(W) the completion of the database,

i.e., the set of the following ground literals:

• Ri(ai,...,ai(), for each tuple (ai,...,<i({) 6

Ri\W;

• ->Rt(ai a/,), for each tuple (a1,...,a/i) €

(This is the standard translation from databases-as-

models into databases-as-complete-theories (essenti

ally), as shown for example in [Reiter, 1984]).

Let D be the set of open defaults in a query (either

I/O query or boolean query). We denote as INST(D)

the instantiation of D, i.e., the set of ground defaults

obtained in the following way:

• for each open default

«(*) ; fly)

?(■)

in D there is a set of defaults

o(Q:/?(r)

7(0 '

in INST(D), where £, r, and C are all possible

lists -of the appropriate length- of objects taken

from U.

We remark that instantiating the query over the do

main is common in databases, and it is assumed in

[Schlipf, 1990; Kolaitis and Papadimitriou, 1991].

Let Q be an I/O query, i.e., a set D of defaults plus

a set 5 = {5i,...,5m} of output relations. Let W

be a database on the domain U. The answer to Q

is defined as follows. For each relation Si € S with

arity the answer is the set of tuples (ti, • • ■ ,ik{) €

Uk% such that S<(*i, . . . ,<»,) follows under the credu

lous default semantics from the ground default theory

(INST(D); COMP{W)), i.e. it is in at least one of the

extensions of such a default theory (cf. [Reiter, 1980]

for the definition of extension of a default theory).

The semantics of a boolean query Q is even simpler.

Let 7 be the distinguished ground formula in Q. If 7

follows under the credulous default semantics from the

ground default theory (INST(D);COMP{W)), then

the answer is yes; otherwise, the answer is no.

We notice that, in the semantics for DQL queries, two

sorts of non-monotonic reasoning are involved: first

of all, the database is completed (COMP(W)), se

condly, default rules are applied (INST(D)). In fact,

the whole mechanism could be made homogeneous by

using default rules for obtaining completion of the da

tabase as well. One way to achieve this is to use the

following method:

• for each extensional relation Ri, introduce a new

predicate R\ (of the same arity) that does not

occur elsewhere;

• build a set W consisting of the following defaults

(1 < i < n):

-fl{(x) ' Rt(x) ' -.ft(x)

• define DB(W) as

Ri(a\,...,ati), for each tuple (ai,...,^) G

Ri\W.

It can be shown that the default theory T =

(INST(D U iy);DB(W)) provides the same ans

wers (to both boolean and I/O queries) as

(INST(D);COMP(W)). Intuitively, the R\ predica

tes serve to transfer the extension of the input relati

ons to the respective predicate letters Ri. In fact, in

any extension of T, R- is complete (i.e., every ground

atom is true or false) by the first default, and R\ must

coincide with Ri by the second and third default.

Note that if one does not allow occurrence of exten

sional relations in the conclusions of user defaults (a
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similar restriction is often made in logical query lan

guages, e.g. in datalog), then also the default theory

(INST(D U { : ^Ri(x)hRi(x)}); W),

where W is seen as Ri(ai, . . . ,o/.), for each tuple

(ai,...,o/i) G Ri, provides the same answers as

(INST(D);COMP(W)).

Our semantics for DQL is based on credulous default

reasoning, and one may argue if this is the most appro

priate way of answering to a query. In general, nothing

prevents us from grounding our definitions on skepti

cal default reasoning, i.e. on drawing an inference iff a

formula is in all the extensions of the relevant default

theory. In fact, all forthcoming results about com

plexity and expressiveness would hold for the comple

mentary complexity classes. As an example, forthco

ming Theorem 1 could be rephrased by saying that the

boolean (skeptical) DQL queries precisely capture the

class Il£.

Let us see how this semantics works in the example

shown in the previous subsection.

Example 1 (continued) We assume that the do

main is the set {Tweety, Sam, Fred), i.e., that the

domain is the same as the active domain. Then,

COMP(Wi) =

{ bird(Tweety), ->small-wings(Tweety) ,

bird(Sam), ->small-wings(Sam),

bird(Fred), small-wings(Fred) };

INST{Di) =

( bird(Tweety) : -•abnormal(Tweety)

\ flies(Tweety) '

: ->abnormal(Tweety)

-iabnormal(Tweety) '

bird(Tweety) A small-wings(Tweety) :

abnormal(Tweety)

bird(Sam) : -<abnormal(Sam)

flies(Sam) '

: -iabnormal(Sam)

-iabnormal(Sam) '

bird(Sam) A small-wings(Sam) :

abnormal(Sam)

bird(Fred) : ->abnormal(Fred)

flies(Fred)

bird(Fred) A small-wings{Fred)

abnormal(Fred)

FLIES NAME

Tweety

Sam

}

In other words, Tweety and Sam fly, but Fred does not

fly. The answer to the boolean query is yes. □

3 EXPRESSIVE POWER OF DQL

In the previous section we have seen that default logic

is suitable as a query language, i.e., as a language for

manipulating relations. A very interesting question is

the following: Which relations can be computed by

DQL? Which relations cannot? In other words, what

is the expressive power of DQL? We recall that ex

pressive power of relational database query languages

is one of the most studied topics in database theory.

One way of presenting a result in this area is to say

that a query language can/cannot express a specific

relation. For example, it is well-known that relational

calculus cannot express the transitive closure of a re

lation [Aho and Ullman, 1979], while such a relation

can be expressed in DATALOG [Ullman, 1988]; the

relation of satisfiable propositions! clause sets can be

computed by a fixed program in DATALOG7,ane but

not in DATALOG (unless P=NP), cf. [Schlipf, 1990].

Typically, the expressive power of a query language is

represented as a set of logical sentences. As an example

the expressive power of relational calculus is the set

of first order sentences, while the expressive power of

DATALOG;ta6Ie is S03 [Schlipf, 1990], the existential

fragment of second order logic, i.e., the set of sentences

(3S)*(S),

where S is a list of predicate symbols and ^(S) is a

function-free first order formula in which (among pos

sibly others) the predicates in S occur. In this section

we show that the expressive power of DQL is SOay, the

existential universal fragment of second order logic, on

a relational vocabulary, i.e., the set of sentences

(3S)(VT)*\(S,T), (1)

The answer to the I/O query is the relation instance:

where S,T are disjoint lists of predicate symbols and

0(S,T) is a function-free first order formula in which

at least the predicates in S,T occur.

Following the traditional notion of a set of logical

sentences capturing a complexity class, we can say that

the set SOg captures the class NP (cf. [Fagin, 1974]),

while the set SOgy captures Y% (cf. [Lynch, 1982;

Stockmeyer, 1977]). (See [Garey and Johnson, 1979;

Johnson, 1990] for a definition of the classes NP and

£2 of tQe polynomial hierarchy).

We are now ready to prove our main result, which con

cerns DQL boolean queries. We refer to the following

useful lemmas. Let ConsQ denote classical deductive

closure.
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Lemma 1 ([Reiter, 1980, Theorem 2.1]) Let A =

(D, W) be a (closed) default theory. A set E is an

extension of A iff E = (Ji^o Ei, where Eo = W and

Ei+1 = Cons(Ei) U {j\a : 0/y <E D, a e Eiy

for all i > 0.

Lemma 2 ([Reiter, 1980, Theorem 2.5]) Let E be an

extension of the default theory A = (D, W). Denote

by GD(E,A) = {a : 0/y e D \ a € E,^p £ E) the

generating defaults of E. Then,

E = Cons(W U{j\a:P/ye GD(E, A)})

Theorem 1 The boolean DQL queries precisely cap

ture the Ej database properties.

PROOF (sketch): The easy part is to show that every

query of DQL can be expressed as a Ej-recognizable

database property. We notice that the semantics

of DQL given in Section 2.2 transforms query answe

ring into credulous reasoning in a propositional default

theory. The transformation is polynomial in the size

of the database, i.e., its data complexity is polyno

mial. Moreover it has been proven in [Gottlob, 1992;

Stillman, 1992] that the problem of credulous inference

in propositional default theories is in Ej, hence this

part of the proof is complete.

The more difficult part is to show that each query ex

pressible as a sentence of SOgy can be expressed in

DQL. As we already noticed in the introduction, we

cannot take advantage of the fact that propositional

credulous default reasoning is T^-hard, because the ex

pressiveness of a language is not necessarily the same

as its complexity (cf. [Stewart, 1991] for a specific ex

ample).

Without loss of generality, we assume that sentence

(1) is of form

(3S)(VT)(3x)(Vy)V(x,y), (2)

where S, T are lists of predicate symbols, x,y are lists

of individual variables, and V" is a first order formula

in which no function symbol or quantifier occurs. The

pass from (1) to (2) is justified in the appendix.

Now we have to show that for each query (?soaw of the

form (2) there is a DQL query Qdql such that the two

queries give the same answer on all possible database

instances W over the unquantified relations in (2).

We outline the idea for Qdql- The formula

(3x)(Vy)V"(x, y) is encoded as follows. We use a pre

dicate < that defines a linear order on the set of all

y-tuples, together with associated predicates F(y),

S(y,y'), L(y) which state that y is the first tuple,

y' is the successor of y, and y is the last tuple in <,

respectively. Furthermore, we use a predicate Z(x,y)

which intuitively states that for each tuple y' from

the initial segment of < up to y, the formula if>(x, y')

is true. A designated propositional letter A indicates

if for some x-tuple a, Z(a,b) is true, where b is the

last y-tuple. Then, (3x)(Vy)V>(x, y) will be true just

in case A is derivable. We encode this by default ru

les, such that in every extension that contains A, a

valuation for the S-predicates is defined and for every

valuation of the T-predicates some Z(a, b) is true, i.e.,

the sentence (2) is true over the underlying database

W.

Formally, Qdql consists of the ground formula A and

the set D containing the following open defaults.

• For each predicate P from S and for <:

■ P(x) ■ =y </ : ^(y < y')

P(x) ' -P(x) ' y < y' ' -.(y < y') '

• linear order axioms for <:

-*(y < y' A y' < y) '

(y<y')V(y'<y)V(y = y')'

(y < y" A y" < y') -» y < y' '

• rules for the associated predicates:

y < y' ■ y < y' ■

-(y < y') v (y < y" Ay"< yQ .

-5(y,y')

• derivation of A (i.e., checking if (3x)(Vy)^(x,y) is

true):

:F(y) .Sjy,?)

(x, y) - Z(x, y) ' Z(x, y) A V(x, y') - Z(x, y') '

My)

Z(x,y)^A'

Equality between tuples y = (j/i, . . . , ym) and y' =

Vl, - ,lD> ie-> (y = y'). i* expressed by ((yi =

Hi) A- (*.»&)).

Let W be any database instance, and denote by A the

default theory {INST(D); COMP{W)).

It is easy to see that A has only consistent extensions.

(Formally, this can be easily proved by Lemma 2.)

We claim that the atom A belongs to an extension of

A if and only if W \= (3S)(VT)(3x)(Vy)^»(x,y).

"<=**. Assume that W \= (3S)(VT)(3x)(Vy)V>(x,y).

That is,

^S0h(VT)(3x)(Vy)V>(x,y) (3)

for some valuation So of the S predicates. Define a

set T of formulas as follows. Let <q be an arbitrary

linear order of all y-tuples, and let Fo,So,Lo be the

associated extensions for F, S, and L. In what follows,

let a, a', b denote tuples of appropriate arities over the

domain. The set T contains the following formulas:
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Tx\ COMP(W)

T*. {a < a' | (a, a') G<o} U Ha < a') | (a, a') g<0}

T3: {-1(a) | a £ L0}

TA: {-F(a) | a £ F0)

{-S(a,a')|(a,a')*So}

Tf. {P(a) | P G S, a e P0}U{-P(a) | P G S, a £ PQ}

Ti\ all ground formulas obtained by instantiation of

the linear order axioms for < over the domain

Tf. ty(a,b)-^Z(a,b)|bGFo}

T9: {Z(a, b) A V(a, b') Z(a, b') | (b, b') G S0}

?w: {Z(a,b)-*v4|b€M

Claim: E = Cons(!F) is an extension of A such that

A G E. To show this, we first note that E is consistent.

Indeed, extend the valuations given by W, So, <0i

Fo, So, Lo by assigning "true" to A, by letting Zo

be the set of all possible tuples, and by letting the

remaining predicates T have an arbitrary extension.

This valuation satisfies T. Hence, E = Cons{T) is

consistent.

Moreover, E is an extension of A. This can be easily

shown from the iterative characterization of default

extensions in Lemma 1 . We obtain that

Eq = COMP{W) = T\

Ei = Cons(Eo) U ?2 U F6 U Ft Ufa \JF9UF10

E2 = Cons(Ei)U73U^Uf5

Ea = Cons(E2) = Cons(F)

E\ — E3

Containment of Tb, and T\o in E\ holds since for

each tuples bo G Fo, (bi,b2) G So, and b3 € io, we

have that ->F(b0) g E, -.S(b!,b2) g E, and ->L(b3) g

E; this follows immediately from the definition of T

and standard interpolation properties.

Hence, U?L0 E{ = Cons{T) = E. Thus, £ is an ex

tension of A.

To prove the claim, it remains to show that A G E.

Since E = Cons{T), it suffices to show that A is true

in every valuation that satisfies T. Consider an arbi

trary valuation that satisfies T. Let To be the valua

tion of T and Zo the valuation of Z. Then, from (3)

we have that

W,So,Toh(3x)(Vy)iKx,y)

Let a be an arbitrary tuple such that

W,So,To|=(VyMa,y) (4)

By finite induction on <0 we show that (a, b) G Z0,

for all b.

(Basis). Let bo be the first tuple of <o- Since bo G

F0, we have ip(a.,h0) —► Z(a,b0) G T; hence, by (4),

V>(a, bo) is true. Thus, (a, bo) G Zo-

(Induction). Assume the statement holds for tuple b.

We show that it holds also for b', where (b,b') G So.

We have that Z(a, b)Aip(a, b') — Z(a, b') G T; by the

induction hypothesis, (a, b) G Zo, and by (4), V"(a, b')

is true. Hence, it follows that Z(a, b') is true, i.e.,

(a, b') G Zo- This shows the induction case.

Since (a,b) G Zo for all b, in particular we have that

(a, bi) G Zo where bi is the last tuple in <o, i.e., bi €

Lo- However, we have that Z(a,bi) —* A E thus,

it follows that A has value "true" in the valuation.

Consequently, we have shown that AE E.

This concludes the part of the proof.

"=V : Let E be an extension of A such that A G E.

Notice that E is consistent.

E defines a valuation Sq for the S predicates, i.e., for

each P from S, we have P(a) G E or ->/>(a) G E

for each tuple a. This follows since the defaults

:P(a)/P(a), : -P(a) / -P(a) are in INST(D).

Moreover, E defines a valuation <o for < such that

<o satisfies the axioms for a linear order of all tuples

of the arity of y.

Furthermore, from the instantiated default rules for

the predicates associated to <, it follows that ->F(&) £

E if a is not the first tuple in <o, that ->5(a, a') G E if

a' is not the successor of a' in <o, and that ->L(a) G E

if a is not the last tuple in <o- By the characterization

of E in terms of its generating defaults (Lemma 2), it

is easy to see that E is consistent with each of F(ao),

5(ai,a2), and L(&3) such that ao is the first tuple in

<o, a2 is the successor of ax in <0, and a3 is the last

tuple in <o.

We claim that

W.So (=(VT)(3x)(Vy)^(x,y) (5)

To prove this, assume this is false. Hence, there exists

a valuation To of T such that

W,S0,ToN(Vx)(3y)-V(x,y)

We extend this valuation to a model of E that has A

false. Let for each tuple a for x be m(a) the first tuple

b for y in <o such that W, So, To ^= ->V"(a,b). Notice

that m(a) exists for each a.

Define a valuation Zo for Z by

Z0 = {(a,b) |b<0 m(a)},

assign A the value "false" , and complete the partial

valuations F0,5o, and Lo of F,S, and L defined by E

by letting ao G F0, (ai,a2) G So, and a3 € L0 for all

ao, ai, aj, and as such that -iF(ao) £ E, -«S(ai,aj) £

E, and -iL(a3) £ E, respectively.

This valuation of the predicates defines a model of E.

To prove this, it is by Lemma 2 sufficient to show that

the valuation is a model of COMP(W) U G, where

G = {7\a:(J/7€GD(E,A)}.
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Clearly, the only formulas in G it remains to argue

about are those which are conclusions of generating

defaults of E with justifications F(y), S(y,y'), and

• Assume that V<a,b) -» Z(a,b) G G. Then, b is

the first tuple in <o, and the formula is certainly

satisfied.

• Assume that Z(a,b) A *(a,b') -» Z(a,b') 6 G.

Then, b' is the successor of b in <q. By con

sidering the three cases (1) b,b' <o n»(a), (2)

b' = m(a, and (3) m(a) <o b,b' it is readily

checked from the definition of Zq that the formula

is satisfied.

• Assume that Z(a,b) —* A £ G. Then, b is the

last tuple in <o- By definition of Zq, we have that

Z(a,b) is false; hence, since A is false, the formula

is satisfied.

Thus, the valuation satisfies COMP{W) U G, and

hence also E. Since A is false in this model of E,

we have that A (. E. This is a contradiction, however.

Hence, claim (5) is proved. Now claim (5) means

W|=(3S)(VT)(3x)0W(x,y).

This concludes the "=>" part of the proof.

Remark: All defaults in D can be made prerequisite-

free by deleting the prerequisite or and rewriting the

conclusion 7 as a —► 7. □

In order to give a corresponding result for DQL I/O

queries, we need the concept of query recognizability.

A query mapping database instances over R into data

base instances over 5 is C-recognizable, C a complexity

class, if deciding whether a tuple t belongs to a certain

output relation 5,- G S is in C (cf. [Gurevich, 1988]).

Using Theorem 1, we can show the following.

Theorem 2 A database query is Y^-recognizable if

and only if it is definable as a DQL I/O query.

4 APPLICATIONS AND

EXAMPLES

This section is devoted to illustration of queries ex

pressible via DQL.

Example 2: (Strategic companies) Suppose a hol

ding owns some companies. Each company produces a

set of products. Each product is produced by at most

two companies. The database instance in Table 1 de

scribes a possible situation.

Suppose the holding experiences a crisis and has to sell

one company. The holding's policy is to keep on pro

ducing all products. This clearly makes it impossible

to sell some companies -as an example the company

Alpha in the above situation, because it would be im

possible to produce wine. Anyway the managers are

even more cautious: They know that in the future it

may be necessary to sell more companies, and they do

not want to get into a situation in which they will not

be able to produce all products. More formally, they

are interested in the minimal sets of companies that

produce all products. A company is strategic if it is

in at least one of such minimal sets. As an example,

both Alpha and Beta are strategic, because {Alpha,

Beta} produce all products, while neither {Alpha} nor

{Beta} do that. On the other hand Gamma is not

strategic. Therefore a query which is very relevant

to the managers is whether a company is strategic or

not: They prefer to sell a non-strategic company first,

because after the transaction the minimal sets of com

panies that produce all products remain the same.

A manager can easily express a boolean query whose

answer tells if a specific company C is strategic or not

by writing the set of open defaults D:

produces(x,y,z) : : -^strat(x)

strat(y) V strat(z) ' -istrat(x)

and the ground formula strat(C). The intuitive mea

ning of the defaults is that for each product x at least

one of the producers y, z are strategic companies, and

that companies are non-strategic by default. The ans

wer to the above boolean query is yes iff the company

C is strategic.

Now let us consider a slightly more complex situation,

in which up to three (say) companies can control ano

ther company. As an example, we assume that the

situation is described by means of the relation instance

in Table 2.

The meaning of the tuple is that companies Alpha and

Beta together have control over Gamma, i.e., the hol

ding cannot own both Alpha and Beta without ow

ning Gamma as well. Further information of this kind

completely changes the minimal sets of companies that

produce all products. As an example {Alpha, Beta} is

no longer such a set, while {Alpha, Beta, Gamma} is.

If we add the default

controls(w, x, y, z) A strat(w) A strat(x) A strat(y) :

strat(z)

to D, then the boolean query gives the desired answer.

In the former case -no controlled companies- the pro

blem of deciding whether a company is strategic is in

NP (cf. [Cadoli and Lenzerini, 1991]), while in the lat

ter case the same problem is Ej-complete (cf. [Eiter

ana Gottlob, 1993]). As a consequence, the former

query is expressible in DATALOG7tojje, while the lat

ter is not. In this example we could allow unbounded

numbers of producers for each product and controllers

for each company, although the queries would get more

involved.
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Table 1: Database instance of the producers

PRODUCERS PRODUCT COMPANY #1 COMPANY #2

Pasta Alpha Beta

Tomatoes Gamma Alpha

Wine Alpha Alpha

Bread Beta Delta

Table 2: Database instance of the controlled companies

CONTROL CONTROLLED (JUWT #1 CONT #2 CONT #3

Gamma Alpha Beta Beta

Example 3: (Maximal trust) In a finite set of com

panies it is possible to make agreements. A trust is a

set T of companies such that each one has an agree

ment with each other company in T. A maximal trust

is a trust such that there is no bigger -wrt cardinality-

trust. The decision problem "does a company belong

to a maximal trust?" is PNp[°('°« n)l-hard, hence most

likely harder than NP.

We can easily represent companies and agreements

with a relational database. We can express the query

"does a company belong to a maximal trust?" in DQL

but we cannot in DATALOG7fnM,. □

5 COMBINED COMPLEXITY OF

DQL

The combined complexity (cf. [Vardi, 1982]) of Boolean

DQL queries amounts to the complexity of deciding a

query Q over a database instance W, where the input

is arbitrary Q and W.

By the complexity results for propositional default lo

gic [Gottlob, 1992; Stillman, 1992], the combined com

plexity of Boolean DQL is Ej-complete if no default is

open, i.e., all defaults are already instantiated. The in

stantiation of a set of open defaults is in general expo

nentially larger, however; this intuitively suggests an

exponential increase of complexity for query answering

if open defaults are present. In fact, we can show that

it increases to NEXPTIMENP, the problems solvable

by a non-deterministic Turing machine in exponential

time using an NP-oracle (cf. [Johnson, 1990]).

Theorem 3 The combined complexity of Boolean

DQL is NEXPTIMENP-comp/eie.

PROOF (Sketch) The transformation of the seman

tics of Boolean DQL into credulous reasoning in a

propositional default theory is exponential ( 0(2"*),

where k is a constant) in the query size, i.e., the de

fault theory (INST(D), COMP(W)) is exponential

in the size of D plus W . Credulous reasoning in

(INST(D),COMP{W)) can be done by a nondeter-

ministic Turing machine with an NP oracle in time

polynomial in the size of the input default theory.

Therefore, the Boolean DQL query can be decided

by a non-deterministic Turing machine in exponen

tial with an NP oracle. This proves membership in

NEXPTIMENP.

The hardness proof is too involved to be described here

in detail. It gives a reduction from a graph coloring

problem (co-CERT3COLs) that can be shown to be

NEXPTIMENP-hard, cf. [Eiter et al., 1994]; the re

duction is based on advanced complexity upgrading

techniques [Balcazar et al., 1992; Papadimitriou and

Yannakakis, 1985] and simulation of a Boolean circuit

(cf. [Kolaitis and Papadimitriou, 1991]) in DQL.

Problem co-CERT3COL is a follows. An instance / of

size n of the problem consists of an undirected graph G

on vertices {0, . . . , n— 1}, whose edges are labeled with

a disjunction of two literals where each literal is over

the Boolean variables | i,j = 0, . . . ,n— 1}; / is a

Yes-instance if for some truth value assignment t to the

Boolean variables, the graph t(G) obtained from G by

including only those edges whose labels are true under

t is not 3-colorable. / is encoded as a binary string

representing a database instance (domain {0, . . . , n —

1}) over relations describing the edges and the graph

labeling.

The succinct version of problem co-CERT3COL, co-

CERT3COLs, is NEXPTIMENP-hard, cf. [Eiter et al.,

1994]. In the succinct version - instead of a binary

string w for / - the input consists of a Boolean circuit

Ci with log \w\ input bits, by which each bit i ofw can

be computed.

The transformation of co-CERT3COLs to Boolean

DQL roughly is as follows. For each instance I of

CERT3COL of size n, an equivalent Boolean DQL

query on a fixed database with domain {0, 1} is con
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structed in polynomial time; elements of the domain

are represented by tuples on {0, 1} of arity (log n] , and

each input relation R is computed by a collection of

default rules, which simulates the computation of R by

a Boolean circuit Cr that is easily constructed from

Ci.

Remark: Since the transformation reduces co-

CERT3COL to a fixed database, the same result fol

lows for the expression complexity of Boolean DQL.

□

Notice that NEXPTIMENP-complete problems are

provably harder than NP-complete problems, since NP

C NEXPTIMENP; few practical such problems are

known.

For the case where Q is fixed, i.e., for the data comple

xity, we immediately obtain from our expressiveness

results the following.

Theorem 4 The data complexity of Boolean DQL is

^-complete.

PROOF (Sketch) From Theorem 1, we have that every

Boolean DQL query defines a database property;

this gives the membership part. For the hardness

part, we notice that for every SOgy sentence as in

(1), an equivalent sentence of the form (2) in the proof

of Theorem 1 can be constructed (cf. Appendix), for

which the equivalent default query Qdql can be easily

constructed (even in polynomial time). Consequently,

the problem of deciding whether a fixed sentence (1) is

valid in a given database instance W, which is Ej-hard,

is transformable to a Boolean DQL query in polyno

mial time. □

Similar results can be derived for DQL I/O queries,

measuring the complexity of query recognizability (cf.

Section 3).

Theorem 5 The combined (resp. expression) comple

xity of DQL I/O queries is NEXPTIMENP-comp/eze

and the data complexity is T^-complete.

6 CONCLUSIONS

In this paper we have defined DQL, a query language

for relational databases based on default logic. The

expressiveness and complexity of DQL have been in

vestigated both for boolean queries and for I/O que

ries. The results we have shown are not only of theo

retical importance: We have presented queries which

are useful in practice that can be handled with DQL

and cannot with other query languages based on non

monotonic logics such as DATALOG7/ane.

In the definition of query -Section 2.1- open defaults

are function- and quantifier-free. While unlimited

quantification cannot be allowed without loosing deci

dability, the impact of allowing functions remains for

further investigation. Another interesting question is

whether expressiveness of DQL decreases if only nor

mal or semi-normal defaults are allowed.

APPENDIX

The pass from (1) to (2) is justified as follows.

As shown in [Kolaitis and Papadimitriou, 1991, p. 130]

(cf. also [van Benthem and Doets, 1983, Section

2.5.2]), for every existential second order sentence

* over a relational vocabulary cr, there exists an

equivalent second order sentence over <x of the form

(3T)(Vx)(3y)^(x,y) over the same vocabulary, where

<j> is a quantifier-free first-order formula; this sentence

can be effectively constructed. Consequently, for every

universal second order sentence $ over vocabulary

a, there exists an equivalent second order sentence

over a of the form (VT)(3x)(Vy)^(x, y), where <j> is a

quantifier-free first-order formula. Let $ be a univer

sal second order sentence equivalent to (VT)^(S,T).

Let D be any structure for a. Then,

D(=(3S)(VT)^(S,T)

iff

D,S0 (=(VT)^(S,T)

iff

AS0r=*

iff

D |= (3S)*,

where So is an appropriate valuation of the S predica

tes.

Consequently, the sentence in (1) is equivalent to a

sentence of the form (2).
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Abstract

The notion of class is ubiquitous in Com

puter Science and is central in many knowl

edge representation languages. In this pa

per we propose a representation formalism in

the style of concept languages, with the aim

of providing a unified framework for class-

based formalisms. The language we consider

is quite expressive and features a novel com

bination of constructs including number re

strictions, inverse roles and inclusion asser

tions with no restrictions on cycles. We are

able to show that such language is power

ful enough to model frame systems, object-

oriented database languages and semantic

data models. As a consequence of the es

tablished correspondences, several significant

extensions of each of the above formalisms

become available. The high expressivity of

the language and the need for capturing the

reasoning in different contexts forces us to

distinguish between unrestricted and finite

model reasoning. A notable feature of our

proposal is that reasoning in both cases is de-

cidable. For the unrestricted case we exploit

a correspondence with propositional dynamic

logic and extend it to the treatment of num

ber restrictions. For the finite model case we

develop a new method based on the use of lin

ear programming techniques. We argue that,

by virtue of the high expressive power and of

the associated reasoning techniques on both

unrestricted and finite models, our language

provides a unified framework for class-based

representation formalisms.

1 INTRODUCTION

main of discourse, and a class-based representation for

malism allows one to express several kinds of relation

ships and constraints (e.g. subclass constraints) hold

ing among classes. Moreover, class-based formalisms

aim at taking advantage of the class structure in order

to provide various information, such as whether an el

ement belongs to a class, whether a class is a subclass

of another class, and more generally, whether a given

constraint holds between two classes.

Three main families of class-based formalisms can be

identified. The first one comes from knowledge repre

sentation and in particular from the work on semantic

networks and frames (see for example [Leh92, Sow91]).

The second one originates in the field of databases and

in particular from the work on semantic data mod

els (see for example [HK87]). The third one arises

from the work on types in programming languages and

object-oriented systems (see for example [KL89]).

In the past there have been several attempts to estab

lish relationships among class-based formalisms. In

[BHR90] and [LNS91] a comparative analysis and an

attempt to provide a unified view of class-based lan

guages are carried out. The analysis makes it clear

that several difficulties arise in identifying a common

framework for the formalisms developed in different

areas. Some recent papers address this problem. For

example, an analysis of the relationships between con

cept languages and types in programming languages

has been carried out in [Bor92], while in [BS92, PSS92]

concept languages are used to enrich the deductive ca

pabilities of semantic and object-oriented data models.

The proposed solutions are not fully general and a for

malism capturing both the modeling constructs and

the reasoning techniques for all the above families is

still missing. In this paper we provide a solution to

this problem by proposing a class-based representation

formalism, called ACUNT, whose main characteristics

are:

In many fields of Computer Science we find formalisms 1 . it is quite expressive and features a novel combina-

for the representation of objects and classes [MM92]. tion of constructs including number restrictions,

Generally speaking a class denotes a subset of the do- inverse roles and inclusion assertions with no re-
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strictions on cycles;

2. it is equipped with suitable techniques for both

unrestricted and finite model reasoning, since it is

designed for capturing the reasoning in different

contexts;

3. sound and complete reasoning in both unre

stricted and finite models can be done in worst-

case exponential time.

The first characteristic allows us to show that ACMMX

is powerful enough to provide a unified framework for

frame systems, object-oriented languages and semantic

data models. We show this by estabilishing a precise

correspondence with the Entity Relationship model

[Che76] model and with an object-oriented language

in the style of [AK89]. Moreover, we demonstrate that

the formalism proposed in this paper provides impor

tant features that are currently missing in each family,

although their relevance has often been stressed. In

this sense, the work reported here may also contribute

to significant developments for the languages belong

ing to all the three families.

With regard to the second point, the two cases of

reasoning in both unrestricted and finite models are

solved by means of different techniques. For unre

stricted satisfiability we exploit the correspondence

with dynamic logic [Sch91], by extending it to the

treatment of number restrictions which have no direct

counterpart in dynamic logics. For finite satisfiability

we develop a new method based on linear program

ming techniques by extending the approach proposed

in [CL94]. It is worth noting that the problem of finite

reasoning which arises mainly in the field of databases

has never been considered in knowledge representation

languages, although it seems quite relevant for practi

cal applications.

As for the third point, the expressive power oiACUMX

makes reasoning hard, but nonetheless decidable. We

consider this feature very important, because it makes

it feasible to regard this language as an actual knowl

edge representation language and not simply as a for

mal framework for comparing apparently different ap

proaches. Obviously, there are a number of sublan

guages of ACUNX, where, by giving up some of the

expressivity, one gains on the comutational complex

ity. However, this issue is outside the scope of the

present paper.

Summarizing, our framework provides an adequate ex

pressive power to account for the most significant fea

tures of the major families of class-based formalisms.

Moreover, it is equipped with suitable techniques

for reasoning in both finite and unrestricted models.

Therefore ACliNX and the associated reasoning capa

bilities represent the essential core of the class-based

representation formalisms belonging to all three fami

lies mentioned above.

The paper is organized as follows. In the next sec

tion we present our formalism and discuss its rela

tionships with frame languages, semantic data mod

els and object-oriented languages. Section 3 describes

the technique for unrestricted model satisfiability and

Section 4 the technique for finite model satisfiability.

The final section contains some concluding remarks.

2 A UNIFYING CLASS-BASED

REPRESENTATION LANGUAGE

In this section, we present ACiiMX, a class-based for

malism in the style of concept languages, and show

that it can be used to formalize knowledge represented

with formalisms developed in different fields.

The basic elements of concept languages are con

cepts and roles, which denote classes and binary re

lations, respectively. In ACLlNX, concepts and roles

are formed by means of the following syntax (A de

notes an atomic concept, P an atomic role, C and D

arbitrary concepts, R an arbitrary role and m and n

positive integers):

C,D —► T\L\A\^A\CnD\CUD\

Vfl.C | (> mR) | (< nR)1

R —¥ P\P~l

Semantically, concepts are interpreted as subsets of a

domain and roles as binary relations over that domain.

More precisely, an interpretation I = (A1, -1) consists

of a set A1 (the domain of I) and a function 1 (the

interpretation function of I) that maps every concept

to a subset of A1 and every role to a subset of A1 x A1

such that the following equations are satisfied: (jt{}

denotes the cardinality of a set)

L1
-

0

Tx
= A1

=
AI\AI

(C n D)1 = C^nD1

(CUD)1 =

(VAC)1 = {a e A1 | V6. (a,b) G R1 -> 6 € C1}

(> rnR)1 =
{aeAx\t{b\(a,b)eRX}>m}

(KnR)1 =
{aeA1 \t{b\(a,b)eRI}<n}

=
{(a,6)€(AIxAI)|(6,a)Gi?Z}

In an ACUNX knowledge base, the knowledge about

the classes and the relations is expressed through the

use of the so called inclusion assertions which have the

form

ACC

1 We use the shorthand (= n R) in place of (< n R) n (>

nR)
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where A is an atomic and C an arbitrary concept. An

interpretation I satisfies the inclusion assertion AC. C

if A1 C C1 . An interpretation I is a model of a knowl

edge base T if it satisfies all inclusion assertions in T.

A finite model is a model with finite domain. Number

restrictions, inverse roles and inclusion assertions may

interact in such a way that a knowledge base is satisfi-

able only in infinite models. Therefore it is meaningful

to distinguish between unrestricted and finite satisfia

bility (implication): T is said to be (finitely) satisfiable

if it admits a (finite) model, and it (finitely) implies an

inclusion assertion A C C if the inclusion is satisfied

in all (finite) models of T.

Below we discuss three families of class-based for

malisms, namely, frame languages, semantic data

models, and object-oriented data models, and we show

that their basic features are captured by knowledge

bases in ACUNl.

2.1 FRAME LANGUAGES

Frame languages are based on the idea of expressing

knowledge by means of frames, which are structures

representing classes of objects in terms of the prop

erties that their instances must satisfy. Such proper

ties are defined by the frame slots, that constitute the

items of a frame definition. In Figure 1 we present

an example of a knowledge base defined by frame lan

guages. The notation is basically the one adopted in

[FK85], which is used in the KEE2 system. The cor

responding formalization in ACUHX is given by:

Course C VENROLLS.Student n

(> 2 ENROLLS) n (< 30 ENROLLS) n

VTAUGHTBY.(ProfessorUGrad) n

(= 1TAUGHTBY)

AdvCourse C Course n (< 20 ENROLLS) l~l

VENR0LLS.(Grad n -.Undergrad)

BasCourse C Course n VTAUGHTBY.(Prof essorn -iGrad)

Grad C Student n VDEGREE-String n

(= 1 DEGREE)

Undergrad C Student

We observe that inverse roles are not used in the for

malization. Indeed, the possibility of referring to the

inverse of a slot has been rarely considered in frame

knowledge representation systems. However, as recent

works show (see [DLNN91]), this is a strong limitation

in expressivity. For instance, without inverse roles we

cannot specify, in our example, that every student is

enrolled in at least 4 courses. In fact, KEE, as well as

many practical frame systems, embeds other features,

such as attachments and overriding inheritance. Such

features cannot be captured in our framework, which

is intended to deal with the structural and monotonic

aspects of these systems.

In [FK85], several reasoning services associated with

frames are mentioned, such as: inheritance, cardinal

ity reasoning and consistency checking. For example,

one could ask the system whether the knowledge base

implies that the filler of a given slot belongs to a certain

class. Due to the absence of inverse roles, it is possible

to show that if a frame knowledge base is satisfiable,

then it admits a finite model. Therefore, the distinc

tion between reasoning in finite and infinite models

is not necessary, and all the above mentioned forms

of reasoning are captured by unrestricted satisfiability

and implication in ACUHl.

Frame: Course in KB University

Subclasses: AdvCourse, BasCourse

Memberslot: ENROLLS

ValueClass: Student

Cardinality.Min: 2

Cardinality. Max: 30

Memberslot: TAUGHTBY

ValueClass: (UNION Grad Professor)

Cardinality.Min: 1

Cardinality.Max: 1

Frame: BasCourse in KB University

Superclasses: Course

Memberslot: TAUGHTBY

ValueClass: (INTERSECTION

Professor (NOT Grad))

Frame: Professor in KB University

Frame: AdvCourse in KB University

Superclasses: Course

Memberslot: ENROLLS

ValueClass: (INTERSECTION

Grad (NOT Undergrad))

Cardinality.Max: 20

Frame: Student in KB University

Subclasses: Grad, Undergrad

Frame: Grad in KB University

Superclasses: Student

Memberslot: DEGREE

ValueClass: String

Cardinality.Min: 1

Cardinality.Max: 1

Frame: Undergrad in KB University

Superclasses: Student

KEE is a trademark of Intellicorp.

Figure 1: A KEE Knowledge Base

In the last decade, the research on frame languages

concentrated on the definition of concept languages,

which are subsets of first-order logics, introduced for

the formalization of KL-ONE languages (see [WS92]).
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Tof

(1,1)

 

TEACHING

Tby

(O.oo)
Teacher

Course
(2,30)'

, '(2,20)

 

Ein Eof

ENROLLING?
(4,6)

Student

AdvCourse f DEGREE/StringO— Grad

Figure 2: An ER-schema

The only limitation of ,4££/AfI-knowledge bases com

pared with some of the concept languages appeared in

the literature is that inclusion assertions require the

left hand side to be an atomic concept. On the other

hand, we do not rule out cyclic references in the inclu

sion assertions, as opposed to most of the approaches

to concept languages [Neb91]. Moreover, ACliHX

includes inverse roles, number restrictions and inclu

sion assertions, whose combination has never been ad

dressed in the literature, and whose decidability (both

in unrestricted and finite models) was an open prob

lem.

2.2 SEMANTIC DATA MODELS

Semantic data models were introduced primarily as

formalisms for database schema design. They provide

means to model databases in a much richer way than

traditional data models supported by Database Man

agement Systems, and are becoming more and more

important because they are adopted in most of the

recent Computer Aided Software Engineering tools.

The most common semantic data model is the Entity-

Relationship (ER) model introduced in [Che76]. Fig

ure 2 shows the ER-schema for the same state of affairs

represented by the KEE knowledge base in Figure 1.

In the ER notation, classes are called entities and are

represented as boxes, whereas relationships between

entities are represented as diamonds. Arrows between

entities, called ISA relationships, represent inclusion

assertions. The links between entities and relation

ships represent the ER- roles, to which number restric

tions are associated. Dashed links are used whenever

such restrictions are refined for more specific entities.

Finally, elementary properties of entities are modeled

by attributes (DEGREE in Figure 2).

The ER model does not provide constructs for express

ing negation and disjunction, although several recent

papers stress their importance in database specifica

tion [CL93, CHS91]. Referring to our example, the

absence of negation and disjunction makes it impossi

ble to specify that courses are taught by either profes

sors or graduate students. For this purpose, the new

entity Teacher has been introduced as an abstraction

of professor and graduate student.

An ACUfifX knowledge base that captures exactly the

semantics of the schema of Figure 2 is given by the

following set of inclusion assertions:

TEACHING

ENROLLING

Course

AdvCourse

Teacher

Student

C

C

c

Grad C

VTof.Course n (= 1 Tof) l~l

VTby.Teacher n (= 1 Tby)

VEin.Course n (= 1 Ein) n

VEof.Student n (= 1 Eof)

VTof-1.TEACHINGn(= lTof-1) n

VEin- ENROLLING n

(> 2Ein_1)n(< 30 Ein-1)

Course n (< 20 Ein-1)

VTby-1.TEACHING

VEof-1.ENROLLING n

(> 4Eof-1)n(<6Eof-1)

Student l~l VDEGREE.String n

(= 1 DEGREE)

In order to prove that in general ACUNX is powerful

enough to capture all properties of ER-schemata, we

first need formal definitions of their syntax and seman

tics. In the following, for ease of presentation, we do

not consider attributes any more. We point out, how

ever, that their inclusion in the specification is straigt-

forward, and that even attributes with a predefined

domain of a fixed cardinality do not pose special prob

lems with respect to reasoning on the schema.

The definitions make use of the notion of labeled tuple

over a generic set T>, which is a function from a subset

of a set U of ER-roles to V. The labeled tuple T that

maps C/j € W to d, G V, for i G l..k, is denoted with

(Ui:di, . ..,Uk:dk). We also write T[U{] to denote a\.

Definition 2.1 An ER-schema S is constituted by:

• a set £s o/entity symbols, a set Tig o/relationship

symbols and a set Us of role symbols;

• a set Si, a of statements of the form E\ ■< E2,

where E\ and E? are entities; the reflexive tran

sitive closure of X is denoted with X* ;

• for each relationship symbol R G Us, a labeled

tuple over the set of entities3;

• for each relationship R{U\ \ E\, . . . ,Uk- Ek) in S,

for i G l.-k and for each entity E G S such that

E X* Ei, a non negative integer, minc(E, R,Ui),

and a non negative integer or 00, maxc(E, R, C/j).

If not stated otherwise, minc(E, R, Ui) is assumed

to be 0 and maxc(E, R, Ui) is assumed to be 00.

3In the following we write R(U\ :Ei,...,Uk'- Ek) to de

note the relationship R and to specify at the same time

that (U\ \ E\, . . . ,Uk: Ek) is the labeled tuple associated to

it.
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The semantics of an ER-schema can be given by spec

ifying which database states conform to the informa

tion structure represented by the schema. Formally, a

database state B is constituted by a nonempty finite

set AB and a function B that maps

• every entity E G £s t° a subset EB of AB and

• every relationship R G V. to a set RB of labeled

tuples over As.

The elements of EB and RB are called instances of E

and R respectively.

A database state is considered acceptable if it satisfies

all integrity constraints that are part of the schema.

This is captured by the definition of legal database

state.

Definition 2.2 A database state B is said to be legal

with respect to an ER-schema S, if it satisfies the

following conditions:

• for each statement E\ ■< Ei G <S,ja it holds that

E? C EB;

• for each relationship R(U\: E\, . . . ,Uk- Ek) in S,

all instances of R are of the form

(Ui:ei, . ..,Uk'- ek), where l{ G Ef for i G l..k;

• for each relationship R(U\:E\, ...,£/*: Ek) in S,

for i G l..k, for each entity E G £s such that

E X* Ei and for each instance e of E in X, it

holds that

minc(E, R, U{) < f {f G R2 r[Ui] = e} <

< maxc{E, R,Ui).

Notice that the definition of database state reflects

the usual assumption in the whole database area

that database states are finite structures (see also

[CKV90]).

Reasoning in the ER-model includes entity satisfiabil

ity and inheritance. Entity satisfiability amounts to

checking if a given entity can be populated in some

legal database state (see [AP86, LN90]), and corre

sponds to the notion of concept satisfiability in concept

languages. We show that all these forms of reasoning

are captured by finite satisfiability and finite implica

tion in ACUMl knowledge bases. This is done by first

defining a mapping $ from ER-schemas to ACUAfl

knowledge bases, and then proving that there is a cor

respondence between legal database states and finite

models of the derived knowledge base.

Definition 2.3 Let S be an ER-schema. The

ACUMX knowledge base K = $(<S) is defined as fol

lows:

• for each entity E G £s, £ contains an atomic

concept ${E);

• for each statement E\ ■< Ei G 5,JO, & contains

an inclusion assertion $(i?i) C $(£2),'

• for each relationship R(Ui:Ei, ...,[/*: Ek) in S,

fC contains an atomic concept $(R), k primitive

roles Ur,i , . . . , Ur^ and the following inclusion

assertions:

${R) C VURi.Q{El)n---nWRK>*(Ek) n

(= 1 n - - - n (= iUr,„)

9{Ei) C W^.tiR), fori€l..k;

• for each relationship R(U\: E\,..., Uk- Ek) in S,

for i G and for each entity E G £s such that

E X* Ei, if m = minc(E,R,Ui) ? 0, then K.

contains the assertion $(£) C (> mU^\), and

if n = maxc(E, R, Ui) ^ 00, then K. contains the

assertion $(£) C (< nt/^j);

• for each pair of relations Ri and R2 in S, K con

tains the assertion ${R\) C ->$(i?2), and for each

relation R and each entity E it contains the as

sertion ${R) C -!$(£•).

The mapping demonstrates that both inverse roles and

number restrictions are necessary in order to capture

the semantics of ER-schemata. We observe that binary

relations could be treated in a simpler way by mapping

them directly to ACUNl-To\es. Notice also that the

assumption of acyclicity of inclusion assertions is unre

alistic when representing ER-schemata. The following

theorem ensures that reasoning in the ER-model can

be reduced to finite satisfiability and finite implication

in ACUMX knowledge bases.

Theorem 2.4 An entity E G £s is satisfiable in an

ER-schema S if and only if$(S) admits a finite model

1 in which E1 ± 0.

2.3 OBJECT-ORIENTED DATA MODELS

Object-Oriented (00) data models have been pro

posed with the goal of devising database formalisms

that could be integrated with OO-programming sys

tems (see [Kim90]). They are the subject of an active

area of research in the database field, and are based

on the following features: (a) in contrast to traditional

data models which are value-oriented, they rely on the

notion of object identifiers at the extensional level, and

on the notion of class at the intensional level; (b) the

structure of the classes is specified by means of typing

and inheritance.

Figure 3 shows the OO-schema corresponding to a

fragment of the KEE knowledge base of Figure 1. The

formalization in ACUft/X is given by:
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Course C AbstractClassn (= 1 VALUE) n

WALUE.(RecType n VENROLLS.SetStud n

(= 1 ENROLLS) n

VTAUGHTBY.Teacher n

(= 1 TAUGHTBY))

SetStud C SetType n VMEMBER-Student

Teacher C AbstractClass n (Grad U Prof essor)

Grad C AbstractClass n Student n (= 1 VALUE) n

VVALUE.(RecTypenVDEGREE.String n

(= 1 DEGREE))

SetType C ->AbstractClass n ->RecType

RecType C -"AbstractClass

The example shows that both classes and type struc

tures of the OO-schema are translated into ACliNl

concepts. We analyze now this correspondence more

in detail by providing both the formal definition of the

language used for specifying OO-schemata, and the

mapping from OO-schemata to ACUNT knowledge

bases. The OO-language is in the style of most popu

lar models featuring complex objects and object iden

tity. In particular, we follow [AK89], although with a

slightly different syntax.

An OO-schema S is constituted by a set of class names,

a set of attribute names, and a set of class declarations.

Class declarations make use of type expressions over

S, which are built according to the following syntax

(where C denotes a class name, Ai an attribute name,

and T, 7} type expressions) :

T,Tlt...,Tk —► C\

Union 7\ , . . . , Tk \

Set-of T |

Record A\:T\\ . . .; Ak:Tk End

The meaning of an OO-schema is given by specifying

the characteristics of an instance of the schema. The

definition of instance makes use of the notions of object

Class Course Type-is

Record

ENROLLS: Set-of Student;

TAUGHTBY: Teacher

End

Class Teacher Type-is

Union Professor, Grad

End

Class Grad Is-a Student Type-is

Record

DEGREE: String

End

Figure 3: An Object-Oriented data schema

identifiers and values. Given an OO-schema S and a

finite set O of object identifiers denoting real world

objects, the set V of values over 5 and O is inductively

defined as follows:

tOCV;

• if vi, . . .,vk G V then {vi,...,vk} G V;

• if «i Vk € V then [Af. vu . . . , Ak: vk] G V;

• nothing else is in V.

A database instance I of a schema S is constituted

by a finite set O of object identifiers, a mapping tt

that assigns to each class name a subset of O, and a

mapping p assigning a value in V to each object in O.

The interpretation of type expressions in I is defined

through an interpretation function 1 that assigns to

each type expression a subset of V as follows:

C1 = tt(C)

(Union T, n)1 = Tf U • • ■ U

(SekofT)1 = ,!/*} | *>0,

vi er^tGi..* }

(Record Ai : T, ; . . . ; Ak: Tk End)1 =

{[A1:v1,...,Ah:vh] \ h > fc,w< € 7?,i G 1..*,

vj G VJ G k+ l..h }

The set of class declarations of an OO-schema is used

to specify the structure of the objects in an instance

of the database. Each declaration has the form

Class C Is-a C\ , . . . , Cn Type-is T.

The Is-a part of such a declaration allows to specify

inclusion between the sets of instances of the involved

classes, while the Type-is part specifies the structure

allowed for the values assigned to the objects that are

instances of the class. This justifies the following def

inition:

Definition 2.5 Let S be an OO-schema. A database

instance 1 is said to be legal with respect to S if for

each declaration

Class C Is-a C\, . . . ,Cn Type-is T

in S, it holds that C1 C Cf for each i G l..n, and

piC^CT1.

The relationship between ACUNX and the OO-

language presented above is provided by means of a

mapping from OO-schemata into ACltMl knowledge

bases. Since the interpretation domain for ACUtfl

knowledge bases consists of objects without structures

whereas the instances of OO-schemata refer to a struc

tured universe (see the definition of V), we need to

explicitely represent some of the notions that underlie

the OO-language. In particular, while there is a cor

respondence between concepts and classes, one must

explicitely account for the type structure of each class.
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This can be accomplished by introducing the atomic

concepts AbstractClass to represent the classes in the

OO-schema, and RecType and SetType to represent

the corresponding types. The associations between

classes and types induced by the class declarations, as

well as the basic characteristics of types, are modeled

by means of atomic roles: the (functional) role VALUE

models the association between classes and types, and

the role MEMBER is used for specifying the type of the

elements of a set. Moreover, the concepts represent

ing types are assumed to be mutually disjoint, and

disjoint from the concepts representing classes. These

constraints are expressed by the following assertions

that will be part of the ACUNZ knowledge base K,

derived from the schema

SetType C -"AbstractClass n ->RecType

RecType C -"AbstractClass

We now define the function * that maps each type

expression into an ACUMl concept expression as fol

lows:

• every class C is mapped into an atomic concept

9(C);

• every type expression Union T\ , . . . , 7* is mapped

into U ••• LI *(Tfc);

• every type expression Set-of T is mapped into the

concept SetType nVMEMBER.*(T).

• every attribute A is mapped into

an atomic role 9(A), and every type expression

Record A\ : 7\ ; . . . ; Ak '■ Tk End is mapped into the

concept

RecType n V»(Ai).*(Ti) l"l (= 1 *(^i)) l~l • • - n

V9[Ak).9{Tk)n(= l*(Tfc));

Definition 2.6 The ACUMl knowledge base ¥(«S)

corresponding to an OO-schema S is constituted by

• the inclusion assertions that express mutual

disjointness of AbstractClass, RecType, and

SetType;

• an inclusion assertion

■9(C) C AbstractClass n

*(Ci) n ••• n 9(Cn) n

VVALUE.tf(T) n (= 1 VALUE)

for each class declaration

Class C I^a Ci,...,C„ Type-is T

in S.

From the above correspondence, we can observe that

inverse roles are not necessary for the formalization of

OO-data models. Indeed, the possibility of referring

to the inverse of an attribute is generally ruled out in

such models. However, recent papers (see for example

[AG091]) point out that this strongly limits the ex

pressive power of the data model. Note also that the

use of number restrictions is limited to the value 1,

which corresponds to existence constraints and func

tionality, whereas union is used in a more general form

than in the KEE system.

The effectiveness of the mapping 9 is sanctioned by

the following theorem.

Theorem 2.7 For every OO-schema S, there ex

ist two correspondences a,/3 between instances of a

schema S and interpretations of its translation 9(S)

such that, for each legal instance X of S, ct(2) is a

model ofVt(S), and, on the converse, for each model

M of 9(S), $(M) is a legal instance of S.

The basic reasoning services considered in 00-

databases are subtyping (check whether a type de

notes a subset of another type in every legal instance)

and type checking (check whether an instance is legal) .

Based on theorem 2.7, it is possible to show that these

forms of reasoning are fully captured by finite satisfi

ability and implication in ACUNl knowledge bases.

2.4 DISCUSSION

The above subsections should clarify that the language

ACJAHX and the associated reasoning capabilities rep

resent the essential core of the class-based representa

tion formalisms belonging to all three families men

tioned above. On the other hand, we have shown that

the formalism proposed in this paper provides impor

tant features that are currently missing in each family,

although their relevance has often been stressed. In

this sense, the work reported here not only provides a

common powerful representation formalism, but may

also contribute to significant developments for the lan

guages belonging to all the three families. For this

purpose it is essential to develop adequate techniques

for reasoning in all of the above contexts. This im

plies that we have to deal with both unrestricted and

finite satisfiability and implication. In the following

two sections we present the reasoning methods for the

two cases. Due to space limitations, in this paper we

concentrate on satisfiability only; a direct extension of

the methods provides decision procedures for logical

implication too.

3 REASONING IN

UNRESTRICTED MODELS

In order to show that the problem of checking unre

stricted satisfiability of an ACXiNT knowledge base is

decidable, we make use of a correspondence between

ACUMl and a sublanguage of deterministic converse

prepositional dynamic logic (CVVC). Although this

correspondence is similar to the one established in



116 D. Calvanese, M. Lenzerini, and D. Nardi

AC:

Root C VARC-1.±nVARC.Noden(> 2 ARC) n -.Node

Node C VARC-1.(Root U Node) nVARC.Node f"l

(> 2ARC)n(< 1ARC-1)

ICrel ■

Root C VARC"'.lnVARC.Noden(> 2ARC)n

-"Node

Node C VARC- '.(Root U Node) n VARC.Node n

(> 2ARC)n(< 1ARC"1)

(>2ARC) C (>1ARC)

4>rti = [(ARC U ARC-)*]

((--Root V ([ARC~]J_ A [ARC]Node A

A(>2ARC) A "'Node)) A

(-.Node V ([ARC~](Root V Node) A [ARC]Node A

^(>2ARC) A^(<,ARC-))) A

l-,J^(>2ARC) V(ARC)T)) "

[Sch91], due to the presence of number restrictions,

we cannot directly make use of the known results.

The basic idea of our method is to show that standard

reasoning techniques for CWC can still be exploited if

we perform a preliminary transformation of the knowl

edge base that allows us to weaken the constraints im

posed by number restrictions. We call the knowledge

base ICrel resulting from the application of the trans

formation to a knowledge base AC, the relaxation of AC,

defined as follows:

• all number restrictions (> mR), with m ^ 1,

and (< n R) in AC are treated as new symbols for

atomic concepts in ACre( ;

• for each pair of number restrictions (> mR) and

(< n R) present in AC, such that m > n, the asser

tion (> mR) C ->(< nR) is added to ACrej.

• for each number restriction (> mR), with m ^ 1,

present in AC, the assertion (> mR) C (> 1 R) is

added to ACre|.

The following lemma gives a necessary condition for

the satisfiability of an ACUNl knowledge base.

Lemma 3.1 // an ACUMl knowledge base is satisfi-

able, then its relaxation is also satisfiable.

In the rest of the section we show that the converse of

lemma 3.1 also holds. This is done by exploiting the

model preserving transformation of ACre/ into a formula

(j)rei of CWC. Notice that since in ACre/ all number re

strictions are treated as atomic concepts, the transfor

mation is defined in the same way as in [Sch91]. The

resulting formula belongs to a sublanguage of CWC

which we call CWC~ . In CWC~ , programs, denoted

with p, q, and formulae, denoted with <f>,rjj, are built

from atomic programs P and atomic formulae A by

the following syntax rules:

p,q —> P\P~ \p* \PUq\p;q

<j>,ip —► T|j4|iA|*V^|*A^|

(P)T | (P~)T | [p]*-

We will use the term basic program to denote an

atomic program or the inverse of an atomic program.

The semantics of CWC~ is derived from the seman

tics ofCWC in a straightforward way (see for example

[KT90]).

For an example of a transformation of a knowledge

base into a CWC~ formula, see Figure 4, showing a

knowledge base AC, describing the properties of trees in

which each node has at least two outgoing edges, the

relaxation ACrei, and the CWC~ formula correspond

ing to ACre/- Note that (> 1 ARC) is transformed into

(ARC)T.

In the following, let <j>rei be the CWC formula

obtained from the relaxation ACrei of AC and let M

Figure 4: An ACUMX knowledge base, its relaxation,

and the corresponding CWC~ formula

be a model of <j>ret. <j>rei will contain atomic for

mulae A(>mfl) and A(<nR) for each number restric

tion (> mR) and (< nR) present in AC. We say

that a state s of M numerically satisfies A(>mR) if

K {t | (s,f) G RM) > m. Similarly, s numerically sat

isfies v4(<„/{), if | {i | (s,t) G RM) < n. According to

these definitions, any model M of <j>rei is also a model

of AC if all states of M numerically satisfy all atomic

formulae corresponding to number restrictions. We

show that if 4>rei is satisfiable then we can construct a

model in which this is indeed the case.

[Str82] shows that the tree model property holds for

CWC (see [Str82] for a formal definition of tree

model). This result carries over immediately to

CWC~, and therefore every satisfiable CWC~ for

mula admits a model which is a tree, if we view each

state as a node and each transition between states as

an arc labeled with the corresponding program. How

ever, we can show that for CVVC~ an even stronger

result holds, which is based on the following definition.

Definition 3.2 A deterministic direct-inverse inter

pretation is an interpretation T = (A1,-1) such that

for each state s G A1 and for each atomic program P,

there is at most one state t G AJ such that (s, t) G P1

and at most one state r £ A1 such that (r,s) G P .

Lemma 3.3 Every satisfiable CWC~ formula <f> ad

mits a deterministic direct-inverse tree model.

Proof (sketch). Since <j> is satisfiable, by the tree model

property it admits a tree model T. Starting from T we

can construct a deterministic direct-inverse tree model

T>, proceeding by induction on the depth of T and
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removing for each state all but one of the arcs incident

to that state and labeled with the same basic program.

Since the only diamond subformulae of <j> are of the

type {ii)T, where R is a basic program, we can prove

by induction on the structure of <f> that the root of V

satisfies <j>. □

Notice that in any deterministic direct-inverse tree

model V all atomic formulae A(<„r) are already nu

merically satisfied in all states of V and no formula

A(>mR) with m > 1 is numerically satisfied in any

state of V. The following lemma guarantees that we

can transform any such model in one in which all

atomic formulae are numerically satisfied in all states.

Lemma 3.4 Let V be a deterministic direct-inverse

tree model of the CVVC~ formula 4>rei. Then V can

be transformed into a tree model T such that all atomic

formulae in <j>rei that correspond to number restrictions

are numerically satisfied in all states ofT-

Proof (sketch). We can construct T in the following

way: Initially we set T equal to V and then we prooced

by induction on the depth of the tree we are construct

ing. For each state s of T that we are considering and

for each basic program R appearing in <t>, we consider

the atomic formula A(>m R) with maximum m that is

satisfied in s but is not numerically satisfied. The as

sertions added to Krei ensure that there is at least one

state t connected to s through R. We can take the

whole tree structure starting in t and connected to s

through R, duplicate it m — 1 times and connect these

m — 1 trees to s via R. In this way we ensure that

A(>mR) is numerically satisfied in s. Furthermore the

assertions added to Krei guarantee that by proceed

ing in this way all atomic formulae A(<nR) are still

numerically satisfied in s. □

By combining the results of the previous lemmas we

can conclude that the relaxation of a knowledge base in

fact captures all relevant properties of the knowledge

base itself. This is stated in the following theorem.

Theorem 3.5 An ACUNl knowledge base K, is sat-

isfiable if and only if its relaxation Krei is sattsfiable.

In [VW84] it has been shown that deciding if a CWC

formula is satisfiable can be done in deterministic ex

ponential time, which also gives the upper bound for

satisfiability in CVVC~ . We have seen that Krei can

be transformed in a straightforward way into a formula

<j>rei of CWC~ whose size is polynomial in the size of

Krei and which is satisfiable if and only if it is /Crei .

Therefore we get immediately the following corollary

of the previous theorem.

Corollary 3.6 Unrestricted satisfiability and implica

tion for an ACliNT knowledge base can be decided in

deterministic exponential time.

4 REASONING IN FINITE

MODELS

In this section we sketch a method for verifying finite

satisfiability of an ACUhlX knowledge base K. This

task requires a quite different approach form the one

used for the unrestricted case, since the actual num

bers that appear in the number restrictions of K play

a crucial role in the existence of finite models. For this

reason we model number restrictions by means of an

associated system <p£ of linear disequations, defined

in such a way that the existence of a finite model for

K is reflected into the existence of particular solutions

Of tfjf

The unknowns introduced in 9k are intended to repre

sent the number of instances of each concept and each

role in a possible finite model of /C, while the disequa

tions take into account the constraints on the number

of instances deriving from number restrictions in K.

Because of atomic concepts that may have instances

in common, it is not possible to adopt the most natu

ral approach which would be to use one unknown for

each atomic concept and role (see [LN90]). We will

overcome this problem by introducing the notion of

expansion of a knowledge base.

In the sequel we will use the term literal for an atomic

or negated atomic concept. A concept will be called

simple if it is of the form: L \ L\ U Li \ VR.L | (>

mR) | (< nR), where L,L\ and L2 are literals. A

knowledge base whose inclusion assertions have a sim

ple concept on the right hand side is said to be simple.

Since a generic knowledge base K can be transformed

in linear time into a simple knowledge base /C' that is

finitely satisfiable if and only if it is K we can restrict

our attention to simple knowledge bases.

Therefore in each assertion of a knowledge base K at

most one operator appears on the right hand side. We

will denote with Kx, where X 6 {U, V, >, <}, the sub

set of assertions involving operator X, and with

those involving only literals.

Let C be the set of all atomic concepts present in AC, to

gether with the symbol T. A compound concept is de

fined as a subset of C containing T. Intuitively a com

pound concept C represents exactly those elements of

the domain that are instances of all atomic concepts

in C and are not instances of all atomic concepts not

in C. More formally, the extension C1 of C is defined

as:

& = (}{AX \AeC}\(J{A* \Aec\c)

Let H be the set of all atomic roles present in K. We

represent explicitly for each such role the association

with all possible pairs of compound concepts. This can

be accomplished by defining a. compound role as an in

dexed pair {C\, Ci)p, where Ci and Ci are compound

concepts and P is an atomic role appearing in AC. It is
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C = {R, H, 0, RH, R0, NO, RHO}, where

R = {Root}, N = {Node}, 0 = {RootOrHode},

RH = {Root, Hode}, RO = {Root, RootOrHode},

NO = {Hode, RootOrHode},

RHO = {Root, Hode, RootOrHode};

Subset of C consistent with K„a U Ku: {R, H, RO, HO};

£ = { (C, C')ARC | <5, <?'€<?};

Consistent compound roles:

{(RO, H>XRC, (RO, HO) ARC, (HO, H)ArC, (HO, H0)ARC};

R C (> 2 ARC) 2r < 0

RO C (>2ARC) 2ro < arcro.n + arcro.no

H C (> 2 ARC) 2n < 0

HO C (>2ARC) 2no < arcno.n + arcno.no

H C (<1ARC_I) n > arcro,n + arcno,n

HO C (<1ARC_1) no > arcro.no + arcno,no

interpreted as the restriction of P1 to pairs whose first

and second element belong to Cf and respectively.

Notice that the way we interpret compound concepts

and roles forces them to be disjoint in all interpreta

tions. This property is crucial in order to construct a

model from a solution of the system of disequations.

The price we have to pay for it is the exponential num

ber of different compound concepts and roles. We are

now ready to give the following definition.

Definition 4.1 The expansion K of an ACUNl

knowledge base K is constituted by

• the set C of all compound concepts of K and the

set % of all compound roles of K ;

• all assertions of Ki,a U K.u U £v;

• a set Knum of assertions involving a compound

concept on the left hand side and a number re

striction on the right hand side, obtained in the

following way: for each compound concept C and

for each role R:

- if for some A € C and somejpositive integer m,

A C (> mR) is in £>, then CC(> mmax R) is

in Knum, where

mmax = max {"» I A C (> mR) e K> A A € C]

- if for some A € C and some positive integer n,

A C (< nR) is in K<, then CC (< nmin R) is

in Knum, where

nmin = min {n | A C (< n R) G K< A A 6 C) .

From the expansion K we can derive a system ^k. of

linear disequations, with one unknown Var(C) for each

compound concept CL and one unknown Var(i?) for

each compound role R. The disequations of V/k. are

obtained in the following way:

• It is possible to check in polynomial time, with re

spect to the size of the expansion, whether a com

pound concept C is consistent with /C,->aU£u, i.e.

whether there is a model X of U£u such that

C1 is nonempty. In a similar way we can check

whether a compound role is consistent with £v

We force to be equal to 0 all those unknowns cor

responding to compound concepts and roles that

are not consistent respectively with /C,,aU/Cu and

with ACv, and force to be nonnegative all the oth

ers.

• We introduce disequations that reflect the num

ber restrictions by relating the unknown corre

sponding to a compound concept C to the sum of

the unknowns corresponding to compound roles

in which C appears. As an example, if C Q (>

m P) G Knum < where P is an atomic role, we in

troduce m • Var(C) < £c\,eC Var((C, C2)p).

Figure 5 shows the expansion of the simple knowledge

base derived from the one of Figure 4 and the cor

responding system of disequations. Each unknown is

Figure 5: The expansion of the knowledge base shown

in Figure 4

given the name of the corresponding compound con

cept or role, but in lower case (for brevity we have not

included unknowns corresponding to inconsistent com

pound concepts and roles). The concept RootOrNode

derives from the transformation into a simple knowl

edge base.

The system of disequations we obtain from the expan

sion of the knowledge base is linear and homogeneous

and admits only nonnegative solutions. The following

theorem relates the existence of particular solutions of

this system to the existence of finite models for the

knowledge base from which the disequations are de

rived.

We call a solution of *Pjc acceptable if it assigns a

positive value to at least one unknown, and for all

compound roles R = (C\,Ci)p, the value assigned to

Var^i?) is 0 whenever the value assigned to either C\

or C2 is 0.

Theorem 4.2 K is finitely satisfiable if and only if

admits an acceptable integer solution.

Proof (sketch). Given an acceptable integer solution X

of , it is possible to construct a model of K. such that

the number of instances of each compound concept and

role is exactly the value assigned by X to the corre

sponding unknown. Since X is nontrivial, the model

constructed will be nonempty. Conversely, given a fi

nite model M. of K it is possible to show that we obtain

a solution of X by assigning to each unknown the num

ber of instances in M of the corresponding compound

concept or role. These can be directly deduced from

the interpretations of all concepts and roles. □

In order to make use of this result and show that we
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can reason with respect to finite models in ACUMX

knowledge bases, we have to guarantee that verifying

the existence of acceptable integer solutions for a sys

tem of disequations is decidable. This is indeed the

case and, by using linear programming techniques it

can be proved that it takes polynomial time in the

size of the system. Therefore we can state the follow

ing theorem.

Theorem 4.3 Finite satisfiability and implication for

an ACUNl knowledge base can be decided in deter

ministic exponential time.

Proof (sketch). The decidability follows immediately

from theorem 4.2 and the previous observation. The

exponential upper bound derives from the exponential

size of the system of disequations and the polinomial

time required for the search of an acceptable solution

of the system. □

method, we point out that, on one hand the constraints

imposed on the domain to be modeled make the worst

case complexity rarely occur in practice, and on the

other hand we can effectively exploit the technology

of linear programming for the implementation of real

systems.

Finally, it is worth mentioning that the results pre

sented in this paper can be extended to deal both with

more general inclusion assertions, and with the exten-

sional level of the knowledge base, where assertions

about the instance-of relation between individual ob

jects and classes are specified.
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5 CONCLUSIONS

We have presented a unified framework for represent

ing information about class structures and reasoning

about them. We have pursued this goal by looking

at various class-based formalisms proposed in differ

ent fields of computer science and trying to rephrase

them in the framework of concept languages. The re

sulting language includes a combination of constructs

that was not addressed before, although all of the con

structs had previously been considered separately.

The major achievement of the paper is the demonstra

tion that class-based formalisms can be given a pre

cise characterization by means of a powerful first-order

language where the basic reasoning problems remain

decidable, in particular EXPTIME. This has several

consequences.

First of all, any of the formalisms considered in the pa

per can be enriched with constructs originating from

other formalisms and treated in the general framework.

For example, the usage of inverse roles in concept lan

guages greatly enhances the expressivity of roles, while

the combination of ISA, number restrictions and union

enriches the reasoning capabilities available in seman

tic data models.

Secondly, the comparison of class-based formalisms

emphasizes the importance of distinguishing between

unrestricted reasoning and reasoning in finite mod

els. Although this aspect has seldom been considered

in the case of knowledge representation formalisms,

the assumption of finiteness seems to be appropriate

in most applications, and must be addressed when

the representation formalism becomes sufficiently pow

erful. We have developed a novel technique for fi

nite model reasoning. Although we did not address

the problems related to the practical behavior of the
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Abstract

We present a series of theoretical and ex

perimental results on the learnability of de

scription logics. We first extend previous

formal learnability results on simple descrip

tion logics to C-Classic, a description logic

expressive enough to be practically useful.

We then experimentally evaluate two ex

tensions of a learning algorithm suggested

by the formal analysis. The first extension

learns C-CLASSIC descriptions from individ

uals. (The formal results assume that exam

ples are themselves descriptions.) The second

extension learns disjunctions of C-CLASSIC

descriptions from individuals. The experi

ments, which were conducted using several

hundred target concepts from a number of

domains, indicate that both extensions reli

ably learn complex natural concepts.

1 INTRODUCTION

One well-known family of formalisms for representing

knowledge are description logics, sometimes also called

terminological logics or KL-ONE-type languages. De

scription logics have been applied in a number of

contexts [Beck et al., 1989; Devanbu et al., 1991;

Mays et al., 1987; Wright et al., 1993]; additionally,

the complexity of deductive reasoning using descrip

tion logics is fairly well understood.

Recently we have begun to analyze the complex

ity of using description logics to support inductive

reasoning—i.e., learning. Our analysis has focused on

determining which description logics are learnable in

Valiant's [1984] model of pac-learnability [Cohen and

Hirsh, 1992b], and with understanding the complexity

of the operations necessary to support learning [Cohen

et al., 1992].

'Also at Computer Science Department, Rutgers Uni

versity, New Brunswick, NJ 08903.

Haym Hirsh'

AI Principles Research Department

AT&T Bell Laboratories

Murray Hill, NJ 07974

hirshCresearch . att . com

In this paper, we build on these formal results in sev

eral ways. We extend the previous formal results to

the description logic C-CLASSIC, which is expressive

enough to be practically useful. We also present two

extensions of an algorithm suggested by the formal

results: the first extension learns descriptions from in

dividuals, and the second learns disjunctions of de

scriptions from individuals. Finally, we experimen

tally evaluate these two extensions. Experiments con

ducted using several hundred naturally occurring con

cepts from a number of domains support the claim that

both extensions can reliably learn complex, naturally-

occurring concepts.

2 BACKGROUND

2.1 DESCRIPTION LOGICS

CLASSIC is a knowledge representation system based

on a description logic (henceforth DL). Some recent

surveys of work in description logics can be found in

[MacGregor, 1991; Woods and Schmolze, 1992]; how

ever to keep this paper self-contained we will give a

brief review below.

Description logics are a family of formalisms for rep

resenting knowledge. DLs trace their ancestry back to

semantic nets and frame-based languages, but place a

stronger emphasis on clear formal semantics and prov-

ably tractable inference.

DLs are used to reason about sets of atomic elements

called individuals; in particular, DLs are used to con

struct descriptions of sets of individuals and then to

reason about these descriptions. Descriptions are typ

ically denned compositionally using description con

structors and building blocks known as primitives and

roles. A primitive denotes a specific set of individuals.

A role denotes a specific binary relation between indi

viduals. Constructors are typically operators like AND

or SOME, which we will write in a prefix notation.

Descriptions are built up by specifying constraints on

properties an individual must have. As an example, in
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Table 1: Description Logic Constructors

Constructor Semantics

AND Z((AND Di ... D„)) =nn=1J(D.)

ALL X((ALL r D)) = {x £ A : Vy (x,y) £ X(r) =» y € 1(D)}

SOME I((S0ME r)) = {x £ A : 3y (x,y) £ I(r)}

SOMEC I((S0MEC r D)) = {x £ A : 3y (x,y) € X(r) Ay £ 1(D)}

AT-LEAST I( (AT-LEAST n r)) = {x £ A : |{y : (x,y) 6 I(r)}| > n}

AT-MOST If (AT-MOST n r)) = {x £ A : |{y : (x,y) £ I(r)}| < n}

MIN X((MIN u)) = {x € A : x is a real number and x > u}

MAX I( (MAX u) ) = {x € A : x is a real number and x < u}

ONE-OF J((0NE-0F Ii . . . I„)) = {x|x € X(li) V . . . V x € X(I„)}

FILLS I( (FILLS r Ii . . . I„)) = {x|Vj :l<j<n, 3z [(x,z) £ Z(r) A z £ I,]}

SAME-AS Z( (SAME-AS (ai ...a*) (bi . . . b() )) = {x £ A : I(a») o . . . o I(ai)(x) = I(bi) o . . . o X(bi)(x)}

THING I(THING) = A

NOTHING I(NOTHING) = 0

a description logic with the constructors AND, ALL and

SOME, one might use the description

(AND fanily

(ALL husband (AND retired (ALL age over-65)))

(ALL wife employed)

(SOME child (AND student (ALL school graduate))))

to denote the set of families where the husband is re

tired, the wife is employed, and some child is attending

graduate school. In the example, family, retired,

over-65, student and graduate are primitives, and

husband, wife, child and school are roles.

More formally, a description is a representation of a

subset of some domain A of atomic individuals. A

primitive symbol p{ is a description denoting a subset

of A; we will write this subset as Z(pj). If Di . . . D„

are descriptions, then (AND Di ... Dn ) is a description

representing the set

i((and Di ... d»>) = npBlJ(bO

Using the same sort of recursive definition, one can de

fine other constructors easily. Table 1 presents some

common constructors, together with their semantics.

In the table, r is always a role; a role r denotes a

subset of A x A, which is written X(r). Ij is always

an individual. Finally, n is always an integer and u

is always a real number. We assume that A contains

the real numbers. Note that the semantics of FILLS

and ONE-OF, as given in the table, are somewhat non

standard. For somewhat technical reasons the indi

viduals used as arguments to the FILLS and ONE-OF

constructors are defined to be disjoint subsets of the

domain, rather than domain elements, as is more usu

ally the case.1

'In a DL with individuals that are domain elements,

a description like (AND (ALL Car (ONE-OF Saab Volvo))

(ALL Car Yuppiemobile) ) would imply the disjunctive

fact that either Saabs or Volvos are Yuppiemobiles. Rea

soning with such disjunctive information is intractable. Us

ing the modified semantics Saab and Volvo would stand

for two disjoint sets of objects, rather than two distinct

In this paper we focus on a particular description logic

called CLASSIC2. ClA8SIc2 is a reimplementation and

slight extension of ClassicI [Borgida et al., 1989;

Brachman, 1990] that contains all of the construc

tors summarized in Table 1. The main extensions to

the logic relative to ClassicI are the MIN and MAX

constructors, and the addition of role hierarchies and

role inverses; the other constructors are inherited from

ClassicI.

Most of our results actually concern the DL with

the constructors AND, ALL, AT-LEAST, AT-MOST, FILLS,

ONE-OF, MIN, and MAX—i.e., Classic2 without the

SAME-AS constructor or role hierarchies. In the re

mainder of this paper we will call this DL C-Classic.

A knowledge-based management based on C-Classic

has been used for a number of real-world applications

(e.g., [Wright et al., 1993]).

2.2 REASONING IN CLASSIC

DLs are primarily used for taxonomic reasoning, and

hence an important operation is determining if one

description is more general than another. The gener

ality relationship used for descriptions is called sub-

sumption: description Di is said to subsume Dj if

J(Di) D I(Da) for every possible definition of the prim

itives and roles appearing in Di and Dj. Subsumption

is thus closely related to the familiar notion of set in

clusion.

Subsumption in Classic is fairly well understood.

The subsumption algorithms for Classic2 are simi

lar to those for Classic 1—descriptions are first nor

malized by converting them to a labeled graph struc

ture called a description graph, and then subsumption

can be efficiently tested by graph-matching operations.

Below we will briefly review the special case of descrip

tion graphs that occur when the standard CLASSIC2

objects; tractable and complete inference procedures exist

for this modified semantics [Borgida and Patel-Schneider,

1992].
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(AMD

Family

(ALL Husband

(AND Student

(ALL Age (0HE-0F31 32 33))))

(ALL Wife

(AND Employed

(FILLS employer IBM)))

(AT-MOST 2 Child)

(AT-LEAST 2 Car)

(ALL Car

(ALL Maker (DNE-OF Volvo Saab))))

^~^»rim={F»mily}

Car
Min=2

Huiband / Wife

Oprim={Student}0 Prim={«nployed}

Employer

Age
Filler«={IBM}

Min=l

 

^-^)neof={31 ,32,33^--^
o

Oneof={Volvo,Sub}

Figure 1: A C-Classic Description and Description Graph

algorithms are applied to C-Classic.

For C-Classic, description graphs are always trees.

The nodes of description trees are labeled with tuples

(dom, prim, mn, mx). The dom component is either a

set of individuals {li, . . ., In}, which intuitively rep

resents the constraint that the condition (ONE-OF Ij

. . . In) must hold at this vertex, or the special symbol

UNIV, which indicates that no ONE-OF restriction is in

force. The mn and mx labels are either real numbers,

representing MIN and MAX restrictions, or the symbol

NOLIMIT, again representing the absence of any restric

tion. The prim label is a set of primitive concepts.

Each edge in a description graphs is labeled with a

tuple (r, least, most, fillers). Intuitively least is an in

teger representing an AT-LEAST restriction on the role

r, most is an integer representing an AT-MOST restric

tion on r, and fillers is a set of individuals represent

ing a FILLS restriction on r. To allow for an absent

AT-MOST restriction, most can also be the special sym

bol NOLIMIT.

More formally, given a vertex v from a description tree

T, with label (dom, prim, mn, mx), a domain element

x is denned to be in the extension ofv iff the following

all hold.

• If dom = {Ii, .... I*} (i.e., if dom ^ UNIV) then

x GJ((0NE-0F Ii...Ifc)).

• For each p4 G prim, x G Ifo).

• If mn £ NOLIMIT, x G I((MIN mn)).

• If mx ^ NOLIMIT, x G I((MAX mx)).

• For each edge from v to w with label

(r, least, most, fillers) the following all hold:

- if y is any domain element such that (z, y) €

T(r), then y is in the extension of to;

- least < |{y|(»,y)€l(r)}|,

- if most ^ NOLIMIT then |{y|(x, y) G 2(r)}| <

most,

- if fillers = . . ., I*}, then x £

I( (FILLS Xi...X»))

Finally, an individual x is in the extension of the de

scription tree T iff it is in the extension of the root

vertex of T.

To normalize a C-Classic description, the description

is first converted to a description tree using a simple

recursive algorithm. The description tree is then con

verted into a canonical form by further normalization

operators: for example, one operator looks for edges la

beled (r, least, most, fillers) where \fillers\ > least, and

then replaces each such least label with \fillers\. Fig

ure 1 contains an example of a C-Classic description,

and the equivalent canonical description tree. (To sim

plify the diagram, vacuous labels like dom=UNIV and

least=0 are not shown.) For a more complete discus

sion of Classic description graphs, and the seman

tics for Classic, consult Borgida and Patel-Schneider

[1992].

2.3 PAC-LEARNABILITY

The problem of inductive learning is to extrapolate a

general description of a concept c from a set of training

examples—things that have been labeled by an oracle

as positive if they are elements of c and negative other

wise. To formalize this, let X refer to a domain—a set

of things that might serve as positive or negative exam

ples. A concept c is a subset of X. A concept class is a

set of concepts; this will designate a constrained set of

"target" concepts that could be labeling the training

data. Associated with each concept class is a language

£ for writing down concepts in that class. In this pa

per the representation in £ for the concept c will also

be denoted c (as it will be clear from context whether

we refer to the concept or its representation). We

will also assume the existence of some measure for the

size of a representation of a concept. Typically this

measure will be polynomially related to the number of

bits needed to write down a concept.

In learning, the goal is to find the unknown target con

cept c G £ (or some reasonable approximation thereof)
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from a set of labeled examples. Usually examples are

elements of the domain X, with x G X labeled as

positive if x G c and negative otherwise. We will de

part from this model here, and instead assume that

examples are concepts selected from £, and that an

example x G £ will be labeled as positive if c sub

sumes x, and labeled as negative otherwise. (Thus

in learning DLs both examples and target concepts

will be descriptions.) This single-representation trick

[Dietterich et al., 1982] has been used in comparable

situations in the computational learning theory liter

ature (e.g., [Haussler, 1989]). In analyzing first-order

languages it is particularly useful because there is of

ten no standard representation for instances.

Our model of "efficient learnability" is based on

Valiant's model of pac-learnability [Valiant, 1984]. We

assume a static probability distribution by which ex

amples are drawn, i.e., some distribution P over the

language £. The probability distribution P gives us a

natural way of measuring the quality of a hypothesis h;

one can simply measure the probability that ft's label

will disagree with the label of the target concept c on

an example chosen according to P. The goal of pac-

learning is to produce a hypothesis that will with high

probability score well according to this measure—that

is, a hypothesis that will be "probably approximately

correct"—regardless of the probability distribution P

and the target concept c G £.

More formally, let a sample o/cbea pair of multisets

S+ and S~ drawn from £ according to P, with S+ con

taining the positive examples of c and S~ containing

the negative examples. Let errorpiC(h) be the prob

ability that h and c disagree on an example x drawn

randomly according to P (i.e., the probability that h

subsumes x and c does not subsume x, or that c sub

sumes x and h does not subsume x). Let £n denote

the set of concepts c G £ of size no greater than n.

A language £ is said to be pac-learnable iff there

is an algorithm Learn and a polynomial function

m(i, y, ne, nt) so that for every nj > 0, every c G £„,,

every e : 0 < e < 1, every 6 : 0 < 5 < 1, and ev

ery probability distribution P over Cn,, when Learn

is run on a sample of size m(j, j,ne,nt) or larger it

takes time polynomial in the sample size and outputs

a concept h G £ for which Prob(errorpiC(h) > e) < S.

In other words, even given adversarial choices of nt, n„

c, S, P, and c G Cn„ Learn will with high confidence

return a hypothesis h that is approximately correct

(with respect to the correct hypothesis c and the dis

tribution of examples P), using only polynomial time

and a polynomial number of examples. The polyno

mial bound m( j, j, n„ nt) on the number of examples

is called the sample complexity of Learn.

As noted above, this formalization is conventional, ex

cept for the assumption that examples are descriptions

that are marked positive when subsumed by the tar

get concept. In the discussions below, the standard

pac-learning model refers to the variant of this model

resulting when examples are domain elements.

2.4 RELEVANT PREVIOUS RESULTS

Only a few previous papers have directly addressed the

the pac-learnability of description logics. However, a

connection can be drawn between pac-learnability and

certain previous formal results on the complexity of

reasoning in description logics.

For instance, it is known that if £ is pac-learnable

in the standard model, then £ G P/Poly [Schapire,

1990], where P/Poly is the set of languages accepted

by a (possibly nonuniform) family of polynomial-size

deterministic circuits. This result can be used to ob

tain a number negative results in our model, such as

the following:

Theorem 1 In the model defined in Section 2.3, if

concepts in a language £ can be represented as strings

over {0, 1} with only a polynomial increase in size, and

if s\ibsumption for £ is either NP-hard or coNP-hard,

then £ is not pac-learnable unless NP C P/Poly.

Proof: For any language £ and a concept c G £, let

c be a concept that has the same representation as c,

but which denotes the set

{d G £ : d is subsumed by c}

Also define £ = {c : c G £}. It is immediate

that £ is pac-learnable in the model of Section 2.3

iff £ is pac-learnable in the standard model, and that

testing membership for a concept c G £ is as hard

as testing subsumption for the concept c £ £. By

Theorem 7 of Schapire [1990], if £ is pac-learnable

then £ G P/Poly; thus if £ is W-hard (coW-hard)

it follows that NP C P/Poly (coNP C P/Poly). Fi

nally since P/Poly is closed under complementation,

coNP C P/Poly implies that NP C P/Poly. ■

This theorem immediately establishes the non-

learnability of a wide class of DLs, such as TC

[Levesque and Brachman, 1985]; furthermore, it also

establishes the non-learnability of many plausible ex

tensions of C-Classic.

Unfortunately, the same method cannot be used to

obtain positive results, as the converse of the propo

sition is false: there are some languages for which

subsumption is tractable that are hard to pac-learn.

For example, the DL containing only primitives and

the AND, ALL and SAME-AS constructors is not pac-

learnable, even though a tractable subsumption al

gorithm for this language exists [Cohen and Hirsh,

1992b]. This negative result can be easily extended

to the DLs ClassicI and Classic2, which include

the SAME-AS constructor.
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Function LCS(«i, "a):

begin

let vlcs be the root of the tree to output

let the label of i/lcs be (dom, prim, mn, mx) where

domifprim^, mn\, maO is the label of vi

dom?, primj, nwij, mxj) lB the label of v?

dom = dom\ U domj

prim = prirn^ fl prim?

mn = min(mni, mrij)

ma = max(mzi, nun)

for each edge from t>i to t»i with

label (r, leasti, most\, fillers^)

if there is an edge from v% to w%

with label (r, leash, mosta, filler^)

then

let least = min(ie<wti, leasti)

let most = max(mosti, mostt)

let /ti/a = fillers^ n /HJer*,

let iw = LCS(ioi, toj)

construct an edge from v with w

with label (r, ieajt, most, fillers)

endif

endfor

end LCS function

Figure 2: An LCS Algorithm for C-Classic

The principle technique for obtaining a positive result

for a language £ is to find a pac-learning algorithm for

£. An operation that is frequently useful in learning is

finding a least general concept that is consistent with

a set of positive examples; thus, we have also studied

the complexity of computing least common subsumers

(LCS) of a set of descriptions. An LCS of a set of

descriptions D\,. . . ,Dm € £ is simply a most specific

description (in the infinite space of all possible descrip

tions in £) that subsumes all of the Di's. An LCS can

also be thought of as the dual of the intersection (AND)

operator, or as encoding the largest expressible set of

commonalities between a set of descriptions.

A fairly general method for implementing LCS algo

rithms is described by Cohen, Borgida and Hirsh [Co

hen et al., 1992]. This method can be used to de

rive an LCS algorithm for any description logic which

uses "structural subsumption" : this class includes C-

Classic, but not full Classic2. An LCS algorithm

for C-Classic description trees is shown in Figure 2.2

This algorithm produces a unique LCS for any set of

descriptions, and is tractable in the following sense: if

Di,. . . , Dm are all C-Classic descriptions of size less

than or equal to n«, their LCS can be computed in time

3 In the code, v\ and vj are roots of two description

trees. We also adopt the conventions that S U UHIV =

UHIV U 5 = UHIV for any set 5, and max(n, HOLIMIT) =

min(n, HOLIMIT) = HOLIMIT for any real number n.

polynomial in m and nt. We omit proofs of the cor

rectness and treatability of the LCS procedure, and of

the uniqueness of the LCS for C-Classic [Cohen and

Hirsh, 1992a].

3 C-CLASSIC IS PAC-LEARNABLE

Often it is true that any algorithm that always re

turns a small hypothesis in £ that is consistent with

the training examples will pac-learn £; thus often, if

the LCS of a set of examples can be tractably com

puted for a language £, computing the LCS of all the

positive examples is a pac-learning algorithm for £.

Unfortunately, this is not the case for C-Classic. As

a counterexample, consider the target concept THING,

and a distribution that is uniform over the examples

(ONE-OF Ii)+, (ONE-OF I2)+, ...(ONE-OF Ir)+ where

the Ij's are distinct individuals. The LCS of any m ex

amples will be the description (ONE-OF Ijl . . . IJm); in

other words, it will simply be a disjunction of the pos

itive examples. It can easily be shown that this does

not satisfy the requirements for pac-learning when

r » m.

This example suggests that to pac-learn C-Classic

one must avoid forming large ONE-OF expressions. The

LCSLearn algorithm is one way of doing this. The

LCSLearn algorithm takes two inputs: a set of posi

tive examples S+ and a set of negative examples S~ ,

all of which are normalized Classic2 descriptions.

The algorithm behaves as follows.

1. If there are no positive examples, return the

empty description NOTHING. Otherwise, let H be

the LCS of all of the positive examples, and let

1 = 0.

2. Let Hi be a copy of H in which every ONE-OF

label in H that contains more than I individuals

is deleted.

3. If Hi does not subsume any negative example

e~ in S~ , then return Hi as the hypothesis of

LCSLearn. Otherwise, if Hi = H then abort

with failure. Otherwise, increment I and go to

Step 2.

The main formal result of this paper is the following.3

Theorem 2 LCSLearn is a pac-learning algorithm

for C-Classic, with a sample complexity of no more

3 Note that this theorem assumes a size measure on C-

ClasSIO concepts. We define the size of a description to

be the size of the equivalent canonical description tree, and

that the size of a description tree is the sum of the number

of vertices, the number of edges, and the sum of the sizes

of all the labels, where a label that is a symbol or a real

number has size one, and a label that is a set S has size

\S\.
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than

f1 1 N

. 8nt + 4n. . 4th + 2n. 32n. , 26 .

= max! In y=— , In — )

= 0( In jf— + — In -)

regardless of the number of primitive concepts and

roles.

Proof: In the proof, we will analyze the behavior of

an incremental version of LCSLearn called IncLCS-

Learn. This will allow us to use proof techniques from

mistake-bounded learning [Littlestone, 1988] for part

of the proof, thereby achieving a sample complexity

independent of the number of roles and primitives.

IncLCSLearn examines the examples in S+ and S~

in some randomly chosen order. After examining the

i-th example n, IncLCSLearn generates a hypoth

esis Hi, which is defined to be the hypothesis that

LCSLearn would output from a sample containing

the first i examples x\,. ■ -,X{. IncLCSLearn returns

as its hypothesis the first Hi such that

Property 1. i > max(f In J, ^ In ^)

Property 2. IncLCSLearn has made no nonbound-

ary errors (defined below) on the my = ' In =j-

previous examples, where j is the number of pre

vious nonboundary mind changes (defined below)

made by IncLCSLearn.

We will show that IncLCSLearn is a pac-learner

with the stated sample complexity. Since IncLCS-

Learn's hypothesis is the same as LCSLearn would

generate given a subset of the data, this implies that

LCSLearn is also a pac-learner.

Define a mind change to be any occasion in which Hi

differs from Hi-\. A boundary mind change is one

in which (a) Hi and /f<_i have the same number of

edges and vertices, (b) for each vertex only the mn

and mx labels change and (c) for each edge only the

least and most labels change. A nonboundary mind

change is any other sort of mind change. Also define

a prediction error for an incremental learner to be any

occasion in which the i-th hypothesis Hi misclassifies

the (i + l)-th example A boundary error is an

error in which a positive example x< is not subsumed

by Hi, but it would have been subsumed if every least

label in Hi were replaced by zero, and every most, mn

and mx label by NOLIMIT. A nonboundary error is any

other sort of error.

The proof begins with two lemmas, the proofs of which

are omitted. (The first proof uses a standard Chernoff

bound argument; the second is a straightforward appli

cation of the main result of Blumer et. al [1989], and

a bound of 2d on the VC-dimension of the language

d-£RECT-)

Lemma 1 Let a be some type of prediction error (e.g.

a nonboundary error) and let Hi be some hypothesis of

an incremental learner that was formed from the ex

amples x\, . . . , Xi and that makes no prediction errors

of type a on the subsequent examples x<+i xi+nj>

■where m, — j In H- and j is the number of previous

hypotheses of the incremental learner Inc Learn that

are different with respect to the type-a errors that they

could make. Then with probability at least 1 — 8, Hi

will have probability less than e of making a type-a

prediction error on a randomly chosen example.

Lemma 2 Let d-£RECT be the set of d-dimensional

rectangles whose boundaries are specified by real num

bers, and define rectangle JZi to subsume rectangle

■Rj iff Vh* points contained in R\ are a superset of

the points contained in iij. Then A-Crect ** Pac-

leamable with a sample complexity of

.4. 2 16d, 13.

max - In -, In — )

cot e

by any learning algorithm that outputs a rectangle con

sistent with all of the examples.

With these tools in hand, we can now prove the the

orem. By Lemma 1, any hypothesis returned by

IncLCSLearn will with confidence | have probabil

ity less than | of making a nonboundary error on a

new random example. Now consider boundary errors.

Finding the right values for the least, most, mn, and

mx labels in a tree of size n is equivalent to finding an

accurate hypothesis in (v + c)-£rbcTi where v is the

number of vertices in the tree and e is the number of

edges. Since for any hypothesis tree Hi, v -f e < n„

by Lemma 2 any hypothesis that is consistent with

.8. 4 32n, 26. ,

max( - In 7 , In — ) (1)

e 6 e e

examples will with confidence | have probability less

than | of making a boundary error on a new random

example. Thus the hypothesis of IncLCSLearn will

with confidence 5 have error less than e.

It remains to bound the number of examples required

to satisfy Property 2. The worst case would be to make

no nonboundary mind changes on the first mi - 1 ex

amples, then after a nonboundary mind change on the

mi-th example to make no nonboundary mind changes

on the next mj — 1 examples, and so on. Thus the num

ber of examples required to satisfy Property 2 can be

bounded by ^ . my . Notice first that the number of

nonboundary mind changes can be bounded as follows:

• The hypothesized bound / on dom labels can be

incremented at most n« times.
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• A set representing a dom label can be increased

in size to at most n«, or can be changed from

a Bet to NOLIMIT. Since dom labels are initially

non-empty, they can be changed at most nt times

(independently of changes to the bound I on dom

labels.)

• The total number of times that a prim or fillers

label is removed or that an edge or vertex is be

removed from the tree is bounded by n,.

Thus we see that the number of nonboundary errors

for IncLCSLbarn is bounded by 2nt + n,. The sum

of the rrij 's can now be bounded as follows:

2n.+n.

?] m] < (2n* + r»«)»T*(an1+n.)

8th + 4n, , Ant + 2na

= In 7=—

« Vs

By combining this with Equation 1 we obtain the sam

ple complexity given in the statement of the theorem.

This result extends the previous results of Cohen and

Hirsh [1992b] to include a larger set of constructors.

This result can be also extended to allow a limited use

of the SAME-AS constructor by imposing restrictions

on the use of SAME-AS analogous to those described by

Cohen and Hirsh.

4 EXPERIMENTAL RESULTS

In the formal model described above, examples are as

sumed to be descriptions, and an example is marked

as positive if it is subsumed by the target concept.

While convenient for formal analysis, this assumption

is not always appropriate; in many cases, it is desir

able to use instead individuals as examples. The for

mal results also give only a loose polynomial bound on

learning speed.

Thus an experimental investigation of the behavior of

LCSLEARN is desirable. In the remainder of this sec

tion, we will describe a simple means of extending the

LCSLearn algorithm to learn from individuals, and

present some experimental results with the extended

algorithm.

4.1 LEARNING FROM INDIVIDUALS

A straightforward way of adapting LCSLearn to

learn from individuals is to provide a preprocessor that

abstracts an individual I by constructing a very spe

cific description dj that subsumes /. If one can guaran

tee that when an individual is an instance of C its ab

straction will be subsumed by C, then many of the de

sirable formal properties of LCSLEARN are preserved.

Suppose, for example, that dj is always the least gen

eral concept that contains / in some sublanguage Co of

C-Classic. Then applying LCSLearn to abstracted

training examples is a pac-learning algorithm for Co-

We have experimented with a number of methods to

abstract individuals. The simplest of these abstraction

methods finds the least general description dj that (a)

contains no SAME-AS restrictions and (b) contains at

most k levels of nesting of the ALL constructor, for

value of k provided by the user. It is easy to show that

this least general concept is unique, and can be found

in time polynomial in the size of the knowledge base

(but exponential in k). We used this strategy with k =

3 in the experiments with the Imacs2 knowledge base

(see below), and k = 5 for all of the other experiments

in this paper.

4.2 RECONSTRUCTING CONCEPT

HIERARCHIES

In our first set of experiments, we used LCSLearn to

reconstruct known concept hierarchies from examples.

Each concept c in the hierarchy was made a target

concept for LCSLearn, with the instances of c serving

as positive examples, and non-instances of c serving as

negative examples.

By reconstructing concept hierarchies from a variety of

knowledge bases we were able to test LCSLEARN on a

large number of naturally occurring concepts—almost

1000 all told. Some of these concepts were simple,

but others were quite complex. The largest concept

in our benchmark suite has a description more than

10,000 symbols long; for one of the knowledge bases

(Prosel) the average description size was more than

2000 symbols.

We evaluated the learning algorithm on each knowl

edge base in two ways. First, we measured the frac

tion of the concepts in each knowledge base for which

the hypothesis of LCSLearn was equivalent to the

true target concept. Somewhat surprisingly, in several

of the domains a significant fraction of the hypotheses

met this stringent test. Second, we estimated the error

rate of each hypothesis using the statistical technique

of cross-validation4 [Weiss and Kulkowski, 1990].

Table 2 contains the results of this experiment. The

Wines knowledge base is the one distributed with

Classic2. The Imacsl knowledge base is the one used

as a running example by Brachman et. al [1992], and

Imacs2 is a small knowledge base used to test a real-

world application of the system of [Brachman et al.,

1992]. Prosel and Prose2 are knowledge bases used for

different hardware configuration tasks [Wright et al.,

1993]. KRK, Loan, and Kluster are knowledge bases

4For problems with 100 or more examples, we used 20

partitions. For problems with less than 100 examples, we

used "leave-one-out" cross-validation.
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Table 2: Using individuals to reconstruct hierarchies

KB #Concepts #Individuals Equivalent Error rate

to Target LCSLearn Default

Wines 134 177 37/134 0.49% 3.5%

Imacsl 9 2564 2/9 0.063% 11.1%

Imacs2 74 512 19/74 0.31% 2.1%

Prosel 301 293 1/301 0.031% 0.34%

Prose2 398 202 1/398 0.092% 0.60%

KRK 16 1049 5/16 0.089% 6.4%

Loan 22 1013 3/22 0.031% 15.3%

Kluster 13 16 2/13 7.7% 17.8%

Total 967 70/967

Average 121.0 728.25 1.15% 6.87%

used to compare LCSLearn with other work in learn

ing first-order concepts. KRK classifies king-rook-

king chess positions as legal or illegal [Quinlan, 1990;

Pazzani and Kibler, 1992], Loan determines if payment

can be deferred on a student loan [Pazzani and Brunk,

1991], and Kluster encodes a pharmacological domain

[Kietz and Morik, 1991]. KRK and Loan were trans

lated from Prolog, and Kluster was translated from

BACK [Peltason et ol., 1991].

To summarize the results, LCSLearn finds very accu

rate hypotheses in all of the domains except for Klus

ter, which has few individuals and hence affords little

training data for the learning algorithm.

Some of the knowledge bases include many concepts

with few instances: for such concepts hypothesizing

the empty description NOTHING would also give a low

error rate. Thus we also give for each knowledge base

the error rate of the default rule.6 LCSLearn outper

forms the default rule on all of the knowledge bases,

often having an average error rate more than an order

of magnitude lower.

4.3 ANALYSIS OP RESULTS

Most implemented learning systems are tested on at

most a few dozen learning problems. In the experi

ments above, however, we have evaluated LCSLearn

on several hundred benchmarks. This provides suffi

cient data to make some general statements about its

performance.

In Figure 3, we have plotted one point for each bench

mark problem. The x coordinate of each point is the

log of the number of positive examples,6 and the y co

ordinate is the cross validated error rate of LCSLearn

divided by the default error rate; thus y > 1 indi-

Figure 3: Further analysis of LCSLearn

The default rule simply predicts "positive" if more

than half of the training examples are positive, and pre

dicts "negative" otherwise.

"Logs are used because of the large variation in the

amount of training data.
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cates performance worse that the default rule, and

y aa 0 indicates performance much better than the

default rule. This plot showB in general, the per

formance of LCSLearn relative to the default rule

improves quickly when more positive examples are

available. This is unsurprising, when one considers

that LCSLearn derives most of its information from

the positive examples. Also (on these benchmarks)

LCSLearn never performs worse than the default

rule, and LCSLEARN outperforms the default rule

whenever there are more than a handful of positive

examples.

One might also expect that when LCSLearn outputs

a small hypothesis that is consistent with many ex

amples, that hypothesis is likely to have low error.

Figure 4 plots the ratio of number of examples m to

hypothesis size nj,, on the x axis, against error rate,

on the y axis.7 Most of the points are clustered near

the origin, indicating that for most of the benchmarks

7For readability, we show only the part of this plot clos
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Figure 4: Effect of number of examples on error rate
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both the error rate e and the ratio — are low. The

outlying points lie entirely near either the x axis or y

axis, showing that error rate e is high only when ^

is very low, and conversely that whenever high the

error rate e is very low.

4.4 RELATIONSHIP TO KLUSTER

This application of LCSLbarn is somewhat similar

to an earlier learning system called Kluster [Kietz

and Morik, 1991]. Unfortunately, Kluster has not

been systematically evaluated over a range of domains,

which makes quantitative comparison of Kluster and

LCSLbarn difficult. LCSLearn's performance on

the benchmark knowledge based described by Kietz

and Morik is given in Table 2; in this section we will

comment on the qualitative similarities and differences

between LCSLbarn and the learning component of

Kluster.

As in the experiments above, Kluster's starting point

is a set of individuals which are linked by roles and

classified as to the primitive concepts to which they

belong.8 Kluster first heuristically partitions the indi

viduals into disjoint classes, and then learns a descrip

tion for each class expressed in a subset of the BACK

description logic, using as examples the instances and

non-instances of the constructed class. Kluster's learn

ing algorithm first uses a sound LCS-like method to

learn a description in a sublanguage of descriptions of

the form

est to the origin.

As Classic allows arbitrary assertions to be made

about individuals, more information about individuals can

be available for LCSLBARN; however in most of the do

mains above this is not the case.

(AND (ALL ri (AND Plll . . .pi.nj)

(AT-LEAST li ri) (AT-MOST mi rx)

(ALL rk (AND pM . . .p*,„J)

(AT-LEAST lk rk) (AT-MOST mk rk))

where the r^'s are named roles, the U's and m^'s are

integers, and the Pij'i are named concepts. To cir

cumvent the restrictiveness of this language, heuristic

techniques are then used to introduce new named con

cepts and named roles. Finally, heuristic techniques

are again used to generalize the resulting descriptions.

In contrast, LCSLbarn uses only one heuristic step—

the abstraction of individuals—and learns descriptions

in CLASSIC2, a language more expressive than the sub

language above, and incomparable to the full language

that is learned by the Kluster technique. CLASSIC2

is more expressive than the subset of BACK used in

Kluster in that it includes the MIN, MAX, FILLS, TEST,

SAME-AS, and 0NE-0F constructors, and allows ALL re

strictions to be nested; however, Classic2 does not

allow defined roles, and hence it is also in some re

spects less expressive. To circumvent this limitation it

was necessary in the experiments above to add to the

original ontology the two roles defined by Kluster.

5 LEARNING DISJUNCTIONS

Because Classic contains only limited disjunction (in

the 0NE-0F constructor) many target concepts of prac

tical interest can not be expressed by a single Clas-

Sic2 description. One way to relax this limitation is to

consider algorithms that learn a disjunction of descrip

tions, rather than a single Classic concept; in other

words, to learn a target concept c = d\ V dj V . . . V dn

where each dj is a Classic2 description.

Learning disjunctions of Classic concepts is some

what analogous to the problem of "inductive logic

programming" (ILP) [Quinlan, 1990; Muggleton and

Feng, 1992]. In ILP the target concept is usually as

sumed to be a single Prolog predicate that is defined

by a set of Prolog clauses; such a concept can often

be viewed as a disjunction of the sets defined by each

clause. Thus one natural approach to learning dis

junctions of Classic descriptions is to adapt the tech

niques used in ILP to learn multi-clause Prolog predi

cates.

One well-known ILP method for learning multiple

clauses is the GOLEM algorithm [Muggleton and

Feng, 1992], which is also based on computing least

common generalizations. The basic idea behind this

algorithm is to use LCS to implement a specific-

to-general greedy search for descriptions that cover

many positive examples and no negative examples. In

GOLEM, these descriptions are then further general

ized by a process called reduction, and finally disjoined
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LCSLearnDisj(5+ ,S~ )

rn- 0

while 5+ is nonempty do

rH- n + 1

Seed <- FindSeed(5+ ,S~)

dn 4— Generalize(Seed,S+ ,S~)

remove from S all examples in d„

endwhile

return di V . . . V dn

FindSeed(5+ ,S~)

R *- ci random elements from 5+

PAIRS <- {LCSlf/i.rj) : r<fr,- e ii}

discard from PAIRS all descriptions that

contain any negative examples e~ € S~

return the p € PAIRS that contains

the most positive examples e+ g 5+

Generalize(Seed,5+ ,5")

repeat

R «— cj random elements from 5+

that are not covered by Seed

GENS <- {LCSl(Seed,r.) : r £ Ji}

discard from GENS all descriptions that

contain any negative examples e~ £ S~

if GENS is nonempty then

Seed <- the p € GENS that contains

the most positive examples e+ £ 5+

endif

until GENS is empty

return Reduce(Seed,S~ )

LCSl(di,d3)

return a copy of LCS(di,di) with

all QNE-OF restrictions removed

Figure 5: The LCSLearnDisj learning algorithm

Reduce(Z?,JV)

n +- 0

while N is nonempty do

n 4- n+ 1

fn *- the / £ Factors(D) maximizing \{x £ N : x £ f}\

N<-N-{xeN:xefn}

endwhile

return fi ...f„

Factors(D)

if D = (AND Di . . . Dk) then

return U*=lFactors(jD<)

elseif D = (ALL r D) then

return {(ALL r /) : / is a factor of D}

elseif D = (FILLS Ii . . . I») then

return {(FILLS Ii ),..., (FILLS I»)}

else return D

Figure 6: Reducing C-Classic Descriptions

to obtain a hypothesis.

Figure 5 gives a brief overview of the algorithm as

adapted to CLASSIC.9 To reduce a description D,

we first "factor" it into a set of simpler descriptions

{/ii "m/*} 8UCh t^a* the intersection of the fc'a is

equivalent to D. We then use a greedy set-covering

approach to find a small subset of the factors of D

that, when conjoined, are consistent with the negative

data. The details of the reduction algorithm are given

in Figure 6.

Three of the knowledge bases above are useful test

cases for this learning algorithm. The KRK and

'In the experiments we used c\ = 5 and ca = 20. Note

that the limited disjunction provided by ONE-OFis no longer

needed, as a more general mechanism for disjunction is

being provided, hence the use of LCSl rather than LCS.

Loan knowledge bases, being adaptations of ILP

problems, naturally fall into this category. We ran

LCSLearnDisj on these benchmarks and also on

some obvious variants of the KRK problem, shown in

the table as KBK and KQK.10

The third test case is the Wines knowledge base, which

contains a set of rules that recommend which wines to

serve with which foods. From these rules we derived

a number of learning problems. First, we derived 12

disjunctive concepts defining the foods that are ac

ceptable with 12 different types of wines: for exam

ple, the disjunctive concept Color-Red-Food contains

those foods that can be served with red wine. The

training examples for these concepts are just the 33

food individuals in the knowledge base. We also de

rived a single disjunctive concept containing exactly

the (wine, food) pairs deemed acceptable by the Wine

rules. We generated a dataset for the "acceptable pair"

concept by choosing a set of (wine, food) pairs, and

then classifying these pairs as acceptable or unaccept

able using the rules from the Wines knowledge base;

the generated dataset contains all acceptable pairs and

a random sample of 10% of the unacceptable pairs.

Table 3 summarizes these experiments; for conve

nience, the 12 smaller wine problems are also sum

marized in a single line labeled "Acceptable-Food".

LCSLearnDisj is the name given to our learning al

gorithm; the other points of comparison that we use

are Grendel2, a recent version of the ILP learning sys

tem Grendel [Cohen, 1992; Cohen, 1993], and the de

fault error rate.11

10The white rook is replaced by a white bishop in KBK-

Illegal and by a queen in KQK-Illegal.

11 Results for Grendel are in each case the best results ob

tained among a variety of different expressible biases [Co

hen, 1993]. Grendel was not applied to the Wines problems
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Table 3: Learning disjunctions of Classic concepts

KB #Examples Error rate

LCSLbarnDisj Default Grendel2

KRK 100 2.0% 38.0% 3.0%

KBK 100 2.0% 36.0% 54.0%

KQK 100 3.0% 44.0% 55.0%

Loan 100 13.0% 35.0% 2.0%

Acceptable-Pair 320 5.3% 42.5%
—

Acceptable-Foods: —

Color- White-Food 33 12.2% 33.3% —

Color-Rose-Food 33 0.0% 6.1% —

Color-Red-Food 33 6.1% 39.4% —

Body-Light-Food 33 3.0% 9.1% —

Body-Medium-Food 33 12.2% 45.5% —

Body-Full-Food 33 6.1% 36.4% —

Flavor-Delicate-Food 33 6.1% 21.2% —

Flavor-Moderate-Food 33 9.1% 39.4% —

Flavor-Strong-Food 33 9.1% 42.4% —

Sugar-Sweet-Food 33 3.0% 27.3% —

Sugar-OffDry-Food 33 3.0% 3.0%
—

Sugar-Dry-Food 33 6.1% 30.3%
—

Average Acceptable-Food 33 6.3% 27.8% —

The results of Table 3 show that LCSLearnDisj ob

tains good results, and suggests that it is competitive

with existing first-order learning methods. However, it

should be noted that both LCSLearnDisj and ILP

systems like Grendel are sensitive to the way examples

are represented, and ILP systems and LCSLearnDisj

necessarily use different representations.

To illustrate the differences in representation, we will

briefly discuss our translation of the KRK learning

problem. In this domain, the task is to classify king-

rook-king chess positions with white to move as legal

or illegal. In the formulation of this problem used by

Grendel2, a position is represented by six numbers en

coding the rank and file position of each of the tree

pieces. Illegal positions are recognized by checking

arithmetic relationships between pairs and triples of

numbers. An an example, the Prolog clause below

states that a position is illegal if the white rook and

black king are on the same file and the white king does

not block the white rook from attacking the black king.

(The variables WKR, WKF, WRR, WRF, BKR, and

BKF stand for the rank and file of the white king, the

rank and file of the white rook, and the rank and file

of the black king respectively.)

fflegal(WKR,WKF,WRR,WRF,BKR,BKF) «-

WRF=BKF,

( WKF=BKF, not between(WRR,WKR,BKR)

; not WKF=BKF ).

In the C-Classic formulation of the problem, a posi

tion has the attributes white-king, white-rook, and

because they are not represented in an ontology conducive

to an ILP representation.

black-king, each of which is filled by an individ

ual that must be a piece; a piece has the attribute

location, which must be filled by a square; and a

square has the attributes rank and file and a role

content, which must be filled by one or more pieces.

Finally, to encode the spatial relationships among

pieces, every piece also has a number of attributes

with names like to-white-rook and to-black-king

that are filled by vector individuals. A vector in

dividual is related to all the squares between its

two endpoints via the role between, and also has a

direction attribute. The filler of the direction at

tribute is one of the individuals n, s, e, w, ne, se, nw,

or sw, and these individuals are organized in a taxon

omy that includes concepts like diagonal-direction

and file-direction.

Using this ontology, the Prolog clause above can be

translated as the following C-Classic concept.

(ALL white-rook

(ALL to-black-king

(AND

ALL direction file-dir)

ALL between (AT-MOST 0 content)))))

Both the ILP and C-Classic representations are nat

ural given the choice of languages; however, as the ex

ample shows, the representations are also both quite

different, and have different strengths and weaknesses.

The C-Classic representation makes it possible to

concisely describe certain geometric patterns that are

difficult to express in the Prolog representation, such

as an unobstructed line of attack along a diagonal.
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The Prolog representation, on the other hand, allows

a very compact representation of a position.

To summarize, the differences in the languages greatly

complicate comparisons between ILP techniques and

learning methods based on description logics: not only

does the background knowledge used by the two sys

tems differ, but the representation of the examples

themselves is also different. (This is in marked con

trast to comparisons among different learning systems

based on propositional logic, in which the same repre

sentations are typically used for examples.) However,

we believe that the experiments above do clearly in

dicate that LCSLearn can be competitive with ILP

methods, given an appropriate ontology.

6 CONCLUDING REMARKS

The description logic C-Classic has been used in a

number of practical systems. In this paper, we have

presented a formal result showing that the descrip

tion logic C-Classic is pac-learnable. The learning

algorithm LCSLearn suggested by this formal result

learns descriptions in the C-Classic description logic

from examples which are themselves descriptions.

Additionally, we have presented an experimental eval

uation of two extensions to the algorithm: one that

learns from examples that are individuals (by simply

converting each example individual to a very specific

concept that includes that individual) and a second

that learns disjunctions of descriptions from individ

uals. Extensive experiments with LCSLearn using

several hundred target concepts from a number of do

mains support the claim that the learning algorithm

reliably learns complex natural concepts, in addition

to having behavior that is formally well understood.

Similar experiments with the extension of LCSLearn

that learns disjunctions suggest that it is competitive

with existing techniques for learning first-order con

cepts from examples. This suggests that learning sys

tems based on description logics may prove to be a

useful complement to those based on logic programs

as a representation language.
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Abstract

The paper presents algorithm directional res

olution, a variation on the original Davis-

Putnam algorithm, and analyzes its worst-

case behavior as a function of the topological

structure of the theories. The notions of in

duced width and diversity are shown to play

a key role in bounding the complexity of the

procedure. The importance of our analysis

lies in highlighting structure-based tractable

classes of satisfiability and in providing theo

retical guarantees on the time and space com

plexity of the algorithm. Contrary to previ

ous assessments, we show that for many the

ories directional resolution could be an effec

tive procedure. Our empirical tests confirm

theoretical prediction, showing that on prob

lems with special structures, like chains, di

rectional resolution greatly outperforms one

of the most effective satisfiability algorithm

known to date, namely the popular Davis-

Putnam procedure.

1 Introduction

In 1960, Davis and Putnam [Davis and Putnam, 1960]

presented their resolution algorithm. They proved

that a restricted amount of resolution, if performed

systematically along some order of the atomic formu

las, is sufficient for deciding satisfiability. This algo

rithm, in its original form, has received limited at

tention, and analyses of its performance have empha

sized its worst-case exponential behavior [Galil, 1977,

Goerdt, 1992], while neglecting its virtues. This hap

pened, in our view, because the algorithm was im

mediately overshadowed by a competitor with nearly

the same name: The Davis-Putnam Procedure. This

'This work was partially supported by NSF grant IRI-

9157636, by Air Force Office of Scientific Research grant

AFOSR 900136, by Toshiba of America, and by a Xerox

grant.

competing algorithm, proposed in 1962 by Davis, Lo-

gemann, and Loveland [Davis et al., 1962], searches

through the space of possible truth assignments while

performing unit resolution until quiesience at each

step. We will refer to the first algorithm as DP —

elimination and to the second as DP — backtracking.

The latter was presented in [Davis et al., 1962] as a

minor syntactic change to the first: the elimination

rule (rule /// in [Davis and Putnam, I960]) in DP-

elimination was replaced by the splitting rule (rule ///'

in [Davis et al., 1962]) in order to avoid the memory

explosion encountered when empirically testing DP-

elimination. By refraining from an explicit analy

sis of this exchange (beyond the short comment on

memory explosion), the authors of [Davis et al., 1962]

may have left the impression that the two algorithms

are basically identical. Indeed, from then on, most

work on the Davis-Putnam procedure quotes the back

tracking version [Goldberg et al., 1982, Selman, 1992],

wrongly suggesting that this is the algorithm presented

in [Davis and Putnam, I960].

In this paper, we wish to "revive" the DP-elimination

algorithm by studying its virtues theoretically and

by subjecting it to a more extensive empirical test

ing. First, we show that, in addition to determin

ing satisfiability, the algorithm generates an equiv

alent theory that facilitates model generation and

query processing. Consequently, it may be better

viewed as a knowledge compilation algorithm. Sec

ond, we offset the known worst-case exponential com

plexities [Galil, 1977, Goerdt, 1992] by showing that

the algorithm is tractable for many of the known

tractable classes for satisfiability (e.g., 2-cnfs and

Horn clauses) and for constraint satisfaction problems

[Dechter and Pearl, 1987, Dechter and Pearl, 1991]

(e.g., causal theories and theories having a bounded

induced width). Third, we present a new parameter,

called diversity, that gives rise to new tractable classes.

On the empirical side, we qualify prior empirical

tests in [Davis et al., 1962] by showing that for uni

form random propositional theories DP-backtracking

outperforms DP-elimination by far. However, for a
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class of instances having a chain-like structure DP-

elimination outperforms DP-backtracking by several

orders of magnitude.

2 Definition and preliminaries

We denote propositional symbols, also called variables,

by uppercase letters P,Q,R,..., propositional literals

(i.e., P, ~>P) by lowercase letters p, q, r, and disjunc

tions of literals, or clauses, by a,/3 For instance,

or = (P V Q V R) is a clause. We will sometime denote

by {P, Q, R} the clause (P V Q V R). A unit clause is

a clause of size 1 . The notation (a V T) will be used as

shorthand for the disjunction (PVQVRVT), and aV/?

denotes the clause whose literal appears in either a or

/?. The resolution operation over two clauses (a V Q)

and (/? V ->Q) results in a clause (a V /?), thus elim

inating Q. Unit resolution is a resolution operation

when one of the clauses is a unit clause. A formula

f in conjunctive normal form (cnf) is a set of clauses

'P = or/} that denotes their conjunction. The

set of models of a formula <p is the set of all satisfy

ing truth assignments to all its symbols. A clause a

is entailed by ip, <p f= a, iff a is true in all models of

<p. A Horn formula is a cnf formula whose clauses all

have at most one positive literal. A definite formula

is a cnf formula that has exactly one positive literal.

A clause is positive if it contains only positive literals

and is negative if it contains negative literals only. A

k-cnf formula is one whose clauses are all of length k

or less.

3 DP-elimination - Directional

Resolution

The DP-elimination [Davis and Putnam, 1960] is an

ordering-based restricted resolution that can be de

scribed as follows. Given an arbitrary ordering of the

propositional variables, we assign to each clause the in

dex of the highest ordered literal in that clause. Then

we resolve only clauses having the same index, and

only on their highest literal. The result of this re

striction is a systematic elimination of literals from

the set of clauses that are candidates for future reso

lution. DP-elimination also includes additional steps,

one forcing unit resolution whenever possible and an

other preferring resolution over literals that appear

only negatively (called all-negative) or only positively

(called all-posiiive). There are many other interme

diate steps that can be introduced between the basic

steps of eliminating the highest indexed variable (i.e.,

subsumption elimination). However, in this paper, we

will focus on the ordered elimination step and will in

voke auxiliary steps whenever necessary. Additionally,

we will be interested not merely in achieving refuta

tion, but also in the sum total of the clauses accu

mulated by this process, which constitutes an equiv-

directional-resolution

Input: A cnf theory an ordering d = Qi,...,Qn of its

variables.

Output: A decision of whether ip is satisfiable. If it is,

a theory Ed(<p), equivalent to <p, else an empty directional

extension.

1. Initialize: generate an ordered partition of the clauses,

bucket \, ...,bucketn, where bucket, contains all the clauses

whose highest literal is Q,.

2. For s = n to 1 do:

3. Resolve each pair {(a V Qi), (0 V -<Qi)) C bucketi. If

7 = a V 0 is empty, return Ed(<p) = 0, the theory is not

satisfiable; else, determine the index of 7 and add it to the

appropriate bucket.

4. End-for.

5. Return Ed{<p) *= U, bucketi.

Figure 1: Algorithm directional resolution

alent theory with useful computational features. Al

gorithm directional resolution (DR) (the core of DP-

elimination) is described in Figure 1. We call its out

put theory, Ea(<p), the directional extension of (p.

The algorithm can be conveniently described using a

partitioning of the set of clauses of a theory into buck

ets. Given an ordering d = Q\ , ...Qn, the bucket for Qi

bucketf, contains all the clauses containing Qi that do

not contain any symbol higher in the ordering. Given

the theory (p, algorithm directional resolution process

the buckets in a reverse order of d. When processing

bucketi, it resolves over Qi all possible pairs of clauses

in the bucket and insert the resolvents into the appro

priate lower buckets.

Theorem 1: (model generation)

Let <p be a cnf formula, d = Qi, Qn an ordering,

and Ed(ip) Us directional extension. Then, if the ex

tension is not empty, any model of <p can be generated

in time 0(\Ed(<p)\) *n a backtrack-free manner, con

sulting Ed(<p), as follows: Step 1. Assign to Q\ a truth

value that is consistent with clauses in bucketi (if the

bucket is empty, assign Q\ an arbitrary value); Step

i. After assigning a value to Q\, ...,Qi-i, assign to Qi

a value that, together with the previous assignments,

will satisfy all the clauses in bucketi . □

Proof: Suppose, to the contrary that during the

process of model generation there exists a partial

model of truth assignments, 91, for the first i — 1

symbols that satisfy all the clauses in the buckets of

Qi, ...,Qi-i, and assume that there is no truth value

for Qi that satisfy all the clauses in the bucket of

Qi. Let a and 0 be two clauses in the bucket of Qi

that clash. Clearly, a and /? contain opposite signs

of atom Qi ; in one Qi appears negatively and in the

other positively. Consequently, while being processed

by directional-resolution, a and (3 could have been re

solved upon, thus resulting in a resolvent that must

appear in earlier buckets. Such a clause, if existed,
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would not have allowed the partial model qi, thus

leading to a contradiction. □

Corollary 1 : [Davis and Putnam, 1960] A theory

has a non-empty directional extension iff it is satisfi-

able. □

Clearly, the effectiveness of directional resolution both

for satisfiability and for subsequent query processing

depends on the the size of its output theory Ed(<p).

Theorem 2: (complexity )

Given a theory tp and an ordering d of its propositional

symbols, the time complexity of algorithm directional

resolution is 0(n ■ \Ed{tp)\*), where n is the number of

propositional letters in the language.

Proof: There are at most n buckets, each contain

ing no more clauses than the final theory, and resolving

pairs of clauses in each bucket is a quadratic operation.

□

The bound above, although could be loose, demon

strates the dependence of the algorithm's complexity

on the size of its resulting output.

Once Ed(ip) is compiled, determining the entailment

of a single literal involves checking the bucket of that

literal first. If the literal appears there as a unit

clause, it is entailed; if not, the negation of that lit

eral should be inserted and the algorithm should be

restarted from that bucket. If the empty clause is gen

erated in that process, the literal is entailed. To deter

mine the entailment of an arbitrary clause, each literal

of the negated clause must be added to its appropri

ate bucket and processing restarted from the highest

such bucket. This suggests that in knowledge bases,

whose queries involve a restricted subset of the alpha

bet, that subset should be processed last by directional

resolution. Namely, the symbols of that subset should

appear early in the ordering. In summary,

Theorem 3: (entailment)

Given a directional extension Ed{tp) and a constant

c, the entailment of clauses involving only the first c

symbols in d is polynomial in the size of Ed(tp). □

4 Tractable classes

Consider the following two examples demonstrating

the effect of ordering on Ed(<p).

Example 1: Let Vl = {(B,A) ,(C,^A), (D,A),

(E,->A)}. For the ordering dx = (E, B, C, D, A), all

clauses are initially contained in bucket(A) (highest

in the ordering). All other buckets are empty. Fol

lowing the application of algorithm directional resolu

tion along d\, we get (note that processing is in the

reverse order of d): bucket(D) = {(C, D), {D, £)},

bucket(C) = {(B,C)}, bucket(B) = {{B,E)\.

The directional extension along the ordering di —

(A, B, C, D, E) is identical to the input theory, how

ever, and each bucket contains at most one clause.

Example 2: Consider the theory tp2 — {(->A,B),

(A,->C), (-<B,D),(C,D,E)}. The directional exten

sions of tp along the ordering d\ = (A, B, C, D, E) and

d2 = (D,E,C,B,A) are Edl(<f) = <p and Ei3(<p) =

tp U {(B, -iC) , (->C, D), (E, £>)}, respectively.

In Example 1, A appears in all clauses; hence, it po

tentially can generate new clauses when resolved upon,

unless it is processed last (i.e., put first in the order), as

in d2. This shows that the interactions among clauses

play an important role in the effectiveness of the al

gorithm and may suggest orderings that yield smaller

extensions. In Example 2, on the other hand, all atoms

have the same type of interaction, each (except E) ap

pearing in two clauses. Nevertheless, D appears pos

itive in both clauses and consequently will not be re

solved upon; hence, it can be processed first. Sub

sequently, B and C appear only negatively in the re

maining theory and can, likewise, be processed without

generating new clauses. In the following, we will pro

vide a connection between the algorithm's complexity

and two parameters: a topological parameter, called

induced width, and a syntactic parameter, called di

versity.

Note that directional resolution is tractable for 2-cn/

theories in all orderings, since 1-cnf are closed un

der resolution (the resolvents are of size 2 or less)

and because the overall number of clauses of size 2

is bounded by 0(n2). (In this case, unrestricted res

olution is also tractable). Clearly, this algorithm is

not the most effective one for satisfiability of 2-cnfs.

Satisfiability for these theories can be decided in lin

ear time [Even et al., 1976]. However, as noted earlier,

DR achieves more than satisfiability, it compiles a the

ory that allows model generation in linear time. We

summarize:

Theorem 4: If tp is a 2-cnf theory, then algorithm

directional resolution will produce a directional exten

sion of size 0(n2), in time 0(n3). □

Corollary 2: Given a directional extension Ed(tp) of

a 2-cnf theory <p, the entailment of any clause involv

ing the first c symbols in d is 0(c3). □

4.1 Induced width

Let tp = <p(Qi, ...,Qn) be a cnf formula defined over

the variables Q\,...,Qn- The interaction graph of tp,

denoted G(<p), is an undirected graph that contains

one node for each propositional variable and an arc

connecting any two nodes whose associated variables

appear in the same clause. The interaction graph of

tpi is given in Figure 2a. We can bound the size of all
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(• ) (b ) (c )

Figure 2: The interaction graph of <P2

theories having the same interaction graph using some

properties of the graph.

Definition 1: Given a graph G and an ordering of

its nodes d, the parent set of a node A relative to d

is the set of nodes connected to A that precede A in

the ordering d. The size of this parent set is the width

of A relative to d. The width w(d) of an ordering d is

the maximum width of nodes along the ordering, and

the width w of a graph is the minimal width of all its

orderings [Freuder, 1982, Dechter and Pearl, 1987].

Lemma 1: Given the interaction graph G(<p) and

an ordering d: If A is an atom having k — 1 parents,

then there are at most 3* clauses in the bucket of A;

if w{d) = w, then the size of the corresponding theory

isO(n -Zw). □

Proof: The bucket of A contains clauses defined on

k literals only. For the set of k — 1 symbols there are at

( k- 1 \ ^
most I . j subsets of i symbols. Each subset can

be associated with at most 2' clauses (i.e., each symbol

can appear either positive or negative in a clause), and

A can be also positive or negative. Therefore we can

have at most

2 Z]( )2' = 2-3*-1. (1)

clauses. Clearly, if the parent set is bounded by w, the

extension is bounded by 0(n • 3*"). □

When applied along d to a theory having graph G,

algorithm directional resolution adds clauses and, ac

cordingly, the interaction graph changes.

Definition 2: Given a graph G and an ordering d,

the graph generated by recursively connecting the par

ents of G, in a reverse order of d, is called the induced

graph of G w.r.t. d and is denoted by /<j(G). The

width of Id{G) is denoted by w * (d) and is called the

induced width of G w.r.t. d.

The graph in Figure 2a, for example, has width 2 along

the ordering A, B,C, D, E (Figure 2b). Its induced

graph is given in Figure 2c. The induced width of G

equals 2.

Lemma 2: Let ip be a theory. Then G(Ed(<p))i the

interaction graph of its directional extension along d,

is a subgraph of Id(G(<p)).

Proof: The proof is by induction on the sym

bols along the ordering d. The induction hypothesis is

that all the arcs incident to Qn, ■ Qi in the G(Ed{<p))

appear also in Id(G(<p)). The claim is true for Qn,

since its connectivity is the same in both graphs. As

sume that the claim is true for Q„, -.,Qi and we will

show that it holds also for namely, if (Qi-i,Qj)

j < i — 1 is an arc in G(Ed(<p)), then it is included

in Id(G(<p)). There are two cases: either Qi-i and Qj

appeared in the same clause of the initial theory, tp,

in which case they are connected in G(<p) and there

fore also in Id(G(<p)), or else a clause containing both

symbols was introduced during directional resolution.

Assume that the clause was introduced while process

ing bucket Qt,t > i — 1. Since Qi-\ and Qj appeared

in the bucket of Qt, each must be connected to Qt

in G(Ed(<p)) and, by the induction hypothesis, they

will also be connected in Id(G(tp)). Therefore, Qi-i

and Qj would become connected in Id(G(tp)), when

connecting the parents of Q<. □

Theorem 5: Let <p = <p(Qi, ...,Qn) be a cnf, G(<p)

its interaction graph, and w * (d) tts induced width

along d; then, the size ofEdif) is 0(n -3wmW).

Proof: Since the interaction graph of Ed{<p) is a

subgraph of Id{G), and since from lemma 1 the size

of theories having Id(G) as their interaction graph is

bounded by 0(n -3w<d'>), the result follows. Note that

this deduction implicitly assumes that the algorithm

eliminates duplicate clauses. □

It is known that if a graph is embedded in a ifc-tree its

induced width is bounded by k [Arnborg et al., 1987].

The definition is recursive.

Definition 3: (k-trees)

Step 1 : A clique of size ib is a k-tree.

Step i: given a ifc-tree defined over Q\ , Qi-i, a ifc-tree

over Q\,...,Qi can be generated by selecting a clique of

size k and connecting Q, to every node in that clique.

Corollary 3: If (p is a formula whose interaction

graph can be embedded in a k-tree then there is an or

dering d such that the time complexity of directional

resolution on thai ordering is 0(n • 2*+1). □

Finding an ordering yielding the smallest induced

width of a graph is NP-hard [Arnborg et al., 1987].

However, any ordering d yields a simple bound, w*(d),

of w*. Consequently, when given a theory and its in

teraction graph, we will try to find an ordering that

yields the smallest width possible. Several heuristic or

derings are available (see [Bertele and Brioshi, 1972]).

Important special tractable classes are those having

w* = 1 (namely, the interaction graph is a tree) and
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Figure 3: The interaction graph of ps in example

3: y>8 = {(A\fAi,->A3), (->Ai,AA), {->M, A3, ^A4),

A3,A4,-<As), (->v44,y46), (-iA4,At,->At),

A5,A6,->A7), (-<A6,As), (->A6, Ay, ->AS)}

those having w* — 2, called series parallel networks.

These classes can be recognized in linear time. As a

matter of fact, given any k, graphs having induced

width of k or less can be recognized in 0(exp(k)).

Example 3: Consider a theory pn over the alphabet

{Ai,Aj,,...,A„}. The theory p„ has a set of clauses

indexed by i, where a clause for i odd is given by

(Ai, Ai+i, -iAi+2) and two clauses for i even are given

by (->.A,-,yli+2) and (->Ai, Ai+i, ->Ai+2). The reader

could check that the induced width of such theories

along the natural order is 2 and thus the size of the

directional extension will not exceed 18 ■ n. For this

graph, and for the natural ordering the induced graph

is identical to the original graph (see figure 3).

4.2 Diversity

The concept of induced width frequently leads to a

loose upper bound on the number of clauses recorded

by directional resolution. In example 3 for instance,

only 8 clauses were generated by directional-resolution

when processed in the natural order, even with

out eliminating subsumption and tautologies in each

bucket, while the computed bound is 18-8 = 144.

One source for inaccuracy could be that the induced

graph is not a tight bound for the interaction graph

of Ed{f). Consider, for instance, the two clauses

(-■A, B), (->C, B) and the order d = A,C,B. When

bucket B is processed, no clause is added because B is

positive in both clauses, nevertheless, nodes A and C

will be connected in the induced graph. In this sub

section, we introduce a more refined parameter, called

diversity, based on the observation that a propositional

letter can be resolved upon only when it appears both

positively and negatively in different clauses.

Definition 4: (diversity of a theory )

Given a theory <p and an ordering d, let Qf (or Qf)

denote the number of times Qi appears positively (or

negatively) in bucketi relative to d. The diversity of

Qi relative to d, div(Qi), is x Q~ . The diversity

of an ordering d, div(d), is the maximum diversity

of its literals w.r.t. the ordering d and the diversity

of a theory, div, is the minimal diversity over all its

orderings.

min-diversity (ip)

1. For i = n to 1 do

2. Step i (after selecting Qi+i, ...,Qn)' choose symbol

Q having the smallest diversity in if — U?=i+i bucketj,

and put it in the j'-th position.

3. End.

Figure 4: Algorithm min-diversity

Theorem 6: Algorithm min-diversity (Figure 4)

generates a minimal diversity ordering of a theory.

Proof: Let d be an ordering generated by the al

gorithm and let Q, be a literal whose diversity equals

the diversity of the ordering. If Qi is pushed up, its

diversity can only increase and if pushed down, it must

be replaced by a literal whose diversity is either equal

to or higher than the diversity of Qi. O

The concept of diversity yields new tractable classes.

If d is an ordering having a zero diversity, algorithm

directional resolution will add no clauses to ip along d.

Namely,

Theorem 7 : Theories having zero diversity are

tractable and can be recognized in linear time. □

Example 4: Let <p = {{G, E, ->F),(G, ->£, D), (->A,

F), (A,-*E) (-^B,C,^E) (B,C,D)}. The reader can

verify that the ordering d. = A,B,C,D,E,F,G is a

zero-diversity ordering of ip. Note that the diversity of

theories in example 3 along the natural ordering, is 1.

Zero-diversity theories generalize the notion of causal

theories defined for general networks of multivalued

relations [Dechter and Pearl, 1991]. According to the

definition, theories specified in the form oicnfs would

correspond to causal if there is an ordering of the sym

bols such that each bucket contains only one clause.

Therefore, a causal cnf theory has zero-diversity. Note

that even when a general theory is not zero-diversity

it is better to put zero-diversity literals last in the or

dering (namely they will be processed first). Then,

the size of the directional-extension is exponentially

bounded in the number of literals having only strictly-

positive diversities. In general, however, the parameter

of interest is the diversity of the directional extension

Ed(<p) rather than the diversity of <p.

Definition 5: (induced diversity )

The induced diversity of an ordering d, divm(d), is the

diversity of Ed(<p) along d, and the induced diversity

of a theory, div*, is the minimal induced diversity over

all its orderings.

Since div*(d) bounds the a ddcd clauses generated from

each bucket, we can trivially bound the size of Ed(<p)

using div*: for every d, \Ed(<p)\ < \ip\+n div*(d). The

problem is that even for a given ordering d, div * (d) is

(

(
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not polynomially computable, and, moreover, we did

not find an effective upper bound. Still it can be used

for some special cases. Clearly, for most theories and

most orderings

div * (d) > div(d). A special counter example we

observed are the zero diversity theories for which

div * (d) = div(d) = 0. We next identify a subclass

of diversity- 1 theories whose div* remains 1.

Theorem 8: A theory (p = <p(Qi, ...,Qn), has div* <

1 and is therefore tractable, if each symbol Q, satisfies

one of the following conditions: a. it appears only

negatively; b. it appears only positively; c. it appears

in exactly two clauses. □

The set of theories in example 3 has div* = 2. Note

though, that we can easily create examples with high

w* having div* < 1.

4.3 A diversity graph for Horn theories

It is known that general Horn satisfiability can be

determined by unit resolution. Note that when DR

is processed in a dynamic ordering (as suggested in

the original DP-elimination), namely, when proposi-

tional letters that appear in a unit clause are pro

cessed first (last in the ordering) and when new unit

clauses generated, their buckets are pushed up, we

have the essence of unit propagation. When incorpo

rating this dynamic-ordering variation to directional

resolution, satisfiability will be determined polynomi

ally (for Horn theories) if the algorithm terminates

once no unit clauses are available. However, execut

ing the algorithm to full completion may result in long

output theories [McAllester]. We now show that def

inite Horn theories of zero diversity can be given a

simple graph interpretation, yielding a more accurate

estimate of the extension's size for definite and Horn

theories.

One may question the usefulness of this exercise since

satisfiability is not a problem for Horn theories. Still,

directional resolution achieves more than satisfiability,

it compiles the Horn theory into a backtrack-free one

which might prove useful in some applications, espe

cially those requiring multiple queries on a small subset

of the alphabet. For example, in the context of rule-

based programs where the rules represent actions to be

taken in real time, preprocessing by directional resolu

tion posts constraints that will not allow the execution

of rules leading to future deadends. Also, analysis of

Horn theories may guide future extensions to general

cnfs which are near Horn.

Definition 6: (diversity graph)

A Horn theory y> can be associated with a directed

graph called the diversity graph and denoted D(<p).

D((p) contains a node for each propositional letter and

an arc is directed from A to B if there is a Horn clause

having B in its head (i.e., B is positive) and A in its

 

(•) (b) (c)

Figure 5: Diversity graphs of Horn theories: a. D(tpi),

b. D(<f2), c. the induced diversity graph of ipi

antecedent (i.e., A is negative). Two special nodes,

labeled "true" and "false" are introduced. There is an

arc from "true" to A if A is a positive unit clause, and

there is an arc from B to "false" if B is included in

any negative clause.

Example 5: Consider the following two Horn the

ories: tpi = {A A B — C, F — A, F — B), <p2 =

{AAB-* C, F — A, F-*B, CA£> — F, F — F}.

The diversity graphs of <pi and <p? are presented in Fig

ure 5. We see that <p\ is an acyclic theory (it has an

acyclic diversity graph) while <f>i is cyclic.

Theorem 9: A definite Horn theory has an acyclic

diversity graph iff it has a zero diversity.

Corollary 4: Iff is an acyclic definite Horn theory

w.r.i. ordering d, then Ej(<p) = <p. □

Note that the theorem cannot be extended to full Horn

theories. For example, the theory

<p = {(A-*B),(^A,^B),A}

is a Horn theory whose diversity graph is acyclic. Yet

it has a non-zero diversity. Note also that definite the

ories are always satisfiable and they are closed under

resolution. We will now show that the notion of a

diversity graph will allow a more refined approxima

tion of the directional extension of definite and Horn

theories.

Definition 7: diversity width (div-widih)

Let D be a directed graph and let d be an ordering of

the nodes. The positive width of a node Q, denoted

u+(Q), is the number of arcs emanating from prior

nodes, called its positive parents, towards Q. The neg

ative width of Q relative to d, denoted u_(Q), is the

number of arcs emanating from Q towards nodes pre

ceding it in the ordering d, called its negative parents.

The diversity-width (div-width) of Q, u(Q), relative to

d is max{u+(Q), u_(Q)}. The div-width, u(d), of an

ordering, d, is the maximum div-width of each of its

nodes along the ordering, and the div-width of a Horn

theory is the minimum of u(d) over all orderings that

starts with nodes " true" and "false" .
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Lemma 3: Given a diversity graph of Horn theory

D(<p), and an ordering d, if A is an atom having k

positive parents and j negative parents, then there are

at most 0(2*+j-2>) non-negative clauses in the bucket

of A. □

A minimum div-width of a graph can be computed by

a greedy algorithm like the min-diversity algorithm in

figure 4, using div-width criteria for node selection.

As in the case of interaction graph, the diversity graph

changes when processed by directional resolution and

its diversity graph can be approximated by graph ma

nipulation as follows:

Definition 8: (induced diversity graph and width)

Given a digraph D and an ordering d, such that "true"

and "false" appear first, the induced diversity graph

of D relative to d, denoted IDd(D), is generated as

follows. Nodes are processed from last to first. When

processing node Qi, a directed arc from Qj to Qk is

added if both nodes precede Qi in the ordering and

if there is a directed arc from Qj to Qi and from Qi

to Qk. The div-width of IDd(D), denoted by u * (d),

is called the induced diversity width of D w.r.t. d or

div-width*.

Note that constructing the induced diversity graph is

at most 0(n3) when n is the number of vertices.

Example 6: The induced diversity graph of D(<pi)

along the ordering d = F, A, B,C, D, E is given in

Figure 5. (This is a definite theory, so nodes "true"

and "false" are omitted). The added arcs are dotted.

The div-width of node E is 2 (its positive div-width

is 2 and its negative div-width is 1). In this case,

u(d) = u*{d) = 2.

We can show:

Lemma 4: Let <p be a Horn theory and d an order

ing of its symbols; then the diversity graph of Ed('p),

D(Ed(<p)), is contained in IDd(D(tp)) when d is an

ordering which starts with "true" and "false". □

We can now bound the size of Ed(<p) for a Horn theory

Theorem 10: Let ip be a Horn theory and let d be

an ordering of its symbols that starts by "true" and

"false", having induced div-width, u*(d) along d; then

the size Ed(<p) restricted to the non-negative clauses is

0(nu*(d)- 2U'W) and the size of Ed{f) restricted to

the negative clauses is 0(2^a,>e'), where \false\ is the

degree of node "false" in the induced diversity graph.

Proof: Follows immediately from Lemma 3 and

Lemma 4. □

Note that the bound on the number of negative clauses

may be very loose. Sometimes it will be worse than

the bound suggested by the width of the undirected

interaction graph. The bound on the number of non-

negative clauses though is always more accurate. It

is easy to see that for any definite theory, <p, and any

ordering d, w * (d) > u * (d).

Out earlier observation that acyclic diversity graphs of

definite theories do not change when processed by di

rectional resolution (using an ordering imposed by the

graph), suggests that new arcs are added only within

strongly connected components of the diversity graph.

We may, therefore, get a tighter bound on the size

of the non-negative clauses added to the directional

extension (beyond those in the original theory <p) by

consulting each strongly connected component sepa

rately.

Definition 9: (Strongly connected components)

A strongly connected component of a directed graph is

a maximal set of nodes U such that for every pair A

and B in U there is a directed path from A to B and

a directed path from B to A. The component graph of

G = (V,E), denoted Gscc = (Vc,Ed), contains one

vertex for each strongly connected component of G,

and there is an edge from component Ae to component

Bc if there is a directed edge from a node in Ac to a

node in Be in the graph G.

It is well known that the component graph is acyclic

and that the strongly connected components can be

computed in time linear in the number of vertices and

edges of the graph. The connection between the size

of the directional extension of a definite theory and

its component-based induced div-width is presented

in the following theorem. The bound can be extended

to Horn theories using the "false" node.

Theorem 11: Let ip be a definite theory having a

diversity graph D. Let Si,..., St be the strongly con

nected components of G, let d\,d?, —,dt be ordenngs

of the nodes in each of the strongly connected com

ponents, and let d be a concatenation of the order-

ings d = d,- dj, thai agrees with the par

tial acyclic ordering of the components' graph. Let

u * (dj) be the largest induced div-width of any com

ponent. Then, the size of Ed(f) - <p is 0(n2u^).

□

Consequently, we can restrict ourselves to admissible

orderings only: those that agree with the acyclic struc

ture of the component graph. Hence, we can modify

the definition of induced div-width of a digraph along

such orderings to coincide with the largest induced div-

width among its strongly connected components.

Example 7: Consider again the theory <p\ in Ex

ample 5. Since the graph is acyclic, the strongly con

nected components contain only one node, and there

fore for any admissible ordering d, u * (d) = 0. In

deed no clause will be added. For theory <p2 there are
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DP-backtracking( (p )

Input: A cnf theory (p.

Output: A decision of whether if is satisfiable.

1. Unit_propagate(yj);

2. If the empty clause generated return(/o/se);

3. else if all variables are assigned return(<r«e);

4. else

5. Q = some unassigned variable;

6. return( DP-backtracking( if A Q) V

7. DP-backtracking(^ A ->Q) )

Figure 6: DP-backtracking algorithm

two components, one including D only and another

including the rest of the variables. For the ordering

d = F, A, B,C, E on that component, only the arcs

(C, F), (B, F)(A, F) will be added, resulting in an in

duced div-width of 2 (see Figure 5c).

To conclude, the main purpose of the analysis in this

section is to determine ahead of time the usefulness

of algorithm directional resolution for a given theory

and, more importantly, to suggest a good heuristic

ordering that may result in a small induced width,

small diversity, or small induced div-width for Horn

theories. We know that finding an optimal width is

NP-hard, and we conjecture that finding an optimal

induced div-width is also hard, nevertheless good or-

derings can be generated using various heuristics (like

min-width, min-diversity and min-div-width).

5 Bounded directional resolution

Since algorithm directional resolution is time and

space exponential in the worst case, we propose an

approximate algorithm called bounded directional res

olution (BDR). The algorithm records clauses of size

ib or less when ifc is a constant. Consequently, its

complexity is polynomial in k. Algorithm bounded

directional resolution parallels algorithms for direc

tional Jfc-consistency in constraint satisfaction prob

lems [Dechter and Pearl, 1987].

6 Experimental evaluation

DP-backtracking has been implemented in C language

as a variant of the Davis-Putnam procedure (see Fig

ure 6).

It has been augmented with the 2-literal clause heuris

tic proposed in [Crawford and Auton, 1993] which

prefers a variable that would cause the largest num

ber of unit propagations. The number of pos

sible unit propagations is approximated by the

number of 2-literal clauses in which the vari

ables appear. The modified version significantly

outperforms DP-backtracking without this heuristic

[Crawford and Auton, 1993]. In order to find a solu

tion following DR we ran DP-backtracking using the

reverse ordering of variables used by DR, but without

the 2-literal clause heuristic. The reason is that we

wanted to fix the order of variables. As theory dic

tates, no deadends occur when DP-backtracking is ap

plied after DR on the same ordering. In this case DP-

backtracking takes linear time in the extension size.

Algorithm BDR, since it is incomplete for satisfiability,

was followed by DP-backtracking augmented with the

2-literal clause heuristic.

Different orderings of variables were used by the al

gorithms: input ordering as used by the generator of

problems, min-width ordering and min-diversity order

ing. Given an interaction graph, min-width ordering

selects a variable with the smallest degree, and puts it

last in the ordering; the node is eliminated from the

graph and the ordering continues recursively. Min-

diversity ordering have been described above.

In conjunction with DR we have experimented with

both static and dynamic orderings. Static orderings

were computed prior to search while dynamic order

ings were computed at each step of the search. We

report the results on static orderings only since we

did not observe any significant difference in DR's effi

ciency when running the algorithms on both dynamic

and static orderings.

Several random generators were used in order to test

the algorithms over problems with different structure.

To generate uniform k-cnfs we used the generator pro

posed by [Mitchell et al., 1992] taking as input the

number of variables n, the number of clauses m, and

the number of literals per clause k. We generate each

clause randomly choosing k variables from the set of

n variables and by determining the polarity of each

literal with probability 0.5. Our second generator,

called mixed cnf generator, generates theories con

taining clauses of length ki and clauses of length k%.

The third generator, called chains, first used the uni

form k-cnf generator to obtain a sequence of n inde

pendent random subtheories, and then connected all

the subtheories in a chain by generating 2-cn/ clauses

using one variable from the t-th subtheory and one

from the (i + l)-th subtheory. Similarly we also con

nected the n independent subtheories into a tree struc

ture. The obtained results were similar to those on

chains, so we report only the result on chains. We

experimented also with random embeddings in k-trees

[Arnborg et al., 1987]. However, we were unable to

generate hard instances with more than few deadends.

Consequently, the performance of both DR and DP-

backtracking was similarly efficient.

We measured CPU time for all algorithms, and the

number of deadends for DP-backtracking as charac

teristics of problems' difficulty. We measured also the

number of new clauses generated by DR, the maximal
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DR vs. DP-backtracking

Uniform 3-CNF, 20 variables

20 experiments per each point

1000 1 — 

Number of clauses

Figure 7: DR and DP-backtracking on 3-cnfs

size of generated clauses, and the induced width. The

number of experiments shown in the figures is usually

per each point unless stated otherwise.

6.1 Results for Problems with Uniform

Structure

We compared DP-backtracking with DR on randomly

generated k-cnfs for k=3,4,5 and on mixed theories. In

all these cases DP-backtracking significantly outper

forms DR. It is observed that the complexity of DR

indeed grows exponentially with the size of problems

(see Figure 7). We show the results for 3-cnfs with 20

variables only. On larger problems DR often ran out

of memory because of the large number of generated

clauses.

Since DR was so inefficient for solving uniform k-cnfs

we next experimented with Bounded Directional Res

olution (BDR) using different bounds. Our experi

ments show that when the input theory is a uniform

k-cn/ and BDR uses a bound less than ifc, almost no

new clauses are added. On the other hand, when

the bound is strictly greater than Jb, the preprocessing

phase of BDR by itself is considerably worse than DP-

backtracking. The only promising case occurs when

the bound equals k. We observed that in this case rel

atively few clauses were added by BDR which there

for ran much faster. Also, DP-backtracking often ran

a little bit faster on the generated theory and there

fore the combined algorithm was slightly more efficient

than DP-backtracking alone (see Figure 8).

6.2 Results for Chains

The behaviour of the algorithms on chains differs dra

matically from that on uniform instances. We found

extremely hard instances for DP-backtracking, orders

of magnitude harder than those generated by the uni

form model. In the Table 1 we compare performance

BDR vs. DP-backtracking

Uniform 3-CNF, 150 variables

10 experiments per each point 

500 550 600 650 700 750 800 850 900 950

Number of clauses

Figure 8: BDR with bound=3 and DP-backtracking

on 3-cnfs

of DP-backtracking on uniform 3-cn/problems and on

3-cn/ chain problems of the same size. Chain prob

lems contain 25 subtheories with 5 variables and 9 to

23 3-cn/ clauses per subtheory, together with 24 2-cn/

clauses connecting subtheories in the chain. The cor

responding uniform 3-cn/problems have 125 variables

and 249 to 599 clauses. We tested DP-backtracking on

both classes of problems. The table shows mean values

on 20 experiments where the number of experiments

is per a constant problem size. We used min-diversity

ordering for each instance.

First, we observed extremely hard chain problems with

many deadends around the cross-over point for chains,

orders of magnitude harder than uniform 3-cn/ prob

lems of the same size. Second, we note that the

crossover point for chain problems is shifted towards a

smaller number of clauses per number of variables.

Table 1: DP on uniform 3-cnfs and on chain problems

of the same size: 125 variables

Mean values on 20 experiments

Num Uniform 3-cnfs 3-cnf chains

of % Time Dead % Time Dead

clau Sat 1st ends Sat 1st ends

see solu

tion

solu

tion

249 100 0.2 0 100 6.3 0

299 100 0.2 0 100 0.4 1

349 100 0.2 3 70 9945.7 908861

399 100 0.2 2 25 2551.1 207896

449 100 0.4 17 15 185.2 13248

499 95 3.7 244 0 2.4 160

549 35 8.5 535 0 0.9 9

599 0 6.6 382 0 0.1 6

On the other hand, DR behaved in a tamed way on

the chain problems and was sometimes more than 1000
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Table 2: DR and DP on 3-cn/ chains: 25 subtheories, 5 variables in each

Min.diversity ordering (static)

Mean value* on 20 experimenli

Num

of

varia

blee

Num

of

clau

% Time: l»t

solution,

DP- back

tracking

Number

of

dead

ends

Time:

SAT

only,

DR

Time:

1st

Dead

ends

after

Time:

SAT+lst

solution,

DR

Number

of new

clauses

Siie

of

Mai

clause

Iduced

width

SCS

Sal

prob

lems

solution,

DP after

DR

DR

125

125

125

125

125

125

125

125

249

299

349

399

449

499

549

599

100

100

70

25

15

0

0

0

0.34

0.41

9945.69

2551.09

165.19

2.43

0.1S

0.14

0.2

1.4

0 64 0.30

0.32

0.33

0.19

0.27

0.00

0.00

0.00

6.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

l.lfi

1.92

2.72

3.08

4.12

3.64

4.03

4.59

61.4 4.1 5.1

5.3

5.3

5.3

5.5

5.4

5.2

S3

908861.2

207896.3

13248.1

159.6

9.4

6.1

1.42

2.23

2.79

3.67

3.84

4.03

4.59

105.2

130.8

131.1

135.4

116.3

99.0

93.3

4.1

4.0

4.0

4.0

3.9

3.9

3.6

times faster than DP-backtracking. In Table 2 we

compare DP-backtracking with DR on the same chain

problems as in Table 1 for finding one solution and

for deciding satisfiability only. A more detailed illus

tration in Table 3 lists the results on selected hard

instances from Table 2 (number of deadend exceeds

4000).

Table 3: DR and DP on hard instances (number of

deadends > 4000): 3-cnf chains with 125 variables

Num SAT: DP-backtracking Dtl

of 0 or 1 Time: Dead Time: 1st

els 1st solution ends solution

349 0 41163.8 3779913 1.5

349 0 102615.3 9285160 2.4

349 0 55058.5 5105541 1.9

349 0 21.2 2050 2.4

399 0 74.8 6053 3.6

399 0 87.7 7433 3.1

399 0 149.3 12301 3.1

399 0 37903.3 3079997 3.0

399 0 11877.6 975170 2.2

399 0 52.0 4215 3.3

399 0 841.8 70057 2.9

449 1 655.5 47113 5.2

449 0 60.5 4359 4.7

449 0 2549.2 181504 3.0

449 0 289.7 21246 3.5

As expected, DR significantly outperforms DP-

backtracking for instances in which DP-backtracking

encountered many deadends. Figure 9a shows that the

CPU time of DP-backtracking grows linearly with the

numbers of deadends (note, that we use logarithmic

scale for CPU time) while in case of DR it remains al

most constant. We have displayed CPU time on prob

lem instances hard for DP-backtracking (the number

of deadends is greater than 1000).

All the experiments before used min-diversity order

ing. When experimenting with different orderings (in

put and min-width) we observed similar results (Fig

ure 9b,c).

We also experimented a little with the actual code

of tableau [Crawford and Auton, 1993], Crawford and

Auton's implementation of Davis-Putnam procedure

with various heuristics. We observed a similar be

haviour on chain problems. Although some problem

instances hard for our version of DP-backtracking were

easy for tableau, others were extremely difficult for

both algorithms.

We see that almost all the hard chain problems for

DP-backtracking were unsatisfiable. Here is a possible

explanation. Suppose there is an unsatisfiable sub-

theory U in a chain problem whose variables are put

at the end of an ordering. If all the other subtheo

ries are satisfiable, then DP-backtracking will try to

re-instatiate variables from the satisfiable subtheories

each time it encounters a deadend. Not knowing the

structure hurts DP-backtracking.

Choosing the right ordering would help but this may

be hard to recognize without some preprocessing.

Other variants of backtracking that are capable of ex

ploiting the structure like backjumping [Dechter, 1990]

would avoid useless re-instantiation of variables some

times performed by DP-backtracking . Experiments

with backjumping on the same chain instances as used

in Table 2 showed that all the problems that were hard

for DP-backtracking were quite easy for backjumping

(see Figure 10). Backjumping also outperforms DR.

7 Related work and conclusions

Directional resolution belongs to a family of elimina

tion algorithms first analyzed for optimization tasks

in dynamic programming [Bertele and Brioshi, 1972]

and later used in constraint satisfaction [Seidel, 1981,

Dechter and Pearl, 1987] and in belief networks

[Lauritzen and Spigelholter, 1988]. The complexity of

all these elimination algorithms can be bounded as a

function of the induced width w* of the undirected

graph characteristic of each problem instance. Al

though it is known that determining the w* of an arbi

trary graph is NP-hard, useful heuristics for bounding

w* are available.
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Number of Deadends Number of clauses

(a) hard instances: more than 1000 deadends

3-CNF CHAINS

IS subtheories, 4 variables in each

500 experiments per each point
 

3 5 7 9 II 13 15 17 19

Clauses per subtheory

(b) input ordering

3-CNF CHAINS

15 subtheories, 4 variables in each

100 experiments per each point
 

2 4 6 g 10 12 14 16 18

Clauses per subtheory

(c) min-width ordering

Figure 9: DR and DP-Backtracking on chains

Figure 10: DP-Backtracking, DR and Backjumpingon

chains: static min-diversity ordering

Since propositional satisfiability is a special case of

constraint satisfaction, the induced-width bound could

be obtainedby mapping a propositional formula into

the relational framework of a constraint satisfaction

problem (see [Ben-Eliyahu and Dechter, 1991]), and

applying and applying adaptive consistency, the elim

ination algorithm tailored for constraint satisfaction

problems [Dechter and Pearl, 1987, Seidel, 1981]. We

have recently shown, however, that this kind of pair

wise elimination operation as performed by direc

tional resolution is more effective. And, while it can

be extended to any row-convex constraint problem

[Van Beek and Dechter, 1993] or to every 1- tight re

lations [Van Beek and Dechter, 1993] it cannot decide

consistency for arbitrary multi-valued networks of re

lations.

Specifically the paper makes three main contribu

tions. First, we revive the old Davis-Putnam algo

rithm (herein called directional resolution). Second,

we mitigate the pessimistic analyses of DP-elimination

by showing that algorithm directional resolution ad

mits some known tractable classes for satisfiability and

constraint satisfaction, including 2-cnfs, Horn clauses,

causal networks, and bounded-width networks. In ad

dition, we identify new tractable classes based on the

notion of diversity , and show a tighter bound for the

size of the directional extension of Horn theories based

on induced diversity width. Finally, Our empirical tests

show that, while on uniform theories directional res

olution is ineffective, on problems with special struc

tures, like chains, namely with low w*, directional res

olution greatly outperforms DP-backtracking which is

one of the most effective satisfiability algorithm known

to date.

In conclusion, although directional resolution outper

formed DP-backtracking on some classes of problems,
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it is not advocated as an effective method for gen

eral satisfiability problems. Even when the structure is

right, there are other structure-exploiting algorithms,

like backjumping, that may be more effective in find

ing a satisfying solution. What we do advocate is that

structure-based components should be integrated, to

gether with other heuristics (like unit propagation),

into any algorithm that tries to solve satisfiability ef

fectively.

At the same time, we have shown that, for some struc

tured domains, directional resolution is an effective

knowledge compilation procedure. It compiles knowl

edge into a form that facilitates efficient model gener

ation and query processing.
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Abstract

We present an approach addressing the no

tion of specificity, or of preferring a more spe

cific default sentence over a less specific one,

in commonsense reasoning. Historically, ap

proaches have either been too weak to pro

vide a full account of defeasible reasoning

while accounting for specificity, or else have

been too strong and fail to enforce specificity.

Our approach is to use the techniques of a

weak system, as exemplified by System Z,

to isolate minimal sets of conflicting defaults.

From the specificity information intrinsic in

these sets, a default theory in a target lan

guage is specified. In this paper we primar

ily deal with theories expressed (ultimately)

in Default Logic. However other approaches

would do just as well, as we illustrate by also

considering Autoepistemic Logic and variants

of Default Logic. In our approach, the prob

lems of weak systems, such as lack of ade

quate property inheritance and (occasional)

unwanted specificity relations, are avoided.

Also, difficulties inherent with stronger sys

tems, in particular, lack of specificity are ad

dressed. This work differs from previous work

in specifying priorities in Default Logic, in

that we obtain a theory expressed in Default

Logic, rather than ordered sets of rules re

quiring a modification to Default Logic.

1 Introduction

A general problem in nonmonotonic reasoning is that

specificity among default assertions is difficult to ob

tain in a fully satisfactory manner. Consider for ex

ample where birds fly, birds have wings, penguins are

birds, and penguins don't fly. We can write this as:

B — F, B-+W, P - B, P — ~>F. (1)

From this theory, given that P is true, one would want

to conclude ->F by default. Intuitively, being a pen

guin is a more specific notion than that of being a
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Campus de Beaulieu

35042 Rennes cedex

France

torsten@irisa.fr

bird, and, in the case of a conflict, we would want to

use the more specific default. Also, given that P is

true one would want to conclude that W is true, and

so penguins have wings by virtue of being birds.

Autoepistemic Logic [Moore, 1985], Circumscription

[McCarthy, 1980], and Default Logic [Reiter, 1980] are

examples of approaches that are overly permissive. For

example, in the obvious representation of the above

theory in Default Logic, we obtain one extension (i.e.

a set of default conclusions) in which ->F is true and

another one in which F is true. One is required to use

so-called semi-normal defaults1 to eliminate the second

extension. [Reiter and Criscuolo, 1981], for example,

gives a list of ways of transforming default theories so

that unwanted extensions arising from specific "inter

actions" are eliminated.

In the past few years there has been some consen

sus as to what should constitute a basic system of

default properties. This, arguably, is illustrated by

the convergence (or at least similarity among) sys

tems such as those developed in [Delgrande, 1987;

Kraus et ai, 1990; Pearl, 1990; Boutilier, 1992a;

Geffner and Pearl, 1992], yet which are derived ac

cording to seemingly disparate intuitions. A general

problem with these accounts however is that they are

too weak. Thus in a conditional logic, even though

a bird may be assumed to fly by default (i.e. in the

preceding theory, we only derive F but not -<F), a

green bird cannot be assumed to fly by default (since

it is conceivable that greenness is relevant to flight).

In these systems some mechanism is required to assert

that properties not known to be relevant are irrelevant.

This is done in conditional logics by meta-theoretic

assumptions, and in probabilistic accounts by inde

pendence assumptions. In other approaches there are

problems concerning property inheritance, and so one

may not obtain the inference that a penguin has wings.

While various solutions have been proposed, none are

entirely satisfactory.

'See Section 2.2 for a definition of semi-normal defaults

and the way they deal with unwanted extensions.
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Our approach is to use the specificity information

given by a "weak" system to generate a default the

ory in a "strong" system, where specificity and prop

erty inheritance are satisfactorily handled. Hence we

address two related but essentially independent ques

tions:

1. How can a (so-called) weak system be used to iso

late specific interacting defaults?

2. How can this information be uniformly incorpo

rated in a theory expressed in a (so-called) strong

system?

For concreteness, we develop the approach by consid

ering System Z [Pearl, 1990J as an example of a weak

system of defeasible reasoning, and Default Logic (DL)

[Reiter, 1980] as a strong system; however in Section 6

we consider the application of the approach to other

systems. The general idea is to combine the techniques

of System Z and DL in a principled fashion to obtain

a general hybrid approach for defeasible reasoning.

We begin with a set of default conditionals R = {r |

ar —* pr] where each ar and /?r are arbitrary preposi

tional formulas. By means of System Z we isolate min

imally conflicting sets of defaults with differing speci

ficities; intuitively the defaults in such a set should

never be simultaneously applicable. Notably we do not

use the full ordering given by System Z (which has dif

ficulties of its own, as described in the next section),

but rather appeal to the techniques of this approach to

isolate conflicting subsets of the defaults. In a second

step, we use the derived specificity information to pro

duce a set of semi-normal default rules in DL from the

rules in R, in such a way that specificity is suitably

handled. The framework described here is intended

to be a general approach to "compiling" default theo

ries expressed by a set of conditionals, using intuitions

from a weak approach (exemplified by System Z), into

a strong approach (exemplified by DL). The choice

of DL is of course not arbitrary, since it is very well

studied and there exist implementations of DL.

The specific approach then can be looked at from two

perspectives. First, DL is used to circumvent prob

lems in System Z, including the facts that inheritance

isn't possible across conflicting subclasses and that un

wanted specificity information may be obtained. Sec

ond, System Z is used to address problems in DL that

arise from interacting defaults. That is, using Sys

tem Z, we construct theories in DL wherein specificity

is appropriately handled. Hence, this paper might in

some respects be looked on as a successor to [Reiter

and Criscuolo, 1981], in that the situations addressed

here subsume the set of modifications suggested in that

paper. Moreover, the present approach provides a jus

tification for these modifications.

Specificity information is thus obtained by appeal to

an extant theory of defaults (here, System Z), and not

some a priori ordering. In addition, and in contrast to

previous approaches, specificity is added to DL with

out changing the machinery of DL. That is, the resul

tant default theory is a theory in DL, and not a set

of ordered default rules requiring modifications to DL.

Finally, we do not produce a "global" partial order (or

orders) of rules but rather "locally" distinguish con

flicting rules. Lastly, specificity conflicts are resolved,

leaving unchanged other conflicts (as are found for ex

ample in a "Nixon diamond").

In the next section we briefly introduce System Z, De

fault Logic, and related work. Section 3 introduces and

develops our approach, while Sections 4 and 5 provide

the formal details. Section 6 considers the application

of the approach to other systems. Section 7 gives a

brief summary.

2 Background

2.1 System Z

In System Z a set of rules R representing default con

ditionals is partitioned into an ordered list of mutu

ally exclusive sets of rules Rq, . . . , R„. Lower ranked

rules are considered more normal (or less specific)

than higher ranked rules. Rules appearing in lower-

ranked sets are compatible with those appearing in

higher-ranked sets, whereas rules appearing in higher-

ranked sets conflict in some fashion with rules appear

ing in lower-ranked sets. One begins then with a set

R = {r | orr —► /?r) where each ar and /?r are preposi

tional formulas over a finite alphabet.2 A set R' C R

tolerates a rule r if {cvr A /?r} U R' is satisfiable. We

assume in what follows that R is Z-consistent,3 i.e. for

every non-empty R' C R, some r' G R! is tolerated by

R' — {r'}. Using this notion of tolerance, an ordering

on the rules in R is defined:

1. First, find all rules tolerated by R, and call this

subset R0.

2. Next, find all rules tolerated by R — Rq, and call

this subset Ri .

3. Continue in this fashion until all rules have been

accounted for.

In this way, we obtain a partition (Rq, . . . , Rn) of R,

where Ri = {r | r is tolerated by R— Rq — . . . — Ri-\}

for 1 < t < n. More generally, we write R{ to denote

the ith set of rules in the partition of a set of condition

als R. A set of rules R is called trivial iff its partition

consists only of a single set of rules.

The rank of rule r, written Z(r), is given by: Z(r) =

t iff r 6 R%- Every model M of R is given a Z-rank,

Z(Af), according to the highest ranked rule it falsifies:

Z(M) = min{ n \ M (= ar D (3r, Z(r) > n).

2The inclusion of strict rules is straightforward [Del-

grande and Schaub, 1994] but for simplicity is omitted here.

3Pearl uses the term consistent [Pearl, 1990].
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For our initial set of rules in (1), we obtain the ordering

Ro = {B^F,B^W}, (2)

Ri = {P^fl,P--F}. (3)

So the Z rank of the model in which B, ->F, W, and P

are true is 1, since the rule B —* F is falsified. The Z

rank of the model in which B, F, W, and P are true

is 2, since the rule P —* ->F is falsified.

The rank of an arbitrary formula <p is defined as the

lowest Z-rank of all models satisfying <p: Z(<p) =

min{Z{M) \ M \= <p}. Finally we can define a form

of default entailment, which is called 1-entailment, as

follows: A formula <p is said to 1-entail <j> in the context

R, written ip hi d>, iff Z(ip A <j>) < Z(<p A -xb).

This gives a form of default inference that is weaker

than Default Logic, yet has some very nice properties.

In the preceding example, we obtain that P hi -if,

and P hi B and so penguins don't fly, but are birds.

Unlike DL, we cannot infer that penguins fly, i.e. P \/\

F. Irrelevant facts are also handled well (unlike con

ditional logics), and for example we have B A G r-j F,

so green birds fly. There are two weaknesses with this

approach. First, one cannot inherit properties across

exceptional subclasses. So one cannot conclude that

penguins have wings (even though penguins are birds

and birds have wings), i.e. P \f\ W. Second, undesir

able specificities are sometimes obtained. For exam

ple, consider where we add to our initial example (1)

the default that large animals are calm. We get the

Z-ordering:

R0 = {B - F, B -W, L^C), (4)

Ri = {P-> B, P — ->F). (5)

Intuitively L —♦ C is irrelevant to the other defaults,

yet one obtains the default conclusion that penguins

aren't large, since Z(L A ->P) < Z(L A P).

[Goldszmidt and Pearl, 1990] has shown that 1-

entailment is equivalent to rational closure [Kraus et

ai, 1990]; [Boutilier, 1992a] has shown that CO' is

equivalent to 1-entailment and that N [Delgrande,

1987] and CT4 are equivalent to the more basic notion

of 0-entailment, proposed in [Pearl, 1989] as a "conser

vative core" for default reasoning. Consequently, given

this "locus" of closely-related systems, each based on

distinct semantic intuitions, these systems (of which

we have chosen System Z as exemplar) would seem to

agree on a principled minimal approach to defaults.

2.2 Default Logic

In Default Logic, classical logic is augmented by de

fault rules of the form Even though almost all

"naturally occurring" default rules are normal, i.e. of

the form semi-normal default rules, of the form

a 'P/,w t are required for establishing precedence in the

case of "interacting" defaults [Reiter and Criscuolo,

1981] (see below). Default rules induce one or more

extensions of an initial set of facts. Given a set of facts

W and a set of default rules D, any such extension E

is a deductively closed set of formulas containing W

such that, for any SUl G D, if a G E and ->0 & E

then w££.

Definition 1 Lei (D, W) be a default theory and let

E be a set of formulas. Define Eo = W and for i > 0

Ei+1=Th(Ei) U {w | £1* eD.org

Then E is an extension for (D, W) iff E = (J~0 E{.

The above procedure is not strictly iterative since E

appears in the specification of Ei+\.

Consider our birds example (1); in DL, it can be

expressed as:4 Given that

P is true, we obtain two extensions: one in which

P,B,W, and F are true and another one in which

P, B, W, and ->F are true. Intuitively we want only the

last extension, since the more specific default ^pF

should take precedence over the less specific default

^£ . The usual fix is to establish a precedence among

these two interacting defaults by adding the exception

P to the justification of the less specific default rule.

This amounts to replacing by SJlj^iE which then

yields the desired result, namely a single extension con

taining P, B, W, and -iF.

2.3 Related Work

Arguably specificity per se was first specifically ad

dressed in default reasoning in [Poole, 1985], although

it has of course appeared earlier. Of the so-called

"weak" approaches, as mentioned, we could have as

easily used approaches described in [Boutilier, 1992a]

or [Kraus et ai, 1990] as that of System Z; however

specificity, as it appears in System Z is particularly

straightforwardly describable. Other approaches are

too weak to be useful here. For example conditional

entailment [Geffner and Pearl, 1992] does not support

full inheritance reasoning; while [Delgrande, 1988] is

unsatisfactory since it gives a syntactic, albeit general,

approach in the framework of conditional logics.

In Default Logic, [Reiter and Criscuolo, 1981] consid

ers patterns of specificity in interacting defaults, and

describes how specificity may be obtained via appro

priate semi-normal defaults. This work in fact may be

regarded as a pre-theoretic forerunner to the present

approach, since the situations addressed therein all

constitute instances of what we call (in the next sec

tion) minimal conflicting sets. [Etherington and Re

iter, 1983] also considers a problem that fits within

the (overall) present framework: specificity informa

tion is given by an inheritance network; this network

is compiled into a default theory in DL.

4 For coherence, we avoid strict implications which

might be more appropriate for some of the rules.
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Of recent work that develops priority orderings on de

fault theories, we focus on the approaches of [Boutilier,

1992b; Baader and Hollunder, 1993a; Brewka, 1993].

We note however that these approaches obtain speci

ficity by requiring modifications to DL. In contrast, we

describe transformations that yield classical DL theo

ries. Since the last two approaches are also described

in Section 5, they are only briefly introduced here.

[Boutilier, 1992b] uses the correspondence between a

conditional ar —► fir of System Z and defaults of the

form a'^jf' to produce partitioned sets of default

rules. For rules in System Z, there is a correspond

ing set of prerequisite-free normal defaults. One can

reason in DL by applying the rules in the highest set,

and working down. Again, however, specificity is ob

tained by meta-theoretic considerations, in that one

steps outside the machinery of DL. Also the order in

which defaults are applied depends on the original Z-

order; this order may be "upset" by the addition of

irrelevant conditionals.

[Baader and Hollunder, 1993a] addresses specificity in

terminological reasoners. In contrast to the present

work, this approach does not rely on conflicts between

"levels". Rather a subsumption relation between ter

minological concepts is mapped onto a set of partially

ordered defaults in DL. [Brewka, 1993] has adopted

the idea of minimal conflicting sets described here, but

in a more restricted setting. In common with [Baader

and Hollunder, 1993a], partially ordered defaults in

DL are used; however, for inferencing all consistent

strict total orders of defaults must be considered.

3 The Approach: Intuitions

As described previously, information in a Z-ordering

is used to generate a default theory: The Z-ordering

provides specificity information, and so for example,

tells us that P —> ->F is a more specific rule than

B —* F. However, we do not use the full Z-ordering,

since it may introduce unwanted specificities (see Sec

tion 2.1). Rather we determine minimal sets of rules

that conflict, and use these sets to sort out specificity

information. The generated default theory (in DL)

will be such that some inferences will be blocked (and

so a penguin does not fly), while other inferences will

go through (and so, penguins have wings).

Consider for example the following theory, already ex

pressed as a Z-ordering:

Ro = {An -* WB,An — ->Fe,An — M)

Ri = {B-* An,B ^ F,B -+ Fe,B ^W)

R2 = {P-* B,P^^F,E-+B,E^-iF,

Pt -*B,Pt^ ->Fe, Pt — ->WB}

That is, in Rq, animals are warm-blooded, don't have

feathers, but are mobile. In Ri, birds are animals that

fly, have feathers, and have wings. In R2, penguins

and emus are birds that don't fly, and pterodactyls are

birds that have no feathers and are not warm-blooded.

First we locate the minimal sets of conditionals, such

that there is a non-trivial Z-ordering for this set of

conditionals. In our example these consist of:

C° = {An->-^Fe,B — An,B — Fe)

C1 = {B — F,P B,P -+^F} (6)

C2 = {B - B,£ — -.J1} (7)

C3 = {B^Fe,Pt-+ B,Pt-+ -iFe}

C4 = {An — WB, B — An, Pt — B, Pt — ->WB}

Any such set is called a minimal conflicting set (MCS)

of defaults. Such a set has a non-trivial Z-ordering,

but for any subset there is no non-trivial Z-ordering.

What this in turn means is that if all the rules in such

a set are jointly applicable, then, one way or another

there will be a conflict.5 We show below that each

such Z-ordering of a set C consists of a binary partition

(Co,Ci); furthermore the rules in the set Co are less

specific than those in C\. Consequently, if the rules in

C\ are applicable, then we would want to insure that

some rule in Co was blocked.

Hence, for our initial example (1), we obtain one MCS,

corresponding to (6), with the following Z-order:

Co = {S-F} (8)

Cx = {P^B,P^^F} (9)

So there are two issues that need to be addressed:

1. What rules should be selected as candidates to be

blocked?

2. How can the application of a rule be blocked?

For the first question, it turns out that there are dif

ferent ways in which we can select rules. However,

arguably the selection criterion should be independent

of the default theory in which the rules are embedded,

in the following fashion. For default theories R and R',

where R C R' , if r 6 R is selected, then r should also

be selected in R'. Thus, if we wish to block the default

B —► F in the case of P in default theory R, then we

will also want to block this rule in any superset R'.

In the sequel, we do this as follows: For a MCS C, we

select those defaults in Co and C\ that actually con

flict and hence cause the non-triviality of C. The rules

selected in this way from Co and C\ are referred to as

the minimal conflicting rules and maximal conflicting

rules respectively. Then, the minimal conflicting rules

constitute the candidates to be blocked.

Consider where we have a chain of rules, and where

transitivity is explicitly blocked, such as may be found

in an inheritance network:

A — Bi,Bi — B7,...,Bn — C but A-*->C.

5 If the rules were represented as normal default rules in

DL for example, one would obtain multiple extensions.
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In this case, given A we need only block some rule in

A —+ B\ , B\ —► B2, • • ■ , Bn —* C to ensure that we do

not obtain an inference from A to C. However, things

are typically not so simplistic. Consider instead the

MCS C4 from above, expressed as a Z-ordering:

Co = {An — WB, B -> An}

Ci = {Pt-+ B,Pt-*^WB}

(10)

Intuitively An is less specific than Pt. Hence if we were

given that An, Pt, ->B were true, then in a transla

tion into default logic, we would want the default rule

corresponding to Pt —► -<WB to be applicable over

An -* WB, even though the "linking" rule Pt -* B

has been falsified. This in turn means that, for a

MCS, we want the more specific rules to be applicable

over the less specific conflicting rules, independently

of the other rules in the MCS. We do this by locat

ing those rules whose joint applicability would lead to

an inconsistency. In the above, this would consist of

An — WB, and Pt — ->WB since AnAWBAPtA^WB

is inconsistent. Also we have that An —» WB 6 Co

and Pt —* -'WB £ C\ and so the rules have differing

specificity.

For the second question, we have the following transla

tion of rules into DL: The default theory correspond

ing to R consists of normal defaults, except for those

defaults representing minimal conflicting rules, which

will be semi-normal. For these latter default rules, the

prerequisite is the antecedent of the original rule (as

expected). The justification consists of the consequent

together with an assertion to the effect that the max

imal conflicting rules in the MCS hold.

Consider the set Co in (10), along with its minimal

conflicting rule An —» WB. We replace B —<■ An,

Pt B, Pt^ -iWB with Pt_B Pt^B re_

spectively. For An —♦ WB, we replace it with

An : WBA(PQ-.Wfl)

WB '

which can be simplified to An WfB^Pt ■ The rule An —

WB is translated into a semi-normal default since it is

the (only) minimal conflicting rule of C4 (and of no

other C*). On the other hand, the rule Pt WB is

translated into a normal default since it does not occur

as a minimal conflicting rule elsewhere.

So, for the minimal conflicting rules we obtain semi-

normal defaults; all other defaults are normal. Ac

cordingly, we give below only the semi-normal default

rules constructed from the MCSs C°,C\C2, and C3:

C°:

C3:

An : -iFeA-»B

B : F^P^Zf)A(EQ-F)

F
B : FcA(PQ-.Pe)

or

or

B : FA-.PAi£

F
B reA-.Pt

Fe

The conditional B —► F occurs in C1 and C2 as a min

imal conflicting rule. In this case we have two MCSs

sharing the same minimal conflicting rule, and we com

bine the maximal conflicting rules of both sets.

So why does this approach work? The formal details

are given in the following sections. However, infor

mally, consider first where we have a MCS of defaults

C with a single minimal conflicting rule ao —» /?o and

a single maximal conflicting rule aj —+ ft. If we

are able to prove that ao (and so in DL can prove

the antecedent of the conditional), then we would

want Po to be a default conclusion—provided that no

more specific rule applies. But what should constitute

the justification? Clearly, first that /?o is consistent.

But also that "appropriate", more specific, conflicting

conditionals not be applicable. Hence we add these

more specific conditionals as part of the justification.

Now, in our simplified setting, ao —► ft is such that

{aoA/?o} is satisfiable, but for the conditional aj —►ft,

{aoA/?o}U{ai Aft} is unsatisfiable. Hence it must be

that {ao Aft} U {ai D ft} \= ->ai for these condition

als. Thus if a minimal conflicting rule is applicable,

then the maximal rule cannot be applicable.

This suggests that we might simply add the negation

of the antecedent of the higher-level conflicting condi

tional. However the next example illustrates that this

strategy does not work whenever a MCS has more than

one minimal conflicting rule. Consider for example the

following theory, already expressed as a Z-ordering:

R0 = {A — -fl,C — -D} (11)

Ri = {^AC-flVD} (12)

If we were to represent this as a normal default theory,

then with {A,C} we would obtain three extensions,

containing {-*B,D}, {B,-*D}, {-<B,->D}. The last

extension is unintuitive since it prefers the two less

specific rules over the more specific one in R\ .

Now observe that the rules in Ro U R\ form a MCS

with two minimal conflicting rules. In our approach,

this yields two semi-normal defaults6

A : -.BA(/tAC3Bv£>)

C :->Da(aKCZ>BvD)

-.£>

or

or

A:-iBA(CjD)

C :-iDA{A3B)

and

along with the normal default rule a*%vqWD ■ Given

{A,C}, we obtain only the two more specific exten

sions, containing {-i£,Z)} and {B, ->£)}. In both

cases, we apply the most specific rule, along with one

of the less specific rules.

Note that if we add either only the negated antecedent

of the maximal conflicting rule (viz. ->A V ->C) or all

remaining rules (e.g. C D -<D and A AC D B V D in

the case of the first default) to the justification of the

two semi-normal defaults, then in both cases we ob

tain justifications that are too strong. For instance, for

A — -.fl we would obtain either A ^BA<£A"^C) which

simplifies to A :-ff-c or ^b^cIbvd^c^d)

6We simplify justifications by replacing each occurrence

of the prerequisite by true. The correctness for arbitrary

prerequisites is shown in [Delgrande and Schaub, 1994].
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which also simplifies to A : ^A"c ■ Given {A,C,D}

there is, however, no reason why the rule A —* ->B

should not apply. In contrast, our construction yields

the default - ~'B*^C3P) t which blocks the second

semi-normal default rule in a more subtle way, and

additionally allows us to conclude ->B from {A, C, D}.

One can also show that conflicts that do not result

from specificity (as found for example, in the "Nixon

diamond" ) are handled correctly. These and other ex

amples are discussed further following the presentation

of the formal details.

4 Minimal Conflicting Sets

In what follows, we consider a Z-consistent set of de

fault conditionals R = {r | ar —» pr) where each or

and 0T are propositional formulas over a finite alpha

bet. We write Prereq(R) for {ar | ar —► 0r € R}, and

Conseq(R) for {0r | or — p\ € R).

For a set of rules R, the set of its MCSs represents

conflicts among rules in R due to disparate specificity.

Each MCS is a minimal set of conditionals having a

non-trivial Z-ordering.

Definition 2 Let R be a Z-consistent set of rules.

C C R is a minimal conflicting set (MCS) in R iff

C has a non-trivial Z-ordering and any C C C has a

trivial Z-ordering.

Observe that adding new rules to R cannot alter or

destroy any existing MCSs. That is, for default theo

ries R and R', where C C R C R' , we have that if C

is a MCS in R then C is a MCS in R'.

The next theorem shows that any MCS has a binary

partition:7

Theorem 1 Let C be a MCS in R. Then, the Z-

ordering of C is (Co,Ci) for some non-empty sets Co

and Ci wtth C = C0 U C\ .

Moreover, a MCS entails the negations of the an

tecedents of the higher-level rules:

Theorem 2 Let C be a MCS tn R. Then, i/a — /? €

Ci then C (= --a.

Hence, given the rule set in (1),

R = {B - F, B^W, P -» B, P — ->F),

there is one MCS

C={B^ F, P — 5, P — -.F}.

As shown in (8/9), the first conditional constitutes Co

and the last two C\ in the Z-order of C. The set

{B —» F, P —► ->F} for example, is not a MCS since

alone it has a trivial Z-order. It is easy to see that

C (=-/>.

7Proofs are omitted for space limitations, but can be

found in [Delgrande and Schaub, 1994].

Intuitively, a MCS consists of three mutually exclusive

sets of rules: the least specific or minimal conflicting

rules in C, min(C); the most specific or maximal con

flicting rules in C, max(C); and the remaining rules

providing a minimal inferential relation between these

two sets of rules, inf(C). The following definition pro

vides a very general formal frame for these sets:

Definition 3 Lei R be a set of rules and lei C C R

be a MCS in R. We define max(C) and min(C) to be

non-empty subsets of R such that

min(C) C C0

max{C) C Ci

in/(C) = C-{mtn(C)Umax(C))

We observe that min, max, and in/ are exclusive sub

sets of C such that C = min(C) U inf(C) U max(C).

We show below that the rules in max(C) and min(C)

are indeed conflicting due to their different specificity.

Note however that the following three theorems are

independent of the choice of mtn(C), in/(C), and

max(C). Yet after these theorems we argue in Defini

tion 4 for a specific choice for these sets that complies

with the intuitions described in the previous section.

First, the antecedents of the most specific rules in

min(C) imply the antecedents of the least specific rules

in max(C) modulo the "inferential rules":

Theorem 3 Let C be a MCS in a set of rules

R. Then, inf(C) U max(C) \= Prereq(max(C)) D

Prereq(min(C)).

In fact, in/(C) U max(C) is the weakest precondition

under which the last entailment holds. This is impor

tant since we deal with a general setting for MCSs.

Observe that omitting max(C) would eliminate rules

that may belong to max(C), yet provide "inferential

relations" . The next theorem shows that the converse

of the previous does not hold in general.

Theorem 4 Let C be a MCS in a set of rules R.

Then, for any set of rules R' such that C C R1

and any set of rules R" C min(C) such thai Rf U

Prereq(R") is saiisfiable, we have: R' £ Prereq(R") D

Prereq(max(C)).

The reason for considering consistent subsets of

min(C) is that its entire set of prerequisites might

be equivalent to those in max(C). Then, however,

C U Prereq(min(C)) and so R' U Prereq(min(C)) is in

consistent. This is, for instance, the case in Equation

(11/12). In fact, R' is the strongest precondition under

which the above theorem holds. Finally, we demon

strate that these rules are indeed conflicting.

Theorem 5 Let C be a MCS in a set of rules R.

Then, for any a —► /? £ max(C), we have: inf(C) U

{q} ^= -•(Conseq(min(C)) A Conseq(max(C))).

As above, inf{C) U {a} is the weakest precondition

under which the last entailment holds. In all, the last
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three theorems demonstrate that the general frame

work given for MCSs (already) provides an extremely

expressive way of isolating rule conflicts due to their

specificity.

4.1 Specific Minimal and Maximal

Conflicting Rules

As indicated in Section 3, we require further restric

tions on the choice of min(C) and max(C) for our

translation into DL. For a MCS C = (Co, Ci), we have

the information that the rules in Co are less specific

than those in C\. However we wish to isolate those

rules in Co whose application would conflict with ap

plications of rules in C\ . Such a set is referred to as a

conflicting core of a MCS. This leads us to the following

definition:

Definition 4 Let C = (C0,Ci) be a MCS. A con

flicting core of C is a pair of least non-empty sets

(min(C),max(C)) where

1. min(C) C Co,

2. max(C) C Ci,

S. {ar A 0r | r € max(C) U rrnn(C)} |= 1.

This definition specializes the general setting of Defi

nition 3. So, ar —► Pr is in mtn(C) if its application

conflicts with the application of a rule (or rules) in C\.

In the extended example of Section 3 the conflicting

cores are

C°: ({An^^Fe},{B - Fe})

C1:

C2: ({B^F},{E^^F})

C3: ({B^Fe),{Pt-+iFe})

CA : ({An-* WB},{Pt — ->WB})

respectively. The conflicting core of our initial example

in (1) corresponds to the one for C1. For a comple

ment consider the example given in (11/12), where the

conflicting core contains two minimal and one maximal

conflicting rules:

({A — -B,C — -■£>}, {A A C — B V D}).

Note that a conflicting core need not necessarily exist

for a specific MCS. For example, consider the MCS

(expressed as a Z-order):

Co = {Q - P,R^^P}

Ci = {QAR-^PA}

Thus Quakers are pacifists while republicans are not;

Quakers that are republicans are politically active.

Here the conflict is between two defaults at the same

level (viz. Q -* P and R —» ->P) that manifests itself

when a more specific default is given.

We do have the following result however.

Theorem 6 For MCS C in a set of rules R, if {ar A

0r | r € min(C)} £ _L and {ar A 0r I r G max{C)} £

J. then C has a conflicting core.

5 Compiling Specificity into Default

Theories

In the previous section, we proposed an approach for

isolating minimal sets of rules that conflict because of

their different specificity. We also showed how to iso

late specific minimal and maximal rules. In this sec

tion, we use this information for specifying blocking

conditions or, more generally, priorities among con

flicting defaults in Default Logic. To this end, we

envisage two different possible approaches. First, we

could determine a strict partial order on a set of rules

R from the MCSs in R. That is, for two rules r, r' G R,

we can define r < r' iff r G mtn(C) and r' G mar(C)

for some MCS C in R. In this way, r < r' is interpreted

as "r is less specific than r"\ Then, one could inter

pret each rule a —► 0 in R as a normal default

and use one of the approaches developed in [Baader

and Hollunder, 1993a] or [Brewka, 1993] for comput

ing the extensions of ordered normal default theories,

i.e. default theories enriched by a strict partial order

on rules. These approaches however have the disad

vantage that they step outside the machinery of DL

for computing extensions.

This motivates an alternative approach that remains

inside the framework of classical DL, where we auto

matically transform rules with specificity information

into semi-normal default theories.

5.1 Z-Default Logic

This section describes a strategy, based on the notions

of specificity and conflict developed in the previous

section, for producing a standard semi-normal default

theory, and which provable maintains this notion of

specificity. The transformation is succinctly defined:

Definition 5 Let R be a set of rules and let (Cl)i£i

be the family of all MCSs in R. For each r £ R, we

define

. <*r : /?r AAr>efl>r» D )

6r = ^ (13)

where Rr = {r' e mai(C*) | r G miT^C*) for i G /}•

We define Dr = {6r \ r G R).

In what follows, we adopt the latter notation and write

DR> = {6r | r G R'} for any subset R' of R.

The most interesting point in the preceding definition

is the formation of the justifications of the (sometimes)

semi-normal defaults. Given a rule r, the justification

of 6r is built by looking at all MCS, C , in which r oc

curs as a least specific rule (i.e. r G min(C')). Then,
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the consequent of r is conjoined with the strict coun

terparts of the most specific rules in the same sets (viz.

(ar< D /?r<) for r' G max(C)). Hence, for the minimal

conflicting rules we obtain semi-normal defaults; all

other defaults are normal (since then Rr = 0). So for

any MCS C in 72, we transform the rules in min(C)

into semi-normal defaults, whereas we transform the

rules in inf(C) U max(C) into normal defaults, pro

vided that they do not occur elsewhere as a minimal

conflicting rule.

As suggested in Section 4.1, we are only interested

in minimal and maximal conflicting rules forming a

conflicting core. That is, given a MCS C, we stipulate

that (min(C), max(C)) forms a conflicting core of C.

In the extended example of Section 3 the conflicting

cores for (6) and (7) are

({B ^F},{P~* -F}) and ({B - F}, {E - -F})

respectively. According to Definition 5, we get

Rb~f = {P -» ~>F,E — ->F}. This results in a single

semi-normal default rule

F '
or

B : FA-iPA-.g

T

Observe that we obtain ?-jp- and P^F for P — B,-

and P —» ->F since these rules do not occur elsewhere

as minimal rules in a conflicting core. Other examples

were given at the end of Section 3.

For a more general example, consider the case where,

given a rule r, Rr is a singleton set containing a rule r'.

Thus r is less specific than r' . This results in the de

fault rules «-=g,A(»rogr.) and ^-f^. Our intended

interpretation is that r and r' conflict, and that r is

preferable over r' (because of specificity). Thus, as

sume that 0r and 0r' are not jointly satisfiable. Then,

the second default takes precedence over the first one,

whenever both prerequisites are derivable (i.e. ar € E

and Qr< 6 E), and both 0r and (3r' are individually

consistent with the final extension E (i.e. ->/?r £ E

and ->/?r' £ E). That is, while the justification of the

second default is satisfiable, the justification of the first

default, pr A (ar< D /?r<), is unsatisfiable.

In general, we obtain the following results. GD(E,D)

stands for the generating defaults of E with respect to

D, i.e. GD(E, D)i = € D,\ a € E,^0 $ E). Note

that Theorem 7 is with respect to the general theory of

MCSs while Theorem 8 is with respect to the specific

development involving conflicting cores.

Theorem 7 Let R be a set of rules and let W be a

set of formulas. Let C be a MCS in R. Let E be a

consistent extension of (Dr,W). Then,

1- ifDmax(C)\JDinKc) C GD(E, D) then Dmtn(C) g

GD(E,D),

S. ifDmin{c)UDtnfic) C GD(E,D) then Dmax{C) £

GD(E,D).

Let us relate this theorem to the underlying idea

of specificity: Observe that in the first case, where

Dmax(C) U D,„f(C) Q GD(E, D), we also have

Prereq(min(C)) C E

by Theorem 3. That is, even though the prerequisites

of the minimal conflicting defaults are derivable, they

do not contribute to the extension at hand. This is

so because some of the justifications of the minimal

conflicting defaults are not satisfied. In this way, the

more specific defaults in £>m0i(C) ta^e precedence over

the less specific defaults in I?mm(C)- Conversely, in the

second case, where Omin(C)UAn/(C) Q GD(E,D), the

less specific defaults apply only if the more specific

defaults do not contribute to the given extension.

Theorem 8 Let R be a set of rules and let W be a

set of formulas. Let (m»n(C), max(C)) be a conflict

ing core of some MCS C in R. Let E be a consistent

extension of (Dr,W). Then,

GD{E,D),

if Dmtn(C)

GD(E, D).

C GD(E,D) then Dm,n{C) g

C GD(E,D) then Dm<a(C) <L

Thus in this case we obtain that the defaults in a

conflicting core are not applicable, independent of the

"linking defaults" in Z?i„/(C)-

Given a set of formulas W representing our world

knowledge and a set of default conditionals R, we can

apply Definition 5 in order to obtain a so-called Z-

default theory (Dr,W). The following theorem gives

an alternative characterization for extensions of Z-

default theories. In particular, it clarifies further the

effect of the set of rules Rr associated with each rule

r. Recall that in general, however, such extensions are

computed in the classical framework of DL.

Theorem 9 Let R be a set of rules, let Dn =

{ SLjJ^ ^ -» Pr € R.} , and let W and E be sets of

formulas. Define Eo = W and for i > 0 (and Rr as in

Definition 5)

Ei+i = Th(Ei) U { p\ | Stf* € Dn, ar e Ei,

£U{/?r}uUr<e«>rO/?r-)l/-L}

Then, E is an extension of (Dr,W) iff E = \J°t0 Ei.

5.2 Properties of Z-Default Theories

We now examine the formal properties of Z-default

theories. In regular DL, many appealing properties

are only enjoyed by restricted subclasses. For instance,

normal default theories guarantee the existence of ex

tensions and enjoy the property of semi-monotonicity.

Transposed to our case, the latter stipulates that if

R? C R for two sets of rules, then if E' is an ex

tension of (Dri , W) then there is an extension E of
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(Dr,W) where E' C E. Arguably, this property is

not desirable if we want to block less specific defaults

in the presence of more specific defaults. In fact, this

property does not hold for Z-default theories. For in

stance, from the rules B —► F,P —► B, we obtain the

defaults ^-jr-,^-jp-- Given P, we conclude B and F.

However, adding the rule P —► ->F makes us add the

default 4^ and replace the default ^ by B F^p .

Obviously, the resulting theory does not support our

initial conclusions. Rather we conclude now B and

->F, which violates the aforementioned notion of semi-

monotonicity.8

Also, the existence of extensions is not guaranteed for

Z-default theories. To see this, consider the rules:

A/\Q — ->P BAR — CAP - i/i

A — P B — Q C - ft

Each column gives a MCS in which the upper rule is

more specific than the lower rule. We obtain the rules

AAQ :

A PA^Q

P

BAR : -iQ

B QA-ifl

CAP -,R

—=TE—

C RA->P

R

Given A,B,C, we get no extension.

Arguably, the non-existence of extensions indicates

certain problems in the underlying set of rules. [Zhang

and Marek, 1990] shows that a default theory has no

extension iff it contains certain "abnormal" defaults;

these can be detected automatically. However, we can

also avoid the non-existence of extensions by translat

ing rules into variants of default logic that guarantee

the existence of extensions, as discussed in Section 6.

Another important properly is cuinulativity. The in

tuitive idea is that if a theorem is added to the set

of premises from which the theorem was derived, then

the set of derivable formulas should remain unchanged.

This property is only enjoyed by prerequisite-free nor

mal default theories in regular DL. It does not hold

for Z-default theories, as the next example illustrates.

Consider the conditionals {D —<• A, A —► B,B —► ->A}.

The last two conditionals form a MCS. Transforming

these rules into defaults, yields two normal, ^p,^,

B.-Aa(A^B) B
and one (semi-)normal default, - " ^ ' , or . .

Given D, there is one extension containing {D,A,B}.

Hence this extension contains B. Now, given D and B,

we obtain a second extension containing {D,->A, B}.

This violates cumulativity.

Note that in this case we obtained a normal default

theory from the original set of rules. This is intu

itively plausible, since the two conflicting defaults are

mutually canceling, i.e. if one applies then the other

does not.

"This differs from the notion of semi-monotonicity de

scribed in [Reiter, 1980]. The latter is obtained by replac

ing R and Dr by D and R' and DR. by D'.

5.3 Exchangeability and Related Work

At the start of this section we described how to ex

tract a strict partial order from a family of MCSa for

using other approaches (such as [Baader and Hollun-

der, 1993a; Brewka, 1993]) to compute extensions of

ordered default theories, i.e. theories with a strict par

tial order < on the defaults. In fact, one can view

partial orders on rules as general interfaces between

approaches. In particular, we can use also our ap

proach for compiling ordered normal default theories

into semi-normal default theories. To this end, we have

to incorporate the order < into the specification of Rr

in Definition 5. We do this by associating with each

normal default a rule a —► /? and define for each

such rule r that R< = {r* | r < r'}, where < is a

strict partial order on the set of rules. Then, we can

use transformation (13) for turning ordered normal de

fault theories into semi-normal default theories.

We can now compare how priorities are dealt with

in our and the aforementioned approaches. In both

[Baader and Hollunder, 1993a] and [Brewka, 1993] the

iterative specification of an extension in DL is modi

fied. In brief, a default is only applicable at an itera

tion step if no more specific (or <-greater) default is

applicable.9 The difference between both approaches

(roughly) rests on the number of defaults applicable

at each step. While Brewka allows only for applying a

single default that is maximal with respect to a total

extension of < , Baader and Hollunder allow for apply

ing all <-maximal defaults at each step.

As a first example, consider the default rules

IT- ¥■ (for short 61,62,63,64), along

with {4 < 63, taken from [Baader and Hollunder,

1993b]. With no facts Baader and Hollunder ob

tain one extension containing {A,B,C}. Curiously,

Brewka obtains an additional extension containing

{A, B,-<C}. In our approach, we generate from <

a single nonempty set Rf = {£3}; all other such

sets are empty. Consequently we replace £4 by

A ^BDC) Qr A.^CA^B In regular DL) the resul.

tant default theory yields only the first extension con

taining {A, B, C}.

As a second example, again from [Baader and Hollun

der, 1993b], consider the rules ^i^-, 1§-,

(for short ^1,^2.^3.^4)1 along with 61 < 62, 63

They show that in Brewka's approach two extensions

are obtained, one containing {A, -<B} and another con

taining {->j4,B}. However an additional extension is

obtained in Baader and Hollunder's approach, contain

ing {A, B}. In our approach, we produce from < the

nonempty sets R^ = {62}; and Rfs = {64}; all other

such sets are empty. Then, we replace 6\ and 63 by

AA(BD^A) AA^B ... J BA(AQ^B) BA-^A
A 01 A ana B 01 B '

9In [Baader and Hollunder, 1993a; Brewka, 1993] < is

used in the reverse order.
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which yields only the first two extensions in DL.

Even though these examples appear to be artificial,

they can be extended to express reasonable specificity

orderings. In all, we observe that in both examples our

approach yields the fewer and, in terms of specificity,

more intuitive extensions.

Note that the general approach of compiling partial

orders into semi-normal default theories makes sense

whenever we deal with partial orders that only con

sider priorities due to specificity where we have truly

conflicting rules. Otherwise, the resulting default the

ory may be overly strong. Consider the case where

we extract priorities from subsumption relations, as

is done in [Baader and Hollunder, 1993a] for termi

nological logics. Consider terms stating that "birds

fly", B —» F, and "young birds need special care",

Y —* C, along with the usual subsumption relation

between "birds" and "young birds". This subsump

tion amounts to a priority between the two rules even

though there is no conflict: (B -» F) < (Y — C).

Thus these rules would result in two default rules
B-.tApoc) and y-c since the first defauit wouid

"take priority" over the second, according to the given

partial order. Such a priority is unnecessary however

as regards avoiding conflicts stemming from more spe

cific information. Obviously, this problem does not

arise in the general approach taken by MCSs. In this

case, in addition to a specificity difference, we also re

quire explicitly conflicting rules. In the above example

there is no MCS and so we would obtain the two nor

mal rules and ^£ .

Finally we note that the preceding exposition was

dominated by the view that rules, like a —»■ /?, are as

sociated with defaults having prerequisite a and con

sequent /?. This view underlies the approaches in

[Baader and Hollunder, 1993a] and [Brewka, 1993].

That is, they rely on the existence of prerequisites. In

contrast, we can treat rules also as strict implications,

and so compile them into a prerequisite-free defaults,

as we show in the next section.

6 Alternative Translations

So far we have focused on translating specificity infor

mation into Reiter's default logic. In this section, we

show how the specificity information extracted from

a family of minimal conflicting sets (or even a strict

partial order) can be incorporated into alternative ap

proaches to default reasoning.

As mentioned earlier, we can also interpret a rule

o —♦ /? as a strict implication, namely o D 0. To

this end, we turn rules like a —► 0 into prerequisite-

free default rules. However, as discussed in [Delgrande

et ai, 1994], the problem of controlling interactions

among such rules is more acute than in the regular

case. Consider our initial example (1), translated into

prerequisite-free DL:

B^F B?W :POB . P^F fU)
BOF ' BOW ' POB ' PD-iF ViH)

Given P, we obtain three extensions, containing

{P, -F, B, W), {P, F, B, W}, and {P, -F, ->B}.10 The

first two extensions correspond to the ones obtained

in regular DL. Clearly, we can apply the techniques

developed in the previous sections for eliminating the

second extension. The third extension yields also the

more specific result in that we obtain ->F. This ex

tension, however, does not account for property in

heritance, since we cannot conclude that birds have

wings. This is caused by the contraposition of B D F.

That is, once we have derived ->F, we derive ->B by

contraposition, which prevents us from concluding W.

This problem can be addressed in two ways, either

by strenthening the blocking conditions for minimal

conflicting rules or by blocking the contraposition of

minimal conflicting rules. In the first case, we could

turn B — F into :(^B|^A"'/> by adding the negated

antecedants of the maximal conflicting rules, here ->P.

While this looks appealing, we have already seen in

Section 3 that this approach is too strong in the pres

ence of multiple minimal conflicting rules. To see this,

consider the rules given in (11/12). For A —* ->B,

we would obtain > ' ^a ' or — >_ D— •

However, as argued in Section 3, there is no reason

why A —► ->B should not be applied given the facts

{A,C,D}. Also, in general it does not make sense

to address a problem stemming from contrapositions

by altering the way specificity is enforced. Rather we

should address an independent problem by means of

other measures.

So, in the second case, we turn B —► F into

(B3F)aFa(P3-.f) of fa-|P That jSj we add tne con.

sequent of B —* F in order to block its contraposi

tion. As before, we add the strict counterparts of the

maximal conflicting rules, here P D ->F. In the birds

example, the resulting justification is strengthened as

above. In particular, we block the contribution of the

rule B D F to the final extension if either ->F or P

is derivable. For A —► ->B in (11/12), we now ob-

t • (AD^B)^BA(AACDBVD)) :iBA(AAC3D) t
tam> -4D-.B or AO-^B ■ ln

contrast to the previous proposal, this rule is appli

cable to the facts {A,C, D}. Moreover, this approach

is in accord with System Z, where rules are classified

according to their "forward chaining" behaviour.

So for translating rules along with their specificity into

prerequisite-free default theories, we replace the defi

nition of 6r in Definition 5 by11

Cr = • (15)

10The third extension would not be present if P D B

were a strict rule.

"Observe that (or Z> fir) A fiT is equivalent to 0r.



156 J. P. Delgrande and T. H. Schaub

Applying this transformation to our birds example in

(1), we obtain:

FAiP : BOW P3B :P3-.f

BOF < BDW < POB '

Now, given P, we obtain a single extension containing

{P,^F,B,W}.

Note that blocking the contraposition of minimal con

flicting rules is an option outside the presented frame

work. The purpose of the above transformation is

to preserve inheritance over default statements, like

P —► B. Inheritance over strict statements, like P D B,

however can be done without blocking contrapositions.

In this case, the following transformation is sufficient:

, _ ■ (<*rD/?r)AAr,6/t>rO/?rQ

As an example, let us turn the default P —<■ B into its

strict counterpart P D B. As detailed in [Delgrande

and Schaub, 1994], our birds example then yields with

transformation (16) the defaults

(B3F)A(PD-.F) B3W PQ^F
BDF > BoW > P^f ■

Now, given P and P D B, we obtain a single extension

containing {P, -<F, B, W). The details on integrating

strict rules are given in [Delgrande and Schaub, 1994].

Transformations (15/16) offer some interesting bene

fits, since prerequisite-free defaults allow for reason

ing by cases and reasoning by contraposition (apart

from minimal conflicting rules). That is, such de

faults behave like usual conditionals unless explicitly

blocked. Nonetheless, the counterexamples for semi-

monotonicity, cumulativity, and the existence of ex

tensions carry over to prerequisite-free Z-default theo

ries. Thus none of these properties is enjoyed by these

theories in DL. Finally, note that this approach differs

from [Boutilier, 1992b], where a ranking on defaults is

obtained from the original Z-order; this may introduce

unwanted priorities due to irrelevant conditionals.

Another alternative is the translation into variants

of DL that guarantee the existence of extensions

[Lukaszewicz, 1988; Brewka, 1991; Delgrande ei al.,

1994]. This can be accomplished by means of both

translation (13) and (15/16). Moreover, the result

ing Z-default theories enjoy cumulativity when apply

ing translation (13) and (15/16) in the case of Cu

mulative Default Logic and when applying translation

(15/16) in the case of Constrained Default Logic. The

corresponding results can be found in [Brewka, 1991;

Delgrande et al., 1994]. Although none of these vari

ants enjoys semi-monotonicity with respect to the un

derlying conditionals, all of them enjoy this property

with respect to the default rules. As shown in [Brewka,

1991], this may lead to problems in blocking a rule, like

B f*->p [ jn the case ->P is a default conclusion. For

details on this we refer the reader to [Brewka, 1991].

Similarly we can compile prioritized rules into The

orist [Poole, 1988] or other approaches, such as Au-

toepistemic Logic [Moore, 1985] or even Circumscrip

tion [McCarthy, 1980]. The latter translation is de

scribed in a forthcoming paper.

For the translation into Theorist, we refer the reader to

[Delgrande et al., 1994], where it is shown that The

orist systems correspond to prerequisite-free default

theories in Constrained Default Logic and vice versa.

Accordingly, we may obtain a Theorist system from

a set of prioritized rules by first applying transforma

tion (15/16) and then the one given in [Delgrande et

al., 1994] for translating prerequisite-free default the

ories in Constrained Default Logic into Theorist.

Autoepistemic Logic [Moore, 1985] aims at formaliz

ing an agent's reasoning about her own beliefs. To this

end, the logical language is augmented by a modal op

erator L. Then, a formula La is to be read as "o is

believed" . For a set W of such formulas, an autoepis

temic extension E is defined as

Th(W U {La | a G E) U {-La | a g E}).

As discussed in [Konolige, 1988], we can express a

statement like "birds fly" either as B A ->L->F D F

or LB A ->L->F D F. Given B and one of these rules,

we obtain in both cases an extension containing F.

Roughly speaking, the former sentence corresponds to

the default jf-p/> while the latter is close to B-jX- .

This motivates the following translations into Au

toepistemic Logic. Let R be a set of rules and let

Rr C R, for each r £ R we define:

pT = arA -.L-- (/?r A Ar'€fl,(Qr'-' D D

Qr = LaT A -L- (0r A Ar'e/lrK' => &')) 3 A-

Applying the first transformation to our initial exam

ple, we obtain for B —> F the modal sentence

BA-iL->(FA(P D ->F)) D F or BA->L->(FA-P) D F,

along with B A ->L->W D W,P A ->L-<B D B, and

P A ->LF D ->F for B — W, P — B, and P — -iF.

Now, given P along with the four modal defaults, we

obtain a single autoepistemic extension containing ->F

and W . In this way, we have added specificity to Au

toepistemic Logic while preserving inheritance.

7 Discussion

This paper has described a hybrid approach address

ing the notion of specificity in default reasoning. We

begin with a set of rules that express default condi

tionals, where the goal is to produce a default theory

expressed in a "target" formalism, and where conflicts

arising from differing specificities are resolved. The

approach is to use the techniques of a weak system,

as exemplified by System Z, to isolate minimal sets

of conflicting defaults. From the specificity informa

tion intrinsic in these sets, a default theory in a target

language (here primarily Default Logic) is derived. In

our approach, the problems of weak systems, such as
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lack of adequate property inheritance and undesirable

specificity relations, are avoided. In addition, difficul

ties inherent in stronger systems, in particular, lack

of specificity, are addressed. In contrast to previous

work, the approach avoids stepping outside the ma

chinery of DL. Thus we do not obtain an explicit

global partial order on default rules, but rather a clas

sical default theory where local conflicts are resolved

by semi-normal defaults.

This approach is modular, in that we separate the de

termination of conflicts from the resolution of conflicts

among rules. Thus either module could be replaced by

some other approach. For example, one could use an

inheritance network to determine conflict relations and

then use the mapping described in this paper to obtain

a default theory. Alternately, conflicts could be deter

mined using MCSs via System Z, and then an ordered

default theory as described in [Baader and Hollunder,

1993a] could be generated. The approach may be seen

as generalising that of [Reiter and Criscuolo, 1981].

Also, for example, [Etherington and Reiter, 1983] and

[Brewka, 1993] may be seen as falling into the same

general framework.
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Abstract

The problem I am concerned with is under

standing complex Natural Language instruc

tions, and in particular, instructions contain

ing Purpose Clauses. In this paper, I describe

an action representation formalism that en

codes both linguistic and planning knowledge

about actions. Such formalism makes use

of linguistically motivated primitives, derived

from Jackendoff's work on Conceptual Struc

tures [Jackendoff, 1990], and is embedded in

the hybrid system CLASSIC [Brachman et

ai, 1991]. The algorithm that interprets Pur

pose Clauses crucially exploits CLASSIC'S

classification algorithm. The output of my

algorithm is in turn used in the Animation

from NL project, that has as its goal the auto

matic creation of animated task simulations.

1 INTRODUCTION

The analysis of an extensive corpus of naturally oc

curring Natural Language (NL) instructions, and in

particular of those containing Purpose Clauses [Di Eu

genio, 1993], highlights some issues that need to be

addressed to interpret complex instructions. The one

I will concentrate on in this paper is that NL action

descriptions only seldom exactly match the knowledge

that an agent has about actions and their character

istics. However, in all the work on understanding NL

instructions I know of — e.g. [Alterman et ai, 1991;

Chapman, 1991; Vere and Bickmore, 1990] — the NL

form of the utterance is in a sense disregarded: an

assumption is made that there is a direct map be

tween the logical form and the knowledge about ac

tions stored in the system's Knowledge Bases. In

contrast, I claim that, to model an agent interpret

ing instructions, we need a flexible action represen

tation, and inference mechanisms that can deal with

actions descriptions not necessarily corresponding to

the known ones.

1 propose a formalism composed of two KBs, both im

plemented by means of the hybrid system CLASSIC

[Brachman et ai, 1991]. The first one stores linguistic

knowledge about actions: to guarantee that the primi

tives of the representation are linguistically motivated,

those I use derive from Jackendoff's work [1990] on the

semantic representation of verbs and actions. The ac

tion terms defined in CLASSIC'S T-Box are the com

ponents of the recipes, i.e. common sense plans about

actions [Pollack, 1986], stored in the action library.

In the following, I will first discuss the task I am ad

dressing, thereby justifying the need for the action rep

resentation formalism described in the remainder of

the paper. Further details on all the topics discussed

in the paper can be found in [Di Eugenio, 1993].1

2 INFERENCE PROCESSES

The inferences I am interested in stem from interpret

ing utterances containing Purpose Clauses, infinitival

to constructions as in Do a to do /?. Given such input

instructions, the hearer (H) tries to find the connec

tion between a and /?, by exploiting the fact that f)

describes the goal to be achieved. In computational

terms this amounts to:

(la) use /? as an index into the KB;

(lb) find a collection of methods Mi that achieve /?;

(lc) try to match a to an action ytj that appears as

a component in Mi.

These are typical plan recognition inferences, eg see

[Wilensky, 1983; Pollack, 1986; Charniak, 1988; Lit-

man and Allen, 1990]. However, in almost all the work

'This paper extends both [Di Eugenio, 1992] and [Di

Eugenio and White, 1992]: the former discussed using hy

brid systems, the latter Conceptual Structure representa

tions of planning knowledge about actions, but the two

were not integrated, and recipes were not hierarchically

organized.
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on plan recognition I know of, with the exception of

[Charniak, 1988], match in step (lc) is taken to mean

that a is instance-of yij . My research has focussed on

computing a more flexible notion of match between a

and 71j. Another issue that is not addressed in plan

inference work is what action pperj really has to be

performed. In the case of Do a to do (3, pperj can't

just be taken to be a. All this is required because of

the variability of the NL input, as I will show in the

following.

2.1 MATCHING a AND yu

As mentioned above, action descriptions found in NL

instructions don't exactly match the knowledge that

an agent has about actions and their mutual relations.

The two kinds of discrepancy I have examined so far

concern structural consistency of descriptions, and ex

pectations that have to be computed for a certain rela

tion H to hold between a and /?. I will illustrate them

both and I will give a general description of the algo

rithm and of the general framework of my work, before

discussing the knowledge representation formalism.

2.1.1 Structural Consistency

Suppose that H knows a method, call it M37, to cre

ate two triangles by cutting a square in half along the

diagonal:'1

(2) ACHIEVES (

[cut (agent .square , in-half .along-diagonal)]-,,

[create (agent , two-triangles) ] *)

Given the plan recognition paradigm discussed above,

M37 would be retrieved through the match of 0k to

637 in all of the following cases:

(3a) [Cut the square in half along the diagonal with

scissors]ai [to create two trianglesjp^.

(3b) [Cut the square in half]a3 [to create two

triangles]p^.

(3c) [Cut the square in half with scissors]ai [to create

two trianglesfp,.

(3d) [Cut the square in half along a perpendicular

azis]at [to create two triangles]pt.

Now atk and 737 have to be compared, to compute the

action pperj to be performed. More specifically,

1. In (3a), a\ is more specific than 737. Pperj

can be taken to be <*i, after checking that the

added modifier with scissors is compatible with

737. This is the only case that traditional plan

inference systems would (possibly) account for.

3This is not how knowledge is really represented, but

just an approximation — see later.

2. In (3b), a: is less specific than 737, and is there

fore compatible with it. That pperj should be

taken to be 737 is supported by the fact that

exactly matches 637.

3. 0:3, when compared to 737, lacks the modifier re

garding the position where to cut, but adds the in

strument modifier with scissors, compatible with

everything else we know about 737 and /?. pperj

is then inferred to be (and 0:3 737).

4. Finally, in (3d), 0-4 is incompatible with 737, and

therefore pperj is 111.

2.1.2 Expectations About Object Locations

A relation 71 different from the structural relations I

have illustrated above, such as generation or enable

ment,3 may hold between a and /? (or a and ftj)-

However, sometimes H holds only under certain ex

pectations £. The ones I have examined so far, in the

context of an input such as Do a to do /?, concern the

location of certain objects that /? manipulates. Such

expectations arise when an action changes the percep

tual space S H has access to. If a changes S into 5',

and a is executed in order to do /?, then expect S' to

be the site of /?. In particular, when a results in H

going to a place S' with the purpose of doing 0, one

can infer S' to be the site of /?. If there are objects

that /? manipulates, expect them to be at S'. Consider

(4a) [Go into the kitchen]ai [to get me the coffee

um]Pl .

(4b) [Go into the kitchen]a3 [to wash the coffee

In both cases, H goes to the kitchen, which is then

expected to be the location of /?i//?2. In (4a), but not

in (4b), a further expectation that the referent of the

coffee urn is in the kitchen is developed. The difference

between the two may be explained by appealing to the

planning notion of qualifiers,4 conditions that must

hold for an action to be relevant, and are not meant

to be achieved. Operatively, qualifiers don't give rise

to subgoaling. If /? has among its qualifiers that an

argument be at 5' for /? to even be relevant, then a

locational expectation develops as in (4a). If not, a

weaker expectation arises, as in (4b).

intuitively, generation holds between a and /? if P is

done by executing a; while enablement holds between or

and ft if a brings about conditions necessary to execute /?.

See [Goldman, 1970; Pollack, 1986; Balkanski, 1993]. In

[Di Eugenio, 1993] I show that purpose clauses do express

generation and enablement.

4 Also called applicability conditions [Schoppers, 1988]

or constraints [Litman and Allen, 1990].
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2.1.3 The Algorithm

As mentioned before, the action representation formal

ism that I will describe in the rest of the paper is used

by an algorithm that implements the inferences dis

cussed above. The algorithm, shown in Fig. 1, is em

bedded in the AnimNL (Animation from NL) system

described in [Webber el ai, 1992; Webber et ai, 1993],

and assumes the existence of separate AnimNL mod

ules for, among others, parsing the input and providing

a logical form, and managing the discourse model and

solving anaphora.

The AnimNL project has as its goal the automatic cre

ation of animated task simulations from NL instruc

tions. Its agents are animated human figures, and the

tasks they are to engage in are assembly procedures and

maintenance procedures. The underlying animation

system, JacfrM, developed at the Computer Graph

ics Lab at the University of Pennsylvania, provides ar

ticulated, animated human figures — both male and

female — capable of realistic motion through model-

based inverse kinematics [Badler et ai, 1993]. Jack

agents can be anthropomorphically sized and given

different "strengths", so as to vary agents' physical

capabilities. Different spatial environments can also

be set up and modified, so as to vary the situation in

which tasks are carried out. AnimNL is intended to

support advanced human factors analysis by enabling

users of computer-aided design tools to simulate hu

man agents' interactions with the artifacts they are

designing.

Going back to Fig. 1, the input to the algorithm is the

logical form LF of the input sentence, produced by

a parser based on Combinatory Categorial Grammar

[White, 1992]. The LF contains one action description

oii, i.e. an instance of a CLASSIC action concept,

per clause, plus interclausal connectives.5 One of the

a,'s is designated as Goal, and used to index into the

Action Library. The choice of Goal depends on the

surface form: e.g. for Do a to do ft, Goal is ft; for Do

a by doing ft, a.

If no Failure is detected,6 the algorithm produces an

initial PlanGraph, representing the intentions and ex

pectations the agent adopts as a consequence of the

input instruction and the planning knowledge. The

PlanGraph is composed of nodes that contain individ

ual action descriptions, and edges that denote relations

such as generation and its generalization is-substep,

enablement, and various temporal relations (based on

[Allen, 1984]). Edges may have expectations associated

5 Basically, each clause describing an action or an event

is reined.

6Failure can be due to different factors, among them:

there is no Recipe whose header is instantiated by Goal;

Goal has selected at least one Recipej, but there is no

7ij such that a; and n,j match; the input instruction is

inconsistent with the stored knowledge.

with them.

The update step creates the nodes corresponding to

the cti's, and to the yij 's; and the edges either deriving

from the Body and Annotations on the Recipe (see

below), or computed during steps 3a and 3b. All these

structures are used to update PlanGraph.

The algorithm produces only the initial PlanGraph,

namely, it models what intentions the agent adopts

simply based on the input instruction and the stored

knowledge: the current situation is not taken into ac

count. As an example, consider (4a), Go into the

kitchen to get me the coffee urn. The algorithm builds

a PlanGraph that contains nodes derived from the sub-

steps of the recipe in Fig. 5. This is a first step in the

hierarchical expansion of the plan, which will be fur

ther expanded e.g. with a step open the door if the

door to the kitchen is closed — these and other ex

pansion steps are performed by various AnimNL mod

ules, up to the point when the instruction becomes

executable by the simulator sitting on top of Jack.

The algorithm is mainly intended to handle instruc

tions of the form Do a to do ft. Thus, in step 1 Goal

is chosen to be ft. The only or,- left is a. I will now

illustrate how the action formalism I devised supports

the inferences just described.

3 THE REPRESENTATION

FORMALISM

3.1 THE ACTION TAXONOMY

From the observations and examples provided so far,

it should be clear that

1. It is impossible to define all possible action de

scriptions a priori, as the number of NL action

descriptions is infinite.

2. It must be possible to compare action descriptions

among them.

3. It is necessary to represent both linguistic and

planning knowledge about actions.

Therefore, an action representation formalism that

supports an algorithm such as the one in Fig. 1 must

be flexible enough to be able to deal with new action

descriptions, and to provide a partial order on descrip

tions. This is why I propose a hybrid KR system such

as CLASSIC [Brachman et ai, 1991] as the underly

ing backbone of my formalism. Hybrid KR systems are

composed of a T-Box, that is used to define terms, and

an A-Box, used to assert facts or beliefs. The T-Box

has its own term- definition language, which provides

primitives to define concepts and roles, that express

relations between concepts. The T-box is a virtual lat

tice, determined by the subsumplion relation between

concepts. It uses a concept classifier, which takes a
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INPUT: Logical form LF of input sentence.

OUTPUT: Initial PlanGraph.

1. (PREPROCESSING) Choose Goal.

2. (RETRIEVAL)

Retrieve the list of Recipei indexed by Goal, i.e. those recipes whose header is instantiated by Goal.

3. FOR each Recipei DO

FOR each a, € LF, a, / Goal, DO

FOR each 7i,j G Body (Recipe,) DO

(a) (COMPUTING CONSISTENCY)

Check the consistency of a, and

(b) (COMPUTING EXPECTATIONS)

IF ai and ft,j are consistent

THEN compute set of expectations {£}.

(c) IF there is no such that a, and yi,, are consistent

THEN Failuxei.

4. IFV/Failurei

THEN Signal user Can't process instruction. (SIGNAL)

ELSE Choose best interpretation. Update PG. (UPDATE)

Figure 1 : The Algorithm Top Level

new concept and determines the subsumption relations

between it and all the other concepts in a given KB.

Having a virtual lattice allows me not to define all

possible action descriptions a priori. The individual

action descriptions part of the logical form are asserted

into the A-Box, whose recognizer computes the set of

types of which such descriptions are instances. After

the Recipe, 's have been retrieved, a* is compared to

71 j by exploiting the hybrid system's classifier, as I

will describe in Sec. 4.

If a hybrid system is to be used, its ontology has to in

clude action types. However, just extending the ontol

ogy with an act-type concept is not enough to provide

a linguistically motivated representation of actions. I

found that utilizing in the T-Box Conceptual Structure

primitives — CSs for short — derived from [Jackend-

off, 1990] achieves this goal. CSs are well suited to

represent action descriptions, as

• The CS primitives capture generalizations about ac

tion descriptions and their relationships to one an

other, such as that carry is move object augmented

with a specific physical means of moving the object.

• CS representations are particularly amenable to ex

press the logical form of an instruction, as they reveal

where information may be missing from an utterance

and has to be provided by inference.

The advantages of integrating the two formalisms are:

the usage in the T-Box of linguistically sound primi

tives transforms the T-Box into a real lexicon, or at

least, into a KB onto which the logical form can be

easily mapped to; on the other hand, a KL-ONE style

representation makes it possible to use CSs in a compu

tational framework, by endowing it with a hierarchical

organization and with the possibility of extending the

lexicon.

Before showing how the T-Box employs CSs, I will

illustrate CSs by showing how the CS for Go into the

kitchen is built. A CS entity may be of ontological type

Thing, Place, Path, Event, State, Manner or Property.

The CS for a KITCHEN is shown in (5):

(5) [Thing KITCHEN]

CSs may also contain complex features generated by

conceptual functions over other CSs. The conceptual

function IN: Thing —► Place is used to represent the

location in the kitchen as shown in (6a) below. Like

wise, the function TO: Place —♦ Path describes a path

that ends in the specified place, as shown in (6b):

(6a) [piace IN([Tning KITCHEN]*)])

(6b) [Path TO([piace IN([Thing KITCHEN]t)]()]m

Finally, by adding GO: Thing x Path —► Event, we

obtain:

(7)

[Event GO([YOU],-, [Path TO([IN([KITCHEN]*)]l)]m)

Among other functions yielding events, CAUSE will

be used in the CLASSIC definition of action:

(8) [Event CAUSE([Thing]ii [Event ];)]

An important notion in CS is that of semantic field.

Semantic fields, such as Spatial and Possessional, are

intended to capture the similarities between sentences

like Jack went into the kitchen and The gift went to
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Bill, as shown in (9) below:

(9a) [GOSp([JACK], [TO([IN([kitchen])])])]

(9b) [GOPo»([GIFT], [TO([AT([BILL])])])]

[Di Eugenio and White, 1992] introduces a new seman

tic field, called Control. It is intended to represent the

functional notion of having control over some object.

The notion of Control is very relevant to AnimNL's do

main, given that any action involving direct physical

manipulation requires that the agent have the object

to be manipulated under his control.

CSs are readily integrated into CLASSIC, as shown in

Figs. 2 and 3, that present part of the T-Box I have

implemented. Some comments are in order:

Entity. The taxonomy rooted in entity is similar to

others used in other KBs.

Place. This subhierarchy encodes conceptual func

tions of the form F: Thing —» Place, such as AT, IN,

ON. In Fig. 2, only the concept spatial-place, and its

subordinate at-sp-place, corresponding to the AT con

ceptual function, are shown, at-sp-place has a single

role at-role with exactly one filler, of type Entity.

Path. Concepts belonging to this subhierarchy rep

resent functions yielding Paths. There are different

kinds of paths (and of places), corresponding to differ

ent semantic fields. In Fig. 2 only two of them, spatial-

path and control-path, are represented.7 Consider

from-to-path-sp(atial), defined by means of multiple

inheritance from to-palh-sp and from-path-sp . from-

to-path-sp has two roles, source and destination,

each of which has a filler place. The concept from(at)-

to-path-sp restricts the role source inherited from

from-to-paih-sp to be filled by at-sp-place. It there

fore corresponds to8

' FROM([AT([Thing])]) '

. TO([p,.cJ)

Event. Fig. 3 shows part of the action subhierarchy.

The intuitive notion of action corresponds to the con

cept cause- and- acton. Such definition, possibly puz

zling to the reader, is used to maintain the distinction

between the thematic and action tiers that Jackendoff

argues for in [1990].

move-sth-swh — for move something somewhere — is

defined as a subconcept of cause- and- acton by impos

ing the restriction that the filler of the caused-role be

go-sp-from-to , namely, an act-type of type go-spatial,

with a role path-role restricted to be from-to-path-sp .

7 In CLASSIC the semantic field is represented by defin

ing a role semf ield-role — not shown in the figures —

whose value restriction is the concept semfield defined by

enumeration.

8Semantics fields are not shown.

The experiencer of go-sp-from-to is the moved ob

ject. The definition of move-sth-swh reproduces its

CS representation, shown in the header in Fig. 5.

3.2 THE ACTION LIBRARY

So far I have only talked about representing linguistic

action types. Planning knowledge is encoded in the

Action Library, which contains simple recipes, and is

implemented in CLASSIC too.9 In this way, classifi

cation is used to maintain an organized KB of action

recipes, and the indexing of recipes through the goal

can be performed by exploiting the CLASSIC query

language.

Many researchers have noted taxonomies of actions

and/or plans as necessary, especially for plan inference.

However, they have either just noted that action de

scriptions form a lattice, but not exploited the power

of the virtual lattice as I have here [Balkanski, 1993];

or focussed on representing only planning, and not also

linguistic knowledge [Kautz, 1990], [Tenenberg, 1989],

even if they do exploit subsumption to deal with hi

erarchical organizations of complex objects, such as

plans [Devanbu and Litman, 1991], [Swartout et ai,

1991], [Wellman, 1988], constraint networks [Weida

and Litman, 1994], or rules [Yen et ai, 1991].

Among the systems that exploit subsumption to deal

with plans, CLASP [Devanbu and Litman, 1991] is the

closest to my concerns. In CLASP, plans are built out

of actions, defined as classic STRIPS planning oper

ators. Plan concept expressions are defined from ac

tion and state concepts using operators such as SE

QUENCE, LOOP, TEST. The ordinary subsumption

algorithm is extended to deal with plan classification.

CLASP provides a rich plan language, but linguistic

knowledge is absent.

The syntax of my recipes is described as follows:

RECIPE BNF

RECIPE - HEADER BODY

QUALIFIER* EFFECT*

HEADER —» act-type

BODY —♦ act-type+ ANNOTATION'

ANNOTATION act-typei enables act-type? |

act-typei TEMP-REL act-type2

QUALIFIER —» state

EFFECT —» state

TEMP-REL — precedes | before | meets ...

Recipes have a header, body, qualifiers and effects.

The terminology, especially header and body, is rem

iniscent of STRIPS, but the relations between these

9Thus, the distinction between action taxonomy and

action library is conceptual rather than real.
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Figure 3: The Action Hierarchy
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components are expressed in terms of enablement and

generation, e.g. the body generates its header.

The representation does not employ preconditions, be

cause it is very difficult to draw the line between what

is a precondition and what is part of the body of the ac

tion. One could say that the body of a Move recipe —

see Fig. 5 — simply consists of a transfer of an object

from one place to another; and that a precondition for

a Move is having control over that object. However,

consider a heavy object: the agent will start exerting

force to lift it, and then carry it to the other location.

It is not obvious whether the lifting action is still part

of achieving the precondition, or already part of the

body of the action. The choice of not having precon

ditions has been more extensively motivated elsewhere

in AnimNL [Geib, 1992]. Therefore, action recipes ex

press what is traditionally expressed by means of pre

conditions by means of actions, which are substeps in

the body that generates a certain header. Notice that

other functions that preconditions have been used for,

such as ordering substeps in a plan, can be performed

by means of the annotations. As mentioned earlier,

plan expansion is performed by other AnimNL mod

ules, that start from the representation I provide and

do further processing exploiting representations of ac

tions that become more and more detailed, to take into

account the requirements of the simulation system on

top of Jack.

Other components of a recipe are the annotations on

the body, that specify the relations between the sub-

actions, e.g. enablement and temporal relations, the

latter derived from [Allen, 1984]; qualifiers, already

discussed in Sec. 2.1.2; and effects, what must be true

after an action has been executed.

A network representation of recipe concepts is shown

in Fig. 4. Auxiliary concept definitions, such as

annotation-type, are not shown; however, SAME-AS

constraints, necessary to express coreference, e.g. be

tween the arguments of an annotation and the substeps

of the recipe it belongs to, are shown in Fig. 6, the ac

tual CLASSIC definition for the move-recipe concept.

Fig. 5 shows the same recipe expressed in perhaps more

readable CS format.

I make no claims that the Move recipe is complete, as

neither the qualifier nor the effect list is exhaustive:

they both merely list some necessary conditions. I

refer the reader to e.g. [Genesereth and Nilsson, 1987]

for discussion of the related issues of the qualification

and frame problems in AI. Also notice that such recipe

is just one of those possible for moving an object from

one location to another.

The most natural way of translating the BNF for recipe

into CLASSIC would be to define a topmost concept

recipe, with roles header , substeps, annotations,

qualifiers and effects, properly restricted. For ex

ample, substeps would be restricted as follows:

(ALL substeps intentional-act)

(AT-LEAST 1 substeps)

Unfortunately, as CLASSIC doesn't provide for role

differentiation, it is impossible to express that each

substep of move-recipe must have a different value re

striction, go-spatial, get-control and go-spatial-with re

spectively. Thus, the recipe concept is simply defined

as having a header, while the substeps appear only

on the subconcepts of recipe, e.g. recipe- 1-step and

recipe-S-steps . Clearly, this way of defining substeps is

not particularly perspicuous.10 One possible solution

would be to use a more expressive system that pro

vides role differentiation, such as LOOM [Mac Gregor,

1988]: however, the usual trade-off between expressive

power and complexity of the classifier has to be taken

into account.

New recipes can be added to the Action Library by ex

ploiting the classifier to maintain the hierarchical or

ganization: for example, a move-recipeS concept with

further qualifiers, or with a more specific substep 1 ,

would be correctly classified as a descendant of move-

recipe. Contrary to CLASP I didn't need to extend

subsumption, as the definition of recipe doesn't include

complex constructors such as iteration or conditionals.

Such extensions are left for future work.

4 INFERENCE IMPLEMENTATION

Just a few words on how steps 3a and 3b in Fig. 1 are

implemented. At an abstract level, the matching step

can be concisely described as examining the concept

(and ctconc 7), where aconc is the most specific, pos

sibly virtual concept of which o is an instance.11 More

specifically, the following queries should be posed:

(10a) (and aconc 7) = aconc, i.e., does 7 subsume

ac<mc?

(10b) if not, (and aconc 7) = 7, i.e., does acone sub

sume 7?

(10c) if not, (coherent (and acone 7))?

(10a) corresponds to consistency as usually embodied

in plan recognition algorithms, but the examples in

(3) show this is not sufficient. However, the notion of

consistency in (10) is purely structural, and it is too

restrictive. It has to be relaxed somewhat to allow for

some kind of primitive geometric reasoning. Consider

[Place IN^KITCHENi])],,, and [P]&ce AT([TABLEi])]„,.

10 For the reader familiar with the CLASP definition of

Action: there all the required roles, such as precondition,

can be described in a compact way because the filler is

a single state, e.g. (AND Off-Hook-State Idle-State).

This is clearly impossible to do with substeps, which de

scribes actions whose descriptions are mutually exclusive.

11 It actually has to be computed as it may be more spe

cific than the concept(s) of which the A-Box recognizes

that a is an instance.
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Figure 4: The Recipe Hierarchy
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Header

[CAUSE([agent]<, [GOspO, *)])]

FROM(m)

TO(/)

Body

[GOsp([i, [TO(m)])k

[CAUSED [GOc.0, [TO([AT(.)])])])]l3

' GOSp(i,ib) '

" [WITH(j)]

Annotations

71 enables 72

72 enables 73

Qualifiers

[BEspO-, m)]

Effects

- [BEsp(>, /)]

Figure 5: A Move Something Somewhere Recipe

(cl-def ine-concept 'move-recipe

' (and recipe-3-steps

(all header move-sth-swh)

(all substepl go-spatial)

(all substep2 get-control)

(all substep3 go-spatial-with)

(all annotl gsp-enab-getc)

(all annot2 getc-enab-gospw)

(all qualifl be-spatial)

(all effect 1 be-spatial)

(same-as (header agent) (substepl agent))

(sue-as (header agent) (substep2 agent))

(same-as (header agent) (substep3 agent))

(same-as (header patient) (substep2 patient))

(same-as (header patient) (substep3 aith-role))

(same-as (header caused-role path-role source) (substepl path-role destination))

(same-as (header caused-role path-role destination) (substep3 path-role destination))

(same-as substepl (annotl ann-argl))

(same-as substep2 (annotl ann-arg2))

(same-as substep2 (annot2 ann-argl))

(same-as substep3 (annot2 ann-arg2))

(same-as (qualifl experiencer) (header patient) )

(same-as (effectl experiencer) (header patient))

(same-as (qualifl location) (substepl path-role destination))

(same-as (effectl location) (substep3 path-role destination))

Figure 6: The Move Recipe in CLASSIC
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While neither of the /i,'s subsumes the other, and

(and fii is incoherent, they can be considered

compatible if TABLEi is in KlTCHENi. To really

understand such compatibilities, a geometric rea-

soner would be necessary: we are planning to de

velop one for AnimNL, but for the moment I have

included only some simple notions of compatibil

ity in the algorithm. Therefore, it is not possi

ble to directly use CLASSIC queries to implement

(10), such as (cl-subsumes? aconc 7) for (10b) or

(cl-disjoint? 7 aconc) for (10c). :i I have im

plemented a procedure, (check-real-comp aeone 7),

which partly mimics classification, but at the same

time provides the more flexible notion of consistency

necessary to account for spatial concepts.

No further mechanisms than those already described

are needed to implement step 3b,13 as such expecta

tions arise from what is known about certain param

eters within the current Recipe. If such parameters

appear more than once in Recipe, in particular in a

qualifier, they will appear in at least one SAME-AS re

striction — see Fig. 6. As check-real-comp checks

SAME-AS restrictions as well, expectations "emerge"

from the processing.

Apart from concepts of type entity, path and place,

the KB comprises 14 state concepts, 44 action con

cepts, and 9 recipe concepts, which have been used to

test about 30 different kinds of examples — where two

examples are of a different kind if the action instances

involved don't differ just because of fillers that are in

stances of primitive concepts (such as having different

animate agents).

5 CONCLUSIONS

I have justified my action representation formalism by

means of specific inferences, and I have discussed its

three main components, the underlying hybrid system,

the CS semantic primitives, and the action library.

Future work includes first of all extending the kind

of data that my representation and algorithm account

for. I believe that the approach is useful for any kind

of instruction, as the need to match input descriptions

with stored knowledge will always arise. However, in

the case of PCs the problem is simplified by having

the goal explicitly given, while precisely the goal has

to be inferred in plan recognition algorithms.

The coverage can be very naturally extended to other

purpose connectives, such as 50 thai, such that, and

to Means Clauses, namely, by constructions as in Do

a by doing 0: however, to deal with the latter, and

12(10a) is implemented by (cl-instance? a • j.

In fact, the distinction between steps 3a and 3b in

Fig. 1 is conceptual rather than real.

to distinguish them from PCs, some more perspicuous

treatment of H's mental state, such as in [Balkanski,

1993], is needed.

Some kinds of negative imperatives, that I have exam

ined as well [Di Eugenio, 1993], can be dealt with with

the same techniques. For example, given a hierarchical

representation of cleaning actions, it would be easy to

recognize that scrub and wet-mop are not viable alter

natives of cleaning the parquet: this could lead to learn

which are the proper methods for cleaning a parquet.

(11) Caring for the floor. Dust-mop or vacuum your

parquet floor as you would carpeting. Do not

scrub or wet-mop the parquet.

Another direction for future work is to devise a more

complex plan language in the CLASP style.
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Abstract

This paper is an investigation of the relationship

between conditional objects of the form 'qlp'

obtained as a qualitative counterpart to

conditional probabilities P(qlp), and

nonmonotonic reasoning. Viewed as an inference

rule, the conditional object is shown to possess

properties of a well-behaved nonmonotonic

consequence relation. The basic tool is the 3-

valued semantics of conditional objects that

differs from the preferential semantics of

Lehmann and colleagues and does not require

probabilistic semantics. Semantic entailment of a

conditional object qlp from a knowledge base

made of conditional objects is shown to be

equivalent to the inference of the conditional

assertion p K* q in Lehmann's System P. Then a

notion of consistency is proposed for a set of

conditional objects in the light of the 3-valued

semantics; a higher level counterpart of refutation

is presented which leads to a procedure for

checking that a conditional knowledge base

entails a considered conditional object. Modus

ponens and resolution-like patterns can be also

established for conditional objects and are proved

to be useful for inference from conditional objects

taking advantage of a disjunctive decomposition

of conditional objects.

1 A preliminary version of this paper, entitled

"Conditional objects: A three-valued semantics for non

monotonic inference" is in the unpublished Proceedings of

the IJCAI'93 Workshop "Conditionals in Knowledge

Representation" (ChambSry, France, August 30, 1993), pp.

81-86.

1 INTRODUCTION

The idea of a conditional object corresponds to an attempt

to give a mathematical and logical meaning to a

conditional relationship between two logical propositions

p and q in agreement with the notion of conditional

probability P(qlp), but independently of the notion of

probability. A conditional object is thus associated to a

pair (p,q) of Boolean propositions and denoted qlp which

reads "q given p" and is such that Prob(qlp) can indeed be

considered as the probability of the entity qlp (and not

only as the probability of q, in the context where p is

true). This kind of study was pioneered by De Finetti

(1937) and Schay (1968). There has been several

previously published works along this research line,

especially Calabrese (1987), Goodman and Nguyen

(1988), Goodman, Nguyen and Walker (1991), Dubois

and Prade (1988, 1990).

One way of considering a conditional object qlp is to see

it as a defeasible inference rule "if p then q but for

exceptions". This point of view is quite in accordance

with the usual understanding of a high conditional

probability except that no attempt is made to quantify the

presence of exceptions. The antecedent p is viewed as a

description of a context in which plausible conclusions

can be drawn. It differs from the usual notion of inference

in the sense that refining the context may invalidate

conclusions previously held as plausible. This

nonmonotonic behavior is usual in probabilistic

reasoning where the probability P(qlp) can be high while

simultaneously the probability P(qlp a r) can very well be

small.

Following (Dubois and Prade, 1991), the paper mainly

deals with the relationships between the logical calculus

developed on conditional objects like qlp and

nonmonotonic reasoning systems based on the study on

nonmonotonic consequence relationships as studied by

Gabbay (1985) and more recently by Makinson (1989),

Kraus et al. (1990). It is possible to envisage a
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conditional object as a nonmonotonic consequence

relation. Such a suggestion becomes natural if we

reconsider a conditional logic proposed by Adams (1975).

He interpreted qlp as P(qlp) il-e where e is positive

but arbitrarily small, developed a conditional logic that

supports this semantics and found higher level inference

rules that turn out to be exactly those that have later on

emerged from the study of nonmonotonic consequence

relationships. In the probabilistic camp, Pearl (1988) and

his student Geffner (1992) have borrowed Adams'

conditional logic to develop a nonmonotonic reasoning

system that closely maps the one developed by Lehmann

(1989) in the symbolic camp. The former thus claim that

the natural semantics for nonmonotonic reasoning is

probabilistic, while the latter use complex two-level

preferential semantics.The comparative study of

conditional objects and nonmonotonic consequence

relations proves that a simple 3-valued semantics is

enough to capture the core logic of nonmonotonic

reasoning. Several proofs of results are omitted for the

sake of brevity and can be found in a longer version of the

paper available as a report (Dubois and Prade, 1993).

2 CONDITIONAL OBJECTS:

THE 3-VALUED SEMANTICS

In the paper we shall consider conditional objects of the

form qlp where p and q, are well-formed formulae in a

classical propositional language £> . Si will denote the

Boolean algebra obtained by quotienting & by the

equivalence (■) between propositions. The number of

propositional variables is assumed to be finite. In order to

attach truth-values to conditional objects we adopt a 3-

valued semantics related to pioneering works of De Finetti

(1937) and Schay (1968), among others, but which has

been independently suggested in (Dubois and Prade,

1988).

Let {T, F, U} be the truth-set where T and F mean true

and false, and the third value U means undefined or

inapplicable. T and F will also denote the ever-true and

the ever-false propositions. Classical propositions can

only be true or false, i.e., t(p) e {TJF}, V p e & . The

truth-assignment of a conditional object qlp is defined as

follows:

Vt,t(qlp) =t(q)ift(p) = T

= U otherwise.

Following Adams (1975), a conditional object is said to

be verified by a truth-assignment whenever t(qlp) = T, i.e.,

t(p) = t(q) = 1 or, if we prefer, t(p a q) = 1, and falsified if

Kq'p) = P. i-c, t(->p v q) = 0. Otherwise qlp is said to be

inapplicable or undefined; another way of interpreting

t(qlp) = U, is to say that, whenever p is false the truth-

value of q, as determined by p, is unknown. Conditional

objects of the form pIT are such that t(plT) = t(p). Hence

any unconditional formula p can be interpreted as a

conditional object pIT. Clearly qlp is akin to an inference

rule, rather than a classical proposition, and differs as such

from the material conditional p -> q = -ip v q which is

such that t(p -» q) = T whenever t(qlp) = U.Moreover

given a conditional object qlp, let S(q\p) be defined as

3(qlp) = {q> e £ , 1(9) = T if t(qlp) = T

t(<p) = Fift(qlp) = F}.

where t= is the usual notion of semantic entailment.

3(qlp) is the set of classical propositions which coincide

with qlp whenever t(qlp) * U. It is easy to verify that

3(qlp) = (<plp a q 1= 9 and 9 1= -.p v q}.

Conversely, given 9, y € % such that 9 1= y then 3p,

qe 2- such that 3(qlp) = {rlcp r, r ►= y}.It means that a

conditional object qlp can be interpreted as a set of

formulae whose lower bound is p a q and upper bound is

p -> q where —» denotes the material implication; in other

words it is an interval in the Boolean algebra 3) .

Conversely any interval in a Boolean algebra, or

equivalently any pair of propositions one of which entails

the other gives birth to a conditional object. Namely if

9 1= y, it corresponds to a conditional object 9l(y —> 9)

since 9 a (y -> 9) = 9 and ->(y -><p) v<p=9vf = y.

The above view of conditional objects suggests an

ordering relation <. on {T, F, U} whereby FSUST,

since U is viewed as any element in the set {F,T} when

qlp is equated with 5 (qlp). It leads to the following

extension of the entailment relation

qlp f= sir <=> t(qlp) <, t(slr).

The following property can be obviously checked using

the interval 3(q\p)

qlp t= sir <=> p a q t= s a r and p -» q M= r -» s.

The conditional object qlp is here meant to represent

default rules of the form "if p is true then q generally

follows, up to exceptions". The above definition of

"meta-entailment" over objects considered as default

inference rules makes sense. An interpretation is said to

be an example of the rule if under this interpretation, the

corresponding conditional object is verified; a counter

example is an interpretation which falsifies the

conditional object. Then qlp 1= sir means that any

examples of qlp is an example of sir, and any counter

example of sir is a counter-example of qlp. Hence sir is in

some sense at least as often valid as qlp insofar as the

former has more examples and less counter-examples than

qlp. Note that the meta-entailment is reflexive and

transitive.

Two conditional objects qlp and sir are said to be

equivalent if and only if both qlp t= sir and sir 1= qlp hold.

This is clearly equivalent to p = r and p a q = s a r, i.e.,
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they have the same context and in this context they are

simultaneously verified. For equivalent conditional object

we write qlp = sir. In particular qlp = (pAq)lp = (p-»

q) I p = (p q) I p. The meta-entailment verifies some

properties, some of which make conditional objects

similar to material conditionals, some of which make

them quite different:

i) logical equivalence: if p <-» p' = T then qlp = qlp'

ii) weakening: if q l= q' then qlp t= q'lp.

However, although p-»qi=pAr-»q, this is certainly

not true for conditional objects, because it is false that

pAqt=pAqAr. However the two conditional objects

qlp and -iqlp a r cannot be verified together. But a

conditional object that is verified in a given context, can

be falsified in a more restricted context.

3 CONNECTIVES FOR DEFAULT

RULES

Let us turn to the question of connectives. There are

several ways of addressing this problem, and various

extensions of conjunction and disjunction over to

conditional objects have been suggested by Schay (1968),

Calabrese (1987), Goodman and Nguyen (1988), but also

Adams (1975). Sticking to the 3-valued logic approach,

the question comes down to extend truth-tables from

(T,F) over to {T, F, U}. Here we shall perform this task

with a view to remain consistent with nonmonotonic

reasoning applications, but assuming truth-functionality

of connectives over {T, F, U} .

In accordance with the idea that a conditional object stands

for a default inference rule, a conjunction of conditional

objects will stand for a collection of conditional objects

forming a rule base K. The problem is thus how to

compute a truth-assignment for K entirely, in terms of the

rules in K. Let us assume that t(qlp AND sir) is a function

of t(qlp) and t(slr). The following constraints restrict the

possible definitions of the AND, modelled by a binary

operation * on {T, F, U}

-) * coincide with usual conjunction a on {T,F}

-) U * U = U.

-) * is commutative

-) U * T * F

-) Bayes conditioning: qlp AND pIT is equivalent to

p a qlT.

Let us justify these choices in the light of our view of

conditional objects as default rules of inference.

Coincidence with classical conjunction accounts for the

semantic identity between p and pIT. The property U *

U = U is justified by the fact that if in a rule base K, no

rule is applicable, then K is considered as not applicable.

Commutativity is due to the fact that K is a set. U * T *

F sounds natural, namely, when K is falsified, at least one

rule in K should be falsified. The last condition says that

in order for p a q to be true, it is enough that p be true

and qlp verified. But if p is false, p a q is false too. It

leads to the constraint F * t(qlp) = F, hence F * U = F.

These constraints only leave two choices open for

conjunction of conditional objects since only U * T

remains incompletely specified:

i) U * T = U. This choice is in complete accordance with

the interval understanding of conditional objects since

U * T = {TP} a T = {T a T, T a F} = {T.F} = U.

The canonicity of this definition has led Goodman and

Nguyen (1988) to adopt this definition. It has the

merit to be easily generalized to any connective in a

systematic way. However, viewing K as a conjunction

of default rules, it is then unsatisfactory since K

becomes inapplicable as soon as one "rule" is

inapplicable. This defect is avoided with the other

possible choice.

ii) U * T = T. This corresponds to the following table

for*

Table 1: Quasi-conjunction

F U T

F F F F

U F U T

T F T T

It can be checked that this definition of the conjunction

translates in terms of conditional objects into

(qlp) & (sir) = [(p -> q) a (r -> s)] I (p v r)

using & for denoting the conjunction of conditional

objects based on the above table. It comes down to

assuming a different ordering F < T < U where U is the

top element, and * is the minimum operator. Using &, a

conditional knowledge base becomes applicable as soon as

one of its rules applies. This definition has been used by

Calabrese (1987) (under a different but equivalent form)

and by Adams (1975) who calls it 'quasi-conjunction'. &

is clearly associative. It can be checked that & is

monotonic with respect to t=.

Negation of a conditional object denoted by is

naturally defined by requiring that it coincides with the

usual negation on {T,F} and that it returns U when

applied to U.It leads to

-(qlp) = (-q)lp,

i.e., the negation of a "rule" is the rule with the opposite

conclusion. By De Morgan's duality with respect to &,

we obtain the following disjunction, denoted by +, and

called 'quasi-disjunction' by Adams (1975)

(qlp) + (sir) = [(p a q) v (r a s)] I (p v r).
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4 CONDITIONAL OBJECTS AND

NONMONOTONIC CONSEQUENCE

RELATIONS

The following properties were established for conditional

objects

(qlp)&(rlp)>=(rl(pAq)) (A)

(qlp)&(rl(pAq))^(rlp) (B)

(qlp)&(rlp)M(qAr)lp) (Q

(qlp)&(plq)&(rlq)t=(rlp) (D)

(rl(pAq))t=(H>vr)lq) (E)

(rlp)A(rlq)t=(rl(pvq)). (F)

and in (Dubois and Prade, 1991) recognized as

counterparts of properties of a well-behaved

nonmonotonic consequence relation p f~ q, in place of qtp.

Rational monotony is not satisfied by conditional objects.

In fact conditional objects equipped with & and t= enjoy

all the properties of the system P (Lehmann, 1989; Kraus

et al., 1990), namely it is possible to translate the

following properties in the language of conditional

events, changing 'and' into & and deduce' into t=:

Left logical equivalence: from p <-» p' = T and p t~ q

deduce p' q

Right weakening: from q l= q' and p ^ q deduce

ph-q'

Reflexivity: p \~ p

Left OR: from p ^ r and r deduce

p v q K' r (see (F))

Cautious monotony: from p ^ q and p ^ r deduce

p a q h» r (see (A))

Weak transitivity or cut: from p a q *~ r and p q

deduce p K» r (see (B))

and its consequences (Tight and' (see (C)), 'reciprocity' (see

(D)), half of the deduction theorem (see (E))...). 'Right

weakening' and 'left logical equivalence' also hold as

indicated in Section 2. Reflexivity holds for conditional

objects under the following form: pip is never falsified.

Let K be a base made of a collection of conditional

objects qjlpj, i = l,n and C(K) be the object defined as the

conjunction of the qjlpj, i.e., C(K) = q^lpj &... & qnlpn.

It is tempting, as done earlier in (Dubois and Prade, 1991)

to define entailment from K using C(K) and the ordering

t= on conditional objects, i.e., K entails qlp means that

C(K) l= qlp. However this definition has a serious

drawback, pointed out in (Dubois and Prade, 1991),

namely we do not have that if qlp € K then C(K) t= qlp.

One way of fixing this problem is to define entailment

from a conditional knowledge base in a more flexible

way:

K entails qlp, denoted K f= qlp, if and only if there exists a

subset S of K such that C(S) t= qlp.

The case when C(S) t= qlp for S = 0 is restricted to

conditional objects that can never be falsified, i.e., qlp

such that p t= q. Hence we always have K i= pip for any

conditional knowledge base K. Now it is easy to check

that {qlp, sir} t= qlp, and that if K t= qlp then K u {sir} t=

qlp. The entailment of conditional objects from a

conditional knowledge base is thus monotonic, reflexive

and transitive contrary to the definition in (Dubois and

Prade, 1991).

Let % be the set of conditional assertions p ^ q

corresponding to the set K of conditional objects qlp. Let

us define a syntactic conditional entailment, denoted by

i—, from a set of conditional assertions, as done by

Lehmann (1989). Namely,

\- p K» q if and only if p f~ q can be derived from

using p K' p as an axiom schema and the inference rules of

System P.

Then the following representation theorem which is the

main result of this paper holds

i— p K' q if and only if K t= qlp.

See a proof in Annex. What is obtained here is a formal

system for handling exception-tolerant if-then rules,

whose (meta) inference rules are exactly those of the

system P of Lehmann, but whose semantics is a simple

3-valued extension of the true/false semantics of classical

logic; in particular it owes nothing to infinitesimal

probabilities (as in Adams conditional logic) nor to partial

orderings on possible worlds and the like (as in Kraus,

Lehmann and Magidor, 1990). Moreover it opens the road

to deduction methods for plausible reasoning based on

semantic evaluation. In order to check that t- p ^ q,

where h- is the preferential entailment of Lehmann, or

equivalently, the p-entailment of Adams (when K contains

only conditional objects) also denoted h-q by Pearl (1990)

and Geffner (1992), it is enough to check that

3 S c K , t(C(S)) <, t(qlp)

using truth-values, where t(C(S)) is computed in a truth-

functional way using the table in Figure 1.

Example: Consider the famous penguin case where K =

{fib, blp, -iflp} with b = bird, f = fly, p = penguin. It is

easy to check that K t= —iflp a b using Cautious

monotony on blp and -iflp. But it is also possible to

check that if S = {blp, -,flp}, C(S) = b a —.flp and

t(b a -.flp) < t(—iflp a b) since bA-ifAp = ->fApAb

and -.p v (b a -if) 1= -ip v -,b v —,{. Although we did not

need any probabilistic view of conditional objects, the

above result is not entirely new in the sense that it owes

much to Adams' conditional logic and the proofs of the

completeness are very similar to (although simpler than)

Adams' completeness proof with respect to probabilistic
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entailment, because for the most part the machinery he

used was independent of any probabilistic semantics of

conditional objects, although he did not point out this fact

in his 1975 book.

5 CONSISTENCY AND REFUTATION

It might also be tempting to define the consistency of a

conditional knowledge base K in terms of the quasi-

conjunction C(K), namely ascribing that C(K) be not a

conditional contradiction, i.e., $p, C(K) t= -iplp, or

equivalently t(C(K)) = T for at least one interpretation

(i.e., C(K) is verifiable). However, again there might

exist situations where C(K) ►= -pip for some p, while

C(K u {sir}) is not a conditional contradiction, since U a

T = T. For instance t((-plp) a (sir)) = T if up) = F, t(s a

r) « T. Hence, contrary to the prepositional case,

inconsistency can be hidden in a conditional knowledge

base by other verified conditional objects. Hence the

following definition

A set of conditional objects K is said to be consistent

if and only if for no subset ScK does C(S) entail a

conditional contradiction (i.e., VScK, C(S) is

verifiable). Otherwise K is said to be inconsistent

The above definition of consistency also derives from

Adams, although he was basically interested in finding a

condition ensuring the possibility of attaching arbitrary

high conditional probability values to each conditional

object in K (what he called p-consistency). He proved that

the above definition of consistency was a necessary and

sufficient condition for p-consistency.

The next result of the paper relates conditional deduction

and inconsistency.

If K is consistent, then K l= qlp if and only if K u (—iqlp}

is inconsistent.

The above result can be simply proved using conditional

objects. It has actually be noticed in the infinitesimal

probability setting by Adams (1975) and Geffner (1992)

and established by Lehmann and Magidor (1992) in the

framework of conditional assertions. It suggests the use of

refutation as a tool for checking conditional entailment

Pearl (1990) and Geffner (1992) have actually given

another definition of consistency of a conditional

knowledge base. If qlp is a conditional object, let p -» q

be its material counterpart Let S* be the set of material

counterparts of the conditional objects in S. Then K is

consistent if and only if V S c K, 3 qlp € S, such that

S* u {p a q} is consistent. Clearly, this is equivalent to

require that C(S) be verified at least for one interpretation,

i.e., that one conditional object in S be verified while

none of the other is falsified. A conditional object

qlp € S such that S* u (p a q) is consistent is called

"tolerated" by S in Pearl (1990). This suggests the use of

Pearl's System Z algorithm to check the consistency of a

set of conditional objects. Given a consistent set K of

conditional objects, checking that K t= qlp comes down to

checking the inconsistency of K u {—iqlp} using the

following algorithm:

S:=KuKlp)

repeat

if ->qlp is tolerated by S, then stop; (K does not entail

qlp)

else compute S' := {qjlpj 6 S, qjlpj not tolerated by S)

if S = S' stop; (K entails qlp)

S := S'

The algorithm takes advantage of the fact that since K is

consistent, the only source of inconsistency is the

presence of —iqlp. Once -.qlp is captured by the tolerance

test, the procedure can stop. This consistency-checking

method was first hinted in Adams (1975,

p. 53). It indicates also that consistency checking, hence

deduction, requires at most m classical consistency

checking tests, where m is the number of conditional

objects in K. It is then easy to estimate the complexity of

reasoning with conditional objects.

6 QUASI-CONJUNCTION AND

META-RESOLUTION

A conditional object can be decomposed into a disjunction

of other conditional objects. Indeed if q = v j q, and p =

vj pj, we have

qip = + i j Qi'Pj

as pointed out by Calabrese (1992) who uses this lemma

as a starting point for establishing a counterpart of the

disjunctive normal form theorem in Boolean algebra for

conditional objects.

This remark can be used conjointly with the following

"meta"-resolution rule

[((-qlp) + (sir)) & ((qlp) + (ult))] I- (sir) + (ult).

as well as the particular case of the meta-modus ponens

qlp & (->qlp + sir) sir and a meta-deduction theorem:

qlp & sir t= vlu if and only if qlp l= -islr + vlu.

It can be checked that the use of inference rules using

quasi-disjunction in their expression is compatible with

the entailment from a conditional knowledge base K in

the sense that, for the meta-modus ponens, if vlu 6 K can

be decomposed into a disjunction, i.e., vlu = qlp + sir, and

-rfjlp e K then 3 S = {vlu, -iqlp} c K, C(S) t= sir, i.e..

K t= sir, and similarly for the meta-resolution. Thus, the
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decomposition of conditional objects into conditional

objects with more focused conclusion-parts and/or

context-parts enables us to deduce from a rule of the form

ifp or p' then generally q or q' and from another rule of

the form // p' then -q generally, that "if p' then q'

generally" or "ifp then q or q' generally".

7 TWO MODES OF BELIEF

REVISION

The logic developed here is a contribution to the correct

handling of plausible reasoning in expert systems. A

crucial distinction has been made in expert systems

between the "factual base" and the "rule base". The former

encodes evidence on a given case, while the latter encodes

generic domain-knowledge. In the expert system literature

evidence is modeled by instanciated (elementary) formulas,

while knowledge is modelled by universally quantified

formulas, usually Horn clauses. As a consequence, the

handling of exception-tolerant rules proves impossible:

either we forget about exceptions and contradictions

appear when putting together facts and rules, or we

express exceptional situations in the rules and the latter

can no longer be triggered in the presence of incomplete

information. One solution to this problem is to encode

generic domain-knowledge not as first-order formulas but

as conditional objects. Then (as suggested in the Penguin

example), exception handling becomes imbedded in the

inference process. But instead of enriching the factual base

as in classical expert systems it is the knowledge base

itself that produces new rules until a rule is derived that

fits the evidence as a whole. Namely if E contains

prepositional evidence and K is a conditional knowledge

base then the reasoning methodology is to find the set of

conclusions r such that Kt= rIE. While the inference is

monotonic at the meta level, it is nonmonotonic at the

level of plausible (factual) conclusion. The logic presented

here has also the merit of displaying the difference

between two modes of belief revision: evidence focusing

and knowledge expansion that can be defined as follows

- Evidence focusing: a new piece of evidence p arrives

and makes the available information on the case at hand

more complete. Then E is changed into E u {p}

(supposedly consistent). K remains untouched. But the

plausible conclusions from K and E u {p}, i.e., r such

that K l= rIE a p, may radically differ from those

derived from K and E.

- Knowledge expansion', it corresponds to adding new

generic rules tainted with possible exceptions. Insofar

as the new knowledge base is consistent it is clear that

due to the monotony of inference t=, all plausible

conclusions derived from K can still be derived from K'

since if K is a subset of K' and K t= rE then K' l= rIE.

But more conclusions may perhaps be obtained by K'.

The case when K' is inconsistent has been recently

considered by Boutilier and Goldsmidt (1993).

8 CONCLUSION

The aim of this research is to proceed towards a

computationally tractable theory of plausible inference,

taking advantage of independent past contributions by

Adams, Lewis, Lehmann, Pearl, Zadeh and others, that

have significantly contributed to a proper understanding of

its basic principles. The thesis advocated here is that the

notion of conditional object lies at the core of such a

theory.The semantics offered by conditional objects is

much simpler than preferential models, and does not need

the concept of infinitesimal probability. These results

may open the road to semantic deduction techniques for

automated reasoning with exception-tolerant knowledge

bases. Clearly more research is needed in order to make

the logic of conditional objects less conservative. One

possible direction in to put together conditional objects,

the Z-ordering of defaults (Pearl,1990) and possibilistic

logic (e.g., Benferhat et al., 1992).
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ANNEX

Lemma 1: The inference rules of preferential entailment

are sound with respect to the semantic entailment of

conditional objects.

Proof: Left logical equivalence and right weakening

correspond to context equivalence and conclusion

weakening. The LOR rule, cautious monotony and cut

obviously hold for the semantic entailment using Lemma

1 and C(K) qlp => K t= qlp. Reflexivity holds since pip

is never falsified, and is entailed by any set of conditional

objects. Q.E.D.

Soundness theorem: If t& \- p q then K t= qlp.

Proof: Assume tK\-p^q. If p t= q then i- p K» q

is always true using reflexivity and RW.

K t= qlp also holds because K i= pip and pip i= qlp. If p t=

q is not true then there is a subset § c such that § t-

p K' q. The set of conditional assertions that will be

effectively used in the derivation of p h» q could include

some conditional assertion induced by reflexivity and RW,

i.e., assertions of the form pj h» qj where pj l= qj. Let B

be the set of the tautological conditional objects that

correspond to these supplementary assertions, and SB the

set of these assertions. The derivation of p q forms an

acyclic directed graph whose leaves form the set § u 9)

and the root is p q. Due to Lemma 1 we can turn each
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local derivation {r s, r' s'} i- r" K» s" into (sir) &

(s'lr1) t= s"lr". Hence we have C(S u B) t= qlp. It remains

to prove that C(S) t= qlp. This is due to the fact that in

general, even where r l= s we may have C(S u {sir}) 1=

qlp but not C(S) i= qlp, due to the effect of the context of

sir. To check it, it is enough to verify that each time an

inference rule is used on a tautological assertion such as

Pi qj with pj l= qj, its counterpart in terms of

conditional objects is not needed to ensure the semantic

entailment:

• LOR rule: if p i= r then rlq t= rlq v p since r a q l= r a

(q v p), and -<j v r t= (-ip a -iq) v r since the

last expression equals —>q v r due to —.p v r =

T;

• CM rule: if p l= q then nothing new follows (up to

LLE); hence we can dispense with this case.

If p l= r then p a q t= r. Again this result can

be obtained only by reflexivity and RW.

Hence the CM rule is not applied with any

assertion from SB;

• cut rule: if p t= q then nothing new is produced. If p a

q l= r then qlp t= rip. Indeed p a q \= r

implies p a q l= r a p and ->p v q t= -.p v

r v q = -ip v r since q l= -ip v r.

As a consequence not only do we have C(S u B) i= qlp

but also C(S) t= qlp, since we can cancel all conditional

objects in B when forming the quasi-conjunction in the

derivation graph. Hence K i= qlp. Q.E.D.

In order to reach completeness a basic fact is now

established, namely a derived inference rule that exactly

matches the quasi-conjunction.

Lemma 2: The rule (p ^ q, p' ^ q'} i- p v p' (p -»

q) a (p' -> q') can be derived from the rules LLE, RW,

RAND, LOR, and reflexivity.

Proof: Again we follow the track of Adams' (1975)

study. Note that the following inference rule can be

derived (p t~ q) t- (r v p p -» q). Indeed from p K' q,

p K p-» q follows by RW. By reflexivity r a -ip r a

-ip holds, hence r a ->p t~p -» q from RW. By the LOR

rule we get r v p p -* q. Using the new derived rule on

(p ^ q, p' h* q'} , we derive, by letting r = p' and then p,

the two conditional objects p v pV p -» q and pvp'K'

p' -» q'. By the RAND rule the lemma holds. Q.E.D.

Due to the lemma, we can acknowledge the following

derived inference rule in System P:

QAND: iK\-C($l).

where C(fK) denotes the conditional assertion associated

to the quasi-conjunction of the conditional objects

associated to the conditional assertions in tK.

Completeness theorem: If K i= qlp then t- p ^ q

Proof: The first case is when p i= q then \- p f~ q

using reflexivity and RW. Assume p t= q does not hold. If

K N qlp then 3 S * 0, C(S) t= qlp, where S c K. Let §

be the set of conditional assertions associated with S.

Using QAND we know that § \- C(§). Let C(§) = <p t~

y. C(S) t= qlp means that (p a y 1= p a q and q> -» \y i=

p -> q. Using reflexivity and RW we can write

\p* a q> i~ \j/ a q>, y a <p ^ p a q. Now, {\p* a cp t~ p a q,

(p K» \|/} i—cut q> K' p a q, and we can derive both q> p,

and q> t~ q using RW. Now {(p K p, <p h» q} i~cm 9 A

p H' q. Besides (p —> y t= p —» q implies p a -.cp t= q and

-i(pA p can be derived from reflexivity and RW.

Finally, ((pAp^ q, ->(p a p h» q) i—lor P Using

transitivity of h- we get ^0 i- C(§) i— p ^ q hence % h-

p ^ q. Q.E.D.
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Abstract

Closed world reasoning is the process of infer

ring that a logical sentence is false based on

its absence from a knowledge base, or the in

ability to derive it. Previous work on circum

scription, autoepistemic logic, and database

theory has explored logical axiomatizations

of closed world reasoning, and investigated

computational tractability for propositional

theories. Work in planning has tradition

ally made the closed world assumption but

has avoided closed world reasoning. We take

a middle position, and describe a tractable

method for closed world reasoning over the

schematized theories of action used by plan

ning algorithms such as NONLIN, TWEAK, and

UCPOP. We show the method to be both

sound and tractable, and incorporate it into

the XII planner [Golden et ai, 1994]. Exper

iments utilizing our softbot (software robot)

demonstrate that the method can substan

tially improve its performance by eliminating

redundant information gathering.

1 INTRODUCTION AND

MOTIVATION

Classical planners such as nonlin [Tate, 1977],

TWEAK [Chapman, 1987], or UCPOP [Penberthy and

Weld, 1992, Weld, 1994] presuppose correct and com

plete information about the world. Having com

plete information facilitates planning since the plan

ning agent need not obtain information from the ex

ternal world — all relevant information is present in

the agent's world model (this is the infamous closed

world assumption [Reiter, 1978]). However, in many

cases, an agent does not have complete information

about its world. For instance, a robot may not know

the size of a bolt or the location of an essential

tool [Olawsky and Gini, 1990]. Similarly, a software

agent, such as the UNIX softbot [Etzioni et ai, 1993,

Etzioni, 1993], cannot be familiar with the contents

of all the bulletin boards, FTP sites, and files accessi

ble through the Internet.1 Recent work has sketched

a number of algorithms for planning with incomplete

information (e.g., [Ambros-Ingerson and Steel, 1988,

Olawsky and Gini, 1990, Etzioni et ai, 1992, Kreb-

sbach et ai, 1992, Peot and Smith, 1992]). Because

they discard the closed world assumption, none of the

above algorithms handle universally quantified goals.

The planners cannot satisfy even a simple goal such as

"Print all of Smith's postscript files in the /kr94 di

rectory" because they have no way to guarantee that

they are familiar with all the relevant files. In addition,

these planners are vulnerable to redundant information

gathering when they plan to "sense" information that

is already known to the agent [Etzioni and Lesh, 1993].

Since satisfying the preconditions of an information-

gathering action can involve arbitrary planning, the

cost of redundant information gathering is unbounded

in theory and quite large in practice (see Section 4).

To solve this problem we utilize an explicit database

of meta-level sentences such as "I know the lengths of

all files in /kr94," which encode local closed world in

formation (LCV). The information in this database is

equivalent to the "closed roles" found in knowledge-

representation systems such as classic [Brachman,

1992] and loom [Brill, 1991], to predicate comple

tion axioms [Clark, 1978, Kowalski, 1978], and to

circumscription axioms [McCarthy, 1980, Lifschitz,

1985]. Indeed, there is a large body of previous

work on the logic of closed world reasoning (e.g.,

[Konolidge, 1982, Etherington, 1988, Reiter, 1982,

Moore, 1985, Levesque, 1990]). Work on formal

theories of action (e.g., [Ginsberg and Smith, 1988,

Katsuno and Mendelzon, 1991, del Val and Shoham,

1993]) has investigated the semantics of theory up

dates. Formal models of perception have been pro

posed [Davis, 1988, Davis, 1990], but not made com-

1 Because our work is motivated by the softbot, most of

our examples are drawn from the UNIX domain. However,

we emphasize that our results are general and correspond

ing examples are easily found in physical domains as well.
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putational. Work in database theory has yielded el

egant but intractable approaches, which involve enu

merating the possible logical models corresponding to

a database (e.g., [Winslett, 1988, del Val, 1992]), or

computing the disjunction of all possible results of

an update [Keller and Wilkins, 1985]. Similarly, cir

cumscriptive theorem provers of various sorts have

been proposed (e.g., [Ginsberg, 1989], and the Min

imality Maintenance System [Raiman and de Kleer,

1992]), but remain intractable. Finally, a num

ber of researchers have investigated the computational

tractability of closed world reasoning over proposi-

tional theories [Cadoli and Schaerf, 1993, Eiter and

Gottlob, 1992].

Our contribution is the formulation of a tractable al

gorithm for closed world reasoning, with updates, over

the schematized action representation language uti

lized by standard planners.2 Our approach has several

novel features:

• We present a sound and tractable calculus for

querying and updating local closed world infor

mation as the state of the world changes (Sec

tions 2.2 and 3). The update calculus answers

questions such as: if a file is deleted from /kr94,

is the agent still familiar with the lengths of all

files in that directory? What if a file is added to

/kr94?

• As described in detail in [Golden et a/., 1994], we

incorporate our closed world reasoning machin

ery into the XII partial-order planner, enabling it

to satisfy universally quantified goals and avoid

redundant information gathering despite the ab

sence of complete information.3 We measure the

impact of the machinery on the planner, using a

suite of test problems in the UNIX domain. These

preliminary experiments show that the benefit de

rived by avoiding redundant sensing far outweighs

the costs of maintaining the closed world informa

tion.

The paper is organized as follows. Section 2 introduces

our calculus for answering LCW queries in a static uni

verse. In Section 3 we present our calculus for updat

ing LCW as the world changes. Section 4 provides

preliminary experimental confirmation of the efficacy

of our techniques. We conclude with related and fu

ture work. Appendix A contains a discussion of action

semantics, and Appendix B proves that our inference

and update rules are sound.

2Although it might be possible to translate this action

representation into a propositional logic, the translation

would greatly expand the representation's size, and the

computational benefits of the action representation would

be lost.

SXII is a descendent of UCPOP [Penberthy and Weld,

1992, Weld, 1994], extended to handle incomplete infor

mation and to interleave planning with execution.

2 LOCAL CLOSED WORLD

INFORMATION

We begin by formalizing the notion of an incomplete

world model. At every point in time, the world is in a

unique state, w, which may be unknown to the agent.

For any ground, atomic sentence <p, either w \=<p or

w ^=-«p hence the set of ground facts entailed by the

world forms a complete logical theory; we use 2>yy to

denote this theory. Following [Papadimitriou, 1985,

Genesereth and Nourbakhsh, 1993] and many others,

we formalize an agent's incomplete information with a

set of possible world states, S, that are consistent with

its information. Since we assume what information

the agent does have is correct, the current world state,

w, is necessarily a member of S. We say that <p is

known to the agent (written S |= f) just in case Vs €

S, s f= <p. We say that the agent possesses complete

information when S and w entail exactly the same set

of facts. Incomplete information means that there are

facts such that neither S f= <p nor S f= -xp; in this case

we say <p is unknown to the agent.

We can still salvage a partial notion of complete in

formation, even in the presence of unknown facts. In

practice, many sensing actions return exhaustive infor

mation which warrants limited or "local" closed world

information. For example, scanning with a TV cam

era shows all objects in view, and the UNIX Is -a

command lists all files in a given directory. After exe

cuting Is -a, it is not enough for the agent to record

that paper . tex and proofs .tax are in /kr94 because,

in addition, the agent knows that no other files are in

that directory. Note that the agent is not making a

closed world assumption. Rather, the agent has exe

cuted an action that yields closed world information.

In general, we say that an agent has local closed world

information (LCW) relative to a logical sentence $ if

whenever $ is entailed by the world state w, it is

also entailed by the agent's model S. Thus, LCW cap

tures a limited correspondence between S and w. More

precisely:4

LCW($) = V0 if w |= $9 then S |= <Sf9 (1)

Fof instance, we represent knowing all the files in the

directory /kr94 as.

LCW(parent.dir(/, /kr94))

If the agent knows that paper.tex and proofs.tex

are in /kr94 then this LCW sentence is equivalent to

the following implication:

4We use italics to denote free variables and write $0

to denote the result of applying the substitution 8 to the

sentence $.

'parent. dir(/,d) means "The parent directory of file

/ is directory d."
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V/ parent. dir(/, /kr94) -»

(/ = paper.tex) V (/ = proofs.tex)

An LCV sentence can also be understood in terms of cir

cumscription [Lifschitz, 1985]. For the example above,

one defines the predicate P(ir) to be true exactly when

parent .dir(x, /kr94) is true, and circumscribes P

in the agent's theory. While our work can be un

derstood within the circumscriptive framework, our

implemented agent requires the ability to infer, and

update6 closed world information quickly. Thus, we

have developed computationally tractable closed world

reasoning and update methods, applicable to the re

stricted representation language used by today's plan

ning algorithms.

2.1 REPRESENTING CLOSED WORLD

INFORMATION

Below, we explain how our agent represents its incom

plete information about the world, and how it rep

resents LCV in this context. Due to the size of S (a

potentially infinite set of large structures), the agent

cannot represent it explicitly. Instead we represent the

facts known by the agent with a database ZVyj C Dyy ;

if <p € then S f= ip. In the interest of tractabil-

ity, we restrict 2Vj to ground literals. Since X^j is

incomplete, the Closed World Assumption (CWA) is

invalid — the agent cannot automatically infer that

any sentence absent from 2Vf is false. Thus, the agent

is forced to represent false facts in Vf^, explicitly, as

sentences tagged with the truth value F.

This observation leads to a minor paradox: the agent

cannot explicitly represent in Vjfl every sentence it

knows to be false (there is an infinite number of files

not in the directory /kr94). Yet the agent cannot

make the CWA. We adopt a simple solution: we rep

resent closed world information explicitly as a meta-

level database, Vq, containing sentences (or "closure

axioms") of the form LCV($) that record where the

agent has closed world information.

We adopt the following procedural semantics for LCW

sentences. When asked whether it believes an atomic

sentence $, the agent first checks to see if it is in XVj.

If it is, then the agent responds with the truth value

(T or F) associated with the sentence. However, if 4> £

IVj then 4> could be either F or unknown (truth value

U) . To resolve this ambiguity, the agent checks whether

Vq entails LCV(*) (see Section 2.2). If so, the fact is F

'Following [Katsuno and Mendelzon, 1991, Keller and

Wilkins, 1985] we distinguish between updating a database

and revising it. We assume that our agent's knowledge is

correct at any given time point, hence there is no need to

revise it. When the world changes, however, the agent may

need to update its model to remain in agreement with the

world.

otherwise it is U. Note that the agent need not perform

inference on Vj^ since it contains only ground literals.

2.2 INFERRING LOCAL CLOSED

WORLD INFORMATION

An agent requires information about the external

world w, but only has direct access to X^yf and Vq.

The agent needs to answer queries such as 'T)o I know

all the postscript files in /kr94?" or, more formally, is

the following true:

LCW(parent.dir(/, /kr94) A postscript^))

Correctly answering LCV queries is not a simple mat

ter of looking up LCV assertions in the Vq database.

For instance, suppose that agent wants to establish

whether it is familiar with all the files in /kr94, and

it finds that it is familiar with all the files in all direc

tories. Then, a fortiori, it is familiar with all the files

in /kr94. That is:

LCV(parent.dir(/,d)) f=

LCV(parent . dir(/, /kr94))

In general, we have:

Theorem 1 (Instantiation Rule) // $ is a logical

sentence and B is a substitution, then

LCV(*)t=LCV(*0).7

Moreover, LCV assertions can be combined to yield new

ones. For instance, if the agent knows all the group-

readable files, and it knows which files are located

in /kr94, it follows that it knows the set of group-

readable files in /kr94. In general, we have:

Theorem 2 (Conjunction Rule) // $ and * art

logical sentences then LCV(<p) ALCV(¥) |= LCV(*A*).

The intuition behind the rule is simple — if one knows

the contents of two sets then one knows their inter

section. Note that the converse is invalid. If one

knows the group-readable files in /kr94, it does not

follow that one knows all group-readable files. The rule

LCV(*) ^= LCV(* A *) is also invalid. For instance, if

one knows all the group-readable files, it does not fol

low that one knows exactly which of these files reside

in /kr94.

When 2Vj contains the unique value of a variable (e.g.,

the word count of a file), the agent can infer that it

has local closed world information. To state this infer

ence rule in general, we define an instance function, I,

'Proofs of the theorems are sequestered in Appendix B.
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that returns the set of sentences matching $ in a given

theory:

I(*,2>) = {*€2>| 30 such that *0 = tf} (2)

We refer to I($,2>) as the domain of $ in V. When

the cardinality of the $'s domain is the same in T^j

and in the theory induced by w, we can conclude that

we have LCW(*):8

Theorem 3 (Counting Rule (after [Smith, 1983]))

\I{*,VM)\ = \I{*<Vyf)\ |= LCW(*)

To use the Counting Rule in practice, our agent relies

on explicit axioms such as

V/, Wword.countCf.c),^)! = 1-

In the UNIX domain, many predicates encode func

tions (e.g., file properties such as word count, parent

directory, etc.) and the Counting Rule turns out to be

quite useful.

To make LCW inference and update tractable, we re

strict the sentences in Vq to conjunctions of positive

literals. As a result, we lose the ability to represent

LCW statements that contain negation or disjunction

such as "I know all the files in /kr94 except the files

with a .dvi extension," and "If a file is either in /kr94

or is a lisp file then I know its length." However, LCW

inference is reduced to the problem of matching a con

junctive LCW query against a database of conjunctive

LCW assertions. Although a conjunctive match takes

time exponential in the length of the query [Tambe

and Rosenbloom, 1989], if we accept a bound ib on the

number of conjuncts in a query, then the match time is

a polynomial of order ib in the size of Vq. In the UNIX

domain, we have found that LCW queries are typically

short (k < 3) which, with the aid of standard index

ing techniques, yields reasonably fast LCW inference in

practice (see Section 4).

3 UPDATING CLOSED WORLD

INFORMATION

As the agent is informed of the changes to the external

world— through its own actions or through the actions

of other agents — it can gain and lose LCW. When a file

is compressed, for example, the agent loses information

about its size; when all postscript files are deleted from

a directory, the agent gains the information that it con

tains no such files. This section presents an efficient

algorithm for updating Vq, the agent's store of LCW

sentences. The key to our algorithm is the restriction

of Vjfl to ground literals (Section 2.1). Since domain

axioms are banned, we sidestep the ramification prob

lem [Ginsberg and Smith, 1988]; instead, we demand

"Recall that both and Vyy are ground.

that updates to XVj (such as those caused by action

execution) explicitly enumerate changes to every pred

icate that is affected. Note that this is standard in the

planning literature. For example, a STRIPS operator

that moves block A from B to C must delete on(A, B)

and also add clear (B) even though clear (B) can be

defined as Vy ->on(y,B).

Recall that X^j is a database of ground atomic sen

tences each explicitly tagged with a T or F truth value.

We signify the atomic update of a single positive literal

ip from unknown to true with A(<p , U-+T) and denote

analogous changes in the obvious manner.9

Z^yj can change due to information gathering on the

part of the agent, or when the agent is informed of a

change to the state of the external world. We formu

late the update policy as a set of rules and state them

as theorems since they are sound. Our update rules

compute conservative (i.e., sound but incomplete) up

dates from Vq to V'q based on the changes to w and

Vjfl. By distinguishing between transitions to and

from U truth values, Vq updates can be divided into

four mutually exclusive and exhaustive cases which

we call information gain, information loss, domain

growth, and domain contraction. Below, we consider

each case in turn.

3.1 INFORMATION GAIN

An agent gains information when it executes an

information-gathering action (e.g., vc or Is), or when

a change to the world results in information gain. In

general, if the information in the agent's world model

increases, the agent cannot lose LCW.

Theorem 4 (Information Gain)

// A(<p, U — T V F) then V'q D Vq .

This theorem suggests a simple conservative policy: as

long as an action gains information, then Vq need not

be modified. However, by analyzing the form of the

information gained and exploiting the assumption of

correct information, it is possible to do better. For

example, as discussed in Section 2.2, when the agent

knows the cardinality of the set of instances matching

a sentence, then it can deduce when it has LCW [Smith,

1983].

An agent can obtain local closed world information,

even when the cardinality of a domain is variable (e.g.,

the number of files in a directory) by executing an

action with universally quantified effects. For instance,

the execution of UNIX chmod * in the directory /kr94

9 Note that, as explained in Section 2.1, if a fact is absent

from V^, the agent determines whether it is F or U by

consulting Vq. Thus, updates of the form A(y>,U —♦ F) or

&(<p, F —♦ U) may occur when Vq changes, even if does

not.
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provides information on the protection of all files in

that directory.

Since a universally quantified effect can change the

truth value of an unbounded number of literals, we

must extend the update notation to the following gen

eral form:

A(P(ar), -> T) Vz satisfying U(x)

For the example above U(x) = parent.dir(x, /kr94)

and P(x) denotes that x is write protected. With this

notation we now define an update policy for universally

quantified effects:

Theorem 5 (Forall Rule) If A(P(x), -> T) Vz

satisfying U(x) andVc \= LCV(U(x)) then V'c*-T>c U

(P(x)AU(x)).

The Forall Rule can be extended to handle obser

vational actions which provide LCW on the universe

of discourse (i.e. the extension of U(x)). In addi

tion it can be combined with the Counting Rule to

give LCW in situations where neither rule alone suf

fices. For example, since each file has exactly one name

(|I(name(o,n),2>w)| = 1), after executing the UNIX

action Is -a bin, we are able to deduce that we know

the names of all files in bin:

LCW(parent.dir(o, bin) A name(o, n))

For details, see [Golden et «/., 1994].

3.2 INFORMATION LOSS

An agent loses information when a literal, previously

known to be true (or false), is asserted to be unknown.

When a UNIX file is compressed, for example, infor

mation about its size is lost. In general, when infor

mation is lost about some literal, all LCW statements

"relevant" to that literal are lost. To make our no

tion of relevance precise, we begin by defining the set

PREL(yj) to denote the LCW assertions potentially rel

evant to a positive literal tp:10

PREL(p) = {* 6 2>C | 3x € *, 39, x6 = tp)

For example, if an agent has complete information on

the sizes of all files in /kr94, and a file lev. tex in

/kr94 is compressed (tp = size(lcw.tex, n)), then the

sentence

LCW(parent .dir(/, /kr94) A s ize(/, c)) (3)

10Since the sentences in Vq are conjunctions of positive

literals, we use the notation tp € $ to signify that <p is one

of $'s conjuncts, and the notation $ — <p to denote the

conjunction $ with <p omitted.

is in PREL(p) and should be removed from Vq. Un

fortunately, when a file in the directory /bin is com

pressed, the above LCW sentence is still in PREL(p)

(x = size(/, c)) even though the agent retains com

plete information about the files in /kr94. Clearly,

LCW sentence 3 ought to remain in Vq in this case. To

achieve this behavior, we check whether the agent has

information indicating that the LCW sentence does not

"match" the compressed file. If so, the LCW sentence

remains in Vq. In general, we define the set of LCW

assertions relevant to a literal tp to be the following

subset of PREL(p):

REL(y) = {* e PREL(y>) | V<fc G

(*-x),-,(2fc A% h-^.0)}

where, as in the definition of PREL(^>), 3x €

30, such that xO = tp.

We can now state our update policy for Information

Loss:

Theorem 6 (Information Loss)

// A(v?,T V F — U) then V'q<-Vq - REL(tp).

Note that compressing a file loo in /bin does not re

move LCW sentence 3. To see this, set x = size(/,c),

6 = (foo//), and fa = parent .dir(/, /kr94). Since

zoo is in /bin, Vq A Vj^ entails that ->fa0. Hence,

-'(Vq A Vk* ^ -'faO) is false and $ is not included in

REL(v?)- Note also that, given our assumptions (cor

rect information, etc.), information is only lost when

the world's state changes.

3.3 CHANGES IN DOMAIN

Finally, we have the most subtle cases: an agent's

model changes without strictly losing or gaining infor

mation. For example, when the file ai.sty is moved

from the /tex directory to /kr94, we have that the up

dated V'jfl / Vjfl but neither database is a superset

of the other. When the model changes in this way, the

domain of sentences containing parent .dir(/,/kr94)

grows whereas the domain of sentences containing

parent.dir(/, /tex) contracts. LCW information may

be lost in sentences whose domain grew. Suppose that,

prior to the file move, the agent knows the word counts

of all the files in /kr94; if it does not know the word

count of ai.sty, then that LCW assertion is no longer

true. As with Information Loss, we could update Vq

by removing the set REL(tp). However, this policy is

overly conservative. Suppose, in the above file move,

that the agent does know the word count of ai.sty.

In this case, it retains complete information over the

word counts of the files in /kr94, even after ai . sty is

moved.

More generally, when the domain of an LCW sentence

grows, but the agent has LCW on the new element of

the domain, then the LCW sentence can be retained.
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To make this intuition precise, we define the following

"minimal" subset of REL(y):

MREL(p) = {* € REL(y>) | -i(LCW((* - x)6))}

where, as in the definition of PREL(y>), 3x £

30, such that xO = <p. We can now state our up

date policy for Domain Growth:

Theorem 7 (Domain Growth)

// A(y>,F -» T) then V'q<-Vq - MREL(<p)

When the domain of a sentence contracts, no LCW in

formation is lost. For instance, when a file is removed

from the directory /kr94, we will still know the lengths

of all the files in that directory.

Theorem 8 (Domain Contraction)

// A(tp, T -+ F) then Vq = Vq .

Note that our update rules cover all possible truth-

value transitions. The rules guarantee that Vq does

not contain invalid LCW assertions, so long as the agent

is appraised of any changes to the world state. For

the sake of tractability, the rules are conservative —

Vq may be incomplete. For example, when the word

count of ai.sty is unknown in the above example,

we could say that we know the word counts of all

the files in /kr94 except ai.sty . However, that

would require us to store negated and disjunctive sen

tences in Vq, which would make LCW inference in

tractable. To see this, consider a singleton LCW query

such as LCW(parent.dir(/, /kr94)). If Vq contains

only positive conjunctions, the query can be answered

in sub-linear time — examining only singleton LCW

assertions indexed under the predicate parent. dir.

If disjunction is allowed, however, then the combi

nation of multiple LCW sentences has to be explored.

For instance, by the Conjunction Rule, we have that

LCW(* V *) A LCW(* V -.*)f=LCW(*). In general, an

swering a singleton query, in the presence of negation

and disjunction, is NP-hard. Since our planner makes

numerous such queries, we chose to sacrifice complete

ness in the interest of speed.

3.4 COMPUTATIONAL COMPLEXITY OF

UPDATES

As stated above, our motivation for formulating con

servative update rules has been to keep LCW update

tractable. We make good on this promise below. We

start by considering the complexity of applying single

update rules:

• Information gain: Theorem 4 implies that no

sentences have to be retracted from Vq . LCW sen

tences may be added by the Forall Rule (constant

time).11

• Information loss: The agent has to compute

the set PREL($), which takes time linear in the

size of Vq in the worst case. Computing REL($)

from PREL(*) is linear in the size of PREL(*),

but also potentially linear in the size of Vq , since

establishing whether Vq A f= -^<0 may re

quire singleton LCW queries. The agent then re

moves each element of the set from Vq, which

takes time linear in the size of REL($). In the

worst case, the size of PREL($) is linear in the

size of Vq , so the entire update could take time

quadratic in the size of Vq .

• Domain growth: The agent has to com

pute the set REL($) which, as explained above,

is quadratic in the size of Vq. Computing

MREL($) from REL($) is linear in the size of

REL, but potentially polynomial in the size of

Vq, since additional queries to Vq may be in

volved. The agent then removes each element of

the set from Vq, which takes time linear in the

size of the set MREL($). Thus the whole opera

tion is polynomial in the size of Vq .

• Domain contraction: Vq remains unchanged

in this case.

While the application of each individual update rule

is reasonably fast, even in the worst case, we have to

consider the possibility of a cascade of Vq updates.

Will the update rules chain on each other? Are such

chains guaranteed to terminate? Fortunately, we can

prove that rule chaining is unnecessary. The intu

ition is as follows. Chaining could potentially occur

in one of two ways. First, when Vq shrinks, due to

Domain Growth or Information Loss, a potentially in

finite number of sentences change from F to U. Thus

one might think that the Information Loss Rule (The

orem 6) has to be applied to further retract sentences

from Vq. However, careful examination of the defi

nition of REL shows that this is not the case — all

relevant LCW sentences have already been excised from

Vq. Second, when Vq grows due to Information Gain,

a potentially infinite number of sentences changes from

U to F. However, by Information Gain, no statements

have to be excised from Vq , and the Forall Rule does

not yield new LCW sentences as a consequence.

Thus, in the absence of chaining, the time to per

form LCW updates is dominated by the time to retrieve

MREL(4>) which is polynomial in the size of Vq in the

worst case, but much faster when standard indexing

techniques {e.g., hashing on the predicates in $) are

used. Furthermore, the worst-case polynomial can be

reduced to worst-case linear time if the agent updates

nThe Conjunction, Counting, and Instantiation Rules

are applied in response to LCW queries, but ignored when

Vq is updated.
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Vq with the more conservative set PREL instead of

taking the time to compute MREL.

3.5 DISCUSSION

The update rules defined above form a sound, efficient

algorithm for updating Vy^ and Vq . We believe our

rules satisfy the update postulates specified in [Kat-

suno and Mendelzon, 1991] and generalized in [del Val

and Shoham, 1993], but we have not yet attempted a

proof. Since sentences in Vq are restricted to positive

conjunctions, the algorithm is incomplete. Neverthe

less, it is easy to see that our algorithm is better than

the trivial update algorithm (2>'c«-{}). In tne UNIX

domain, for example, our Counting and Forall Rules

enable us to derive LCW from a wide range of "sensory"

actions, including pad, wc, grsp. Is, finger, and

many more. Furthermore, our update rules retain LCW

in many cases. For example, changes to the state of

one locale (such as a directory, a database, an archive,

etc.) do not impact LCW on other locales. This feature

of our update calculus applies to physical locales as

well.

Ultimately, the test of any mechanism for closed world

reasoning - conservative or not - is its impact on the

agent's performance. Below we describe preliminary

experiments that suggest ours is effective in practice,

speeding up execution by a factor of ten in some cases.

4 EXPERIMENTAL RESULTS

While we have shown that LCW inference and update

are tractable, computational complexity is not always

a good predictor of real performance. To test whether

our rules perform well in practice (i.e., run quickly

and with sufficient completeness for useful results) we

added them to the XII partial-order planner [Golden et

ai, 1994]. We then embedded XII, and our closed world

reasoning machinery, inside the UNIX softbot [Etzioni

et ai, 1993].

Table 1 quantifies the impact of closed world reason

ing on the softbot's performance. LCW inference yields

a significant performance gain. The tests mostly con

sist of simple file searches (e.g., find a file with word

count greater than 5000, containing the string "theo

rem," etc.) and relocations. The actions executed in

the tests include »v (which can destroy LCW), obser

vational actions such as Is, vc and grep, and more.

Each experiment was started from a new lisp session.

2^1 and Vq start out empty, but they are not purged

between problems, so for each problem the agent bene

fits from the information gained in solving the previous

problems.

Maintaining Vq introduced less than 15% overhead

per plan explored, and reduced the number of plans ex

plored substantially. In addition, the plans produced

were often considerably shorter, since redundant sens

ing steps were eliminated. Without LCW, the softbot

performed 16 redundant Is operations, and 6 redun

dant pwds in a "typical" file search. With LCW, on

the other hand, the softbot performed no redundant

sensing. Furthermore, when faced with unachievable

goals, the softbot with LCW inference was able to fail

quickly; however, without LCW it conducted a massive

search, executing many redundant sensing operations

in a forlorn hope of observing something that would

satisfy the goal. While more experimentation is nec

essary, these experiments (combined with our analytic

results) suggest that LCW inference has the potential to

substantially improve performance.

5 RELATED WORK

Since we have already discussed the connection be

tween our work and the broad spectrum of research

on autoepistemic logic, circumscription, database the

ory, and formal theories of action, we now focus on

related work in the planning literature. Our research

has its roots in the SOCRATES planner, where the prob

lem of redundant information gathering was initially

discovered [Etzioni and Lesh, 1993]. Like our planner,

socrates relies on the UNIX domain as its testbed

and interleaves planning with execution. SOCRATES

supports a restricted representation of LCW, which en

ables it to avoid redundant information gathering in

many cases. Our advances over SOCRATES include an

improved semantics for the notion of local closed world

information, the ability to satisfy universally quanti

fied goals, and our sound and tractable calculi for LCW

inference and update.

Some planners count the number of relevant

ground propositions in their model, before insert

ing information-gathering steps into their plans, to

check whether the desired information is already

known [Olawsky and Gini, 1990]. However, this heuris

tic, which corresponds directly to the Counting Rule

(Section 3 and [Smith, 1983]), is only effective when

the number of sought-after facts is known in advance.

For example, a bolt has exactly one width, but the

number of files in /kr94 is unknown.

Genesereth and Nourbakhsh [Genesereth and Nour-

bakhsh, 1993] share our goal of avoiding redundant in

formation gathering, but do so using radically different

mechanisms, and in the context of state-space search.

They derive completeness-preserving rules for pruning

the search as well as rules for terminating planning

and beginning execution. However, they do not have

notions that correspond to LCW, a database like Vq,

or our inference and update calculi.
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Table 1 : Performance of Local Closed World Inference in the UNIX Domain

Problem Planner Plans Actions Total

Set Explored Executed Time

22 PROBLEMS, With LCW 420 55 109

13 SOLVABLE Without 3707 724 966

14 PROBLEMS, With LCW 373 55 94

ALL SOLVABLE Without 1002 140 160

Reasoning about local closed world information (LCW) improves the performance of the softbot on two suites

of UNIX problems. Times are in CPU seconds on a Sun Microsystems SPARC-10. Without LCW inference the

softbot fails to complete eight of the problems in the first set, and one of the problems in the second set, before

reaching a 100 CPU second time bound. With LCW, the softbot completes all the problems. The mean size of

Vq (the agent's store of LCW information) is 155 sentences. The maximum size is 167.

6 FUTURE WORK

Although we have relaxed the assumption of complete

information, we still assume correct information. Since

we want our agents to cope with exogenous events, we

are in the process of relaxing this assumption as well.

We are investigating two complementary mechanisms

to solve this problem. The first mechanism associates

expiration times with beliefs. If an agent has a belief

regarding tp, which describes a highly dynamic situa

tion (e.g. the idle time of a user on a given machine),

then the agent should not keep that belief in for

very long. Thus, after an appropriate amount of time

has elapsed, A((p, T V F —+ u) occurs automatically.12

This mechanism is effective when the belief about ip

expires before <p changes in the world. However, unless

we have extremely short expiration times, we cannot

guarantee this to be the case in general.

Thus, an additional mechanism is required that en

ables the agent to detect and recover from out-of-date

beliefs. This is a harder problem, because it involves

belief revision, rather than mere update. If execut

ing an action fails, and the action's preconditions are

known, it follows that one or more of the preconditions

of the action were not satisfied — but which ones? A

conservative approach would remove all the precon

ditions from the agent's model. We are investigating

more efficient mechanisms.

7 CONCLUSIONS

Our work was motivated by the problem of elimi

nating redundant information gathering in planners

with incomplete information. To address this problem,

we developed a sound and computationally tractable

method for representing, inferring, and updating lo

cal closed world information (LCW) (e.g., "I know the

lengths of all the files in /kr94" ) over a restricted log

ical theory of the sort used by planning algorithms

12Note that by the Information Loss rule, this update

will cause LCW to be retracted as well.

such as, NONLIN, tweak, and UCPOP. To demon

strate the utility of our approach, we incorporated our

closed world reasoning machinery into the UNIX soft

bot. Preliminary experiments, described in Section 4,

indicate that LCW inference can significantly speed up

the softbot and drastically reduce the number of ac

tions executed. While computationally tractable, our

update and inference rules are conservative. In future

work, we hope to identify the precise point at which

closed world reasoning becomes intractable (e.g., does

introducing disjunction into LCW sentences make it

so?).

A ACTION SEMANTICS

We extend ADL, Pednault's [Pednault, 1989, Pednault,

1988, Pednault, 1986] state-transition model of con

ditional and universally quantified actions, to handle

incomplete information. Formally, each action is mod

eled as a pair, (C, 0), denoting its causational and ob

servational aspects. Following adl [Pednault, 1988, p.

357], we define the causational effects, C, of an action

as a set of pairs (s.-.Sj) — execution of the action in

world state s,- yields state s;-.13

As defined in Section 2 we model an agent's incom

plete knowledge of the actual world state, w, with

the set of states S. Since we assume correct informa

tion, w € S. If an agent has incomplete information,

then after executing the action it can only conclude

that the world is a member of the image of C on S:

{*j I (*,«*) eCA ti€S}.

When the C pairs denote a function, then the effect of

execution is unique, but if C specifies a relation (i.e.,

two pairs share a first element), then the effect of ex

ecution is uncertain. Even if the exact initial state is

known, precise prediction of the unique final state re

sulting from execution is impossible with this action

model. Flipping a coin and executing compress) are

If executed in a state which does not appear as the left

member of a C pair, the result of execution is an error.



186 O. Etzioni, K. Golden, and D. Weld

good examples of actions that require relational C. In

contrast to actions which increase uncertainty, if an

action's C pairs denote a nonsurjective function, then

execution can decrease uncertainty. For example, ex

ecuting rm * reduces the size of S if the contents of

the current directory were not known at the time of

execution.

Pednault's theory also needs to be extended to han

dle information gathering actions, i.e. effects which

change S without changing w. For example, suppose

that $=turaed.on(light53) denotes that the light

is on, but S neither entails 9 nor -<9. The act of

scanning the room with a TV camera and finding 9 is

false doesn't change the world state, but it does allow

discarding from 5 any state s which entails 9. Syntac

tically, we describe this action with a UWL observe

postcondition [Etzioni et al., 1992], but semantically

we model the observational effects, 0, of an action as

a partition over all possible world states. If two states

are in different equivalence classes, then the action's

observational effects distinguish between them. In

other words, 0 specifies the discriminatory power pro

vided by the execution system — at run time, the exe

cution system reports which equivalence class resulted.

Actions with no observational effects can be modeled

with 0 specifying a single equivalence class. The ac

tion of detecting whether the light is on (described

above) yields a partition with two classes: states en

tailing 9 and those entailing ->*. More generally, if

A = (C, 0) is an action and S denotes the agent's

knowledge of the world state, and w G S is the actual

world state, then after executing A the actual world

state will be w' where (w, w7) 6 C and the agent's state

set, S' will be:

{sj | (s,-, %j) G C A s, G S A 30 G 0, w7, S> G O) (4)

For example, if S = {si,«2},C= {($1,83), (S2, s4)} and

0 = {{si,s4}, {s2,S3}} then by executing the action,

the agent should be able to deduce complete informa

tion: either S' will equal {S3} or S' will equal {S4}.

We close by noting that the (C, 0) pairs are only a se

mantic construct. Since there may be an infinite num

ber of these pairs, pragmatics dictates that we describe

the actions with a convenient (e.g. finite) syntax. A

precise definition of the mapping between the syntac

tic constructs of UWL [Etzioni et al., 1992] and the

(C,0) pairs is lengthy, but straightforward. For ex

ample, suppose B dennotes the extension of block(z)

and a spray-paint action has a universally quantified

causational effect, Vi G B green(x) then green must

be true of every block in every state. 8j present in a

(si)*/) pair in C. Universally quantified observational

effects have a similar interpretation. The UNIX Is -a

/kr94 command, for example, provides complete in

formation about all files in the /kr94 directory. This

corresponds to a (C, 0) pair in which each equivalence

class in 0 contains states that agree on the extension

of the parent . dir predicate so long as /kr94 is given

as the second argument:

VOGO Vsj.saGO V/

if si \= parent . dir(/, /kr94)

then s2 (= parent . dir(/, /kr94) (5)

B PROOFS

Proof of Theorem 1 (Instantiation Rule) Let

9 be a logical sentence and suppose LCW($) holds.

Let 0 be an arbitrary substitution; we need show that

LCW(*0) holds. I.e., by definition of LCW (Equation 1)

we need show that for all substitutions, a, if w ^ 96a

then S \= 99ff. But since the composition 9a of substi

tutions is a substitution, and since LCV($) we conclude

LCW(*0). □

Proof of Theorem 2 (Conjunction Rule) Let *

and • be logical sentences and suppose LCV($) and

LCW(¥). Let 0 be an arbitrary substitution. We need

show [w |= (*0 A *0)] [S |= (*0 A ¥0)] In other

words, we need to show that either S entails the con

junction or w does not entail the conjunction. But if

5 ^ (9 A ¥)0, then the proof is complete; so instead

assume that ->[S \= (*A*)0]. This implies that either

i[S 1= 99] or ->[S f= ¥0]. Then by definition of LCW,

either ->[w \= $9] or ->[w f= ¥0]. Thus -.[w \= (*A¥)0]

soLCW(*A¥) □

Proof of Theorem 3 (Counting Rule) Let 9

be a sentence and suppose that |I($,2^)| =

|I($,2>W)|- We need show that LCV($); in other

words, we need show that for an arbitrary substitu

tion 0, -.[w |= *0] V [S (= *0]. But if 5 (= *0 then

the proof is complete, so assume that ->[5 ^ $0]. By

the definition of 27^ and Equation 2, this means that

9 £ 1(9, 2^vi)- But the assumption of correct infor

mation assures that 1(&,Vm) C I($,Xtyy). And since

the cardinalities are equal, the sets must be equal. So

* g" I(*,X>yv) and thus -.[w (= $0]. Hence, LCV(*).

□

Proof of Theorem 4(Information Gain)

It suffices to prove that for any sentence, 9, and

literal, <p, if LCV(9) holds before action A is executed

and the sole effect of A is A(<p, U —► T V F), then

LCV($) still holds. Suppose LCW(*) holds and let 0 be

an arbitrary substitution. By Equation 1, we know

that [w (= *0] [S \= 99). We need to show that

after executing A, [w' \= 99] — [S' (= *0]. Note that

since A has only observational effects, w' = w. As a

result, if -i[w ^= 90) then the proof is complete, so

assume w (= 99. This means that S |= 99 which
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means that Vs € S s 90. But since A has only

observational effects, S' is a subset of S, and

S' (= 90. □

Proof of Theorem 5 (Forall Rule) Let A =

(C, 0) be an action whose execution leads solely to an

update of the form A(P(x), —♦ T) Vx such that U(ar)

and suppose that LCW(U(z)). Suppose that A can be

legally executed in every state in S, and let w' and 5'

denote the result of executing A. Since the only effect

of A is on P, forall 0 if |= \J(x)0 and («,■ , Sj) G C then

Sj f= V(x)0. Thus

if w' (= \}(x)0 then S' \= U(x)0 (6)

Suppose that a universally quantified casuational ef

fect of A was responsible for the quantified update.

Then forall (s<,*j) € C if s, |= U(x)0 then Sj |= P(x)0

and thus 8j \= (P(x) A \J(x))0. Combining this with

Equation 6 yields

if w' (= (P(x) A U(x))0 then S' (= (P(x) A U(x))0

So LCW(P(x)AU(x)) holds and the update V'c*-Vc U

(P(x) A U(x)) is sound. On the other hand, if the

universally quantified effect is observational, then by

Equation 4 all states in S' must belong to one equiv

alence class O G O. Furthermore, since the effect is

universally quantified, Equation 5 dictates that forall

states 81,82 G S' and forall substitutions 0 of x, if

81 \= fP(x) A U(x))0 then s2 (= (P(*) A U(x))0. But

w* G 5 so this means that LCV(P(x) A U(z)) holds and

the update is sound. □

Proof of Theorem 6 (Information Loss) Let 9

be a conjunction of positive literals and suppose that

LCW($). Let <p be a positive literal and let A be an

action whose only effect is A(^, TVF->U). We prove

the case of A(ip, T-»U) but the case of A(<p, F-»U)

is identical. To prove that the Information Loss Rule

is sound in this case, we need to show that if LCV($)

no longer holds after executing A then 9 € REL(p).

Suppose that LCV($) doesn't hold after executing A;

then there exists a substitution, 0 such that [w' f=

90] [S' \= 90] even though [w |= 90] [5 f= 96].

However, we know that the only positive literal whose

proof status changed between w and w'and S and S'

was ip. Hence 96 (= <p. But since 9 is conjunctive,

there exists <f> G 9 such that <f>6 = <p. Since w' ^ 96,

and tp was the only literal to change its truth value,

the rest of the literals (if any) in 9 must be entailed by

w: V^i € (9 — 4>),w \= <f>i6. Since we assume correct

information, this means V^j G (* — i(>),-<(S |= -«f>i6)

Hence 9 satisfies the second part of the definition of

REL(y>) and we have * G REL(p). O

Proof of Theorem 7 (Domain Growth) Let 9

be a conjunction of positive literals and suppose that

LCW($). Let ip be a positive literal and suppose A is an

action whose only nonderivative effect is A(<p,F —» T).

Suppose that LCW($) no longer holds after execut

ing A; then there exists a substitution, 6 such that

V \= 96] -h \S' |= 96] even though [w (= 96] —

S (= 96]. However, we know that the only posi

tive literal whose proof status changed from false to

true between w and w' and between S and S' was

<p. So we have for some <f> G 9, </>6 = <p. Since

w7 ^ 96, and the only literal in 96 to change its

proof status was <f>6, the rest of the literals in 96

must be entailed by w: V^j G (9 — <t>)6,w (= fa.

Thus v>,- G (* - tf),-^(S (= -"M), so * G REL(v?).

After execution, we have LCW(00) (<p changed to T),

but not LCV(96). Therefore, by the contrapositive of

the Conjunction Rule, ->LCW((* - <f>)6). This leads to

* G MREL(y>). □

Proof of Theorem 8 (Domain Contraction) Let

<p be a positive literal and suppose A is an action whose

only effect is A(y>,T—* F). To show that the update

rule is sound, it is sufficient to prove that for any 9,

if LCW($) holds before executing A then LCV(w) holds

after executing A. If LCW($) holds before execution

then, for arbitrary 6, we know that [w \= 90] —* [S ^

96]. We need to show that after executing A [w* f=

90] — [S' > 96]. If ->[w' |= 90] then the proof is

complete, so assume w' ^= 90. Since the only effect

of A was to make <p false, and 9 is a conjunction of

positive literals, [w' \= 90] -» [w \= 90] [5 |=

Since the truth value of $5 did not change between w

and w' and since S (= 90, it follows that S' |= 90. □
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Abstract

The study of belief change has been an active

area in philosophy and AI. In recent years

two special cases of belief change, belief re

vision and belief update, have been studied

in detail. In a companion paper [FH94b] we

introduced a new framework to model be

lief change. This framework combines tem

poral and epistemic modalities with a no

tion of plausibility, allowing us to examine

the changes of beliefs over time. In this pa

per we show how belief revision and belief

update can be captured in our framework.

This allows us to compare the assumptions

made by each method and to better under

stand the principles underlying them. In par

ticular, it allows us to understand the source

of Gardenfors' triviality result for belief revi

sion [Gar86] and suggests a way of mitigating

the problem. It also shows that Katsuno and

Mendelzon's notion of belief update [KM91a]

depends on several strong assumptions that

may limit its applicability in AI.

1 INTRODUCTION

The study of belief change has been an active area in

philosophy and AI. The focus of this research is to

understand how an agent should change his beliefs as

a result of getting new information. Two instances

of this general phenomenon have been studied in de

tail. Belief revision [AGM85, Gar88] focuses on how

an agent revises his beliefs when he adopts a new be

lief. Belief update [KM91a], on the other hand, focuses

on how an agent should change his beliefs when he re

alizes that the world has changed. Both approaches

attempt to capture the intuition that an agent should

make minimal changes in his beliefs in order to ac

commodate the new belief. The difference is that be

lief revision attempts to decide what beliefs should be

discarded to accommodate a new belief, while belief

Joseph Y. Halpern

IBM Almaden Research Center

650 Harry Road

San Jose, CA 95120-6099

halpern@almaden.ibm.com

update attempts to decide what changes in the world

led to the new observation.

In [FH94b] we introduce a general framework for mod

eling belief change. We start with the framework

for analyzing knowledge in multi-agent systems, intro

duced in [HF89], and add to it a notion of plausibility

ordering at each situation. We then define belief as

truth in the most plausible situations. The resulting

framework is very expressive; it captures both time

and knowledge as well as beliefs. The representation

of time allows us to reason in the framework about

changes in the beliefs of the agent. It also allows us

to relate the beliefs of the agent about the future with

his actual beliefs in the future. Knowledge captures

in a precise sense the non-defeasible information the

agent has about the world he is in, while belief cap

tures defeasible information. The framework allows

us to represent a broad spectrum of notions of belief

change. In this paper we show how belief revision and

update can be represented. Doing this allows us to

compare the assumptions implicit in each method and

to understand the principles underlying them.

The explicit representation of time allows us to inves

tigate some of the subtle differences between revision

and update. For example, in the literature, belief revi

sion has been described (in [KM91a], for example) as

a process of changing beliefs about a static world, but

this is slightly misleading. In fact, what is important

for revision is not that the world is static, but that

the propositions used to describe the world are static,

i.e., their truth value does not change over time.1 For

example, "At time 0 the block is on the table" is a

static proposition, while "The block is on the table" is

not, since it implicitly references the current state of

affairs. Belief update, on the other hand, deals with

propositions whose truth depends on the current sit

uation. It allows any proposition to change its truth

value, and treats this as a change in the world rather

than as a change in the agent's beliefs about the world.

'This assumption is not unique to belief revi

sion. Bayesian updating, for example, makes similar

assumptions.
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This distinction allows us to better understand

Gardenfors' triviality result [Gar86]. This result states

that the belief revision postulates cannot be applied to

belief states that contain Ramsey conditionals of the

form <p>ii> with the interpretation "revising by <p will

lead to a state where ij> is believed". Technically, this

is because the AGM framework includes a postulate

of persistence : if <p is consistent with the current be

liefs, then no beliefs should be discarded to accommo

date <p. Since the truth value of a Ramsey conditional

depends on the current state of the agent, it is inap

propriate to assume that it persists when that state

changes. It should thus be no surprise that assuming

persistence of such formulas leads to triviality. Indeed,

this observation was essentially already made by Levi

[Lev88]. Our solution to the triviality result is some

what different from others that have been considered

in the literature (e.g., [Rot89, Fuh89, LR92, Bou92])

in that it shifts the focus from postulates for the revi

sion process to considerations of the appropriate logic

of conditionals.

We then turn our attention to belief update. Our

treatment enables us to identify implicit assumptions

made in the update process. In particular, it brings

out how update prefers to defer abnormalities to as

late a time as possible. This allows us to clarify when

update is appropriate. Essentially, it is appropriate if

the agent always receives enough information to de

duce the exact change in the state of the world, a con

dition unlikely to be met in most AI applications.

We are certainly not the first to provide semantic

models for belief revision and update. For example,

[AGM85, Gro88, GM88, Rot91, Bou92, Ry92] deal

with revision and [KM91a, dVS92] deal with update.

In fact, there are several works in the literature that

capture both using the same machinery [KS91, GP92]

and others that simulate belief revision using belief up

date [GMR92, dVS94]. Our approach is different from

most in that we did not construct a specific frame

work to capture one or both belief change paradigms.

Instead, we start from a natural framework to model

how an agent's knowledge changes over time [HF89]

and add to it machinery that captures a defeasible

notion of belief. As we shall see, our framework al

lows us to clearly bring out the similarities and differ

ences between update and revision. We believe that

the insights gained into revision and update using our

approach—particularly in terms of the assumptions

that each makes about how an agent's plausibility or

dering changes over time—provide further justification

as to the usefulness of having such a framework.

2 THE FRAMEWORK

We now review the framework of [HF89] for modeling

knowledge in multi-agent systems, and our extension

of it [FH94b] for dealing with belief change.

The key assumption in this framework is that we can

characterize the system by describing it in terms of

a state that changes over time. Formally, we assume

that at each point in time, the agent is in some local

state. Intuitively, this local state encodes the informa

tion the agent has observed thus far. There is also an

environment, whose state encodes relevant aspects of

the system that are not part of the agent's local state.

A global state is a tuple (se,sa) consisting of the envi

ronment state se and the local state sa of the agent.

A run of the system is a function from time (which,

for ease of exposition, we assume ranges over the nat

ural numbers) to global states. Thus, if r is a run,

then r(0),r(l), ... is a sequence of global states that,

roughly speaking, is a complete description of what

happens over time in one possible execution of the

system. We take a system to consist of a set of runs.

Intuitively, these runs describe all the possible behav

iors of the system, that is, all the possible sequences

of events that could occur in the system over time.

Given a system R, we refer to a pair (r, m) consisting of

a run r 6 R and a time m as a point. If r(m) = (se,8a),

we define ra(m) — sa and re(m) = se. We say two

points (r, m) and (r', m') are indistinguishable to the

agent, and write (r, m) ~„ (r',m'), if r0(m) = r'a(m'),

i.e., if the agent has the same local state at both points.

Finally, Halpern and Fagin define an interpreted sys

tem I to be a tuple (R, jt) consisting of a system R

together with a mapping ir that associates with each

point a truth assignment to the primitive propositions.

In an interpreted system we can talk about an agent's

knowledge: the agent knows ip at a point (r, m) if <p

holds in all points (r', m') such that (r, m) ~a (r', m').

However, we can not talk about the agent's (possibly

defeasible) beliefs at (r, m).

To remedy this deficiency, in [FH94b] we added plau

sibility orderings to interpreted systems. We can then

say that the agent believes <p if tp is true at all the

most plausible worlds. Formally, a plausibility space is

a tuple (Q, ■<), where Q is a set of points in the system,

and ■< is a preorder (i.e., a reflexive and transitive re

lation) over fl. As usual, we write (r',m') -< (r",m")

if (r1, m') < (r", m") and it is not the case that

(r",m") ^ (r'.m'). Intuitively, (r',m') -< (r",m")

if (r',m') is strictly more plausible than (r",m") ac

cording to the plausibility ordering. An (interpreted)

plausibility system is a tuple (R, n, V) where, as be

fore, R is a set of runs and x maps each point to a

truth assignment, and where V is a plausibility assign

ment function mapping each point (r, m) to a plausi

bility space V(r, m) = (fi(r,m)i ^(r,m))- Intuitively, the

plausibility space V(r, m) describes the relative plau

sibility of points from the point of view of the agent at

(r, m). In this paper we assume that ft(r,m) is a (pos

sibly empty) subset of {(r', m')|(r, m) ~„ (r'>m')}-

Thus, the agent considers plausible only situations

that are possible according to his knowledge. We also
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assume that the plausibility space is a function of the

agent's local state. Thus, if (r, m) ~a (r',m') then

V(r, m)=7>(r',m').2

We define the logical language CKPT{$) to be a propo-

sitional language over a set of primitive propositions

<[> with the following modalities: Kip (the agent knows

ip is true), Of (f is true in the next time step), and

<p—*ip (in all most-plausible situations where ip is true,

ip is also true).3 We recursively assign truth values to

formulas in CKPT($) at a point (r, m) in a plausibil

ity system I. The truth of primitive propositions is

determined by it, so that

(Z, r, m) \= p if and only if n(r, m)(p) = true.

Conjunction and negation are treated in the standard

way, as is knowledge: The agent knows ip at (r, m) if

ip holds at all points that he cannot distinguish from

(r, m). Thus,

(Z,r,m) (= Kip if (Z,r',m') |= <p for all

(r'.m') ~a (r,m).

Ov is true &t (r> m) if f is true at (r, m + 1). Thus,

(I, r, m) f= OV if (Z- r, m + 1) |= ip.

We would like ip—*ip to be true at (r, m) if the most

plausible points in fi(r,m) that satisfy y> also satisfy ip.

The actual definition that we use, which is standard

in the literature (see [Lew73, Bur81, Bou92]), captures

this desideratum if there are most plausible points that

satisfy ip (in particular, if &(r,m) is finite), and also

deals with the more general case where there may be

a sequence of increasingly more plausible points, with

none being most plausible, i.e., . . .S3 -<(r,m) «2 ~<(r,m)

s\. The actual definition says that ip—*ip is true at a

point (r, m) if for every point (ri.mi) in fl(r,m) satis

fying <p, there is another point (r2 , m2) such that (a)

(r2, m2) is at least as plausible as (n, mi), (b) (r2, m2)

satisfies <p A ip, and (c) each point satisfying ip that is

at least as plausible as (r2, m2) also satisfies ip.

(I, r, m) |= ¥>-+V if for every (n,mi) €

fi(r,m) such that ^L,r\,m\) \= ip, there is

a point (r2,m2) ^(r m) (r!,mi) such that

(Z, r2,m2) \= ip A ip, and there is

no (r3,m3) <(r,m) (»"2,m2) such that

(I,r3,m3) |=y>A->^.

We now define a notion of belief. Intuitively, the agent

believes <p if ip is true in all the worlds he considers

2The framework presented in [FH94b] is more general

than this, dealing with multiple agents and allowing the

agent to consider several plausibility spaces in each local

state. The simplified version we present here suffices to

capture belief revision and update.

3It is easy to add other temporal modalities such as

until, eventually, since, etc. These do not play a role in

this paper.

most plausible. Formally, we define B<p O trve—*<p.

In [FH94b] we prove that, in this framework, knowl

edge is an S5 operator, belief is a KD45 operator, and

the interactions between knowledge and belief are cap

tured by the axioms Kip Bip and Bip => KBip.

In a plausibility system, the agent's beliefs change from

point to point because his plausibility space changes.

The general framework does not put any constraints

on how the plausibility space changes. In this paper,

we identify the constraints that correspond to belief

revision and update.

3 BELIEF CHANGE SYSTEMS

In the rest of this paper, we focus on a certain class

of systems that we call belief change systems, in which

we can capture both belief revision and belief update.

These systems describe agents that change their local

state at each round according to new information they

receive (or learn). Both revision and update assume

that this information is described by a formula.4 Thus,

they describe how the agent's beliefs change when the

new information is captured by a formula ip. Implicitly

they assume that ip is the only factor that affects the

change. We now make this assumption precise.

We start with some language £($) that describes the

worlds. We assume that £($) contains the proposi-

tional calculus and has a consequence relation \~c that

satisfies the deduction theorem. The set $ denotes

the primitive propositions in the £($). We can think

of \~c as a description of slate constraints that govern

the language. We assume that the agent is described

by a protocol. The protocol describes how the agent

changes state when receiving new information. For

mally, a protocol is a tuple P = (S, so,r), where S is

the set of local states the agent can attain, so is the

initial state of the agent, and t is a transition function

that maps a state and a formula in £($) to another

state. We take r(s, <p) to be the local state of the agent

after learning ip in local state s. We sometimes write

s ■ ip instead of r(s, ip).

To clarify the concept of protocol, we examine a rather

simple protocol that we use below in our representa

tion of update. The protocol P* is defined as follows:

The agent's local state is simply the sequence of ob

servation made. Thus, S is the set of sequences of

formulas in £($). Initially the agent has not made

any observations, so «o = ()• The transition func

tion simply appends the new observation to the agent's

state: r({ip0, . . . ,ip„),ip) = {ip0, ■ ■ .,<pn,i>)- This sim

ple definition describes an agent that remembers all

4 This is a rather strong assumption, since it implies that

the language in question can capture, in a precise manner,

the information content of the change. Our framework can

also be used to describe situations where this assumption

does not hold.
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his observations.5

Given a protocol P, we define H(P) to be the system

consisting of all runs in which the agent runs P as fol

lows. Recall that in our framework we need to describe

the local states of the agent and the environment at

each point. We use the environment state to represent

which of the propositions in $ is true and what obser

vation the agent makes. We represent a truth assign

ment over $ by the set * of propositions that are true.

We say that a truth assignment * is consistent accord

ing to be if for every ipi, . . .<pn € • and jfo . . . ipm $

it is not the case that r-£ -"(Ai=i nfi A A»=m

Formally, we take the environment state to be a pair

re(m) = (¥, tp), such that * C <b is a consistent truth

assignment to ¥ and tp is the observation that the

agent makes in the transition from (r, m) to (r, m+ 1).

If re(m) = (¥,¥>), then we define world(r, m) = * and

obs(r, m) = tp.

We take H(P) to be the set of all runs satisfying the

following conditions for all m > 0:

• ra(m) 6 S

• re(m) = (*,y>), where * C $ is consistent ac

cording to \~c and tp G

• ra(0) = s0

• ra(m + 1) = ra(ra(m), o6s(r, m)).

Notice that because 7l(P) contains all runs that sat

isfy these conditions, for each sequence of world states

•ot • • - i *m and observations tpo,- ■ Vm there is a run

in K(P) such that re(») = (*,,¥>,) for all 0 < i < m.

We introduce propositions that allow us to describe

the observations the agent make at each step. More

formally, let $* be the set of primitive propositions

obtained by augmenting $ with all primitive propo

sitions of the form learn(tp), where <p £ In

tuitively, learn(<p) holds if the agent has just learned

(or observed) tp. We now define a truth assignment

* on the points in H(P) in the obvious way: For

p G we define *(r, m)(p) = true if and only if

p 6 world(r, m). Since the formula learn(<p) is intended

to denote that the agent has just learned tp, we define

x(r, m)(learn(tp)) = true if and only if obs(r, m) = tp.

These definitions set the background for our presenta

tion of belief revision and belief update. Our descrip

tion is still missing a plausibility assignment function

that describes the plausibility ordering of the agent at

each point. This function requires a different treat

ment for revision and update. Indeed, the plausibility

function is the main source of difference between the

two notions.

4 REVISION

Belief revision attempts to describe how a rational

agent incorporates new beliefs. As we said earlier, the

main intuition is that as few changes as possible should

be made. Thus, when something is learned that is con

sistent with earlier beliefs, it is just added to the set

of beliefs. The more interesting situation is when the

agent learns something inconsistent with his current

beliefs. He must then discard some of his old beliefs

in order to incorporate the new belief and remain con

sistent. The question is which ones?

The most widely accepted notion of belief revision is

defined by the AGM theory [AGM85, Gar88]. The

agent's epistemic state is represented as a belief set,

that is, a set of formulas in closed under deduc

tion. There is also assumed to be a revision operator o

that takes a belief set A and a formula ip and returns a

new belief set Ao<p, intuitively, the result of revising A

by if. The following AGM postulates are an attempt

to characterize the intuition of "minimal change":

(Rl) A o tp is a belief set

(R2) <p G A o <p

(R3) A o ip C Cl(A U {<p})6

(R4) If ^<p $ A then Cl(A U {<p}) C A o <p

(R5) A o ip = Cl(false) if and only if \~i -up

(R6) If \-l f ^ then A o ip = A o $

(R7) A o {ip A V) C Cl(A o ip U {V-})

(R8) If->V g Aoip then Cl{Ao<p\j{i{))) C Ao(<phi/>).

The essence of these postulates is the following. After

a revision by ip the belief set should include ip (postu

lates Rl and R2). If the new belief is consistent with

the belief set, then the revision should not remove any

of the old beliefs and should not add any new beliefs

except these implied by the combination of the old be

liefs with the new belief (postulates R3 and R4). This

condition is called persistence. The next two condi

tions discuss the coherence of beliefs. Postulate R5

states that the agent is capable of incorporating any

consistent belief and postulate R6 states that the syn

tactic form of the new belief does not affect the revision

process. The last two postulates enforce a certain co

herency on the outcome of revisions by related beliefs.

Basically they state that if tp is consistent with A o tp

then Ao(<pAt/>) is just Aoip combined with tp. This en

sures that revision is coherent regarding the outcome

of revision by similar formulas (e.g., ip and tp A ip).

While there are several representation theorems for

belief revision, the clearest is perhaps the following

[Gro88, KM91b]: We associate with each belief set A

a set Wa of possible worlds. Intuitively, the worlds in

Wa are all those that are consistent with the agent's

5We remark that P* is similar to protocols used to

model knowledge bases in [FHMV94].

eCl(A) = {tp\A \~c <fi) is the deductive closure of a set

of formulas A.
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beliefs, in that Wa consists of all those worlds in which

all formulas in A are true. Thus, an agent whose belief

set is A believes that one of the worlds in Wa is the real

world. An agent that performs belief revision behaves

as though in each belief state A he has a ranking, i.e., a

total preorder, over all possible worlds such that the

minimal (i.e., most plausible) worlds in the ranking are

exactly those in Wa ■ The ranking prescribes how the

agent revises his beliefs. When revising by <p, the agent

chooses the minimal worlds satisfying <p in the rank

ing and constructs a belief set from them. It is easy

to see that this procedure for belief revision satisfies

the AGM postulates. Moreover, in [Gro88, KM91b]

it is shown that any belief revision operator can be

described in terms of such a ranking.

This representation suggests how we can capture be

lief revision in our framework. We want to define a

family of belief systems that captures all the revision

operators consistent with the AGM postulates. Since

revision assumes that the primitive propositions are

static, we assume that world state is constant through

out the run. To capture this, we use a variant of our

definition from Section 3: Given P, let nR{P) be the

runs in H(P) such that world[r, m) = world(r, 0) for

all m > 0.

All that remains to define a plausibility system is

to define the plausibility assignment function V.

We take SR to be the set of systems of the form

(HR(P), jt, V) for some protocol P, in which V(r, m) =

(^(r,m). ^(r,m)) satisfies the following conditions:

• fyr.m) = 0 if obs(r, m) is inconsistent; otherwise

fifr.m) = {(r',m') : (r,m) ~a (r'.m')}, the set of

all points the agent considers possible.

• ^(r,m) is a ranking, i.e., for any two point

(r\m'),(r",m") £ fi(r>m) , either (r',m') r<(r,m)

(r",m") or (r",m") ^(r>m) (r>,m').

• ^(r,m) compares points examining only the state

of the world, so that if (r', m') and (r", m") are

in ft(r|fn) and world(r' , m') = world(r" ,m"), then

(r',m') and (r",m") are equivalent according to

^(r,m)-

• if obs{r, m)) = (p is consistent, then (r', m' + 1) is

a ^(r>m+1)-minimal point if and only if (r', m') is

a d(r,m)-minimal point satisfying <p.

Note that our assumptions correspond closely to those

of [Gro88, KM91b]. The difference is that we have

time explicitly in the picture and that our states have

more structure. That is, in [Gro88, KM91b], a state is

just a truth assignment. For us, the truth assignment

is still there, as part of the environment's state, but we

have also added the agent's local state. Of course, we

can associate a belief set with each local state, since

an agent's local state determines his beliefs over £($).

That is, if r„(m) = r'a(m), then it is easy to check

that (Z,r,ro) (= Bip if and only if (I,r',m') ^= B<p

for any <p € £($)• Thus, we can write (Z,«„) \= B<p,

where sa is the agent's local state ra(m). Define the

belief set Bel(Z,«„) to be {<p G £(*) : (!,««) |= B<p}.

It is easy to show that every AGM revision operator

can be represented in our framework. Recall that we

sometimes write sa • <p for r(sa, <p).

Theorem 4.1: Let o be an AGM revision operator.

There is a system Z0 € SR such that for all t/> 6

we have

Bel(I0,sa)otP = Bel(I0, 8a-j>). (1)

What about the converse? That is, given a system

Z € SR, can we define a belief revision operator oj on

belief sets such that (1) holds? The answer is no. In

general, oj would not be well defined: It is not hard

to find a system Z G SR and two local states sa and s'a

such that Bel (Z, «„) = Bel (Z, s'a), but Bel (Z, sa ■ V>) /

Bel(Z,«o • ip). That is, the agent can believe exactly

the same propositional formulas at two points in Z

and yet revise his beliefs differently at those points.

Our framework makes a clear distinction between the

agents' belief state and his local state, which we can

identify with his epistemic state. In any S € SR, the

agent's belief set does not determine how the agent's

beliefs will be revised; his local state does.

We could put further restrictions on SR to obtain only

systems in which the agent's belief state determines

how his beliefs are revised. That is, we could consider

only systems Z, where Bel (Z, «„ • <p) = Bel (Z, • y>)

whenever Bel (Z,sa) = Bel(Z,«a). If we restrict to

such systems, we can obtain a converse to Theo

rem 4.1, but this seems to us the wrong way to go.

We believe it is inappropriate to equate belief sets with

epistemic states in general. For example, the agent's

local state determines his plausibility ordering, but his

belief set does not. Yet surely how an agent revises his

beliefs is an important part of his epistemic state.

We believe that there are two more appropriate ways

to deal with this problem. The first is to modify the

AGM postulates to deal with epistemic states, not be

lief sets. The second is to enrich the language to allow

richer belief sets. We deal with these one at a time.

We can easily modify the AGM postulates to deal with

epistemic states. We now assume that we start with

a space of abstract epistemic states, o maps an epis

temic state and a formula to a new epistemic state,

and Bel maps epistemic states to belief sets. We then

have analogues to each of the AGM postulates, ob

tained by replacing each belief set by the beliefs of the

corresponding epistemic state. For example, we have:

(Rl') E o <p is an epistemic state

(R2') <p e Bel (Sop)

(R3') Bel (E o <p) C C/(Bel {E) U {<p})
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and so on, with the obvious transformation.7

There is a clear correspondence between systems in

our framework and belief revision functions that use

abstract epistemic states. Using this correspondence

we show that SR captures belief revision according to

Rl'-R8':

Theorem 4.2: X £ SR if and only if the correspond

ing belief revision function satisfies Rl'-Rtf .

As we said earlier, there is a second approach to deal

ing with this problem: extending the language. We

defer discussion of this approach to Section 6.

Our representation brings out several issues. The re

vision literature usually does not address the relations

between the agent's beliefs and the "real" world. (This

point is explicitly discussed in [Gar88, pp 18-20].) In

fact, revision does not assume any correlation between

what the agent learns and the state of the world. For

example, revision allows the agent to learn (revise by)

<p and then learn -«p. Moreover, after learning <p the

agent may consider worlds where ->y? is true as quite

plausible (although he will not consider them to be the

most plausible worlds). In this case, most observations

that are not consistent with his beliefs will lead him

to believe -«p. These examples are two aspects of a

bigger problem: The AGM postulates put very weak

restrictions on the ordering that the agent has after a

revision step (see [Bou93, DP94]). Essentialy, the only

requirement is that after learning <p, the most plausi

ble worlds must be ones where <p is true. While this is

an important and reasonable constraint on how beliefs

should change, it does not capture all our intuitions re

garding how beliefs change in many applications. We

believe that by introducing more structure it should

be possible to derive reasonable constraints that will

make revision a more useful tool.

5 UPDATE

The notion of update originated in the database com

munity [KW85, Win88]. The problem is how a knowl

edge base should change when something is learned

about world, such as "A table was moved from office 1

to office 2". Katsuno and Mendelzon [KM91a] suggest

a set of postulates that any update operator should

satisfy.

The update postulates are expressed in terms offormu

las, not belief sets. This is not unreasonable, since we

can identify a formula <p with the belief set Cl(<p). In

deed, if $ is finite (which is what Katsuno and Mendel

zon assume) every belief set A can be associated with

7The only problematic postulate is R6. The question is

whether R6' should be "If bc <p i> then Bel (E o <p) =

Bel(£oV>)" or "Ubc v O 0 then Eoip = Eoip". Dealing

with either version is straightforward. For definiteness, we

use the first definition here.

some formula ip* such that Cl(<p) = A; we denote this

formula desc(A).

(Ul) bc (pop n

(U2) \i\-c<p^ti, then bc y>o/i O ip

(U3) be -«p o n if and only if be ~"f or be ~>H

(U4) If be <fii <=> fi and bc Hi Hi then be <Pi<>Hi

(U5) bc (<po(i)r\0=><po(nA6)

(U6) If be <p o V\ => H2 and be <P ° Hi Hi > tnen

be <p<>Hi <P<>H2

(U7) If ip is complete then be (<p o Hi) A (<p o Hi) =*■

fo(Hi V/i2)8

(U8) be (<fii V<Pi)<>H (<Pi Of*) v if* ° AO-

Update tries to capture the intuition that there is a

preference for runs where all the observations made

are true, and where changes from one point to the next

along the run are minimized. To capture the notion

of "minimal change from world to world", we use a

distance function d on worlds.9 Given two worlds w

and w', d(w, w') measures the distance between them.

Distances might be incomparable, so we require that

d maps pairs of worlds into a partially ordered domain

with a unique minimal element 0 and that d(w, w') = 0

if and only if w = w'.

We can now describe how update is captured in our

framework. The construction is very similar to the one

we used for revision. The major difference is in how

the preorders are constructed. For our discussion it is

enough to consider agents that follow the simple proto

col P* of Section 3. We take Su , the set of plausibility

systems for update, to consist of all systems of the form

(ft(P*), *,Vd), where Vd is determined by a distance

function d in a manner we now describe. Recall that

update has a preference for runs where the observa

tions are all true. We say that a point (r, m), is con

sistent if obs(r, j) is true in the world world(r, j+1), for

0 < j < m. We take V(r, m) = (fyr.m), ^(r,m)). where

fi(r,m) consists of all points that the agent considers

possible that are consistent, and ^(r,m) is a preorder

defined as follows: suppose (r', m), (r", m) € fi(rim).10

Roughly speaking, we prefer (r',m) to (r",m) if, at

the first point where they differ, r' makes the smaller

change. Formally, if n > 0 is the first point where r'

and r" have different world states (i.e., the first point

where worla\r',n) ^ world(r", n)) then (r'.m) -<(r,m)

(r", m) if and only if d(world(r', n — 1), world^r1, n)) <

8 A belief set A is complete when for every ip 6 £($)

either <p £ A or -up € A. A formula <p is complete if Cl(<p)

is complete.

9 Katsuno and Mendelzon identify a "world" with a

truth assignment to the primitive propositions. For us,

this is just a component of the environment state.

10Note that the definition of P' implies that if (r, m) ~„

(r',m') then m = m' since the agent's local state encodes

the time m by the length of the sequence.
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d(worla\r",n- 1), world(r", n)). (Note that this defi

nition is independent of (r, m).) Thus, update focuses

on the first point of difference. The run that makes

the smaller change at that point is preferred, even if

later it makes quite abnormal changes. This point is

emphasized in the example below. However, we first

show that Su captures all possible update operators.

Theorem 5.1: o is a KM update operator if and only

if there is a system 1<, € Su such that for all £ £($),

we have desc(Bel(l0, sa)) o rj) o desc(Bel(T<>,sa ■ ip)).

Notice that for update, unlike revision, the systems we

consider are such that the belief state does determine

the result of the update, i.e., if B(I, sa) = B(I,s'a),

then for any tp we get that B(2 , sa ■ tp) = B(I, s'a -tp).

How reasonable is the notion of update? As the def

inition of ^(r,m) given above suggests, it has a pref

erence for deferring abnormal events. This makes

it quite similar to Shoham's chronological ignorance

Sho88] (a point already noted by del Val and Shoham

dVS92, dVS93]), and it suffers from some of the same

problems. Consider the following story, that we call

the borrowed-car example.11 (1) The agent leaves his

car in a valet parking lot, (2) sits for an hour in a cafe,

(3) returns to the car and starts driving home. Since

the agent does not observe the car while he is in the

cafe, there is no reason for him to revise his beliefs

regarding the car's location. Since he finds it in the

parking lot at step (3), he still has no reason to change

his beliefs. Now, what should he believe when (4) he

notices, during his drive, that the car has been driven

50 miles since he left home? The common sense ex

planation is that the valet took the car out for a joy

ride. But update prefers to defer abnormalities, so it

will conclude that the mileage must have jumped, for

inexplicable reasons, since he left the parking lot. To

see this, note that runs where the valet took the car

have an abnormality at time (2), while runs where the

car did not move at time (2) but the mileage suddenly

changed, have their first abnormality at time (4) and

thus are preferred! (See Figure 1.)

We emphasize that the counterintuitive conclusion

drawn in this example is not an artifact of our rep

resentation, but inherent in the definition of update.

We can formalize the example using propositions such

as car-in-lot, high-mileage, etc. The observation of

high-mileage at step (4) must be explained by some

means, and an update operator will explain it in terms

of a change that occurred in states consistent with

the beliefs at step (3) (i.e., car-in-lot, -^high-mileage).

The exact change assumed will depend on the distance

function embodied by the update operator. The key

point is that update will not go back and revise the

earlier beliefs about what happened between steps (1)

1 This example is based on Kautz's stolen car story

[Kau86], and is due to Boutilier, who independently ob

served this problem [private communication, 1993].

and (2).

In an effort to understand the difficulty here, we look

at the belief change process more generally. In a world

w, the agent has some beliefs that are described by,

say, the formula tp. These beliefs may or may not be

correct (where we say a belief tp is correct in a world

w if tp is true of w). Suppose something happens and

the world changes to w'. As a result of the agent's

observations, he has some new beliefs, described by tp' .

Again, there is no reason to believe that tp' is correct.

Indeed, it may be quite unreasonable to expect tp' to

be correct, even if <p is correct. Consider the borrowed-

car example. Suppose that while the agent was sitting

in the cafe, the valet did in fact take the car out for a

joy ride. Nevertheless, the most reasonable belief for

the agent to hold when he observes that the car is still

in the parking lot after he leaves the cafe is that it was

there all along.

The problem here is that the information the agent ob

tains at steps (2) and (3) is insufficient to determine

what happened. We cannot expect all the agent's be

liefs to be correct at this point. On the other hand, if

he does obtain sufficient information about the change

and his beliefs were initially correct, then it seems rea

sonable to expect that his new beliefs will be correct.

But what counts as sufficient information? In the con

text of update, we can provide a precise formulation.

We say that tp provides sufficient information about

the change from w to w' if there is no world w" satis

fying <p such that d(u>, w") < d(u>, w'). In other words,

tp is sufficient information if, after observing tp in world

w, the agent will consider the real world (tt/) one of the

most likely worlds. Note that this definition is mono-

tonic, in that if tp is sufficient information about the

change then so is any formula ip that implies tp (as long

as it holds at w'). Moreover, this definition depends

on the agent's distance function d. What constitutes

sufficient information for one agent might not for an

other. We would hope that the function d is realistic

in the sense that the worlds judged closest according

to d really are the most likely to occur.

We can now show that update has the property that

if the agent had correct beliefs and receives sufficient

information about a change, then he will continue to

have correct beliefs.

Theorem 5.2: Let I G Su . If the agent's be

liefs at (r, m) ore correct and obs(r, m) provides suf

ficient information about the change from world(r, m)

to world(r,m-rl), then the agent's beliefs at (r, m+1)

are correct.

As we observed earlier, we cannot expect the agent

to always have correct beliefs. Nevertheless, it seems

reasonable to require that if the agent does (eventu

ally) receive sufficiently detailed information, then he

should realize that his beliefs were incorrect. This is
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Figure 1: Runs in the borrowed car example. Lower branches are considered more likely than higher ones. The

circles mark points that are consistent with the agent's observations at each time step.

precisely what does not happen in the borrowed-car

example. Intuitively, once the agent observes that the

car was driven 50 miles, this should be sufficient in

formation to eliminate the possibility that the car re

mained in the parking lot. Roughly speaking, because

update focuses only on the current state of the world,

it cannot go back and revise beliefs about the past.

How can we capture the intuition of a sequence of ob

servations providing sufficient information about the

changes that have occurred? Here it is most convenient

to take full advantage of our framework with runs. In

tuitively, we say that a sequence of observations pro

vides sufficient information about the changes that oc

curred if, after observing the sequence, the agent will

consider as most plausible runs where the real changes

occurred. More precisely, we say that a sequence of ob

servations (pi,...,(fn provides sufficient information

about the sequence of changes wo,...,wn if for any

run r such that worla\r, i) = uj,- and obs(r, i — 1) =

for i = l,...,n, there does not exist a run r* such

that (r, n) ~0 (r', n) and (r', n) ^(r,n) (r. This def

inition is a natural generalization of the definition of

sufficient information about a single change. We would

like to state a theorem similar to Theorem 5.2, i.e., that

if the agent has correct beliefs at (r, m) and receives

sufficient information about the changes from (r, m) to

(r, m+n), then the agent's beliefs at (r, m+n) are cor

rect. However, the problem with update is that once

the agent has incorrect beliefs, no sequence of observa

tions can ever provide him with sufficient information

about the changes that have occurred. More precisely,

once the agent has incorrect beliefs, no sequence can

satisfy the technical requirements we describe. This is

in contrast to our intuition that some sequences (as in

the example above) should provide sufficient informa

tion about the changes. Note, that this result does not

imply that once the agent has incorrect beliefs then he

continues to have incorrect beliefs. It is possible that

he regains correctness after several observation (for ex

ample if the agent is told the exact state of the world).

However, it is always possible to construct examples

(like the one above) where the agent receives sufficient

information about the changes in the rest of the run,

and yet has incorrect beliefs in the rest of the run.

Our discussion of update shows that update is guaran

teed to be safe only in situations where there is always

enough information to characterize the change that has

occurred. While this may be a plausible assumption in

database applications, it seems somewhat less reason

able in AI examples, particularly cases involving rea

soning about action.12 In Section 7, we discuss how

update might be modified to take this observation into

account.

6 SYNTHESIS

In previous sections we analyzed belief revision and

belief update separately. We provided representation

theorems for both notions and discussed issues that

are specific to each notion. In this section we try to

identify some common themes and points of difference.

Some of the work has already been done for us by

Katsuno and Mendelzon [KM91a], who identified three

significant differences between revision and update:

1. Revision deals with static propositions, while up

date allows propositions that are not static. As we

noted in the introduction this difference is in the

types of propositions that these notions deal with,

rather than a difference in the type of situations

"Similar observations were independently made by

Boutilier [Bou94], although his representation is quite dif

ferent than ours.
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that they deal with.

2. Revision and update treat inconsistent belief

states differently. Revision allows the agent to

"recover" from an inconsistent state after observ

ing a consistent formula. Update dictates that

once the agent has inconsistent beliefs, he will

continue to have inconsistent beliefs.

3. Revision considers only total preorders, while up

date allows partial preorders.

How significant are these differences? While the re

striction to static propositions may seem to be a se

rious limitation of belief revision, notice that we can

always convert a dynamic proposition to a static one

by adding "time-stamps". That is, we can replace a

proposition p by a family of propositions pm that stand

for "p is true at time m" . Thus, it is possible to use

revision to reason about a changing world. (Of course,

it would then be necessary to capture connections be

tween propositions of the form pm , but specific revision

operators could certainly do this.)

As far as the other differences go, we can get a bet

ter understanding of them, and of the relationship be

tween revision and update, if we return to the general

belief change systems described in Section 3 and use

a language that allows us to explicitly reason about

the belief change process. Although this involves a

somewhat extended exposition, we hope the reader will

agree that the payoff is worthwhile.

The language we consider for reasoning about the be

lief change process is called £■*($). It uses two modal

operators, a binary modal operator > to capture belief

change and a unary modal operator B that captures

belief, just as before. The formula <p>ip is a Ram

sey conditional. It is intended to capture the Ramsey

test: we want <p>$ to hold if rf> holds in the agent's

epistemic state after he learns <p.

Formally, we take £•*($) be the least set of formu

las such that if v? 6 and tp,tp' e then

B(p, Bip, ->yj, ip Ai/>', and <p>ip are in jC>($). All

formulas in are subjective, that is, their truth

is determined by the agent's epistemic state. In par

ticular, this means that £($) is not a sublanguage

of £>($). For example, the primitive proposition p

is not in (although Bp is). Since formulas in

£>($) are subjective, this means that all formulas on

the right-hand side of > are subjective. This seems

reasonable, since we intend these formulas to represent

the beliefs of the agent after learning. On the other

hand, notice that the only formulas that can appear

on the left-hand side of > are formulas in £($). This

is because only formulas in £($) can be learned.13

We give formulas in £>($) semantics in interpreted

plausibility systems. The semantics for Btp is just as

"This type of a right-nested language is also considered,

for similar reasons, in [Bou93, EG93].

it was before, so all we need to do is define the seman

tics for <p>ij>. Notice that since each formula in £"*($)

is subjective, its truth depends just on the agent's epis

temic state. We can give the following natural defini

tion for conditionals with respect to epistemic states,

based on our desire to have them satisfy the Ramsey

test.

(I, Sfl) (= V?>tf if (Z,«„-p)M-

As expected, we then define (I, r, m) \= <p>fj> if and

only if (I, r„(m)) |= tp>ip.

The language £>($) is actually a fragment of

ChPT($). As the following lemma shows, we can ex

press Ramsey conditionals by using the modal opera

tors for time and knowledge.

Lemma 6.1: Lei 2 be a belief change system, let <p£

£(*) and let tp £ £>(*)• Then

(I, r, m) (= <p>ip O K{learn((p) => O^)-

Despite Lemma 6.1, there is a good reason to consider

£>(*) rather than ChPT(Q). As we now show, it is

the "right" language for capturing the belief change

process. Suppose we consider belief sets over the lan

guage £>($) rather than £($). In analogy to our

definition of Bel, define Bel^I.s,,) = {<p € £>(*) I

(J,sa) (= <p}.14 However, this lead to technical We

define an extended belief set to be any set of the form

Bel>(I, s„). The following lemma shows the extended

belief set captures exactly the epistemic state of the

agent with regard to belief change.

Lemma 6.2: If 1,2' are belief change systems, then

Bel>{l,sa) = flefjI'X) tf and only if for every se

quence <p\,. . .,<p„ *i M the case that

Bel(I, sa • v?i ■...•¥>„) = Bel{I', s'a<pi-...- <pn).

This implies that if two states have the same extended

belief set, then they cannot be distinguished by the

belief change process.

We can now define the obvious belief change operation

on extended belief sets in terms of the Ramsey test:

E ■ if =def {V> I V>V> G E), (2)

for an extended belief sets E. Thus, • maps an ex

tended belief set and a formula to an extended belief

set. We have deliberately used the same notation here

as for the mapping • i,From local states and formulas

to local states. The following lemma shows that these

two mappings are related in the expected way:

14 We might have defined Bel^Z, sa) as {<p € |

(I, to) f= Bifi), which would have been even more in the

spirit of our definition of Bel (7, sa). This definition agrees

with our definition except when (I, sa) f= B(false). In

this case, our definition does not put all formulas of the

form ¥>>V> into the belief set, which seems to us the more

appropriate behavior.
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Lemma 6.3: If X be a belief change system and ifi €

£(*), then BeP(l, *„ • <p) = BtP(I, sa) ■ <p.

Although the proof of this result is easy, it has impor

tant implications. It shows that we have a well-defined

notion of belief change on extended belief sets. Thus,

it can be viewed as another way of solving the prob

lem raised in Section 4. If we consider systems in SR,

then extended belief sets, unlike belief sets, uniquely

determine the outcome of revision.

Our notion of extended belief sets is similar to a notion

introduced by Gardenfors [Gar78, Gar86, Gar88]. He

also considers revision of belief sets that contain con

ditionals of the form <p>i>. However, he attempts to

apply the AGM revision postulates to these sets (and

then obtains his well known triviality result), while we

define revision of extended belief sets directly in terms

of the Ramsey test. Of course, our notion of belief re

vision does not satisfy the AGM postulates (although

it does when restricted to £($)). Indeed, we cannot

expect it to, given Gardenfors' triviality result. As we

argued in the introduction, this should not be viewed

as a defect. We do not want persistence (i.e., R4) to

hold for formulas such as Ramsey conditionals whose

truth depends on the current state of the agent. In

deed, as we argue in the full paper, other postulates,

such as R8, should also not hold for conditional beliefs.

Once we adopt the Ramsey test we can in fact dis

card postulates R1-R8 altogether, and simply define

revision using Eq. (2). That is, we shift the focus from

finding a set of postulates for belief revision, as done by

previous researchers [AGM85, Gar88, Bou92, Fuh89,

Rot89], to that of finding a logical characterization of

revision in terms of the properties of > .

In [FH94a], it is shown that this general approach of

characterizing belief change in terms of characterizing

the behavior of the > operator in a class of plausi

bility structures is relevant for all reasonable notions

of belief change, not just belief revision. In particu

lar, this is the case for belief update. The results of

[FH94a] enable us to completely characterize the dif

ferences between revision and update axiomatically.

There is an axiom that holds for revision (and not for

update) that captures the fact that revision focuses on

total preorders, there is an axiom that holds for up

date (and not for revision) that captures the intuition

that update works "pointwise" , and there is an axiom

for update that must be weakened slightly for revision

because revision can recover from inconsistencies. We

refer the reader to [FH94a] for further details.

Thinking in terms of > helps us see connections be

tween revision and update beyond those captured in

our axioms. For one thing, it helps us make precise

the intuition that both revision and update are char

acterized by the plausibility ordering at each state.

In an arbitrary belief change system, there need be

no connections between an agent's beliefs before and

after observing a formula <p. We say that the belief

change at a point (r, m) in a belief change system

is compatible with the plausibility ordering if for any

ip, t{> € £($), we have (J,r, m) \= <p>Bij> if and only

if (I, r, m) |= 0<p—>Orp. That is, the agent believes rj>

after learning <p exactly when ij> is true at the next time

step in all the most plausible situations in which <p is

true at the next time step. The next theorem shows

that belief change is compatible with the plausibility

ordering in both systems for revision and update (ex

cept that in revision, belief change is not compatible

with the agent's plausibility ordering at states where

the agent's beliefs are inconsistent; this is due to the

fact that an agent with inconsistent beliefs may have

consistent beliefs again after revision).

Theorem 6.4: If I € SR then belief change is com

patible with the plausibility ordering at every point

(r,m) such that (I,r,m) £ B(false). If I € Su then

belief change is compatible with the plausibility order

ing at every point.

We note that since propositions do not change their

values in SR we get the following corollary.

Corollary 6.5: Let 1 € SR, let <p,rj> G £(*), and let

(r, m) be a point in 1 such that (I,r, m) ^ B(false).

Then (I, r, m) f= ((f>Bip) O (y-»V>).

Consistency provides some connection between —» and

>. For example, as this corollary shows, in revision

systems they are essentially identical for depth-one for

mulas. In general, however, they are different. For

example, it is not hard to show that p>(true>Bq)

is not equivalent to p—*(true—*q) in revision systems.

Indeed, as noted above while revision guarantees min

imal change in propositional (or base) beliefs, it does

not put any such restrictions on changes in the order

ing at each epistemic state. Thus, there is no necessary

connection between —+ and iterated instances of >.15

In our representation of update, on the other hand,

we can make such a connection. Indeed, in Su , —►

completely captures the behavior of > .

Lemma 6.6: Lei 1 G Su . For all sequences offormu

las <pi, ... ,tp„ e £($) and all xp € £($), (I,r,m) \=

(?!> • ■ ><pn>Brl>) & ((OVl A ■ ■ • A O>nHOnV0-

Thi3 result can be explained by the fact that in up

date systems, the plausibility ordering at s„ • ip is

determined by the plausibility ordering at sa. More

precisely, after learning <p, fi(rim+i) = {(r, m +

l)|(r,m) € n(r,m),(r."») N lcarn(tp) A Of), and

(r',m + 1) ^(r,m+i) (r",m + 1) if and only if

m) X(r m) (r", m). (In the terminology of [FH94b],

this means that the plausibility space (r, m+ 1) can be

lsThus, we use > rather than —► for belief revision, con

trary to the suggestion implicit in [Bou92].
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understood as the result of conditioning on the plau

sibility space at (r, m).)

These results, and those of [FH94a], support the thesis

that this language, which lets us reason about plausi

bility (and thus belief), belief change, time, and knowl

edge, is the right one with which to study belief change.

7 CONCLUSION

We believe that our framework, with its natural rep

resentation of both time and belief, gives us a great

deal of insight into belief revision and belief update.

Of course, revision and update are but two points in a

wide spectrum of possible types of belief change. Our

ultimate goal is to use this framework to understand

the whole spectrum better and to help us design belief

change operations that overcome some of the difficul

ties we have observed with revision and update. In

particular, we want belief change operations that can

handle dynamic propositions, while still being able to

revise information about the past.

One approach to doing this, much in the spirit of up

date, would be to use a distance function that relates

not just worlds, but sequences of worlds (of the same

length). We could then easily modify the definition of

update so as to handle the borrowed-car problem cor

rectly. Such a modification, however, comes at a cost.

It is much simpler to represent (and do computations

with) a distance function that applies to worlds than

to sequences of worlds. A natural question to ask is

whether we can get away with a simpler distance func

tion (that, perhaps, considers only certain features of

the sequence of worlds, rather than the sequence it

self). Of course, the answer to this will depend in part

on how we make "get away with" precise.

Whether or not this particular approach turns out to

be a useful one, it is clear that these are the types

of questions we should be asking. We hope that our

framework will provide a useful basis for answering

them.

Finally, we note that our approach is quite differ

ent from the traditional approach to belief change

[AGM85, Gar88, KM91a]. Traditionally, belief change

was considered as an abstract process. Our frame

work, on the other hand, models the agent and the

environment he is situated in, and how both change

in time. This allows us to model concrete agents in

concrete settings (for example, diagnostic systems are

analyzed in [FH94b]), and to reason about the beliefs

and knowledge of such agents. We can then inves

tigate what plausibility ordering induces beliefs that

match our intuitions. By gaining a better understand

ing of such concrete situations, we can better investi

gate more abstract notions of belief change.
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Abstract

Conditional logics, introduced by Lewis and

Stalnaker, have been utilized in artificial in

telligence to capture a broad range of phe

nomena. In this paper we examine the com

plexity of several variants discussed in the

literature. We show that, in general, de

ciding satisfiability is PSPACE-complete for

formulas with arbitrary conditional nesting

and NP-complete for formulas with bounded

nesting of conditionals. However, we provide

several exceptions to this rule. Of particular

note are results showing that (a) when as

suming uniformity (i.e., that all worlds agree

on what worlds are possible), the decision

problem becomes EXPTIME-complete even

for formulas with bounded nesting, and (b)

when assuming absoluteness (i.e., that all

worlds agree on all conditional statements),

the decision problem is NP-complete for for

mulas with arbitrary nesting.

1 INTRODUCTION

The study of conditional statements of the form "If

. . . then . . ." has a long history in philosophy [Sta68,

Lew73, Che80, Vel85]. In recent years these logics have

been applied in artificial intelligence to capture non

monotonic inference [Del88, Bel89, KLM90, Bou92],

belief change [Gra91, Bou92], counterfactual reason

ing [Gin86], qualitative probabilities [Pea89, GP92],

and intentions and desires [Pea93, Bou94]. In general,

conditional logics provide a logical language to reason

about structures that contain some sort of ordering. In

this paper we present complexity results for a family of

conditional logics introduced by Lewis [Lew73, Lew74],

We also provide an overview of a completeness proof

which substantially simplifies previous proofs in the

literature [Bur81].

Lewis's construction starts with a set W of possi

ble worlds, each one describing a possible way the

world might be. We associate with each possible world

w £ W a preorder <m over a subset Ww of W . Intu

itively, Ww is the set of worlds considered possible at

w. There are a number of differing intuitions for what

is being represented by the <w relation. For example,

in counterfactual reasoning, ^„ is viewed as capturing

a measure of distance from w, so that w' -<w w" if w'

is more similar or closer to w than w" is. In this vari

ant it is usually assumed [Lew73] that the real world is

closest to itself. In nonmonotonic reasoning the -<w re

lation captures an agent's plausibility ordering on the

worlds, so that w' ■< w" if w' is more plausible than

w" according to the agent's beliefs in tv. Typically

(although not, for example, in [FH94a]) it is assumed

that the agent's beliefs are the same in all the worlds

in W, so that ^w is independent of w. The <w rela

tion is used to give semantics to conditional formulas

of the form <f>—*4>; such a formula is taken to be true

at a world w if all the ^-minimal worlds satisfying ip

also satisfy if).

As these examples suggest, we can construct a num

ber of different logics, depending on the assumptions

we make about ^w . In this paper, we focus on the fol

lowing assumptions (all of which have been considered

before [Lew73, Bur81, Gra91, KS91]), which apply to

all w G W:1

N Normality : Ww £ to.

R Reflexivity : w 6 Ww.

T Centering: w is a minimal element in Wm, i.e., for

all w' G Ww, we have w -<w w' ?

U Uniformity: Ww is independent of w, i.e., for all

w' eww,ww, = WW.

A Absoluteness: <w is independent of u;, i.e., for all

w' € Ww, Wwi = Ww and for all u>\, G Ww,

'Whenever possible we adopt the naming scheme used

by Lewis [Lew73, pp. 120].

2 Our notion of centering is that used by Lewis [Lew73].

Other authors [KS91, Gra91] assume the stronger condition

of strict centering, that is w is the only minimal world in

<w. Our results for centering apply with minor technical

modifications to strict centering.
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we have u>i <w* u>2 if and only if wi ^w w?.3

C Connectedness: all worlds in Ww are comparable

according to <w; i.e., for all w\,W2 6 Ww, either

u>i -<w xi>2 or wi <m w\.

Notice that centering implies reflexivity, which in turn

implies normality. Normality is a minimal assumption,

typically made in almost all applications of conditional

logics. As we mentioned earlier, centering is typically

assumed in counterfactual reasoning, while absolute

ness is typically assumed in nonmonotonic reasoning.

Uniformity is assumed when, for example, the set of

possible worlds is taken to be the set of all logically

possible worlds (i.e., the set of all truth assignments).

Combinations of these conditions are used in the var

ious applications of conditional logics. For example,

Boutilier's [Bou92] work in nonmonotonic reasoning

assumes absoluteness and considers variants satisfy

ing connectedness; similar assumptions are made in

[KLM90, GP92, Bel89]. Works on counterfactuals

(such as Grahne's [Gra91]) typically assume center

ing and uniformity. Katsuno and Satoh [KS91] con

sider variants satisfying absoluteness, centering and

connectedness.

Completeness results have been obtained for the logics

corresponding to various combinations of these con

straints [Lew73, Lew74, Bur81]. While we do present

completeness proofs here, using a proof that is sub

stantially simpler than that of [Bur81], our focus is on

complexity-theoretic issues.

Burgess [Bur81] shows that any satisfiable conditional

formula is satisfiable in a finite structure. The struc

tures he obtains are of nonelementary size.4 To obtain

our complexity results we prove that if a formula is

satisfiable at all, it can be satisfied in a much smaller

structure. We start by showing that a formula with

out nested conditionals is satisfiable if and only if it is

satisfiable in a polynomial-sized structure. Applying

the construction for formulas without nested condi

tionals recursively, we show that, in general, a satisfi

able formula with bounded nesting depth is satisfiable

in a polynomial-sized structure, and an arbitrary sat

isfiable formula is satisfiable in an exponential-sized

structure. In most variants, this structure takes the

form of a tree, where each level of the tree corresponds

to one level of nesting. We show that checking whether

such a tree-like structure exists can be done in polyno

mial space, without explicitly storing the whole tree in

memory. This gives a PSPACE upper bound for the

3 Lewis [Lew73] distinguishes between a local definition

of uniformity and absoluteness and a global one. We adopt

the local one (i.e., "for all w' £ Wm . . . " , rather than "for

all w' £ W . . . "), but it is easy to see that all our results,

including the axiomatization, also apply to the global def

inition with essentially no change.

4 Roughly speaking, a nonelementary function of n is of

the form 23 , where the height of the stack of 2's is on

the order of n.

satisfiability problem for most variants of the logic.5

Can we do better? In general, no. We show that an

appropriate modal logic (either K,D or T depending

on the variant in question) can be embedded in most

variants of the logic.6 The result then follows from

results of Ladner [Lad77, HM92] on the complexity of

satisfiability for these logics. There are exceptions to

the PSPACE results. For one thing, it already follows

from our "small model" results that for bounded-depth

formulas (in particular, depth-one formulas) satisfia

bility is NP-complete. Moreover, in the presence of

absoluteness, every formula is equivalent to one with

out nesting, so we can again get NP-completeness. In

terestingly, the appropriate modal logic in the pres

ence of absoluteness in the lower bound construction

mentioned above is S5, whose satisfiability problem is

also NP-complete [Lad77]. On the other hand, while

the assumption of uniformity seems rather innocuous,

and much in the spirit of absoluteness, assuming uni

formity without absoluteness leads to an EXPTIME-

complete satisfiability problem, even for formulas with

bounded nesting.

Our results form an interesting contrast to those of

Eiter and Gottlob [EG92, EG93] and Nebel [Neb91]

for a framework for counterfactual queries defined by

Ginsberg [Gin86], using an approach that goes back

to Fagin, Ullman, and Vardi [FUV83]. In this frame

work a conditional query p>q is evaluated by modify

ing the knowledge base to include p and then checking

whether q is entailed. As shown by Nebel [Neb91] and

Eiter and Gottlob [EG92], for formulas without nested

conditionals, evaluating such a query is Il^-complete.7

Roughly speaking, the reason for the higher complex

ity is that once we prove an analogous small model the

orem for this more syntactic approach, checking that

a formula is entailed by a theory is co-NP hard, while

in our case, checking that a formula is satisfied in a

small structure can be done in polynomial time. Eiter

and Gottlob [EG93] show that if we restrict to right-

nested formulas, without negations of nested condi

tionals, then queries are still II^ complete. Finally,

Eiter and Gottlob show that once we move beyond

simple right-nesting, the problem becomes PSPACE-

hard; the complexity of queries for the full language is

not known. In contrast to these results, we show that

the language of simple right-nested conditionals is NP-

complete, and when negations are allowed, it becomes

5We assume some familiarity with complexity theory,

especially with the complexity classes NP, PSPACE, and

EXPTIME. See Section 4 for a review of these complexity-

theoretic notions.

6 We assume familiarity with modal logic, especially the

logics K, D and T. See [HM92] for an overview of these

logics and their axiomatizations.

7Il2 is the complexity class that is characterized by de

cision problems that can be determined in polynomial time

given an NP oracle. This class is believed to be harder than

NP, but simpler than PSPACE.
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PSPACE-complete.

The rest of the paper is organized as follows: In Sec

tion 2 we formally define the logical language and its

semantics. In Section 3 we prove small model theo

rems for the different variants. In Section 4 we prove

the complexity results. In Section 5 we provide an

axiomatization for each of the logics we consider and

sketch a completeness proof.

2 CONDITIONAL LOGIC

The syntax of the logic is simple: we start with a set $

of primitive propositions, and close off under A, ->, and

—» (where —► is the conditional operator). We call the

resulting language Cc . We denote by C% the sublan

guage of Cc with bounded nesting, i.e., formulas in Cc

with no more than ib level of nested conditionals. For

example, Cq contains propositional formulas without

any conditional sentences, and Cf contains p—*q but

not p—*(q—+r). Of course, we define the propositional

connectives V, (material implication), and o (log

ical equivalence) in terms of A and -> in the standard

way.

We use the semantic representation suggested by Lewis

to capture conditionals [Lew73, Bur81]: A structure

M is a tuple (W, it, R), such that W is a set of pos

sible worlds, ir maps each possible world to a truth

assignment over and R is a ternary relation over

W. We think of the possible worlds as different ways

the world could be, or the different situations we

might be in. The relation R is a preorder on worlds:

(w, u,v) G R if u is as close/preferred/plausible as

v when the real world is u;. We use the notation

u -<w v to denote that (w, u, v) G R. We define

Ww = {«|u ^u, v G R for some t; G W}; thus, the

worlds in Ww are those that are at least as plausible

as some world in W according to <w . We require that

■<w be a preorder, i.e., a reflexive and transitive rela

tion, on Ww. As usual, we define u -<w v if u <w v

and not t; <w u.

We now provide semantics for formulas in Cc . The

truth of a propositional formula in a world w is deter

mined by the truth assignment 7r(u>). The truth of a

conditional formula is determined by the ordering ^w ■

The intuition is that tp—*tp holds at w if all the minimal

(e.g., closest, most plausible) tp-worlds satisfy tp (where

a tp-v/orld, of course, is a world where tp is true). Un

fortunately, if W is infinite, it may not have minimal

y>-worlds. Thus, the actual definition we use, which is

standard in the literature (see [Lew73, Bur81, Bou92]),

is more complicated. Roughly speaking, tp—*ip is true

if, from a certain point on, whenever tp is true, so is ip.

More precisely, tp—+\p is true at w if for every tp-world

u in Ww, there is another world t; such that (a) v is

at least as plausible as u, (b) v satisfies tpAxp, and (c)

each yp-world that is at least as plausible as v is also

a ^-world. It is easy to see that if Ww is finite, then

this is equivalent to saying that the minimal ^-worlds

in Ww satisfy rp.

Formally, we define the truth of tp G Cc at a world w

in a structure M = (W,w,R) recursively:

• (M, w) \= p, when p G if jr(u;)(p) = true.

• (M, w) ^ tp Arp if (M, to) ^ <p and (M, w) (= V-

• (M, w) ^ -"f> if it is not the case that (M, w) \= (p.

• (M,w) ^= f>—*i> if for any world u G Ww, if

{M, u) <p then there is a world u, such that

v -<w u and (M, v) ^= <pf\ip and there is no v' -<w v

such that (M, v) f= <p A -t^.

We say that <p is valid in M (resp., saiisfiable in M) if

(M, w) ^ <p for all worlds w (resp., some world w) in

M.

We define the set of all possible structures as M. For

each combination of the constraints defined in the in

troduction, we define the corresponding class of struc

tures satisfying them. For example, MN,T'U is the

class of all structures satisfying normality, centering

and uniformity. For A C {N, R, T, A,U, C\, we say

that a formula y> is valid with respect to M , written

MA ^ <p, if <p is valid in every structure M G MA-

Similarly, we say that <p is satisfiable in MA if it is

satisfiable in some structure M G MA.

3 SMALL MODEL THEOREMS

In this section we provide small model theorems for

the logics we examine, showing that if a formula tp

is satisfiable, than it is satisfiable in a structure of

bounded size. These results play a crucial role in our

complexity considerations.

We start with some definitions. Given a formula tp G

Cc , we define Sub(tp) to be the set of all subformulas

of <p and Sub+(tp) = Sub(tp) U {->V I 1> € Sub(tp)}.

Finally, let Subc{<p) consist of all formulas in Sub(tp)

of the form tp—*i>. It is easy to verify that |Su6(y>)|

(the number of formulas in Sub(tp)) is at most \tp\ (the

length of <p, viewed as a string of symbols).

We begin by examining formulas without nested con

ditionals. The first case is when tp is a conjunction

of a number of (non-negated) conditional statements

and one negated conditional statement. This case will

serve as a basis for the general case.

Lemma 3.1: Let tp = ->{rpo—>tj>'0) A f\i=l(ipi—

where ipi,^ G Cq. If tp is satisfiable in M, then tp

is satisfiable in a structure in M. with at most k + 1

worlds which are totally ordered by <.

Proof: Assume we are given M G M and w such that

(M,w) \= tp. From the results of [Bur81], it follows

that, without loss of generality, we can assume that M
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is finite (i.e., that M has only finitely many worlds).

Since (M, w) ^ -•(ipo—► ip'o)> there is a a world wo such

that wo is a minimal ipo-world in ^w and satisfies -"^d-

Let < be a total order over Ww that is compatible

with <w, in that if wi -<w twj then wi < u>2, such

that wo < w' for any w' ^ wq satisfying ipo- (Since

< is a total order, if w\ / u>2, then either w\ < W2

or W2 < tBj.) Let Wi be the minimal ^,-world in Ww

according to <, if there is a V1,-world in Ww , and ttio

otherwise.

We now construct a new structure M' = (W , , R').

Let IV = {wo, . . . , Wk}, let t' be the restriction of n

to W, and let /i' be such that for all w' G W, we

have W^, = W and io< Wj if and only if wi < Wj.

It is easy to verify that (M', w') ^= y> for all w' G W7,

since if u>,- is the minimal Vu-world according to <,

then by the construction of <, it must be a minimal

^i-world in M according to -<wi and thus must also

satisfy ip[, while two is the minimal ^o-world and thus

(M',«/)|=-(V>o-^oM

We now use this construction to prove that any for

mula without nesting is satisfiable if and only if it is

satisfiable in a polynomial structure.

Proposition 3.2: Let <p G £f. If (p is satisfiable in

M, then ip is satisfiable in a structure in M with at

most 0(|Subc(v?)|2) worlds.

Proof: Suppose that M £ M and that (M, w) \= ip.

Again, by Burgess's result, we can assume without

loss of generality that M is finite. Our goal is to

construct a small structure M' such that for each

formula ip G Sub(tp), we have (M, w) ^ ip if and

only if (M',w) f= ip. It clearly suffices to do this

for the primitive propositions and the formulas in

Subc(<p)- We cannot use the construction of the previ

ous lemma directly, because we may now have to deal

with more than one negated conditional. For example,

if (M, w) ^ -»(p—*q) A -i(p—»->g), the structure M' we

construct must have a minimal p-world satisfying q and

a minimal p-world satisfying ->q. This cannot be done

by using one total order, as was done in the previous

lemma.

We solve the problem by considering the union of sev

eral total orders, one for each negated conditional. Let

Neg = G Subc(<p) ■ (M,w) |= -(tf>-

let Pos = {ip^t G Subc(<p) : (M,w) \= ip-*(}. Sup

pose Neg = {ipf , ■ • • , i>k ) ■ From Lemma 3.1,

it follows that for each formula ip" — G Neg, we

can construct a structure Af< whose set of worlds Wi

has size at most |5ti6c(y)|i such that M,- satisfies

"""(V""- and all the formulas in Pos. This gives us

\Neg\ structures, one for each formula in Neg. Without

loss of generality, we can assume that the sets Wi are

disjoint and do not contain w. The structure we are in

terested in is essentially the disjoint union of the struc

tures Mi. More precisely, we take M' = (W',ir',R'),

where W' is the union of the sets Wi for 1 < i < \Neg\,

together with w. We define ir1 to be such that for each

world in w' G W' , the truth assignment ^{w') is the

same as the truth assignment in the structure that w'

was drawn from. Finally, we define R' so that for all

w' G W', we have W^, = W' - {w}, and <w< is the

union of the orderings in the structure M</,e^' . (We

have defined -<wi=-<w for all id' 6 H", but this was not

necessary. Since we are dealing with depth-one nesting

here, all that matters in the proof is the definition of

<w. We can redefine <w< for w' ^ w arbitrarily, with

out changing the truth value of any formula in Cf

at w.) A straightforward induction on the structure

of formulas shows that for each formula ip G Sub(ip),

we have (M, w) |= ip if and only if (M', w) |= ip. In

particular, because negated conditionals have an exis

tential nature (i.e., ->(p—*q) holds if there is a minimal

p world satisfying -<q), each negated conditional in Neg

is satisfied at (M',w) because it is satisfied in one of

the total orders. On the other hand, the conditionals

in Pos hold at (M', w) since they hold in each of the

total orders. I

With minor changes the same construction applies to

all the variants we consider.

Corollary 3.3: Lei <p G Cf and let A be a subset

of {N,T,U,A,R,C}. If<p is satisfiable in MA , then

<p is satisfiable in a structure in with at most

0(|Subc(v)|2) worlds.

Proof: Suppose M G MA and (M, w) \= ip. We now

build a structure of the appropriate size satisfying <p.

If A C {[/, A), then we can just use the construction

of Proposition 3.2, since the structure M' constructed

in that proof already satisfies absoluteness (and thus

uniformity). If C £ A, then we can easily modify M'

so that it also satisfies whichever of N, T, or R is in A.

For example, if N G A, then M satisfies normality, so

Ww is nonempty and we can choose a minimal world

in Ww and add it to W'w as one of the minimal worlds.

If T G A, then we can always choose w as the world

to add. If R G A but T A, we add w as a maximal

world in W^.

If C G A, then we use a different construction. For

each formula ip—np' G Subc(<p),

• if (M, w) ^ ip—*ip', then let uty— be a mini

mal ip-world in Ww if there are ^-worlds in Ww ;

otherwise take Uty— to be w.

• if (M, w) \= -<(ip—*ip'), then let w^—t^i be a min

imal ip-world in Ww that satisfies ->ip'. (There

must be such a world since (M, w) (= -i{ip—*ip').)

Let W' = {w} U {uv-+v" : ip-*ip' G Subc(<p)}, and let

M' = (W',n',R'), where ir' is the restriction of t to

W' and R' is the restriction of R to W'. By construc

tion, M' has at most |5«6c(v)| + 1 worlds. We leave it

to the reader to check that (M',w) \= ip. This simple
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construction depends on the properties of connected

preorders. In particular, we need the property that

any minimal v?-world is strictly more plausible than

all the non-minimal ^-worlds. This is not true in the

general case. I

What happens with formulas that have nested con

ditionals? It turns out that the answer depends

on whether we assume absoluteness and/or unifor

mity. We first consider the situation where we as

sume absoluteness. The key observation here is that

if we assume absoluteness, since the ordering is the

same at all worlds, we can get rid of nested con

ditionals. For example, in structures satisfying ab

soluteness, the formula r—*(q—*p)) is equivalent to

((?—>p) A (r—fime)) V (-•(?—»p) A (p—►false)). In gen

eral, the denested formula may be of length exponen

tial in the original formula, but it can be rewritten as a

disjunction of formulas each of which does not have too

many new conditional subformulas. And since we need

to construct a structure satisfying only one of these

disjuncts, we conclude that a small structure suffices.

More precisely, we have:

Proposition 3.4: Let A be a subset of {N, T, U,

R, C}. Given a formula tp £ Cc , there are formulas

<Pu---,<Pk € £f such that M{A}uA (= <p -» vjL^,-.

Moreover, for i = l,...,k, we have \Subc(fi)\ <

5|Subc(y>)|.

From Proposition 3.4 and Corollary 3.3, we immedi

ately get:

Corollary 3.5: Let A be a subset of {N,T,U, R,C}.

If tp e CP is satisfiable in M^vA, then <p is

satisfiable in a structure in M^uA with at most

0(\Subc{tp)\2) worlds.

In structures that do not satisfy absoluteness, we

can still extend the ideas of Proposition 3.2 recur

sively to get polynomial-sized structures for formulas

of bounded-depth nesting, where the polynomial de

pends on the depth of nesting provided we do not also

assume uniformity.

Proposition 3.6: Let tp € C% and let A be a subset of

{N,T, R,C}. Iftp is satisfiable inMA, thentp is satis

fiable in a structure in MA with at most 0(\Sub(tp)\2k)

worlds.

Proof: We apply the construction of Proposition 3.2

recursively. Roughly speaking, at the top level of

the recursion, we treat all nested conditionals as new

primitive propositions. Applying the construction of

Proposition 3.2 we get the set W'w. For each w' £W'W,

let <pwi be the conjunction of all the propositions (in

cluding the nested conditionals) that hold at w'. We

note that Subc(<pw') Q Subc(<p)- We now apply the

procedure recursively to w' and tpw< to construct W^,.
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Figure 1: The structure for Proposition 3.6.

We proceed in this manner, constructing a tree-like

structure (as shown in Figure 1), dealing with condi

tionals nested i deep at the tth level of the recursion.

Thus, we can stop at the Jbth level. Note that for w', w"

in the structure, W'w, is disjoint from WL« if w' ^ w".

Thus, this structure does not satisfy uniformity.

We now give a formal description of the construc

tion. We define Basici{<p) C $ U Subc(<p) as the

set of primitive propositions and conditional state

ments that are subformulas of tp and appear in

side exactly t levels of conditional nesting. For

example, if tp is (p—*(q—»r)) A ~«((r—*q)—*r), then

BastcQ(tp) = {p->(q-*r),(r->q)->r}, Basici(tp) =

{p,q—*r,r—*q,r} and Basic2(tp) = {q,r}- We treat

formulas in Basici+i(tp) as primitive propositions dur

ing the construction of the orderings at level i.

We construct the tree-like structure in the following

fashion. The procedure gets as input a structure A/,

a world w, and a formula tp such that (M, w) \= tp,

and returns a structure M' such that (M',w) f= tp.

Moreover, M' contains at most 0(\Subc(<p)\7k) worlds,

where k is the depth of nesting in tp. If tp is prepo

sitional then the structure M' consists of the single

worlds w. If tp contains conditional formulas, then we

construct a tree with u> as the root. The truth value

of any primitive proposition p € Basico(tp) is deter

mined at w by x. Thus, we only need to satisfy condi

tional formulas in Basico(tp). We apply the procedure

described in the proof of Proposition 3.2, treating ev



On the Complexity of Conditional Logics 207

ery formula in Basici(tp) as a primitive proposition.

We get a structure Mw of size 0(\Subc(<p)\2), such

that ww maps each world w' G W% to a truth as

signment over Basic\{np). Recall that the construction

of Mw is such that each w' G W£ corresponds to a

world /(«;') in Ww. Moreover, for all ip G Basic\(ip),

piw{w')(ip) =true if and only (M,/(u/)) (= rp.

For each w' G we define ipwi so that it describes the

truth value of all formulas in Basic\(ip) at w'. How

ever, since we want to capture conditionals holding in

u>', we have to be careful; we use the corresponding

world f(w) in M to evaluate these conditionals. For

mally, ipw, is defined as A^BasiClMt * A

A#e*««CkM. (*./<•'>»«-•* We note that

SubciPw1) Q Subc{<p), Basici(<pw>) C Basici+i(ip),

and that ipwi contains at most k — 1 levels of con

ditional nesting. We now recursively apply the tree

construction procedure on (M, /(u/)) and ipw> and get

a structure Mw such that (Mw ,w') \= tpw<.

We now construct M' . Let W contain w and all the

worlds in Mw' for all w' € W% . Without loss of gen

erality we can assume that the sets of worlds in Mm

are disjoint and do not contain to. We define tt' to be

such that for each world w' G W, the truth assign

ment jr'(ty') is the same as the truth assignment in

the structure w' is taken from. Finally, we define ^u,

according to the construction of Mw , and <ui for all

u/ G W — {w} to be the same as the ordering in

the structure w' is taken from.

It is easy to see that this recursive procedure is well-

defined. At i level of recursion the depth of the

formula is at most ib — t, and thus the procedure

must terminate. It is also easy to verify, by induc

tion, that (M',w') ^ <p. Finally, we show that the

structure M' is not too large. The size of M' is

0(\Subc(<p)\2\Mw |). According to the recursive con

struction, \MW'\ = 0(l5«6c(v»)|2(*-1))- Thus, the size

of M' is 0(\Subc{<f)r).

The procedure we described constructs structures in

M. If A is not empty we have to modify M' to satisfy

the constraints in A. This is done locally at each world

in the manner described in the proof of Corollary 3.3.

What happens if we have no bound on the nesting

depth? In this case we can get an exponential-sized

structure. The result without uniformity follows im

mediately from Proposition 3.6, since the depth of

nesting in a formula y is clearly bounded by \ip\. With

uniformity, we have to work a little harder; we leave

details to the full paper.

Proposition 3.7: Suppose <p G C% and A is a sub

set of {N,T,R,C,U}. Iff is satisfiable in MA , then

ip is satisfiable in a structure in M"* with at most

0(22|StiM*)l) Worlds.

The natural question to ask is whether this the best

we can guarantee. The answer is yes. Since the tech

nique for proving this, which depends on the observa

tion that we can embed various modal logics into con

ditional logic, is also useful for proving lower bounds

on complexity, we go into a little detail here.

Let CK be the language with a single modal operator

K (which intuitively stands for knowledge). As usual,

we capture the semantics of knowledge in terms of an

accessibility relation, on which we can place various

restrictions. Thus, an epistemic structure N has the

form (W, ir,K), where W is a set of worlds, n maps

each possible world to a truth assignment, and AC is a

binary relation. We define \= in the standard way; in

particular,

• (N,w) \= Kip if (N,w') f= <p for all w' such that

(w, w') G K.

Let M be the class of all epistemic structures. We

add superscripts r, s, t, and e, respectively, to denote

restrictions on the K relation to reflexive, serial, tran

sitive, and Euclidean relations, respectively.8 For each

subset B of {r, s, t,e}, we let NB denote the class of

epistemic structures where the K relation satisfies the

appropriate restrictions.

We can also define modal operators in the con

text of conditional logic. Let Sip be an abbrevia

tion for true—*ip, and let Dtp be an abbreviation for

(-up)—*false. It is easy to verify that Gip holds at w

exactly if all the minimal worlds according to ^u, sat

isfy <p and that Oip holds at w if all worlds in Ww

satisfy ip. Traditionally [Lew73], □ has been called

the inner modality and □ has been called the outer

modality.

As we now show, the inner modality □ corresponds in

a precise sense to K. Under this correspondence, con

ditions on -<w correspond to conditions on the binary

relation K. In particular, conditions N and R both cor

respond to AC being serial, T corresponds to AC being

reflexive, and A corresponds to AC being both transi

tive and Euclidean. This intuition is made precise by

the theorem below.

Proposition 3.8: Given a formula ip G CK , let <p*

be the result of replacing each K operator by □. Let

A be a (possibly empty) subset of {N,R,T,A}, and lei

B be the corresponding subset of {e,r, s,t}, where s

corresponds to N and R, r corresponds to T, and both

e and t correspond to A. Finally, lei A' be a subset

of {C}. Then ip is satisfiable in A/*8 in a structure of

size k if and only if ip* is satisfiable in MAuA in a

structure of size k.

sK is serial if for all w, there exists some w' such that

(to, to') € AC; AC is Euclidean if for all u, v, to, if (u, t») € AC

and (u, to) € AC, then (t>, to) € AC.
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Proof: We show how to map epistemic structures sat

isfying <p to structures satisfying <p* and vice versa.

Recall that Sxp holds at w exactly when tp is true in

all the minimal worlds in Ww . Assume (AT, w) \= ip*

for M = (W,tt,R). Let N = (W,*r,£) such that

(u/i, tuj) G K if W2 is minimal in Wu,,. It is easy

to check that (N,w) \= <p. Moreover, if M satis

fies normality or reflexivity, then for every w\ there

is at least one minimal u/2, and thus fC is serial. If

M satisfies centering, then w\ is minimal in WWi , and

thus K is reflexive. If M satisfies absoluteness, then

if u>2 G Wm,, then is the same as <w,- This

implies that if (1^1,102) G K and (102,^3) G K then

(101,11/3) G K since W3 must be minimal in WWl. Sim

ilarly, if (wi, W2), (u»i, 0/3) G K then (u>2, 11/3) is also in

K. Thus, K, is transitive and Euclidean.

Now assume (TV, w) f= <p for TV = (W, t,/C). We con

struct a structure M = (W, t, /J), where R is such that

for each world w, the set Ww consists of all worlds

accessible from w according to K, and each of these

worlds is equally plausible. This ensures that the min

imal worlds according to <w are precisely the worlds

accessible from w, and guarantees that (N, w) [= Kip if

and only if (M, w) ^ Hip. Moreover, if K is serial, then

Ww ^ 0 for all u>, and thus M satisfies reflexivity (and

normality). If /C is reflexive, then w is accessible from

w. Thus, w G Ww in M , and hence minimal (since

all worlds in Ww are minimal). Finally, if K is both

transitive and Euclidean, then then it is well known

(see [HM92]) that we can assume without loss of gen

erality that the same set of worlds is accessible from

each w G W. This implies that the ordering at each

world is the same. Thus, M satisfies absoluteness. I

In the presence of uniformity we can get similar re

sults. However the reduction is less natural. Since

such a reduction does not play a role in our treatment

of structures satisfying uniformity, we omit the details

here.

Halpern and Moses [HM92] describe formulas in CK

that can be satisfied only in exponential-sized struc

tures in Jsf, Afr, and Ne . (However, they can be satis

fied in polynomial-sized structures in Afei.) They also

show that once common knowledge is added to the

language, then there are formulas that have depth of

nesting two and can be satisfied only in exponential-

sized structures in Af, MT , and M" . It turns out that

the outer modality behaves very much like common

knowledge in the presence of uniformity. More pre

cisely, the statement C<p ("it is common knowledge

that ip" ) holds exactly when every world that is acces

sible through repeated applications of K satisfies (p.

Similarly, Dy? holds at w when all worlds in Ww sat

isfy ip. If we assume uniformity, then Dy> implies that

all worlds that are accessible by arbitrary level of con

ditional nesting must satisfy rj>. This is close enough

to common knowledge to get the behavior needed for

constructing a proof similar to their construction for

common knowledge.

When we do not require uniformity, we immediately

get the following from the results of Halpern and Moses

and Proposition 3.8:

Corollary 3.9: Let A be a subset of {N, R, T, C\.

Then for each n, there is a formula <p£ of size 0(ns)

such that tp£ that is satisfiable in MA, but only in

structures of size at least 2n.

When we require uniformity we have to work a bit

harder. We can modify the construction Halpern and

Moses use for common knowledge to get the following

result; we leave the details for the full paper.

Proposition 3.10: Let A be a subset of {N, R, T,

C). Then for each n, there is a formula <p* of size

0(n7) and using only depth-two nesting of conditionals

such that <p* that is satisfiable in MAu^ , but only

in structures of size at least 2" .

4 COMPLEXITY RESULTS

In this section we examine the inherent difficulty of

deciding whether a formula is satisfiable. Checking

validity is closely related since <p is valid if and only

if -«p is not satisfiable. We start with an overview of

the complexity-theoretic notions we need. For a more

detailed treatment of the topic, see [GJ79, HU79].

Complexity theory examines the difficulty of determin

ing membership in a set as a function of the input size.

In our case we check if a formula ip is in the set of satis

fiable formulas. Difficulty is measured in terms of the

time or space required to decide if a formula ip is sat

isfiable as a function of \ip\, the length of the formula.

The complexity classes we are interested in are NP,

PSPACE, and EXPTIME. These classes contain sets

such that deciding membership can be done in non-

deterministic polynomial time, polynomial space, and

exponential time, respectively.

To show that a set is in a complexity class we usually

describe a procedure that determine membership in

the set and conforms to the time or space restriction

of the class. Usually, we also want to show that a set

is not in an easier class. To do we show that the set

is hard in the class. A set A is hard in a class C if for

every set B G C, an algorithm deciding membership in

B can be easily obtained from an algorithm deciding

membership in A. A set is complete with respect to a

complexity class C if it is both in C and C-hard.

We now turn to the complexity results. These results

are summarized in Table 1 (where each problem is

complete for the complexity class listed). For most

classes of structures of interest to us, deciding satisfi

ability is NP-complete for £f and PSPACE-complete
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Table 1: The complexity of the satisfiability problem

for MA.

AeA A,U $ A UeA,A$A

NP

NP

NP

NP

NP

PSPACE

NP

EXPTIME

EXPTIME

Lc . However, there are several exceptions to this rule:

absoluteness makes the problem easier and uniformity

makes it harder. Notice that all the other semantic

variants do not affect the complexity.

All the logical variants we examine contain the propo-

sitional calculus and thus checking satisfiability is NP-

hard. For the variants with polynomial-sized struc

tures we see that deciding satisfiability is in NP: We

simply nondeterministically choose a structure and

then verify that it satisfies the formula. The verifica

tion step is easily shown to be in polynomial time, pro

vided the structure is polynomial-sized. Using Propo

sition 3.2, Corollaries 3.3 and 3.5, and Proposition 3.6

we get the following theorem:

Theorem 4.1: Let A be a subset of {N, R, T, U, A,

C). Then the following problems are NP-complete:

(a) the problem of deciding whether a formula in Cf

is satisfiable in MA,

(b) the problem of deciding whether a formula in Cc

is satisfiable in MA, ifA contains A,

(c) for a fixed k > 0, the problem of deciding whether

a formula in C% is satisfiable in MA, if A does

not contain U.

We now turn to the harder cases. As we showed in

Corollary 3.9 and Proposition 3.10, in all the remain

ing variants there are formulas that are satisfiable only

in exponential-sized structures. We show that most of

these variants, except the ones satisfying uniformity,

are PSPACE-complete.

Theorem 4.2: If A is a subset of {N,T,R,C}, the

problem of deciding if a formula in C is satisfiable in

MA is PSPACE-complete.

Proof: The lower bound is an immediate corollary

of Proposition 3.8 and the fact (proved by Ladner

[Lad77, HM92]) that checking whether a formula in

CK is satisfiable in M (resp., AT, Afe) is PSPACE-

hard.

For the upper bound we use the construction in Propo

sition 3.7. We describe a polynomial space algorithm

that essentially searches through all the tree-like struc

tures of the form described in the proof of Proposi

tion 3.7. In order to simplify the description of this al

gorithm we rely on the fact that NPSPACE (nondeter-

ministic polynomial space) is equivalent to PSPACE

[HU79]. Thus, we describe an algorithm that uses non-

deterministic choices and polynomial space.

The algorithm check-tree is given a world w and for

mula if and returns true if there is a tree-like structure

containing w such that w |= ip.

check-tree(u>, ip)

Guess a truth assignment at w to propositions in $

If <p G C$, then

Let Ww = <b

Else,

Let n = |5tt6c(y)|

Let Ww = {wi,i,...,U>i,n, ..•.tOn.n}

Let u>, j ^u, u)j_jt exactly if j < k

For each Wij,

Guess Tij C Basici((p)

Let <p„J = Av-6T.,, V- A h+eBaaidM-Ti.,

If check-tree(u>ij, <Pw,j) = false, then

return false.

Return the evaluation of <p at w (using the ordering

and assuming <pw,,j is true at Wij).

end.

This algorithm emulates the construction that we used

in the proof of Proposition 3.6. It guesses a structure

and then checks that <p evaluates to true in this struc

ture. It starts by guessing a truth assignment at w.

If <p contains conditionals, then the algorithm guesses

a structure that contains |5a6c(v)l2 worlds and de

fines an ordering ^<w over these worlds which is a dis

joint union of \Subc(<p)\ total orders. It then guesses

a truth assignment in each of these \Subc(<p)\2 worlds

to the formulas in Basici(<p). According to the proof

of Proposition 3.2, if <p is satisfiable (when we con

sider formulas in Basic\{<p) as propositions), it must

be satisfiable in such as structure. The algorithm then

verifies that the formulas assigned to each Wij can be

satisfied using a recursive call. Finally, the algorithm

verifies that <p evaluates to true at w according to the

truth assignment at w and Ww (using Tij to evaluate

formulas at each u>, j 6 Ww).

We note that the space requirements of the algorithm

are the space requirements of all the instances that

are active at once. The maximal number of active

instances is exactly the recursion depth, i.e., the con

ditional nesting depth in (p. The space requirements in

each instance are 0(|5«6(^)|3) for storing the sets Tij.

Thus, the space requirements for check-tree(y?, w) are

o(M4)- 1

The remaining cases are those satisfying uniformity

but not absoluteness. Somewhat surprisingly, these

variants are harder than all the others. Roughly speak

ing, this is because in the presence of uniformity, the

outer modality essentially allows us to express com

mon knowledge.
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Theorem 4.3: If A is a subset of {N,T,R,C}, the

problem of deciding if a formula in C is satisfiable in

MAyJW is EXPTIME-complete.

Proof: The lower bound is constructed in a similar

manner to the lower bound for logics of knowledge

and common knowledge of Halpern and Moses [HM92].

The basic idea is that we can simulate the execution

of an alternating polynomial-space Turing machine by

a sentence <p in Cc , such that <p is satisfiable if only if

the machine accepts the input, and <p is of polynomial

size.9 We leave the details of this construction to the

full paper.

We prove the upper bound by modifying the algorithm

check-tree we described in the proof of Theorem 4.2.

The basic idea is straightforward: We try to modify

the tree-like structure M constructed by check-tree

to a structure M' over the same set of worlds that sat

isfies uniformity. The idea is to modify the preference

relation so that at each world w, the set of worlds

considered possible consists of all worlds in the tree

except the root, and defining <'w so that the minimal

worlds in are exactly those in Ww. This mod

ification guarantees that if (M,w) (= -<(rp—*rp') then

(M' , w) |= ->(rp—np'). Since there is a minimal world

in Ww that satisfies -<rp', the same world is also a mini

mal V^world in W^. Moreover, if (Af, w) |= ip—*ip' and

there are some V"-worlds in Ww, then (A/', w) |= <p—*tp'

for the same reasons. Unfortunately, this approach

runs into problems if there are no V'-worlds in Ww , so

that ip—*rp' holds vacuously at world w in structure

M. In that case, if there are some tp-worlds in

(which is possible), then the conditional ip—*ip' may

not be true at (M',w).

To avoid this problem we can decide in advance which

conditionals in Subc(f) will be satisfied vacuously in

M . We initially nondeterministically choose a sub

set V of Subc(<p)- We then modify check-tree so

that it searches structures where the only condition

als that hold vacuously are those in V. The modified

check-tree ensures that no world satisfies tp for each

formula xp—*rp' e V. One side-effect of this change is

that we may get new conditionals at each level of re

cursion, so the algorithm may not terminate. We avoid

this by using the fact that there are only an exponen

tial number of formulas of the form <pWi . that can be

given as an argument to check-tree. We leave details

to the full paper. Note that the modified check-tree

is no longer guaranteed to be in PSPACE. In the full

paper we show that it is guaranteed to be in EXP-

TIME. |

The class of sets recognizable by alternating

polynomial-space Turing machines is equal to EXPTIME

[CKS81].

4.1 RIGHT-NESTED FORMULAS

As mentioned in the introduction, a similar approach

to conditional logic is the framework of counterfactual

queries of [FUV83, Gin86]. Eiter and Gottlob [EG93]

show that the complexity of evaluating a query of the

form pi >(p2> ■ • • (Pn>?) • • •) is II$-complete, and the

complexity of queries that allow negation on the right-

hand side is PSPACE-complete. Since right-nested

conditionals also appear in the conditional logic liter

ature [Bou93, FH94b], it seems worth understanding

if right-nesting simplifies things here too.

We now define the language £f of simple right-nested

conditionals and the language of (possibly negated)

right-nested conditionals. Let Cf be the least lan

guage such that if <p, tp' 6 Cf and rp, xp\ , . . . , rp„ G C$

(n > 0), then tp A tp' , ->tp, and ipi —► >ip„—*rp are

in £f . Let £jr be the minimal language such that

if <p,ip' £ C? and ip € jCo then <P A <f' , tp-*<p

are in Cf. Thus p—>q—>r is in both languages, and

p—*~>(q—+r) is in but not in £f .

Things are considerably simpler for C, . It is easy

to show that the satisfiability problem for Cf is NP-

complete for all variants of the logic:

Theorem 4.4: Lei A be a subset of {N, R, T, U, A,

C}. Then the problem of deciding whether a formula

in Cf is satisfiable is NP-complete.

Proof: Using techniques similar to these of Proposi

tion 3.2, it is easy to show that a formula in is

satisfiable if and only if it is satisfiable in a linear-size

structure. Thus we get the NP upper bound. The NP-

hardness is a result of the fact that £f contains the

propositional calculus. I

Things get more complicated when we consider the

language £fF. In many cases this fragment is already as

complex as the full language. Recall that the PSPACE

lower bound in Theorem 4.2 is proved by a reduction

from modal logic. This reduction substitutes the □

modality for the modal operator K. However Ely is

defined as true—up. Thus, the reduction maps a modal

formula into a formula in ■ (Because modal formu

las may be negated, the resulting formula may not be

in .) Thus, we get the following corollary:

Corollary 4.5: If A is a subset of {N,T,R,C}, the

problem of deciding if a formula in is satisfiable in

MA is PSPACE-complete.

However, when we consider structures that satisfy uni

formity, the satisfiability problem for formulas in

is easier than satisfiability of formulas in the full lan

guage.

Theorem 4.6: If A is a subset of {N,T,R,C}, the

problem of deciding if a formula in is satisfiable in

MAu{u] w PSPACE-complete.
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5 AXIOMATIZATION

Several axiom systems for variants of conditional logics

appear in the literature [Lew73, Lew74, Che80, Bur81,

Bel89, Gra91, KS91]. We present an axiom system

for all the variants we introduced based on Burgess's

[Bur81] axiomatization. In the full paper, we provide a

full completeness proof based on Burgess's techniques,

but substantially simpler.

The basic axiom system, AX, contains the following

axiom schemata:

AO All the propositional tautologies

Al <p—*<p

A2 ((p-^i) A (<p-*rp2)) => (<P~>(rl>i A 0j))

A3 (p—(V-i A V2)) tf>i)

A4 ((<pi-np2) A (<pi->rj>)) =► ((ipi A <pi)-np)

A5 ((y>i-+V) A (y>2-^)) => ((Vi V y>2)-»tf>)

and the following inference rules:

MP From (p and <p => ip infer ip.

RPE From <p\ o <pi and ip infer ip', where ip' differs

from ip only by replacing some subformulas of ip

of the form <p 1 by <p2 .

The completeness proof works as follows. Given ip and

an extension AX' of AX, we consider all the maxi

mal consistent subsets, according to AX', of Sub+(<p)

(where a maximal consistent set is an AX'-consistent

set which is not a strict subset of any other AX'-

consistent subset of 5«6+(v?)). We call a such a max

imal consistent set an AX'-atom. (We henceforth

omit AX' unless it is relevant to the discussion.) It

is easy to verify that each atom is complete in the

sense that for ip G Sub(<p), either ip or -up must

be in the atom. For example, if <p is p A (q—»r)

then Sub+(<p) = {p, ->p, q, ~>q, r, ->r, q-*r, ->(?-»r),

pA(g->r), -<pA(g->r))}. The set {p,q, ->r, ->{q-*r),

"•(pAfa—►»•))} might be an atom (depending on AX'),

but {->p, q,->r,q—*r,p A (q—►r)} cannot be an atom

since ->p and p A (q—►r) are inconsistent. Similarly,

{p, q) is not atom since it is not maximal. In the fol

lowing discussion let a,/?, and 7 stand for atoms and

A stand for a set of atoms. We slightly abuse notation

and use o both as a set (e.g., ip G a) and as a formula

(e.g., a =>• ip) which is the conjunction of all members

of a.

Given a,/?, and A we define PreferAXl(/3,a,A) if

/? A -i(a V V A—» V A) is consistent according to AX'.

The intuitive account is that a world where /? holds is

consistent with an ordering that makes worlds where a

holds strictly preferred to worlds satisfying one of the

atoms in A. We will use this definition to construct

all the preorders that are consistent with each possible

world.

Given AX' and (p, we construct a structure M =

(W, ir, R) as follows:

• We set W to be the set of tuples (7, ^4) where

7 £ A. Given w = (7, A) we define 7(iu) = 7.

• We set w(w)(p) = true if and only if p G 7(f)-

• For any world w, we construct ^w by setting

Wm = {(7,^4) e W\PreferAXIfr(w), A, 7)}

and setting w' -<w w" if w' = (y.A'), w" =

(7",A"), and A" U {7"} C A'.

The intuition is simple: A world w = (7, A) represents

a world satisfying 7 that is intended to be strictly

preferred to all worlds that satisfy one of the atoms

in A. We define jt so that it assigns truth values

to primitive propositions according their values in 7.

The set Wm contains all the worlds (7' , A') such that

PreferAX,(f, 7', A'), i.e., it is consistent with 7 that

(Y, A') is strictly preferred to worlds satisfying one of

the atoms in A. The definition of ;< implements this

intuition: if (V, A') -<w (7", A") then 7" € A'. This

matches our intuition since (y.A') is intended to be

preferred to worlds satisfying atoms in A'. We also

demand that A" C A', this ensures that ^w will be

transitive. It implies that if (7", A") <w (7"', A'"),

then i" € A" C A' and also A"' C A" C A'. Thus,

(Y,A') ■<„ (y",A"').

We now show that each world w in M satisfies 7(10).

Since the details of this proof are essentially the same

as Burgess's proof [Bur81, p. 82], we leave the details

to the full paper.

Lemma 5.1: Let AX1 be an extension of AX and let

ip € Cc . Let M be the structure constructed above.

For any w G W and ip G Sub+(y>), ip G y(w) if and

only if(M,w) \= ip.

Using this lemma it is easy to prove the following the

orem:

Theorem 5.2: If >p € Cc , then <p is valid in M if

and only ifr-AX <p.

Proof: It is easy to check the soundness of AX in M.

Thus, if r-AX <p, then <p must be valid in M- For the

other direction, assume that <p is consistent with AX.

Then there is an atom a such that <p G a, and from

Lemma 5.1 we get that (A/, (a, 0)) ^= <p. I

We note that this construction is much simpler than

Burgess's even though the proof of Lemma 5.1 is al

most identical to Burgess's proof. The main difference

is that Burgess constructs a tree-like structure of fi

nite but nonelementary size. Our construction, on the

other hand, uses the same stock of worlds to construct

the ordering for each world. The resulting structure is

of doubly-exponential size. (We note that our results
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from Section 2 show that this can be improved, since

only an exponential-sized structure is needed for sat

isfiability.) The fact that the structure is not tree-like

allows us to give completeness proofs for properties

such as uniformity and reflexivity that cannot be sat

isfied in tree-like structures.

The following axioms characterize the various seman

tic conditions we have considered. These axioms ap

peared originally in [Lew73] and [Bur81].

AN (Normality) ->(true—*false)

AR (Reflexivity) Dtp ip

AT (Centering) B(p =>• <p10

AU (Uniformity) (Dtp DDtp) A (-<Dip =>• D-iCty)

AA (Absoluteness)

AC (Connectedness)(vi V ipi)—*~«p2 => ((<pi V

tfO-^VO V ((V V </>2)—-*p3)

The next results shows that each axiom captures ex

actly the corresponding condition:

Theorem 5.3: Let <p € C and let A be a subset of

{N, R, T, U, A, C] and A the corresponding subset

of MAT, AR, AT, AU, AA, AC). Then <p is valid in

if and only i/r-AxLM <P-

Proof: In the full paper we provide the details of this

proof. The essence of the proof is showing that each

axiom forces the constructed structure to satisfy the

semantic condition. This is straightforward in the case

of absoluteness, uniformity and normality. The other

cases require a little more care; we leave details to the

full paper. I

6 CONCLUSIONS

In this paper we analyzed the complexity problem for

conditional logics. As we observed in the introduction,

such logics are now being used in many areas of arti

ficial intelligence. The techniques we have introduced

in this paper (especially the results in Section 3) can

applied to frameworks that combine conditional log

ics with other modalities. For example, in [FH94a]

we use these results to derive complexity results for

a logic that contains both conditionals and epistemic

modalities.

We did not attempt, in this work, to isolate tractable

fragments of the logic. This is certainly an important

aspect of any analysis of formal method in artificial

intelligence [Lev86, Lev88]. We note that all the log

ics we examined are intractable because they contain

the propositional calculus. It is certainly feasible that

there are nontrivial fragments that do not contain the

10The axiom for strict centering is U\f> O <p-

propositional calculus that are tractable (e.g., results

in the style of Kautz and Selman's analysis of default

logic [KS89]). We plan to pursue this issue in the fu

ture. We note that the methods used in this paper are

certainly relevant to such an investigation.
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Abstract

We provide an efficient method for consis

tency checking of temporal relations in the

Point Algebra (PA-relations) extended by

binary disjunctions of PA-relations. Such

disjunctions add a great deal of expres

sive power, including the ability to stipu

late disjointness of temporal intervals, which

is important in planning applications. The

method is based on two main steps: the

first preprocesses the initial set of disjunc

tions reducing it to a logically equivalent sub

set, while the second performs a search which

uses a form of selective backtracking and a

"forward propagation" technique to greatly

enhance efficiency. The preprocessing phase

is worst-case polynomial, and in principle is

strong enough to subsume consistency check

ing for Nebel and Biirckert's ORD-Horn class

of interval relations.

Experimental results using a specialized algo

rithm for binary disjunctions of inequalities

show that our method is very efficient espe

cially when the number of disjunctions is lim

ited relative to the number of PA-relations,

and that although consistency testing is NP-

complete, in practice our algorithms tend to

perform polynomially.

1 INTRODUCTION

Reasoning about qualitative temporal information is

an important task in many areas of AI. The Inter

val Algebra (IA) [Allen, 1983] and the Point Alge

bra (PA) [Vilain et al., 1990; van Beek and Cohen,

1990] are approaches to the representation of qualita

tive temporal information, based respectively on spec

ifying possible relations between pairs of intervals and

pairs of points [van Beek, 1992; Ladkin and Maddux,

to appear]. Given a collection of temporal relations,

determining the consistency (satisfiability) and find

ing a consistent scenario (interpretation of the time

variables) of such a collection are among the main

reasoning tasks. These problems are NP-hard for IA,

while they are polynomial for PA [Vilain et al., 1990;

van Beek and Cohen, 1990; van Beek, 1992; Vilain

et al., 1990] and for the ORD-Horn subclass of IA

[Nebel and Biirckert, 1993]. The ORD-Horn subclass

is particularly attractive from a theoretical perspec

tive because it is a maximal tractable subalgebra of IA,

providing substantially greater expressiveness than the

"pointizable" part of IA. Still, for many applications

(especially in planning and scheduling [Allen, 1991;

Allen and Koomen, 1983; Boddy, 1993; Dean et al.,

1988; Frederking and Muscettola, 1992; Tsang, 1986;

Vere, 1983] ) even this subalgebra is too weak, be

cause it does not include some practically essential re

lations such as disjointness relations.1 Disjointness is

needed, for example, in constraining two actions that

require dedicated use of the same resources (agents,

tools, pathways, etc.) to be nonoverlapping in time.

We focus on relations in PA (PA-relations) and on a

major extension of PA to include binary disjunctions of

PA-relations (PA-disjunctions). This extension allows

the representation of a large class of interval relations

which strictly contains the ORD-Horn subclass2, the

disjointness relations, and many non-binary interval

relations such as / before J or after K. For example,

the relation / before or after J can be translated into

the set {/- < /+, J' < J+, /+ < J- V J+ < /"},

where I~ (J~) and /+ (J+) indicate the starting and

the end points of the interval / (J).

In [Gerevini and Schubert, 1993a] we show that the

problem of determining consistency for a set of PA-

'The disjointness relations are: / {6e/ore, after} J, I

{before, met-by} J, I {meets, after) J, I {meets, met-by]

J, I {before, after, meets] J, I {before, after, met-by) J,

I {before, meets, met-by} J, I {meets, after, met-by} J, I

{before, after, meets, met-by} J.

2 Each of the relations in the ORD-Horn subclass can

be translated into a collection of PA-relations and (binary)

PA-disjunctions with at most one disjunct in {<, =} [Nebel

and Biirckert, 1993].
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disjunctions is NP-complete even when the set con

tains only relations of the form "x strictly before or

strictly after the interval formed by y,z" (where y < z).

As a consequence, there is no hope for reasoning about

disjointness relations in any subclass of PA without

losing tractability or compromising completeness (as

suming P ^ NP).

In [Gerevini and Schubert, 1993b; Gerevini et ai, 1993;

Miller and Schubert, 1990] we provide a collection of

algorithms for efficiently managing large sets of PA-

relations based on timegraphs, graphs partitioned into

a set of chains on which the search is supported by a

metagraph data structure.

In this paper we provide an efficient method for man

aging PA-disjunctions which uses the timegraph algo

rithms. In Section 2 we first propose a general al

gorithm for determining consistency of a set S of PA-

relations augmented by a collection of PA-disjunctions.

The algorithm effectively exploits the information pro

vided by the timegraph built from S to prune the

search. Secondly, we provide a specialized search algo

rithm for disjunctions of inequalities based on a form

of selective backtracking which can be very effective in

limiting the number of the backtracks.

The experimental results reported in Section 3 show

that our approach is particularly efficient when the

timegraph is not very sparse and the number of PA-

disjunctions is relatively small compared to the num

ber of PA-relations. For more difficult cases (sparse

timegraph with few PA-relations and numerous PA-

disjunctions) a "forward propagation" technique can

dramatically reduce the number of backtracks. Fi

nally, extensive experiments aimed at investigating the

scalability of the proposed method show that in prac

tice our algorithm tends to perform polynomially on

average.

2 MANAGING DISJUNCTIONS

THROUGH TIMEGRAPHS

A disjunctive timegraph (Z>-timegraph) is a pair {T, D)

where T is a timegraph and D a set of PA-disjunctions

involving only point-variables in T. A 2?-timegraph

(T, D) is consistent if it is possible to select one of the

disjuncts for each PA-disjunction in D in such a way

that the resulting collection of selected PA-relations

can be consistently added to T. We call this set of

selected disjuncts an instantiation of D in T, and the

task of finding such a set deciding D relative to T.

Once we have an instantiation of D, we can easily solve

the problem of finding a consistent scenario by adding

the instantiation to T and using a topological sort algo

rithm [van Beek, 1992; Cormen et ai, 1990]. Also the

task of checking whether a relation R between two time

points x and y is entailed by a IMimegraph {T, D) can

be reduced to the problem of finding an instantiation

of D in_an augmented version of T. We add the rela

tion xRy to T (where R negation of R), obtaining a

new timegraph T", and then check if (a) T' is consis

tent, and (b) D can be decided relative to T" (if not

empty). The original P-timegraph entails xRy just in

case one of (a),(b) does not hold.

In general, in order to decide a set of binary disjunc

tions we can perform a search in the set of the 2m

possible ways of choosing the disjuncts (for m dis

junctions). This search is necessarily exponential in

the worst case (assuming P/NP) since the problem

is NP-hard [Gerevini and Schubert, 1993a]. Given a

disjunctive timegraph {T,D), the algorithm we have

developed for deciding D relative to T consists of two

main steps:

1 . prune the search space by reducing D to a subset

D1 of D and producing a timegraph T' such that

D has an instantiation in T if and only if D' has

an instantiation in T'.

2. Search for an instantiation of £>' in T' by using

backtracking.

We first describe some powerful pruning rules on

which the first step is based, and then present an ef

ficient search algorithm for binary disjunctions of in

equalities which uses a form of selective backtracking

[Bruynooghe, 1981; Shanahan and Southwick, 1989].

2.1 PREPROCESSING

The set of disjunctions of a D-timegraph (T, D) can

be reduced to a significatively smaller subset by ap

plying some pruning rules to each disjunction D(i) =

xR\y V wR^z in D (x,y,w, and z time points, R\,R?

PA-relations, and i = l..m). These rules detect cases

where the timegraph T already entails the disjunc

tion (allowing its removal), or entails the negation

of a disjunct (leaving only an ordinary PA-relation).

Timegraphs are designed to detect such entailments

efficiently.3

For example, consider the D-timegraph H = (T, D)

of Figure 2. H can be transformed into an equivalent

X>-timegraph H' = (T',D') where V differs from T

by having two additional edges (indicated by dotted

arrows) and D' consists of only one of the disjunctions

in D. D(2) is redundant because T entails a < g;

D(4) can be eliminated because it is tautologically true

(if we assume the negation of the first disjunct, i.e.,

->(d < g), i.e., g < d, then we have c < d from the

graph and hence the second disjunct, 6 < d, is true);

finally neither f < a nor g < a can be consistently

added to T and hence the second disjuncts of D(l)

(/ < d) and of D(3) (b < f) must take part in any

instantiation of D.

3 In [Gerevini and Schubert, 1993b] we give a worst-case

linear time algorithm for querying the strongest entailed

relation in a timegraph.
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Figure 1: Two cases in which the precondition of Re

stricted TL-tautology is satisfied. Dotted edges repre

sent the assumed relations. "Wavy" arcs are <-paths

or <-paths

More formally, we can define three rules for eliminating

a disjunction D(i) — xRiy V wR2z from D, possibly

producing a set Q of PA-relations which must take

part in any instantiation of D:

(1) T-derivability

ifT h xRiy or T h wR2z then D := D-{D(i)}

(2) T-tautology

(2.i) ifTU{xRiy} h wR2z then D ~ D-{D(t)}

(2.ii) ifTU{wR2z} h xRxy then D := D-{D(i)}

(3) T-resolution

(3.i) i/ru {xRry} is consistent andTU{wR2z}

is inconsistent then D := D — {D(i)} and

Q :=Ql){xRiy}

(3.ii) ifTU{wR2z] is consistent andTU{xRiy]

is inconsistent then D := D — {D(i)} and

Q :=QU{wR2z}

(3.iii) if both TU {xR^} andTl){wR2z} are

inconsistent then the V-timegraph (T, D)

is inconsistent

where T h xR^y (i G {1,2}) is defined according to

Theorem 2.2 given in [Gerevini and Schubert, 1993b],

TU{xR\y} is the timegraph obtained by adding to T

the graphical representation of xR\y (analogously for

TU {wR2z}), Ri is the negation of R (analogously for

R2), Q is initially empty, and the notion of a consistent

timegraph is formally given in [Gerevini and Schubert,

1993b].

With respect to the example of Figure 2, D(2) can be

eliminated from D by the application of rule (1), D(4)

by rule (2) and D(l), D(3) by rule (3). (It is worth

noting that if these inferences are made in sequence,

and resolvents are immediately added to T, then we

can also eliminate D(5).)

Rule (1) is a special case of rule (2). We keep them

separated because the time required for applying rule

(2) may be too great; rule (1) just requires applica

tion of the timegraph query algorithms, whereas rule

(2) calls for a (temporary) addition to the timegraph.

In fact, when one of the disjuncts of the disjunction

relation, the addition to the time-

graph of the negation of the disjunct can create "im

plicit <-relations" that have to be made explicit and

cycles that have to be collapsed before verifying the

entailment of the second disjunct (for more details see

[Gerevini and Schubert, to appear]). In these cases a

rule weaker than rule (2) may be preferred. In particu

lar, for disjunctions d of the form x < yVw < z vre can

use the following restricted T-tautology rule, requiring

only timegraph queries:

(2') if T h (x < z A w < y) or T h (x < z A w < y)

then D := D - {d}

This rule is sound since if T entails x < z and w < y,

or x < z and w < y, and we assume the negation

of the first disjunct (y < x) or of the second disjunct

(uj < 2), the resulting timegraph entails x < y or

w < z respectively (see Figure 1). (2') is applied to a

disjunction only if it cannot be removed by rule (1),

i.e., the timegraph does not contain <-paths from x

to y or from w to z. While applying rule (2') is more

efficient than applying rule (2), some tautologies may

then escape detection. The choice depends on how

much effort we want to dedicate to the preprocessing

step and how much to the search step.

If both rules (3.i) and (3.ii) can be applied to a dis

junction d in D, then there is no instantiation of D

because the addition of either disjunct of d makes the

resulting timegraph inconsistent. When only one of

(3.i) and (3.ii) can be applied to d, the disjunct of d

which can be consistently added to the graph is called

the T-resolvent of d.4

If D contains a disjunct of the form s < t (or s < t),

and T has a <-path5 (<-path) from the vertex corre

sponding to s to the vertex corresponding to t, we say

that the Z>-timegraph contains a <-quasicycle (qua-

sicycle hereafter) determined by the disjunct s < y

(s < t). For example, the 27-timegraph of Figure 2

contains a quasicycle determined by g < a (the first

disjunct of D(3)). When rule (3) is applied to a dis

junction having a disjunct which determines a quasicy

cle we call this quasicycle elimination. The application

of rule (3) is an efficient operation especially when the

disjuncts are <-relations. In fact, in these cases quasi

cycle elimination can be applied just by checking the

existence of a <-path in the metagraph of the time-

graph [Gerevini and Schubert, 1993b].

The result of applying the pruning rules to all the dis

junctions of D is a subset D' of D and a set Q of T-

resolvents. The PA-relations of Q can then be added

to the original graph producing a new timegraph V

4This terminology reflects the strong similarity of T-

resolution to a particular form of "Theory Resolution" pro

posed by Stickel [Stickel, 1985].

5A path is a <-path if each label on the edges of the

path is < or <. A <-path is a <-path if at least one of

these labels is <.
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T a,

D

 

D{1) :/<oV/<d

£>(2) : 6 < / V a < g

D(3) : g < a V 6 < /

£>(4) :d<gVb<d

£>(5) : 6 ^ e V 6 < d

 

Figure 2: A D-timegraph (T, £)) and the corresponding £>-timegraph (T', D') obtained by applying the pruning

rules to the disjunctions in D using T.

which is used by the search step to find an instantia

tion of D'. In fact, as the following theorem asserts,

the original problem of deciding D in T is equivalent

to the problem of deciding D' in X".

Theorem 1 Given a V-timegraph (T, D), D has an

instantiation in T if and only if D — {d} has an in

stantiation in T', where d is any disjunction in D

which can be eliminated by the application of any prun

ing rule, T' = T if d is eliminated either by T-

derivability, T-tautology or by restricted T-tautology,

and T' — Tl){vRw} if d is eliminated by T-resolution

and vRw is the T-resolvent of d.

Proof (sketch). The proof follows from Theorem 2.2

in [Gerevini and Schubert, 1993b] and from the fact

that each disjunction is binary. □

Various strategies are possible for preprocessing the set

of disjunctions using the pruning rules. Here we have

adopted the simplest one in which the rules are applied

to each disjunction once and the set of T-resolvents

generated is added to the timegraph at the end of the

process. This strategy is very efficient since it is based

on query algorithms and does not require updating

to maintain the timegraph data structures. A more

complete strategy, though more computationally ex

pensive, is to add the T-resolvents to the graph as

soon as they are produced and to iterate the appli

cation of the rules till no further disjunction can be

eliminated. In particular, it can be shown that this

strategy is complete for ORD-Horn clauses [Nebel and

Biirckert, 1993] in which each PA-disj unctions has at

most one disjunct in {<,=} and the others are

Theorem 2 There exists a polynomial strategy for

applying the pruning rules which is complete for deter

mining the consistency of a V-timegraph (T, D), where

D is a set of binary ORD-Horn clauses.

Proof (sketch). The strategy mentioned above is eas

ily seen to take polynomial time. The key point is to

show that termination without detection of inconsis

tency entails consistency of (T, D). Let R be the set of

PA-relations entailed by T, (T',D') the D-timegraph

at termination, and R' the set of PA-relations en

tailed by T'. Since positive unit resolution is known

to be refutation-complete for Horn theories [Henschen

and Wos, 1974], it suffices to show that unit resolu

tion applied to R U D U ORDr, or equivalently to

R'UD'U ORDri , cannot derive any unit clauses (PA-

relations) that are not in R' (see [Nebel and Biirckert,

1993] for the definition of ORDr, the (Horn) theory

of "<" and "=" applied to the point variables of R).

This follows from the fact the preprocessing already

(in effect) performs any possible unit resolutions be

tween PA-relations in R! and any disjunctions in D' ,

and that unit resolvents between R' and ORDri are

already in R'. □

Given a set / of interval relations in the ORD-Horn

subclass that can be translated into a set H of ORD-

Horn clauses, we write T\ for the timegraph built from

the set of the unary clauses of H, and Dj for the set

of the remaining (binary) clauses of H .

Theorem 3 The consistency of a set I of interval re

lations in the ORD-Horn subclass can be polynomially

decided by determining the consistency of Tj and by

using the preprocessing step of the algorithm for decid

ing Dj relative to the timegraph built from T\ .

Proof (sketch). The proof follows from Theorem 2

and the fact that the clauses in Dj are at most bi

nary [Nebel and Biirckert, 1993]. By Theorem 3.1 in

[Gerevini and Schubert, 1993b] consistency checking of

the set of unary clauses of H is accomplished in poly-

time during the construction of Tj . If Tj is consistent

then Theorem 2 guarantees that the preprocessing step
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Figure 3: Possible transitions for the status of a dis

junct k

of the algorithm for deciding D\ relative to Tj is suf

ficient for determining the consistency of /. □

2.2 PARTIALLY SELECTIVE

BACKTRACKING

Once the initial set of disjunctions has been reduced by

the application of the pruning rules, an arbitrary total

order is imposed on the remaining disjunctions, and

the search for an instantiation of them is activated.

In this section we describe an algorithm for binary

disjunctions of inequalities. The algorithm can easily

be generalized to disjunctions containing ^ relations,

while for < and = relations some further effort is gen

erally needed in order to maintain the necessary time-

graph data structures [Gerevini and Schubert, 1993b;

Gerevini and Schubert, to appear].

We first introduce some terminology, part of which is

borrowed from [Bruynooghe, 1981], and the general

backtracking strategy.

2.2.1 Terminology and backtracking strategy

The two disjuncts of a disjunction D(j) (1 < j' < m)

are denoted by d(j, 1) and d(j, 2). Each disjunct has a

status associated with it that can be available, current

or eliminated. A disjunct is available if it hasn't been

tried yet. Initially all the disjuncts are available. Fig

ure 3 shows the possible transitions for the status of a

disjunct. An available disjunct becomes current when

it is selected as part of the current (attempted) instan

tiation of D. At this point the corresponding edge is

added to the timegraph, and the disjunction to which

it belongs becomes decided. A disjunct changes status

from available to eliminated when the addition of the

corresponding edge to the timegraph would make the

resulting graph inconsistent. A disjunction cannot be

decided when neither of the edges corresponding to its

disjuncts can be consistently added to the timegraph.

During backtracking a disjunct can change status from

current to available and from eliminated to available.

When it changes from current to available the corre

sponding edge is retracted.

We indicate with T* the timegraph resulting after de

ciding D(j).

The set of current disjuncts taking part in a quasi-

cycle determined by an eliminated disjunct d(i,j) is

a set of antagonists of D(i). Note that a disjunct can

determine more than one quasicycle and hence the cor

responding disjunction can have more than one set of

antagonists. However, we will always consider only

one of them: the set of current disjuncts taking part

in the <-path identified by the procedure which checks

for the existence of the quasicycle. The culprit of an

eliminated disjunct d(i,j) (written as culprit(i,j)) is

the most recently decided disjunction responsible for

its elimination; i.e., it is the most recently decided dis

junction D(h) (1 < h < i) such that:

1. one of the disjuncts of D(h) is available;

2. the other disjunct of D{h) is among the antago

nists of D(i).

If such a disjunction does not exist there is no culprit

for D(i) (i.e. culprit(i, j) is nil).

In order to simplify the explanation of the method,

we assume that all the disjuncts are different PA-

relations. This assumption can easily be relaxed by

checking whenever a disjunction is examined if one of

its available disjuncts is equal to the current disjunct

of a disjunction already decided, and modifying the

relevant data structures accordingly.

The search for an instantiation is conducted by de

ciding each disjunction in turn, adding the chosen dis

junct to the graph, until all disjunctions are decided or

an impasse is reached, i.e., the next disjunction D(i)

cannot be consistently decided either way (i.e. without

adding quasicycles) . In the latter case, we backtrack to

the culprit of one of the disjuncts of D(i). When both

the culprits are null the search proceeds by backtrack

ing chronologically. This is illustrated in the following

example.

2.2.2 An example

Let L be a 2?-timegraph (T, D) where T is the time-

graph of Figure 4 and D is the set of disjunctions:

D{\) :b< fVn<g

D(2) : / < mVn < /

£>(3) :c<jVm<i

D(4) : / < 6 V h< e

£>(5) : n < / V e < g

The graph T\ shows the state of the disjunctions when

the search has reached D(b). Dotted edges correspond

to chosen (current) disjuncts. The label on a dotted

edge indicates the disjunction to which the disjunct

belongs. When the label for a chosen disjunct of a

disjunction D(i) has a number in brackets, this means

that the other disjunct of D(i) has already been elim

inated, and the number indicates the culprit of the

examined disjunct.
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m n 

bed*

Figure 4: Example of the search for an

For example, the label D4[l] on the edge from h to e

indicates that D(l) is the culprit of / < 6, the first

disjunct of D(4) (when D(4) was decided, the addi

tion of / < 6 to the graph would have created the

cycle b,f,b). Once we have decided Z?(4), an impasse

is reached because D(5) cannot be decided. So, we

have to select a decided disjunction for backtracking.

Since neither D(3) nor £>(4) satisfy conditions 1 and

2, disjunctions D(l) and D(2) are considered because

D(l) is the culprit of the eliminated disjunct of £>(4),

and D(2) is the culprit of n < f, the second disjunct

of D(5). Redeciding D(l) using n < g will break the

cycle b,f,b, while redeciding D(2) using n < f will

break the cycle /, m, n, /. D(2) is selected because it

has been decided more recently than D(l).

The graph Ti of Figure 4 shows the state of the search

after backtracking. Note that in general the decision

for D(3) needs to be reconsidered, whereas we don't

have to redecide D(A) since its chosen disjunct involves

no new cycles. (Moreover, its culprit remains the same

since the other way of deciding D(4) (f < b) still cre

ates a quasicycle) .

Finally, T3 shows the instantiation found by the search.

2.2.3 Backtracking algorithm

The basic backtracking algorithm, whose pseudocode

is reported in Figure 5, decides (when it is possible) the

disjunctions following the arbitrary order imposed ear

lier. A disjunction D(j) cannot be decided when both

its disjuncts take part in a quasicycle determined in

TJ_1. In this case there are two culprits for D(j), and

the one corresponding to the most recently decided

disjunction is used to select a disjunction to backtrack

to.

A simple chronological backtracking mechanism would

always choose as backtrack point the most recently de

cided disjunction D(k) with an available disjunct, and

m n 

bed

m n 

instantiation of a set of PA-disjunctions

the status of the disjuncts of all the disjunctions D(h)

between D(k) and D(j) would be restored. But ex

ploiting our data structures, if D(j) has an antagonist

which is not null, we can use it to jump back directly

to the most recently decided disjunction whose current

disjunct takes part in a quasicycle determined by the

disjunct of D(j). Moreover, not all the disjunctions

D(h) between D(k) and D(j) need to be restored, in

fact all the disjunctions with an eliminated disjunct

d(p, h) (k < p < j, h G {1,2}) whose culprit precedes

D(k) can be left unchanged. The reason for this is

that D(h) can have a value different from the current

one (at the moment of backtracking) only if there is a

backtrack to a disjunction which is equal to or which

precedes culprit(p,h).6

This form of selective backtracking can significantly

prune the search in comparison with ordinary chrono

logical backtracking. However, since for each elimi

nated disjunct d(i,j), culprit(i,j) indicates only one

disjunction which is responsible for an impasse reached

during the search, this technique does not provide

complete selective backtracking. In fact, as dis

cussed in [Bruynooghe, 1981; Shanahan and South-

wick, 1989], to obtain a complete selective backtrack

ing algorithm we could store for each eliminated dis

junct all the previously decided disjunctions which are

responsible for its elimination (i.e. its set of antago

nists) instead ofjust the latest one. However, the com

putational space required by the algorithm performing

full selective backtracking would then be 0(m2). This

bound would be unacceptable for large graphs if the

number of disjunctions is comparable to the number n

of time points or greater (it can be as high as n4).

6In fact, if h precedes culprit(p, h) then the eliminated

disjunct of D(h) will continue to determine a quasicycle

in each timegraph T* (k < i < h), no matter how D(k)

and the further disjunctions preceding D(h) will be decided

after the backtrack to D(k).
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ALGORITHM: DECIDE-DISJUNCTIONS

INPUT: a timegraph T and a set D of preprocessed disjunctions

OUTPUT: the vector DSJ if <T,D> is consistent, nil otherwise

1. i:» 1; fail:- false; done:=false; FOR i ■ 1 TO ■ CULPRIT[i] :=nil;

2. WHILE (fail = false) and (done - false) DO

3. IF DSJ[i] » 2 THEN {both the disjuncts are available}

4. IF d(i,l) does not determine a quasicycle THEN

5. mark d(i,l) current, DSJ[i]:= 1, and CULPRIT[i]:- i

6 . ELSE

7. BEGIN CULPRIT [i] culprit (i, 1) ;

8. IF d(i,2) does not determine a quasicycle THEN

9. mark d(i,2) current and DSJ[i]:» 0

10. ELSE BEGIN

11. IF culprit(i,2) > CULPRIT[i] THEN CULPRIT [i] : -culprit (i, 2) ;

12. IF CULPRIT [i] - nil THEN

13. BEGIN {chronological backtracking}

14. q:= the highest j such that j < i and DSJ[i] ■ 1,

nil if such a j does not exist;

15. IF q is not nil THEN

BEGIN {restore disjunctions between D(q) and D(i)}

16. CULPRIT [q] := nil; mark d(q,l) eliminated;

17. FOR t - q + 1 TO i

18. IF CULPRIT[t] >- q THEN mark the disjuncts of D(t)

available, DSJ[t]:» 2, and CULPRIT It] : - nil;

19. i:= q {backtracking to D(q)}

END

20. ELSE fail:" true {the D-timegraph is inconsistent}

END

21. ELSE {selective backtracking}

22. q:» CULPRIT[i] and run through steps 16. to 19.

END

END

23. ELSE BEGIN {DSJ[i] » 1, d(i,l) eliminated and d(i,2) available}

24. CULPRIT [i]:= i;

25. IF d(i,2) does not determine a quasicycle THEN

26. mark d(i,2) current, DSJ[i]:» 0

27. ELSE BEGIN CULPRIT [i] :- culprit (i ,2) ;

28. IF CULPRIT [i] = nil THEN run through steps 14. to 20.

29. ELSE q:= CULPRIT[i] and run through steps 16. to 19.

END

END

30. IF NOT fail THEN i:»lowest j such that j>»i and D(j) is undecided;

31 IF i > m THEN done:= true

END{WHILE};

32. IF fail = true THEN RETURN nil ELSE RETURN the vector DSJ.

Figure 5: Algorithm for deciding a set of m preprocessed disjunctions

In order to guarantee completeness while retaining lin

ear space complexity, whenever an undecidable dis

junction D(j) with an empty antagonist is reached,

the algorithm performs a chronological backtrack to

the first preceding disjunction D(k) (k < j) with an

available disjunct, and each disjunction between D(h)

and D(k) not having an antagonist preceding k is re

stored. If such a disjunction does not exist, then there

is no instantiation of the original set of disjunctions.

The algorithm of Figure 5 uses two main data struc

ture: DSJ and CULPRIT. DSJ is a vector of dimension m

in which the status of the disjuncts of the disjunctions

is maintained. DSj[j] is an integer in {0, 1,2} with the

following meaning:

• dsj[j]= 2 if D(j) is not decided and both the dis

juncts are available;

• DSj[j]= 1 if D(j) is decided and d(j, 1) is current;

• dsj[j]= 0 if D(j) is decided and d(j, 2) is current.

During the process of deciding a disjunction D(j),

when both the disjuncts are available, the disjunct

d(j, 1) is always tried before the disjunct d(j, 2). As

a consequence of this when d(j, 2) is current d(j, 1) is

always eliminated.

culprit is a vector of dimension m which is used to
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ALGORITHM: PROPAGATE

IHPUT: a decided disjunction D(i) {i:l..»}

OUTPUT: the lowest j (if any) such that j > i and DSJ[i]=2, or

m+1 if all the disjunctions are decided, otherwise nil

1. FOR p - i + 1 TO m

2. IF DSJ[p]=2 THEN

3. IF only one disjunct d(p,k) of D(p) does not create a

quasicycle THEN mark d(p,k) current, CULPRIT[p]:»

culprit (p,3-k) , DSJ[p]:» 2-k, and add p to D-SET[i]

4. ELSE

5. IF both d(p,l) and d(p,2) determine a quasicycle THEN

BEGIN

6. IF culprit(p.l) - culprit(p,2) = nil THEN

BEGIN {chronological backtracking}

7. q:= the highest j such that j < i and DSJ[j]»l,

or nil if such a j does not exist;

8. IF q is not nil THEN

BEGIN {restore disjunctions between D(q) and D(i)}

9. CULPRIT [q] := nil; mark d(q,l) eliminated;

10. FOR t = q to i

11. IF CULPRIT [t] >= q THEN

BEGIN

12. IF t is not equal to q THEN mark the disjuncts

of D(t) available, DSJ[t]:-2, CULPRIT [t] :=nil;

13. FOR EACH h in D-SET[t] mark d(h,l) and d(h,2)

available, DSJ[h]:-2, CULPRIT [h] : -nil,

and D-SET[h] :=nil

END

14. i:» q {backtrack to D(q)}

END

15. ELSE RETURN nil {the D-timegraph is inconsistent}

END

16. ELSE

BEGIN {selective backtracking}

17. CULPRIT[p]:= max(culprit (p, 1) .culprit (p, 2) ) ;

18. q:» CULPRIT[p]; run through steps 9. to 14.

END

19. RETURN i

END

20. RETURN the lowest j such that j >= i and DSJ[j] = 2, or

m + 1 if such a j does not exist.

Figure 6: Algorithm for the forward propagation of a decided disjunction

store for each disjunction the culprit of the elimi

nated disjunct (if any). If D(j) is a decided disjunction

without an eliminated disjunct, then cuLPRlT[j]=j; if

D(j) is not yet decided, then cuLPRiT[j]=nil.

2.2.4 Forward propagation

When the initial timegraph is very sparse, the dearth

of constraints imposed by the graph can protract the

search for an instantiation of the disjunctions and the

algorithm may perform an unacceptable number of

backtracks (see Section 3) . In order to cope with such

cases we have developed a technique which can dra

matically reduce the number of backtracks.

Forward propagation of a decided disjunction D(i) con

sists of checking all disjunctions D(j) not yet decided

and following D(i) in the ordering (i.e. such that

t < j < m), to determine whether at least one of

the disjuncts of D(j) can be consistently added to Th

(i < h < j), where h is the index of the most recently

decided disjunction at the moment of checking D(j). If

only one disjunct of D(j) determines an inconsistency,

then its status is set to eliminated and the other dis

junct is made current. If both disjuncts determine a

quasicycle then D(j) cannot be decided and we per

form a jump back to a selected antagonist of D(j) or,

when this is not possible, a chronological backtrack to

the first disjunction preceding D(j) with an available

disjunct.

Figure 6 shows the algorithm for achieving the forward

propagation of a decided disjunction. It uses an addi

tional data structures called D-SET which is a vector of
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Table 1: Statistics of DECIDE-DISJUNCTIONS without

the forward propagation*

Convex

relations

Backtracks Average

CPU-timeMean Deviation Max.

30 482.98 3686.99 92424 1160

50 122.17 2143.80 91516 351

75 11.69 311.46 13760 47

100 0.28 3.80 96 19

150 0.019 0.47 20 10

200 0 0 0 6

250 0 0 0 5

* Number of backtracks and average CPU-time for

deciding 30 binary disjunctions of <-relations in

databases of convex PA-relations constraining 30

points (14,000 problems).

dimension m where d-set[i] is the set / of disjunction

indices such that k € / if D(k) is a disjunction which

has been decided by the forward propagation of D{i) .

In the search algorithm enhanced by the inclusion of

the forward propagation (for a presentation of its pseu

docode see [Gerevini and Schubert, to appear]) we re

store disjunctions in accordance with the basic algo

rithm, and in addition for each disjunction D(i) that

is updated we also restore the set of decided disjunc

tions depending on it (i.e. the disjunctions indicated

by d-set[i']).

The space complexity overhead introduced by D-SET is

negligible because there can never be more disjunction

indices stored in all the locations of the vector than the

number of disjunctions. Furthermore, since DSJ and

CULPRIT are also vectors of dimension m, it follows

that the space complexity of the whole algorithm is

0(n+ e + m), where n is the number of point variables,

e the number of PA-relations and m the number of

disjunctions.

3 EXPERIMENTAL RESULTS

The algorithms for deciding disjunctions of inequalities

has been incorporated into TimeGraph-II [Gerevini

et ai, 1993], a temporal reasoning system written in

Common Lisp. 7 This section reports results from

large scale tests we have conducted on a SUN SPARC-

station 10 with the purpose of (1) exploring the space

of the problems of deciding disjunctions of inequalities

to identify interesting parameters in terms of which

useful heuristics can be formulated, and (2) of testing

the scalability of the method proposed.

Tables 1 and 2 report the number of backtracks (the

mean, the standard deviation and the maximum value)

and the average cpu-time (milliseconds) required for

7TimeGraph-lI is available by inquiry to the authors.

Table 2: Statistics of decide-disjunctions with the

forward propagation*

Convex

relations

Backtracks Average

CPU-timeMean Deviation Max.

30 1.13 6.29 142 104

50 0.65 12.27 547 70

75 0.12 0.49 4 29

100 0.03 0.24 3 20

150 0.005 0.09 2 10

200 0 0 0 7

250 0 0 0 5

* Number of backtracks and average CPU-time for

deciding 30 binary disjunctions of <-relations in

databases of convex PA-relations constraining 30

points (14,000 problems).

Table 3: Backtracking Requirements for Sparse Data

Sets*

Backtracks % of D-timegraphs

[0..10] 96.01

(10..50] 1.8

(50..100] 0.53

(100..200] 0.43

(200..300 0.21

(300..400] 0.12

> 400 0.9

* Distribution of 30,000 P-timegraphs with respect

to the number of backtracks performed by the basic

search algorithm (30 disjunctions, 20 PA-relations and

30 time points).

deciding a set of 30 disjunctions of form x < y V w < z

using a timegraph built from a collection of convex

PA-relations constraining 30 time points.8 Table 1

pertains to the basic algorithm, while Table 2 pertains

to the algorithm performing the forward propagation

during the search (see Figure 5) which was applied to

the same data sets used for Table 1 .

For each number r of convex PA-relations considered,

2000 randomly generated X>-timegraphs were built,

each of which was created in the following way: first, a

consistent set of convex PA-relations S was generated

following a method similar to the one used in [Gerevini

and Schubert, 1993b] for testing the construction of a

timegraph but using the uniform distribution instead

of the geometric one in choosing the pair of points

to be constrained;9 second, a timegraph T was con-

8The convex PA-relations are all the relations of PA ex

cept V" [Vilain et ai, 1990; van Beek and Cohen, 1990].

The reason we haven't considered ^ relations is that for

the kind of disjunctions we were dealing with, the informa

tion provided by these relations is exploited neither by the

preprocessing step nor by the search algorithms.

9By choosing the uniform distribution we have relaxed
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% of consistent data sets
 

Convex relations

Figure 7: Distribution of the consistent 2Mimegraphs

over 14,000 data sets with 30 binary disjunctions of

<-relations and 30 time points

structed from 5; finally, a set D of disjunctions of the

form x < yV w < z was built by randomly generating

each of them in such a way that:

• x, y, w and z are point variables taking part in at

least one of the relations in S;

• x / y, w ^ z and the pair (x, y) is different from

the pair (w, z)\

• neither x < y nor w < z are in S.

It is interesting to observe that the number of back

tracks shown in Table 1 decreases dramatically when

the number of PA-relations used to build the time-

graph is greater than three times the number of the

time points. The main reason for this is that in gen

eral the more constraints are imposed on the time-

graph, the more disjunctions are eliminated by the

pruning rules, and hence the easier the problem be

comes for the backtracking step. For example, with 30

convex PA-relations constraining 30 points only 11%

of the disjunctions were eliminated on average, while

with 75 convex PA-relations constraining 30 points this

percentage was 58.5%.

Figure 7 shows the distribution of the consistent data

sets with respect to the number of PA-relations form

ing the timegraph. This curve indicates that when the

timegraph is not particularly sparse the probability of

the 2?-timegraph being consistent is much smaller that

the probability of being inconsistent. Since the per

centage of consistent data sets generated goes down

drastically when the timegraph is not sparse, we have

repeated the test of Table 1 by generating only con

sistent data sets.10 The results of this experiment are

the assumption made in [Gerevini and Schubert, 1993b]

that the data sets generated are likely to allow chain

formation.

10 This was obtained by adding to the data set generator

the extra requirement that for each disjunction at least one

qualitatively identical to those obtained when consis

tency is not enforced in the data sets, and so they show

that when the timegraph is not particularly sparse our

method performs efficiently regardless of whether the

information provided is consistent or not.

When the timegraph is sparse, there are some cases

in which the basic algorithm performs a large num

ber of backtracks (see Table 1) and hence incurs large

CPU-time costs. Fortunately, as shown by the elevated

values of the standard deviation when the number of

convex PA-relations is between 30 and 75, these com

putationally expensive cases are relatively rare. This

has been further confirmed experimentally by comput

ing their percentage over 30,000 ZMimegraphs with

30 time points, 20 convex PA-relations and 30 dis

junctions. Table 3 shows that the number of cases

for which more than 400 backtracks were performed

is limited to 0.9% of all Z>-timegraph generated, while

the percentage of 2?-timegraphs requiring at most 10

backtracks was 96.01 %.

Table 2 shows that when the timegraph is sparse, the

use of forward propagation technique during the search

can dramatically reduce the number of backtracks.

However, the CPU-time we need for propagating de

cided disjunctions can be too high for larger data sets.

The main reason for this is that quasicycle elimination

requires O(e) time where e is the number of metaedges

in the timegraph which are a subset of the PA-relations

initially provided [Gerevini and Schubert, 1993b]. It

follows that a general good heuristic for large data sets

is to prefer the use of the forward propagation when

the initial timegraph is sparse or when the number of

disjunctions to be decided is particularly high with re

spect to the number of convex PA-relations, and to use

the basic algorithm in other cases.

The curves in Figure 8 show the results of other exper

iments aimed at testing the scalability of the proposed

approach. In this experiment we have considered only

consistent data sets following the method described

above. The two curves of the first graph show the av

erage CPU-time (seconds) required for deciding sets of

disjunctions of size n (n number of time points) with

8n and 2n/oyn simple PA-relations (with the logarithm

truncated to its integer part). The numbers attached

to the points on the curve indicate the percentage of

the disjunctions eliminated by preprocessing. While

in the case of 8n relations this percentage decreases

when ti increases, for 2nlogn relations it tends to be

constant (wavering between 88.8 and 91. 3). 11

The curve in the second graph shows the average CPU-

time required by more sparse graphs (4n PA-relations)

for which forward propagation has been used during

of its disjuncts is consistent.

11 In order to simplify the figure these numbers are not

shown.
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Figure 8: Scalability of the algorithms for deciding consistency

the search.12

Finally, the third graph shows that for the 16,000 prob

lems considered our algorithms tend to perform poly-

nomially (quadratic time for the curves of the first

graph and cubic time for the curve of the second) since

the previous curves approximate straight lines on a

log-log scale.

4 CONCLUSIONS

In this paper we have provided an efficient method for

managing disjunctions of relations in the Point Alge

bra, and specialized algorithms for consistency check

ing of binary disjunctions of inequalities.

The method consists of a preprocessing step and of a

search step. The preprocessing step is worst-case poly

nomial and is based on some pruning rules which ex

ploit the information stored in the timegraph to elimi

nate disjunctions. There are several polynomial strate

gies for applying these rules, including one which is

complete for checking the consistency of interval rela

tions in the ORD-Horn subclass of IA.

Experimental results show that when the number of

PA-disj unctions is relatively small with respect to the

number of PA-relations our search algorithms are very

efficient, and that although in general the problem ad

dressed is NP-hard, they tend to perform polynomially

on average.

Though timegraphs were first proposed for efficient

temporal reasoning in story understanding, there are

reasons for regarding this approach as well-suited for

planning applications. Sets of temporal constraints

that were generated in the context of the TRAINS

project at Rochester (independently of our work) con

formed well with our assumptions [Allen and Schubert,

1991; Yampratoom and Allen, 1993]. In addition, van

12These experiments were conducted on a Sun SPARC-

station 2 and hence a comparison with the results in the

previous graph is inappropriate.

Beek [van Beek, 1992] estimated some parameters for

sets of IA-relations arising in the kind of constraint-

based planning proposed by Allen and Koomen [Allen

and Koomen, 1983]. He found that about 25% of the

pairs of intervals were constrained by interval relations,

and the great majority of these relations were pointiz-

able. These are just the sort of conditions under which

our consistency algorithm for P-timegraphs is most ef

ficient.

It is an interesting question whether the preprocess

ing step by itself can provide a good "approximate"

method for determining consistency. Further research

in this direction might be aimed at providing approx

imate consistency-checking algorithms for disjunctive

temporal information that operate more efficiently and

accurately than current approximate techniques based

on constraint propagation.
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Abstract

There has been substantial recent interest

in two new families of search techniques.

One family consists of nonsystematic meth

ods such as GSAT; the other contains sys

tematic approaches that use a polynomial

amount of justification information to prune

the search space. This paper introduces a

new technique that combines these two ap

proaches. The algorithm allows substantial

freedom of movement in the search space

but enough information is retained to en

sure the systematicity of the resulting anal

ysis. Bounds are given for the size of the

justification database and conditions are pre

sented that guarantee that this database will

be polynomial in the size of the problem in

question.

1 INTRODUCTION

The past few years have seen rapid progress in

the development of algorithms for solving constraint-

satisfaction problems, or CSPs. Csps arise naturally in

subfields of AI from planning to vision, and examples

include propositional theorem proving, map coloring

and scheduling problems. The problems are difficult

because they involve search; there is never a guarantee

that (for example) a successful coloring of a portion of

a large map can be extended to a coloring of the map

in its entirety.

The algorithms developed recently have been of two

types. Systematic algorithms determine whether a so

lution exists by searching the entire space. Local algo

rithms use hill-climbing techniques to find a solution

quickly but are nonsystematic in that they search the

entire space in only a probabilistic sense.

The empirical effectiveness of these nonsystematic al

gorithms appears to be a result of their ability to fol

low local gradients in the search space. Traditional

systematic procedures explore the space in a fixed or

der that is independent of local gradients; the fixed

order makes following local gradients impossible but

is needed to ensure that no node is examined twice

and that the search remains systematic.

Dynamic backtracking [Ginsberg, 1993] attempts to

overcome this problem by retaining specific infor

mation about those portions of the search space

that have been eliminated and then following lo

cal gradients in the remainder. Unlike previ

ous algorithms that recorded such elimination in

formation, such as dependency-directed backtracking

[Stallman and Sussman,1977], dynamic backtracking

is selective about the information it caches so that only

a polynomial amount of memory is required. These

earlier techniques cached a new result with every back

track, using an amount of memory that was linear in

the run time and thus exponential in the size of the

problem being solved.

Unfortunately, neither dynamic nor dependency-

directed backtracking (or any other known similar

method) is truly effective at local maneuvering within

the search space, since the basic underlying methodol

ogy remains simple chronological backtracking. New

techniques are included to make the search more effi

cient, but an exponential number of nodes in the search

space must still be examined before early choices can

be retracted. No existing search technique is able to

both move freely within the search space and keep

track of what has been searched and what hasn't.

The second class of algorithms developed recently pre

sume that freedom of movement is of greater impor

tance than systematicity. Algorithms in this class

achieve their freedom of movement by abandoning the

conventional description of the search space as a tree

of partial solutions, instead thinking of it as a space of

total assignments of values to variables. Motion is per

mitted between any two assignments that differ on a

single value, and a hill-climbing procedure is employed

to try to minimize the number of constraints violated

by the overall assignment. The best-known algorithms
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in this class are min-conflicts [Minton et al., 1990] and

GSAT [Selman et al., 1992].

Min-conflicts has been applied to the scheduling

domain specifically and used to schedule tasks

on the Hubble space telescope. Gsat is re

stricted to Boolean satisfiability problems (where

every variable is assigned simply true or false),

and has led to remarkable progress in the solu

tion of randomly generated problems of this type;

its performance is reported [Selman and Kautz,1993,

Selman et al,1992, Selman et al., 1993] as surpass

ing that of other techniques such as simulated

annealing [Kirkpatrick et oZ.,1982] and systematic

techniques based on the Davis-Putnam procedure

[Davis and Putnam, I960].

Gsat is not a panacea, however; there are many prob

lems on which it performs fairly poorly. If a problem

has no solution, for example, GSAT will never be able

to report this with confidence. Even if a solution does

exist, there appear to be at least two possible difficul

ties that GSAT may encounter.

First, the GSAT search space may contain so many local

minima that it is not clear how GSAT can move so as to

reduce the number of constraints violated by a given

assignment. As an example, consider the CSP of gen

erating crossword puzzles by filling words from a fixed

dictionary into an empty frame [Ginsberg et a/., 1990].

The constraints indicate that there must be no conflict

in each of the squares; thus two words that begin on

the same square must also begin with the same let

ter. In this domain, getting "close" is not necessarily

any indication that the problem is nearly solved, since

correcting a conflict at a single square may involve

modifying much of the current solution. Konolige has

recently reported that GSAT specifically has difficulty

solving problems of this sort [Konolige,1994].

Second, GSAT does no forward propagation. In the

crossword domain once again, selecting one word may

well force the selection of a variety of subsequent

words. In a Boolean satisfiability problem, assigning

one variable the value true may cause an immediate

cascade of values to be assigned to other variables via

a technique known as unit resolution. It seems plausi

ble that forward propagation will be more common on

realistic problems than on randomly generated ones;

the most difficult random problems appear to be tan

gles of closely related individual variables while nat

urally occurring problems tend to be tangles of se

quences of related variables. Furthermore, it appears

that GSAt's performance degrades (relative to system

atic approaches) as these sequences of variables arise

[Crawford and Baker,1994].

Our aim in this paper is to describe a new search pro

cedure that appears to combine the benefits of both of

the earlier approaches; in some very loose sense, it can

be thought of as a systematic version of GSAT.

The next section gives a presentation of the original

dynamic backtracking algorithm [Ginsberg,1993]. The

termination proof is omitted here but can be found

in earlier papers [Ginsberg,1993, McAllester,1993].

Section 5 present a modification of dynamic back

tracking called partial-order dynamic backtracking, or

PDB. This algorithm builds on work of McAllester's

[McAllester,1993]. Partial-order dynamic backtrack

ing provides greater flexibility in the allowed set of

search directions while preserving systematicity and

polynomial worst case space usage. Section 6 presents

a new variant of dynamic backtracking that is still

more flexible in the allowed set of search directions.

While this final procedure is still systematic, it can use

exponential space in the worst case. Section 7 presents

some empirical results comparing PDB with other well

known algorithms on a class of "local" randomly gen

erated 3-SAT problems. Concluding remarks are con

tained in Section 8, and proofs appear in the appendix.

2 CONSTRAINTS AND NOGOODS

We begin with a slightly nonstandard definition of a

CSP.

Definition 2.1 By a constraint satisfaction problem

(I, V, k) we will mean a finite set I of variables; for

each x £ I, there is a finite set Vx of possible values

for the variable x. k is a set of constraints each of

the form ->[(xi = v\) A • ■ • A (ifc = Vk)] where each Xj

is a variable in I and each Vj is an element of Vx. .

A solution to the CSP is an assignment P of values

to variables that satisfies every constraint. For each

variable x we require that P(x) S Vx and for each con

straint = t>i) A • • • A (xjt = Vk)] we require that

P(xi) ^ Vi for some Xj.

The technical convenience of the above definition of

a constraint will be clear shortly. For the moment,

we merely note that the above description is clearly

equivalent to the conventional one; rather than rep

resent the constraints in terms of allowed value com

binations for various variables, we write axioms that

disallow specific value combinations one at a time.

Systematic algorithms attempting to find a solution

to a CSP typically work with partial solutions that

are then discovered to be inextensible or to violate

the given constraints; when this happens, a backtrack

occurs and the partial solution under consideration

is modified. Such a procedure will, of course, need

to record information that guarantees that the same

partial solution not be considered again as the search

proceeds. This information might be recorded in the

structure of the search itself; depth-first search with

chronological backtracking is an example. More so

phisticated methods maintain a database of some form

indicating explicitly which choices have been elimi

nated and which have not. In this paper, we will use a
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database consisting of a set of nogoods [de Kleer,1986].

Definition 2.2 A nogood is an expression of the form.

(xi=Vi)A---A(xk = vk)-*xjtv (1)

A nogood can be used to represent a constraint as an

implication; note that (1) is logically equivalent to the

constraint

->[(x1 = vi) A ■ ■ ■ A (xfc = vk) A(x = v)]

There are clearly many different ways of representing

a given constraint as a nogood.

One special nogood is the empty nogood, which is tau-

tologically false. If this nogood can be derived from

the given set of constraints, it follows that no solution

exists for the problem being attempted.

The typical way in which new nogoods are obtained is

by resolving together old ones. As an example, sup

pose we have derived the following:

(x = a) A (y = b) —► u ^ v\

(x = a) A (z = c) —» u ^ V2

(y = b) -> u^V3

where v\ , V2 and v$ are the only values in the domain

of u. It follows that we can combine these nogoods to

conclude that there is no solution with

(x = a) A (y = b) A (z = c) (2)

Moving z to the conclusion of (2) gives us

(i = a) A (y = b) —* z ^ c

In general, suppose we have a collection of nogoods of

the form

Xn = vn A • • • A xini = vini

as i varies, where the same variable appears in the

conclusions of all the nogoods. Suppose further that

the antecedents all agree as to the value of the Xi's, so

that any time Xi appears in the antecedent of one of

the nogoods, it is in a term Xj = Vi for a fixed v^. If the

nogoods collectively eliminate all of the possible values

for x, we can conclude that A>(xi — vi) 18 inconsistent;

moving one specific xk to the conclusion gives us

Denmark

Xfc ^ vk (3)

As before, note the freedom in our choice of variable

appearing in the conclusion of the nogood. Since the

next step in our search algorithm will presumably sat

isfy (3) by changing the value for Xfc, the selection of

consequent variable corresponds to the choice of vari

able to "flip" in the terms used by GSAT or other hill-

climbing algorithms.

Albania

Czechoslovakia

 

Bulgaria

England

Figure 1: A small map-coloring problem

As we have remarked, dynamic backtracking accumu

lates information in a set of nogoods. To see how this

is done, consider the map coloring problem in Figure

1, repeated from [Ginsberg,1993]. The map consists

of five countries: Albania, Bulgaria, Czechoslovakia,

Denmark and England. We assume - wrongly - that

the countries border each other as shown in the figure,

where countries are denoted by nodes and border one

another if and only if there is an arc connecting them.

In coloring the map, we can use the three colors red,

green and blue. We will typically abbreviate the colors

and country names to single letters in the obvious way.

The following table gives a trace of how a conventional

dependency-directed backtracking scheme might at

tack this problem; each row shows a state of the pro

cedure in the middle of a backtrack step, after a new

nogood has been identified but before colors are erased

to reflect the new conclusion. The coloring(s) that are

about to be removed appear in boldface. The "drop"

column will be discussed shortly.

A B C D E add drop

r 9 r A=r^C^r 1

r 9 b r A = r -» D ^r 2

r 9 b g B=g^D^g 3

r 9 b b r A=T^E±T 4

r 9 b b g B=g-*E£g 5

r 9 b b b D=b^E^b 6

r 9 b b (A = r) A {B . g) 7 6

-*D^b

r g b A=r^B?g 8 3,5,7

We begin by coloring Albania red and Bulgaria green,

and then try to color Czechoslovakia red as well.

Since this violates the constraint that Albania and

Czechoslovakia be different colors, nogood (1) in the

above table is produced.

We change Czechoslovakia's color to blue and then

turn to Denmark. Since Denmark cannot be colored

red or green, nogoods (2) and (3) appear; the only

remaining color for Denmark is blue.

Unfortunately, having colored Denmark blue, we can

not color England. The three nogoods generated are

(4), (5) and (6), and we can resolve these together be

cause the three conclusions eliminate all of the possible
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colors for England. The result is that there is no solu

tion with (A = r)A(B = g)A(D = b), which we rewrite

as (7) above. This can in turn be resolved with (2) and

(3) to get (8), correctly indicating that the color of red

for Albania is inconsistent with the choice of green for

Bulgaria. The analysis can continue at this point to

gradually determine that Bulgaria has to be red, Den

mark can be green or blue, and England must then be

the color not chosen for Denmark.

As we mentioned in the introduction, the problem with

this approach is that the set T of nogoods grows mono-

tonically, with a new nogood being added at every

step. The number of nogoods stored therefore grows

linearly with the run time and thus (presumably) ex

ponentially with the size of the problem. A related

problem is that it may become increasingly difficult to

extend the partial solution P without violating one of

the nogoods in T.

Dynamic backtracking deals with this by discarding

nogoods when they become "irrelevant" in the sense

that their antecedents no longer match the partial so

lution in question. In the example above, nogoods can

be eliminated as indicated in the final column of the

trace. When we derive (7), we remove (6) because

Denmark is no longer colored blue. When we derive

(8), we remove all of the nogoods with B = g in their

antecedents. Thus the only information we retain is

that Albania's red color precludes red for Czechoslo

vakia, Denmark and England (1, 2 and 4) and also

green for Bulgaria (8).

3 DYNAMIC BACKTRACKING

Dynamic backtracking uses a set of nogoods to both

record information about the portion of the search

space that has been eliminated and to record the cur

rent partial assignment being considered by the proce

dure. The current partial assignment is encoded in the

antecedents of the current nogood set. More formally:

Definition 3.1 An acceptable next assignment for a

nogood set T is an assignment P satisfying every no-

good in T and every antecedent of every such nogood.

We will call a set of nogoods T acceptable if no two

nogoods in T share the same conclusion and either T

contains the empty nogood or there exists an acceptable

next assignment for T.

If T is acceptable, the antecedents of the nogoods in T

induce a partial assignment of values to variables; any

acceptable next assignment must be an extension of

this partial assignment. In the above table, for exam

ple, nogoods (1) through (6) encode the partial assign

ment given by A = r, B = g, and D = b. Nogoods (1)

though (7) fail to encode a partial assignment because

the seventh nogood is inconsistent with the partial as

signment encoded in nogoods (1) through (6). This

is why the sixth nogood is removed when the seventh

nogood is added.

Procedure 3.2 (Dynamic backtracking) To solve

a CSP:

P := any complete assignment of values to variables

r:=0

until either P is a solution or the empty nogood

has been derived:

7 := any constraint violated by P

r := simp(rU7)

P := any acceptable next assignment for T

To simplify the discussion we assume a fixed total or

der on the variables. Versions of dynamic backtracking

with dynamic rearrangement of the variable order can

be found elsewhere [Ginsberg,1993, McAUester,1993].

Whenever a new nogood is added, the fixed variable

ordering is used to select the variable that appears in

the conclusion of the nogood - the latest variable al

ways appears in the conclusion. The subroutine simp

closes the set of nogoods under the resolution inference

rule discussed in the previous section and removes all

nogoods which have an antecedent x = v such that

x ^ v appears in the conclusion of some other nogood.

Without giving a detailed analysis, we note that sim

plification ensures that T remains acceptable. To prove

termination we introduce the following notation:

Definition 3.3 For any acceptable T and variable x,

we define the live domain of x to be those values v

such that x ^ v does not appear in the conclusion of

any nogood in T. We will denote the size of the live

domain ofx by \x\r, and will denote by m(T) the tuple

(|xi|r, • • • , l^nlr) where x\,...,xn are the variables in

the CSP in their specified order.

The termination proof (which we do not repeat here)

is based on the observation that every simplification

lexicographically reduces m(T).

Proposition 3.4 Any acceptable set of nogoods can

be stored in o(n2v) space where n is the number of

variables and v is the maximum domain size of any

single variable.

It is worth considering the behavior of Procedure 3.2

when applied to a CSP that is the union of two dis

joint CSPs that do not share variables or constraints.

If each of the two subproblems is unsatisfiable and the

variable ordering interleaves the variables of the two

subproblems, a classical backtracking search will take

time proportional to the product of the times required

to search each assignment space separately.1 In con-

'This observation remains true even if backjumping

techniques are used.
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trast, Procedure 3.2 works on the two problems inde

pendently, and the time taken to solve the union of

problems is therefore the sum of the times needed for

the individual subproblems. It follows that Procedure

3.2 is fundamentally different from classical backtrack

ing or backjumping procedures; Procedure 3.2 is in

fact what has been called a polynomial space aggres

sive backtracking procedure [McAllester, 1993].

4 DYNAMIC BACKTRACKING AS

LOCAL SEARCH

Before proceeding, let us highlight the obvious similar

ities between Procedure 3.2 and Selman's description

of GSAT [Selman et al, 1992]:

Procedure 4.1 (Gsat) To solve a CSP:

for i := 1 to max-tries

P := a randomly generated truth assignment

for j := 1 to MAX-FLIPS

if P is a solution, then return it

else flip any variable in P that results in

the greatest decrease in the number

of unsatisfied clauses

end if

end for

end for

return failure

The inner loop of the above procedure makes a local

move in the search space in a direction consistent with

the goal of satisfying a maximum number of clauses;

we will say that GSAT follows the local gradient of a

"maxsat" objective function. But local search can get

stuck in local minima; the outer loop provides a partial

escape by giving the procedure several independent

chances to find a solution.

Like GSAT, dynamic backtracking examines a sequence

of total assignments. Initially, dynamic backtracking

has considerable freedom in selecting the next assign

ment; in many cases, it can update the total assign

ment in a manner identical to GSAT. The nogood set

ultimately both constrains the allowed directions of

motion and forces the procedure to search systemati

cally. Dynamic backtracking cannot get stuck in local

minima.

Both systematicity and the ability to follow local gra

dients are desirable. The observations of the previous

paragraphs, however, indicate that these two proper

ties are in conflict - systematic enumeration of the

search space appears incompatible with gradient de

scent. To better understand the interaction of system

aticity and local gradients, we need to examine more

closely the structure of the nogoods used in dynamic

backtracking.

We have already discussed the fact that a single con

straint can be represented as a nogood in a variety of

ways. For example, the constraint ->(A = r A B = g)

can be represented either as the nogood A = r —» B ^

g or as B = g —* A^r. Although these nogoods cap

ture the same information, they behave differently in

the dynamic backtracking procedure because they en

code different partial truth assignments and represent

different choices of variable ordering. In particular, the

set of acceptable next assignments for A = r —♦ B ^ g

is quite different from the set of acceptable next as

signments for B = g —► A ^ r. In the former case

an acceptable assignment must satisfy A = r; in the

latter case, B = g must hold. Intuitively, the for

mer nogood corresponds to changing the value of B

while the latter nogood corresponds to changing that

of A. The manner in which we represent the constraint

-•(A = r A B = g) influences the direction in which

the search is allowed to proceed. In Procedure 3.2, the

choice of representation is forced by the need to respect

the fixed variable ordering and to change the latest

variable in the constraint. Similar restrictions exist

in the original presentation of dynamic backtracking

itself [Ginsberg,1993].

5 PARTIAL-ORDER DYNAMIC

BACKTRACKING

Partial-order dynamic backtracking [McAllester, 1993]

replaces the fixed variable order with a partial order

that is dynamically modified during the search. When

a new nogood is added, this partial ordering need not

fix a unique representation - there can be consider

able choice in the selection of the variable to appear in

the conclusion of the nogood. This leads to freedom

in the selection of the variable whose value is to be

changed, thereby allowing greater flexibility in the di

rections that the procedure can take while traversing

the search space. The locally optimal gradient fol

lowed by GSAT can be adhered to more often. The

partial order on variables is represented by a set of

ordering constraints called safety conditions.

Definition 5.1 A safety condition is an assertion of

the form x < y where x and y are variables. Given

a set S of safety conditions, we will denote by <s the

transitive closure of <, saying that S is acyclic if <s

is antisymmetric. We will write x <$ y to mean that

x <s y and y £s x.

In other words, x < y if there is some (possibly empty)

sequence of safety conditions

i < z\ < . . . < zn < y

2Note, however, that there is still considerable freedom

in the choice of the constraint itself. A total assignment

usually violates many different constraints.
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The requirement of antireflexivity means simply that

there are no two distinct x and y for which x < y and

y < x; in other words, <s has no "loops" and <s is a

partial order on the variables. In this section, we re

strict our attention to acyclic sets of safety conditions.

We now consider some ways of constructing and ma

nipulating sets of safety conditions.

Definition 5.2 For a set of nogoods F, we will denote

by Sr the set of all safety conditions x < y such that

there is a nogood 7 € T with x in the antecedent of 7

and y in its conclusion.

Informally, we require variables in the antecedent of

nogoods to precede the variables in their conclusions,

since the antecedent variables have been used to de

termine the live domains of the conclusions.

The state of the partial order dynamic backtracking

procedure is represented by a pair (T, S) of a set of

nogoods and a set of safety conditions. The states

of the procedure described in this section satisfy the

following definition.

Definition 5.3 A pair (T, S) will be called an accept

able pair if F is acceptable, S is acyclic and Sr Q S.

The requirement that Sr Q S means that the safety

conditions encode at least as much ordering informa

tion as Definition 5.2 ascribes to the nogoods them

selves.

In many cases, we will be interested in only the or

dering information about variables that can precede a

fixed variable x. If we want to discard the rest of the

ordering information, we will do so by discarding all

of the safety conditions involving any variable y that

follows x, and then recording only that y does indeed

follow x. Somewhat more formally:

Definition 5.4 For any set S of safety conditions and

variable x, we define the weakening of S at x, to be de

noted W(S,x), to be the set of safety conditions given

by removing from S all safety conditions of the form

z <y where x <s y and then adding the safety condi

tion x < y for all such y.

The nogood set W(S, x) is a weakening of S in the

sense that every total ordering consistent with S is also

consistent with W(S,x). However W(S,x) usually ad

mits more total orderings than S does; for example, if

S specifies a total order then W(S, x) allows any order

which agrees with S up to and including the variable

x. In general, we have the following:

Lemma 5.5 For any set S of safety conditions, vari

able x, and total order < consistent with the safety

conditions in W(S,x), there exists a total order con

sistent with S that agrees with < through x.

We now state the PDB procedure.

Procedure 5.6 To solve a CSP:

P := any complete assignment of values to variables

T := 0

S:=0

until either P is a solution or the empty

nogood has been derived:

7 := a constraint violated by P

(r,5> :=simp(r,S,7)

P := any acceptable next assignment for F

Procedure 5.7 To compute simp(r,S, 7)

select the conclusion of 7 so that S U 5{7} is acyclic

r:=ru{7}

x := the variable in the conclusion of 7

remove from F each nogood with x in its antecedent

S:= W{S,x)USr

if every value in the domain of x appears in the

conclusion of a nogood in F then

p := the result of resolving all nogoods in F with x

in their conclusion

(F,S) :=simp(r,S,p)

end if

return (F, S)

The above simplification procedure maintains the in

variant that (r, S) be an acceptable pair - F remains

acceptable, S remains acyclic, and Sr remains a subset

of S.

Our implementation uses a sparse representation for S

and incremental techniques for ensuring that Sr Q S.

The time needed for a single call to simp appears to

grow significantly sublinearly with the size of the prob

lem in question (see Section 7) . To prove that Proce

dure 5.6 terminates, we begin with the following defi

nition:

Definition 5.8 Given a set of safety conditions S and

a fixed variable ordering xi < X2 < • ■ ■ < xn that re

spects <s, letm(F, S, <) be the tuple (|xi|r, • • • , |inlr)-

We will denote by m(F, S) that tuple which is lexico

graphically maximal as < is allowed to vary.

Theorem 5.9 // (F,S) is an acceptable pair, j is a

nogood that violates some acceptable next assignment

for F, and {F',S') = simp(r,5,7), then m(F',S') is

lexicographically smaller than m(F,S). Hence Proce

dure 5.6 will always terminate in at most

steps, where the product ranges over the variables in

the problem and |Vj| is the size of the domain for vari

able i.
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As an example, suppose that we return to our map-

coloring problem. We begin by coloring all of the coun

tries red except Bulgaria, which is green. The follow

ing table shows the total assignment that existed at

the moment each new nogood was generated.

A B C D E add drop

r 9 r r r C = r -» A ^ r 1

b 9 r r r D = r^E±r 2

b 9 r r 9 B=g^E?g 3

b 9 r r b A = b->E?b 4

(A = b)A(B = g) 5 2

->D^r

D<E 6

b 9 r 9 b B = g-+D?g 7

b 9 r b b A = b-*D^b 8

A=b^B^g 9 3,5,7

B<E 10 6

B<D 11

The initial coloring violates a variety of constraints;

suppose that we choose to work on one with Albania

in its conclusion because Albania is involved in three

violated constraints. We choose C = r —» A ^ r

specifically, and add it as (1) above.

We now modify Albania to be blue. The only con

straint violated is that Denmark and England be dif

ferent colors, so we add (2) to T. This suggests that

we change the color for England; we try green, but this

conflicts with Bulgaria. If we write the new nogood as

E = g —♦ B ^ g, we will change Bulgaria to blue and

be done. In the table above, however, we have made

the less optimal choice (3), changing the coloring for

England again.

We are now forced to color England blue. This con

flicts with Albania, and we continue to leave England

in the conclusion of the nogood as we add (4). This

nogood resolves with (2) and (3) to produce (5), where

we have once again made the worst choice and put D

in the conclusion. We add this nogood to T and re

move nogood (2), which is the only nogood with D in

its antecedent. We also add in (6) a safety condition

indicating that D must continue to precede E.

We next change Denmark to green. But now Bulgaria

and Denmark are both green; we have to write this new

nogood (7) with Denmark in the conclusion because of

the ordering implied by nogood (5) above. Changing

Denmark to blue conflicts with Albania (8), which we

have to write as A = b —* D ^ b. This new nogood

resolves with (5) and (7) to produce (9).

We drop (3), (5) and (7) because they involve B = g,

and introduce the two safety conditions (10) and

(11). Since E follows B, we drop the safety condition

E > D. At this point, we are finally forced to change

the color for Bulgaria and the search continues.

It is important to note that the added flexibility of PDB

over dynamic backtracking arises from the flexibility

in the first step of the simplification procedure where

the conclusion of the new nogood is selected. This

selection corresponds to a selection of a variable whose

value is to be changed.

As with the procedure in the previous section, when

given a CSP that is a union of disjoint CSPs the above

procedure will treat the two subproblems indepen

dently. The total running time remains the sum of

the times required for the subproblems.

6 ARBITRARY MOVEMENT

Partial-order dynamic backtracking still does not pro

vide total freedom in the choice of direction through

the search space. When a new nogood is discovered,

the existing partial order constrains how we are to in

terpret that nogood - roughly speaking, we are forced

to change the value of late variables before changing

the values of their predecessors. The use of a partial

order makes this constraint looser than previously, but

it is still present. In this section, we allow cycles in the

nogoods and safety conditions, thereby permitting ar

bitrary choice in the selection of the variable appearing

in the conclusion of a new nogood.

The basic idea is the following: Suppose that we have

introduced a loop into the variable ordering, perhaps

by including the pair of nogoods x —► ->y and y —► x.

Rather than rewrite one of these nogoods so that the

same variable appears in the conclusion of both, we

will view the (x,y) combination as a single variable

that takes a value in the product set Vx x Vy.

If i and y are variables that have been "combined" in

this way, we can to rewrite a nogood with (for exam

ple) i in its antecedent and y in its conclusion so that

both x and y are in the conclusion. As an example,

we can rewrite

x = vx A z = vz -» y / vy (4)

as

z = vz -» (x, y) ^ («x, vy) (5)

which is logically equivalent. We can view this as elimi

nating a particular value for the pair of variables (i, y).

Definition 6.1 Let S be a set of safety conditions

(possibly not acyclic). We will write x =s V if x <s y

and y <s x. The equivalence class of x under = will

be denoted (1)5. If 1 is a nogood whose conclusion in

volves the variable x, we will denote by js the result

of moving to the conclusion of 7 all terms involving

members of (x)s. If F is a set of nogoods, we will de

note by Ts is the set of nogoods of the form ~ys for

7er.

It is not difficult to show that for any set S of safety

conditions the relation =s is an equivalence relation.

As an example of rewriting a nogood in the presence
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of ordering cycles, suppose that 7 is the nogood (4)

and let S be such that {y)s = {x, y); now 7s is given

by (5).

Placing more than one literal in the conclusions of no-

goods forces us to reconsider the notion of an accept

able next assignment:

Definition 6.2 A cyclically acceptable next assign

ment for a nogood set V under a set S of safety con

ditions is a total assignment P of values to variables

satisfying every nogood in Ts and every antecedent of

every such nogood.

We now define a third dynamic backtracking proce

dure. Note that W(S, x) remains well defined even in

the case where S is not acyclic, since W(S,x) drops

ordering constraints only on variables y such that

x <s y-

Procedure 6.3 To solve a CSP:

P :— any complete assignment of values to variables

T := 0

5:=0

until either P is a solution or the empty

nogood has been derived:

7 := a constraint violated by P

(T,S) :=simp(r,S,7)

P : = any cyclically acceptable next assignment

for T under S

Procedure 6.4 To compute simp(r,5, 7):

select a conclusion for 7 (now an unconstrained choice)

r:=ru{7}

x := the variable in the conclusion of 7

remove from T each nogood with an element of (x)s

in its antecedent

S:= W{S,x)uSr

if the set of conclusions of nogoods in Ts rule out all

possible values for the variables in (x)s then

p := the result of resolving all nogoods in Ts whose

conclusions involve variables in (x)s

(T,S) :=simp(r,S,p)

end if

return (I\ S)

If the conclusion is selected so that S remains acyclic,

the above procedure is identical to the one in the pre

vious section.

Proposition 6.5 Suppose that we are working on a

problem withn variables, that the size of the largest do

main of any variable is v, and that we have constructed

T and S using repeated applications of simp. // the

largest equivalence class (x)s contains d elements, the

space required to store T is o(n2vd).

If we have an equivalence class of d variables each of

which has v possible values then the number of possi

ble values of the "combined variable" is vd. The above

procedure can now generate a distinct nogood to elim

inate each of the vd possible values, and the space

requirements of the procedure can therefore grow ex

ponentially in the size of the equivalence classes. The

time required to find a cyclically allowed next assign

ment can also grow exponentially in the size of the

equivalence classes. We can address these difficulties

by selecting in advance a bound for the largest allowed

size of any equivalence class. In any event, termination

is still guaranteed:

Theorem 6.6 Procedure 6.3 will always terminate in

at most

steps, where the product ranges over the variables in

the problem and |Vi| is the size of the domain for vari

able i.

Selecting a variable to place in the conclusion of a new

nogood corresponds to choosing a variable whose value

is to be changed on the next iteration and is analo

gous to selecting the variable to flip in GSAT. Since

the choice of conclusion is unconstrained in the above

procedure, the procedure has tremendous flexibility in

the way it traverses the search space. Like the proce

dures in the previous sections, Procedure 6.3 continues

to solve combinations of independent subproblems in

time bounded by the sum of the times needed to solve

the subproblems individually.

Here are these ideas in use on a Boolean CSP with the

constraints a —> b, b —> c and c —» -*b. As before, we

present a trace and then explain it:

a b c add to T remove from T

t f f a —> b 1

t t f b —» c 2

t t t c —» -16 3

-■a 4 1

a < b 5

The first three nogoods are simply the three con

straints appearing in the problem. Although the or-

derings of the second and third nogoods conflict, we

choose to write them in the given form in any case.

This puts 6 and c into an equivalence class. The no-

good (1) requires that the value taken by (6, c) be ei

ther (t,t) or (f.,/); the nogood (2) disallows (£,/) and

(3) disallows (t,t). It follows that the three nogoods

can be resolved together to obtain the new nogood

given simply by ->a. We add this as (4) above, drop

ping nogood (1) because its antecedent is falsified.
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7 EXPERIMENTAL RESULTS

In this section, we present preliminary results regard

ing the implemented effectiveness of the procedure we

have described. The implementation is based on the

somewhat restricted Procedure 5.6 as opposed to the

more general Procedure 6.3. We compared a search en

gine based on this procedure with two others, TABLEAU

Crawford and Auton,1993] and wsat, or "walk-sat"

Selman et a/., 1993]. TABLEAU is an efficient imple

mentation of the Davis-Putnam algorithm and is sys

tematic; WSAT is a modification to GSAT and is not.

We used WSAT instead of GSAT because wsat is more

effective on a fairly wide range of problem distributions

[Selman et at,1993].

The experimental data was not collected using the

random 3-SAT problems that have been the target

of much recent investigation, since there is grow

ing evidence that these problems are not repre

sentative of the difficulties encountered in practice

[Crawford and Baker, 1994]. Instead, we generated our

problems so that the clauses they contain involve

groups of locally connected variables as opposed to

variables selected at random.

Somewhat more specifically, we filled annxn square

grid with variables, and then required that the three

variables appearing in any single clause be neighbors

in this grid. Lisp code generating these examples ap

pears in the appendix. We believe that the qualitative

properties of the results reported here hold for a wide

class of distributions where variables are given spatial

locations and clauses are required to be local.

The experiments were performed at the crossover point

where approximately half of the instances generated

could be expected to be satisfiable, since this ap

pears to be where the most difficult problems lie

[Crawford and Auton,1993]. Note that not all in

stances at the crossover point are hard; as an exam

ple, the local variable interactions in these problems

can lead to short resolution proofs that no solution

exists in unsatisfiable cases. This is in sharp contrast

with random 3-SAT problems (where no short proofs

appear to exist in general, and it can even be shown

that proof lengths are growing exponentially on av

erage [Chvatal and Szemeredi,1988]). Realistic prob

lems may often have short proof paths: A particular

scheduling problem may be unsatisfiable simply be

cause there is no way to schedule a specific resource

as opposed to because of global issues involving the

problem in its entirety. Satisfiability problems arising

in VLSI circuit design can also be expected to have

locality properties similar to those we have described.

The problems involved 25, 100, 225, 400 and 625 vari

ables. For each size, we generated 100 satisfiable and

100 unsatisfiable instances and then executed the three

procedures to measure their performance. (Wsat was

not tested on the unsatisfiable instances.) For WSAT,

we measured the number of times specific variable val

ues were flipped. For PDB, we measured the number of

top-level calls to Procedure 5.7. For tableau, we mea

sured the number of choice nodes expanded. Wsat

and PDB were limited to 100,000 flips; TABLEAU was

limited to a running time of 150 seconds.

The results for the satisfiable problems were as fol

lows. For TABLEAU, we give the node count for suc

cessful runs only; we also indicate parenthetically what

fraction of the problems were solved given the compu

tational resource limitations. (Wsat and PDB success

fully solved all instances.)

Variables PDB WSAT TABLEAU

25 35 89 9 (1.0)

100 210 877 255 (1.0)

225 434 1626 504 (.98)

400 731 2737 856 (.70)

625 816 3121 502 (.68)

For the unsatisfiable instances, the results were:

Variables PDB TABLEAU

25 122 8 (1.0)

100 509 1779 (1.0)

225 988 5682 (.38)

400 1090 558 (.11)

625 1204 114 (.06)

The times required for PDB and wsat appear to be

growing comparably, although only PDB is able to solve

the unsatisfiable instances. The eventual decrease in

the average time needed by TABLEAU is because it is

only managing to solve the easiest instances in each

class. This causes it to become almost completely in

effective in the unsatisfiable case and only partially

effective in the satisfiable case. Even where it does suc

ceed on large problems, tableau's run time is greater

than that of the other two methods.

Finally, we collected data on the time needed for each

top-level call to simp in partial-order dynamic back

tracking. As a function of the number of variables in

the problem, this was:

Number of PDB WSAT

variables (msec) (msec)

25 3.9 0.5

100 5.3 0.3

225 6.7 0.6

400 7.0 0.7

625 8.4 1.4

All times were measured on a Sparc 10/40 running un-

optimized Allegro Common Lisp. An efficient C imple

mentation could expect to improve either method by

approximately an order of magnitude. As mentioned

in Section 5, the time per flip is growing sublinearly

with the number of variables in question.
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8 CONCLUSION AND FUTURE

WORK

Our aim in this paper has been to make a primar

ily theoretical contribution, describing a new class of

constraint-satisfaction algorithms that appear to com

bine many of the advantages of previous systematic

and nonsystematic approaches. Since our focus has

been on a description of the algorithms, there is obvi

ously much that remains to be done.

First, of course, the procedures must be tested on

a variety of problems, both synthetic and naturally

occurring; the results reported in Section 7 only

scratch the surface. It is especially important that

realistic problems be included in any experimental

evaluation of these ideas, since these problems are

likely to have performance profiles substantially dif

ferent from those of randomly generated problems

[Crawford and Baker, 1994]. The experiments of the

previous section need to be extended to include unit

resolution, and we need to determine the frequency

with which exponential space is needed in practice by

the full procedure 6.3.

Finally, we have left completely untouched the ques

tion of how the flexibility of Procedure 6.3 is to be ex

ploited. Given a group of violated constraints, which

should we pick to add to T? Which variable should

be in the conclusion of the constraint? These choices

correspond to choice of backtrack strategy in a more

conventional setting, and it will be important to un

derstand them in this setting as well.

A PROOFS

Proposition 3.4 Any acceptable set of nogoods can

be stored in o(n2v) space where n is the number of

variables and v is the maximum domain size of any

single variable.

Proof. This can be done by first storing the partial

assignment encoded in T using o(n) space. The an

tecedent of each nogood can now be represented as a

bit vector specifying the set of variables appearing in

the antecedent, allowing the nogood itself to be stored

in o(n) space. Since no two nogoods share the same

conclusion there are at most nv nogoods. ■

Lemma 5.5 For any set S of safety conditions, vari

able x and total order < consistent with the safety con

ditions in W(S,x), there is a total order consistent

with S that agrees with < through x.

Proof. Suppose that the ordering < is given by

xi < • • • < Xfc = x < yi < • • • < ym (6)

Now let <' be any ordering consistent with 5, and

suppose that the ordering given by <' on the yi in (6)

is

zi<' •••<' zm

We claim that the ordering given by

Xl, ■ • ■ ,Xfc =X,Zi,...,Zm (7)

is consistent with all of S. We will show this by show

ing that (7) is consistent with any specific safety con

dition u < v in S.

If both u and v are x/s, then the safety condition u < v

will remain in W(S,x) and is therefore satisfied by (7).

If both u and v are Zj's, they are ordered as u < v by

<' which is known to satisfy the safety conditions in

5. If u is an Xj and v is a zj, u < v clearly follows

from (7).

The remaining case is where u = Zi and v = Xj for

some specific z< and Xj. The safety condition Zi < Xj

cannot appear in W(S,x), since it is violated by < in

(6). It must therefore be the case that either Zi >s x

or Xj >s x. Since the safety condition Xj > Z{ is

being assumed to appear explicitly in S, it follows that

Xj >s x. But now W(S,x) will include the safety

condition Xj > x, in conflict with the ordering given

by (6). This contradiction completes the proof. ■

Theorem 5.9 // (T,S) is an acceptable pair, 7 is a

nogood that violates some acceptable next assignment

forT, and (T',S') = simp(r, 5, 7), then m(T',S') is

lexicographically smaller than m(t,S). Hence Proce

dure 5.6 will always terminate in at most

steps, where the product ranges over the variables in

the problem and | Vj| is the size of the domain for vari

able i.

Proof. Let x be the variable in the conclusion of

7. The first nontrivial step of the procedure simp is

T := ru{7}. This reduces |x|r- The next step removes

from T all nogoods with x in the antecedent. For some

variables y with x <s y this allows |y|r to increase.

The next step is 5 := W(S,x) U 5r. This introduces

new orderings. Let < be any total ordering consis

tent with W(S,x) U Sr- Since < is consistent with

W(S, x) there must exist a total ordering <' which is

consistent with S such that < and <' agree through

x. Since |x|r has been reduced, and |y|r has increased

only for variables y such that x <s y, the tuple asso

ciated with < must be lexicographically smaller then

the tuple associated with <' at the time the proce

dure was called. This implies that all tuples allowed

after S := W(S,x) U Sr are lexicographically smaller

than some tuple allowed at the beginning of the sim

plification. All tuples after the update are therefore

smaller than the maximal tuple before the update. If

the simplification performs a resolution and executes

a recursive call, then that recursion must continue to

decrease the maximum tuple. ■
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Proposition 6.5 Suppose that we are working on a

problem with n variables, that the size of the largest do

main of any variable is v, and that we have constructed

T and S using repeated applications of simp. // the

largest equivalence class (x)s contains d elements, the

space required to store T is o(n2vd).

Proof. We know that the nogood set will be acyclic if

we group together variables that are equivalent under

<r- Since this results in at most d variables being

grouped together at any point, the maximum domain

size in the reduced problem is vd and the maximum

number of nogoods stored is thus bounded by nvd. As

previously, the amount of space needed to store each

nogood is o(n). ■

Theorem 6.6 Procedure 6.3 will always terminate in

at most

steps, where the product ranges over the variables in

the problem and \ Vi\ is the size of the domain for vari

able i.

Proof. The proof is essentially unchanged from that

of Theorem 5.9; we provide only a sketch here. The

only novel features of the proof involve showing that

the lexicographic size falls as either variables in an

equivalence class are combined into a single one or an

equivalence class is broken so that the variables it con

tains are once again handled separately. In order to

do this, we extend Definition 5.8 to handle equivalence

classes as follows:

Definition A.l Given a set of safety conditions S

and a fixed variable ordering xi < x-i < ■ ■ ■ < x„

that respects <s, let \\xi\\ be given by

iu II J1' ifxi=xi+i;

" <ll= inv€<*>sMr, otherwise. (8)

Now denote by rh(r, S, <) the tuple (||ii||, . . . , H^nlD-

We will denote by m(r, S) that tuple which is lexico

graphically maximal as < is allowed to vary.

This definition ensures that the lexicographic value

decreases whenever we combine variables, since the

remaining choices for the combined variable aren't

counted until the latest possible point. It remains to

show that the removal of nogoods or safety conditions

does not split an equivalence class prematurely.

This, however, is clear. If removing a nogood with con

clusion involving variable z causes two other variables

yi and y? to become not equivalent, it must be the case

that 2/i=t/2 = z before the nogood was removed. But

note that when the nogood is removed, we must have

a variable x' S (x)s in the antecedent of the nogood,

so that x = x' <r z. It follows that progress has been

made on a variable preceding z and there is no harm

in splitting z's equivalence class. ■

Experimental code Here is the code used to gen

erate instances of the class of problems on which our

ideas were tested. The two arguments to the proce

dure are the size s of the variable grid and the number

c of clauses to be "centered" on any single variable.

For each variable x on the grid we generated either

[cj or [cj 4- 1 clauses at random subject to the con

straint that the variables in each clause form a right

triangle with horizontal and vertical sides of length 1

and where x is the vertex opposite the hypotenuse.

There are four such triangles for a given x. There are

eight assignments of values to variable for each trian

gle giving 32 possible clauses. Our Common Lisp code

for generating these 3-SAT problems is given below.

Variables at the edge of the grid usually generate fewer

than c clauses so the boundary of the grid is relatively

unconstrained.

(defun make-problem (s c ftaux result xx yy)

(dotimes (x s)

(dotimes (y s)

(dotimes (i (+ (floor c)

(if (> (random 1.0)

(rem c 1.0))

0 1)))

(setq xx (+ x -1 (* 2 (random 2)))

yy (+ y -1 (* 2 (random 2))))

(when (and (< -1 xx) (< xx s)

(< -1 yy) (< yy s))

(push (new-clause x y xx yy s)

result)))))

result))

(defun new-clause (x y xx yy s)

(mapcar

#' (lambda (a b fcaux (v (+ 1 (* s a) b)))

(if (zerop (random 2)) v (- v))))

(list x xx x) (list y y yy))
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Abstract

In this paper, we present an analysis of plan

ning with uncertain information regarding

both the state of the world and the effects

of actions using a Strips- or (propositional)

ADL-style representation [4, 17]. We provide

formal definitions of plans under incomplete

information and conditional plans, and de

scribe PLINTH, a conditional linear planner

based on these definitions. We also clarify

the definition of the term "conditional ac

tion," which has been variously used to de

note actions with context-dependent effects

and actions with uncertain outcomes. We

show that the latter can, in theory, be viewed

as a special case of the former but that to do

so requires one to sacrifice the simple, single-

model representation for one which can dis

tinguish between a proposition and beliefs

about that proposition.

1 INTRODUCTION

In this paper, we present an analysis of planning with

uncertain information regarding both the state of the

world and the effects of actions. Our focus on planning

leads us to limit the expressive and inferential power

of the formal systems we consider in the interests of

efficiency. We do not develop with a full theory of

knowledge and action of the sort which has concerned,

e.g. Moore [13], Konolige [7], Haas [6], or Morgen-

stern [14]. In particular, we do not address what Mor-

genstern calls knowledge preconditions for actions and

plans: determining when one knows enough to perform

an action or successfully execute a plan, respectively.

We are concerned only with taming uncertainty about

the results of actions or uncertainty about the state of

the world in the process of planning with a Strips- or

(propositional) ADL-style representation [4, 17]. For

the sake of computational efficiency, we restrict our

selves to a single model of the world, representing

Mark S. Boddy

Honeywell Technology Center

MN 65-2200

3660 Technology Drive

Minneapolis, MN 55418

boddy@src.honeywell.com

the planner's state of knowledge, rather than a more

complex formalization including both epistemic and

ground formulas. Our goal in this investigation is an

increased understanding of conditional plans: plans in

which the course of events is dictated by the actual

outcome of actions whose effects cannot be predicted

a priori [19, 5].

We clarify the definition of the term "conditional ac

tion." This term has been variously used to denote ac

tions with context-dependent effects and actions with

uncertain outcomes. We show that the latter can, in

theory, be viewed as a special case of the former. How

ever, we also show that to do so requires one to sac

rifice the simple, single-model representation for one

which can distinguish between a proposition and be

liefs about that proposition. Using this definition, we

provide formal definitions of plans under incomplete

information and conditional plans.

Section 2 provides some preliminary definitions used

in the rest of the paper. Section 3 presents an exten

sion of STRIPS-rule planning to handle cases where the

planner has only a partial model of the initial situa

tion, and in which (a restricted kind of) information

may be gained and lost through actions. We extend

the Strips add and delete lists to include three truth

values of true, false and unknown, losing in the pro

cess the use of negation- as-failure over the propositions

that hold in a given situation. The primary limitation

of this framework is that it assumes that the plan

ner has sufficient knowledge to completely predict the

outcomes of its actions — although one effect of these

actions may be to forfeit information. There is no

provision for actions with unpredictable outcomes. In

Section 5 we remedy this omission, building on the

conditional planning work of Peot and Smith.

Following this, we contrast conditional actions with

context-dependent actions (Section 7). We show some

problems with using context-dependent actions for

planning under conditions of partial information. Fi

nally, we compare our work with other work in the

area, and present a summary and conclusions.
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2 PRELIMINARY DEFINITIONS

We start with a set of propositions, {Pi} = V. We

define a model, M of V, as a triple, (T, F, U) which

is a partition of the propositions of V into statements

which are true, false and unknown, respectively. A

partial model is a triple {T, F, U) where T, F and U are

disjoint subsets of V. A model M = (Tm, Fm, Um)

is an extension of a partial model r = (7V, F,, {/») if

T, C TM, F„ C Fm and UT C UM- In the interests

of brevity, we speak of a model M which extends a

partial model jt as satisfying or entailing it: h a-.

We define a set of operators, O, similar to STRIPS

operators. Operators are defined as ordered pairs

0 = (Po, Eo), where Po (the preconditions of O) and

Eo (the postconditions of 0) are both partial models.

An operator 0 defines a partial function from models

to models. The function is partial because fa may

only be applied to a model M which is an extension

of Po- the action represented by O may only be taken

in a state where O's preconditions are satisfied.

One could extend the operators to be total functions

from models to models by defining fo(M) = (0,0, T*)

for any M that does not satisfy the preconditions of

O. As there is little reason to plan to achieve complete

ignorance, it makes more practical sense to insist that

actions only be performed when their preconditions

are satisfied.

We refer to models which entail Po as satisfying the

preconditions of O. For any operator O with effects

Eo — (Te, Fe,Ue) and model M satisfying the pre

conditions of 0, the corresponding function, fo(M) is

defined as follows:

/ (TM -(FeUUe))UTe, \

f0(M) = ( (Fm-(TbUUe))UFe, )

\ (Um-(TeUFe))\JUe I

This definition generalizes the STRIPS assumption

to a three-valued logic. For a (possibly partial)

model M, let true(Al) = TM, false(Af) = FM

and unk(A4) = Um- Additionally, for an operator

0 = (P0,(T0,F0,U0)), let precond(O) = P, (a par

tial model) and affected(O) = T0 U F0 U U0 (a set of

propositions).

Note that the U sets represent lack of knowledge on

the part of the agent while the plan is being executed,

rather than the state of knowledge of the planner while

it is constructing the plan. For example, a regression

planner like McDermott's PEDESTAL [10] will not, in

general, project the full state of the world after one of

the steps of its plan is done. The planner cannot afford

to compute this complete knowledge; it only commits

to the truth value of propositions which are needed

to ensure that its plan will be successful. However,

Pedestal's completed plan could be used to project

a series of complete truth assignments to the proposi

tions describing the world. Once the plan is complete,

all uncertainty has been banished. This is not the case

in our framework.

3 THE SIMPLE PLANNING

PROBLEM

A planning problem is a pair (G, S) where G is the goal

of the planning problem and S is the initial state. The

initial state 5 is a complete (i.e., not partial) model of

V, while the goal G is a partial model. The solution

of a planning problem is a plan whose result satisfies

G. In the following paragraphs we describe the result

of a plan and how such a plan may be derived.

Following Lifschitz [9], we define a sequence of actions,

or plan, as a = (a\, arjv). Assuming that this se

quence of actions starts in initial situation Mo, we say

the plan is accepted by Mo iff there exists a sequence

of models Mi-.-Mn such that

Vi, l<i<N, fai(Mi-i) = Mi and

Mi-i h precond(a,)

We refer to Mn as the result of the plan a.

4 REGRESSION

Regression [24] can be described informally as reason

ing backward from the desired effects of an action to

what had to be true when the action was executed.

One rationale for regression was the need to prove that

plan steps used to achieve one goal would not clobber

another goal of the same plan. Waldinger suggested a

further use for regression: to determine where a step

should be added to a linear plan. If a precondition of a

new step is threatened by an existing step, put the af

fected step before the offender, and then protect that

precondition (i.e., use regression to ensure that any

further additions to the plan leave it unchanged). This

is the way regression is employed in Pedestal [10].

In STRIPS-rule planners, regression only requires ver

ifying that the proposition does not unify with the

results of a given operator. Since those results are by

definition the sole effect, known or unknown, of apply

ing that operator, the proposition is unaffected by the

action. Adding context-dependent effects as in ADL

[17] complicates matters. Instead ofjust verifying that

an operator will not affect a given proposition, regres

sion involves deriving the conditions under which the

operator will not affect that proposition.

Pednault[17] gives the conditions under which a propo

sition, p, will hold after the execution of an action a

(for the prepositional case) as follows:

I(a,p) = ca V(pA-.da)

where ca is the condition under which p is on a's add

list and da is the condition under which p is deleted by
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a. More precisely p will hold after act a is performed

iff I(a,p) holds before a is performed:

fa(M)\-p = M\-I(a,p)

Regression for the operators described here is some

what more complex; our use of three truth values pre

cludes use of the excluded middle, which can otherwise

be used to good effect in simplifying the computation

of causation and preservation preconditions. For the

language described above, the regression operators are

as follows (for p meaning p is true, p meaning p is false

and p meaning p is unknown):

7(a,p) = (p A p £ afTected(a)) V p G true(a)

J(a,p) = (p A p 0 affected (a)) Vp E false(a)

7(a,p) = (pAp £ affected (a)) Vp € unk(a)

The regression operator I(a,p) may be interpreted as

"p will be true following a," and similarly for the other

truth values.

5 ACTIONS WITH UNCERTAIN

OUTCOMES

In their paper on conditional non-linear planning [19],

Peot and Smith extend the Strips model of actions to

include actions whose outcomes are uncertain. They

use these conditional actions to model observation ac

tions. In this section, we extend our operator repre

sentation to include conditional actions and provide

regression operators for them.

The operator semantics we have defined thus far is

insufficient to model the use of observation to gain

information. Information may be "gained" in a way

analogous to the use of compliant motion for robots:

operators may be selected in such a way as to reduce

the set of unknown propositions whatever the initial

state (e.g., ram into the wall as a way of reducing

uncertainty in your position).1

The problem is that there is no way to describe an ac

tion with uncertain effects. Different effects must be

the result of different operators or the same operator

with context-dependent effects in different states. As

long as the initial state 5 is a complete model, obser

vations cannot be modelled in this way, because the

resulting state is completely determined by the state

in which the observation occurs.

Peot and Smith's operators are pairs O = (Po,Oo)-

As before, Po, the set of preconditions, is a partial

model. Oo is a set of mutually exclusive and exhaus

tive possible outcomes when an action of type O is per

formed (i.e., exactly one of the outcomes will be the re

sult of the action). Each outcome is a pair of the form

'This is the way that Buridan handles uncertainty [8].

(ati,Eai). The a.-'s are unique identifiers for outcomes.

Let us define Olabels(0) = (J,- a,- (for the sake of tidi

ness, we require the Olabels sets for different operators

to be disjoint). If O is not a conditional operator, then

Olabels(0) = {±}. Eai = (T0,ai,Fo,ai,Uo,ai) is a

partial model describing the effects of O in the event

of outcome a,-.

We define a new set of partial functions f'0

Olabels(0) x M *-* M to describe the effects of the

new operators. If an action of type O is performed

in state M = (Tjw, Fm, Um) (which satisfies Po) and

outcome ctj occurs, the effect will be

/ (TM-(Fo,aiUUo,ai))UTo,ai, \

M' = ( (FM-iTo.OiUUo.aMUFo,^, )

\ (UM - (To,ai U Fo,ai)) U U0,Oi /

That is, f'o(a\fM) = M.' . For actions that are not

conditional, we define /o(-L,,M) = fo(M). The

(partial) functions f0 : Olabel(0) x M i-» M may

be mapped straightforwardly to a (still partial) func

tion / : O x Olabels x M *-* M, where Olabels =

lj0e0 Olabels{0).

We extend our definition of action sequences, given in

section 3 to sequences of action, outcome pairs. Sim

ilarly, we may extend our earlier definitions of regres

sion operators to:

I(a, a,p) = (pAp £ affected (a, a)) Vp € true(a, a)

/(a,a,p) = (p Ap £ affected(a,a)) Vp € false(a, a)

I(a,a,p) = (p Ap £ affected (a, a)) Vp 6 unk(a,a)

The conditional actions permit us to describe observa

tion operators. For example, we might want to have a

planner which is able to find out what the weather is

and plan travel accordingly:

listen to weather report

preconditions: at(home), unknown(storm)

Olabels effects

a2

storm

not(storm)

Note that it is the need to properly formalize obser

vation operators which forces the third truth value on

us. We must insist that unknown(storm) be a precon

dition of this operator in order that the planner not

construct a pathological plan in which it keeps observ

ing the weather over and over again until it gets an

observation it likes.

Conditional operators may be used for uncertain ac

tions other than observations. In domains in which

actions are fallible, conditional operators allow us to

build planners which can plan for contingencies in

which actions fail to achieve desired effects. For ex

ample, in an image-processing domain, one may have

a number of possible operations that can remove noise

from an image. These operations are fallible; they do
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not always succeed in cleaning up the target image. If

we describe these operations as conditional actions, we

can build plans in which either the operation succeeds,

or we must take other, additional actions to clean up

the image.

This representation of conditional actions makes it

cumbersome to represent and reason about effects that

are common to all outcomes of a given operator. One

might revise the representation to make this easier,

but we do not believe it would repay the effort. In

general, conditional actions will be introduced into a

plan in the interest of varying outcomes. To take Peot

and Smith '8 example, one might introduce an obser

vation action to determine the state of a road between

two points. One would be unlikely to do so simply to

expend time (Peot 2 calls for conditional plans to be

"without augury").

We view conditional action sequences as action se

quences which branch forward in time. A conditional

sequence is a tree, each of whose nodes corresponds to

an action (an instance of an operator). Each edge in

the tree will be labeled with an outcome label of the

action at the tail of the edge.

More formally, a conditional sequence, C C

{(n,l,n')\n,n' € uid(C),/ € Olabels(op(n))} . uid(C)

is a set of unique identifiers for acts in the conditional

sequence C. op is a function mapping uids of acts to

the operator of which the act is an instance.

In order to be nonredundant, a conditional sequence

must have only one triple (n, /, n') for every pair (n, /).

Unconditional sequences may be drawn from a con

ditional sequence. Each such unconditional sequence

is a rooted path through the tree C. That is,

an unconditional sequence, V is written as V =

ni,/i)...(njv,/jv) where there must exist an edge

nj,/j,n,-+i) 6 C and where f»i = root(C). In order

to be well-formed, an unconditional sequence starting

in an initial state Mo must meet the following condi

tions:

1. /(op(nj), Mi-uh) = Mi for all l<i<N.

2. Mi-i r- precond(op(ni)) for all 1 < t < N.

We define result(T') = Mft. An uncondi

tional sequence is complete if it is a path V =

(ni,/i)...(n;v,/tf) for nN G leaves(C).

In order for a conditional sequence, C to be well-

formed, it must be non-redundant and every uncon

ditional path contained in C must be well-formed. In

order to be complete, a conditional sequence must

be well-formed and have an out-edge for every pair

(n,/) for n an interior (non-leaf) node and / an el

ement of Olabels(op(n)) where n corresponds to an

instance of operator o. A conditional sequence C is

2 Personal communication.

a complete conditional plan for the planning problem

(Mo,G,0) if C is complete and for all complete paths

V = (m.fi) ■ • In) in C, result(7>) h Q.

6 CNLP AND PLINTH

In this section we briefly discuss two recently-

developed conditional planners. The first, CNLP, is

a non-linear conditional planner for which conditional

actions were developed; our original intent in this re

search was to clearly understand CNLP. In the course

of our investigations, we came to suspect that the case

for non-linear planning was less strong for conditional

planning than conventional, "classical" planners. The

second planner we discuss here, PLINTH, is a linear

conditional planner which we have developed to in

vestigate the efficiency tradeoffs between linear and

nonlinear approaches to conditional planning.

Peot and Smith's CNLP [19] is a conditional, nonlinear

planner based on Rosenblitt and MacAllester's SNLP.

Like SNLP, Cnlp constructs its plans by a series of

interleaved goal satisfaction and threat removal oper

ations. Cnlp differs in adding conditional actions like

those described here.

Cnlp augments the Snlp algorithm to accomodate

conditional actions. The labels of conditional out

comes are propagated along causal and conditioning

links in the plan graph to record to which branch of

the plan each action belongs. These conditioning links

are added by a new threat-removal operation, "con

ditioning apart," which is used to assign steps to dif

ferent contexts. Effectively one resolves a threat to a

given step by adding a constraint that the threatener

and the threatened step not both be part of the same

branch of the plan. As of yet no results have been

published concerning the soundness and completeness

of Cnlp.

Given the current prevalence and popularity of non

linear planning, our decision to construct a linear con

ditional planner may require some explanation. In

conventional, "classical" planning applications, non

linear planning is usually an improvement over linear

planning because fewer commitments yields a smaller

search space, at a relatively minimal added cost to

explore each element of that search space [12]. How

ever, it is not clear that this tradeoff operates in the

same way for conditional planners. When plans have

multiple branches, the savings from considering fewer

orderings is likely to be much less and may not repay

the cost in the added complexity of individual plan

expansion actions. In particular, the domain in which

we have applied PLINTH is one in which subgoal inter

actions are minor, and thus in which a linear planner

can be effectively employed. Conditional linear plan

ning is simpler in conception as well as in implemen

tation. In particular, our conditional linear planner

can be shown to be sound and complete; we do not

s
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yet know of a sound and complete conditional non

linear planner. Finally, the operation which is needed

to properly construct branching non-linear plans —

resolving clobberers through conditioning apart — is

a very difficult operation to direct.

Plinth's conditional linear planning algorithm is non-

deterministic and regressive.3 Plans are built by ma

nipulating three important data structures: a partial

plan, a set of protections and a set of as-yet-unrealized

goals. The planner operates by selecting an unrealized

goal and nondeterministically choosing an operator to

resolve that goal while respecting existing protections.

New goals may be introduced when steps are intro

duced, either to satisfy preconditions or to plan for

contingencies introduced by conditional actions. Es

sentially this algorithm is the same as that of a con

ventional linear planner. The crucial difference is in

the effect of adding a conditional action to the plan.

When adding a conditional action, A, there will be

some outcome, O, such that A — O will establish the

goal literal (otherwise A would not have been chosen

for insertion). This outcome will establish what one

can think of as the "main line" of the plan. However,

there will also be some set of alternative outcomes,

{Oi}. In order to derive a plan which is guaranteed

to achieve the goal, one must find a set of actions

which can be added to the plan such that the goals

are achieved after A — Oi. for all i. This is done by

adding new goal nodes to the plan, which are made

successors of the other outcomes. The planner will

now plan to realize these other goals as well as the

"main-line'' goal. Note that actions to handle alterna

tive outcomes may be added either before or after the

relevant conditional action. Loosely speaking, we can

add to our conditional plans either remedial actions or

precautionary actions.

PLINTH is described in greater detail elsewhere [5]. We

have demonstrated that the algorithm is sound and

complete. The algorithm has been implemented in

Quintus Prolog. The implementation uses a depth-

first iterative-deepening search strategy so it preserves

the theoretical properties of soundness and complete

ness (up to hardware limitations). Plinth is be

ing applied to planning image processing operations

for NASA's Earth Observing System, in collaboration

with Nick Short, Jr. and Jacqueline LeMoigne-Stewart

of NASA Goddard.

7 UNCERTAINTY AND

SECONDARY PRECONDITIONS

In his work on Adl [15, 17], Pednault introduces op

erators which have context-dependent effects. This

might seem to be an attractive method to represent

3Our development of the algorithm was inspired by Mc-

Dermott's linear planner Pedestal [10], hence the name.

problems of planning under incomplete information.

For example, one attempt at representing an observa

tion operator is the following:4

Check the road from ?x to ?y.

observe(clear(?x,?y))

preconditions: at(?x), unknown(clear(?x,?y))

effects: clear(?x,?y) ♦— clear(?x,?y)

not clear(?x,?y) «— not clear(?x,?y)

For those not familiar with Adl: Adl operators are

akin to STRIPS operators, but their preconditions are

partitioned. Strips preconditions are conditions un

der which the operator can be performed. If the pre

conditions do not hold when the operator is to be

performed, the plan is ill-formed. Adl departs from

Strips in allowing one to attach additional conditions

to the individual effects of operators. For example, one

could formalize the action of crossing a bridge by truck

as having the preconditions of being at the bridge and

in a truck. There might be two possible effects: being

on the other side of the bridge, which has as additional

precondition that the bridge is sound; and being in

the ravine below, which has as additional precondition

that the bridge is not sound. We indicate additional

preconditions using the "backward chaining arrow,"

*—. Note that the original Adl syntax uses add lists

and delete lists; we use effects instead in the interests

of a consistent notation within the body of this paper.

One problem with this representation is apparent in

the observation operator given above. Each of the ef

fects has itself as additional precondition! The reason

for this paradoxical situation is that planning under

uncertainty in this way violates an common planning

assumption: that we can treat the planner's model of

the world and the state of the world as interchange

able. To handle observations properly, we need to be

able to represent and reason about both the state of

the world (the road is clear, so when we look, we will

find it so) and the planner's state of knowledge (the

observation operator makes sense because the planner

doesn't know whether the road is clear).

A related problem is that this formalization leads us to

an unrealistic model for planning. The obvious way to

use an operator like the above is to insert it into one's

plan and then continue planning in two contexts: one

where the road is clear and one where it is not. But

note an undesirable feature of these two contexts: in

each of them the road not only is clear, but has always

been clear, and the planner should know this. As in

the famous problem of Schrodinger's cat, performing

the observation seems to cause the entire history of

the world to change. Closer to home, this paradox

is akin to McDermott's "little Nell" problem [11], in

which planning to prevent an action seemed to make

planning to prevent it unnecessary. Without explicit

4 We have tried to follow Pednault's notation fairly

closely.
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representation of belief, ground truth and the relations

between them, it is impossible to model the acquisition

of information with only deterministic operators.

8 CASSANDRA

Cassandra is a conditional nonlinear planner that uses

secondary preconditions for planning under uncer

tainty [20]. In order to encode uncertainty, certain

actions are given secondary preconditions which are

unknowable; Cassandra must plan to gain information

about these unobservable pseudo-propositions. Read

ing about Cassandra bears out our conclusions above

about the drawbacks of secondary preconditions for

encoding uncertainty.

Cassandra is built on top of the nonlinear planner

Ucpop [18]. Ucpop is sound and complete, and uses

Pednault's ADL for its action representation. In Cas

sandra, rather than positing conditional actions like

those described here, uncertain outcomes are captured

by giving actions secondary preconditions which are

"unknowable." These unknowable preconditions have

multiple outcome labels, like our outcome labels, and

like our outcome labels are mutually exclusive and

exhaustive. Instead of branching at conditional ac

tions, Cassandra plans branch at decisions. Decisions

contain condition-action rules which specify the condi

tions under which the planner should conclude that a

given outcome has occurred. When the plan is ex

ecuted, the execution monitor should perform only

those actions labeled consistently with the outcomes

of its decisions. These decision rules provide a mecha

nism for relaxing an assumption common to both cnlp

and PLINTH: that the outcomes of conditional actions

are always known.

While we find Cassandra's model of uncertainty at

tractive, it appears to require more expressive power

than its ADL action representation provides. It is

consequently difficult to say exactly what Cassandra's

plans mean. In particular, Cassandra's decisions and

their knowledge preconditions cannot be expressed in

ADL. Cassandra's decisions have preconditions of the

form "knowif(proposj<jon)," but such preconditions

are beyond its expressive capacity; Cassandra, like the

other planners described here, appears to make no dis

tinction between truth in the world and the planner's

beliefs about the world. Accordingly, there can be no

satisfactory ADL representation for actions which col

lect information, as we have argued in the previous

section.

9 INFORMATION-GATHERING

ACTIONS

Recent work on planning under uncertainty done at

the University of Washington has brought to the fore

a number of issues concerning information-gathering

actions [2]. In particular, the UW group has shown

that planners must be able to distinguish goals of

information-gathering from other goals of achieve

ment. They provide the following persuasive example:

Suppose that the planner is told that the hid

den treasure it is seeking is located behind

"the blue door." Painting a door blue does

not satisfy the goal of finding "the blue door"

— it merely obscures the identity of the ap

propriate door. [2, p. 116]

In order to capture the distinc

tion between information-gathering goals and achieve

ment goals, the Uwl planning language provides goal

annotations: satisfy, hands-off and find-out. Sat

isfy goals are to be achieved as normal planner goals.

Hands-off goals, on the other hand, are restricted to

information-gathering. If the planner has a goal an

notated with (hands-off P), it must achieve its other

goals without affecting the truth value of P. Finally,

(find-out P) goals are a hybrid — the planner should

prefer to simply observe the truth or falsehood of P,

but if the planner must change the value of P for some

other reason, that is acceptable. The UW group has

developed a conditional planner, SENSp, for UWL, in

which the process of matching pre- and post-conditions

is altered in order to handle these annotations.5

As far as we can tell, the hands-off and find-out

goals are similar encodings of radically different phe

nomena. The hands-off goals are apparently only a

special class of preservation goals. They appear differ

ent because conventional planning languages are not

expressive enough to say "maintain the truth value of

P, whatever it may be now." and to permit observation

of P without modification. Within our framework, we

capture this restriction by ruling out the use of oper

ators which would change the truth value of P over

part or all of a given plan. We do so by ruling out all

operators O such that

P e affected (O) A P g precond(O)

That is, any operator whose use affects the truth value

of P with the exception of those operators that sim

ply inform us whether or not P holds. That is the

condition captured by the second conjunct of the con

dition above: observation operators are those that set

(reveal) the value of P and that require that the value

of P be unknown beforehand. Once the truth value

of P has been determined (either given in the initial

conditions or established by observation), we may use

the conventional planning technique of protecting P,

rather than the criterion above.

*In personal communication, Etzioni reports that two

further planners based on the UWL language have been

developed since this paper was drafted, both nonlinear and

interleaving planning and execution.
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The find-out goals, on the other hand, do not deter

mine what constitutes a plan that satisfies the specified

goals. Rather, they specify a preference over different,

but equally valid, plans. This insight suggests that

the somewhat cumbersome criterion for satisfaction of

find-out goals [2, p. 119] might be removed, with

the associated preference being expressed instead in

the cost function over operators. In most cases, the

cost of observations should be lower than the cost of

achievement. There are three advantages to factor

ing this concern into the cost function: first, we avoid

further complication of the planning problem; second,

the cost information may more readily be used in plan

ning search than the find-out criterion and third, the

cost mechanism allows us to capture a wider range of

tradeoffs.

Distinguishing these two annotations as different phe

nomena within our framework allows us to consider

ably simplify their treatment, hands-off goals can be

enforced using a slight variation on protection assump

tions or preservation preconditions, while find-out an

notations are reflected in the planner's search control

mechanism.

Note Recent exchanges reveal that in new versions

of Uwl the find-out annotation has been revised from

"satisfy without altering if possible" to "satisfy with

out altering."6 Our criticisms above apply only to the

currently-available paper on Uwl [2].

10 OTHER RELATED WORK

Early work on modeling knowledge in AI systems by

Moore [13], Haas [6] and Konolige [7] provides a dif

ferent view on modeling knowledge for planning sys

tems. This early work was primarily concerned with

modeling knowledge, rather than the development of

planning algorithms. More recent work by Morgen-

stern [14] and Scherl and Levesque [22] brings such

work much closer to the point of constructing work

ing planners. However, these representations are still

far more complex than those used by most working

planners. In particular, they require the use of com

plex logical machinery (string manipulations or modal

logics) in order to capture the distinction between be

liefs and the state of the world. We have attempted to

maintain the simplicity of existing approaches and, in

particular, maintain the single model approach.

11 POSSIBLE EXTENSIONS

Our extension to the use of a third truth value is in

tended to model lack of knowledge about a proposi

tion. Another use for three-valued logics has been to

allow truth-functional treatment of statements which

are meaningless [23], particularly the problem of pred

icating properties of inexistent objects. We may en

counter a prosaic version of this problem in planning

under uncertainty. For example, consider the prob

lem of an oil-wildcatter7 who has the option of taking

a core sample before drilling. Imagine that we have

three propositions describing mutually exclusive and

exhaustive outcomes of such a test: (result os), (result

cs), (result ns). What is the truth value of these state

ments in the initial situation? The truth value of this

proposition is not well-defined because the proposition

predicates a property of an inexistent object.

We suspect that related issues will arise in Etzioni's

work on Unix Softbots [2, 3], which act within the Unix

operating system. For example, what is the status of

a predication about a file which has yet to be created?

We note that Etzioni, et. al. have so far avoided con

structing any operators which either create or destroy

files. One way of addressing this problem would be to

add a fourth "truth value" for propositions that are

ill-formed in this way.

For some applications, allowing ADL-style operators

with secondary preconditions may make planning

more efficient. Such operators allow the planner to de

fer some commitments to precise methods for achiev

ing goals, in the interests of allowing later reuse of

operators for additional goals. We would like to retain

this advantage, but doing so will require revision of

Pednault's regression operators [16], since many of the

identities he uses are not valid in three-valued logic.

12 SUMMARY AND

CONCLUSIONS

We have provided a formal analysis of STRIPS-style

planning under conditions of incomplete information

and where the outcomes of actions are not known with

certainty. We have also provided a precise definition of

conditional plans. This work provides a unifying theo

retical framework and vocabulary for a number of dis

parate conditional planners such as Cnlp, SENSp and

Plinth. In the process of defining this framework, we

have clarified the relationship between conditional ac

tions and actions with context-dependent effects, and

shown that the latter are not sufficient for modelling

information-gathering actions (i.e., observations). We

have shown that our analysis simplifies the treatment

of information-gathering acts and goals.
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Abstract

The paper continues the work of Randell,

Cohn and Cui on region-based qualitative

representations of spatial properties and rela

tions, built on the 'logic of connection' devel

oped by Clarke. The paper shows how tax

onomies of topological properties and rela

tions can be developed, using the single prim

itive 'C, where C(x,y) indicates that regions

x and y are 'connected', meaning that their

closures share at least one point. This is

done by considering a specific task: decid

ing whether a region has the topology of a

solid torus, or 'doughnut', by asking ques

tions using only terms logically derived from

C. It is shown how this task could be per

formed under a restrictive set of assumptions

about the topological properties of regions in

general, and the target region in particular.

These assumptions are then progressively re

laxed. As this is done, the task requires the

definition of successive layers of terminology,

all derived ultimately from C, providing the

basis for successively broader taxonomies of

topological properties and relationships.

1 INTRODUCTION

This paper is a continuation of the work of D. Ran

dell, A.G. Cohn, and Z. Cui (henceforth RCC) on a

region-based qualitative representation of spatial re

lations. RCC's work (Randell and Cohn 1989, Ran

dell 1991, Randell, Cui and Cohn 1992, Cohn, Randell

and Cui 1994) is based on a modification of Clarke's

(Clarke 1981, Clarke 1985) 'calculus of individuals

based on connection', and is built on the single prim

itive binary relation of 'connection' between two spa

tial, temporal or spatio-temporal regions. This paper

was written with spatial regions in mind, but the argu

ments and examples used would generalize readily to

temporal and spatio-temporal ones. That region x is

connected to region y is symbolised C(i, y); C is gener

ally given a topological interpretation, but the precise

interpretation has varied during the development of

RCC's work.

This work forms part of the relatively recent investiga

tion of qualitative representations of spatial relations

within AI. Similar work on time has a somewhat longer

history, starting with Allen's work (Allen 1981, Allen

and Hayes 1985, Allen and Hayes 1989). A much

wider range of possible relations must be considered

in the spatial case because of the multi-dimensionality

of space. In recent papers (Cohn, Randell, Cui and

Bennett 1993, Cohn et al. 1994), RCC's main con

cerns have moved toward computational issues, and

the exploitation of an additional primitive concerning

convexity introduced in (Randell and Cohn 1989). The

purpose of this paper, by contrast, is to investigate the

expressive power of the C predicate: how much can be

expressed using this single predicate? This is most

easily done in terms of specific tasks. The one chosen

for this paper, as achievable but non-trivial, was to

specify the topological properties of a solid torus (the

doughnut of the title), in terms of C alone (in (Ran

dell and Cohn 1989) 'toroidalness' was introduced as

a primitive). Objects with this topology (illustrated

by three examples in figure 1) are common: wash

ers, bracelets, cups, links in chains — and one type of

doughnut — and many of these objects perform their

functions partly in virtue of their topological proper

ties. A scheme for representing spatial properties and

relations should therefore be capable of describing it.

Topological description is also a necessary part of the

representation of shape, and many of the concepts and

techniques developed here to deal with part/whole and

region/boundary relationships should be useful in de

scribing non-topological aspects of shape as well.

The work reported is related to that of Casati and

Varzi (Casati and Varzi 1993) on holes, but shows that

two of their three types of holes (tunnels and internal

voids) can be described in terms of C — these authors

use C, but introduce the relationship between a hole

and its 'host' as an additional primitive. Vieu (Vieu
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Figure 1: Three Doughnuts

1993) and her colleagues have also used Clarke's work

as a basis for spatial reasoning. RCC's work is con

cerned with some of the same issues as Hayes (Hayes

1985a, Hayes 1985b), and the Cyc team (Guha and

Lenat 1990), insofar as these workers have formalized

qualitative aspects of spatial and spatio-temporal rep

resentation and reasoning. However, RCC's work is

much more sharply focused on these problems, and is

based on as few primitives and axioms as possible, in

contrast to the wide-ranging and axiom-rich systems

preferred by Hayes and the Cyc team; this contrast is

briefly discussed in section 6.

In representing either spatial or temporal relations,

a decision arises: whether to treat points, extended

regions, or both as primitives (in the temporal case,

points and regions are often called instants and in

tervals respectively). In a point-based approach, re

gions are denned as sets of points; in a region-based

approach, points may be defined in terms of sets of

regions, or omitted altogether. An advantage of point-

based representations is that they can use the exten

sive work of mathematicians on point-set topology.

Three countervailing advantages have been suggested

for a region-based ontology: that regions are some

how 'closer to perception' and therefore psycholog

ically primitive; that expressing spatial relations in

terms of regions is a useful form of abstraction, par

alleling the abstraction from the real-number line to

landmark values and intervening intervals exploited in

work on qualitative physics (Weld and De Kleer 1990);

and that the point-based approach gives rise to coun

terintuitive distinctions such as that between closed

and open regions (those that do and do not include

their own boundaries), and weird constructions such

as space-filling curves that cross themselves at every

point.

The first of these claims is dubious, taking into ac

count the constructive nature of perception: regions,

as much as points, are commonsense-theoretical enti

ties in terms of which we interpret information from

the senses. The second and third are more substantial,

and certainly give sufficient reason to investigate the

region-based alternative. So far as the second is con

cerned, the descriptions of spatial configurations we

use in everyday life, and even in technical contexts,

are frequently expressed in terms of relations between

extended regions, whose extension in terms of points

is left unspecified. Turning to the third point, it seems

odd (as noted in (Randell et al. 1992)), that two re

gions can be distinct, yet take up exactly the same

part of space, as an open region and its closure do if

we allow regions to be either open or closed sets of

points. Also, if we take point-sets as fundamental we

must allow for those that are neither closed nor open,

including some but not all of their boundary points,

and for oddities such as 2-dimensional point-sets in

cluding all those points within an area except those

with rational coordinates. Furthermore, if we consider

a physical object as occupying a region, is that region

closed or open? In the case of a solid object it might

seem intuitive to regard the occupied region as con

taining its boundary, and thus as closed. However, if

two such objects touch, this suggests either that one is

open and one closed (at least at their common bound

ary), or that both are closed and share their boundary

points. Neither solution is obviously wrong, but both

give rise to unease 1 .

It is important to consider how relatively unexplored

formal representations of spatial relations, such as

RCC's, relate to the established mathematical tools in

the domain. Otherwise we may rely too much on intu

itive understanding of space (which may differ between

individuals, and may not be internally consistent), or

lean on the Cartesian/point-set approach without ac

knowledging it. Establishing how the two approaches

relate may also highlight problems and possible direc

tions of advance, and allow us to identify the real ad

vantages of the region-based alternative.

Advocacy of region-based rather than point-based spa

tial and temporal representation has connections with

a broader opposition to the view that set theory and

predicate logic provide an adequate basis for the for

mal representation of the world. Those logicians and

philosophers who have worked on the alternative or

supplementary approaches ('mereology' or 'calculus

of individuals') include Whitehead (Whitehead 1929),

Lesniewski (originator of the term 'mereology'), Tarski

(Tarski 1956), Leonard and Goodman (Leonard and

Goodman 1940), Clarke (referred to above), and re

cently Simons (Simons 1987), Varzi (Varzi 1993), and

Smith (Smith 1994). Simons reviews much of the ear

lier work in this area.

'Individuals' in the sense used in 'calculus of individ

uals', are whatever singular things we take the world

to contain. In this wide context it has been argued

(Varzi 1993) that we should allow entities to have the

same spatio-temporal extent without being identical or

having any parts in common. In the current context,

where we are concerned with relations between spa

tial regions, we shall assume an extensional approach:

1 RCC finesse this problem by dropping the open/closed

distinction. Vieu (Vieu 1993), proposes a different region-

based solution, also based on Clarke's calculus, using the

open/closed distinction to define a notion of 'weak contact',

in which two objects touch without being 'connected'.
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if all the spatial relations that apply to region x also

apply to region y, then x and y are the same region.

2 CLARKE'S LOGIC OF

CONNECTION, AND RCC'S

VERSION

Clarke's approach (Clarke 1981, Clarke 1985) uses

Whitehead's (Whitehead 1929) primitive, 'x is exten-

sionally connected with y\ symbolised here as C(x, y).

However, Clarke drops Whitehead's informal assump

tion that each individual is continuous. In his 1981

paper he uses just two axioms. The first asserts that

C is reflexive and symmetric, the second makes explicit

the assumption of extensionality. Clarke adds a series

of definitions of further relations in terms of C. He

also adds a definition of the universal region (symbol

ised here as Us), as that region which connects with

every region; and definitions of operators guaranteeing

the existence of regions corresponding to the comple

ment of a given region, and to the sum and product

of two given regions. These operators are described as

'quasi-Boolean' rather than Boolean because no null

region is allowed.

Clarke's formalism is presented as an uninterpreted

calculus, but he suggests an informal topological in

terpretation, in which 'x connects with y' means that

the regions x and y share at least one point. The sys

tem allows a distinction between the weak relation of

connection and the stronger one of overlapping, sym

bolised 0(x,y). 0 is definable in terms of C, and is

interpreted as meaning that x and y share a region as

a common part. A point is not regarded as a region,

nor is a common boundary between regions which is

of lower dimensionality than those regions — such as

an edge along which two 2-dimensional regions meet.

0(x,y) implies C(x, y), but the converse is not the case.

This makes it possible to define a relation of external

connection, symbolised EC(x,y), meaning that x and

y touch, or leave no space for another region between

them, but do not share a region as common part. This

enhances the expressive power of the calculus.

Clarke's approach allows the definition of the closures

and interiors of regions, but not of boundary elements

(hence his closure and interior operators are 'quasi-

topological' rather than topological). In the 1981 pa

per there is no commitment either to the existence or

nonexistence of atomic regions (regions without proper

parts). In his 1985 paper he adds an axiom asserting

that every region has a non-tangential (interior) proper

part, ruling out the existence of atomic regions.

RCC have developed two successive theories based on

Clarke's system; this paper discusses only the second

(Randell et al. 1992, Cohn et al. 1994). This differs

from Clarke's formulation most significantly in aban

doning the distinction between open and closed re

gions. This was done because of the counterintuitive

nature of the open/closed distinction, and to reduce

the computational costs of finding proofs.

RCC's basic theory (Randell et al. 1992, section 4)

uses two axioms establishing that C is reflexive and

symmetric:

VxC(x, x)

Vx,y[C(x,y) -> C(y,x)],

plus metalinguistic definitions of quasi-Boolean func

tions, guaranteeing the existence of complements of

regions, and of the sum, product and difference of or

dered pairs of regions (within restrictions explained

below). Additional relations are defined in terms of C:

DC(x, y) (x is disconnected from y), P(x, y) (x is part

of y), PP(x,y) (x is a proper part of y), EQ(x,y) (i

is identical with y, also symbolised x = y), 0(x,y) (x

overlaps with y), PO(x,y) (x partially overlaps with

y), DR(x,y) (x is discrete from y), EC(x, y) (x is ex

ternally connected with y), TPP(x,y) (x is a tangen

tial proper part of y), and NTPP(x,y) (x is a non-

tangential proper part of y). P is nonsymmetric, and

PP, TPP and NTPP are asymmetric; their inverses will

be symbolised here as PI, PPI, TPPI and NTPPI. The

eight relations DC, EC, PO, TPP, NTPP, TPPI, NTPPI

and EQ constitute a pairwise exclusive and jointly ex

haustive set of 'base relations': exactly one of the eight

must hold between an ordered pair of regions.

The definitions of the additional relations used in this

paper are given below; the remainder can be found in

(Randell et al. 1992).

DC(x,y) =def ~'C(x,y)

P(x,y) =de, V*[C(*,x)->C(z,y)]

PP(x,y) =de} P(x,y) A-P(y,x)

EQ(x,y) =def P(x,y) AP(y,x)

0(x,y) =de} 3*[P(2,x)AP(*,y)]

EC(x, y) =def C(x, y) A ->0(x, y)

TPP(x, y) =de} PP(x, y) A 3z[EC(r, x) A EC(z, y)]

NTPP(x,y) =def PP(x,y)A-^[EC(z,x)AEC(z,y)]

The universal region (Us), and a number of quasi-

Boolean functions, introduced via explicit metalinguis

tic definitions in (Randell et al. 1992), are here de

fined implicitly using additional object-language ax

ioms, which have the same effect: asserting the ex

istence of one region given that of one or more oth

ers. The functions concerned arecompl(x) (the region-

complement of x, defined as a region only when x is

not Us); x + y or sum(x, y) (the region-sum of x and y);

prod(x,y) (the region-product or intersection of x and

y, defined as a region only when 0(x,y)); and x — y or

diff(x, y) (the region-difference of x and y, defined as a

region only when ->P(x,y)). These complications are

dealt with using a sorted logic, LLAMA (Cohn 1992).

The functions compl(x), diff(x,y) and prod(x,y) are
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partial over the domain of regions, but are rendered

total within LLAMA by introducing a sort NULL, dis

joint from the sort REGION, and specifying sortal re

strictions on the functions' arguments. The axioms

below depend on the assumption that these restric

tions are applied.

VxEQ(x,Us) = VyC(x,y)

Vx,y[[C(y,compl(x)) = -NTPP(y, x)]r\

[O(y,compl(x)) = -P(y,x)]]

Vx, y, z[C{z, sum(x, y)) = C(z, x) V C(z, y)]

Vx,y,z[C(z,prod(x,y)) =

3w[P(w, x) A P{w, y) A C(z, w)]]

Vx,y[NULL(prod(x,y)) = DR(x,y)]

Vx, y, z[C(z, diff(x, y)) = C(z, prod(x, compl(y)))]

RCC state in (Cohn et al. 1994) that point-set topol

ogy 'may indeed be a model for our formalism, but

is not presupposed', and alternatives are suggested.

Nevertheless, they do suggest a point-set interpreta

tion: that C(x,y) is true iff the closures of regions x

and y share at least one point. RCC do not spec

ify whether the regions themselves are open or closed.

Indeed, given the suggested interpretation of C, no

predicate defined in terms of it could make this dis

tinction. The axioms and definitions mentioned have

models in a very wide range of topological spaces —

possibly in any topological space (a question currently

being investigated). A topological space is a concept

much less specific than our intuitive understanding of

spatial relations would demand: for example, it is not

possible to define a notion of distance in many topolog

ical spaces. One aim of current work is to determine

what additional axioms on C are needed to capture

our spatial intuitions. Here, it will be useful to have a

more specific interpretation of regions than RCC's ax

ioms and suggested interpretation determine. It will

be assumed that Us is an TV-dimensional manifold,

where TV > 0, (an jV-dimensional manifold is a set

of points, together with a topology which gives each

point in the set a neighbourhood homeomorphic to an

TV-dimensional disc) , and that a region is an open set of

points belonging to Us, equal to the interior of its clo

sure. This means all regions will be manifolds, but not

all manifolds within Us will be regions: every open sub

set of an TV-dimensional manifold is an TV-dimensional

manifold, but some of these subsets will not be equal

to the interior of their own closure — sets with single

internal points removed, for example. This interpre

tation fixes that of the quasi-Boolean functions. For

example, compl(x) becomes, in point-set terms, the

complement of the closure of x.

All the work reported here has been done within the

'non-atomic' version of RCC's theory, produced (Ran-

dell et al. 1992) by adding another axiom to those given

above:

Vx3y[NTPP(y,x)],

which establishes that all regions have an NTPP, rul

ing out atomic regions. This suffices to prove that all

regions have an infinite number of NTPPs.

3 DEFINING A DOUGHNUT

MADE EASY

Imagine presenting a spatial representation system

which knows about 'C with a task: to decide whether

a 'mystery region', which we generally call r, is or is

not a 'doughnut' — a region with the topology of a

solid torus — by asking questions using only predicates

defined in terms of C. The wider the range of topolog

ical properties we allow r to have (the less we assume

about its topology) the harder this task will be. We

can also make the task easier or harder by assuming

more or less about the properties of regions in general

or of Us. It will be easiest to explain the issues involved

by starting with a strong set of (informally-stated) as

sumptions, then progressively weakening them. The

initial set of assumptions is:

1. Us, the universal region, is an infinite 3-

dimensional Euclidean space (E3).

2. The closure of the open set of points corre

sponding to each region is a locally Euclidean

space (Fuks and Rokhlin 1984, p. 133), that

is, each point belonging to this closed set has

a neighbourhood homeomorphic either to an

TV-dimensional disc, or to half of such a disc

(TV, again, being the same for all points).

This condition rules out a wide range of pos

sibilities, as discussed in section 5 — for ex

ample, two open 3-dimensional cubes sharing

a corner or an edge, and a disc with a smaller

disc removed from it in so that their bound

aries share a single point.

3. Any straight line will cut the boundary of

any region a finite number of times. This

will eliminate 'regions' with 'infinitely convo

luted' boundaries, which are also discussed in

section 5.

4. Region r is of finite diameter. The implica

tions of this assumption, again, are discussed

in section 5.

A self-connected ('CON') region, one which does not

divide into two or more DC parts, is easily defined in

terms of C (Randell et al. 1992):

CON(x) =def VyVz[x = y + z -)• C(y, *)].

(In terms of point-set topology, with the interpreta

tion of 'region' used here, this means the closure of

the region is self-connected.) We can also define the

'separation-number' of a region: the minimum number

of CON parts into which it can be divided.
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What about connectivity in the sense which distin

guishes a simply-connected surface such as a sphere,

from a multiply-connected one such as a torus (the

surface of a doughnut)? A topologist would gener

ally give a definition in terms of the number of closed

curves that can be drawn on a surface without divid

ing it in two — 0 for a sphere, 1 for a torus, 2 for

a 2-hole torus, and so forth. It will be useful for us

to define connectivity so that it applies to regions of

any dimensionality. We could define the connectivity

of a CON region as the maximum number of mutually

DC subregions, each having two separate boundaries

with the rest of the region, which we can remove from

it while leaving it CON (see next page). For surfaces

without boundary like the sphere and torus, this will

be the same as the topologist's connectivity; but it

can be applied equally to surfaces with boundary, and

to regions of any dimensionality. However, it will in

fact be convenient to define a different property, the

'finger-connectivity' of a CON region, which will al

ways be one greater than the connectivity as defined

above.

Finger-connectivity is defined in terms of the possible

dissections of a CON region. A dissection is a divi

sion into a finite number of CON, non-overlapping and

jointly exhaustive parts. The dissection-graph corre

sponding to a dissection is defined as follows: a node

of the graph corresponds to each piece of the dissec

tion, and two nodes are linked iff the corresponding

parts are connected. The 'finger-connectivity' of a

CON region identifies the largest of a specific fam

ily of dissection-graphs which it can host. This fam

ily is of graphs with N + 2 nodes (N > 1), with

two of the nodes distinguished from the rest. These

two are not linked, while each of the other N nodes

has a link to each of them, but none to each other.

The dissection-graph can be drawn like two iV-fingered

hands with pairs of corresponding fingertips touching

(figure 2). A line-segment, disc or solid ball has finger-

connectivity 1, a circle, annulus, torus or doughnut a

finger-connectivity of 2, a 2-hole torus or doughnut 3,

and so forth.

 

Figure 2: Dissection-Graphs And Dissections: Finger-

Connectivities 1, 2 and 3

We can define separation-numbers and finger-

connectivity-numbers as high as we need in terms of C.

For example, to assert that a region r has separation-

number 2 we could assert:

3s, <[DC(s, I) A [s + 1 = r] A CON(s) A CON(f-)],

while to assert that a CON region r has finger-

connectivity-number 2 we would assert:

[3a, b, t, u[[a + & + * + « = r] A CON(a) A CON(6)A

CON(t) A CON(ti) A EC(a, t) A EC(a, u)A

EC(6, t) A EC(6, u) A DC(a, 6)) A DC(<, t»))]]A

[-da, b,t,u, v[[a+ b + t + u + v = r]A

CON(a)ACON(6)ACON(<)ACON(u)ACON(t;)A

EC(a, t) A EC(a, u) A EC(a, v) A EC(6, t)A

EC(6, u) A EC(6, v) A DC(a, 6) A DC(f , u)A

DC(t,0)ADC(tt,v)]].

If we wish to define separation-number for arbitrary

regions, and finger-connectivity for arbitrary CON re

gions, we need to add an axiomatisation of the natu

ral numbers to RCC's theory — although such general

definitions are not in fact necessary for the definition

of a doughnut. Once having added an axiomatisation

of the natural numbers, we can define 2 separation-

number as follows (upper-case letters are used to stand

for variables ranging over the natural numbers, and '+'

has its normal arithmetical meaning when applied to

these numbers):

SEPNUM(r, 1)=*./ CON(r)

SEPNUM(r,JV+l) =de} 3s,t[[r = s + t] ADC(s,<)A

CON(s) ASEPNUM(<,AT)];

and finger-connectivity as follows (leaving the finger-

connectivity of a non-CON region undefined):

FCON(r,7V) =def C0N(r)A

3a, x, b[[r = a + x + b] A DC(a, 6) A EC(a, x)A

EC(x,6) aSEPNUM(z,AO]a

-.3a, y, b[[r = a + y + b] A DC(a, 6) A EC(a, y)A

EC(y,6)ASEPNUM(y,Ar+l)]].

Separation-number and finger-connectivity together

define a more general notion, region-connectivity,

applicable to an arbitrary region. The region-

connectivity of a region is described by a 'bag' of inte

gers: a collection in which a member may repeat any

number of times (unlike a set, in which each mem

ber occurs only once). Each number in the 'bag' rep-

2Strictly speaking, the formula for SEPNUM, and that

given below for RCON, do not have the form of normal

definitions, since they are recursive; however, at each point

where these denned terms are used in defining a doughnut,

they could be 'unpacked' to a form using only the relation

C, and variables ranging over regions.
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resents the finger-connectivity of one of the maximal

CON components making up the region. For exam

ple, the region-connectivity of a region x made up of

three separate parts, a 2-hole doughnut (or 2-hole solid

torus) and two solid balls, is [3, 1, 1]. (We adopt the

convention of listing the bag's elements in decreasing

order.) We symbolise this RCON(x, [3, 1, 1]), and also

use the form: 'x is a [3,l,l]-region\ RCON can be de

fined more formally as follows (where '[N]' means a

list containing the single natural number N, 'list' is a

list of natural numbers, and 'N :: list' means a list of

natural numbers, the first being N:

RCON(r, [N]) =d»j CON(r) A FCON(r, JV)

RCON(r,AT :: list) =def 3s, t[[r = s + 1] A DC(s, <)A

FCON(s,/v~)ARCON(t,/ist).

The number of boundaries two EC regions share can

also now be defined using SEPNUM:

SBNUM(r,s,AO =de} EC(r,«)A

3x[PP(ar,r) A DC(r - s)A

SEPNUM(x,tf)]A

-.3y[PP(y, r)ADC(r-!/,s)A

SEPNUM(y,tf + 1)],

and the 'complement-boundary-number of a region

(the number of boundaries it shares with its comple

ment) is just a special case of this, except for the case

of Us, where this number is defined as 0:

CBNUM(r, N) =<uj [EQ(r, Us) A TV = 0]V

[SBNUM(r, compl(r),7V)].

Given the assumptions and definitions above, a dough

nut is a region with region-connectivity [2] and

complement-boundary-number 1. Neither would be

enough on its own: a solid ball embedded in E3

has complement-boundary-number 1, and a dough

nut with a ball-shaped internal void has region-

connectivity [2].

4 DEFINING A DOUGHNUT

MADE LESS EASY

Weakening the assumptions of section 3 will show how

the doughnut can be distinguished among successively

larger classes of possibilities. The process is not com

pleted within this paper. The first step, in this section,

is to weaken the assumption that Us is E3. First, re

place assumption 1 with assumption la:

la. Us is EN for some natural number N.

RCC note that their axioms have models in 1, 2, 3

or more dimensions. How can we determine the di

mensionality of an arbitrary region r, using C? It is

believed the approach outlined here distinguishes the

cases where r has 1, 2, 3 or more than 3 dimensions,

even if some of the assumptions set out in section 3 are

weakened beyond the substitution of la for 1, although

a full proof is not currently available.

Consider a CON region r, of unknown dimensionality.

(Since we insist that a region be a manifold, the di

mensionality of a non-CON region is the same as that

of any of its CON parts.) Take any 2-piece dissection

of r into CON regions s and t with a single boundary

s/t (so that SBNUM(s,t, 1)). Consider any [l]-region

u, such that:

PP(u,«) ASBNUM(u,r,l)A

3«[PP(t>, t) A EC(v, u) A DC(v, «-«)].

This ensures that u has a boundary with t of the same

dimensionality as the s/t boundary has locally. That

is, the u/t boundary will not be a single point in the

middle of a linear or higher-dimensional patch of s/t

boundary, a linear feature in the midst of a boundary-

surface, and so forth. If the s/t boundary has the

same dimensionality throughout, as will be the case if

r, s and t are all locally Euclidean spaces, this con

dition ensures that the u/t boundary will be of the

same dimensionality. If this is not the case, for exam

ple if s and t are 3-dimensional and meet in a disclike

boundary with a 1-dimensional extension (figure 3),

then u/t may also be of non-uniform dimensionality,

but its highest dimensionality will be the same as that

of the immediately surrounding parts of s/t.

 

(a) Two Regions (Upper ind Lower Halves of Figure), with Mixed-Dimension Boundary

(b) Form of the Mixed-Dimension Boundary

Figure 3: Two 3-D Regions With A Mixed-Dimension

Common Boundary

Dissect u into as many parts (u\, uj... un) as possi

ble, such that all the and all regions that are the

region-sum of some set of the u,s, meet the conditions

on u above (i.e., each such region is a [l]-region — this

implies, among other things, that each pair of the u,-

meet in a single boundary — and each has a single

boundary with t, meeting the same conditions as u/t).

Also, for each pair ux, uy, there must be a region uXiy

which overlaps (O's) both and is DC to the rest of u,

ruling out dissections where the whole of the bound

ary between any pair of the it, is also shared by any

other of the u, . Such a forbidden dissection is shown



252 N. M. Gotts

in figure 4: in this case, the whole of the boundary

between «i and 113 is also shared with «2, and U4 (and

conversely, the whole of the U2/U4 boundary is also

shared with u\ and u3). Finally, for any v such that

PP(v,s) and DC(v,t), there must beam meeting the

same conditions, such that the respective products of

the u, with u — (v + w) meet the same conditions as

the u,- themselves. This means that the topological re

lationships of the u, are preserved in arbitrarily thin

'skins' of u where it borders t.

 

Figure 4: A Forbidden Dissection Of u.

Call the maximum number of parts into which u can

be divided in this way L. This will be, for example,

1 if the u/t boundary is a single point, 2 if it is a

line-segment, 3 if it is disclike, 4 if it is spherical, 7

if toroidal. Now find the minimum value of L across

all regions meeting the conditions for u; call this min

imum M (this will always be 1 if the s/t boundary

is O-dimensional, 2 if it is 1-dimensional, 3 if it is 2-

dimensional). Finally, take the maximum value of M

across all regions meeting the conditions for s. (This

takes care of cases such as an r consisting of two lobes

joined at a single point, where if s was chosen as one

lobe, the value of M would be lower than the dimen

sionality of r.) This maximum of M will equal the di

mensionality of r, at least up to 3, and will be greater

than 3 when and only when the dimensionality of r

is also greater than 3. (If r is 4-dimensional, the s/t

boundary can be 3-dimensional if s is chosen correctly,

and if the u/t boundary is a 3-disc, or solid ball, u can

be divided into 4 parts in the required fashion (figure

5). (This division gives rise to a total of 15 [l]-regions:

the entire ball, the four small regions, and all combi

nations of these small regions taken two or three at a

time.) We then imagine giving each part an arbitrar

ily small thickness in the fourth dimension, just as we

can do if we start with a 2-disc divided into 3 parts

and then give them an arbitrarily small thickness in

the third dimension.)

We can take the weakening of condition 1 a step fur

ther, substituting for la:

lb. Us is an TV-dimensional orientable manifold.

\

\ ;\ |\

!

|

i

! |

; :

\

Figure 5: A (Topological) Solid Ball Divided Into Four,

Giving Rise To 15 [l]-Regions

It might be thought that this is pointless. If we are

interested in 3-dimensional regions, for example, will

we not want to assume that Us is E3? Not neces

sarily: we might be interested only in the space within

some living or mechanical system — such as the electri

cally conducting parts of the heart (Gotts 1987, Gotts,

Hunter, Hamlet and Vincent 1989). Of course, we

could always add one more region, consisting of every

thing we are not interested in, but we would then have

a dichotomy between an 'interesting' region, within

which spatial relationships are explored, and an 'unin

teresting' one, where they are not.

A doughnut can be embedded in any 3-dimensional

manifold, because any point in a 3-dimensional man

ifold has a neighbourhood homeomorphic to a 3-

dimensional ball, and a doughnut can be embedded

in such a ball. We insist that Us be orientable be

cause, so far, orientability has not been characterised

in terms of C, nor is it known whether this is possi

ble. In practice, it is hard to think of areas where

one might want to apply a C-based representation to

non-orientable manifolds.

If lb replaces la, r may not be identifiable via the same

set of questions as when Us was assumed to be EN .

For example, assume that Us itself is a doughnut, and

that r is Us. The criterion of section 3 will not work

correctly, because r has CBNUM 0. Nor is this the

only case where such problems would arise. Suppose

r and Us are both doughnuts, topologically speaking,

but the relationship of r to Us is equivalent to that of

one doughnut in the middle of a stack of doughnuts:

r will have CBNUM 2, and so will fail the test.

The problem is that the CBNUM is an extrinsic prop

erty of a region: that is, dependent on the way it is

embedded in Us. We need an intrinsic definition of

boundary-number — one expressed solely in terms of

the way parts of r relate to each other. No intrinsic C-

based definition of boundary-number known to apply

whatever the dimensionality of r has yet been found.

In one dimension, there are only two distinct CON
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manifolds that can act as Us: the (topological) cir

cle, and the open line. It does not matter whether the

open line is infinite in both directions, a finite open line

segment, or an open half-line, infinitely extended in

one direction. From the point-set topological point of

view, all three are homeomorphic once the boundary-

points of the line-segment and half-line are excluded.

From our 'region-relation' topological viewpoint, too,

there is no way to tell which of these three possibil

ities corresponds to Us: any configuration of regions

can be 'transferred' from any one of the three to any

other, using the point-set homeomorphisms between

them. Similarly, an open disc is homeomorphic to E2

and an open ball to E3. So we want a definition of

intrinsic boundary-number (IBNUM) that will assign

the same number — 1 — to an infinite line or half-line

as to a line-segment; to E2 minus a disc as to a disc

with an internal disc removed (2 in each case); and to

E3 minus M DC solid balls as to a solid ball with M

DC interior solid balls removed (M in each case).

If Us is an open line, so are all CON regions, and all

regions, including Us, have two 'ends', even if one or

both are at an infinite distance; if Us is a circle, it has

no 'ends'. A way of capturing this difference in terms

of C is to say that, for an open line, it is possible

to remove a maximum of two regions DC from each

other, while leaving a remainder with the same RCON

as the original (one region is removed from each end

of the line) . Removing any region from a circle leaves

a remainder different from the original.

In the 2-dimensional case, the number of topologically

different self-connected manifolds (surfaces) is infinite

— although a complete classification is available. If

attention is restricted to orientable surfaces, any such

surface is homeomorphic to a sphere with H 'handles'

(a sphere with no handles is just a sphere, a sphere

with 1 handle a torus, a sphere with H > 1 handles an

//-hole-torus), and B boundary curves. In terms of C,

we could define the IBNUM of a surface as the number

of mutually DC [2]-regions which can be removed with

out changing the RCON of the surface: one such region

can be removed from around each boundary-curve.

If we start with a '1-dimensional disc' (a line-segment,

with RCON [1]), and remove a smaller '1-dimensional

disc' from its interior, the result is to produce a [1,1]-

region. If we remove a 2-dimensional disc from the

interior of a larger 2-dimensional disc (which again

is a [l]-region), the remainder is a [2]-region. How

ever, if we remove any number of interior 3-dimensional

discs (solid balls) from a larger 3-dimensional disc,

its region-connectivity is unaffected. The simplest

definition of IBNUM for 3-dimensional regions yet

found depends on prior definitions of the concepts of

a 'firmly tangential proper part' of a region and a

'solid [l]-region'. This definition also works for the

1-dimensional and 2-dimensional cases.

Intuitively, an TV-dimensional region i is a firmly-

tangential proper part of a region of finite diameter

y (symbolised FTPP(z,y)), iff it is a proper part of y,

and shares an N-1-dimensional part of its boundary

with y: so for example, if y is the area within a cir

cle, x could be the area to one side of a diameter of

that circle. However, because we want a definition of

IBNUM which assigns the same number to topologi

cally equivalent regions, and because finite diameter is

not a topological property, this definition must allow

the existence of FTPPs of infinite regions, such as E2.

For example, since we can map the area within a circle

onto E2 in such a way that the part of that area to

one side of a diameter is mapped onto half of E2, this

should turn out to be an FTPP of E2.

The following C-based intrinsic definition works at

least for regions with three or fewer dimensions.

FTPP(z, y) iff PP(z, y) and it is possible to find a [1]-

region w, such that P(w,x), that can be divided into

two [l]-regions, one of which is DC from y — w, while

the other is a 'solid [l]-region\ A 'solid [l]-region' is

just a [l]-region with no wholly-internal voids when

embedded in EN , where N is the [l]-region's dimen

sionality. (An iV-dimensional region with B intrinsic

boundaries will have 5—1 internal voids when em

bedded in EN .) All 1-dimensional and 2-dimensional

[l]-regions are 'solid', but a ball with an interior ball re

moved is a [l]-region, but not solid. Unlike a solid ball,

it can be divided into two EC [l]-regions, separated by

an annular, rather than disclike or spherical boundary.

For a 3-dimensional non-solid [l]-region u, there is a

dissection into two [l]-regions s, t, such that there is a

[2]-region r, where PP(r, s), DC(t,s — r), and there is

no [l]-region q such that PP(g,r) and DC(<,s — q). For

a 3-dimensional solid [l]-region, there is no such dis

section. (Solid and non-solid [l]-regions of 4 or more

dimensions could, it is thought, be defined recursively,

but the details have not been worked out.)

An FTPP (of a region with three or fewer dimensions)

can now be formally defined:

FTPP(z,y) =deJ PP(z,y)A

3u, v, w[P(w, x) A [u + v = w] A EC(u, t;)A

DC(v, y- w) A RCON(u>, [1]) A RCON(u, [1])A

RCON(u,[l])A

-.3r, s, t[[s + t = u] A PP(r, s) A EC(s, t)A

DC(<, s-r) A RCON(r, [2])A

RCON(s,[l])ARCON(<,[l])A

-.3g[PP(9,r)ADC(f,s-g)A

RCONfa.ri])]]].

An intrinsic tangential proper part (ITPP) of y can in

turn be defined, for regions of three or fewer dimen

sions, as follows:

ITPP(:c,y) =de] PP(x,y)A

Vu>[PP(x, w) A PP(tu, y) A DC(x, y - w)

FTPPKy)]
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— that is, any PP of y that 'envelopes' x, shielding

it from the rest of y, must be an FTPP of y. This

definition will always coincide with the definition of a

TPP when y is of finite diameter and Us is EN , but will

not always do so in other cases: in particular, Us can

have ITPPs - if Us is finite, or its ITPP is infinite. An

INTPP can be defined, in three or fewer dimensions,

as a PP which is not an ITPP:

INTPP(x.y) =ieJ PP(x,y)A-ITPP(x,y).

A TPP is always an ITPP, and an INTPP is always an

NTPP; but the converses of these statements are not

true. Regions that have no intrinsic boundaries (a cir

cle in one dimension, closed surfaces such as a sphere

or torus in two dimensions, and their 3-dimensional

counterparts such as the 3-sphere), have no FTPPs or

ITPPs.

The IBNUM of a region of three or fewer dimensions

can now be defined as the greatest SEPNUM of any

s such that PP(s,r), each CON component of s is an

ITPP of r, and any ITPP of r connects with s. For a

formal definition, it will be convenient to use the pred

icate MAX-P(x,y) (Cohn et al. 1994), meaning that x

is a CON P of y, while any PPI of x which is a P of y

is not CON:

MAX-P(x, y) =it} CON(x) A P(x, y)A

-3z[PP(x, z) A P(z, y) A CON(z)].

The predicate IBNUM can now be defined as follows:

IBNUM(r, N) =it} [N = 0 A -3s[ITPP(s, r)]]V

[3s[ITPP(s,r)]A

3x[SEPNUM(x,./V)A

Vz[MAX-P(z,x) ITPP(z,r)]A

Vt[ITPP(<,r)-*C(*,x)]]A

-13y[SEPNUM(y,Ar+ 1)A

Vz[MAX-P(z,y) ITPP(z,r)]A

V<[ITPP(t,r)-»C(<,y)]]]

A doughnut can then be defined as a 3-dimensional

[2]-region with IBNUM 1.

5 DEFINING A DOUGHNUT

MADE HARDER STILL

In this section, we remove or weaken assumptions 2-4,

and, since Us is a region, further weaken assumption 1

as we do so.

If we remove assumption 2, allowing regions to have

closures that are not locally Euclidean spaces, we are

faced with a wide range of 'poorly-connected' regions

that have RCON [2] and IBNUM 1, but that do not

correspond to the intuitive idea of a doughnut, hav

ing a boundary surface that departs from the locally

disclike topology we would like that of our doughnut

to have.

It is not difficult to define a predicate, ICON (for

interior-connected), such that lCON(r) means that r

does not divide into two or more parts which are only

connected because their closures share a point:

ICON(x) =de} Vy, z[INTPP(y, x) A INTPP(z, x) -►

3u>[C0N(w) A INTPP(y, w) A INTPP(z, w)A

INTPP(u;,x)]].

However, ICON(r) does not rule out all poorly-

connected regions. Figure 3 shows one such example,

and figure 6 shows cross-sections of two others, both of

which can be regarded as 'degenerate doughnuts': 6a

is a doughnut 'pinched' to a single point at one place

— the darker shading indicates a surface sloping away

from the viewer. 6b shows two series of cross-sections

through a shape that could be constructed by bringing

the sides of the hole 'through' a doughnut together un

til the hole is contracted to a point halfway through, or

by cutting two 4-sided pyramids out of opposite sides

of a cuboid so that they share a vertex. The left and

right halves of 6b show series of horizontal and vertical

cross-sections respectively.

 

(a) Doughnut pinched to a point (b) Doughnut with vanishing hole

Figure 6: Degenerate Doughnuts In Cross-Section

We can define a more restrictive predicate, which we

call WCON (for 'well-connected'), which appears to

deal with all poorly-connected regions — that is, it is

believed a 2- or 3-dimensional WCON region will al

ways have a boundary with a locally linear or disclike

topology respectively. Given this definition, we can

remove assumption 2, and then have the choice of

incorporating the conditions ensuring that a region

is WCON as an additional axiom, or allowing both

WCON and non-WCON regions while being able to dis

tinguish the two. In order to define a WCON region,

however, an intermediate definition will be necessary.

A [l]-region s with IBNUM 1 will be called a 'super

ficial proper part' of another region r — SPP(s,r) —

iff s is an ITPP of r, such that for any INTPP of r, say

t, there is another INTPP of r, u, such that s — (t -+• u)

is also an [l]-region with IBNUM 1. Formally:
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SPP(s, r) =de3 RCON(s, [1]) A IBNUM(s, 1)A

ITPP(s, r) A V<[INTPP(<, r) 3u[INTPP(u, r)A

RCON(s - {t + u), [1]) A IBNUM(s - (t + u), 1)]]

This same class of [l]-region, 1-IBNUM ITPPs could

also be picked out by specifying that s and r share

only one patch of intrinsic boundary, and if s and r

are TV-dimensional, this patch is an 7V-l-dimensional

disc. However, this condition on the form of the patch

is redundant if n < 2. Also, this alternative means of

specifying the class of SPPs is more difficult to express

in terms of C.

For all the examples of figures 3 and 6, there are

SPPs, the removal of which would leave a remainder

with a different RCON. At one stage it was thought

that this could be used as a way of excluding all

poorly-connected regions. However, there are 'regions'

which do not have such an SPP, but which are poorly-

connected. One such is a solid ball with a smaller solid

ball removed from it in such a way that the surfaces of

the two balls share a single point. Topologically, such

a region could be created by attaching the region of

figure 6b to the bottom of a cuboid, so that the de

pression in the top became an interior hole, meeting

the outside at a single point. Such a region has RCON

[1] and a single intrinsic boundary, like a solid ball,

and removing an SPP cannot change this, as it can for

the region of 6b itself, where cutting out the centre so

as to leave an ordinary doughnut does the trick.

However, a WCON region can be defined as one with

no SPPs of a certain sort. Specifically, a WCON region

r has no SPP s which itself has an SPP t such that

DC(t,r — s) and such that s — t is not a [l]-region.

WCON(r) =«w Vs,r[SPP(s,r) ASPP(*,s)A

DC(t,r-s)-)-RCON(<-s,[l])]

Assumption 3 eliminates some dubious 'regions'.

These would include, for example, a region bounded

by the 'snowflake curve' (Stewart 1987, p. 182), and

the regions produced by dividing a disc into two parts

which spiral around the disc an infinite number of

times, decreasing in width toward the edge. Some of

the configurations of regions such infinitely convoluted

boundaries give rise to can certainly be eliminated, if

desired, by additional axioms concerning C. For exam

ple, the configuration consisting of a disc divided into

two 'ever-decreasing spirals' as described above, plus

a surrounding region, can be ruled out by the proviso

that if x and y are externally connected and their sum

is intrinsically bounded, they do not share the entire

boundary:

Vx, y[EC(x, y) A 3*[ITPP(z, x + y))] -+

3u;[ITPP(u>, x + y) A [DC{w, x) V DC(w, y)]].

Many 'regions' that assumption 3 rules out could not

be eliminated in this way — including that bounded

by the snowflake curve — since assumption 3 makes

use of non-topological properties of putative 'regions'.

However, it may be that none of those which cannot

be excluded using C are topologically anomalous.

Assumption 4 means we need not consider regions of

infinite diameter when trying to decide whether r is a

doughnut. If we remove it, r could be, for example, a

doughnut with an infinitely extended, rod-shaped pro

trusion, provided Us also has an infinite diameter. If

Us is E , then regions of infinite diameter, and only

such regions, can have ITPPs which are also NTPPs,

and this fact could be used to distinguish the 'true'

doughnut from the doughnut-plus-infinite-rod. An ex

ample of such an ITPP, in the case of a doughnut with

an infinitely long rod-shaped protrusion, would be an

infinitely long rod of smaller diameter, beginning near

the doughnut end of the rod-extension and running

inside the entire infinite length of that larger diame

ter rod, nowhere touching its boundary. However, if

Us itself is finite but not compact (like an open ball),

or can be disconnected by the removal of such a part

(like an infinitely long solid cylinder) the same test will

eliminate some genuine doughnuts which share part of

Us's boundary. We therefore need to know something

about Us in order to know which tests to apply to r.

6 Discussion: HOW FAR CAN C

TAKE US?

C can be the basis of rich topological classifications of

regions and the spatial relations between them. The

search for a definition of the doughnut has led to

the exploration of a wide range of possibilities, and

brought out the distinction between the intrinsic and

extrinsic topological properties of a region.

Which of the informally-stated assumptions consid

ered could reasonably be made under which circum

stances deserves a brief comment. If the regions we

wish to consider correspond to the space occupied by

solid or liquid bodies, then we can assume that they

are of finite diameter, and that a straight line would

intersect their boundaries a finite number of times. We

could also assume (assumptions not needed in this pa

per) that they consist of a finite number of separate

pieces, each of finite finger-connectivity. It might also

seem that we could assume each region's closure to

be 3-dimensional, but this is to ignore the role of ide

alization in spatial reasoning: for many purposes it is

useful to regard a piece of paper as 2-dimensional, or a

rope as 1-dimensional. Similarly, if we wish to consider

something with a cellular structure, such as a piece of

plant or animal tissue, or a foam, we may need to

consider regions which are best idealized as consisting

of one or more 3-dimensional 'lobes' joined at points

or along lines rather than at surfaces — contrary to
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the assumption that regions have closures which are

locally-Euclidean spaces.

The exploration of taxonomies of spatial properties

and relations based on C is far from complete. Region-

connectivity and intrinsic-boundary-number do not

distinguish all non-homeomorphic regions, even among

manifolds with finite separation-numbers whose clo

sures are locally-Euclidean spaces. In general, this

problem is unsolvable (it is known that there is no gen

eral method for determining whether 2 TV-dimensional

manifolds are homeomorphic for n > 3) (Stillwell 1980,

p. 5). Even for finite-diameter manifolds embeddable

in E3, much work on C-based classification remains. In

the 2-dimensional case, a way of expressing orientabil-

ity will be sought. In the 3-dimensional case, there are

several levels of complexity to consider. First, there

may be any number of separate maximal CON parts.

CON regions can have any number of surfaces, and

each such surface may be a sphere or N-hole torus.

So the number and nature of the region's surfaces give

a first layer of classification for CON regions, and we

can classify non-CON regions by the 'bag' of such CON

regions they comprise.

However, this is not the end of the matter. Consider

a CON region with two surfaces, each a 1-hole torus

(i.e. a doughnut minus a doughnut). The inner sur

face may be configured relative to the outer so that

a sphere could be interposed between the two, or it

may be wrapped one or more times round the hole

'through' the doughnut. This example shows that the

finger-connectivity of a CON region cannot be calcu

lated simply from those of its boundaries: if a sphere

can be interposed between the two surfaces the finger-

connectivity of the solid is 3; if not, it is 2 (at least in

the simplest case, where the inner torus wraps around

the hole through the doughnut once, producing a 'hol

low doughnut': a solid like the inner tube of a tyre;

more complex cases have still to be checked).

Whether wrapped around the doughnut's hole or not,

the inner surface of a 3-dimensional region with two

toroidal surfaces may be knotted in any one of an infi

nite number of ways, or unknotted. Although a knot

ted torus or doughnut is only extrinsically different

from an unknotted one, a solid ball or doughnut mi

nus a knotted doughnut is intrinsically different from

the same containing solid minus an unknotted dough

nut.

If a solid has two or more toroidal inner surfaces

(whether these are simple — FCON-2 — tori, or are of

higher connectivity), a new type of complexity arises,

as two or more of these inner surfaces can be linked

in a variety of ways. (Two or more such surfaces are

linked if none of them can be enclosed in a sphere dis

connected from all the others.) Finally, two or more

of the components of a non-CON region can also be

linked — in the same set of possible ways, although in

this case the distinctions are extrinsic, not intrinsic.

In the immediate future, investigation of the relation

ship between RCC's approach and point-set topology

will continue, and formal proofs of the assertions made

in this paper will be sought. Further work is planned

on ways of classifying such multi-surface 3-dimensional

regions, drawing on mathematicians' work on algebraic

or combinatorial topology — e.g. (Stillwell 1980, Fuks

and Rokhlin 1984) — and exploring further the no

tion of a dissection-graph: if two CON regions have

the same finger-connectivity but are not topologically

equivalent, can other dissection-graphs be used to dis

tinguish them?

Beyond this, integrating topological and other qualita

tive aspects of spatial properties and relations is a ma

jor task. The work described in this paper needs to be

integrated with that on convexity and inside/outside

relations done by RCC, and with the work on con

ceptual neighbourhoods done by Freksa (Freksa 1992),

RCC (Cohn et al. 1994) and others.

In conclusion, what are the advantages and disadvan

tages of the general approach to spatial representa

tion and reasoning developed by RCC and continued

here: that of working from a minimal set of primi

tives and axioms, exploiting their potential as far as

possible before adopting any more? The advantages

are several: such an approach has a mathematical and

philosophical elegance absent from more complex sys

tems of representation, discourages ad hoc additions to

the system to meet unconsidered problems, and should

ensure thorough familiarity with its properties and im

plications. It should be relatively simple to interface a

system of spatial representation using a small number

of primitives and axioms with another system — such

as a vision module or geographical database. Simi

larly, it should be easier to investigate in depth the

relationship of RCC's approach to point-set topology

than would be the case for a more complex system.

On the other hand, writing this paper has made it

clear to me that expressing what are intuitively quite

simple concepts — such as the topological properties

of a doughnut — in terms of a single primitive and a

few axioms is neither easy nor free of pitfalls. In par

ticular, inability to refer directly to dimensionality, to

boundaries, and to the conceptual links between these

concepts, gave rise to considerable difficulties. Only

by trying to do as much as we can with as little as

possible, however, are we likely to discover what rep

resentational primitives are likely to be most useful in

spatial and qualitative reasoning.
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Abstract

We describe an ontology for mathematical

modeling in engineering. The ontology includes

conceptual foundations for scalar, vector, and

tensor quantities, physical dimensions, units of

measure, functions of quantities, and

dimensionless quantities. The conceptualization

builds on abstract algebra and measurement

theory, but is designed explicitly for knowledge

sharing purposes. The ontology is being used as

a communication language among cooperating

engineering agents, and as a foundation for other

engineering ontologies. In this paper we

describe the conceptualization of the ontology,

and show selected axioms from definitions. We

describe the design of the ontology and justify

the important representation choices. We offer

evaluation criteria for such ontologies and

demonstrate design techniques for achieving

them.

1. INTRODUCTION

Engineers use mathematical models, such as sets of

equations, to analyze the behavior of physical systems.

The conventional notations for formatting mathematical

expressions in textbooks and in the engineering literature

usually leave implicit many of the details required to

understand the equations. For instance, it is not clear

from the expression/= kx+c which symbols are variables

or constants; whether they represent numbers or physical

quantities (e.g., forces, lengths); whether the magnitudes

are reals, vectors, or higher-order tensors; whether the

quantities are static values, functions of time, or functions

of time and space; and how units of measure are treated.

The reader must interpret these notations using

background knowledge and context. This is error-prone

for humans and beyond the capability of today's computer

agents.

To enable the sharing and reuse of engineering

models among engineering tools and their users, it is

important to specify a conceptual foundation that makes

these distinctions explicit and provides a context- and

reader-independent semantics. Toward this end, we have

developed a formal ontology for mathematical modeling

in engineering, called EngMath. The ontology builds on

abstract algebra and measurement theory, adapted to meet

the expressive needs of engineering modeling. The

specification includes a first-order axiomatization of

representational vocabulary that is machine and human

readable.

This paper is about the EngMath ontology, and how it

exemplifies the design and use of such ontologies in

support of agent communication and knowledge reuse.

Such an ontology differs from what is found in

engineering textbooks and philosophy books in that it is

designed as a specification for these knowledge sharing

purposes. We begin in Section 2 by describing the role of

ontologies as formal specification and the uses of the

EngMath ontology. In Section 3, we give define the basic

concepts and relations in the ontology. In Section 4, we

discuss a series of design decisions and their rationale. In

Section 5, we offer design criteria—minimizing

ontological commitment and maximizing monotonic

extendibility—and demonstrate techniques used to

achieve them. In Section 6, we discuss the relationship of

the EngMath ontologies to relevant work in philosophy

and AI

2. THE PURPOSE OF THE ONTOLOGY

2.1 ONTOLOGY AS FORMAL SPECIFICATION

A body of formally represented knowledge is based on a

conceptualization: the objects, concepts, and other entities

that are assumed to exist in some area of interest and the

relationships that hold among them [17]. A

conceptualization is an abstract, simplified view of the

world that we wish to represent for some purpose. Every

knowledge base, knowledge-based system, or knowledge-

level agent is committed to some conceptualization,

explicitly or implicitly.

For the purpose of knowledge sharing, formal

ontologies serve as specifications of common

conceptualizations [20] among agents. In the philosophy

literature, ontology is the systematic account of

Existence—aiming to account for all forms and modes of

being [5]. For AI systems, what can exist in a

conceptualized world is determined by what can be

represented. 1 If agents are to communicate in a shared

'By "what can exist" we mean "anything that can be spoken of,"

including all of the varieties of existence identified by Hirst [27], The

purpose of our specifications are not to giving ontological status to
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language or if a body of formally represented knowledge

is to be reused, then there must be some agreement about

a universe of discourse. Furthermore, if the shared

language includes vocabulary denoting entities and

relationships in the conceptualization, there must be some

way to specify what can be meaningfully stated in this

vocabulary. Ontologies, in the context of knowledge

sharing, are a means for making such content-specific

agreements.

If we assume a common syntax and semantics for a

core representation language, then we can specify

conceptualizations by writing definitions of shared

vocabulary. That is the strategy proposed by the ARPA

Knowledge Sharing Effort [33,35], and is the tack we are

taking. A Knowledge Interchange Format (KIF) [16]

serves as the language for making assertions and

definitions, and ontologies provide axiomatic and textual

definitions of relations, functions, and objects. By

'definitions' we mean specifications of the well formed

use of the vocabulary. Definitions include axioms that

constrain the interpretation.2 Such an axiomatization

specifies a logical theory, but is not intended as a

knowledge base. Instead, the ontology serves as a

domain-specific representation language in which

knowledge is shared and communicated.

In practice, our ontologies define the vocabulary with

which queries and assertions are exchanged among

interoperating agents, some of which may be passive (e.g.,

deductive databases). The agents conform to ontological

commitments [19,20] which are agreements to use the

shared vocabulary in a coherent and consistent manner.

An ontological commitment is a guarantee of consistency,

but not completeness, with respect to queries and

assertions using the vocabulary defined in the ontology

(c.f. [23]). Committed agents may "know" things not

implied by the shared ontologies, and may not be able to

answer queries that follow from the shared ontologies.

Furthermore, the "shared knowledge" of these agents can

be viewed at the Knowledge Level, as attributed and

independent of symbol-level encoding [34]. Thus, the

agents may operate on any internal representation desired,

as long as they use the shared vocabulary consistently in

communication. This model of agent collaboration is

being pursued by several groups [9,15,22,32].

22 USES OF THE ENGMATH ONTOLOGY

In designing the EngMath ontology, we anticipate three

kinds of use, and accept them as requirements. First, the

ontology should provide a machine- and human-readable

notation for representing the models and domain theories

found in the engineering literature. Second, it should

provide a formal specification of a shared

conceptualization and vocabulary for a community of

interoperating software agents in engineering domains.

Third, it should provide a foundation for other

various modes of being, but to offer a way of representing things in a

shared conceptualization.

2For the purpose of specifying common conceptualizations, we see no

justification for restricting the form of the definitions e.g. to necessary

and sufficient conditions, or to require that they be conservative

definitions (which make no claims about the world).

formalization efforts, including more comprehensive

ontologies for engineering and domain-specific languages.

In this section we will give examples of each application.

EngMath as a Shared Notation

Engineers use mathematical expressions, such as

constraint equations, to describe, analyze, and

communicate models of physical devices and their

behavior. The quantities represented in these expressions

are different from purely numerical values, and the

algebra for operating over them must account for extra-

numerical considerations such as dimensional

consistency, units of measure, and vector and tensor

operations. Some form of this 'physical algebra' [31] is

taught in nearly every introductory physics or engineering

course, and the subject is prominent in the standard texts

[26,37]. Students are taught to use dimensional

consistency to check for modeling and equation solving

errors. A technique called Dimensional Analysis [31] is

used in design and to assist in the interpretation of

experiments, and is an important area of study itself.

Textbook notations for physical quantities vary by

author and leave much implicit—relying on context and

background knowledge of the reader for proper

interpretation. The problem of implicit notation is

revealed when students try to encode engineering models

using mathematical support software. Human expertise is

required to map expressions about physical quantities to

the purely mathematical constructs of current commercial

math tools (e.g., Matlab, Mathematica, Maple).

The EngMath ontology is intended to provide a

formal language sufficient to express the models in

engineering textbooks and to map them to mathematical

software tools. We view the latter application as an

instance of agent communication, which is the subject of

the next section.

EngMath as a Vocabulary for Agent Communication

By providing a declarative, machine readable

representation, the EngMath ontologies can enable

unambiguous communication between software agents

that would otherwise be difficult or impossible.

To illustrate a use of the ontology, consider a simple

example of agents exchanging symbolic representations of

spring behavior. Agent A is a specialist in the design of

springs, and agent B is a specialist in quantity algebra.

Agent A needs a solution to a set of equations relating

spring and material properties that include the following:

k = —— , G = ll,500fawi

8D3/V

where k is the spring rate, d is wire diameter, D is spring

diameter, N is number of turns, and G is the shear

modulus of elasticity.

Agent A can send Agent B these equations as a set of

KIF sentences, using the vocabulary of the EngMath

ontology:

(scalar-quantity k)

(= (physical .dimension k)

(/ force-dimension length-dimension))
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(scalar-quantity d)

(= (physical .dimension d) length-dimension)

(scalar-quantity Em)

(= (physical. dimension Em) length-dimension)

(scalar-quantity N)

(= (physical .dimension N) identity-dimension)

(scalar-quantity G)

(= (physical .dimension G)

(* force-dimension

(expt length-dimension -2)))

(= k (/ (* (expt d 4) G) (* 8 (expt Em 3) N) ) )

(= G (* 11.5 (expt 10 6) psi))

After receiving the equations in this form, agent B

can answer questions about the values of the terms such as

the diameter (d). The vocabulary used in this interaction,

such as the function constant physical .dimension,

is independent of a domain theory for springs. The

sentence simply states an algebraic relationship between

quantities and the dimensional characteristics of those

quantities. This type of information allows Agent B to

perform algebraic manipulations such as solutions of

simultaneous equations or numerical evaluations of

individual parameters. Because dimensional information

is included, the consistency of equations can be checked

by the agent and agents are freed from committing to an

explicit set of units.

The spring example is typical of problems in

introductory engineering textbooks. More complex

interactions are required to coordinate commercial design

tools on industrial problems.

In the SHADE project [22,32], we have constructed a

set of software agents that interact to support

collaboration on industrial problems like satellite system

design. One SHADE agent is a specialist in rigid body

dynamics (RBD), and another is responsible for the

geometric layout of satellite components (Layout). Both

commit to the EngMath ontology. The RBD agent

queries the Layout agent about the inertial characteristics

of a particular component. These characteristics include

the mass whose value is a scalar quantity and the inertia

tensor whose value is a second order tensor. In reply, the

Layout agent specifies the inertia tensor with respect to a

global reference frame and point. The reference frame is

part of the shared domain theory for the two agents; it is

not implicit in the representation of the tensor. This

allows the RBD agent to translate the inertia into a

different reference frame convenient for dynamic

analysis.

Most SHADE agents are commercial tools wrapped

so that they conform to ontological commitments and

communication protocols. These agents are designed to

be conformant at the interface, but are not required to

represent the ontologies internally. Some agents can

assimilate an ontology and use it as input. The Unit

Conversion Agent is an example. Its contract is specified

entirely by the EngMath ontology. This agent takes KIF

expressions over quantities, and performs services such as

symbolic simplification, unit conversion, and dimensional

consistency verification. It can read ontologies that

specify of other unit systems, and determine whether the

system is complete for the dimensions specified.

EngMath as a Conceptual Foundation

The EngMath ontology was also designed as a conceptual

foundation for other ontologies; in its design we needed to

anticipate how it would be used in other theories. For

example, we are constructing a family of ontologies for

representing components and relations among them (e.g.,

part-subpart relations, connections, association of

component features and constraints). One ontology of

mechanical components, for instance, is for models in

which components have mass properties and associated

reference frames and points, but lack complete geometric

representations. This theory combines an abstract

component ontology, a constraint expression ontology,

parts of the EngMath ontology, and a simple geometry

theory (that also includes EngMath).

The Compositional Modeling Language (CML) [12]

is another example of building on the EngMath

ontologies. CML is a modeling language that is intended

to synthesize and redesign the various formulations of

Compositional Modeling [8,13,14,29] to enable model

sharing among research groups. Part of the language

design of CML is an ontology about time, continuity,

object properties, etc. The semantics of the language are

specified axiomatically, using the vocabulary of the CML

ontology. The CML ontology builds on the EngMath

ontology as a foundation.

3. OVERVIEW OF THE CONCEPTUALIZATION

In this section, we describe the key concepts of the

conceptualization specified by EngMath. The ideas will

be familiar to many readers. However, since there are

multiple ways to formulate the various concepts, it is

important to clarify how their synthesis results in a

coherent theory.

The entire ontology is too large and complex to

present in static, linear form (about 2000 lines of

definitions). The complete specification is available on

line on the World Wide Web in cross-indexed, machine -

formatted hypertext [21] . To give a flavor for the details,

we have included a few axioms from the actual ontologies

in this section.

3.1 PHYSICAL QUANTITIES

A mathematical model of a physical system, of the sort

we are interested here, consists of a set of constraints on

the values of variables. These variables represent

physical quantities. A physical quantity is a measure of

some quantifiable aspect of the modeled world.

Quantities "admit of degrees" [11] in contrast to qualities,

which are all-or-none (e.g., being pregnant). Physical

quantities come in several types, such as the mass of a

body (a scalar quantity), the displacement of a point on

the body (a vector quantity), the altitude of the particle as

a function of time (a unary scalar function quantity), and

the stress at a particular point in a deformed body (a

second order tensor quantity). For our purposes, what

makes quantities "quantifiable" is the ability to combine

them with algebraic operations. Physical quantities can
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be meaningfully added, multiplied, and raised to real-

valued exponents. The types of quantities determine the

conditions under which operations are allowed and the

types of the results. For example, it does not make sense

to add a mass quantity and a displacement quantity, and

the result of multiplying a length and a length is a third

type of quantity—an area. This ontology specifies in

detail the conditions under which various algebraic

operations on quantities make sense.

Although we use the term "physical quantity" for this

generalized notion of quantitative measure, the definition

allows for nonphysical quantities such as amounts of

money or rates of inflation. However, it excludes values

associated with nominal scales, such as Boolean state and

part number, because they are not amenable to these

algebraic operations.

(defrelation PHYSICAL QUANTITY

(=> (physical-quantity ?x)

(and (defined (quantity. dimension ?x) )

( physical -dimension

(quantity .dimension ?x) )

(or (constant-quantity ?x)

(quantity-function ?x) ) ) ) )

32 PHYSICAL DIMENSIONS

The central difference between a physical quantity and a

purely numeric entity like a real number is that a quantity

is characterized by a physical dimension. The physical

dimension of a quantity distinguishes it from other types

of quantities. The physical dimension of a mass of a body

is mass; the physical dimension of a position of a body is

length, and the physical dimension of a stress quantity is

(* mass (* (expt length -1) (expt time -2)))

where * is multiplication and expt is exponentiation.

Nonphysical dimensions are also possible, such as amount

of money. Dimensions tell us something intrinsic about

the quantity that is invariant over models and

measurement. For example, there is no intrinsic

difference between a quantity used to describe an altitude

and a quantity used to describe a width; both are

quantities of the length dimension. A length of three feet

and a length of one yard are equal, although we specified

them in different units of measure.

Physical dimensions can be composed from other

dimensions using multiplication and exponentiation to a

real power. It is important for Dimensional Analysis [31]

that dimensions have certain algebraic properties. The

product of any two physical dimensions is also a physical

dimension, and the multiplication operator * is

associative, commutative, and invertible with an identity

element called the identity dimension (i.e., it forms an

abelian group with *).

(define-class PHYSICAL-DIMENSION

(abelian-group physical-dimension

* identity-dimension) )

Constant quantities whose physical dimension is the

identity dimension are called, paradoxically,

dimensionless quantities. In this ontology,

dimensionless quantities include the real numbers and

numeric tensors.

(defrelation DIMENSIONLESS-QUANTITY

(<=> (dimensionless-quantity ?x)

(and (constant-quantity ?x)

(= (quantity. dimension ?x)

identity-dimension) )

(=> (real-number ?x)

(dimensionless-quantity ?x) ) )

Dimensional homogeneity is a prerequisite to unit

conversion and other algebraic operations on quantities.

Consider the simplest type of physical quantities, scalar

quantities. Scalar quantities are constant quantities with

real-valued magnitudes, distinguished from higher-order

tensors. (We will define the magnitude function

precisely below.) A physical dimension defines a class of

scalars with important algebraic properties. For example,

the sum of any two scalars of the same dimension is a

scalar of the same dimension. Physical dimensions also

provide necessary conditions for comparing quantities;

two quantities are comparable only if they are of the same

physical dimension. It makes sense to quantitatively

compare two masses but not a mass and a length.

33 COMPARABILITY AND ORDER

Comparability is one way to ground the otherwise

algebraic definitions of quantities. Quantities are

quantitative measures; a meaningful measure is one that

reflects order in the measured (or we would say, modeled)

world. Adapting the definition by Ellis [11], we say that

the elements of a class Q of (scalar) quantities of the same

physical dimension must be comparable. According to

Ellis, comparability for a quantity type holds if there is as

a linear ordering relationship in the world given by an

equivalence relation R=, and a binary relation R< that is

asymmetric and transitive over Q, such that for any two

quantities qi, q2 e Q. exactly one of the following must

hold: qi R= q2, qi R< q2- or q2 R< qi. Using this

definition, we can ask whether something we want to call

a quantity type or physical dimension should be classified

as such. Mass, for instance, is comparable by this

definition because one can always order masses. The

property of comparability is independent of measurement

unit, measurement procedure, scales, or the types of

physical objects that are being modeled.

Ellis defines a quantity [type] as exactly that which

can be linearly ordered. We needed to depart on two

fronts, to accommodate the sorts of quantities we find in

engineering models. First, comparability is different for

higher-order tensors (see Section 3.5); the tensor order

and spatial dimensions of the quantities must be

compatible to be able to compare them, and the ordering

need not be total. Second, for scalars we insist that the

order be dense: one can multiply any scalar quantities of a

given physical dimension by a real number and obtain

another scalar quantity of that physical dimension. This

property also holds for mass, and illustrates that calling

something a quantity is a modeling decision. That mass is

densely ordered in this way is an assumption of

continuum mechanics. It also was a consequence of
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including the reals as a species of physical quantity.

Nonetheless, we depart from writers like Ellis primarily

because our goals are slightly different. Our primary

responsibility is to explicate a coherent framework that is

adequate for expressing the content of engineering

models.

The notion of physical dimension is intimately tied

up with the notion of physical quantity, and both are

primitive concepts ultimately grounded in the

comparability of quantities in the world. Thus, from our

definitions alone a computer program cannot infer that

some entity is a physical quantity unless it defined in

terms of other quantities. The practical consequence of

including such primitives in a formal ontology is that the

types of such entities must be declared.

3.4 FUNCTION QUANTITIES

A physical quantity is either a constant quantity or a

function quantity. The mass in our example model is a

constant quantity, like 50kg. A function quantity is a

function from constant quantities to constant quantities. It

is not a function from physical objects to quantities. The

altitude of a particle over time is a function quantity,

mapping quantities of time to quantities of length.

Function quantities can take any finite number of

arguments (although in engineering they usually take 1, 3,

or 4). For example, the quantities in ordinary differential

equation (ODE) models are unary functions mapping

scalar quantities (e.g., of time) to scalar quantities. Partial

differentials involve functions of several quantities, such

as three length quantities and a time quantity. Like all

physical quantities, each function quantity has a physical

dimension—the dimension of all the elements of the range

(a function that maps to quantities of differing ranges is

not a function quantity).

3.5 TENSOR QUANTITIES

In the conceptualization, physical quantities include not

only scalars but also higher order tensors such as vectors

and dyads. Vectors (first order tensors) are distinct from

scalars, in that complete specification of a vector constant

requires a statement of direction or orientation. A

velocity vector, for instance, can be decomposed into a 3-

tuple of scalars for a particular choice of reference frame.

Mechanical stress is represented by dyad (second order

tensor) and instances of it can be mapped to a 3x3 matrix

for a given reference frame. Tensors are a useful

abstraction, because they possess properties that are

invariant across reference frames. Though three

dimensional reference frames (or vector spaces) and

tensors of order two or less are most common in physical

modelling, the concepts generalize to n dimensions and n-

orders. Tensors, then, are characterized both in terms of

order and spatial dimension, and these distinctions, in

turn, imply a set of algebraic restrictions. The EngMath

ontology integrates the algebraic properties of tensors

with dimensional properties of all physical quantities.

3.6 UNITS OF MEASURE

The identity of quantities does not depend on the process

or nature of measurement, or units of measure. A quantity

of mass like 50kg is the same thing whether it is measured

with a balance beam or a spring, and it is comparable in

every way with other mass quantities independently of

whether they are specified in kilograms or pounds.

However, units are not irrelevant; for example, one cannot

specify a constant in an equation without making

reference to units of measure.

In our conceptualization, units of measure are

quantities themselves (positive, scalar, constant

quantities). A unit of measure is an absolute amount of

something that can be used as a standard reference

quantity. Like all quantities, units have dimensions, and

units can be defined as any other scalar quantity. For

example, the kilogram is a unit of measure for the mass

dimension. The unit called "pound" can be defined as a

mass quantity equal to the kilogram times some constant,

just as the quantity 50kg is equal to the product of the unit

called "kilogram" and the real number 50. What makes

the pound special, compared with quantities like 50kg, is

a matter of convention. (We will return to the issue of

standard units in Section 3.8.) To provide for unit

conversion over all physical dimensions, every product

and real-valued exponentiation of a unit is also a unit of

measure.

(defrelation UNIT-Of-MEASURE

;; units are scalar quantities

(=> (unit-of-measure ?u)

(scalar-quantity ?u) )

;; units are positive

(=> (unit-of-measure ?u)

(forall ?u2

(=> (and (unit-of-measure ?u2)

(= (quantity. dimension ?u)

(quantity .dimension ?u2)))

(positive (magnitude ?u ?u2)))))

; ; units can be combined using *

(abelian-group unit-of-measure *

identity-unit)

; ; units can be combined using expt

(=> (and (unit-of-measure ?u)

(real -number ?r) )

(unit-of-measure (expt ?u ?r) ) )

; ; * is commutative for units and other Qs

(=> (and (unit-of-measure ?u)

(constant-quantity ?q) )

(= (* ?u ?q) (* ?q ?u)))))

3.7 MAGNITUDES

The magnitude of a physical quantity is not a property of

the quantity, but is given by a binary function that maps a

quantity and unit of measure to a numeric value (a

dimensionless quantity). Once it was decided that units

were just scalar quantities, it became apparent that the

magnitude function is simply a restricted form of scalar

division (it is only defined when its first argument is a

constant quantity and its second argument is a unit of the

same dimension). It is also total for all constant
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quantities: a constant quantity can be expressed in any

unit of the same physical dimension, and the magnitude of

a quantity in one unit can be converted to its magnitude in

any other comparable unit

The requirement for dimensional consistency fits our

intuition. The magnitude of 50kg in kilograms is 50, but

the magnitude of 50kg in meters is undefined. For higher-

order tensor quantities, the value of the magnitude

function is an ordinary dimensionless tensor. Since units

of measure are scalar quantities, one can think of the

magnitude function as factoring out the physical

dimension of a quantity (returning a dimensionless

quantity) and producing a value normalized on a scale

corresponding to the unit.

Although a unit of measure implicitly determines a

measurement scale, units of measure are not the same

thing as scales in this conceptualization. Measurement

scales are a more general way to map quantities to

numeric values, and are described in Section 4.7.

(deffunction MAGNITUDE

(<=> (and (defined (magnitude ?q ?unit) )

(= (magnitude ?q ?unit) ?mag) )

(and (constant-quantity ?q)

(unit-of-measure ?unit)

(dimensionless-quantity ?mag)

(= (quantity. dimension ?q)

(quantity. dimension ?unit) )

(defined (* ?mag ?unit) )

(= (* ?mag ?unit) ?q) ) )

dimensionless magnitudes can be factored

(forall (?q ?unit ?mag)

(=> (and (constant-quantity ?q)

(unit-of-measure ?unit)

(dimensionless-quantity ?mag)

(defined (* ?mag ?q) ) )

(= (magnitude (* ?mag ?q) ?unit)

(* ?mag (magnitude ?q ?unit)))))

3.8 STANDARD SYSTEMS OF UNITS

Although we do not want to fix a set of standard units for

the shared ontology, we want to provide the vocabulary

with which to define sets of standard units so that agents

can share them. For this, the concept of system of units is

used. A system of units is a class of units defined by

composition from a base set of units, such that every

instance of the class is the "standard" unit for a physical

dimension and every physical dimension has an

associated unit.

This is an interesting representation problem, because

both the set of units and the space of physical dimensions

are conventions, and both are constrained (but not

determined) by the background domain theory assumed in

a model. The set of dimensions and their mutual

relationships are determined by a physical theory, while

the choice of units for each dimension is a measurement

convention. The relationship between force, mass, length,

and time is given by physics. The theory does not need to

give fundamental status to any one physical dimension,

but it does say that the force dimension is equal to

(* (* length mass) (expt time -2)). One system of

measurement may take mass, length, and time to be

primitive and derive force; another could take force as

primitive and derive mass. The same physical laws could

be expressed in either system.

The concept of system of units is defined so that

commitments to physical theories, sets of fundamental

dimensions, and standard units are independent. To

define a system of units, the model builder chooses a set

of fundamental dimensions that are orthogonal (i.e., not

composable from each other). According to this physical

theory, mass and time are orthogonal, but force and mass

are not. The set of fundamental dimensions determines

the space of possible quantities that can be described in

this system—those whose physical dimensions are some

algebraic combination of the fundamental dimensions.

For each of the fundamental dimensions, the model

builder chooses a standard unit of that dimension; these

are called the base-units of the system. Then every other

standard unit in the system is a composition (using * and

expt) of units from the base set. For example, the

Systeme International (SI) is a system of units that defines

a set of seven fundamental dimensions with the base-units

meter, kilogram, second, ampere, Kelvin, mole, and

candela.

(defrelation SYSTEM-OF-UNITS

(<=> (system-of-units ?s)

(and (class ?s)

(subclass-of ?s unit-of-measure)

; ; The base-units of the system are

; ; those with fundamental dimens

(defined (base-units ?s))

(=> (member ?unit (base-units ?s))

(instance-of ?unit ?s))

(orthogonal dimension-set

(setofall ?dim

(exists ?unit

(and (member ?unit

(base-units ?s) )

(= ?dim

(quantity. dimension ?unit) )

; ; Every unit in the system is the

; ; standard unit for its dimension.

(=> (instance-of ?unit ?s)

(= (standard-unit

?s

( quantity . dimens ion

?unit) )

?unit) ) ) ) )

(defrelation ORTHCX30NAL-DIMENSION-SET

(<=> (orthogonal-dimension-set ?s)

(and (set ?s)

(=> (member ?d ?s)

(and

(physical-dimension ?d)

(not

( dimension-composable- from

?d

(difference ?s

(setof ?d))))))))

(defrelation DIMENSION-COMPOSABLE-FRCM

(<=> (dimension-composable-from ?d ?s)

(or

(member ?d ?s)
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(exists (?dl ?d2)

(and

(dimension-conposable-from ?dl ?s)

(dimension-composable-from ?d2 ?s)

(= ?d (* ?dl ?d2))))

(exists (?dl ?real)

(and

(dimension-composable-from ?dl ?s)

(real -number ?real)

(= ?d (expt ?dl ?real))))))

3.9 ALGEBRAIC PROPERTIES OF QUANTITIES

We can borrow the well-established theories of algebra

for the reals, vectors, and higher-order tensors. To adapt

them to physical quantities we must consider physical

dimensions in describing the domain and range of

operators. We have already seen how dimensional

homogeneity is a prerequisite for adding quantities, and

physical dimensions establish classes of quantities that are

comparable. For each physical dimension, the class of

constant scalar quantities of a physical dimension forms

an abelian group with the addition operator + and a zero

identity element for that dimension (zeros of each

dimension are different). The class of all scalars of any

dimension, after removing the zero scalars, forms an

abelian group with respect to multiplication.

For vector quantities, the sum of the quantities is only

defined where the sum of the dimensionless versions of

the vectors would be defined (i.e., the spatial dimensions

must align). For higher-order tensors, tensor order and

spatial dimensions, as well as the physical dimension,

must be homogeneous. Analogous restrictions apply for

the multiplication of tensors.

For function quantities, the sum or product of two

function quantities is another function quantity that is only

defined where the domains of the functions are equal. For

unary scalar function quantities, the addition and

multiplication operators are defined to handle a mix of

function quantities and constant quantities. The sum of a

constant k and a time-dependent function /, for example,

is a function defined everywhere /(t) is defined and is

equal to fit}+k. Continuous time-dependent quantities can

also be defined from others using a time-derivative

function.

Most of the axiomatization in the specialized theories

for functions, vectors, and tensors is concerned with

specifying the conditions under which algebraic operators

apply. This is essential for building agents with

guarantees of completeness for some class of quantities.

4. RATIONALE FOR IMPORTANT DISTINCTIONS

There are many possible ways to axiomatize this domain,

and the axiomatization makes explicit many things that

are implicit in the engineering literature. In this section,

we discuss important distinctions that the formalization

process forces one to clarify. For each distinction we

offer a rationale for the choices made in terms of the

purpose of the ontology.

4.1 QUANTITY TYPES VERSUS INSTANCES

Some authors define "a quantity" as a set of values or a

property having some order [11]. However, they offer no

name for instances of this set, or for the values of this

property. Following the AI convention of defining

concepts as classes (or equivalently, sets, types, monadic

predicates), we define the class physical quantity, and

define species of quantities as subclasses of physical

quantity. Where some would talk of the unitary concept

"the mass quantity," we would say that there is a quantity

type whose elements are constant scalars of dimension

mass. This allows us to support the common usage in

engineering modeling, where specific values such as the

length of a beam are called quantities. It also allows us to

modularly state properties of quantities, function

quantities, scalar quantities, scalar-mass quantities, etc.,

and have the general properties inherit to the

specializations.

4.2 QUANTITIES ARE NOT VARIABLES

Physical quantities and physical dimensions are objects in

the universe of discourse, and are not linguistic elements

(e.g., "variables" of constraint expressions). Constraints

over quantities that are found in engineering models are

typically algebraic equations or inequalities, sometimes

including the operations of differential calculus.

Quantities are very different from linguistic elements. We

have built ontologies (for the specification of a

configuration design task for elevators—the VT

experiment) in which constraint expressions and their

constituents (variables and arithmetic operators) are part

of the domain of discourse. In that formalization of

constraints, constraint expressions are logical sentences

with nonlogical constants (not logical variables) denoting

physical quantities. The ontological distinction between

variables and quantities allowed us to write an ontology in

which both the form and denotation of constraint

expressions were specified. This is necessary when the

committing parties need restrictions on the form of

expressions to guarantee completeness.

4J QUANTITIES ARE NOT PROPERTIES OF

OBJECTS

The identity of quantities is independent of physical

objects that might be modeled. For example, let us say

that the mass of a body B is the quantity 50kg. 50kg is

just a measure of mass; there is nothing intrinsic about

50kg that says it is the mass of B (there is no total

function from masses to bodies). Making quantities

independent of objects also allows one to state that the

mass of B is equal to the mass of a different body. It also

supports pure parametric models, in which there are no

physical objects and only quantities are described.

Of course, the model builder is free to define a

function from physical objects to quantities, but this

function is not the same thing as a mass quantity. Our

formulation of quantities does not preclude such object-to

quantity functions; it provides the language in which to
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describe the range of those functions. In CML [12], for

example, there are functions from objects (e.g. pipes) to

time-dependent function quantities. This distinction is

central to the semantics of CML, which allows both time-

varying and static relations. The object-to quantity

functions are time-independent (e.g., the pipe always has

a flow rate), but the quantities are functions of time (e.g.,

the flow rate is a function quantity that has different

values throughout a scenario and can be undefined on

some values of time).

4.4 QUANTITIES ARE NOT TUPLES

In our ontology, quantities exist as values that are related

to, but independent of units and numbers. Quantities can

be compared, multiplied, etc., without ever converting to

reals or considering units of measure. This independence

allows the model builder the flexibility needed to build

measurement systems and physical theory independently.

Furthermore, although quantities have algebraic

properties, they are not purely abstract entities; we have

grounded them in the modeled world with the condition of

comparability. In contrast, an alternative formulation one

often sees is to treat quantities as tuples of numbers and

units [2,36], or as simply numbers. Besides the

assumption about units that such a formulation makes, we

find that it contradicts the conceptualization of quantities

in the world made by physicists and philosophers. To

reuse a simple example: 3 feet and 1 yard are equal, yet

the tuples <3,ft> and <l,yd> are not

4.5 THERE ARE NO FUNDAMENTAL

QUANTITIES

The identity of a physical quantity is also independent of

any fundamental quantities. We make no ontological

distinction between base and derived quantities. For any

pair of comparable physical quantities, their sum and

product (if defined) are also physical quantities (the sum

will be comparable with the original two; the product may

not). This is also independent of scales, which are

discussed below.

The rationale for this decision is again to provide

generality and flexibility. We know from physics that

there is no physical basis for giving some quantities

primacy. Measurement theories make a distinction

between quantities amenable to fundamental and

associative measurement [6] . Again, we have made this

distinction irrelevant for engineering models by avoiding

the temptation to define quantities in terms of

measurement. The analogous argument holds for not

giving special status to some units of measure or physical

dimensions. Even though it is possible to compose units

and dimensions, there is no need to stipulate in the shared

theory exactly which units and dimensions are

fundamental.

4.6 NONPHYSICAL VS. DIMENSIONLESS

QUANTITIES

The conceptualization leaves it to the model builder to

define the fundamental dimensions for a domain. The

definition of physical dimension does not preclude one

from defining new dimensions not mentioned in physics

texts. We cited the example of amount of money as a

possible physical dimension. The ontology also allows

for dimensionless quantities, such as real numbers, whose

physical dimension is the identity dimension. How does

one decide whether to define a new physical dimension

for a nonphysical quantity or to make it a dimensionless

quantity?

We say that a physical dimension distinguishes a type

or class of quantities that can be meaningfully combined

with algebraic operations, can undergo unit conversion,

and are comparable. Amount of money is a meaningful

dimension because one can accumulate sums of money,

do currency conversion, and compare relative wealth.

Amount of money can be meaningfully combined with

other dimensions. A rate of inflation, for example, is

computed by dividing an amount of money (a change in

price) by a different amount of money (the base price) and

dividing the result by a unit of time (a year). The rate is a

quantity of dimension (expt time -1). Money is something

to be tagged as different in type from other quantities;

that's why we see dollar signs (or other units) carried with

the numbers in formulae.

As a negative example, consider quantities like

number of politicians and number of constituents. We

might write a formulae

(=Nconstituents (* N politicians 1000000)).

In this model, we are making an abstraction; these

quantities of humans are being compared as numbers.

The = sign implies that the quantities must be of the same

physical dimension, which would be, in this case, the

identity dimension. Suppose, however, that we wanted to

describe the number of molecules in those politicians.

There is an international unit for number of molecules, the

Mole.3 In the modern SI system of units, this is not a

dimensionless quantity, but a quantity of the dimension

amount of substance. Why does amount of substance get

special status over number of politicians? Because

chemical models need to distinguish amount of substance

quantities from other measures. There is something

homogeneous about molecules in that it makes sense to

measure stuff by counting them. The formula for the

average amount of gas in those politicians would use an

amount of substance quantity for the amount of gas, and a

dimensionless quantity for the number of politicians. This

makes sense in the chemist's abstraction of politicians:

that they can be viewed as volumes of gas.

4.7 MEASUREMENT SCALES

A measurement scale is a determinative, non-degenerative

assignment of numeric values to physical quantities [11].

Determinative means that the same quantities are

consistently assigned the same numeric values, and non-

degenerative means that different quantities get different

values (ignoring issues of precision). Examples of

measurement scales include Mohs scale for the hardness

It's actually number of particles, but if you understand that distinction

you understand our point here.
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of minerals and the Celsius and Kelvin scales for

thermodynamic temperature. Using the Coombs [7]

classification, the Mohs scale is ordinal because it only

provides information for inequality comparisons among

points on the scale. The Celsius scale is classified as

ordinal-interval because it supports inequalities between

intervals on the scale, and Kelvin is a ratio scale because

it supports comparisons of the ratio of any two values on

the scale. For instance, it makes sense to say that 6

degrees Kelvin is twice as much as 3 degrees Kelvin.

By this mathematical definition, the units of measure

in our conceptualization correspond to ratio scales.4

Each value on the scale is the ratio of the measured

quantity to the degree-Kelvin unit. Thus the Kelvin scale

can be defined from the degree-Kelvin using the

magnitude function:

(lambda (?q) (magnitude ?q degree-Kelvin)

We don't call Mohs ratings or degrees-Celsius units

of measure, because they aren't quantities against which

to compare other quantities. Of course one can write a

function that does measure any temperature on the Celsius

scale, such as

(lambda (?q)

(- (magnitude ?q degree-Kelvin) 273.15))

Since there is no principled constraint on the form of such

function, we leave it to the model builder to define scales

appropriate to a domain.

5. DESIGN AND EVALUATION ISSUES

We view ontologies as designed artifacts, formulated for

specific purposes and evaluated against design criteria. In

a separate paper [19], we propose a set of ontology

evaluation criteria and show examples of their application

to this and other domains.

Two of the criteria will be illustrated here: to

minimize ontological commitment while allowing for

monotonic extendibility. Minimizing ontological

commitment means making as few claims as possible

about the world being modeled, allowing the parties

committed to the ontology freedom to specialize and

instantiate the ontology as needed. Extendibility means

an ontology should be crafted so that one can extend and

specialize the ontology monotonically . In other words,

one should be able to define new terms for special uses

based on the existing vocabulary, in a way that does not

require the revision of the existing definitions. Both of

these criteria hold a natural tension with the goal of

supporting the knowledge sharing needs of a range of

agents with differing abilities and assumptions. Adding

vocabulary to handle a broad range of representation

needs will increase ontological commitment by adding

more constraints on the interpretation, and will make it

more likely that some definitions will be incompatible

with future representation needs.

In this section, we will discuss two techniques in the

design of the EngMath ontology that help us meet these

two criteria. One is the decomposition of a large ontology

into modules. The second is another familiar design

technique—parameterization—applied to the problem of

representing conventions.

5.1 DECOMPOSING THE ONTOLOGY

The first technique is to decompose a monolithic ontology

into a set of loosely coupled sub-ontologies. The

EngMath ontology is decomposed into an inclusion lattice

of individual ontologies, where each ontology is a set of

definitions, and ontology inclusion is set inclusion. If a

ontology B includes ontology A, then ontology B is the

union of the definitions in A with those specific to B.

More sophisticated methods for partitioning knowledge

bases into modular theories are being explored [25] , but

set inclusion is sufficient for mutually consistent

ontologies in a uniform namespace.

Figure 1 shows the inclusion lattice of theories for the

EngMath family. The core ontology of physical

quantities includes abstract algebra (evolved from the

example in the KIF 3.0 specification [16]) and a theory of

objects and relations called the Frame Ontology [20] . The

EngMath family includes ontologies for Scalar Quantities,

Vector Quantities, and Unary Scalar Functions. The

Standard Units ontology defines many of the most

common physical dimensions and units, and includes the

SI system. Other engineering ontologies that build on the

EngMath family—for describing component structure,

design tasks, discrete events, and specific analysis

domains such as kinematics—are being developed.

Decomposing into loosely coupled ontologies helps

minimize ontological commitment by allowing one to

commit to a coherent subset of the axioms of the entire

ontology. For example, one can commit to scalars but not

vectors; unary functions (for ODE models) but not n-ary

functions (for PDE models); and static models (no

functions). Even an agent that does not include physical
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dimensions in its conceptualization can be

accommodated, since all the real number operations are

also defined for quantities, and the reals are quantities.

Decomposition also supports the specialization of

monotonically extendible ontologies. For example, the

CML ontology inherits the basic commitments of the

Unary Scalar Functions ontology and adds notions

specific to its needs. Since the definitions in Unary Scalar

Functions anticipate the general class of time-dependent

functions, the CML extensions were possible without

redefining the originals.

Designing a family of coherent ontologies is more

difficult than designing a monolithic one, since the

designer must anticipate intermodule interactions, such as

axioms in several ontologies constraining the same

vocabulary. To help manage the extension of vocabulary

across ontologies, we borrow a technique from software

engineering: polymorphism .

Polymorphism allows the same function constant to

be defined in several places, where each definition adds

axioms about the use of the constant. The +, *, and expt

functions, for example, are polymorphically extended to

each type of quantity and to physical dimensions. The

form of a polymorphic definition of a function F is

(=> (and (p ?x) (q ?x) )

(=> (= (f ?x ?y) ?z) (r ?x ?y ?z) ) )

where ?x and ?y are the arguments of F, p and q are the

domains over which this definition applies (e.g., quantity

types), and r is the condition that holds for F's arguments

and it's value, ?z.

Due to theory inclusion, the definition of a function is

the union of axioms contributed by each theory. For

example, the definition of + for the Vector Quantities

ontology is the union of the axioms for + for vector

quantities, + for scalar quantities, + for physical quantities

in general, and + for the reals.

5.2 PARAMETERIZING CONVENTIONS

A second technique to facilitate extendibility and to

minimize commitment is the parameterization of

conventions. A parameter of a black box system is a

representation of assumptions about how the environment

interacting with the system will vary. In a computer

program, the environment interacts with the program

through formal arguments that are bound on invocation

(and through the human interface, which is not as neatly

parameterized). In the domain of the EngMath

ontologies, the environment is the instantiation of the

shared vocabulary for particular domain models. We

have described several ways in which the domain models

vary by convention . The choice of fundamental physical

dimensions and standard units for a system, and the

choice of particular units for individual quantities are

conventions.

To minimize ontological commitment, we formulate

these choices as parameters of the engineering model,

rather than global constants of the shared ontology. To

support extendibility, we provide an expressive

representational vocabulary for specifying values of

parameters. For example, to allow the model builder to

specify the choices of fundamental dimensions and

standard units, we provide the machinery to define

systems of units.

It is in this sense that ontologies are a "coupling

mechanism" [18] for knowledge bases and knowledge

based agents. Parameters such as the system of units for a

domain model are like abstract data types in software,

except that the latter are ground and parameters of a

domain model can be theories. We mentioned that the

Unit Conversion agent can take, as inputs, ontologies

specifying systems of units. When the other SHADE

tools exchange sets of equations they are also exchanging

theories. When agents pass around theories, the

constraints on what they can pass around is specified in a

shared ontology. In this sense, ontologies play a similar

role as database schemata, except that ontologies may

require a more expressive language for constraints than is

typical in database specifications.

6. RELATED WORK

6.1 PHILOSOPHY

The mathematics underlying the EngMath ontologies is

drawn from standard textbooks used to teach engineering

math [26,31,37], and from the philosophy literature on

measurement [6,1 1]. We had to choose distinctions from

the conceptualizations, and modify them to produce the

modular, internally coherent ontologies in the EngMath

family. The engineering texts assume a conceptualization

motivated by abstract algebraic operations, and the

philosophy texts explore the grounding of the

abstractions.

The aim of the philosophy texts is to describe The

World as it Is in its Entirety, and to relate the results to

prior writings. For the philosopher, it is important to

relate the nature of quantities to the process of

measurement and observation, and more generally, to the

question of scientific knowledge. For instance, even the

very notion that quantities such as mass can be

meaningfully expressed as linear ratios of a standard turns

out to be a convention, albeit a very useful and familiar

one. Ellis [11] argues that the notion of a unit is

incomplete without a choice of how such units are

combined (which is related to, but not the same as,

measurement procedure). We are assuming that there is a

shared interpretation to the result of multiplying the meter

times the real number 1000.

For our purposes—the sharing and communication of

engineering models in machine and human readable

forms—it is an advantage to be able to isolate the

meaning of quantities from the process of measurement.

We make no apologies: this is not a sweeping-under-the-

rug of relevant issues, but a strategic decoupling of issues.

In building ontologies we are writing social contracts. We

are free to invent the conceptualization as long as its

meaning can be effectively communicated (which is why

we use standard terminology and logic). By accepting the

KIF language as a foundation, for example, we already

commit to including abstract things like sets and relations

in the universe of discourse. We add to that an ontology
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of abstract algebra, and extend it to physical quantities.

The philosophical ontologist draws a heavy line when the

objects cross from timeless mathematical entities to

physical concepts like mass and length. Our agents need

no strong boundary; if our engineering model states that a

quantity of mass exists and is related to a length quantity

by some algebraic expression, it is so for the agent.

According to our evaluation criteria [19], clarity and

coherence in the specification are paramount, and

faithfulness with The World is not an issue.

Nonetheless, we can "share and reuse" the analysis

found in philosophy writing, for very pragmatic ends. For

example, one of the differences between a casual writing

on quantities and a careful one is the treatment of property

association. One often sees it stated that quantities are

"properties" of "objects" — like qualities but quantitative.

However, the careful writer will point out that quantities

as we use them are relational—they are about comparing

objects in some respect, or about relationships among

them (e.g., distance between reference points). This

informs our design. Departing from the conventional

"object oriented" approach, we give independent status to

quantities and leave it as a modeling decision to map from

objects to quantities. This is, in essence, a decoupling of

theories about quantities from theories about model

formulation.

Similarly, an understanding of the nature of physical

theory and measurement guides us away from the impulse

to oversimplify for the sake of computational elegance.

For example, it would be simpler from a computational

point of view to fix a single basis set of "fundamental"

physical dimensions or units of measure, and recursively

derive the rest. However, the laws of physics tell us that

there are no inherently privileged physical dimensions,

and the study of measurement tells us that the choice of

basis sets for dimensions and units is a convention. The

fact that engineers must deal with at least two systems of

units, each of which chooses a different basis set (and

which has changed over historical time), motivates us to

provide the model builder with the representational

machinery to define a system of units as part of the

domain model.

Work in Formal Ontology in the philosophy literature

that is relevant to knowledge sharing ontologies are found

in [4,5], and (combined with papers from AI) in [24] .

62 OTHER WORK ON ONTOLOGIES

There is a growing body of ontologies appearing in the

literature seen by the knowledge representation

community, including as a sample [3,10,28,30,39].

The most closely related on engineering ontology is

the thesis by Alberts [2]. Alberts describes a formal

ontology intended as the basis for building interoperable

and reusable knowledge systems for design. His ontology

provides a vocabulary for modeling the structure and

behavior of systems, based on systems theory [38] and

Finite element modeling. While the formalization of

systems is exemplary, the treatment of quantities in that

ontology is simplistic. First, quantities have no status

other than as the values of variables with symbolic

'quantity types.' There is no provision for defining new

dimensions or describing complex dimensions; the

quantity types appear to be those that are anticipated by

systems theory (analogs of effort and flow). Second, the

values are always unary scalar functions of time, where

time is "exceptional" (i.e., outside the range of the

model). This prevents vector and tensor models, PDE

models, phase-space models where time is not the

independent variable, etc. Third, the values of these

functions are tuples of numbers and fixed units.

More recent work by Akkermans and Top [1]

develops the systems theory methodology to maturity. It

proposes engineering ontologies at four levels of

description: functional components, physical processes,

mathematical relations, and model data. Work on model

formulation using the CML language [12] and SHADE

engineering agents [32] aims at a suite of ontologies not

based on system theory that have similar coverage.

Perhaps the ontology presented in this paper can provide a

foundation for the mathematical and data level of models

in these comprehensive engineering ontologies.
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Abstract

We focus in this paper on some meta-level on-

tological distinctions among unary predicates,

like those between concepts and assertional

properties. Three are the main contributions of

this work, mostly based on a revisitation of

philosophical (and linguistic) literature in the

perspective of knowledge representation. The

first is a formal notion of ontological com

mitment, based on a modal logic endowed

with mereological and topological primitives.

The second is a formal account of Strawson's

distinction between sortal and non-sortal predi

cates. Assertional properties like red belong to

the latter category, while the former category

is further refined by distinguishing substantial

predicates (corresponding to types like person)

from non-substantial predicates (corresponding

to roles like student). The third technical con

tribution is definition of countability which

exploits the topological notion of connection

to capture the intended semantics of unary

predicates.

1 INTRODUCTION

Most KR formalisms differ from pure first-order logic

in their structuring power, i.e. their ability to make ev

ident the "structure" of a domain. For example, the ad

vantage of frame-based languages over pure first-order

logic is that some logical relations, such as those cor

responding to classes and slots, have a peculiar, struc

turing meaning. This meaning is the result of a number

of ontological commitments, which accumulate in lay

ers from the very beginning of a knowledge base devel

opment process [11]. For a particular knowledge base,

such ontological commitments are however implicit

and strongly dependent on the particular task being con

sidered, since the formalism itself is in general deliber

ately neutral as concerns ontological choices: in their

well-known textbook on AI, Genesereth and Nilsson

([13], p. 13) explicitly state the "essential ontological

promiscuity of AI". We have argued elsewhere against

this neutrality [18,20,21], claiming that a rigorous

ontological foundation for knowledge representation can

result in better methodologies for conceptual design of

data and knowledge bases, facilitating knowledge shar

ing and reuse. We have shown how theories defined at

the (so-called) epistemological level, based on struc

tured representation languages like KL-ONE or order-

sorted logics, cannot be distinguished from their "flat"

first-order logic equivalents unless we make clear their

implicit ontological assumptions. Referring to the

classification proposed in [5], we have introduced there

fore the notion of ontological level, intermediate be

tween the epistemological and the conceptual levels

[19]. At the ontological level, formal distinctions are

made among logical predicates, distinguishing between

(meta-level) categories such as concepts, roles, and as

sertional properties.

Such distinctions have three main purposes. First, they

allow the knowledge engineer to make clear the in

tended meaning of a particular logical axiomatization,

which is of course much more restricted than the set of

all its Tarskian models. This is especially important

since we are constantly using natural language words

within our formulas, relying on them to make our

statements readable and to convey meanings not explic

itly stated. However, since words are ambiguous in

natural language, it may be important to "tag" these

words with a semantic category, in association with a

suitable axiomatisation, in order to guarantee a consis

tent interpretation1. This is unavoidable, in our opin

ion, if we want to share theories across different do

mains [23,16]. A second important advantage of clear

ontological distinctions is the possibility of a method-

'Notice thai we do not mean that the user is forced to accept some

one fixed interpretation of a given word: simply, we want to offer

some instrument.* lo help specifying the intended interpretation.
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ological foundation for deciding between the various

representation choices offered by a KR formalism: for

example, within a hybrid terminological framework, for

deciding whether a predicate should go in the TBox or

ABox, or how a KL-ONE role should be related to a

correponding concept. Finally, these distinctions may

impact the reasoning services offered by a KR formal

ism: for example, a terminological reasoner can forbid

certain kinds of update on the basis of ontological con

siderations; it may take advantage of the fact that some

kinds of concepts form a tree, while in general they do

not [31]; it may maintain indices for instances of con

cepts but not for instances of properties; it may provide

domain-checking facilities for properties but not for

concepts1.

We focus in this paper on some fundamental ontologi

cal distinctions among unary predicates, refining and

extending some previous work [19]. Most of our re

sults come from a revisitation, from the point of view

of KR, of philosophical (and linguistic) work largely

extraneous to the KR tradition. The main distinction

we focus on is that between sortal and non-sortal predi

cates, originally introduced by Locke and discussed in

more detail e.g. by Strawson [32] and Wiggins [34].

According to Strawson, a sortal predicate (like apple)

"supplies a principle for distinguishing and counting

individual particulars which it collects", while a non-

sortal predicate (like red) "supplies such a principle

only for particulars already distinguished, or distin

guishable, in accordance with some antecedent principle

or method" [32]. This distinction is (roughly) reflected

in natural language by the fact that the former terms are

common nouns, while the latter are adjectives and

verbs. The issue is also related to the semantic differ

ence between count and non-count (or mass) terms.

Philosophers have characterised count terms as denoting

integral wholes, whereas entities denoted by mass terms

are cumulative and divisive. This criterion has been a

matter of lively debate [25], since such semantic-prag

matic distinctions not always correspond to the syntac

tical "count/mass" distinction, according to which,

while mass-terms admit quantifiers like much, or a

little and the indefinite article some, count-terms use

the quantifiers each, every, some, few... and the

indefinite article a.

Distinctions among unary predicates are also present in

the KR literature, where sortal predicates are usually

called "concepts", while characterising predicates are

called "properties", or sometimes "qualities". The

necessity of a distinction between the two kinds of

predicates has always been acknowledged by advocates

of the logicist approach in KR, as emerges clearly from

the following quotation from David Israel [22]:

"There is to be one tree for kinds of things and

another for qualities of things. Kinds must be

distinguished from qualities: being a cat must be

distinguished (in kind, no doubt) from being red"

Within current KR formalisms, however, the difference

between the two kinds of predicates is only based on

heuristic considerations, and nothing in the semantics

of a concept forbids it from being treated like any other

unary predicate. Our task here is to formalize such a

difference: our job is simpler than that of a linguist,

since we do not try to classify a linguistic item as be

longing to a particular category, but simply to make

explicit its intended meaning when it is used as a predi

cate symbol with a specific representation purpose.

After giving a simple example showing the necessity

of the above distinction, we introduce in section 3 a

formal notion of ontological commitment, based on a

modal logic endowed with mereological and topological

primitives. In the philosophical literature, such a term

was first used by Quine [27]. According to him, a

logical theory is ontologically commited to the entities

which it quantifies over. Quine expressed his criterion

for ontological commitment with the slogan: "to be is

to be the value of a variable". Such criterion was fur

ther refined by Church [6] and Alston [1], and finally

modified by Searle in order to defend his argument that

the ontological commitment of a theory simply

coincides with what it asserts. We reject such a

position, holding that different theories can share the

same ontological commitment. In the AI community,

this claim is at the basis of current projects for

knowledge sharing and reuse [23]. In the knowledge

acquisition literature, the notion of ontological

commitment has been introduced by Gruber [16,17] as

an agreement to use a shared vocabulary. We focus in

this paper on the formal semantic interpretation of such

a vocabulary: specifying the ontological commitment

of a logical language means offering a way to specify

the intended meaning of its vocabulary by constraining

the set of its models, giving explicit information about

the intended nature of the domain elements and relations

and their a priori relationships. In order to capture such

a priori knowledge we believe it is necessary to use a

modal semantics, in contrast with Quine's view.

The notion of ontological commitment is exploited in

section 4 to introduce some meta-level properties of

unary predicates such as countability, temporal stability

and rigidity. These properties allow us to establish an

ontology meta-level categories of predicates, where the

basic sortal/non-sortal distinction is further explored

and refined. The impact of these distinctions on die cur

rent practice of knowledge engineering is discussed in

section 5.

The last two examples are due to Bob MacGregor.
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2 REDS AND APPLES

Suppose we want to state that a red apple exists. In

standard first-order logic, it is a simple matter to write

down something like 3x.(Ax a Rx)1. If we want to

impose some structure on our domain, then we may re

sort to a many-sorted logic. Then, however, we have to

decide which of our predicates correspond to sorts: we

may write 3x:A.Rx as well as 3x:R.Ax (or maybe

3(x:A,y:R).x=y). All these structured formalisations

are equivalent to the previous one-sorted axiom, but

each contains an implicit structuring choice. How can

such a choice be motivated, if the semantics of a primi

tive sort is the same as that of its corresponding first-

order predicate?

A statement like 3x:R.Ax sounds intuitively odd. What

are we quantifying over? Do we assume something like

the existence of "instances of redness" that can have the

property of being apples? Our position is that struc

tured representation languages like many-sorted logics

should be constructed in such a way that predicates can

be taken as sorts (or concepts, in KR terminology)

only when they satisfy formal, necessary conditions at

the meta-level, grounded on common-sense intuitions.

According to our previous discussion, a predicate like

red should not satisfy such conditions, and thus it

should be excluded from being used as a sort.

As discussed in the previous section, the introduction

of formal, necessary conditions for being a sort has a

general ontological motivation. Besides that, ontologi-

cal distinctions among predicates can be useful to make

explicit a particular meaning of a lexical item. For ex

ample, compare the statement "a red apple exists" with

others where the same term red appears in different con

texts (Fig. 1):

r- this apple is red (1)

Red(a) ^ ► crimson is a red (2)

this person is a red (3)

Fig. 1. Varieties of predication.

In case (2) the argument refers to a particular colour

gradation belonging to the set of "reds", while in (3)

the argument refers to a human-being, meaning for in

stance that he is a communist. Clearly, red is a case of

lexical ambiguity. The use of a lexically ambiguous

predicate can be specified by stating, for each context,

the intended meaning. It is interesting, however, that at

least for some predicates the possible intended

meanings are not simply related to the fact that the

arguments belong to different domains: they correspond

to different ways ofpredication, i.e. different types of

subject-predicate relationships, corresponding to meta-

level kinds of predicates. Studying the formal properties

of such categories is a matter of formal ontology,

recently defined by Cocchiarella as "the systematic,

formal, axiomatic development of the logic of all forms

and modes of being" [9]. In practice, formal ontology

can be intended as a theory of a priori distinctions:

- among the entities of the world (physical objects,

events, processes...);

- among the meta-level categories used to model the

world (concepts, properties, states, attributes...).

The latter kind of distinctions are the subject of the

present paper.

3 THE FORMAL FRAMEWORK

Instead of trying to give a "universal" definition of the

main predicate categories, we shall pursue here a more

modest goal: our definitions will be related to a specific

first-order theory whose intended meaning we are inter

ested in specifying. This means that the basic building

blocks of knowledge are already fixed, being the atomic

predicates of the theory itself; our job will be to offer a

formal instrument for clarifying their ontological im

plications, for the specific purposes of knowledge un

derstanding and reuse among users belonging to a sin

gle culture. We assume therefore that the intended mod

els of our theory, rather than describing a real or hypo

thetical situation in a world that has the same laws of

nature of ours [10], are states of affairs having an

"idealised rational acceptability" [26].

Notation. In the following, we shall use bold capital

letters for sets, plain capital letters for predicate sym

bols and handwritten-style capital letters for relations.

Suppose we have a first-order language L with signa

ture Z=<K, R>, where K is a set of constant symbols,

R is a finite set of n-ary predicate symbols and PcR is

the set of monadic predicate symbols. Let T be a theory

of L, D its intended domain and M the set of its mod

els M=<D, d >, where 3 is the usual interpretation func

tion for constants and predicate symbols. We are inter

ested in some formal criteria accounting for those onto

logical distinctions among the elements of P which are

considered as relevant to the purposes of T as applied to

D. For example, we are looking for a clear distinction

between sortal and non-sortal predicates which can ac

count for the structuring choices implicit in the transla

tion of T into an order-sorted theory Ts with signature

IS=<K, S, Q>, where ScP is a set of sortal predicates

and Q = R\S a set of ordinary predicates. We shall see

how this and other distinctions will be expressed in

terms of constraints on the set of models.

As usual, predicates are symbolized via the capitalized first

letter of the word used in the text.
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Our main methodological assumptions here are that (i)

we need some notion of tense and modality in order to

account for the intended meaning of predicate symbols;

(ii) we need mereology and topology in order to capture

the a priori structure of a domain. In the following, we

first extend our first order language by introducing a

semantics of tense and modality which satisfies our

purposes, then we further extend both the language and

the domain on the basis of mereo-topological princi

ples, in order to formalize the notion of ontological

commitment for the original language applied to the

original domain.

Def. 1 Let L be a first-order language1 with signature

Z. The tense-modal extension of L is the language Lm

obtained by adding to the logical symbols of L the

usual modal operators O and □ and the tense operators

F and P , respectively standing for "sometimes in the

future" and "sometimes in the past".

Def. 2 Let L be a first-order language with signature

£=<K, R>, Lm its tense-modal extension and D a

domain. A constant-domain rigid model for Lm based

on D is a structure M = <W, ft , 13 , D, Tr, 3"r>,

where:

- W is a set of possible worlds;

- ft and 13 are binary relations on W such that 13 is

a union of linear orders and for each wj.wj e W if

<wj,wpe 13 then <wj,wj>g ft .

- JFk is a function that assigns to each ce K an ele

ment JF k(c) of D.

- CFr is a mapping that assigns to each we W and

each n-ary predicate symbol rne R an n-ary relation

3rR(w,rn) on D.2

We want to give ft the meaning of an ontological

compatibility relation: intuitively, two worlds are onto-

logically compatible if they describe alternative states

of affairs which do not disagree on the a priori nature of

the domain. For instance, referring to the example dis

cussed in the previous section, consider a world where a

given individual is an instance of the two relations ap

ple and red (intended as real world relations, not as pred

icate symbols). Such a world will be compatible with

another where such individual is still an apple but is

not red, while it cannot be compatible with a world

where the same individual is not an apple, since being

an apple affects the identity of an object. To capture

such intuitions, ft must be reflexive, transitive and

'We assume L as non functional just for the sake of simplicity.

^This definition is taken from [12], extended with a relation B intended

to express the temporal precedence relationship between worlds The latter

is a union of linear orders, each of whom represents a possible history.

Notice that, due to the fact that B and ft are disjoint, modal necessity

does not imply temporal necessity.

symmetric (i.e., an equivalence relation), and the

corresponding modal theory will be therefore S5.

Def. 3 Let L be a first-order language, Lm its tense-

modal extension and D a domain. A compatibility

model for Lm based on D is a constant-domain rigid

model for Lm based on D, where ft is the ontological

compatibility relation between worlds.

The notion of truth in a model at a world is pretty stan

dard, and it will not defined here in detail because of

space limitations. The only slight deviation from stan

dard truth conditions regards formulas that involve tense

operators. In particular

A formula 4> is necessary in a compatibility

model M at a world w (written M,w !=□<!>) iff

M.v 1= * for every v such that ft(w,v);

M,w 1= O <J>) iff M.v 1= <I> for some v such that

ft(w.v);

M,w 1= F<J> iff M,v 1= 0 for some v such that

13(w,v);

M,w 1= IPO iff M,v 1= 4> for some v such that

13(v,w).

4> is valid in M (M 1= <J>) iff M,w 1= <t> for each

world w of M.

Given a domain D, consider now the set of all compat

ibility models based on D of the tense-modal extension

Lm of a language L. In order to account for our onto

logical assumptions about D, we should somehow re

strict such a set, excluding those models that allow for

non-intended worlds or too large sets of compatible

worlds. Within our framework, we can express such

constraints by restricting the set of all possible compat

ibility models of Lm:

Def. 4 A commitment for L based on D is a set C of

compatibility models for Lm based on D. Such a

commitment can be specified by an SS modal theory of

Lm. being in this case the set of all its compatibility

models based on D. A formula 4> of Lm is valid in C

(C 1= 4>) iff it is valid in each model Me C.

We shall see in the next section how we can express

the constraints mentioned in the example of the red ap

ple by choosing a suitable commitment C. Before that,

we need first to further extend both Lm and D in order

to be able to express our ontological assumptions

about D itself:

Def. 5 Let L be a first order language with signature

Z=<K, R>, and L' a language with signature I'=<K,

R'>, where R'=R u {<, C}, while < and C are two bi

nary predicate symbols used to represent the mereologi-

cal relation of "proper part" and the topological relation

of "connection". The tense-modal extension of L' is

called the ontological extension L0 of L.
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unary predicate

natural

discriminating

 
non-natural

(square circle)

 non-discriminating

(entity)

sortal non-sortal

substantial non-substantial pseudo-sortal characterizing

\(apple, marriage, color) (student, pedestrian) (physical object, gold) (red, studies)

 

Fig. 2. Preliminary distinctions among unary predicates.

The properties of the part-of relation have been

extensively studied in [28]. Connection has been used

as a topological primitive in [7] and more recently in

[28]. Since our domain is not restricted to topological

entities only, the connection relation can have

arguments which are physical bodies or events and not

only regions as in [28]. We assume here that two

entities are spatially connected if their spatio-temporal

extensions are connected in the sense defined in [28]

(i.e. two regions are connected if their topological

closures share a point). Notice that we do not share

with Randell and colleagues the choice to define

parthood in terms of connection1.

Def. 6 The mereological closure of a domain D is the

set DQ obtained by adding to D the set of all proper

parts of the elements of D.

Def. 7 An ontological commitment O for L based on

D is a commitment for L0 based on D0, such that the

following minimal mereo-topological theory is valid in

O2.

Al x < y ^ -i (y < x)

A2 x<yAy<Z3x<z

A3 x < y => 3z.(z < y a -> Ozx)

A4 Vx.Cxx

A5 VxVy.Cxy => Cyx

Dl x <, y =def x < y v x = y

D2 Oxy =def 3z. z<x a z£y

(asymmetry)

(transitivity)

(supplementation)

(reflexivity)

(symmetry)

(part)

(overlap)

4 A BASIC ONTOLOGY OF UNARY

PREDICATE TYPES

Let us now stipulate some preliminary distinctions

among unary predicates (Fig. 2). Notice that we are in

terested in very general, purely formal distinctions at

the meta-level, completely independent on the nature of

the domain. This means that our distinctions are in

tended to hold not only for standard examples related to

the domain of physical objects, but also for predicates

such as color or marriage whose arguments are

universals like red or temporal entities like a particular

marriage event. Analogously, no linguistic assumption

is made on the names of predicates, which can be either

nouns, adjectives, or verbs.

Within our modal framework, the first fundamental dis

tinction we make among unary predicates regards their

"discriminating power". If we want to use a predicate

for knowledge-structuring purposes it cannot be neces

sarily false for each element of the domain, i.e. it must

be natural in the sense of [8]. Moreover, we are inter

ested in predicates that tell us something non-trivial

about the domain, excluding therefore those which are

always necessarily true.

Def. 8 Let L be a first order language, P a monadic

predicate of L, and O an ontological commitment for

L. P is called natural in O iff O 1= 03x.Px. A natural

predicate is discriminating in O iff 0 1= 03x.->Px.

'See [33] for a discussion of the relationships between mereology

and topology.

2Axioms A1-A3 are taken from [29], while A4-A5 from [28].
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4.1 COUNTABILITY AND

REIDENTIFIABILITY

Among discriminating unary predicates, the relevant

distinction is the classical one between sortals and non-

sortals. To this end, we introduce two meta-level prop

erties which give a minimal characterization of individ

uality, and are therefore distinctive of sortal predicates.

They bear on two main notions proposed in the philo

sophical literature: countability [15] and temporal rei-

dentifiability [34]. The former is bound to the capacity

of a predicate to isolate a given object among others:

"this is a P, this is another P, this is not a P**. In other

words, if P is a sortal predicate, then it is possible to

answer: "how many Ps are there?" In the literature, var

ious "divisivity" criteria have been proposed to account

for the countable/non-countable distinction. Excluding

those based on universal quantification on all parts of

an object for reasons having to do with the problem of

granularity, a quite satisfactory criterion is the one pro

posed by Griffin [15], which can be formulated in such

a way that P is a countable predicate iff Vx.(Px 3

->3z.(z < x a Pz)). Such a criterion, however, does not

take into account a notion of topological connection

which seems to be related to the notion of countability.

In our opinion, the main feature of countable predicates

is that they cannot be true of an object and of a non

isolated part of it. For example, we think it is natural

to consider piece ofwood as a countable predicate, but

it cannot be excluded from being uncountable according

to Griffin's definition. The point is that in its ordinary

meaning such a predicate does not apply to any part of

a single, integral, piece of wood. In order to capture

such a structural feature of countable predicates within

our formal framework, let us introduce the following

definitions within the ontological extension L0 of a

language L:

D3 ax<|>x =def ixVy(Oyx ■ 3z(<)>z a Ozy)) 1

(sum of all <|>ers)

D4 x-y =def oz.(z<x a -.Ozy)

(mereological difference)

D5 x <i y =def x<y a -.Cx(y-x)

(isolated part)

D6 x <c y =def x<y a Cx(y-x)

(connected part)

D7 =def -1F-4 a <(> a —.P-.<t>

(temporal necessity)

Def. 9 A discriminating predicate P is called countable

in O iff O 1= Vx. (Px z> -t3z.(z <c x a Pz)).

In the above definition, we have simply substituted

In order to avoid troubles with the satisfiability conditions for

modal formulas involving the iota operator, we assume that terms

built by means of such operator are contextually defined a la

Russell. For instance, a formula like P(ix.$x) is translated in 3x(Px a

fx a (Vy.^y o y=x)).

connected part-of to the relation of part-of appearing in

Griffin's definition. In other words, a countable predi

cate P only holds for entities which are "maximally

connected" with respect to P, in the sense that they

cannot have connected parts which are instances of P.

The following theorem follows immediately from the

definition:

Theorem 1 A predicate is countable if it only applies

to atomic entities, i.e. entities having no parts.

According to Def. 9, the predicate piece of wood is

countable if (as seems natural) it only applies to iso

lated pieces of wood, while the monadic predicate color

turns out to be countable according to theorem 1, as

suming that a color has no parts. On the other hand, ac

cording to its ordinary sense a predicate like red is not

countable2, since while holding for a physical object it

can also apply to non-isolated parts of it, such as its

surface.

The above definition allows us to consider predicates

denoting physical structures like stack (of blocks),

chain or lump (of coal) as countable predicates only if

it can be claimed, perhaps on the basis of Gestalt-theo-

retical considerations, that no connected part of a physi

cally realized structure can be a structure of the same

kind [30]. In this sense, a substack can be a stack only

as an isolated whole. There are some intuitive and prac

tical reasons in favour of this way of thinking. For ex

ample, a request to count the chains put in a box is not

usually understood as a request to count also the sub-

chains of such chains. Notice that we do not require in

stances of countable predicates to be isolated entities:

for example, we want arm to be countable and such that

both detached and undetached arms are instances of it3.

However, it is reasonable to hold that tube is count

able. It follows that no part of a tube is a tube, other

wise it would violate the assumption of countability.

So while arms are instances of arm even before a pos

sible detaching event, the same does not hold for halves

of tubes. Lack of analogy between the two cases is due

to the fact that in the former case the argument of the

predicate is connected to something of a different kind.

We may be tempted to conclude now that countability

is enough to decide about sodality. Things are not so

easy, however. Think of a unary predicate expressed by

a verb, like studies. It seems to be countable according

to our definition, and in fact we can count those entities

x such that the statement x studies is true, but still it

seems odd to consider studies as a sortal predicate. The

2 Notice that when we attach an ontological category to a

linguistic term we do not imply any a priori meaning attribution: we

simply assume, for simplicity reasons, the ontological commitment

corresponding to the usual meaning of the term (in this case the

meaning of case 1 in Fig. 1).

3In contrast with [30], we do not assume that detaching an arm is

an event such that the arm befor it is not the same arm as the arm

after it.
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reason is that sortality implies a notion of reidentifia-

bility across time, which is not implied by the seman

tics of a verb. Linguists such as Givdn [14] have

pointed out that temporal stability can be a useful crite

rion to distinguish verbs from nouns. We say that a

predicate is temporally stable when, if it holds for an

object at a given time, then it must hold for the same

object at another time1 .

Def. 10 A discriminating predicate P is called tempo

rally stable under O iff O 1= Vx.(Px => FPx v P Px).

In conclusion, both mereo-topological and temporal

modality are needed to characterize sortal predicates

within an ontological commitment:

Def. 11 A discriminating predicate P is called sortal

in O iff it is both countable and temporally stable in

O, and non-sortal otherwise.

According to this definition, we have a criterion to dis

tinguish between the two predicates involved in the

statement "a red apple exists". Apple will be in this

case a sortal predicate being countable and temporally

stable, while red will be non-sortal being not countable

under our intended intepretation. Both Bx:R.Ax and

3(x:A, y:R).x=y will be therefore excluded from a

many-sorted axiomatisation.

4.2 RIGIDITY

Although useful for many purposes, the distinction be

tween sortal and non-sortal predicates discussed above is

not fine enough to account for the difference in the in

terpretation of red in cases (2) and (3) of Fig. 1, since

in both of them red is used as a sortal predicate. Let us

therefore further explore the ontological distinctions we

can draw among both sortal and non-sortal predicates.

An observation that comes to mind, when trying to

formalise the nature of the subject-predicate relation

ship, is that the "force" of this relationship is much

higher in "x is an apple" than in "x is red". If x has the

property of being an apple, it cannot lose this property

without losing its identity, while this does not seem to

be the case in the latter example. This observation goes

back to Aristotelian essentialism, and can be formalised

as follows [2]:

the following:

Theorem 2 Any ontologically rigid predicate is also

temporally stable.

However, the example above notwithstanding, ontolog

ical rigidity is not a sufficient condition for sortality.

In fact, there are a number of rigid predicates which

should be excluded from being sortals, since no clear

distinction criteria are associated with them. Predicates

corresponding to certain mass nouns belong to this cat

egory (at least if their arguments denote an amount of

stuff and not a particular object), as well as "high

level" predicates like physical object, individual, event.

We call these predicates pseudo-sortals2. They are all

rigid (and therefore stable) but not countable.

Def. 13 Let P be a non-sortal predicate under O. It is

a pseudo-sortal iff it is ontologically rigid under O, and

a characterising predicate otherwise.

Rigidity cannot be considered as a necessary condition

for sortality, either. According to our definition, sortals

include predicates like student, which - although not

rigid - are still countable and stable enough to guaran

tee distinguishability and reidentification. Following

[34], we call such predicates non-substantial sortals*.

Def. 14 Let P be a sortal predicate under O . It is a

substantial sortal iff it is ontologically rigid under O,

and a non-substantial sortal otherwise.

As noticed before, temporal stability plays here a cru

cial role for distinguishing student from studies: both

are countable and not ontologically rigid, but the latter

is not temporally stable and is therefore a characterizing

predicate, while the former is a non-substantial sortal.

We are now in a position to exploit the above distinc

tions in order to specify the ontological commitment of

a first order theory: for instance, stating that red is a

characterizing predicate will clarify its intended meaning

in the case (1) of Fig. 1. In case (2), red is rigid and

countable, since its argument is a colour gradation: it

will be therefore a substantial sortal (crimson has to be

a red: see [24], p. 10). Finally, in case (3), red is used

as a contingent property of human-beings and hence is

not rigid, while it is countable and temporally stable:

red is therefore a non substantial sortal.

Def. 12 A discriminating predicate P is ontologically

rigid in O iff O 1= Vx(Px => (o Px a Ot Px)).

An immediate theorem following from Definition 10 is

'This definition is not completely satisfactory, since, according to

the intuition, a temporally stable predicate should hold in a

neighbour of the time where it is true, but this fact cannot be

expressed in terms of F and P . A more accurate definition would

require the use of non-standard modal operators.

They are called "super sortals" in [25]. Notice that physical

object is not intended here in the sense of spatially isolated thing.

According to the current terminology used in knowledge

representation, substantial sortals should in our opinion correspond

to types and non-substantial sortals to roles (in the sense of [31]),

while the terms class or concept should be reserved to the union of

sortal and pseudo-sortal predicates.
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^ this is a piece of gokl (1)

Gold(a) —► this stuff is gold (2)

this ring is made of gold (3)

Fig. 3: Different interpretations of mass nouns.

Another interesting example regards the different inter

pretations of a mass noun like gold, reported in Fig. 3

above. In case (1), gold is intended as countable, stable

but not rigid (since that piece can have been taken from

a rock, for instance), and it is used as a non-substantial

sortal; in cases (2) and (3) the predicate is non-count

able, but in the former case it is rigid (and gold is there

fore a pseudo sortal), while in the latter it can be as

sumed as non-rigid, and gold becomes a characterizing

predicate.

5 ONTOLOGICAL ENGINEERING

We would like to show in this section how the onto-

logical distinctions introduced above can be of concrete

utility in the current practice of knowledge engineering.

The first result of the formal framework presented

above is the possibility to draw a clear distinction be

tween concepts1 and properties, in the sense usually as

cribed to such terms within the KR community. Our

proposal is that properties should coincide with what

we called characterizing predicates, while all other kinds

of unary predicates should be thought of as concepts.

Besides this first important distinction, our meta-level

classification of unary predicates allows us to impose

some further structure on the set of concepts, usually

represented as an oriented graph where arcs denote sub-

sumption relationships. As the size of this graph in

creases, it may be very useful to isolate a skeleton to

be used for indexing and clustering purposes.

Substantial sortals are a natural candidate to constitute

such a skeleton2, since their rigidity reduces the "tan-

gleness" of the corresponding graph. However, to effec

tively use substantial sortals as a skeleton, we must in

troduce some further constraints to our ontological

commitment, which lead to the notion of well-founded

ontological commitment.

Def. 15 Let P and Q be two natural predicates in O. P

is subordinate to Q in O iff O 1= Vx(Px z> Qx) a

->Vx(Qx z> Px). P and Q are disjoint in O iff O 1=

->3x.Px a Qx. A set P={Pi Pn} of mutually dis

joint natural predicates in O is a domain partition in O

iff O 1= Vx.(Pix v ... vPnx).

Def. 16 An ontological commitment O based on D is

well-founded iff:

- There is a set C c P of mutually disjoint pseudo-

sortal predicates called categorial predicates, such

that (i) C is a domain partition in O, and (ii) no

element Ce C is subordinate to a discriminating

predicate3.

- For each categorial predicate Ce C, there is a set

Sc of disjoint substantial sortals such that, for

each Se Sc, S is subordinate to C and there is no

substantial sortal S' such that S is subordinate to

S'.

- Each non-substantial sortal is subordinate to a sub

stantial sortal.

A well-founded ontological commitment introduces

therefore a further subclass of discriminating predicates,

i.e. categorial predicates, which belong to the class of

pseudo-sortals according to the preliminary distinctions

shown in Fig. 2. We call mass-like predicates those

pseudo-sortals which are not categories; therefore, the

final relevant distinctions within a well-founded com

mitment are those shown in Fig. 4.

Let us briefly motivate our definition of a well-founded

ontological commitment. Categorial predicates are in

tended to represent what traditional ontology would call

summa genera. A set of categorial predicates useful for

a very broad domain is given by physical object, event,

spatial region, temporal interval, amount of matter*.

The fact that such predicates are assumed to be pseudo-

sortals (and therefore uncountable) underlines their very

general nature.

As for the second constraint mentioned in the defini

tion, no particular structure is imposed on substantial

sortals within a well-founded commitment5, except that

top-level substantial sortals should specify natural

kinds within general categories: therefore, they must be

disjoint and cannot overlap general categories. A useful

definition related to substantial sortals is the following

one:

Def. 17. Let O be a well-founded ontological com

mitment. If a substantial sortal S is subordinate to an

other substantial sortal T under O, then S is called a

kind ofT.

'The term concept is often used interchangeably with type, but

we deserve to the latter a more specific meaning (see below).

2A similar proposal has been made by Sowa [311. which

however refers to an unspecified notion of "natural type".

3A possible further constraint for categorial predicates could be

O 1= Vxy((Cx a y<x) o Cy).

4These predicates should be characterized by suitable axioms,

but such a task is beyond the scope of the present paper.

5It may be desirable, both for conceptual and computational

reasons, to impose the condition that substantial sortals form a forest

of trees; such a conditions seems hohever not obtainable in many

cases.
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discriminating predicate
 

substantial role mass-like characterizing

(apple, color) (student, pedestrian) (wood, sand) (red, studies)

Fig. 4. Basic distinctions among discriminating predicates

within a well-founded ontological commitment

Finally, the intuition behind the third constraint in Def.

16 is that in the case of substantial sortals the identity

criterion is given by the predicate itself, while for non-

substantial sortals it is provided by some superordinate

sortal. Under this constraint, non-substantial sortals

conform to the notion of "role type" proposed by

Sowa, which fits well with the general meaning of the

term "role": "Role types are subtypes of natural types

in some particular patterns of relationships" [31]. We

suggest to adopt the term "role" for non-substantial sor

tals within the KR community, avoiding to use it at a

synonym for an (arbitrary) binary relation as common

practice in the KL-ONE circles.1 A useful theorem fol

lowing from Def. 16 is the following one:

Theorem 3. Within a well-founded ontological com

mitment, any two overlapping non-substantial sortals

are subordinate to the same substantial sortal.

On the basis of the above considerations related to the

practice of knowledge engineering, we are now in the

position to formulate a terminological proposal regard

ing the relationship between the terminology currently

used in KR formalisms and the philosophical terms we

have defined here (Fig. 5 above). Rigid (both countable

and uncountable) unary predicates are called types,

while as noticed before non-substantial sortals

correspond to roles. Types and roles are collectively

called concepts, and are distinguished from properties

since the latter are characterizing predicates, i.e. they are

uncountable and non-rigid. Notice that we prefer to

speak of properties rather than of qualities, since it

seems more appropriate to adopt the latter term for

substantial sortals having universals as arguments, as

for instance color.

6 CONCLUSIONS

unary predicate
 

property

(characterizing

predicate)

type role

(non-substantial

sortal)

categorial substantial mass-like

predicate sortal predicate

Fig. 5. A terminological proposal for KR formalisms.

Commonly used KR terms are shown in italics.

See [18] for a general discussion on roles and attributes. Notice

however that the distinctions among unary predicates discussed in

that paper have been here drastically revised and simplified; in

particular, no notion of ontological foundation is here advocated to

distinguish between concepts and properties.

In [3], the authors discussed the example reported in

Fig. 6 above. They argued that a question like "How

many kinds of rocks are there?" cannot be answered by

simply looking at the nodes subsumed by 'rock' in the

rock
 

pet

large grey igneous rock metamorphic

rock

Fig. 6. Kinds of rocks (From [3])
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network, since the language allows them to proliferate

easily. Hence they give up answering such dangerous

questions within a KR formalism, by specifying a

functional interface designed to answer "safe" queries

about analytical relationships between terms indepen

dently of the structure of the knowledge base, like "a

large grey igneous rock is a grey rock". On the other

hand, the same authors, in an earlier paper [4], stressed

the importance of terminological competence in knowl

edge representation, stating for instance that an

enhancement mode transistor (which is "a kind of

transistor") should be understood as different from a

pass transistor (which is "a role a transistor plays in a

larger circuit").

We hope to have shown in this paper that termino

logical competence can be gained by formally express

ing the ontological commitment of a knowledge base.

If, in the example above, predicates corresponding to

rock, igneous-rock, sedimentary-rock and metamorphic-

rock are marked as substantial sortals (as they should be

according to their ordinary meaning), while all the oth

ers are marked as non-substantial sorts (since they are

not rigid), then a safe answer to the query "how many

kinds of rocks are there?" would be "at least 3".

We think we have still to learn a lot, to understand and

represent the a priori laws that govern the structure of

reality. Bearing on insights coming from the

philosophical tradition of formal ontology, we have

tried to show that some of these laws are suitable to

formal characterization: independently of the particular

formalization we have adopted, which can be of course

changed or revised, we would like to stress that the

ontological distinctions we have introduced can have a

profound impact on the current practice of knowledge

engineering.

In our opinion, three are the main contributions of this

paper. The first one is the formal account of ontologi

cal commitment we have given within a modal frame

work: the use of a modal logic as a tool to constrain

the intended semantics of the underlying non-modal

theory seems to be unavoidable if we wish to express

ontological constraints. The second one is our defini

tion of countability, which seems to solve some of the

puzzling cases reported in the literature. The third one

is the formalization of Strawson's distinction between

sortal and non-sortal predicates, which has been further

refined by taking into account Wiggins' distinction be

tween substantial and non-substantial predicates. Far

from claiming to have said any definitive word on these

issues, we would like to underline here that (i) some

formal properties which account for distinctions among

predicate types can indeed be worked out, even if com

plete, unproblematic definitions may never be given;

(ii) when the semantics of structuring primitives used

in KR languages is restricted in such a way as to take

into account of such formal distinctions at the ontolog

ical level, then potential misunderstandings and incon

sistencies due to conflicting intended models are re

duced; (iii) further research in this area is needed, and it

should be encouraged within the KR community, in co

operation with the philosophical and linguistic com

munities.
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Abstract

There is a wide variety of approaches to

formalising non-monotonic reasoning, and

even though some relationships between for

malisms have been established, there is a

lack of appropriate general frameworks to

support such analyses. There have been

some successes such as using general prop

erties of the consequence relation as a frame

work (Gabbay 1985, Makinson 1989, Kraus

1990), and with argument systems (Lin 1989,

Vreeswijk 1991, Simari 1992), but these only

provide relatively high level views on the for

malisms. We require lower level, higher reso

lution, frameworks for analysing these logics,

and for suggesting new logics that are bet

ter suited to practical reasoning. To address

this we label formulae in our databases, us

ing this to represent extra information about

the formula. The proof rules propagate la

bels and the consequence relations select pre

ferred inferences according to some prefer

ence criteria. Here we show how different

non-monotonic logics can be characterized in

terms of labelling strategies, algebras for the

labels, proof rules, and preference criteria.

We also discuss aggregation of preference cri

teria and compare with Doyle and Wellman

(1991).

1 INTRODUCTION

Formalizing non-monotonic reasoning is a significant

problem within artificial intelligence. A number of ap

proaches have been proposed, but a clear understand

ing of the problem remains elusive. Given the diver

sity of proof theoretic approaches, there is a need for

frameworks for elucidating key concepts within non

monotonic reasoning. Here we present a framework to

characterize structural information - extra information

about formulae that may be implicit or explicit - used

in a diverse range of proof-theoretic non-monotonic

logics. The framework is based on the approach of

Labelled Deductive Systems (Gabbay 1993a, 1993b).

In this framework, formulae are labelled. When proof

rules are applied, the labels attached to each formula in

the premise are composed to give a label for the conse

quent. The labelled consequences of the database are

called naive inferences, since they constitute weakly

justified, tentative, conclusions that can be drawn from

the defeasible data. Non-monotonic consequence re

lations are then defined to select preferred inferences

from the naive inferences by using preference criteria

over sets of naive inferences.

The framework can be viewed as a significant develop

ment of the Argument Systems framework (Lin 1989).

The unlabelled language is essentially the same, and

our notion of a naive inference corresponds to their

notion of an argument, though a naive inference does

contain extra information because of the label. In the

Argument Systems (AS) framework, default logic, au-

toepistemic logic, negation-as-failure, and circumscrip

tion are special cases. This result can be inherited by

our framework.

However, a key aim of our development is to analyse

the notion of preference, implicit and explicit, that can

be seen in a disparate range of non-monotonic log

ics. We argue that such preference is based partly

on preference of some data over other data, and also

on some reasoning strategies over others. In some

approaches, such as default logic (Reiter 1980), and

negation-as-failure (Reiter 1978) the prioritization is

implicit, for other approaches such as inheritance hi

erarchies (Horty 1987), and ordered logic (Laenens

1990), the prioritization is explicit.

To illustrate implicit preference, take negation-as-

failure with a database P. We denote the set of atomic

propositions used in the language of P as A(P), and

denote the set of complements of A(P) as C(P) where

C(P) = {-.a | a e A(P)}. We can regard C(P) as the

set of default values for atoms. The preference implict

for negation-as-failure (NAF) is that for all formulae in
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P axe preferred over all formulae in C(P). Similarly for

normal default logic we consider normal defaults, in a

default theory (D,W), of the form a : (3/13 as object-

level rules of the form a -¥ 0, and we consider that

there is an implicit preference for information from

the non-defeasible information over the default infor

mation in D.

In Grosof (1991), the wide-ranging role of preference,

or priority, in non-monotonic reasoning was identified.

The importance of preference has also been reflected in

the Abstract Argument Systems framework (Vreeswijk

1991) - another generalization of the AS framework.

However, the Abstract Argumentation Systems (AAS)

framework does not include explicit labelling of formu

lae, and does not focus on preference criteria, as we do

in this paper, and hence leaves open many interesting

questions.

Our framework, as outlined below, is defined in terms

of a family of logics called prioritized logics, and for

this we define the notion of a database for a priori

tized logic in terms of (1) labelling of formulae, and (2)

orderings defined over the labelling. Such a database

constitutes a structured database. Each member of

the family of prioritized logics is defined in terms of

consequence relations that can act on the structured

databases.

2 STRUCTURED INFORMATION

We assume a set of atomic labels A. For example, the

set of natural number N can be used as a set of atomic

labels. Similarly, the set {n | n G N} can be used as a

set of atomic labels.

We define a complex label as follows: (1) If i G A,

then i is a complex label; (2) If i is a complex label,

and j G A, then i © j is a complex label; (3) If i\ , .., i„

are complex labels, and j G A, then [»i,..,tn] ©j is a

complex label.

We denote the set of complex labels that can be formed

from a set A as Tree(A). Let © be an associa

tive function where 0 is the identity element. Hence,

(Tree(A),©) is a monoid.

We assume a set of prepositional letters A, where

l,Te>l, and a set of logical symbols {A, V, ->}. The

set of classical formulae that can be formed from these

is denoted B. We define the set of defeasible rules 72.,

and the set of naive inferences Af, as follows, where

Tree(A) is the set of complex labels formed from A,

If a, 0 G B, and i G N then i :a -> 0 G U

If a G B, and i G Tree(A) then i :a G Af

Note that in the proof theory below, we treat the sym

bols {A,V,-i} classically. However, we treat -> as a

default, or synonymously defeasible, implication, and

not as strict implication.

We define a structured database as a tuple (A.T),

where V = (Sl,>,a), A C p{H), (fi,>) is a poset,

and a is a mapping such that a : A i-4 SI. We assume

formulae in A are uniquely labelled. Also we assume

that A is finite, and that (SI, >) is finite and acyclic.

The relation > is called the atomic ordering relation.

For example, A = {i : a -* 0,j : T ->0}, i,j G SI,

i > j, and a is an identity map. To ease notation,

we often refer to a structured database (A, T) as just

A, and that all functions and relations defined on A

assume the associated T. Also for ease of notation, for

any rule i : T 0, we can denote it as t : 0.

We define some subsidiary functions on labels, as fol

lows: The function Form for any X C V. U Af is

Form(X) = {a \ i : a G X}, and for any Y C B

is Form(Y) = Y. The function Head : H B is

Head(i : a -* 0) = 0.

The function Labels for any X C KuM is Labels(X)

= {i | i : a G X}. The function AtomicLabels :

Tree(A) >-+ p(A) is defined for AtomicLabels(l) as the

set of atomic labels used in the complex label /. The

function Lastlabel : Tree(A) i-> A is Lastlabel{i) = i

if t G A, and Lastlabel(i © j) = j.

The function Subproofs : Tree(A) p(7Vee(A))

is Subproofs([ii, ..,in] © j) = Subproofs(ii) U---U

Subproofs(in) U {ti, ..,t„,j}i Subproofs(i © j) =

{i,j} U Subproofs(i) if i is a complex label, and

Subproofs(i) = {i} if i G A.

3 NAIVE INFERENCES

A naive inference from a structured database A is re

garded as a plausible, or possible, inference. It is de

rived by a naive proof theory that manipulates the

labelled formulae. The naive proof theory we consider

here is defined using the classical consequence relation

denoted H, where ii : ai,..,in : a„,i : a G M, and

j : a -¥ 0 G 7£. If ai, ..,a„ h a and a\,..,an \f ± then

[ii,-,in]®j -0

i :a,j :a-¥ 0

i®j:0

Proofs can be nested. The notation [ti, ..,in], denotes

a "classical proof of 0 from the set of naive inferences

{»i : ai,..,in : a„}. The notation i © j denotes a "de

feasible proof of 0 using the naive inference labelled

t on the defeasible rule labelled j.

Note, this is only one possible naive proof theory.

We could for example exchange the labelled conse

quence relation for a weaker form such as intuitionis-

tic, paraconsistent, or linear. Similarly, we could also
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strengthen the proof theory to allow an increased ma

nipulation of the rules in the database - such as allow

ing Contraposition or Or - or to allow manipulation of

a richer database language - such as supporting modal

operators.

We can consider the naive proof theory as a conse

quence relation hnai„e. So A \-naive i : a means there

is a naive proof of i : a from A using the above proof

rules. Assume that for any A, T follows by \-naive,

and that it is labelled with the identity element -

I.e., A <~naive 0 : T. Let Naive{A) = {i © j : 0 |

j : a -> 0 G A and A \-naive i : a}.

We define some subsidiary functions and relations on

labels, as follows: The function Step& : Tree(A) \-t

p(Af), for any k € Tree(A), is Step&(k) = {i : a €

Naive(A) \ i 6 Subproofs(k)}.

A set of naive inferences X is subproof-complete iff Vi :

a € X Vj : 0 [if j : 0 € StepA{i) then j : 0 € X]. A set

of naive inferences X is consistent iff Form(X) \f J..

4 PREFERRED INFERENCES

There are many possible criteria that we could use to

prefer some subsets of p(Naive(A)) over others. In

order to capture each useful criterion, we can define a

preference relation >x over p(Naive(A)).

All preference relations are pre-ordering relations. If

>! is a preference relation for which anti-symmetry

fails, then we use the notation X mxY for abbreviating

the statements X >x Y and Y >x X both holding.

For a preference relation >z, if X Hx Y and Y tx X

hold for some pair X, Y, then we describe X,Y as

incomparable with respect to >,, and denote this by

XUxV. Finally, for any $,>z, let Top be defined as

follows,

Top(#, >,) = {XC$| -.3Y C * such that Y >« X)

Definitions for preference relations over p(Naive(A))

include the following where X, Y C Naive(A): (1)

X >con Y holds iff X is consistent; and (2) X >spc

Y holds iff X is subproof-complete. Other preference

relations include those definable in terms of subsets of

iVotue(A) that use more specific information.

An advantage of this approach is that we can compose

a useful preference relation by aggregating a selection

of simpler preference relations. Let (>i,..,>n) be a

tuple of preference relations, let A = p(Naive(A)) x

p(Naive(A)), and let Aggregate be an n-place func

tion where Aggregate: Ax. . x A >-¥ A. We

call Aggregate an aggregation function. We describe

Aggregate(> i, ..,>„) as an aggregated preference re

lation of (>i,. ,>n), and define Aggregate so that

Aggregate(>i, .., >„) is a preference relation. Hence

an aggregated preference relation is at least a pre-

ordering over p(Naive(A)).

There are many possible definitions for Aggregate that

are of interest. For example, let Aggregate be such

that the preference relation >„* is defined as follows:

For X,Y e p(Naive(A)),

X >ok Y iff X >spc Y and X >con Y

For example, for A = {i : a,j : ->a, p : -<a -4 0,

q : a -¥ -■/?}, iVati;e(A) = {i : a, j : ->a, i © q : ->0,j ©

p : 0), and Tqp(Mm>e(A), >ofc) = {{i : a, t © q : ->0),

{j : ->a, j ®p:0},{i: a}, {j : }.

A set of "most preferred" naive inferences, according

to a preference relation is considered an "extension" of

a structured database. It is called a set of global infer

ences, since it is identified by taking global considera

tions into account. The set of all sets of most preferred

naive inferences according to a preference relation from

Naive(A) is denoted Global(A). There are many pos

sible defintions for Global that are of interest. For ex

ample, we could let Global(A) = Top(Naive(A), >x

)). So if Top(Naive(A), >x) = 0, then there is no

set of preferred naive inferences. A more skeptical

variant is to let Global(A) = f\Top(Naive(A),>x

). Another skeptical option is letting Global(A) =

Top(Naive{A), >x) if Top(Naive(A), >x) is a single

ton set, and letting Global(A) = 0 otherwise. For

most definitions of Global, it seems desirable that all

elements of Global(A) are classically consistent.

Once we have accepted a definition for Global(A), then

we can identify the global inferences - the most pre

ferred inferences - from A. For this we adopt a class

of consequence relations (~i defined as follows, where

a G B,

A ^ a iff 3* € Global{A)

such that Form($) I- a

Even though we do have a number of choices about

how to pick preferred sets of naive inferences from

APaiue(A), a preference relation does allow us to com

pare candidates systematically.

5 INFLUENCE RELATIONS

We now consider how we can further use the struc

tural information in the labels to differentiate subsets

of Naive(A). For this we define another type of re

flexive relation, termed an influence relation, that com

pares pairs of complex labels. Since the complex label

carries a record of the proof of a naive inference, influ

ence relations compare proofs. We use influence rela

tions to define further interesting preference relations.

The following axioms, hold of a number of interest

ing influence relations >„ we consider. For € A,

and for p,q € TVee(A), where AtomicLabels(p) =

{»!,•■ • ,i„} and AtomicLabels{q) = {ji,- ■ -,jm}
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<K0 > iff « >y 3

p =y q iff a(ii) = a(ji) and • ■ • and o(in) = <7(jm)

We can also extend the axiomatization of the © op

erator in various ways. For example we can restrict

the database so that (Q, >) is a distributive lattice. If

the lattice is distributive, it is guaranteed that there

is a greatest lower bound in the lattice for every i and

j in the lattice. Hence an influence relation for such

a database can be defined in terms of the distribu

tive lattice by as follows. For p,q € Tree(A), where

AtomicLabels(p) = {*i,"-,tn} AtomicLabels(q) =

{jl,- ■ -Jm}

p >y q iff ct(zi) A • • ■ A<r(i„) > a(ji) A • • • A<r(jm)

Such an influence relation has application in captur

ing in the framework variants of default logic such as

graded default logic (Froidevaux 1990). Other alterna

tives include restricting the database to a total order

ing, and then defining an algebra (Tree(A), >y) that

is a lexicographic ordering.

6 STRONGFORWARD LOGICS

Here, we consider a particular form of non-monotonic

reasoning, namely strongforward reasoning, using a

class of prioritized logics, called strongforward log

ics. In strongforward reasoning arguments 'for' and

'against' each inference are identified.

Informally, a naive inference i : a is a strongforward in

ference if and only if each subproof of i : a is a strong-

forward naive inference, and for all inferences j : ->a

that have all their subproofs as strongforward infer

ences, the rule with head a must have a label preferred

to the label on the rule with head -ia. There are a

number of closely related variants of this approach, but

essentially strongforward reasoning involves assuming

that once a formula is a strongforward inference, it is

non-defeasible, and that it can then be used for fur

ther forward-chaining reasoning. Obviously, when the

database is updated, then all inferences need to be re-

inferred.

6.1 Argumentation

Argumentation naturally fits into the prioritized logics

framework. A naive inference i : a is an argument for

a, where the label i is the justification, and influence

relations capture notions of preference between argu

ments. In this way arguments "for" and "against"

a conclusion can be compared in order to determine

whether the conclusion is valid.

In the following, we consider two types of influence

relation, namely "conflicts" and "defeats". Both types

are non-transitive binary relations over complex labels.

• The conflicts type of influence relation captures

pairwise preference for one complex relation over

another, without reference to any other complex

relations under consideration.

• The defeats type of influence relation captures

pairwise preference for one complex relation over

another, with reference to all other complex rela

tions under consideration.

In the remainder of this section we define a particu

lar conflicts influence relation and a particular defeats

influence relation, and use them to define the strong-

forward preference relation.

6.2 The conflict influence relation

There are a number of intuitive ways we can use this

framework to capture forms of defeat. Loosely, a naive

inference i : a conflicts with j : -ia, if the proof j

is not strictly preferred to the proof of i, when only

considering the information contained in t and j. Let

Z C Naive(A). Let conflictz be the smallest set such

that for all i, j G Tree(A).

€ conflictz iff 3i : a £ Z and 3j : 0 6 Z

and Lastlabel(i) = p

and Lastlabel(j) = q

and a{q) ? a(p)

Essentially, the conflict influence relation captures the

pairwise preference of conflicting arguments on the ba

sis of the last step taken in their respective proofs.

6.3 The defeat influence relation

For X, Y C p(Naive(A)), we say i defeatS(X,Y} j\

if t conflicts with j and i is not defeated itself, when

taking the defence of Y into account. Let Z = XuY.

Also let defeat(x,Y) = dcfeat^Y,x)-

€ defeat(x,Y) iff € conflictz and

Vp : 0 £ StepA(i)

Vg : € DefenceA(Y)

[if i e Labels(X) then

(q,p) <tdefeat(X>Y)]

where Defencea(Y) = Y U {v © x : -<6,w © y : 6

€ Naive(A) \ v : (f>, w : tp € Y and [o(x) = a(y) or

Essentially, a conflict between some i : a £ X and

some j : ->q € Y causes a defeat if one of the following

three situations occurs: (1) there is a strict preference

for the last step of i over the last step of j, and i is

not defeated by the defence for Y; (2) there is another

naive proof in X, say k : 0 that defeats a subproof of

j, and k is not defeated by the defence for Y; or (3)

there is a pair of defeasible rules, say x : <f> -» 8 and
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y : xl> -¥ -iS in A such that x is equally preferred to

y, or x is incomparable with y, and there are naive

inferences v : <f> and w : rp in X, and either v © x, or

tu © y, defeats a subproof of j without being defeated

by the defence for Y.

The third case is when the naive arguments v © x :

6 and w © y : ->6 are only defeated by each other.

So even though neither can be in the more preferred

set of naive inferences, they can defeat other naive

inferences.

[Example 1] Let A = {i : ot,j : ->a, p : ->a —► ->/3,

q : a —► 0}, where <r(i) > cr(j') and a(p) > a(q). So

ATait;e(A) = {i : a,j : ->a,i © q : 0,j ® p : ->/?},

conflictNaive(&) = ©P.* ©9)}- Let X =

{i : a,i © 9 : /?}, and V = {j : ->a, j ©p : ->/?}. From

this, we obtain defeat(x,Y) — {(hj)}-

[Example 2] Let A = {» : a,j : ->a, p : ->a -» ->0,

q : a -t 0, r : 0 f,s : —1/3 -» -17}, where a(i) > <r(j)

and er(p) > a(q). So Naive(A) = {i : a,i © q : 0,

i © q © r : 7, j : ->a, j © p : ->/?, j © p © s : -17}, and

conflictNaive{£,) = {(*, © P,i © <?)(» © 9 © r, j ©

p©s)}. Let X = {i : a,i©g : /3,z©g©r : 7}, and Y

= {j : ->a,j ©p : ->/?, j ©p© s : -17}. From this, we

obtain defeat(x,Y) — {(*> j)> (* © 9 © r> J'© P © s)}-

[Example 3] Let A = {i : ->a -4 0,j : -ijS, : ->a}.

Then JVait;e(A) = {ifc : ->a,j : ->0,k © i : /?},

and conflictNaive(&) = {(A; © i, j)}. Let X ={k :

->q, k®i : 0}, and Y = {j : -<0}. From this we obtain

defeat(x,Y) = {(*©i,j)}-

[Example 4] Let A = {i : a,j : ->a}, where a(i)\\a(j).

So iVaife(A) = {i : a,j : ->a}, conflictyvaive(A) =

Let X = {i : a}, and {j : ->a}, then

defeat{x,Y) =

[Example 5] Let A = {i : a —> a,j : a}, where a(i) >

tr(j). So Naive(A) = {j : a, j©i : a, j ©i©i : a, • • ■},

and conflictNaive^ = {}.

For some examples of databases there is a cycle in

the defeat(x,Y) relation, so that when defeat is prop

agated through subproofs, a formula eventually con

flicts with itself.

[Example 6] Let A = {» : ->a —► a,j : -ia}, where

a{i) > a(j). So Naive(A) = {j : -ia, j©i : a}, where

conflictNaive(A.) = {(j®i, j)}. Let X = {j : --a}, and

Y = {j © i : a}. Then (j © i, j) 6 defeat(X,Y)-

[Example 7] Let A = {t : ->0 -> a,j : ->a,p : ->a

0, q : where a(i) > a(j) and <r(p) > a{q). So

iVa»ue(A) = {q © t : a,,;' : -«a,j©p : 0,q : ~<0}, and

conflictNaive(^) = {(j © P> (« © *. j)}- Let A" =

{j : -iq, j© : and Y = {q : ->0,i ®q:a). From

this, (j ®p,q) € defeat(x,Y) if and only if (? © *i i) €

In the next section, we will show how the definition

for our preference relations obviates problems raised

by examples such as 6 and 7 above.

6.4 The defeat preference relation

First we define the notion of defeatfree. For this we

make a restriction to simplify our exposition. Let X, Y

€ p(Naive(A)) such that X and Y axe consistent and

sub-proof complete.

X is defeatfree iff

VY G p(Naive(A))

Vi : q € X Vj : -./? € Y[(j,i) & defeats(Y,x)]

Using this, we define the defeat preference relation,

denoted >defeat, as follows,

X >defeat Y iff X is defeatfree

[Example 1 cont'd] Let X = {i : a,i © q : 0}, and Y

= {j : ->a, j ©p : ->/?}, then X >defeat Y.

[Example 2 cont'd] Let X = {i : a,i®q : 0,i®q®r : 7}

and Y = {j : ->a, j © p : -1/8, j © p © s : -17}, then

X >defeat Y.

[Example 3 cont'd] Let X ={k : -ia, k © i : 0), and Y

= {j ■ ~<0}, then X >defeat Y.

[Example 4 cont'd] No subsets X, Y such that X and Y

are consistent, subproof-complete, and X >defeat Y.

[Example 5 cont'd] Top(Naive(A)), >defeat) =

p(Naive(A)).

[Example 6 cont'd] Only {j : ->a} is consistent and

subproof-complete.

[Example 7 cont'd] No subsets X, Y such that X is

consistent, subproof-complete, and X >defeat Y.

6.5 The strongforward preference relation

We now use the >defeat preference relation in an ex

ample of an aggregated preference relation called the

strongforward preference relation, denoted >»/, where

X,Y £ p{Naive(A)).

X >sf Y if X >ok Y

X Y if X >ok Y and X >de/eat Y

X >,f Y if X >ok Y and X defeat Y and Y C X

When a set of naive inferences, say is a member of

Top(Naive(A), >»/), then is a self-contained set of

consistent naive inferences that is subproof-complete

and defeatfree. Being defeatfree means that for any

conflict between $ and any other set of subproof-

complete and consistent naive inferences, say the

conflict does not result in a defeat for
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In the strongforward preference relation, we consider

subproof-completeness and consistency as being essen

tial pre-requisites to argumentation. The preference

relation >defeat is where the comparison based on the

respective proofs is undertaken.

6.6 The strongforward consequence relation

We now assume the definition for the class of con

sequence relations |~i given earlier. We define the

strongforward consequence relation |~s/ by letting i

be sf and letting Global(A) = Top(Naive(A), >„/).

[Example 1 cont'd] A |~,/ a, A }~sf 0.

[Example 2 cont'd] A [~g/ o, A ]-«,/ 0, A (~s/ 7.

[Example 3 cont'd] A |~s/ ->a, A 0.

[Example 4 cont'd] There are no inferences.

[Example 5 cont'd] A a.

[Example 6 cont'd] A -«x.

[Example 7 cont'd] There are no inferences.

Later, we show how a variety of non-monotonic proof

theories can be captured by the strongforward con

sequence relation when using appropriate rewrites of

data in these proof theories into structured databases.

6.7 Fixpoint definition of strongforward

In order to further characterize strongforward reason

ing, we consider a fixpoint definition. We will show

equivalences between the two types of definition.

Let A be a structured database. We define A as a

restricted database iff for all i : 0 -> a G A, a is a

literal. We define the strongforward consequence func

tion Ta as follows, where A is a restricted database.

Let Ta : p(B) p(B), and let X G p(B),

Ta(X) = {a I 3i\proposed(A, X,i,a)

and unchallenged(A, X, i, a)]}

where

proposed(A, X, i, a) iff 3t : 0 o G A and X h 0

unchallenged(A, X, i, a)

iff Vj : 7 -> ->a G A,

[[<r(i) > o(j)] or undercut(A, X, 7)]

undercut(A, X, 7)

iff Vfc : 7 G Naive(A)

(1)X h -7

or (2)V/ : 6 7 G A undercut(A, X, 6)

or (3)equivocates(A, X,~/)

equivocates(A,X,-y) iff

(l)proposed(A, X,p,~f)

and (2)proposed(A,X, q, ->y)

and (3)<r(p) = a{q) or a{p)\\v{q)

and (4)Vx : r -> 7 G A

if (t(x) > <t(j/)

then undercut(A, X, t)

and (5)Vx : r -)• -17 G A

if <r(x) > a(y)

then undercut(A, X, t)

Essentially proposed ensures that the subproofs for

each strongforward inference are strongforward infer

ences, and unchallenged ensures that each counter

argument for each proposed inference is either rebut

ted or undercut. Rebutted is just strict preference for

the laststep in the proposed naive argument. Under

cut captures the situations where the subproofs for the

counterargument are defeated.

6.8 Fixpoint properties

Let F be a function F : p(S) i-> p(S). F is monotonic

when for all X,Y G p(5), X C Y implies F(X) C

F(Y). F is non-inverting when for all X,Y G p(S),

X CY implies F(Y) <?_ F(X). F is inflationary when

for all X G p(S), X C F(X). Clearly, TA is inflation

ary and non-inverting, but not monotonic.

Lemma 1 For all restricted databases A, the function

is decidable.

Let F be a function F : p(S) p(S), and let

Fixpoints be a function Fixpoints : ((p(S) h4

p(S)) •->• p(S)), where Fixpoints(F) = {X \ F(X) =

X). X is a least fixpoint of F iff X G Fixpoint(F)

and ->3Y G Fixpoint(F) such that Y C X. Clearly, it

is not the case that for any A, the function TA has a

least fixpoint.

Let an indexed function F1 (X) equal F(X), and let an

indexed function Fn+1 (X) equal F(Fn{X)). A normal

fixpoint of a function F is a fixpoint that is defined

by Fn(0), where n G N. Clearly, for all restricted

databases A, the normal fixpoint of the function Ta is

unique and computable. In addition, ifX is the normal

fixpoint of Ta, then, there is no Y G Fixpoint(F) such

that Y C X. In other words, the normal fixpoint of

Ta is a minimal fixpoint.

Lemma 2 For all X G p(B), and for all restricted

databases A, if X \f 1, then TA(X) \f L.

Lemma 3 For all restricted databases A, for all i

such that T£(0) and 0 < i < n, there is a $ C

Naive(A) such that Form($) = TA(0), and $ is

subproof-complete and defeatfree.
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Figure 1 : An Inheritance Hierarchy

Theorem 4 For all restricted databases A, if X is

a normal fixpoint of and Top(Naive(A),>af) =

{$}, then Form($) = X.

The strongforward preference relation can be consid

ered as providing a declarative perspective on strong-

forward reasoning, whereas the strongforward conse

quence function provides an operational perspective.

The above result shows that these two perspectives

are equivalent for restricted databases.

7 FRAMEWORK EXAMPLES

In this section we show how a variety of approaches to

non-monotonic proof theory can be captured as prior

itized logics.

7.1 Inheritance hierarchies

We consider approaches for inheritance hierachies

(IHS) - variants including credulous (influenced by

Touretzky 1986), skeptical (Horty 1987), ideally skep

tical (Stein 1989), and ambiguity propagating (Stein

1989).

For inheritance hierarchies, a database is a set of rules

H, where all elements of H are of the form x -> y

or x —•y. We assume that H constitutes an acyclic

graph. A positive path in H is defined inductively:

(1) A rule x -> y 6 H is a positive path in H; and (2)

if ii -¥••■-* xn is a positive path, and xn -+ xn+\

€ H, then x\ xn -» xn+i is a positive path

in H. A negative path in H is defined inductively: (1)

A rule x -»y € H is a negative path in H; and (2)

if X\ -¥ • • • -¥ xn is a positive path, and x —*y € H,

then x\ x„ -*y is a negative path in H. Each

Xi in a path corresponds to a node in the graph, and

each —> corresponds to an arc. For example, consider

Figure 1.

For any inheritance hierarchy database (H,I), where

H is a set of rules and I is an individual, the reasoning

from (H, I) is such that an "acceptable" path from an

individual to a class holds, then the class proposition

is a conclusion of (H, I).

The simplest form of IHS is the credulous version of

IHS, denoted hi, that can be defined as follows, where

q is a positive literal and 0 is any literal: (1) (H, I) H

a iff [(a € /) or [(0 € /) and (/? a is a positive

path in H U /)]]; and (2) (H,I) hx ->a iff [(--a 6 /)

or [(0 € /) and (/?-►••• -»a is a negative path in

H U /)]]. So acceptable paths from / to a class are

defined in terms of positive paths and negative paths.

We form a structured database A from H as follows:

For each rule x -> y € H, we have a clause t : x -¥ y in

A, and for each rule x -¥ y, we have a clause i : x -* ->y

in A. Each clause in H is labelled uniquely.

The inheritance hierarchy database for the example in

Figure 1 is {a -¥ o,o 6,6 -» /, o —•/}. From this

database, we form the following structured database

{ti : a -t 0,12 : o -+ 6,13 : 6 -> /,t4 : o -¥ ->/}.

For capturing this approach to IHS, we require

the following aggregated preference relation, denoted

^.credulous • For X,Y € p(Naive(A)),

X >credulous y iff X >0k Y

X >Creduious Y iff X «ofc Y and Y C X

If we let Global(A) = Top(A, >Creduio«»), then we can

capture the credulous version of IHS by the corre

sponding |~j consequence relation, which we denote

hi-

Theorem 5 For any literal a, the following equiva

lence holds, where A is the structured database formed

from (H,I) according to the above rewrite, then (H,I)

hi a holds if and only if A (~i a holds.

We now consider the skeptical version of inheritance

hierarchies (Horty 1987). Here an acceptable path is

defined in terms of permissible paths. A permissible

path 7r is a positive or negative path from an individ

ual to a class where no node in the path is defeated.

Intuitively, for two rules in an inheritance hierarchy

that enter into the same node, there is a preference

for the rule that eminates from the more specialized

sub-class. A node is defeated if no node is defeated in

the positive path to the node from the preferred rule.

The consequence relation, denoted h2, is defined as

follows, where a is a positive literal and 0 is any literal:

(1) (H, I) h2 a iff [(a 6 /) or [{0 € /) and (J -> ►

a is a permissible path in^uJ); (2) (H, I) h2 ->a iff

(->a € /) or [(0 6 /) and (0 -> »a is a permissible

path in H U /)]

To capture this version in prioritized logics, we order

the defeasible rules as follows: For any pair of clauses
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i : a -¥ 0, i : 7 S in A, if 0 and 8 are complements,

or 0 = 6, and xi xn is a positive path in i,

then i > j holds.

Returning to the example in Figure 1, this gives the

following ordering: a is the identity map, and all labels

are incomparable except i4 > 13.

The following result shows we can capture this conse

quence relation using the strongforward consequence

relation.

Theorem 6 For any literal a, the following equiva

lence holds, where A is the database formed from (H,I)

according to the above rewrite, and (~ is the strongfor

ward consequence relation, then (H,I) h2 a holds if and

only if A f~ a holds.

Whilst the skeptical approach to IHS has been well-

motivated, it has been criticized as being counter

intuitive in certain cases. An interesting alternative is

ideally skeptical inheritance (Stein 1989). We can cap

ture it directly as a prioritized logic by defining an ex

tension as Global(A) = f)Top(Naive(A), >credulous)-

A more cautious alternative is ambiguity propagat

ing inheritance (Stein 1989). If we let $ denote

C\Top(Naive(A),>creduious), then we can define an

extension in the ambiguity propagating approach as

Global(A) = Top(p($), >spc).

An immediate benefit of viewing IHS definitions as pri

oritized logics is we can view an inheritiance hierarchy

as a logic database. Furthermore, it opens the possi

bility of generalizing these approaches to allowing any

formulae, as opposed to atoms, at nodes in the hierar

chies.

7.2 Ordered logic

Ordered logic is conceptually influenced by object-

oriented programming languages. It can also be

viewed as a generalization of the approach of inher

itance hierarchy systems.

Ordered logic is based on a partially ordered structure

of logical theories termed objects. An object is a finite

set of rules of the form B -r a where B is a finite set

of literals, and a is a literal. B is the antecedent and a

is the consequent. A knowledgebase is a tuple A^ =

(O, <K, R, k) where (O, <K) is a poset of objects, R is

a finite set of rules, and s:Oh p(-R) 1S a function

assigning a set of rules to each object.

The rules and facts that are explicitly represented at

an object do not constitute the entire knowledge about

an object. A specificity relation (i.e. <K) defined on

the objects allows for proof rules to infer knowledge at

an object on the basis of knowledge higher in the or

dering. In particular, the notion of inheritance is sup

ported by allowing knowledge to filter from a higher

object to a lower object. Inheritance may be blocked

by either being (1) "overruled" by more specific infor

mation, that is contradictory, at the lower object; or

(2) "defeat" which occurs whan an object i inherits

contradictory information from two different objects p

and q such that there is no preference for one of the

objects over the other.

The proof theory is defined in terms of the conclusions

that can be proven to hold or proven to not hold at

each object. The ordered logic consequence relation

|-< is defined as the conclusions that can be proven at

the most preferred object.

For example if AK = (O, <k,{{0} -> a, {} ->

-«*,{} 0}, {(<>!,{/?} -* a), (o2,{} -> -a),

(°3>{} -*■ P)}), where {01,02,03} C O, and ox <k 02,

and 02 <k 03 hold, we can make the inferences Ak H

a and AK |-< 0-

For a prioritized logic formulation of ordered logic

knowledgebase Ak = (O, <K, R, k) , we associate a set

of labels for each object o< G O. Hence for all ordered

logic rules {ft,--,ft} -> ot G «(oi), the database

rewrite gives formulae of the form j : ft A .. A ft —>

a € A, where j is a unique label, and the function a

defined as o(j) = Oi. For the ordering, if a(ii) = Oj

and <r(i2) = 02, and o\ <k 02, then a(i\) > <r(t2).

For the above example of Ak, then A = {i\ : 0 —>

Q!»»2 : ■ 0}, where o(ix) = ox, i\ > t2 and

t2 > h-

Theorem 7 For all ordered logic knowledgebases Ak ,

and all ground literals a, if the prioritized logic formu

lation of Ak is A, then the following equivalence holds:

AK \<a iff A |~s/ a

Negation-as-failure has been shown to be a special case

of ordered logic. For all positive literals used in the

language for a logic program, a set of negative liter

als can be formed. An ordered logic knowledgebase is

formed by associating the logic program with a more

preferred object than the set of negative literals.

7.3 LDR

Defeasible logics such as LDR (Nute 1988) can also

be modelled by strongforward reasoning by rewriting

each LDR formula as a defeasible rule. The language of

LDR is composed of a set of atoms, and the connectives

{-1, =*■, —7, A}. Clauses are formed as follows, where

0 is a conjunct of literals, and a is a literal: (1) 0 -> a

is an absolute rule; (2) 0 a is a defeasible rule; and

(3) 0 ~» q is a defeater rule.

An absolute rule cannot be defeated, and the conse

quent can be inferred when the antecedent is satisfied.

For a defeasible rule, the consequent can be inferred

when the antecedent is satisfied, and the rule is not de

feated. It is defeated when: (1) the complement of the

consequent is inferred from an absolute rule; or (2) the
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complement of the consequent is inferred from a more

specific defeasible rule; or (3) there is a more specific

defeater rule that has its antecedent satisfied, and has

a consequent that is the complement of the defeasible

rule. The defeater rules do not give inferences - they

can only defeat defeasible inferences.

The specifcity ordering is determined from the an

tecedents of the defeasible and defeater rules: If the

antecedent to one rule can be used in conjunction with

the remainder of the database - i.e. the database mi

nus the two competing rules - to prove the antecedent

of the other rule, but not vice versa, then that rule is

more specific.

We rewrite an LDR database as a structured database

by replacing the connectives {=>,-*, ~+} with the pri

oritized logic —► connective. Furthermore for each de

feater rule, of the form ft A • • • A j3„ ^ a we provide

two formulae:

t : ft A • • • A ft, -+ a

j : ft A • • • A ft, -4 -.a

We then order the absolute rules so that they are the

most-preferred formulae, and order the other rules ac

cording to the specificity of the antecedent. The LDR

consequence relation can then be directly reflected by

the strongforward consequence relation.

8 FRAMEWORK ISSUES

In the previous section, we illustrated the use of prior

itized logics as a framework for non-monotonic proof

theories. Elsewhere we have shown how negation-as-

failure (Reiter 1978), default logic (Reiter 1980), pri

oritized default logic (Brewka 1989), graded default

logic (Froidevaux 1990), and Theorist (Poole 1988) can

be characterized in terms of priorities (Hunter 1992,

1994). We now consider the relationship of the frame

work to frameworks based on argumentation, model-

theory, and belief revision.

8.1 Argumentation frameworks

Argument systems (including Borgida 1984, Loui 1986,

Pollock 1987, Simari 1992, Benferhat 1993, Dung 1993,

Elvang 1993a, 1993b) can be viewed as frameworks

for non-monotonic logics. Furthermore, selecting pre

ferred arguments in some argument system can be re

flected directly in some prioritized logic by defining

appropriate preference relations.

In the committee-based approach to argument systems

(Borgida 1984), a committee C arrives at some conclu

sion a according to some protocol. The simplest class

of protocols is when members of C do not communicate

- so some protocols could be: (1) all members support

a; (2) at least one member supports a; and (3) at

least one member supports a, and no one opposes a

- i.e ->a. More complex protocols include unanimity

and democracy. Obviously the committee-based ap

proach can be naturally captured by prioritized logics.

We return to this in the section 9.

The work on prioirtized logics presented here comple

ments the algebra of arguments (Simari 1992), which

provides a framework of operations that can be defined

on arguments. It also complements the theory of ac

ceptability of arguments (Dung 1993) which describes

an argument fx as acceptable for an agent 9 if 0 can

defend fi from all attacks on /z. Using this basic notion

of acceptable, the theory of acceptability incorporates

different classes of extension. These different classes of

extension can be used to characterize different types of

non-monotonic reasoning. However, neither the alge

bra of arguments nor the theory of acceptability focus

on the notion of priority in data or proofs.

8.2 Model-theoretic frameworks

Preference plays a central role in the KLM framework

(Kraus 1990) where there is an ordering over possible

worlds in the semantics. This ordering is induced by

the contraints of satisfying all of the set of the con

ditional assertions in the database. It is a very weak

notion of preference since the logics support no proof-

theoretic or semantic means of selecting one inference

over another. Though there is the extra-logical option

of selecting the conditional assertion with the most

specific premises.

However, if we equate the KLM notation for a defeasi

ble rule a (~ 0 with our notation for a defeasible rule

a -> ft then the proof theory for manipulating the

defeasible rules in KLM is richer then the naive proof

theory given above since inference rules such as Or are

available.

Another model-theoretic framework characterizing

preference is the generalized framework for prior

itization (Grosof 1991) that is based on model-

minimization. Whilst, it is possible to define "seman

tics" for indivdual prioritized logics that are based

on preferred classical models (by mirroring the proof-

theory in the semantics), it is not evident that such se

mantics are based on notions of model-minimization.

Indeed for certain logics it is straightforward to show

the contrary. However, the identification of a priori

tized logic as the counterpart to the model-theoretic

approach of ordered theory presentations (Ryan 1992)

does constitute an interesting question.

8.3 Belief-revision frameworks

Explicit ordering has also been used as a means by

which formulae can be selected in belief revision (Gar-

denfors 1988). Whilst the spirit of using prioritiy over

laps with that of prioritized logics, the constraints on

the priorities and the means by which the priorities are
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used creates a significantly different reasoning system

to the prioritized logics presented here (Hunter 1994).

Closer to the prioritized logics presented here are the

techniques proposed for management of preferences in

assumption-based reasoning (Cayrol 1992) where pref

erences over formulae are used by a system based on

voting theory to select a maximally preferred set of in

ferences. In essence, prioritized logics involve reason

ing 'classically' with all the database and then using

the priorities to select preferred inferences, whereas the

approach of Cayrol et al involves using the priorities

to select preferred data, and then reasoning classically

with the data to the preferred inferences.

9 AGGREGATION PRINCIPLES

As an example of the kind of formal analysis that is

facilitated by viewing non-monotonic logics in terms

of priorities, we consider the aggregation principles

of Doyle and Wellman (1991) proposed for non

monotonic reasoning. These aggregation principles are

analogues of Arrow's social choice principles, and were

posited as desiderata for aggregating preferences in

non-monotonic reasoning.

However, they showed that for (>i , .., >n), if the num

ber of alternatives is greater than 2, and each >i in

(>i) ->>n) is a total pre-order, then there is no ag

gregation function g such that <?(>i,. ,>n) is a total

pre-order over the alternatives and g(>i, .., >n) satis

fies their aggregation principles.

We do not believe that, in general, the ordering over

p(Naive(A)) should be total and therefore do not re

gard their negative result as undermining the argu

ment for using preferences in non-monotonic reason

ing. However, we do believe that aggregation princi

ples are of interest, and present the following, where

>x be defined by Aggregate{>\, .., >„), and >i and

>j are in (>i,. .,>„).

(Collective rationality) The preference relation

Aggregate(>i, .., >„) is a function of the individ

ual preference relations (>i, .., >n).

(Independence of irrelevant alternatives) The

relation of X and Y according to Aggregate{>\

, •■, >n) depends only on how the individual pref

erence relations rank those two candidates.

(Non-dictatorship) There is no such that for all

X, Y, X >x Y wherever X >i Y, regardless of

the other >_, .

(Justification) If for all >i} X ?i Y, then X ?x Y

(Participation) For all > j, there is an X, Y such that

[X >i Y and X >XY and there is a >j such that

X Y).

From the perspective of non-monotonic reasoning,

rather than the perspective of social choice, these prin

ciples can be justified as follows: Collective rationality

is part of the definition of Aggregate; Independence

of irrelevant alternatives ensures that (>i, .., >n) con

tains sufficient information to define Aggregate; Non-

dictatorship ensures that all>j in (>i, ..,>„) are nec

essary to define Aggregate; Justification ensures that

for strict preference to hold, then at least one >i in

(>ifj>n) can justify it; and Participation ensures

that no >i in (>i, .., >n) is superfluous.

The principles of collective rationality, independence of

irrelevant alternatives, and non-dictatorship are from

Doyle and Wellman (1991). The remaining two Doyle

and Wellman principles are,

(Pareto principle) If X >i Y for some >< and there

is no >j such that Y >j X, then X >x Y.

(Conflict resolution) If X >i Y for some >j, then

X >x Y or Y >x X.

We reject the Pareto (unanimity) and conflict reso

lution principles since we allow an unrestricted pre-

ordering over the preference relations, and furthermore

regard some preference relations, when taken individ

ually, to be insufficient to dictate the aggregated pref

erence.

Using this amended set of principles, we obtain the

following result.

Theorem 8 If each >j in (>i,.., >n) is a pre-

ordering, then there is an aggregation function such

that Aggregate(>i, .., >n) is a pre-ordering and satis

fies the principles collective rationality, independence

of irrelevant alternatives, non-dictatorship, justifica

tion and participation.

This result means that given any set of preference cri

teria, there is an aggregation function that can be

used to amalgamate them to give a single pre-ordering.

Though, obviously, this result does not mean that the

single pre-ordering can always select a single "most

preferred extension".

Even though we argue against the relevance of Ar

row's theorem to non-monotonic reasoning, there is a

valuable literature on voting theory and social choice

(for example Fishburn 1973) that needs to be consid

ered with respect to explicit preferences used in non

monotonic reasoning.

10 DISCUSSION

Arguments for investigating formalisms that incorpo

rate explicit ordering are significant. In the short term

it offers a conceptual framework for analysing non

monotonic logics and for application in practical ar

tificial intelligence technology.

Explicit ordering is potentially important in machine

learning, as a result of the ordering on the clauses
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being amenable to manipulation by a dynamic, or

developing, system. Developments in applying non

monotonic logic to machine learning indicate the value

of an explicit representation of preference (Gabbay

1992) . It is possible to obtain priorities under certain

assumptions, from probabilistic data (Cussens 1991,

1993a), and more significantly, by using statistical in

ference (Cussens 1993b). Using automated techniques

for generating databases overcomes some of the knowl

edge engineering problems in using non-monotonic log

ics, and furthermore can enhance the learning process.

The explicit ordering in prioritized logics also provides

a useful representation to compare notions of implicit

ordering being identified in common sense reasoning,

such as specificity (Poole 1985, Nute 1988, Prakken

1993) , chronological ignorance (Shoham 1988) and use

of certain information (Loui 1986). Furthermore, it

is apparent that common-sense principles for ordering

are context-dependent. This has also been shown in

legal reasoning (Prakken 1994). Aggregated preference

relations offer a mechanism for formalizing this type of

context-dependency.

In the longer term, viewing non-monotonic proof the

ories in terms of preference relations could be signif

icant in addressing problems of tractability and vi

ability in non-monotonic reasoning systems. These

problems are manifested in prioritized logics in the

global constraints necessary in finding the most pre

ferred naive inferences. Yet, preference relations could

be defined to order p(Naive(A)) as successively more

accurate/correct extensions of a database. In this way,

a balance, potentially, between approximation and vi

ability could be captured.

A further argument for studying prioritized logics is

that LDS (the general framework in which priori

tized logics reside) is being developed for other frame

works for uncertainty (for example Clark 1993), for

applied non-monotonic reasoning/practical reasoning

(Barwise 1993, Gabbay 1993b), and for reasoning

with inconsistent information (Gabbay 1993c, Elvang

1993b). It is intended that viewing non-monotonic

logics within LDS will facilitate bridges to be built

between these topics.
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Abstract

Logic programs with positive occurrences of

negation as failure have recently been in

troduced as a subset of the logic of mini

mal belief and negation as failure (MBNF).

A unique feature of such programs, which

other traditional logic programs lack, is that

the minimality of answer sets does not hold.

We reveal in this paper that this property

is important for applying logic programming

to represent abduction and inclusive disjunc

tions. With its rich expressiveness, how

ever, the computational complexity of such

extended programs is shown to remain in the

same complexity class as normal disjunctive

programs. Through the elimination of nega

tion as failure from programs, computation

of such extended programs is realized using

bottom-up model generation techniques. A

simple translation of programs into autoepis-

temic logic is also presented.

1 Introduction

Most of semantics of logic programs proposed so far

satisfy the principle of minimality in some sense. For

example, the least model semantics for definite Horn

programs, the minimal model semantics for positive

disjunctive programs, the prefect model semantics for

stratified programs and the stable model semantics for

normal programs satisfy the principle in the sense that

every canonical model of a logic program is its mini

mal model. The answer set semantics for extended

logic programs by Gelfond and Lifschitz (1991) also

satisfies the principle since no answer set of a program

is smaller than its other answer set. Hence, it has been

argued that the principle of minimality is one of the

most important goals that any "commonsense" seman

tics should obey (Schlipf, 1992).

The situation is similar in research on nonmonotonic

formalisms. Circumscription is directly based on min

imal models, and (disjunctive) default logic has the

property that an extension of a (disjunctive) default

theory is not a subset of other extension. While an

exception can be seen in autoepistemic logic (Moore,

1985), the definition of stable expansions has been

modified so that each obtainable expansion "ratio

nally" satisfies the principle of minimality. For ex

ample, {Bp D p} has two stable expansions, one con

taining p and the other not in their objective parts,

but only the latter is the moderately (or strongly)

grounded expansion (Konolige, 1988).

On the other hand, recent research on the semantics

of logic programming and nonmonotonic reasoning has

demonstrated that both fields have influenced each

other. The logic of minimal belief and negation as

failure (MBNF) recently proposed by Lifschitz (1992)

is a nonmonotonic modal logic that directly allows the

negation-as-failure operator not in a theory. MBNF

is one of the most expressive logics and can serve as

a common framework that unifies several nonmono

tonic formalisms. As Lifschitz noted, however, MBNF

is purely semantical and too intractable to be used di

rectly for representing knowledge. Then, Lifschitz and

Woo (1992) investigate a large subset of propositional

MBNF called PL-theories—theories with "protected

literals". The semantics of PL-theories is similar to

the answer set semantics for extended disjunctive pro

grams (Gelfond and Lifschitz, 1991), and can be de

scribed in terms of sets of objective literals. Moreover,

each PL-theory is shown to be replaced with an equiva

lent set of disjunctions of protected literals. This "logic

programming" fragment of MBNF can be expressed as

a program consisting of rules of the form:

L\ | ... | Lk | not Lk+i | ... | not Li

*— -fcj+ii • • • i Lm, not Lm+i, . . . , not L„

where each L, is a positive or negative literal. Then,

the class of logic programs allowing the above form of

rules strictly includes the class of extended disjunctive

programs. Interestingly, once not appears positively as

above, the principle of minimality does not hold any

more. For example, the program consisting of the rule

p | notp *- (1)
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has two answer sets: one containing p, and the other

including neither p nor -<p.

Then, two criticisms can be made about the use of

negation as failure positively in logic programming or

MBNF. The first criticism is argued by the fact that

one feels a resistance to the existence of non-minimal

answer sets. In other words, from the traditional view

point, a non-minimal answer set contains a redundant

information and is of no use for representing common-

sense knowledge. In fact, Lifschitz and Woo also raise

a question about the utility of a disjunction of literals

and their negations like rule (1), and discuss (Lifschitz

and Woo, 1992, page 608):

It remains to be seen whether rules like this

may have applications to knowledge represen

tation.

The second criticism addresses the increase of compu

tational complexity and the difficulty in supplying a

procedural semantics in the presence of non-minimal

answer sets. Two proof theories for MBNF proposed

so far are not sufficient in this respect. Chen (1993)

proposes a proof theory for PL-theories, which relies

on the proof theory for the logic of only knowing by

Levesque, but a procedure would have to deal with

modal logic K45. Beringer and Schaub (1993) provide

a proof procedure for a subset of MBNF, but this sub

set neither includes extended disjunctive programs nor

allows a positive occurrence of nor.

In this paper, we discuss the above two issues on non-

minimal answer sets of PL-theories. In the first re

spect, we reveal that the non-minimality of answer

sets is an important property for applying logic pro

gramming or MBNF to represent abduction and to

interpret disjunctions inclusively. In the second re

gard, we show that the computational complexity of

extended programs with positive occurrences of not

is in the same complexity class as normal disjunctive

programs. Furthermore, through the elimination of

not from programs, computation of such extended pro

grams is shown to be realized using bottom-up model

generation theorem proving techniques.

The fact that abduction can be represented by a sin

gle logic program is a particularly striking result. Since

an abductive program is usually represented by a pair

of background knowledge and candidate hypotheses,

it is important to know how such meta-level infor

mation of hypotheses can be expressed at the object

level. Such an expression bridges the gap between

abductive and usual (non-abductive) logic program

ming, and is useful for computational aspect of ab

duction since we can apply any proof procedure for

usual logic programs to programs transformed from

abductive frameworks. One of our proposed solutions

to Lifschitz and Woo's question about the utility of

non-minimal answer sets also appears at this point.

Namely, the rule (1), p \ notp *— , can be used to

represent the statement that p is a hypothesis.

From the viewpoint of nonmonotonic reasoning,

among many nonmonotonic formalisms, Moore's au-

toepistemic logic can express a stable expansion whose

objective part is larger than that of another expan

sion. We will show that this non-minimal feature of au-

toepistemic logic is applicable to describe the seman

tics of logic programming with positive occurrences of

not. This result is obtained from a simple translation

of programs into autoepistemic logic based on results

by Lifschitz and Schwarz (1993) and Chen (1993).

The rest of this paper is organized as follows. In Sec

tion 2, we give the answer set semantics for programs

with positive occurrences of not. To show practical ap

plications of non-minimal answer sets, abduction and

inclusive disjunctions are characterized by positive oc

currences of not in Section 3. Section 4 provides com

plexity results and computation of the answer set se

mantics, and the connection to autoepistemic logic is

shown in Section 5. Some related work is discussed in

Section 6, and Section 7 gives a summary.

2 Answer Sets of Programs with

Positive Occurrences of not

This section overviews the answer set semantics of

logic programs with positive occurrences of negation

as failure (hereafter called positive not). Since a rule

with variables stands for the set of ground instances

in the semantics of logic programming, we can restrict

our attention to ground programs.

A general extended disjunctive program (GEDP) is a

set of rules of the form

L\ | . . . | Lk | not Lk+i | ... | not Li

*— Li+i, . . . , Lm, not Lm+i, . . . , not Ln

where L,'s are literals and n>m>l>k>0. The

disjunction in the left of <— is called the head and the

conjunction in the right of *— is called the body of

the rule. A GEDP is called an extended disjunctive

program (EDP) when it contains no positive not, i.e.,

each rule is in the form (2) with k = I. An EDP is

called (i) an extended logic program if for each rule

I < 1; and (ii) a normal disjunctive program (NDP) if

every Li is an atom. An NDP is called (i) a normal

logic program if for each rule I < 1; and (ii) a positive

disjunctive program (PDP) if it contains no not, i.e.,

for each rule m = n.

The answer sets of a GEDP are defined by the follow

ing two steps. First, let P be a not-free extended dis

junctive program (i.e., for each rule k = I and m = n),

and S C Lit where Lit is the set of all ground literals

in the language. Then, S is an answer set of P iff S is

a minimal set satisfying the conditions:

1. S satisfies each ground rule from P:

L\ | . . . | Lk *- Lk+u ■ • • i Lm ,
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that is, if {Lk+i,- • • , Lm} Q 5, then Li € 5 for

some 1 < i < k. In particular, for each ground

rule *- Li, . . . , Lm from P, {I-i, . . . , Lm} g S;

2. If 5 contains a pair of complementary literals L

and ->L, then S = Lit.

Secondly, let II be any general extended disjunctive

program, and S C Lit. The reduct HsofHbyS'va

a not-free extended disjunctive program obtained as

follows: A rule

L\ | ... | Lk «- Li+i, Lm

is in II5 iff there is a ground rule of the form (2) from

P such that

{Lk+u...,Lt}CS and {Lm+1, . . . , Ln} n S = 0.

For programs of the form II5, their answer sets have

already been denned. Then, S is an answer set of II

iff S is an answer set of II5. We say an answer set is

consistent if it is not Lit. An answer set S of a GEDP

II is minimal if no other answer set 5' of II satisfies

S' C 5; otherwise, it is non-minimal.

Note that the above definition of answer sets of a

GEDP is given in a way slightly different from that

by Lifschitz and Woo (1992) who additionally include

in the language two special atoms T and F. When the

language does not contain these special atoms, our

definition of the reduct is equivalent to that given in

(Lifschitz and Woo, 1992, page 606), and thus both

definitions of answer sets coincide. Obviously, when

a program II is an extended disjunctive program, the

above definition of answer sets reduces to that given

by Gelfond and Lifschitz (1991).

An important property of GEDPs, which has been ob

served by Lifschitz and Woo, is that the minimality of

answer sets for EDPs (Lifschitz and Woo, 1992, The

orem 4) no longer holds. For example, the program

{ p | norp *— , -*p | not-<p *— }

has four answer sets: 0, {p}, {-<p} and Lit.

3 Representing Abduction by GEDP

Abduction is a very important form of reasoning not

only for various AI problems but also for logic pro

gramming. Abductive logic programming is an exten

sion of logic programming to perform abductive rea

soning (Kakas et al., 1992). In this section, we will

show that this extension can be characterized exactly

using positive not in GEDPs, so that both abductive

and non-abductive logic programming have the same

expressive power. We will also show that positive not

is a very useful tool to represent other non-minimal

semantics for disjunctive logic programs.

3.1 Belief Sets for Abductive Programs

The semantics of abduction we consider here is based

on the generalized stable model semantics denned by

Kakas and Mancarella (1990) and the belief set seman

tics by Inoue and Sakama (1993), but is extended to

handle general extended disjunctive programs.

An abductive (general extended disjunctive) program is

a pair (P,T), where P is a (general extended disjunc

tive) program and T (C Lit) is a set of ground literals

from P called abducibles. When P is a normal logic

program and T is a set of atoms, we will often call an

abductive program an abductive normal logic program.

Let E be a subset of V. A set of literals Se is a belief

set of ( P, T ) if it is a consistent answer set of P U E

and satisfies E = Sg CI T. A belief set Sg is minimal

if no belief set Se> satisfies that E' C E. Note that

each belief set reduces to a consistent answer set of P

when T = 0. The condition E = Se n T is necessary

since an abducible appearing in the head of a ground

rule may become true when other abducibles from E

are true. In this way, each belief set Se is uniquely

associated with its "generating" abducibles E.1

Let ( P, T ) be an abductive program, and O a literal.

A set E C r is an explanation ofO {tort ( P, T )) if there

is a belief set Se which satisfies O. An explanation E

of O is minimal if no E* C E is an explanation of

O. Without loss of generality, we can assume that an

observation O is a non-abducible ground literal. Fur

ther, the problem to find explanations is essentially

equivalent to find belief sets, since E is a minimal ex

planation of O wrt ( P, r ) iff Se is a minimal belief set

of (PU{ <- not O}, T) (Inoue and Sakama, 1993).

Example 3.1 Consider an abductive program (P, T)

where T = {a, 6} and

P = { p «— r, b, not q, q «— a, r *— } .

Then, SEo = {r}, SEi = {r,p,b}, SB2 = {r,q,a} and

= {r, q, a, 6} are the belief sets of ( P, T ), in which

Seo is the only minimal belief set of ( P,T). Suppose

that p is an observation. Then, £71 = Sei DT = {6}

is the (minimal) explanation of p. This observation p

can be incorporated in the program as

P = PU { *~notp },

and the unique belief set of ( P, T) is Sei = {r,P,

Note that E3 = {a, 6} is not an explanation of p be

cause if we would abduce E3, q would block to derive

p, and <— notp could not be satisfied.

1 Kakas and Mancarella's generalized stable models of

an abductive normal logic program ( P, T ) are exactly our

belief sets of the program. Note that they require that each

abducible must not appear in the heads of rules of P, so

that the condition E = Se <~l T is always satisfied. They

further separate integrity constraints from the background

program P, but we include them in P.
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3.2 Characterizing Abductive Programs

The most direct way to embed abducibles into a single

program is as follows. Let (P,r) be an abductive

program. For each abducible 7 in T, we supply the

rule

7\noty<-. (3)

According to the non-minimality of answer sets of

GEDPs, this rule has the effect to augment each an

swer set of P with either 7 or nothing. Given an abduc

tive program ( P, T ), let Pp be the GEDP P U abd{T)

where abd(T) is the set of rules (3) obtained from T.

Theorem 3.1 A set SE is a beliefset of{P,V) iffSE

is a consistent answer set of Pp.

Proof: Since E = SB n T, it holds that abd(T)s' =

abd(T)B = E = ES*. Hence,

SE is a belief set of ( P, T )

iff Se is a consistent answer set of PL)E and E = S^nr

iff SE is a consistent answer set of PSs U ESs

and E = SE n T

iff Se is a consistent answer set of PSb U abd(T)Ss

iff Se is a consistent answer set of P U abd(T). □

Given a GEDP II and a set T of ground literals, we say

an answer set S of II is T-minimal if no other answer

set 5' of II satisfies that S' n T C S n T.

Corollary 3.2 SE is a minimal belief set of{P,T) iff

Se is a consistent T-minimal answer set of Pp. □

Example 3.2 The abductive program (P/,r) given

in Example 3.1 is translated into

P'r = P1 U { a I nota «- , b \ not b <- } .

Then, {r,p, 6} is the unique (and hence T-minimal)

answer set of P'r, which is exactly the (minimal) belief

set of (P',r). Notice in this example that there is

no non-minimal answer set of P'r. In other words,

translating abducibles into rules with positive not (3)

not only enables us to represent non-minimal belief

sets of abductive programs, but plays an important

role to obtain a (minimal) explanation.

3.3 Assumptions with Preconditions

In the previous subsections, a set T of abducibles in

an abductive program ( P, T ) was denned as a set of

literals. Often however, we would like to introduce in

r an abducible rule like

7*- Li, Lm, notLm+l, notLn, (4)

where 7 and Li's are literals. This abducible rule in

tuitively means that if the rule is abduced then it is

used for inference together with the background rules

from P. This kind of extended abductive framework

was introduced by Inoue (1991) as a knowledge system

in which both P and T are defined as extended logic

programs, and has been shown to be a useful tool for

representing commonsense knowledge.

An abducible rule (4) has the effect to introduce the

literal 7 as an assumption in a particular context in

which the body of the rule is true. In this sense, 7

in (4) can be considered as an assumption with precon

ditions. On the other hand, each abducible literal 7

in an abductive program (P, V) defined in Section 3.1

is viewed as an abducible rule without precondition

7 «— , and hence can be abduced globally.

An extended abductive framework can be formally de

fined as a pair ( P, P), where P is a GEDP and P is

now an extended logic program consisting of rules of

the form (4). The semantics of this abductive frame

work is slightly extended from that given in Section 3.1

as follows. Let E be any subset of P, and head(E) be

the heads of rules in E. A set of literals Se is a belief

set of ( P, r ) if it is a consistent answer set of P U E

and satisfies that head(E) = Se n head(r). Clearly,

this notion of belief sets reduces to the definition of

belief sets in Section 3.1 when P is a set of abducible

literals without preconditions.

Example 3.3 Suppose that (P, P) is an abductive

program where

P = { P <- a , --?«-&, q*-c },

r = { a <- , b <- , c*-p }.

Then, (P, P) has the four belief sets: 0, {o,p},

{a,p, c, q}, and {b, ->p}. Notice that {b, ->p, c, q} is not

a belief set since c can be assumed only when p is true.

The embedding of assumptions with preconditions into

GEDPs is a straightforward generalization of that of

abducibles without preconditions. Each rule (4) in P

is replaced with the rule

7 I not 7 «- Li, . . . , Lm, not Lm+U notL„. (5)

For example, the abducible rules P given in Exam

ple 3.3 are translated into

a I not a «— , b \ not b *— , c | not c <— p .

Corollary 3.3 Let { P, P ) be an abductive framework,

and abd(r) the set of rules (5) obtained from the

rules (4) in P. A set SE is a belief set o/(P,P) iff

Se is a consistent answer set of P U abd(r). □

3.4 Inclusive Interpretation of Disjunctions

Another important application of positive not is to

express an alternative semantics for disjunctive logic

programs other than Gelfond and Lifschitz's answer

set semantics. Here, we show that the possible model

semantics for normal disjunctive programs by Sakama

and Inoue (1993b) can be characterized by the answer

set semantics for GEDPs.
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The possible model semantics was initially introduced

for positive disjunctive programs to enable one to spec

ify both inclusive and exclusive interpretations of dis

junctions (Sakama, 1989; Chan, 1993).2 Recently,

Sakama and Inoue (1994) have presented the equiva

lence between the possible model semantics for NDPs

and the generalized stable model semantics for abduc-

tive normal logic programs. Utilizing this result and

Theorem 3.1, the embedding of the possible model se

mantics into GEDPs can be obtained. We show below

a direct method to do it based on the embedding of

abducible rules into GEDPs in Section 3.3.

For an NDP P, let diaj(P) be the disjunctive rules of

P, i.e., those rules having more than one atoms in their

heads. A split program of P is a ground normal logic

program obtained from P by replacing each ground

disjunctive rule from disj(P) of the form

Ai | . . . | Ak «- . . . , Am, not Am+i, ...,notAn

(6)

(k > 1) with rules

Ai «- Ak+i, Am, notAm+i, ...,notAn (7)

for every Ai 6 S, where S is some non-empty subset

of {Ai,... ,Aie}. Then, a possible model of P is an

answer set (or stable model) of any split program of

P (Sakama and Inoue, 1993b). Note that every stable

model of P is a possible model of P, but not vice versa.

For example, when

P = { P\q*~ , Q*~Pi r *~ notp } ,

{q, r} is both a stable model and a possible model of

P, but another possible model {p, q} is not a stable

model. Clearly, for normal logic programs, possible

models coincide with stable models.

To obtain every possible model, let us consider the

translation pm which maps an NDP to a GEDP. Given

an NDP P, pm(P) is obtained by replacing every rule

from P of the form (6) with k + 1 rules. The first k

rules of them are

A, | notAi «- At+i, . . . , Am, not Am+i, ...,notA„

(8)

for j = 1, ... , k, and the other one is

*- Ak+i, . . . , Am, not Am+i, . . . , not An,

not A\, not At . * '

Recall that the embedding of abducible rules (4) into

GEDPs was based on rules (5). The embedding of

possible models is achieved in a similar manner by (8)

except that the empty selection from the disjuncts of

each disjunction is rejected by (9) in the pm transla

tion.

'Possible model semantics is also called possible world

semantics in (Chan, 1993; Sakama and Inoue, 1993b).

While Chan (1993) gives a different definition from that by

(Sakama, 1989), these notions are proved to be equivalent.

Theorem 3.4 Let P be an NDP. A set S of atoms is

a possible model of P iff S is an answer set ofpm(P).

Proof: Suppose that F is the normal logic program

obtained from disj(P) by replacing each disjunctive

rule (6) with k rules of the form (7) for t = 1, . . . , k,

and that IC is the set of rules of the form (9) obtained

from the rules of the form (6) in disj(P). Then, a set

S of atoms is a possible model of P iff S is a belief

set of the abductive program ( (P \ disj(P))UlC, r )

(Sakama and Inoue, 1994). Hence, the theorem follows

from Corollary 3.3. □

Example 3.4 (Chan, 1993) Suppose that P consists

of rules

violent \ psychopath «— suspect ,

dangerous «— violent, psychopath ,

suspect <— .

The first rule is replaced in pm(P) with three rules

violent \ not violent «— suspect ,

psychopath \ not psychopath «— suspect ,

«— suspect , not violent, not psychopath .

Then, {suspect, violent}, {suspect, psychopath} and

{suspect, violent, psychopath, dangerous} are the

three answer sets of pm(P), which coincide with the

possible models of P. Note that the first and second

possible models of P are also the answer sets of P,

while the third possible model is not. If we introduce

the closed world assumption

->A «— not A for any atom A

into P, then the answer set semantics entails

-^dangerous,3 which is too strong. The possible model

semantics for P (the answer set semantics for pm(P))

in this case does not entail ->dangerous.

4 Complexity and Computation

We now show the computational complexity of GEDPs

and an algorithm to compute the answer sets of a finite

GEDP. These results indicate that positive not can be

eliminated from programs so that we can use any proof

procedure for computing EDPs.

4.1 Reduction to Extended Disjunctive

Programs

We first show a polynomial-time transformation from

a GEDP to an extended disjunctive program. Let II be

any GEDP. The extended disjunctive program edp(TL)

is obtained from II by replacing each rule with positive

not in II of the form:

L\ | .. . | Irfc | not Lk+i | ... | not L\ ,1Q.

*- Li+i, . . . , Lm, not Lm+i, • • • , not Ln ^ >

'The answer set semantics for a program P is said to

entail a literal L if L is included in all answer sets of P.
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(n > m > I > k > 0) with rules without positive not:

Ai | ... | At | Afc+i | ... | A; ,nv

«- Li+u . . . , Lm, not Lm+i, notLn,K

Li«-A,- for i = l,...,*, (12)

A, ♦- L,-, Irjt+i, U fori = l,...,*, (13)

. r for i = 1, and , >

<-\j,Lj for; = Jb + l,...,/. (15)

Here, Aj is a new atom not appearing elsewhere in

II and is uniquely associated with each disjunct of a

ground rule from II. In the following, we denote by

Litn the set of all ground literals in the language of

II. Thus, Litn includes no new atom Aj.

Theorem 4.1 Let U be a GEDP. A set S is an an

swer set ofH iff a set E is an answer set of edp(U)

such that S = En Litn.

Proof: Let S be an answer set of II. First, consider

the reduct II5. If a rule

Li|...|L*«-LJ+i, ...,Lm (16)

is in II5, then for the corresponding rule (10) in II, it

holds that {Lt+i, . . . , L/} C S and {Lm+i, . . . , Ln} fl

S = 0. In this case, the reduct edp(II)5 includes

Ai | ... | At | Xk+1 | ... | A, - L/+1, .... Lm, (17)

and the rules (12,13,15), but does not contain the

rule (14). Since S satisfies each rule in II5, for each

rule R of the form (16) such that {L/+i, . . . , Lm} C 5,

there exists Li € S for some 1 < i < k. Let

SI = |J {A, | Li 6 5, 1 < i < Jfe}.

Next, suppose that there is a rule (10) in II such that

{Lm+i, . . . , L„}D5 = 0 but 3Lj & S for some Jb+ 1 <

j < I. In this case, there is no corresponding rule (16)

in II5, but the rule (17) is present in edp{U)*. e<fp(II)5

also contains the rules (12,13,15) and the rules ♦— Ai

for i = 1, . . . , k (from the rule (14)). Then, for each

such rule R' (17) of edp(E)s, let

E2 = (J {Xj\LjtS, * + l <;</}.

fl'6e</p(n)s

Now let E = S U E3, where E3 is a minimal subset

of El U E2 such that each Ai or Aj is chosen in a way

that E satisfies every rule of the form (17). Obviously,

it holds that S = E (~) Litn- Because new literals A,'s

never appear within not, the program edp(H)s is ex

actly the same as edp(n)s. Then, E satisfies all the

rules of edp(II)E, and if 5 = Litn then Lt'tn C E.

To see that E is a minimal set satisfying the rules

of e<fp(II)E, notice that 5 is a minimal set satisfying

the rules of II5. From the construction of E3, it is

easy to see that E is a minimal set containing S and

satisfying the rules of edp(H)z. We thus only need to

verify that there is no E' such that (i) E> C E, (ii)

E' satisfies the rules of edp(Tl)E, and (iii) S' C S for

S' = E* D Lt'tn- Suppose to the contrary that such

a E' exists. Then, the condition (iii) is satisfied only

if there exist rules (12,13) such that Li € S\S' and

A,- e SyE* for some 1 < t < k. For this Ai, there must

be the rule (17) such that {L/+i, . . . , Lm} C S'. By

the condition (ii), there is a literal Xj € E' for some

k + 1 < j < I. This Ay, however, is not included in E2

by (15), contradicting the condition (i). Therefore, E

is an answer set of edp(II) , and hence an answer set

of edp{H).

Conversely, let E be an answer set of edp(II), and S =

E fl Litn. Since E is an answer set of edp(II)s, for

each rule (17) in edp(n)E, if {L/+i, . . . , Lm} C S, then

A,- € E for some 1 < i < /. There are two cases: (a)

If A, € E for some 1 < i < k, then L; € S by (12)

and hence {Lt+i, . . . , Lj} C 5 by (14). Then, the

corresponding rule (16) exists in IIs and 5 satisfies it;

(b) If A,- $ E but Aj € E for some 1 < i < k and

k + 1 < j < I, then Lj £ S by (15). Then, there is

no corresponding rule (16) in II5. In either case, S

satisfies all rules of H5.

Suppose that there is a set S' of literals from Litn

such that (i) S' C S and (ii) S' satisfies the rules of

E5. Then, two conditions (i) and (ii) are satisfied only

if there is a rule (16) such that {Lj+i, . . . , Lm} C S'

and for some two literals Ln and L& (1 < il, «2 <

It, il ^ i2) Lii € S' but L,2 € 5 \ 5'. Without loss

of generality, we can assume that just one such rule

exists in II5. Since 5 and 5' contain Lfc+i, . . . , L/ in

the corresponding rule (10) in II, A,i, A,-a € E by (13).

Let E' = E \ {Li2, Ai2}. Then, E' satisfies all the

rules (17,12,13,15) existing in e</p(II)E. This contra

dicts the fact that E is an answer set of e<fp(II)E.

Therefore, S is an answer set of IE5, and hence an

answer set of II. □

We thus see that any GEDP can be reduced to an

EDP by eliminating positive not. The fact that non-

minimal answer sets of GEDPs can be expressed by

answer sets of EDPs that must be minimal is a some

what surprising and unexpected result. The reason

why this reduction is possible is that the newly intro

duced atoms Aj's have the effect to distinguish each

positive not, and each answer set of edp(U) becomes

minimal by the existence of these new atoms.

Example 4.1 Suppose that a GEDP is given as

II = { p | not q <— , q \ not p *— } .

The answer sets of II are {{p, q}, 0}. Correspondingly,

edp{U) = { Ai | A3 «- , A3 | A4 ,

P «- Ai, Ai «- p, q, *- Ai, not q, «- A2, 9,

9 *- A3, A3 «- q, p, A3, notp, «- A4, p }

has the answer sets {{Ai, A3,p, q}, {Aj, A4}}.



On Positive Occurrences of Negation as Failure 299

4.2 Complexity Results

We aie now ready to give the complexity results for

GEDPs. Since the class of GEDPs includes the class

of EDPs and we have shown a polynomial-time trans

formation from a GEDP to an EDP, the next result fol

lows immediately from the complexity results of EDPs

given by Eiter and Gottlob (1993).

Theorem 4.2 Let II be a finite propositional GEDP,

and L a literal.

(1) Deciding the existence of an answer set o/H w E^ "

complete.

(2) Deciding whether L is true in some answer set of

II is Ef -complete.

(3) Deciding whether L is true in all answer sets ofTL

is -complete. □

Theorem 4.2 demonstrates that allowing positive not

does not increase the computational complexity of

the answer set semantics. Eiter and Gottlob also

show that the complexity results for EDPs apply to

EDPs without classical negation -> as well. Therefore,

GEDPs are in the same complexity class as normal

disjunctive programs. Furthermore, Theorem 4.2 (2)

also applies to the minimal model semantics for pos

itive disjunctive programs. This observation leads us

to a further translation in Section 4.3.

Ben-Eliyahu and Dechter (1992) have shown the

(co-)NP-completeness of a restricted class of EDPs.

According to their notations, a dependency graph of a

ground EDP P is a directed graph in which its nodes

are literals in P and there is an edge from L to V iff

there is a rule in P such that L appears in the body

and L' appears in the head of the rule. An EDP is

head-cycle free if its dependency graph contains no di

rected cycle that goes through two different literals

in the head of the same disjunctive rule. Then, the

three problems in Theorem 4.2 for propositional head-

cycle free EDPs are reducible to testing satisfiability

or provability of propositional formulas in polynomial-

time (Ben-Eliyahu and Dechter, 1992). Here, we show

such a reduction of complexity results is also possible

for a restricted class of GEDPs, by providing a gen

eralization of their results. Given a ground GEDP II,

its dependency graph Gn is denned in the same way as

that of an EDP except that an additional edge from

L to V is added for each notL and V in the head

of the same rule. Thus, while each notL in bodies

is ignored, each not L in heads constructs an edge in

Gn- A GEDP II is head-cycle free if Gn contains no

directed cycle that goes through two literals Lu,Li2

(1 < tl, t'2 < k, Ln ^ La) in any ground rule (10)

from II. The class of head-cycle free GEDPs obviously

includes the class of head-cycle free EDPs and the class

of extended logic programs, and includes the class of

GEDPs each of whose rule permits in the head at most

one V but any number of not L's.

Lemma 4.3 Let U be a GEDP. H is head-cycle free

iff edp(H.) is head-cycle free.

Proof: An edge from Lj to Li for j = k + 1, . . . , I

and « — 1, ...,k in the same rule (10) is in Gn iff a

path from Lj to Li through rules (13) and (12) is in

Ge<jp(n)- Then, each directed path from L to V in Gn

is contained in Ge^p^, and vice versa. Hence, any two

literals Ln,Li% (1 < tl, t'2 < k) in the same rule (10)

are contained in a cycle in Gn iff the literals Am, A,j

in the corresponding rule (11) are contained in a cycle

in Ge<Jp(n). □

The next result follows from Theorem 4.1, Lemma 4.3

and complexity results of head-cycle free EDPs by

(Ben-Eliyahu and Dechter, 1992).

Theorem 4.4 Let H be a finite propositional head-

cycle free GEDP, and L a literal.

(1) Deciding the existence of an answer set of H is

NP-complete.

(2) Deciding whether L is true in some answer set of

H is NP-complete.

(3) Deciding whether L is true in all answer sets of U

is co-NP-complete. □

Note that the class of head-cycle free GEDPs includes,

as a special case, the class of programs PL)abd(r) ob

tained from abductive programs ( P, r ) where both P

and r are extended logic programs (see Section 3.3).

This fact and results in Section 3 imply that computa

tional problems for abductive normal logic programs

(Kakas and Mancarella, 1990), knowledge systems (In-

oue, 1991), and the possible model semantics for nor

mal disjunctive programs (Sakama and Inoue, 1993b)

have all the same complexity results as in Theorem 4.4.

These results are also stated in (Sakama and Inoue,

1994) based on translations of such programs into nor

mal logic programs.

4.3 Computing Answer Sets of GEDP

To compute the answer set semantics for any GEDP

H, we can apply any proof procedure for extended dis

junctive programs to the EDP edp(U) obtained in Sec

tion 4.1. To this end, a bottom-up proof procedure

for EDPs has been proposed by Inoue et al. (1992) to

compute answer sets of EDPs using model generation

techniques. Here, we present an essence of the method

of (Inoue et al, 1992). First, each EDP P is converted

into its positive form P+, which is obtained from P

by replacing each negative literal ->L with a new atom

-L. Note that P+ is a normal disjunctive program.

We also denote the positive form of a set 5 of literals

as S+. Next, P+ is translated into the set fo(P+) of

first-order formulas by completely eliminating not as

follows. For each rule in P+ of the form:

Li | . .. | Lt, «- Lk+i, Lm,not Lm+i) • • • > not Ln

(18)



300 K. Inoue and C. Sakama

where L,'s are atoms, fo(P+) contains the formula:

Lt+i A . . . A Lm D n qv

JTxV...VfftVKLm+1V...VKLn, ^

where

Hi = Li A-KLm+l A...A-KLn (i = l,...,fc),

and fo(P+) contains the formulas:

-.(LA-KL) for each L € LitP+, (20)

->(L A -L) for each pair L, -L € LitP+. (21)

Here, KL is a new atom which denotes L should be

true, and -KL is the positive form of ->KL. Now, let

I be an Herbrand interpretation of fo(P+), i.e., a set

of ground atoms in the language of fo(P+). We say

that J satisfies the stability condition if it holds that

KL 6 J implies L € J for every atom L € Litp+.

Lemma 4.5 (Inoue et al., 1992) Let P be an EDP,

and S C Litp. S is a consistent answer set of P

iff M is a minimal Herbrand model of fo(P+) such

that S+ = M (~l Litp+ and M satisfies the stability

condition. □

The next theorem, which follows from Theorem 4.1

and Lemma 4.5, completely characterizes the consis

tent answer sets of a GEDP in terms of the above

first-order translation.4

Theorem 4.6 Let H be any GEDP, and S C Litn.

S is a consistent answer set of H iff M is a minimal

Herbrand model of fo(edp{TL)+) such that S+ = M D

L»tn+ and M satisfies the stability condition. □

It is well known that for positive disjunctive programs

minimal models coincide with answer sets. Then, as

the formula (19) can be identified with the rule

Hi | • •• | ■fffc I KLm+1 | ... | KL„ «- Lt+i, . . . , Lm ,

the set fo(P+) can be viewed as a PDP. We thus now

have a polynomial-time transformation from GEDPs

to PDPs. Hence, to obtain answer sets of GEDPs, any

procedure to compute minimal models of PDPs can

be applied as well. There are many techniques for this

computation such as (Bell et al., 1992; Inoue et al.,

1992; Fernandez and Minker, 1992). In particular, our

transformation is suitable for applying a bottom-up

model generation procedure to compute answer sets of

function-free, range-restricted GEDPs. Since we have

characterized abductive programs as GEDPs in Sec

tion 3, abduction can also be computed by model gen

eration procedures. Inoue et al. (1993) have developed

such a parallel abductive procedure, and Inoue and

Sakama (1993) have given a fixpoint semantics that

accounts for the correctness of such bottom-up proce

dures using a similar transformation.

4 Although Theorem 4.6 does not cover the contradic

tory answer set of II, the methods used in (Inoue et al.,

1992) can be applied to identify the answer set Litn.

Example 4.2 The abductive program (J", V) given

in Examples 3.1 and 3.2 is now transformed into

fo(P'r) that consists of the propositional formulas

r A b D (p A -Kg) V Kg, oD g, r, Kp,

AiVA2, Ai = a, Ai D Ka, ->(A2Aa),

A3VA4, A3 = b, A3 D Kb, -.(A4A6),

and the schema (20).5 Then, there are five minimal

models of fo(P'r).

Mi = {r, Kp, Ai, a, Ka, q, A3, 6, Kb, Kg},

M2 = |r, Kp, Ai, a, Ka, q, A4},

M3 = {r, Kp, A2, A3, b, Kb,p, -Kg},

M4 = {r,Kp,A2,A3,6, K6,Kg},

M5 = {r, Kp, A2, A4}.

Among these, only M3 satisfies the stability condition,

and corresponds to the belief set {r,p, 6} of (P*,T).

5 Relation to Autoepistemic Logic

Recall that the class of GEDPs is the "logic pro

gramming" fragment of propositional MBNF (Lifs-

chitz, 1992). The embedding of the rule (2)

L\ I . .. I Lu I not Lk+i I ... I notLi

«— Li+i, Lm, not Lm+i, not L„

into MBNF is given by Lifschitz and Woo (1992) as

the formula

BL/+i A ... A BLm A nor Lm+i A ... A not Ln

D BLi V ... V BLt V nor Lk+i V . . . V not Lt .

Besides MBNF, there are many nonmonotonic for

malisms to which EDPs can be embedded. Gelfond

et al. (1991) use their disjunctive default logic, and

Sakama and Inoue (1993a) show transformations into

Reiter's default logic, Moore's autoepistemic logic and

McCarthy's circumscription. Since we have presented

the reduction of GEDPs to EDPs, these previous re

sults can be directly applied to embed GEDPs into

such nonmonotonic formalisms, and they are all well

defined. Although these results are all correct, one of

ten wants to see a stronger result such that the logical

closure of an answer set is exactly the same as an exten

sion of a nonmonotonic formalism and that the set of

literals true in an extension is exactly an answer set. In

3uch an extension, the introduction of new literals like

Ai's should be avoided. Then, those formalisms that

obey the principle of minimality such as (disjunctive)

default logic and circumscription are rejected for this

purpose. With this regard, the remaining candidate is

autoepistemic logic. Lifschitz and Schwarz (1993) and

Chen (1993) have independently provided the correct

embedding of EDPs into autoepistemic logic. More

over, both results are proved in a way applicable to

'When an EDP P is an NDP, P+ = P holds and /o(P)

need not include the schema (21).
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a more general class of programs including consistent

PL-theories of (Lifschitz and Woo, 1992). Here, we

can take advantage of their proofs.

Given a GEDP II, its autoepistemic translation oe(II)

is denned as follows: Each rule of the form (2) in II is

transformed into the following formula in ae(H):

(BL,+i A Li+i) A ... A (BLm A Lm)

A ->BLm+x A ... A ->BLn

D (BLi ALi) V... V(BL* ALk)

V ->BLt+1 V ... V -•BLi . (22)

Recall that given a set A of formulas (called a premise

set) in autoepistemic logic, T is a stable expansion of

A iff

T = cons(A U {Btp \ tp € T} U {-^Btp \ tp <£ T}) ,

where cons(X) denotes the set of propositional conse

quences of X. It is also well known that for each set

F of objective formulas, there is a unique stable set

E(F) containing F such that the objective formulas

in E(F) are exactly the same as those in cons(F). If

a premise set A contains only objective formulas, then

E(A) is a unique stable expansion of A. Then, the

next result follows from (Lifschitz and Schwarz, 1993,

Main Theorem).

Theorem 5.1 Let II be a consistent GEDP, and S a

set of literals. S is an answer set of II iff E(S) is a

stable expansion ofae(H). □

The autoepistemic translation ae(II) can be simplified

for some class of GEDPs. When II is a GEDP that

consists of rules of the form

Ax | not A? | ... | not At

*- M+i, . . . , Am, not Am+1, . . . , not An , >

where 0 < / < m < n (Ai may be empty) and A,'s are

atoms, each (BAi A Ai) for i = 1 and i = I + 1, . . . , m

in ae(II) can be replaced simply with A,- as

A/+i A ... A Am A ->BAm+i A ... A ->BAn

D Ai V ->BA2 V ... V ->BAt . (24)

Note that this class of GEDPs is a subset of the class of

head-cycle free GEDPs, and includes the class of nor

mal logic programs and programs Pr that are trans

lated from abductive normal logic programs (P, T).

Let us denote as ae„ (II) the set of autoepistemic for

mulas obtained from a GEDP II by replacing each rule

of the form (23) with (24). An essential difference be

tween ae(II) and ae„(II) for a set II of rules of the

form (23) is that, while ae„ may map two different

Mazek and Truszczynski (1993) also show a differ

ent translation of EDPs into reflexive autoepistemic logic

(Schwarz, 1991). Lifschitz and Schwarz (1993) further

prove that reflexive autoepistemic logic can be used for

the embedding of consistent PL-theories.

programs with the same answer sets into two autoepis

temic theories with different stable expansions, the sta

ble expansions of ae(U) are uniquely determined by

the answer sets of II (Lifschitz and Schwarz, 1993).

Nevertheless, we have the following one-to-one corre

spondence between the answer sets of II and the stable

expansions of ae„(H).

Corollary 5.2 Let II be a consistent GEDP such that

U is a set of rules of the form (23), and S a set of

atoms. S is an answer set of H iff S is the set of

objective atoms true in a stable expansion of aen (II).

Proof: Suppose that S is an answer set of II. By

Theorem 5.1, there is a stable expansion E of ae(n)

such that S = E (~l At where At is the set of atoms

occurring in II and that

E = cons(S U {Btp | tp € E} U | <p & E}) .

The set {B<p \ tp € E} includes BA for each A €

S. In the presence of these subjective atoms, all the

objective atoms S in E also follows from some stable

expansion E' of ae„(II), and vice versa. Hence, S =

E' fl At. The converse direction can also be shown in

the same manner. □

The above corollary can also be applied to the em

bedding of the possible model semantics for a normal

disjunctive program P since each rule in the translated

GEDP pm(P) is in the form (23).

Theorem 5.3 Let P be a consistent NDP that con

sists of rules of the form

Ai | ... | Afc <- At+i, Am, nor Am+1, not A„.

A set S of atoms is a possible model of P iff S is the

set of objective atoms true in a stable expansion of the

set offormulas obtained by translating each above rule

in P into the formula

At+i A ... A Am A -iflAm+i A ... A ->BA„

D (Ai V-.flAi) A...A(Afc V-iflAjb)

A (BAi V... VBAt).

Proof: The translated formula is equivalent to the

conjunction of the aen translation of rules (8) and (9)

in pm(P). Then, the result follows from Theorem 3.4

and Corollary 5.2. □

Now, let us look again at the embedding of abduction

into GEDPs given in Theorem 3.1. The rule (3)

7 | not 7 «—

is translated into

(Bf A 7) V -iBf

by the autoepistemic translation, which is then equiv

alent to

B7 3 7- (25)
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The set consisting of the formula (25) produces two

stable expansions, one containing 7 and By, the other

containing ->By but neither 7 nor -17. Historically, the

first expansion has been regarded as anomalous since

the belief of 7 is based solely on the assumption that

7 is believed with no other support (Konolige, 1988).

However, this situation is most welcome for abduction.

The fact that the formula (25) is the archetype to gen

erate hypotheses strongly justifies the correctness of

our use of positive nor in the corresponding rule (3).

Finally, from the relationship between PL-theories and

autoepistemic logic, we obtain the next result.

Theorem 5.4 Let T be a set of propositionol combi

nations 0/ protected literals, i.e., formulas of the form

BL or not L where L is a literal. Deciding whether T

has an MBNF-model is Ef -complete.

Proof: Ef-hardness follows from Theorem 4.2 (1)

and the embedding of GEDPs into MBNF. Member

ship in Ef is shown by the complexity result for au

toepistemic logic (Gottlob, 1992) and a polynomial-

time translation of an MBNF formula of the above

form into autoepistemic logic (Lifschitz and Schwarz,

1993), which replaces each protected literal BL with

L A BL and each protected literal not L with -<BL. □

6 Discussion

1. Brewka and Konolige (1993) give another seman

tics for GEDPs which is different from the answer set

semantics in this paper. They allow positive not in

a program but still obey the principle of minimality.

Consequently, their semantics can never represent non-

minimal canonical models and its relationship to au

toepistemic logic must be different from ours. In this

respect, they suggest the use of moderately grounded

expansions (Konolige, 1988) for the embedding. How

ever, moderately grounded expansions are of no use to

characterize the minimal answer sets of GEDPs. In

stead, parsimonious stable expansions (Eiter and Got

tlob, 1992) appropriately characterize the minimal an

swer sets.7 For example, the GEDP

H = { p I notp «— , q *— p, «— not q } .

has the unique (and hence minimal) answer set {p, q},

but its autoepistemic translation

oen(H) = { Bp Dp, pDq, Bq ) .

has no moderately grounded expansion. In fact,

E({p, q}) is not a minimal stable set that includes

7A stable expansion of a premise set A is moderately

grounded if its objective part is not smaller than the objec

tive part of any other stable set that includes A. A stable

expansion of A is parsimonious if its objective part is not

smaller than the objective part of any other stable expan

sion of A. Note that each moderately grounded expansion

is parsimonious but the converse does not necessarily holds.

ae„(H) since E({q}) is a stable set containing ae„(H)

and its objective part is smaller than that of E({p, q}).

On the other hand, E({p, q}) is the unique parsimo

nious stable expansion. In general, the next result fol

lows from Theorem 5.1 and the definition of parsimo

nious stable expansions.

Corollary 6.1 Let H be a consistent GEDP, and S a

set of literals. S is a minimal answer set ofU iffE(S)

is a parsimonious stable expansion of ae(H) . □

Recall that our answer set semantics for GEDPs is

characterized by stable expansions of the translated

autoepistemic theories. From the complexity view

point, Eiter and Gottlob have shown that deciding

whether an objective formula belongs to some par

simoniously grounded expansion of an autoepistemic

theory is E3 -complete in general (Eiter and Gottlob,

1992), while the same problem for some stable expan

sion is E£-complete (Gottlob, 1992). From their re

sults, it is conjectured that computing with a minimal

answer set of a GEDP is strictly harder than com

puting with its any answer set unless the polynomial

hierarchy collapses.

2. An interesting property of the rule (3) 7 | not 7 «—

is that it is valid in the sense that every answer set

satisfies it, that is, 7 is either contained or not con

tained in it. In autoepistemic logic, the corresponding

formula (25) is always contained in any stable expan

sion. However, the modal axiom schema of the same

form

T : BipDip

cannot be put into the premise set without changing

its stable expansions (Moore, 1985). Similarly, adding

the rule L \ not L «— to a program allows the literal L

to be sanctioned that otherwise would not be, but this

may cause literals that are entailed by the program

to decrease since the number of answer sets increases.

For example, q is entailed by

{ q <- notp }

but once p \ notp *— is adopted q is no longer entailed.

This property is effectively used in Example 3.4 for

cautious closed world reasoning. Sometimes such an

addition of valid rules may make an incoherent pro

gram to get an answer set. For example,

{ q <- notp, ->$«-}

has no answer set, but with the rule p \ notp *—

it obtains the answer set {->q, p). The schema T in

autoepistemic logic and the rule L \ notL *— in

GEDPs can thus be applied to various domains other

than abduction such as contradiction resolution, meta-

programming and reflection (Konolige, 1992).

3. Gelfond gives another cautious semantics for the

closed world assumption in order to treat Example 3.4
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properly by introducing the concept of strong in

trospection (Gelfond, 1991). However, unlike Theo

rem 3.4 for our possible model semantics, this concept

cannot be embedded into MBNF (Lifschitz, 1992).

4. Positive not can be used to represent conditional

rules. For example,

p | not q *—

can be viewed as a conditional formula which states

that p is true if q is true. In this sense, the rule is

similar to

p*-q.

In fact, there is a case that the former rule can be

replaced with the latter rule by shifting positive not

into the body. However, once a "deadlock" loop is

constructed with these conditional formulas as Exam

ple 4.1, we will have two alternative answer sets, one

including every element of the loop and the other in

cluding nothing in the loop. We expect that this kind

of conditional rules may have interesting applications.

On the other hand, a rule having no literals but posi

tive nor in its head can be used to represent integrity

constraints. In this case,

notp «— q

has exactly the same effect as the rule

<-P> 5-

It may also be interesting to investigate for what class

of programs such shifting of positive not is possible.

5. Concerning generalizations of the results in this

paper, there are a couple of interesting topics. First,

the first-order abductive framework (T, T), where T

and r are sets of first-order formulas, can be translated

into the MBNF bimodal formula

f\ BF A f\ (BG V not G) ,

FgT oer

or into the set of formulas in autoepistemic logic

TU{BGDG \ GeT).

Secondly, Eiter et al. recently proposed a new non

monotonic formalism called curbing (Eiter et ai, 1993)

which interprets disjunctions inclusively. Since their

good models are not necessarily minimal models, it is

interesting to see whether MBNF can express curbing

or not. In the context of logic programming, it turns

out that there is a close relationship between good

models and possible models. Thirdly, the computa

tional complexity of propositional MBNF and the pos

sibility of embedding MBNF into autoepistemic logic

in general are both left open.

7 Conclusion

This paper has provided a number of new results in

the class of general extended disjunctive programs, i.e.,

disjunctive programs which permit negation as failure

and classical negation both positively and negatively.

In particular, we have shown in this paper

• an embedding of abductive programs into

GEDPs,

• a translation the possible model semantics for

NDPs into the answer set semantics for GEDPs,

• a complexity characterization of GEDPs based on

a translation of GEDPs into EDPs,

• a computational method for GEDPs based on a

translation of GEDPs into PDPs, and

• a relationship between GEDPs and autoepistemic

logic.

With these results, we can conclude that the concept

of positive occurrences of negation as failure is a useful

tool for representing knowledge in various domains in

which the principle of minimality is too strong.

The class of GEDPs is a natural extension of previ

ously proposed logic programs, and is an "ultimate"

extension with negation as failure. A number of new

nonmonotonic logics have recently been proposed in

order to cover the growing expressiveness of logic pro

gramming. These logics include disjunctive default

logic, reflexive autoepistemic logic, and MBNF. On the

other hand, existing nonmonotonic formalisms have

been tested in various ways whether they are better

suited than others for applications to the semantics

of logic programming. Circumscription, autoepistemic

logic, default logic, and their variants have competed

with each other for victory, and winners frequently

changed in this decade. We suggest in this paper that,

among all these formalisms, autoepistemic logic is one

of the best because of its "non-minimal" nature. That

is, abduction and inclusive disjunctions in knowledge

representation are naturally expressed by this unique

feature of autoepistemic logic. Introspective natures

involved by autoepistemic logic enable us to believe a

certain proposition either from the lack of belief in an

other proposition or from no additional precondition.

These properties can completely describe the mean

ings of negative and positive occurrences of negation

as failure in logic programming.
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Abstract

In this paper a probabilistic extensions for

terminological knowledge representation lan

guages is denned. Two kinds of probabilis

tic statements are introduced: statements

about conditional probabilities between con

cepts and statements expressing uncertain

knowledge about a specific object. The usual

model-theoretic semantics for terminological

logics are extended to define interpretations

for the resulting probabilistic language. It

is our main objective to find an adequate

modelling of the way the two kinds of proba

bilistic knowledge are combined in common-

sense inferences of probabilistic statements.

Cross entropy minimization is a technique

that turns out to be very well suited for

achieving this end.

1 INTRODUCTION

Terminological knowledge representation languages

(concept languages, terminological logics) are used to

describe hierarchies of concepts. While the expressive

power of the various languages that have been defined

(e.g. KL-ONE [BS85] ACC [SSS91]) varies greatly in

that they allow for more or less sophisticated concept

descriptions, they all have one thing in common: the

hierarchies described are purely qualitative, i.e. only

inclusion, equality, or disjointness relations between

concepts can be expressed.

In this paper we investigate an extension of termino

logical knowledge representation languages that incor

porate quantitative statements.

A hybrid terminological logic that allows to express

both general world knowledge about the relationships

between concepts, and information about the nature

of individual objects, gives rise to two kinds of quanti

tative statements: terminological (T-box) axioms may

be refined by stating graded or partial subsumption re

lations, and assertions (A-box statements) can be gen

eralized by allowing to express uncertain knowledge.

Let us illustrate the use of quantitative statements by

an example. The following is a simple knowledge base

that could be formulated in any concept language:

Example 1.1

T-box: Flying-bird C Bird (1)

Antarctic-bird C Bird (2)

A-box: Opus G Bird (3)

In this purely qualitative description a lot of infor

mation we may possess cannot be expressed. The two

subconcepts of Bird that are specified, for instance, are

very different with regard to the degree by which they

exhaust the superconcept. One would like to make

this difference explicit by stating relative weights, or

conditional probabilities, for concepts in a manner like

P(Flying.bird|Bird) = 0.95 (4)

P(Antarctic_bird|Bird) = 0.01 (5)

Also, it may be desirable to express a degree by which

the two concepts Antarctic-bird and Flying-bird, which

stand in no subconcept- superconcept relation, inter

sect:

P(Flying.bird|Antarctic_bird) = 0.2 (6)

For the A-box, apart from the certain knowledge Opus

G Bird, some uncertain information may be available,

that we should be able to express as well. There may

be strong evidence, for example, that Opus is in fact

an antarctic bird. Hence

P(Opus G Antarctic-bird) = 0.9 (7)

could be added to our knowledge base.

It is important to realize that these two kinds of prob

abilistic statements are of a completely different na

ture. The former codifies statistical information that,

generally, will be gained by observing a large number

of individual objects and checking their membership

of the various concepts. The latter expresses a degree
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of belief in a specific proposition. Its value most of

ten will be justified only by a subjective assessment of

"likelihood".

This dual use of the term "probability" has caused

a lot of controversy over what the true meaning of

probability is: a measure of frequency, or of subjective

belief (e.g. [Jay78]). A comprehensive study of both

aspects of the term is [Car50]. More recently, Bacchus

and Halpern have developed a probabilistic extension

of first-order logic that accommodates both notions of

probability [Bac90],[Hal90].

Now that we have stressed the differences in assigning

a probability to subsets of a general concept on the one

hand, and to assertions about an individual object on

the other, we are faced with the question of how these

two notions of probability interact: how does a body

of statistical information affect our beliefs in assertions

about an individual?

Among the first to address this problem was Carnap,

who formulated the rule of direct (inductive) inference

[Car50]: if for an object a it is known that it belongs

to a class C, and our statistics say that an element of

C belongs to another class D with probability p, then

our degree of belief in a's membership of D should be

just p. Applied to the statements (1),(3) and (4) of

our example, direct inference yields a degree of belief

of 0.95 in the proposition Opus G Flying_bird.

A generalization of direct inference is Jeffrey's rule

[Jef65]: if all we know about a, is that it belongs

to either of finitely many mutually disjoint classes

Ci, • • • , Cn) and to each possibility we assign a proba

bility pi (%2?=iPi = 1), if furthermore, the statistical

probability for D given C,- is g,-, then our degree of

belief for a being in D should be given by

n

i=l

Bacchus et al. have developed a method to de

rive degrees of belief for sentences in first-order logic

on the basis of first-order and statistical information

[BGHK92], [BGHK93]. The technique they use is mo

tivated by direct inference, but is of a far more general

applicability. However, it does not allow to derive new

subjective beliefs given both subjective and statistical

information.

In this paper we develop a formal semantical frame

work that for terminological logics models the influ

ence of statistical, generic information on the assign

ment of degrees of belief to specific assertions. In order

to do this, we will interpret both kinds of probabilis

tic statements in one common probability space that

essentially consists of the set of concept terms that

can be formed in the language of the given knowledge

base 1. Defining all the probability measures on the

1Different from [Bac90],[Hal90], for instance, where

same probability space allows us to compare the mea

sure assigned to an object a with the generic measure

defined by the given statistical information. The most

reasonable assignment of a probability measure to a,

then, is to choose, among all the measures consistent

with the constraints known for a, the one that most

closely resembles the generic measure. The key ques

tion to be answered, therefore, is how resemblance of

probability measures should be measured. We argue

that minimizing the cross entropy of the two measures

is the appropriate way.

Paris and Vencovska, considering probabilistic infer

ences very similar in nature to ours, use a different

semantical interpretation, which, too, leads them to

the minimum cross entropy principle [PV90], [PV92].

Previous work on probabilistic extensions of concept

languages was done by Heinsohn and Owsnicki-Klewe

[HOK88],[Hei91]. Here the emphasis is on comput

ing new conditional probabilities entailed by the given

ones. Formal semantics for the interpretation of prob

abilistic assertions, which are the main contribution of

our work, are not given.

2 SYNTAX

In order to facilitate the exposition of our approach we

shall use, for the time being, a very restricted, merely

propositional, concept language, which we call VCC.

In the last section of this paper an explanation will be

given of how the formalism can be extended to more

expressive concept languages, notably ACC.

The concept terms in our language are just proposi

tional expressions built from a finite set of concept

names Sc = {A, B, C, . . .}. The set of concept terms

is denoted by T(Sc)- Terminological axioms have the

form

ACC or A = C

with A 6 Sc and CGT(Sc)- Probabilistic terminologi

cal axioms are expressions

P(C|D) = p,

where C and D are concept terms and p €]0, 1[. Fi

nally, we have probabilistic assertions

P(aGC)=p,

where a is an element of a finite set of object names

So, and p € [0, 1].

A knowledge base (KB) in VCC consists of a set of

terminological axioms (T), a set of probabilistic ter

minological axioms (VT) and a set of probabilistic as

sertions (Va) for every object name a:

KB = T U VT U \J{Va\a£S0}.

statistical and propositional probabilities are interpreted

by probability measures on domains and sets of worlds,

respectively
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There is a certain asymmetry in our probabilistic treat

ment of terminological axioms on the one hand, and

assertions on the other. While deterministic assertions

were completely replaced by probabilistic ones (a GC

has to be expressed by P(a G C) = 1), deterministic

terminological axioms were retained, and not identified

with 0,1-valued probabilistic axioms (which, therefore,

are not allowed in VT).

There are several reasons for taking this approach:

First, our syntax for probabilistic terminological ax

ioms is very general in that conditional probabilities

for arbitrary pairs of concept terms may be specified.

Terminological axioms, on the other hand, are gen

erally required (as in our definition) to have only a

concept name on their left hand side. Also, in order to

make the computation of subsumption with respect to

a terminology somewhat more tractable, usually addi

tional conditions are imposed on T (e.g. that it must

not contain cycles) that we would not want to have

on VT (it may be very important, for instance, to be

able to specify both P(C|D) and P(D|C)). In essence,

it can be said that the non-uniformity of our treat

ment of deterministic and probabilistic terminological

axioms results from our intention to define a prob

abilistic extension for terminological logics that does

not affect the scope and efficiency of standard termi

nological reasoning in the given logics.

Furthermore, it will be seen that even for actual prob

abilistic reasoning it proves useful to make use of the

deterministic information in T and the probabilistic

information in VT in two different ways, and it would

remain to do so, if both kinds of information were en

coded uniformly.

3 SEMANTICS

Our approach to formulating semantics for the lan

guage VCC modifies and extends the usual model-

theoretic semantics for concept languages. The termi

nological axioms T are interpreted by means of a do

main D and an interpretation function I in the usual

way. In order to give meaning to the expressions in

VT and the Va (a £ So), we first have to specify the

probability space on which the probability measures

described by these expressions shall be defined.

For this probability space we choose the language it

self. That is to say, we take the Lindenbaum algebra

a(Sc) := (^(ScM.V.A.-.O.l)

as the underlying probability space. Here, [T(Sc)] is

the set of equivalence classes modulo logical equiva

lence in T(Sc)- The operations V, A, and -> are defined

by performing disjunction, conjunction, and negation

on representatives of the equivalence classes. We shall

use letters C,D,... both for concept terms from T(Sc)>

and their equivalence class in [T(Sc)].

An atom in a boolean algebra St is an element A^O,

such that there is no A' £ {0, A} with A' C A (to be

read as an abbreviation for A' A ->A = 0). The atoms

of 2l(Sc) with Sc = {Ai, . . . , A„} are just the concept

terms of the form Bi A . . . A B„ with B,- G {A, , ->Aj}

for t = 1, . . . , n. The set of atoms of 2l(Sc) is denoted

by A(SC).

Every element of 2l(Sc), then, is (in the equivalence

class of) a finite disjunction of atoms.

On 2l(Sc) probability measures may be defined. Re

call that /i : 2l(Sc) —► [0, 1] is a probability mea

sure iff |i(l) = 1, and fi(C V D) = n(C) + fi(D) for all

C,D with CAD=0. The set of probability measures on

2l(Sc) is denoted by A2t(Sc). Note that fi G Aa(Sc)

is fully specified by the values it takes on the atoms of

a(sc).

The general structure of an interpretation for a vo

cabulary S=ScUSo can now be described: a standard

interpretation (D,I) for T will be extended to an in

terpretation (D,I,^, (i/a)aes0), where n G A2l(Sc)

is the generic measure used to interpret VT, and

va G A2l(Sc) interprets Va- Hence, we deviate from

the standard way interpretations are defined by not

mapping a G So to an element of the domain, but to

a probability measure expressing our uncertain knowl

edge of o.

What conditions should we impose on an interpreta

tion to be a model of a knowledge base? Certainly, the

measures p and va must satisfy the constraints in VT

and Va- However, somewhat more is required when

we intend to model the interaction between the two

kinds of probabilistic statements that takes place in

"commonsense" reasoning about probabilities.

The general information provided by VT leads us to

assign degrees of belief to assertions about an object a

that go beyond what is strictly implied by Va .

What, then, are the rules governing this reasoning pro

cess? The fundamental assumption in assigning a de

gree of belief to a's belonging to a certain concept C

is to view a as a random element of the domain about

which some partial information has been obtained, but

that, in aspects that no observation has been made

about, behaves like a typical representative of the do

main, for which our general statistics apply.

In the case that Va contains constraints only about

mutually exclusive concepts this intuition leads to Jef

frey's rule: If

P, = {P(aeC<)=w|t = l,...,n}1

where the Cj are mutually exclusive, and, as may be

assumed without loss of generality, exhaustive as well,

and (x G A2l(Sc) reflects our general statistical knowl

edge about the domain, then the probability measure
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that interprets a should be defined by

n

MC) := £> x „(C | C,.)) (C € 2t(Sc)).

i=l

For constraints on not necessarily exclusive concepts

we need to find a more general definition for a mea

sure "most closely resembling" the given generic mea

sure ft and satisfying the constraints. Formally, we are

looking for a function d that maps every pair (fi, v)

of probability measures on a given (finite) probability

space to a real number <i(/i, v) > 0, the "distance" of

v to ft:

d:Anx An — R^°,

where

A" := {(*!,...,*„)€ [0,1]" | = 1}

denotes the set of probability measures on a probabil

ity space of size n.

Given such ad,a subset N of A" and a measure ft,

we can then define the set of elements of N that have

minimal distance to fi:

:={f£N| d(fi, u) = m{{d(ft, «/') | u' G N}} (8)

Three requirements are immediate that have to be met

by a distance function d in order to be used for defin

ing the belief measure i/a most closely resembling the

generic /t:

(i) If N is defined by a constraint-set Va, then tt^(/i)

is a singleton.

(ii) If/i€N, then <(/i) = {/*}.

(iii) If N is defined by a set of constraints on dis

joint sets, then ir^(fi) is the probability measure

obtained by Jeffrey's rule applied to fi and these

constraints.

We propose to use the cross entropy of two proba

bility measures as the appropriate definition for their

distance. For probability measures ft = (/ii /i„)

and v=(y\,..., fn) define:

CE(p,v) :=
i=i

1 "<
i>, In—

Hi

oo

if for all i :

HiI = 0 =>• v{ = 0,

otherwise.

This slightly generalizes the usual definition of cross

entropy by allowing for 0-components in ft and v.

Cross entropy often is referred to as a "measure of the

distance between two probability measures" [DZ82], or

a "measure of information dissimilarity for two prob

ability measures" [Sho86]. These interpretations have

to be taken cautiously, however. Note in particular

that neither is CE symmetric nor does it satisfy the

triangle inequality. All that CE has in common with

a metric is positivity:

where equality holds iff ft = v. Hence property (ii)

holds for CE. It has been shown that cross entropy

satisfies (i) (for any closed and convex set N, provided

there is at least one u GN with CE(fi,v) < oo), and

(iii) as well ([SJ80], [Wen88]). Therefore, we may de

fine for closed and convex NC A" and ft G A":

the unique if CE(fi, v) < oo

element in nfiE(fi) for some v G N

undefined otherwise.

There are several lines of argument that support the

use of cross entropy for forming our beliefs about a on

the basis of the given generic fi and a set of constraints.

One is to appeal directly to cross entropy's properties

as a measure of information discrepancy, and to ar

gue that our beliefs about a should deviate from the

generic measure by assuming as little additional infor

mation as possible.

Another line of argument does not focus on the prop

erties of cross entropy directly, but investigates fun

damental requirements for a procedure that changes

a given probability measure ft to a posterior measure

v in a (closed and convex) set N. Shore and Johnson

[SJ80], [SJ83] formulate five axioms for such a proce

dure (the first one being just our uniqueness condition

(i)), and prove that when the procedure satisfies the

axioms, and is of the form v = ir$j(fi) for some func

tion d, then d must be equivalent to cross entropy (i.e.

must have the same minima).

Paris and Vencovska, in a similar vein, have given an

axiomatic justification of the maximum entropy prin

ciple [PV90], which, when applied to knowledge bases

expressing the two types of probabilistic statements in

a certain way, yields the same results as minimizing

cross entropy [PV92].

With cross entropy as the central tool for the inter

pretation of Va, we can now give a complete set of

definitions for the semantics of VCC.

Definition 3.1 Let fCB = TuVTU \J{Va | a G Sc}

a PC^C-knowledge base. We define for fi G A2l(Sc):

• fi is consistent with TiffT \= C = 0^ /i(C) = 0;

• fi is consistent with VT iff P(C|D) = p G VT =>

fi(C A D) = p x /i(D);

• fi is consistent with Va iff P(a G C) = p G Va

fi(C)=p.

For a given KB, we use the following notation:
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AT2l(Sc) :=

{fi G AQl(Sc) | A4 is consistent with 7"},

Gen(KB) :=

{/i G A2l(Sc) | /* is consistent with 7" and 7>7"},

Bela{KB) :=

{/i G A21(Sc) I H is consistent with T and 7>„}.

When no ambiguities can arise, we also write Gen (the

set of possible generic measures) and Bela (the set of

possible belief measures for a) for short.

Definition 3.2 Let S = Sc U So be a vocabulary. A

VCC-interpretation forS is a triple (D,I,/i), where D

is a set,

I:SC^2D, I : So -» AB(SC),

and fi G A2l(Sc)- Furthermore, for all concept terms

C with 1(C) = 0 : /i(C) = 0 and I(a)(C) = 0 (a € So)

must hold. For 1(a) we also write va.

Definition 3.3 Let KB = T UPT U \J{Va | a G So}

be a 'PC£-knowledge base. Let (D,I,/i) be a VCC-

interpretation for the language of KB. We define:

(D, I, n) (= KB ((D, I, fi) is a model of KB) iff

(i) (D,If Sc)|= T in the usual sense.

(ii) n G Gen{KB).

(iii) For all a £ So: ^BeU(iCB) is defined for and

I(a)=irBeia{KB)(n).

Definition 3.4 Let JC [0, 1]. We write

KB (= P(C|D) G J

iff for every (D,l, n)\=KB: fi{C | D) GJ (if /i(D) = 0,

this is considered true for every J). Also, we use the

notation

KB t= P(C|D) = J

iff KB |= P(C|D) G J, and J is the minimal subset of

[0,1] with this property. Analogously, we use KB f=

P(a G C) G J, and KB \= P(a G C) = J.

According to definition 3.2 we are dealing with prob

ability measures on the concept algebra 2l(Sc). An

explicit representation of any such measure, i.e. a com

plete list of the values it takes on A(Sc), would always

be of size
2lScl.

Fortunately, we usually will not have

to actually handle such large representations, though.

Since all the probability measures we consider for a

specific knowledge base KB are in Ar2l(Sc), the rele

vant probability space for models of KB only consists

of those atoms in A(Sc) whose extensions are not nec

essarily empty in models of KB:

A(T) := {C G A(SC) | T £ C = 0}

 

Figure 1: The Algebras 9l(Sc) and 21(7")

Denote the algebra that is generated by these atoms

with 21(7"). Technically speaking, 2t(T) is the rela-

tivization of 2l(Sc) to the element

C(T) ~\/A(T)

of 2t(Sc)- Figure 1 shows the structure of 2t(Sc) for the

vocabulary of our introductory example. The shaded

area represents the element C(7") for the T in the ex

ample. 2l(T), here, consists of five atoms compared to

eight atoms in 2l(Sc)-

How much smaller than 2l(Sc) can 2t(T) be expected

to be in general? This question obviously is difficult

to answer, because it requires a thorough analysis of

the structure that 2t(T) is likely to have for real-world

instances of T. Here we just mention one property of

T that ensures a non-exponential growth of | A(T) |

when new terminological axioms introducing new con

cept names are added: call 2l(T) bounded in depth by k

iff every atom in A(T) contains at most k non-negated

concept names from Sc as conjuncts. It is easy to see

that if a(T) is bounded in depth by it, then |A(T)| will

have an order of magnitude of | Sc \k at most. Hence,

when new axioms are added to T in such a way that

2l(T) remains bounded in depth by some number k,

then the growth of |A(T)| is polynomial.

The use of the structural information in T for reduc

ing the underlying probability space from 2l(Sc) to

21(7") is the second reason for the nonuniform treat

ment of deterministic and probabilistic terminological

axioms that was announced in section 2. If determin

istic axioms were treated in precisely the same fashion

as probabilistic ones, this would only lead us to handle

probability measures all with zeros in the same large

set of components, but not to drop these components

from our representations in the first place.

Example 3.5 Let KBi contain the terminologi

cal and probabilistic statements from example 1.1

(the assertion Opus G Bird being replaced by

P(Op«s G Bird) = 1). The three statements (4)-(6) in

VT do not determine a unique generic measure fi, but
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for every ft G Gen(ICBi)

/i(Flying_bird | Antarcticbird) = 0.2

and ^(Flying.bird | Bird A -.Antarcticbird) = 0.958

holds: the first conditional probability is explicitly

stated in (6), the second can be derived from (4)-(6)

by elementary computations.

(1,0,0,0)

Since the constraints in Vopus

equivalent to P(Opus G Antarcticbird) = 0.9 and

P( Opus G Bird A -.Antarcticbird) = 0.1, and in this

case TBei0pu. (p) i8 given by Jeffrey's rule,

TBe/0,u.(p)(Flying-bird) = 0.9 x 0.2 + 0.1 x 0.958

= 0.2758

holds for every ft G Gen. Hence

£Bi \= P(Opus G Flying_bird) = 0.2758.

In the following section we investigate how inferences

like these can in general be computed from a VCC-

knowledge base.

4 COMPUTING PROBABILITIES

4.1 COMPUTING Gen AND Bela

The constraints in VT and Va are linear constraints

on AQl(Sc). When we change the probability space we

consider from 2l(Sc) to 2t(T), a constraint of the form

P(C|D) = p is interpreted as

P(CAC(T)|DAC(T)) =p.

read asSimilarly, P(o G C) = p must b

P(a G C A C(T)) = p.

If | A(T) |= n, then AH(T) is represented by A". Each

of the constraints in VT or Va defines a hyperplane in

R". Gen(KB) (Bela(KB)) then, is the intersection of

A" with all the hyperplanes defined by constraints in

VT (Va). Thus, if VT (Va) contains k linear indepen

dent constraints, Gen(KB) (Bela(KB)) is a polytope

of dimension < n — k.

Figure 2 shows the intersection of A4 with the two

hyperplanes defined by {(«i, x2, x$, ar4) \x\ — 0.2(xi +

x2)} and {{xi,x2,x3,xA) \ xi = 0.3(ri+a;3+X4)}- The

resulting polytope is the line connecting a and 6.

A simple algorithm that computes the vertices of the

intersection of A" with hyperplanes Hi,...,Ht suc

cessively computes P, := A" D Hi n . . . D H, (t =

1, . . . , k). After each step P, is given by a list of its

vertices. P,+i is obtained by checking for every pair of

vertices of P,-, whether they are connected by an edge,

and if this is the case, the intersection of this edge with

B.i+1 (if nonempty) is added to the list of vertices of

P<+i.

(0.2,0.8,0;

(0,1,0,0)

 

(0,0,0,1)

Figure 2: Intersection of A4 With Two Hyperplanes

Example 4.1 The following knowledge base, KB2,

will be used as a running example throughout this sec

tion.

T: CCAAB (9)

VT: P(C|A) = 0.1 (10)

P(C|B) = 0.9 (11)

Va P(a G A) = 0.5 (12)

P(a G B) = 0.5 (13)

The algebra 2l(T) here is generated by the five atoms

Ai = -.AA-.BA ->C, A2 = -iA A B A ->C,

A3 = A A-.BA-.C, A4 = A A B A ->C,

A5 = A A B A C.

Gen(AC£?2) is the intersection of A5 with the hyper

planes

Hi = {(xi «5) |. =0.1} and

H2 = {(x1,...,x5)|j^f-i7 = 0.9},

which is computed to be the convex hull of the three

points

/i° = (1,0,0,0,0), ^(O.&.g.O.A),

u2 = (0 0 — — —1f — (\J, v, 90 > 90 ' 90 /'

These probability measures represent the extreme

ways in which the partial information in VT can be

completed: fi° is the borderline case, where (10) and

(11) are vacuously true, because of the probabilities of

the conditioning concepts being zero, /i1 and /i2, on

the contrary, both assign probability 1 to A V B, but

represent two opposing hypotheses about the condi

tional probability of A given B. This probability is 1

for fi2, standing for the case that B is really a subset

of A, and 0.9 for ft1, representing the possibility that

A and B intersect only in C.

The set Bela is the convex hull of

j/° = (0.5,0,0,0.5,0), v1 = (0.5,0,0,0,0.5),

i/2 = (0,0.5, 0.5, 0,0).
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For the remainder of this paper we will assume that

Gen and Bela are given explicitly by a list of their

vertices, because this allows for the easiest formula

tion of general properties of VCC. Since the number

of vertices in Gen and Bela can grow very large, it

will probably be a more efficient strategy in practice,

to just store a suitable normal form of the sets of lin

ear constraints, and to compute specific solutions as

needed.

4.2 CONSISTENCY OF A KNOWLEDGE

BASE

The first question about a knowledge base KB that

must be asked is the question of consistency: does

KB have a model? Following (i)-(iii) in definition 3.3,

we see that KB is inconsistent iff one of the following

statements (a), (b), and (c) holds:

(a) T is inconsistent.

(b) Gen{KB) = 0.

(c) For all fi G Gen there exists a G So such that

KBel„ (aO is not defined.

Inconsistency that is due to (a) usually is ruled out by

standard restrictions on T: a T-box that does not con

tain terminological cycles, and in which every concept

name appears at most once on the left hand side of a

terminological axiom, always has a model. It is trivial

to check whether KB is inconsistent for the reason of

Gen(KB) being empty. Also, KB will be inconsistent

if Bela — 0 for some a G So . because in this case

TBei.OO is undefined for every fi.

It remains to dispose of the case where Gen(KB) and

all Bela(KB) are nonempty, but (c) still holds. By

the definition of irBeia (aO this happens iff for all fi G

Gen(KB) there exists a G So such that CE(fi, v) — oo

for all v G Bela{KB). Since CE(fi,v) is infinite iff

for some index f: m = 0 and i/, > 0, it is the set

of 0-components of fi and v that we must turn our

attention to.

Definition 4.2 Let ft £ A". Define

Z(/i) := {i€{l,...,n}|/i, = 0}

For a polytope M the notation intM is used for the set

of interior points of M; conv{fi1 ,...,/**} stands for the

convex hull of fi1, . . . , fik G A". The next theorem is

a trivial observation.

Theorem 4.3 Let M C A" be a polytope and

ft £ tnfM. Then for every fi' GM:

ZOO c zoo.

Particularly, Z(jjf)=Z(fj) if fi' G intM.

With these provisions we can now formulate a simple

test for (c):

Theorem 4.4

Let M=conv{fi1 , . . . , fik} and N=coni;{i/1, . . be

polytopes in An. Define fi := ^(fi1 + . . . + fik). Then

the following are equivalent:

(i) Vp € M Vv € N : CE(fi, v) = oo.

(ii) ZOO 2 Z(^)for j = l,...,/.

Proof: (i) is equivalent to Z(/i) % Z(v) for all fi G M

and all v G N, which in turn is equivalent to (ii), be

cause by theorem 4.3 Z(/0 is minimal in {Z(^) | fi G

M}, and the sets Z(i^) are maximal in {2>{y) \ v G N}

(i.e. V* G N 3j G {1, . . .,/} with Z{v) C Z(i/>)). □

Example 4.5 KB?, is consistent: T clearly is consis

tent, Gen'KB-i) and Bela(KBi) are nonempty, and

ZOO = C holds for fi := l/3(/i° + ft1 + fi2).

4.3 STATISTICAL INFERENCES

Statistical inferences from a knowledge base KB are

computations of sets J for which KB ^= P(C|D)=J.

Definition 4.6 Let KB be a VCC- knowledge base.

Gen* (KB) :=

{ft G Gen(KB) \ Va G So : ^Bei.{KB){^) is defined}

Thus, Gen* (KB) is the set of generic measures that ac

tually occur in models of KB. Gen* (KB) is a convex

subset of Gen(KB), which, if KB is consistent, con

tains at least all the interior points of Gen(KB). If

KB (= P(C|D)=J we then have

J = MC | D) | fi G Gen*(KB), fi(D) > 0}.

The following theorem, however, states that J can be

essentially computed by simply looking at Gen, rather

than Gen* . Essentially here means that the closure of

J (clJ) does not depend on the difference Gen \ Gen*.

Theorem 4.7

Let KB be a consistent 7>C£-knowledge base, C,D G

T(Sc)- Let Gen=conv{/i1 , . . .,fik}, and suppose that

KB f= P(C|D) = J. Then, either /^(D) = 0 for

i = 1, . . ., Jfc and J=0, or J is a nonempty interval and

inf J = min^C | D) | 1 < i < Jfc, ^'(D) > 0} (14)

sup J = maxO**'(C I D) | 1 < t < k, ^(D) > 0} (15)

Proof: The proof is straightforward. The continuous

function fi *-* fi(C \ D) attains its minimal and maxi

mal values at vertices of Gen. From the continuity of

this function it follows that for computing the closure

of J one can take the minimum and maximum in (14)

and (15) over every vertex of Gen, even though they

may not all belong to Gen*. Furthermore, it is easy

to see that vertices fi1 with fil(D) = 0 need not be
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considered. The details of the proof are spelled out in

[Jae94]. □

Applying theorem 4.4 to the face of Gen on which

/i(C | D) = inf J yields a method to decide whether

one point of this face is in Gen*, i.e. whether inf J € J.

Analogously for sup J .

Corollary 4.8 Let KB = T U VT and KB1 = T U

VT' U \J{P'a | a G So} be two consistent knowledge

bases with T = T and VT = VT' . For C,DGT(SC)

let KB |= P(C|D) = J and KB' \= P(C|D) = J'. Then

J=c/J'.

By corollary 4.8 the statistical probabilities that can

be derived from a consistent knowledge base are es

sentially independent from the statements about sub

jective beliefs contained in the knowledge base. The

influence of the latter is reduced to possibly removing

endpoints from the interval J that would be obtained

by considering the given terminological and statistical

information only. This is a very reasonable behaviour

of the system: generally subjective beliefs held about

an individual should not influence our theory about

the quantitative relations in the world in general. If,

however, we assign a strictly positive degree of belief to

an individual's belonging to a set C, then this should

preclude models of the world in which C is assigned

the probability 0, i.e. C is seen as (practically) impos

sible. Those are precisely the conditions under which

the addition of a set Va to a knowledge base will cause

the rejection of measures from (the boundary of) Gen

for models of KB.

Example 4.9 Suppose we are interested in what KB2

implies with respect to the conditional probability of

C given A A B, i.e. we want to compute J with

KB2 (=P(C|AAB) = J.

From nl{C | A A B) = 1, (i2(C | A A B) = 0.9, and the

orem 4.7

c/J = [0.9, 1]

immediately follows. Since, furthermore, /i1 G

Gen'(KB2), and /i(C | A A B) = 0.9 also holds for ev

ery fi G int conv{n2 , /*0} C Gen*(KB2), we even have

J = [0.9,1]. (16)

4.4 INFERENCES ABOUT SUBJECTIVE

BELIEFS

Probabilistic inferences about subjective beliefs

present greater difficulties than those about statistical

relations. If KB ^P(o£C) = J, then, by definition

3.3 and 3.4,

J = {»s.J. 00(C) I fi G Gen'} =: 7rBe,a(Gen*)(C).

Theorem 4.10 If KB \= P(a G C) = J, then J is an

interval.

Proof: A simple proof shows that the mapping

WBei. : An Bela

is continuous (see [Jae94]). Hence, the codomain

^Bei(Gen*) of the connected set Gen* is connected.

Applying another continuous function v •-> i/(C) to

TBeJ (Gen*) yields a subset of [0,1] that again is con

nected, hence an interval. □

A procedure that computes the sets 7TBei„(Gen*)(C)

will certainly have to compute the minimum cross en

tropy measure nBeia (/0 for certain measures /i. This is

a nonlinear optimization problem. Generally no closed

form solution (like the one given by Jeffrey's rule for

the case of constraints on disjoint sets) exists, but an

optimization algorithm must be employed to produce

a good approximation of the actual solution. There

are numerous algorithms available for this problem.

See [Wen88] for instance for a C-program, based on an

algorithm by Fletcher and Reeves ([FR64]) that im

plements a nonlinear optimization procedure for cross

entropy minimization.

The greatest difficulty encountered when we try to

determine ^Beia(Gen*)(C) does not lie in individual

computations of iiBei. (n), but in the best choices of

fi for which to compute jrBe/„(/0- Unlike the case of

statistical inferences, it does not seem possible to give

a characterization of 7TBef,(Gen*)(C) in terms of a fi

nite set of values irBei.(n*)(C) for a distinguished set

{/i1,...,/**} C Gen.

At present we cannot offer an algorithm for com

puting TB«/„(Gen*)(C) any better than by using a

search algorithm in Gen* based on some heuris

tics, and yielding increasingly good approximations of

""Be(.(Gen*)(C). Such a search might start with ele

ments n of Gen* that are themselves maximal (mini

mal) with respect to /i(C), and then proceed within

Gen* in a direction in which values of ftBeia(-){C)

have been found to increase (decrease), or which has

not been tried yet. The maximal (minimal) values

of tb«)„( )(C) found so far can be used as a current

approximation of TBe/„(Gen*)(C) at any point in the

search. The search may stop when a certain number

of iterations did not produce any significant increase

(decrease) for these current bounds.

Obviously, the complexity of such a search depends on

the dimension and the number of vertices of Gen. The

cost of a single computation of itBt\, depends on the

size of the probability space 21(7") and the number of

constraints in V„- In the following we show that the

search-space Gen* can often be reduced to a substan

tially smaller space.

We show that the interval JrBeJ„(Gen*)(C) only de

pends on the restrictions of the measures in Gen* and

Bela to the probability space generated by C and the

concepts that appear in Va ■
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Figure 3: Theorem 4.12

Definition 4.11 Let 21 be an algebra and 21' a sub-

algebra of 21. Let p G A2t and M C A2t. /if 21' then

denotes the restriction of /i to 21', and Mf 21' is the set

Theorem 4.12 Let 21' be a subalgebra of the finite al

gebra 21 generated by a partition At of 21. Let

M,NC A21, where N is defined by a set of constraints

on 21', i.e.

N = {i/€A9l|i/(CO=P*,i=l,...,0

for some p, G [0, 1] and C, G 21'. Then:

^(Mjra' = TNra'(Mra').

Furthermore, for every CG 21 and /i£M:

t

tn(a«)(C) = S*Nra'(/*ra')(A5Hc I a;.).

•=i

Figure 3 illustrates the first part of the theorem.

Proof: The theorem is contained in [SJ81] in a ver

sion for probability measures given by density func

tions, from which the discrete version can be derived.

A direct proof for the discrete case on a more elemen

tary level than the one given in [SJ81] is contained in

[Jae94]. □

Theorem 4.12 also plays a vital role in the generaliza

tion of VCC to a probabilistic version of ACC which

we turn to in the next section.

Example 4.13 We conclude our discussion of KBi by

looking at its implications with respect to P(a G C).

Unlike in our previous example 3.5, the probabilistic

information about a in KBi does not refer to disjoint

concepts, so that here Jeffrey's rule can not be used,

and cross entropy minimization in its general form

must be put to work.

The information about the likelihood for a being in C

is particularly ambiguous: the conditional probabili

ties of C given the two reference classes A and B, that

a may belong to with equal probability, are very dis

similar, thereby providing conflicting default informa

tion. Also, the generic probability p(A V B) covers the

whole range [0,1] for p G Gen. Since assigning a value

to P(o G A V B) (which, given the other information

in P,,, is equivalent to making up one's mind about

P(a G A A B)) is an important intermediate step for a

reasonable estimate of P(a G C), and the result of this

step depends on the prior value /i(A V B), this is an

other reason why it is difficult to propose any narrow

interval as appropriate for P(a G C).

It does not come as a surprise, therefore, that no

bounds for P(a G C) can be derived from KBi apart

from those that directly follow from Va ■ from the in

formation in Va alone

JCB2 (=P(aeC)6[0,0.5]

is obtained. These bounds can not be substantially

improved as computations of nBei.(KB3)(l*X)(C) with

pA := Ap1 + (1 — A)p° (with p^p1 as in example 4.1)

for some A G]0, 1] show. For A = 1, JTBei.(/C5a)(/il)(C)

is just u2(C) = 0, i/2 being the only measure in

Be/„(£i?2) with finite cross entropy with respect to

p1. With decreasing A, nBeitKB,\(fiX)(C) is found

to increase, having, for example, tne value 0.495 at

A=0.001. Hence, KB2 N P(« € C) = J for an interval

J with

[0,0.495] C J C [0,0.5].

Looking at this result may arouse the suspicion that

the whole process of cross entropy minimization re

ally is of little avail, because in the end almost every

possible belief measure for a will be in the codomain

of 7rBe/o(Gen). While this can certainly happen, one

should not adopt too pessimistic a view based on the

current example, where the poor result can really be

blamed on the ambiguity of the input. If, for in

stance, (13) was removed from KB?, thereby obtaining

a smaller knowledge base /CB^, then the much stronger

inference

ICB'2 (= P(a G C) = 0.5 x 0.1 = 0.05

could be made. If, on the other hand, KB^ is defined

by adding

P(o G AAB) = 0.25 (17)

to ICB2, then

K.B"2' (= P(a G C) = [0.25 x 0.9,0.25] = [0.225,0.25]

by our previous result (16).

5 A PROBABILISTIC VERSION OF

ACC

5.1 ROLE QUANTIFICATION

The probabilistic concept language VCC we have de

scribed so far does not supply some of the concept



314 M. Jaeger

forming operations that are common to standard con

cept languages. Most notably, role quantification was

not permitted in VCC. In this section we show how the

formalism developed in the previous sections can be

generalized to yield probabilistic extensions for more

expressive languages. Our focus, here, will be on ACC,

but the results obtained for this language equally ap

ply to other concept languages.

In ACC the concept-forming operations of section 2 are

augmented by role quantification: the vocabulary now

contains a set Sr. = {r, s, . . .} of role names in addition

to, and disjoint from, Sc and So- New concept terms

can be built from a role name r and a concept term C

by role quantification

Vr : C and 3r : C.

The set of concept terms constructible from Sc and

Sr via the boolean operations and role quantification

is denoted T(Sc,Sr). This augmented set of concept

terms together with the syntax rules for terminolog

ical axioms, probabilistic terminological axioms, and

probabilistic assertions from section 2 yields a proba

bilistic extension ofACC which, unsurprisingly, we call

VACC. Note that probabilistic assertions of the form

P((a, b) G r) = p are not included in our syntax.

Example 5.1 Some pieces of information relating the

world of birds and fish are encoded in the following

7M£C-knowledge base KB3.

T : Herring C Fish

Penguin C Bird A Vfeeds.on : Herring

VT : P(Penguin|Bird A Vfeeds.on : Herring) = 0.2

Vopu, ■■ P(Opus e Bird A Vfeeds.on : Fish) = 1

The presence of quantification over roles in this knowl

edge base does not prevent us from forming a sub

jective degree of belief for the proposition Opus 6

Penguin: Since Vfeeds.on : Herring is subsumed by

Vfeeds.on : Fish, we know that the conditional proba

bility of Penguin given Bird A Vfeeds.on : Fish must lie

in the interval [0,0.2], but no better bounds can be

derived from T UVT. Opus is only known to belong

to Bird A Vfeeds.on : Fish, so that we would conclude

that the likelihood for this individual actually being a

penguin is in [0,0.2] as well.

This example indicates that probabilistic reasoning

within the richer language VACC works in very much

the same way as in VCC. In the following section it is

shown how the semantics for VCC can be generalized

to capture this kind of reasoning in VACC.

5.2 PROBABILISTIC SEMANTICS FOR

VACC

Central to our semantics for the language VCC were

the concepts of the Lindenbaum algebra 2l(Sc) and

of the cross entropy of probability measures on this

algebra.

The Lindenbaum algebra for VACC can be defined

in precisely the same manner as was done for VCC.

The resulting algebra 21(Sc,Sr) is quite different from

2l(Sc) however: not only is it infinite, it also is

nonatomic, i.e. there are infinite chains Co D Ci D . . .

in [T(SC, Sr)] with C, ^ C,+i ^ 0 for all i.

The set of probability measures on 21(Sc,Sr) is de

noted A21(Sc,Sr). Probability measures, here, are

still required to only satisfy finite additivity. 21(Sc>Sr)

not being closed under infinite disjunctions, there is

no need to consider countable additivity. Observe

that even though 21(Sc>Sr) is a countable algebra,

probability measures on 21(Sc,Sr) can not be repre

sented by a sequence (pi)igN of probability values with

X3ieNP« = 1 (*-e- a discrete probability measure), be

cause these pi would have to be the probabilities of the

atoms in 21(Sc,Sr).

Replacing 2l(Sc) with 2l(Sc,SR) and A2t(Sc) with

A21(Sc,Sr) definitions 3.1 and 3.2 can now be repeated

almost verbatim for VACC (with the additional provi

sion in definition 3.2 that role names are interpreted

by binary relations on D).

So, things work out rather smoothely up to the point

where we have to define what it means for a VACC- in

terpretation to be a model of a VACC knowledge base.

In the corresponding definition for VCC (definition 3.3)

cross entropy played a prominent role. When we try to

adopt the same definition for VACC we are faced with

a problem: cross entropy is not defined for probabil

ity measures on 21(Sc,Sr). While we may well define

cross entropy for measures that are either discrete, or

given by a density function on some common probabil

ity space, measures on 2t(Sc,SR) do not fall into either

of these categories. Still, in example 5.1 some kind of

minimum cross entropy reasoning (in the special form

of direct inference) has been employed. This has been

possible, because far from considering the whole alge

bra 21(Sc,Sr), we only took into account the concept

terms mentioned in the knowledge base in order to ar

rive at our conclusions about P(Opus £ Penguin). The

same principle will apply for any other, more compli

cated knowledge base: when it only contains the con

cept terms Ci, . . . , C„, and we want to estimate the

probability for P(o£ C„+i), then we only need to con

sider probability measures on the finite subalgebra of

21(SC)Sr) generated by {Ci, . . . ,Cn+1}.

The following definition and theorem enables us to re

cast this principle into formal semantics for VACC.

Definition 5.2 Let 21' be a finite subalgebra of

2l(Sc ,Sr) with { , . . . , Ak } the set of its atoms. Let

NC A21(Sc,Sr) be defined by a set of constraints on

21' (cf. theorem 4.12). Let fi G A21(Sc,Sr) such that

7rNra/(/if 21') is defined. For every Ce 21(Sc,Sr) define

ft

«&(/0(c) := E'wO'ra'XAMc 1 a;).

•=1
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Clearly, 7rJ,(^) is a probability measure on 21(Sc,Sr).

The following theorem shows that f*3e|(/*) realizes

cross entropy minimization for every finite subalge-

bra of 21(Sc,Sr) containing the concepts used to define

Bel.

Theorem 5.3 Let /i g A21(Sc,Sr), let Bel C

A21(Sc,Sr) be defined by a finite set of constraints

{P(C.) = Pi | Pi G [0, 1], c, e a(sc,sR), • = 1, . . . , n}.

Let 21' be the finite subalgebra generated by

{Ci,...,Cn}, and assume that nBel^i(fi\%') is de

fined. Then, for every finite 21* D 21': 7rB(.,ra.(/42l*)

is defined and equal to ^gei(fi)\^* ■

Proof: Substituting 21* for 21, M21*} for M, and

Bel\ 21* for N in theorem 4.12 gives

k

TB.ir«*(^raf)(C) = J2nBenM^')(KMC \ a;.)

for every CG 21* . The right hand side of this equation

is just the definition of nBel(fi)(C). O

With ^Belif1) 88 meafiure that, in a generalized

way, minimizes cross entropy with respect to \i in

Bel, it is now straightforward to define when a VACC-

interpretation (D,I,/i) shall be a model of a VACC-

knowledge base KB: just replace i^Btia(KB){^) with

7rBeJ«(KB)(^) m *ne corresPonding definition for VCC

(definition 3.3).

Probabilistic inferences from a 7M£C-knowledge base

KB can now be made in basically the same manner as

in VCC: to answer a query about a conditional prob

ability P(C|D) for two concepts, consider the algebra

generated by C, D, and the concept terms appearing in

VT. Call this algebra SDtc.D- The relativized algebra

VJIc,d(T) is defined as above, and Gen\Tlc,D(T) can

be computed as in section 4.1. Theorem 4.7, applied

to Gen f SDtc d(T) can then be used to compute the J

with £Bt=P(C|D) = J.

When J with KB (= P(a G C) = J shall be computed,

the relevant algebra to be considered is generated by C

and the concept terms appearing in Va- Writing 9lac

for this algebra,

J = {*B<i.\VL,c(T)(f)(C) | /i G Gen\<na,c(T)}

then holds. Note that Gen\y\„,c(T) can not be com

puted directly in the manner described in section 4.1,

because Gen will usually be defined by constraints on

concepts not all contained in 9Lj,c- One way to obtain

a representation for Gen\y\a,c(T) is to first compute

Gen\<B(T), with 93 the algebra generated by C and

the concept terms appearing in either VT or Va , and

then restrict the result to 91a,c-

Example 5.4 Suppose we want to determine Jo with

KBz (= P(Penguin|Bird A Vfeeds.on : Fish) = J0.

This query and VT together contain three different

concept terms which generate an algebra SDt whose rel-

ativization by T contains just the four atoms

Ai : P,

A2 : BAVf_o: H A-^P,

A3: BAVf_o:FA-.Vf.o:H,

A, : --(B A Vf.o : F)

(using suitable abbreviations for the original names).

Gen\ffl(T) then is defined by

{(/ii,...,/i4)G A4 I
Pi

= 0.2}.

The value for /ii/(/ii + A<2 + ^3), representing

P(P|BAVf.o: F), ranges over the interval [0,0.2] in

this set, so the answer to our query is the expected

interval.

To compute Ji with

KB3 (=P(Op«s GP) = Ji,

we consider the even smaller algebra 9t(T) consisting

of the atoms

Bi : P, B2 :-.PABAVf_o : F,

B3 : -(BAVf.o : F).

BeloPu,\7l(T) then is

{(1/1, v%, vz) G A3 1 1/1 + v-x = 1}.

It is easy to see that

Gen\m(T) = {(ft.m.fn) G A3 | —^— < 0.2}.

A*i + 1*2

For every /i = (/ii,/ia,A<s) G Genf^T), (1/1, 1/3, 1*) :=

itBt\\WT){v) is defined by Jeffrey's rule, so that

v\ = vi/iyi + 1/2) = + fit)- Hence,

Ji = {^i I (v\,vi,vz) G irBei\<mT)(Gen\V\(T))}

= [0,0.2]

in accordance with our intuitive reasoning in example

5.1.

6 CONCLUDING REMARKS

The semantics we have given to probabilistic exten

sions of terminological logics are designed for sound

ness rather than for inferential strength. Allowing any

generic measure \i consistent with the constraints to

be used in a model is the most cautious approach that

can be taken. In cases where it seems more desirable

to always derive unique values for probabilities P(C|D)

or P(a G C) instead of intervals, this approach can be

modified by using the maximum entropy measure in
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Gen only (as the one most reasonable generic mea

sure).

Generalizations of the formalism here presented are

possible in various directions. It could be permitted,

for instance, to also state subjective degrees of belief

for expressions of the form (a, b) 6 r. Since these es

tablish a connection between a and b, it will then no

longer be possible to interpret a and 6 by individual

probability measures on 21(Sc,Sr). Rather, for a lan

guage containing object names {ai, . . . , a„}, a joint

probability measure vai...an on the Lindenbaum alge

bra of all n-ary expressions constructible from ScUSr

will have to be used.
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Abstract

Moore's autoepistemic logic was only intro

duced for a single agent. Reiter considered

the task much harder to extend the logic to

multiagents. Morgenstern argued that multi-

agent autoepistemic reasoning is not at all

symmetric with the single agent autoepis

temic reasoning. In this paper however, we

shall argue for an extrospective view of mul

tiagent autoepistemic reasoning that is sym

metric between the single agent setting and

the multiagent setting. In particular, we will

present a multiagent generalization of Mc-

Dermott and Doyle's general autoepistemic

logical framework. Unlike Morgenstern 's in

trospective view which extends Moore's belief

operator L to a multiagent setting by index

ing the operator with an agent, eg. Lj0hnP,

the proposed extrospective view combines

Moore's L operator with a multiagent mono-

tonic epistemic logic, eg. L Bel(John,p). We

shall present two approaches based on the ex

trospective view of multiagent autoepistemic

reasoning. The first approach simply replaces

the "base" logic of Moore's autoepistemic

logic by an epistemic logic. The second ap

proach allows autoepistemic reasoning within

the scope of any nested monotonic epistemic

modal operators. On the surface, the two ap

proaches seem to be very different. A closer

examination reveals surprizingly that they

are essentially equivalent. This suggests that

single-agent autoepistemic reasoning and its

proof mechanization are in fact readily ex

tendible to multiagents. In particular, we

shall show that the extrospective approaches

subsume Morgenstern 's formulation includ

ing its various principles of arrogance.

Keywords : Knowledge Representation, Autoepis-

* Advanced Fellow of British Science and Engineering

Research Council

temic Logic, Epistemic Logic and Multiagent Non

monotonic Reasoning

1 Introduction

Autoepistemic Logic (AE) [Moore 85] is a nonmono

tonic logic about an implicit agent who introspects

ideally about his own beliefs. Despite its connection

with epistemic notions, it does not seem to be clear

how the logic can be extended to multi-agent non

monotonic reasoning. Although Lin & Shoham [88]

generalizes AE with an epistemic semantics based on

posssible-worlds, their logic is still limited to a sin

gle agent. Indeed, Reiter [87] claims that "All current

nonmonotonic formalisms deal with single agent rea-

soners. However it is clear that agents must frequently

ascribe nonmonotonic inferences to other agents, for

example in cooperative planning or speech acts. Such

multiagent settings require appropriate formal theo

ries, which currently we lack" .

Consider for example the following situation where

John and Mary reason about each other's nonmono

tonic reasoning capabilities.

Suppose Mary and John arranged yesterday

to meet at John's fiat to play tennis at 10am

this morning. But it has been raining out

side all night. John waited for Mary to 10am.

She still has not arrived and it is still raining

outside. Since both John and Mary do not

have a phone, Mary in fact decided not to

come and John also decided to go out after

10am. Mary made her decision by assum

ing that John knows that raining cannot play

tennis and reasons that John would conclude

that she will not come after all. John made

his decision by assuming that Mary reasons

in the above way, so he concludes that Mary

will not come and he can then do something

else.

Morgenstern [1990] is among the first to tackle mul

tiagent autoepistemic reasoning. She extends Moore's
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AE language by indexing the belief operator L in AE

with an agent. Multiagent autoepistemic reasoning is

achieved in her solution by defining a set of formation

rules which are agent-indexed extensions of Moore's

stable set formation rules and by defining a set of prin

ciples of arrogance which are essential for an agent to

reason about another agent's autoepistemic reasoning

abilities. Morgenstern argues that these principles are

required because multiagent autoepsitemic reasoning

is not at all symmetric with the single agent case. In

the single agent case the given theory was a complete

description of the mind of some agent. In the multia

gent case, agents have at best a partial description of

other agents' beliefs.

Morgenstern's formulation however suffers a number of

drawbacks. First, it lacks a formal semantics. There

is no corresponding multiagent fixpoint definition of

an AE extension to that of Moore's single agent AE

logic. Second, it cannot reason about the principles of

arrogance. Instead these principles can only be defined

via meta-rules of inferences. Thirdly, it does not have

a proper proof theory. Despite the syntactical treat

ment of Morgenstern's approach, the rules she defined

are just like Reiter's default rules [80] which do not

constitute a proof method.

In this paper, we shall attempt to address Reiter's

concern from an alternative view point. In contrast

with Morgenstern's view point which we shall call an

introspective view point, we shall call the proposed

view point an extrospective view point. Instead of that

an agent introspects his own beliefs, the extrospective

view let someone else, eg. God to introspect for the

agent. Syntactically, instead of indexing Moore's L

operator with an agent, the extrospective view keeps

the L operator intact by changing the ordinary part of

Moore's AE logic with some epistemic logic which is a

monotonic modal logic of beliefs.

We shall present two ways of changing the ordinary

part of Moore's AE logic to formalize a multiagent

autoepistemic logic from an extrospective view point.

The first way is to restrict the new multiagent au

toepistemic language in such a way that the L op

erator cannot appear in any scope of the Bel op

erator. The second way is to remove this restric

tion so that the L operator can appear in any scope

of the Bel operator. For example, in the first way,

LBel(a,p) is allowed but not Bel(a,Lp) which is how-

ewer additionally allowed in the second way. Intu

itively ->L£e/(a,Be/(6,p)) -* Bel(a, Bel(b,q)) stands

for something like "From God's point of view, if he

cannot prove (after introspecting its knowledge about

a's beliefs) that a believes that b believes p, then God

would conclude that a believes b believes q"; while

Bel(a,->LBel(b,p) —► Bel(b,q)) intuitively stands for

something like "from agent a's point of view, if he can

not prove (after introspecting its knowledge about b's

beliefs) that b believes p, then a would conclude that

b believes q" .

The main objectives of this paper are three-folds. The

first is to introduce the above-mentioned two alterna

tives of multiagent autoepistemic reasoning from an

extrospective viewpoint. The second is to show that

the two alternatives are essentially equivalent. The

third is to show that Morgenstern's approach is sub

sumed by the proposed extrospective view. Before we

achieve these objectives, lets first note several impor

tant consequences of the extrospective view.

1 . The extrospective view is symmetric between the

single agent case and the multiagent case in au

toepistemic reasoning. It is no longer the case

that the single agent AE will have a complete de

scription of the agent himself. Rather Moore's

AE logic is really just a restricted subset of the

extrospective view of single agent autoepistemic

reasoning.

Consider the following example. The leftside of

=>• represents some of the syntactical forms of

Moore's AE logic for a single agent. Lets assume

that this single agent is John. The right side of

=>■ represents the corresponding syntactical forms

of Moore's AE logic under an extrospective view

for the single agent John.

p => Bel(John,p)

qVr => Bel(John, qVr)

-iLp —► q => -iLBel(John,p) —* Bel(John,q)

LpVLg => LBel(John,p)VLBel(John,q)

Thus although Moore's AE logic has a corre

sponding representation p V q of Bel(John,pVq),

however it has no corresponding representation of

Bel(John, p) V Bel(John, q) which can still be re

garded as the belief of a single agent (John in this

case) in the extrospective view. This belief is an

incomplete description of the mind of John.

2. The fixpoint definition of an AE extension can be

readily extended to a multiagent setting in the

extrospective view as we shall see later on. In

particular, by simply varying the semantics of the

monotonic epistemic logic adopted, we can obtain

a class of multiagent autoepistemic logics. Here

we just use an example to demonstrate the points.

Consider the AE theory {Lp}. This theory

has no AE extension in Moore's autoepistemic

logic although it has a reflexive AE extension

in Schwarz's reflexive AE logic [91] whose ordi

nary part is the propositional consequence of {p}.

However if we formulate the theory in Morgen

stern's introspective view, it will be encoded as

something like {Lj0hnP} if we assume the single

agent that the AE logic is supposed to represent

is John. This theory however has a stable mean
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ing in Morgenstern's view which has nothing to

do with Schwarz's reflexivity.

In contrast, under the extrospective view, the AE

theory {Lp} about John's mind will be repre

sented as {LBel(John,p)}. This theory has pre

cisely the same status as Moore's AE logic and

Schwarz's reflexive AE logic. That is, in the for

mer case, the theory has no extension and in the

latter case, it has an extension whose ordinary

part is the monotonic epistemic logic consequence

of {Bel(John,p)}. Furthermore, we can vary the

epistemic logic of John to have the semantic struc

ture (eg. transitive and euclidean) of a K45 modal

logic. Then given {LBel(John,p)}, we can con

clude Bel(John,Bel(John,p)) in the reflexive mul

tiagent setting.

3. There is no longer the need for principles of ar

rogance. In fact, as we shall see later, the intro

spection of an agent's beliefs within some nested

agents can always be performed by an extrospec-

tion from an external agent, say God. In partic

ular, different principles of arrogance will be rep

resented as domain axioms in the extrospective

view of multiagent autoepistemic reasoning.

Consider for example the multiagent nonmontonic

statement "Bill believes that Alex believes that

if Alex had an older brother, Alex would know

about it " in [Morgenstern 90]. Let Q stand for

the sentence: Alex has an older brother. This

example would be represented in the extrospective

view as follows

Bel(Bill, Bel(Alex, Q — LQ))

or equivalently as

-ilBel(Bill,Bel(Alex,Q))

— Bel(Bill, Bel(Alex, -.£?))

The equivalence of the two representations (as we

shall show logically in this paper) might look sur

prising since it is well known of the property that

Bel(a,p —► q) implies Bel(a,p) —► Bel(a,q) but

not the other way around. In fact this property is

still maintained in the proposed logics. However

what we claim is that Bel(a,Lp —* q) is equiva

lent to L5e/(o,p) -* Bel(a,q). This result is now

possible since Lp is strictly stronger than p in this

case. For example in Moore's AE logic, the AE

theory {Lp —> q}, derives q while {p —> q} does

not.

The equivalence of the two representations also

removes the need for Morgenstern's principle of

moderate arrogance since Bill's reasoning about

Alex's autoepistemic reasoning abilities is now

performed by the implicit agent God on his be

half. If we want to apply Morgenstern's cautious

principle to the above example, we simply repre

sent it as

^LBel(Bill, Bel(Alex, Q)) A -^LBel(Bill, Q)

— Bel{Bill, Bel(Alex, -.Q))

4. The extrospective view or more precisely the

equivalence of the two extrospective approaches

naturally extends not just Moore's AE semantics

and fixpoint definition of AE extensions, but also

the proof methods of the single agent case to the

multiagent case.

Instead of designing new methods for the multi-

agent autoepistemic logics, we simply replace the

ordinary proof-theoretic components of the proof

method of a single agent autoepistemic logic by a

proof method for a monotonic modal logic of be

liefs. In particular, by associating different mono

tonic axiomizations for different (nested) agents,

we can obtain different nonmonotonic reasoning

capabilities of different (nested) agents without

ever changing the basic structure or proof compo

nents for the nonmonnotonic parts of the multia

gent autoepistemic logics.

The implications of this paper go beyond the topic of

the paper. It raises two searching questions to the

field of multiagent nonmonotonic reasoning, not just

multiagent autoepistemic reasoning. First, is the sin

gle agent nonmonotonic reasoning readily extendible

to multiagent nonmonotonic reasoning?. Second, can

we simply integrate existing nonmonotonic logics with

some multiagent monotonic logics to achieve multia

gent nonmonotonic reasoning?.

This paper is organized as follows. In Section 2, the

preliminaries of Moore"s AE logic and Schwarz's re

flexive AE logic are introduced. This is then followed

in Section 3 by the development of a simple multia

gent autoepistemic logic that replaces the "base" logic

of Moore's or Schwatz's AE logic by an epistemic logic.

Section 4 conjectures that the simple multiagent AE

logic is in fact sufficient for nested multiagent autoepis

temic reasoning. It also provides a multiagent gener

alization of McDermott and Doyle's general autoepis

temic logical framework for a single agent. In partic

ular, it outlines how existing proof methods for AE

logic can be readily extended to multagent autoepis

temic reasoning. In Section 5, a seemingly more pow

erful multiagent AE logic that allows nonmonotonic

reasoning within the scope of any nested agents is pre

sented. Section 6 proves that the logic in fact collapes

to the simple multiagent AE logic. Section 7 then goes

on to demonstrate that the proposed extrospective ap-

proachese in fact subsume Morgenstern's syntactical

formulations without any of the drawbacks of her ap

proach mentioned earilier.

2 Autoepistemic Logic

The language of AE is a propositional logic augmented

with an autoepistemic modal operator L. An AE for

mula is defined inductively as follows.

1. a propositional atom is an AE formula
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2. if 4> and ip are AE formulae, so are -x/>, <t>Vip, <j>Aip

and <f> —* ip

3. if <j> is an AE formula, then L<b is an AE formula.

Definition 1 An AE theory is defined as a set of AE

formulae. An ordinary AE formula is an AE formula

that does not contain a L operator.

An AE theory is stable [Sialnaker 80] if it is closed

under the following rules

1. T is closed under ordinary propositional logic con

sequence

2. ifP£T, then LP eT

S. ifPBT, then -.LP 6 T

The basic semantics of AE logic is characterized inter-

pretatively in the style of a list semantics. Here an

AE valuation consists of I and T where I denotes the

standard propositional interpretation (a set of propo

sitional letters) and T an AE theory. The satisfiability

of an AE formula^ in an AE valuation (I,T), indicated

by ^=(/,t) <f>< can be defined inductively as follows:

1. ^(/,t) p iffp € / where p is a propositional letter.

2- N(/,T) ~$ iff-i(f=(/,T) <f>)

3- f=(/,T) ^ V ^ iff N(/,T) <f> or \=(i,T) *l>

4- N(/,T) L0 iff 4> G T

5. Conjunction and implication are defined in the

standard way.

Definition 2 Let A be an AE theory. We define

N(/,T) A *ffV4 G A, t=(/,T) 4>- We define A (=T (f>

iff for every I, if ^(/,t) A, then ^=(i,t) 4>- An AE

formula is valid iff it is true/satisfied in all AE valua

tions (I,T). An AE theory is satisfiable iff there exists

an AE valuation (I,T) which satisfies all wffs in the

theory. Two AE theories are equivalent iff they are

true in the same set of AE valuations.

The basic idea of AE logic is to form an stable clo

sure called extension over an AE theory. As noted by

Levesque [90], this notion is only captured at "meta-

level" by Moore [85] through a fixpoint construction

that involves the above basic (or "object-level") se

mantics.

Definition 3 E is an AE extension of an AE theory

A iff it satisfies the following equation:

E = {<f>\A\=E<j>}

Moore [85] has shown that

Theorem 1 E is an AE extension of an AE theory A

iff it satisfies the following syntactic fixpoint equation:

E = 1H(A U {L<j> | 4> € E) U {-L</> \tpBE})

where TH(S) denotes the ordinary propositional logical

consequence of S.

One possible defect of AE logic is that beliefs of the

implicit agent from the agent point of view are not re

garded as knowledge or true beliefs. For example, the

theory {Lp} has no AE extension. Another possible

defect is that some AE theories such as {Lp —» p}

can have an extension in which p is grounded on the

assumption of Lp. To solve thses problems, Schwarz

[91] proposes a simple variation of Moore's AE logic,

called reflexive AE logic. The basic semantics of re

flexive AE logic is the same as Moore's logic except

with the following modification.

N(/,T) L0 iff 4> & TA (=(/,t) 4>

The fixpoint definition of a reflexive AE extension is

then defined in the same way as Moore's definition

except with the modified basic semantics.

Schwarz [91] has shown that

Theorem 2 E is a reflexive AE extension of an AE

theory A iff it satisfies the following syntactic fixpoint

equation:

E = TH{A U {<p = L<p | <p G E} U {-.Ltf \fpBE})

where TH(S) denotes the ordinary propositional logical

consequence of S.

Theorem 3 (Moore 85, Schwarz 91) Both AE

and reflexive AE extensions are stable.

The reflexive AE extensions and AE extensions of an

AE theory in general do not coincide unless we restrict

the theory to some form of stratification [Gelfond 87].

For example, both AE theories {Lp} and {->Lp —► p}

have no AE extension but a reflexive AE extension

containing p; while {->Lp A -<Lq —* q, -<Lq —>■ p} has

only one AE extension containing p but an additional

reflexive AE extension containing q. Nevertheless, AE

extensions are not subsumed by reflexive AE exten

sions. For example, the AE theory {Lp —♦ p} has

only one reflexive AE extension but an additional AE

extension containing p. Like AE logic, reflexive AE

logic does not always produce a fixpoint. For exam

ple, {L->Lp —* p] has neither reflexive AE extension

nor AE extension.

The key point to note is that the base logic of (cf. re

flexive) AE is the standard propositional logic. This

is evident both in the basic semantics of AE and the

syntactic fixpoint equation of a (cf. reflexive) AE ex

tension. To extend the (cf. reflexive) AE logic to

multiagents, ideally we would like to achieve this by

simply replacing the semantics of the ordinary propo

sitional interpretation of AE logic by a semantics for an

epistemic logic, and by replacing TH in the syntactic

fixpoint equation of a (cf. reflexive) AE extension by

an epistemic logical consequence operator ETH. This

provides the motivation for the simple multiagent au-

toepistemic logic in the next section.
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3 A simple multiagent autoepistemic

logic AEEpis

An epistemic logic is a monotonic modal logic of

beliefs. Its language is a propositional logic aug

mented with a modal operator Bel. Unlike the L op

erator in AE, Bel can be explicitly associated with

any agent. For example, we can express the fact

that either John believes p or Jim believes p as

Bel{John,p) V Bel(Jim,p) in epistemic logic. Fur

thermore, unlike L, Bel is not autoepistemic in the

sense that its meaning is not context-dependent. For

example, given {->Lp —► q}, AE will derive q; whilst

{-<Bel(ag,p) —► q} will not derive q.

One simple approach to extend AE to a multiagent set

ting is to replace the base logic of AE by an epistemic

logic. In other words the new language, which we call

AEEpi> , will be exactly the same as the original AE

language except that in place of every ordinary for

mula, it will now be an epistemic formula. Formally,

the AEEp" formulae can be denned inductively as fol

lows:

1. a propositional atom is an AEEp,s formula

2. if 4> and yj are AEEp" formulae, so are -^<j> , <l>Vyj,

<(> A yj and <t> —* yj

3. if <f> is an AEEpi' formula, then L<b is an AEEpU

formula.

4. if <j> is an ordinary AEEp" formula, i.e. it does

not contain a L operator, then Bel(agent,<j>) is

an AEEpl' formula. Here agent is a member of

the set of agents in AEEpi* .

The semantics of AEEpt> can be easily defined by sub

stituting the ordinary propositional part of the seman

tics of AE logic by a possible-worlds semantics. The

possible worlds semantics in the spirit of Hintikka [62] ,

is chosen purely for illustration. It should be clear that

the general framework defined below can be easily sub

stituted for any specific semantics. The valuation (I,T)

of AEEpU is similar to AE's valuation (I,T) with the

following differences.

1. The valuation (I,T) of AEEpis will be additionally

indexed by a frame structure M=(W,R) where W

is a set of possible worlds and Ft is the accessibility

relation between possible worlds for each agent in

AEEp" . Each world here is a set of propositional

letters.

2. In AE, I is a set of propositional letters. In

AEEpt' , I is additionally regarded as a possible

world of W in M.

3. In AE, T is a set of AE formulae. In AEEpi' , T

is a set of AEEpi> formulae.

4. Since (I,T) of AEBp" is additionally indexed by a

frame structure M=(W,R), we can further define

some classes of valuations by restricting Ft. For

example, if the class is reflexive, then we restrict

R of M to be reflexive. There can be many classes

of valuations as shown in [Hughes & Cresswell 84].

The default will be valuations whose Rs are not

restricted. We will assume that the readers are fa

miliar with modal logics and their axiomatic sys

tems associated with the various classes of valu

ations. For example, the K system is associated

with the default (or unrestricted) class of valua

tions; the T system is associated with the reflexive

class of valuations; while KD45 is associated with

the serial, transitive and euclidean class of valua

tions.

We now define the satisfiability relationship \=(i,T)M

between an AEEp" valuation (I,T) under the frame

M=(W,R), and an AEEpis formula.

1. ^-(ij)M p iff p G / where p is an atom

2- I=(/,T)m ~4 ift^(\=(U)M <i>)

3- (=(/,T)m <t> V V iff \=(i,T)M <l> or (=(/,t)m V>

4. • In the case of extending Moore's AE logic to

multiagent autoepistemic reasoning ^(/,t)m

L<£ iff G T

• In the case of extending Schwarz's reflexive

AE logic to multiagent autoepistemic reason

ing

K/,t)m iff ^ G T and (=(/,T)M 0

5. |=(/,t)m Bel(ag, <(>) iff Vr(R(ag, I, I') - f=(/',r)„

4>)

6. Conjunction and implication are defined in the

standard way.

Definition 4 Let A denote an AEEp" theory (which

is a set of AEEp" formulae). We define N(/T)M A

tfJW e A, N(/,T)M <t>- We define A ^=r,cia»s 4> iff for

every M=(W,R) such that R is in the class of Class,

and for every I of W, if N(/,T)M A> then N(/,T)m </>■

We say A is satisfiable iff there exists an AEEpts val

uation (I,T)m such that, ^(/,t)m A for some I in W

of M. We say an AEEpi> formula <f> is valid iff -><j) is

not satisfiable.

Like AE logic, we will also define an extensional closure

for an AEEp" theory. However, unlike AE logic, a (cf.

reflexive) AEEpl' extension will be dependent on the

class of valuations.

Definition 5 T is a (cf. reflexive) AEEpx* extension

of class C of an AEEp" theory A iff it satisfies the

following equation:

T = {<!> | A \=T,c 4>)
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It can be easily shown in parallel with Theorem 1 and

Theorem 2 that the following theorem holds.

Theorem 4 Let ETHC denote the episiemic logical

consequence (or axiomatic system) associated with the

class C.

E is an AEEpi* extension of class C of an AEEpi>

theory A iff it satisfies the following equation:

E = ETHC(A U {L<j> | 4> £ E) U {-.Ltf | V 9 E})

E is a reflexive AEEp" extension of class C of an

AEEpt> theory A iff it satisfies the following equation:

E = ETHC(A U {<f> = L<j> | 4> e E) U {-.L^ \1>BE})

It can be seen that an ;4i?Ep,5-like logic can be eas

ily obtained by substituting an epistemic logic for the

base logic of (cf. reflexive) AE logic. In particular,

such an epistemic logic need not be based on a pos

sible worlds semantics. In fact, by generlizing Theo

rem 4, we can simply replace ETHC by any epistemic

logical consequence operator for any semantics we like.

For example, the epistemic semantics can even be one

that allows beliefs to have probabilities (eg. [Jiang 92])

in which case ETHC will be a probabilistic epistemic

axiomization (eg. [Jiang 92]).

But is this "replacement" approach enough for mul-

tiagent autoepistemic reasoning? This motivates the

conjecture in the next section.

4 Conjecture

In AEEp", we can only perform autoepistemic rea

soning outside the scope of a Bel operator, e.g.,

(~>LBel(a,p)) — Bel(a, Bel(b,q)). This however

raises the question of autoepistemic reasoning inside

the scope of a (possibly nested) modal operator Bel,

e.g., Be/(a,(-iLp) —► Bel(b, q)). The following conjec

ture however suggests that this worry is unnecessary

at least in the propositional case. It is not clear if the

conjecture still holds in the quantification case. Pre

liminary works conducted as early as [Jiang 89] seem

to suggest otherwise.

Conjecture 1 Autoepistemic nonmonotonic reason

ing performed inside the scope of nested agents can

be equivalently performed outside the scope of nested

agents. In other words, any multiagent AE formula

with a L operator inside an epistemic modal operator

Bel can be equivalently transformed to a mutliagent AE

formula that does not have L inside Bel.

In this section, we shall attempt to justify this conjec

ture intuitively. In the next sections, we shall justify

the conjecture logically.

The intuitive reasons behind the conjecture are as fol

lows.

1 . If each agent is ideal in nonmonotonic reasoning,

his reasoning power would be the same as any

other agents. In this case, there is no reason why

the agent's reasoning cannot be done by a global

external agent, say God, in his place.

For example in a multiagent AE logic, instead of

saying that Bel(a, -<Lp —* Bel(b, q)), we can re

place it by (-.L5e/(a,p)) -* Bel(a, Bel{b,q)).

2. If an agent's power is different from another

agent's in nonmonotonic reasoning, then we can

always define the "base" epistemic logic in such a

way that different agents will have different sets of

axioms and rules of inference. Here the epistemic

logic need not be based on the possible worlds

semantics of Hintikka [62]. It can be any logic

of belief that does not suffer from logical omni

science (e.g. the logics of Vardi [86] and Fagin et

al [88]), i.e. the problem of "ideal" reasoning.

For example, we can attribute to John the

positive introspective ability with the axiom

Bel(John,p) —^ Bel(John, Bel(John,p)), whilst

to Tom the negative introspective ability with the

axiom

^Bel(Tom,p) -* Bel(Tom,-*BeI(Tom,p)).

The importance of the conjecture is to allow us to

keep the development of autoepistemic nonmonotonic

reasoning separated from epistemic logics. For exam

ple, we can even replace the autoepistemic component

by a 3-valued AE logic such as Prymusinksi's [91] or

Bonanti's [92]. In fact, both AE logic and reflexive

AE logic can be seen as special cases of McDermott

and Doyle's general autoepistemic logical framework

[80,82] in the following fixpoint definition.

Definition 6 Let A be an AE theory and S be any

monotonic modal logic on the modal operator L. Then

E is a S-extension of A iff

E = Ths{AU{^L<t>\<t>3E})

where Ths denote the consequence closure operator of

the S modal logic.

Konolige has shown [88] that

Theorem 5 Let KD45 be the modal logic obtained

from the S5 modal logic by replacing the axiom schema

T (L<j> —* <#) by the weaker schema D (L4> —* -iL-><^).

Then E is an AE extension of A iff E is a KD45-

extension of A.

Schwarz has shown [91] that

Theorem 6 Let SW5 be the modal logic obtained from

S5 by replacing the 5-axiom schema (->li<j> —* L->L#)

by the weaker schema (<f> —» (->L<0 —» L->L^)). SW5 is

characterized by the class of valuations with an acces

sibility relation R being reflexive, transitive and pos

sesses the property that (R(s,t) A R(s,u)) A s ^ u) —*
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R(t, u). Then E is a reflexive AE extension of A iff E

is a SW5-extension of A.

Clearly, given any modal logics S and U, a S-extension

is a U-extension if S is a modal logic contained by U.

Schwarz [91] has also shown that S € {KD45, SWb}

are the maximal S-extensions that are not collapsed

to a monotonic logic as it is the case for S5-extension.

This means that instead of using KD45- or SW5- ex

tensions, we can also use any other weaker extensions

such as T-extensions based on the modal logic T. To

obtain the corresponding multiagent S-extension for a

modal logic S on L operator, we simply add the mono-

tonic axiom schemas on Bel operator of an epistemic

logic to the S axiomatic system. We can thus define a

multiagent generalization of McDermott and Doyle's

autoepistemic logical framework.

Definition 7 Let A be an AEEp" theory. Let S be

any monotonic modal logic on the modal operator L.

Let U be any monotonic epistemic logic on the modal

operator Bel. Then E is a (S,U)-extension of A iff

E = Th{SiU)(A U {-L^ \4>BE})

where Th(s,U) denote the consequence closure opera

tor of (the S modal axiom schemas) U (the U axiom

schemas).

Finally, it is worth noting that the conjecture also jus

tifies some of the current approaches in speech act the

ories (eg. [Appelt & Konolige 89]). In particular, exist

ing proof methods for autoepistemic logics (eg. Moore

88, Marek & Trunsinski 89) can basically remain the

same except that we replace the ordinary propositional

axiomatic system by an epistemic axiomatic system.

Consider Moore's method [88] which constructs AE

extensions of an AE theory in the following steps.

First, we enumerate all the truth combinations of L<j>

literals in the theory. For example, for the AE the

ory {->Lp —► q), the possible truth combinations are

just the singlton sets {(Lp is TRUE)} and {(Lp is

FALSE)}. Then, we use the truth values of a cho

sen combination to simplify the theory to an ordinary

theory. For example, the second combination of the

above example will reduce the theory to {q}. Finally,

we check if each <j> of L<j> literals, that are assigned

with the truth value TRUE in the chosen combina

tion, follows from the resultant ordinary theory; and if

each <j> of L<f> literals, that are assigned with the truth

value FALSE in the chosen combination, does not fol

low from the resultant ordinary theory. If it is so, then

the ordinary closure of the resultant theory will form

the ordinary core of an AE extension of the original

AE theory1. For the above example, since p does not

1 The same method can be applied similarly to construct

a reflexive AE extension except that we now only assume

either the falsity of a L-literal or the equivlance of —♦ 4>

follow from {q}, TH(q) will form the ordinary core of

an AE extension of the AE theory {-'Lp —* q}.

To adapt Moore's method to a multiagent AE logic

such as AEEpl' of any class X, we still perform the

truth combinations of L4> literals and their simplifica

tions as before. However this time we check if each <f> of

L<j> literals that are assigned with TRUE (or FALSE)

follows (or does not follow) from the resultant epis

temic theory using the epistemic axiomatic system as

sociated with X. If it is so, then the epistemic closure

of the resultant theory will form the epistemic core

of an AEEpt> extension of class X of the original AE

theory.

Now lets try to justify Conjecture 1 logically. We first

introduce a multiagent autoepistemic logic that allows

autoepistemic reasoning inside the scope of any Bel

operators.

5 Another Multiagent Autoepistemic

Logic

To draw a parallel with AEBp" , in this section, we

shall present a multiagent autoepistemic logic (MAE)

in which the epistemic component is also characterized

by a possible-worlds semantics. The language of MAE

however allows non-ordinary formulae inside the scope

of a Bel operator. The intended meaning of L inside

a Bel operator of a (nested) agent is to reflect on the

beliefs of this agent.

A MAE theory is a set of MAE formulae which can be

defined inductively as follows.

1. a propositional atom is a MAE formula

2. if <t> and x{> are MAE formulae, so are -«j>, <j> V ip,

<j> A ip and <j> —► ip

3. if <j> is a MAE formula, then L<f> is a MAE formula.

4. if <f> is a MAE formula2, then Bel(agent,<£) is a

MAE formula. Here agent is a member of the set

of agents in MAE.

The semantics of MAE can be defined in a similar way

as AEEp"'s valuation (I,T) under a frame structure

M=(W,R). However, while T denotes a single AEEpi'

theory in AEEp" , it would denote a mapping from a

sequence of agents < oi, a„ > to a MAE theory in

MAE logic. We also stipulate3 that

Bel(a,<j>) eT(<ai,...,a„>) iff <f> G T(<au ...,an,a>).

for every L-literal li<j> in the given AE theory. Each com

bination of assumptions can then be used to simplify the

given AE theory. In the case of assuming the equivalence,

the equivalence is justified iff <j> follows from the resultant

AE theory.

2 Note here </> is not restricted to be ordinary as AEBp".

3 It will be seen that this stipulation is crucial to the

proof of the equivalence of the two proposed logics.
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Furthermore, the valuation in the MAE semantics is

additionally indexed by a sequence of nested agents.

The reason for these differences are due to the fact

that, in MAE, we additionally allow autoepistemic rea

soning within the scope of a Bel operator. As a result,

the truth of L<f> need be defined against the theory

associated with the scope of the Bel operator within

which the L operator falls.

We now define the satisfiability relation

ship t=(/,T)M,»e?-asen*i between a MAE formula and

a MAE valuation (I,T) at a frame M=(W,R) under

the view of seq-agents.

1- h(/,T)M,«e«_ajen«> P iff p € I where p is an atom

2- \=(I,T)M,seq-agents ->0 iff -,((=(/,T)M,»eSLoffen<j 4>)

3- \=(I,T)m,seq-agents 4> V i> iff ,T)M , seq-agents <t> OT

r^(I,T)u,seq-agents i>

4. • In the case of extending Moore's AE logic to

multiagent autoepistemic reasoning

\=(i,T)M,seq-agents L^ iff <f> 6 T(seq-agents)

• In the case of extending Schwarz's reflexive

AE logic to multiagent autoepistemic reason

ing

N(/,T)M,«e«-ajeni* L<£ iff G T(seq.agents)

and \=(I,T)M, seq-agents 4>

5. |=(/,T)Af,<al,...,an> Bel{ag,<j>) iff

VI'(R(ag,I,I') - N(/',T)M,<a,

6. Conjunction and implication are defined in the

standard way.

Definition 8 Let A denote a MAE theory. We define

N(/,T)M,seq-agents A iffV<j> G A,

\=(I,T)M, seq-agents <t> ■ We define A \=T,Class ,seq-agents 4>

iff for every M=(W,R) such that R is in the class of

Class, and for every I of W, if |=(/ >T)M ,seq-agents A,

then (=(/,t)m,seq-agents <t>- We say A is satisfiable iff

there exists a MAE valuation (I, T)m and a seq-agents

SUch that (=(/,T)M,»e?-apent« A f0T SOme { »B W °f M-

We say a MAE formula <j> is valid iff ->4> *> no< satis

fiable.

Like AEEpt> logic, we also define an extensional closure

for a MAE theory. However unlike AEEp" logic which

forms a single extension from a God point of view,

here we form an extension for each sequence of agents.

This is because each sequence of agents will denote a

scope of epistemic reasoning within which beliefs can

be reflected. Before we present the definition of a MAE

extension, we first make the following notations.

• Let Bel(< ai,aa, ..,an >,<t>) denote

fle/(a1,Bel(a2,..,Be/(a„, <£)...))

• Let Bel(<>,4>) denote <j>. Here "<>" denotes the

empty sequence of agents.

• Let ^ denote the mapping function.

Definition 9 T is a (cf. reflexive) MAE extension of

class C of a MAE theory A iff it satisfies the following

equation:

T — { (seq-agents =>

{<j> | A (=T,c,<> Bel(seqjagents,4>})

| seq-agents € 5^4

}

where SA denotes the set of all the possible sequences

of agents (including the empty sequence) in MAE logic.

Cleary, if SA contains only the empty sequence of

agents, a MAE extension simply collapses to that of

the single agent AE logic.

Theorem 7 T is a (cf. reflexive) MAE extension of

a MAE theory where SA={<>} iff T(<>) is an (cf.

reflexive) AE extension of the theory in AE logic.

Furthermore, if we restrict the MAE language to be

the same as AEEp" , then a MAE extension simply

collapses to that of AEEpi' logic.

Theorem 8 T is a (cf. reflexive) MAE extension of

a MAE theory where the language of MAE is resticted

to AEEpi" iff T(<>) is a (cf. reflexive) AEEp" ex

tension of the theory.

The proofs of these theorems are all straighforward.

We omit them for space reason.

6 MAE = AEEpit

Despite the fact that MAE allows autoepistemic rea

soning within the scope of any nested agents, a closer

examination will show surprisingly that the logic is es

sentially equivalent to AEEp" .

Before we prove this result, we prove some basic the

orems. We only do this for the MAE logic and the

proofs for the reflexive MAE follow similarly.

Theorem 9 Be/(o,->L^ V V) = ->LBel(a,4) V

Bel(a,i>).

Proof We prove the equivalence by expanding the

meanings of both sides.

1. (=(/,T)m.<4.,..,<..> 5e/(a,-L^VV) iff

V7'(i?(a,7,/') -+ f=(/'.T)M.<*, a„,a> WVifr))

iff

V7'(/2(a,7,/') - (h/'.TW.c, ...» -U or

(=(/',T)M,<Oi,...,a.,<C> V1))

iff VI'(R{a,I,r) -+ (-.(* G T(<a1,...,on,a>))

or N(/',T)M,<ai,...,a.,«> VO)
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2- h(J,T)„,<fll .,> ->LBel(a, <j>) V Be/(a, V) iff

N(/,t)m,«xi,.. ,a^> -iLBe/(a, or

M,<<»1, -.-,"•>

iff -(fle/(a,^) G T(< oi,...,a,, >)) or

V/'^O././'J-K/'-TW,^ *)

From the semantics of MAE, we have Bel(a, <j>) G T(<

ai, ...,a„>) iff </> G T(<ai, ...,a„,a>). In addition, by

the classical first order equivalence -«j> V Vx(ip(x) —*

a(x)) = Vz(V'(a;) —» (-^ V a(a;))) where x is not free

in ^, (2) is equivalent to (1).

Q.E.D

Theorem 10 Bel(a,L<j>Vip) = LBel(a,<f>)VBel(a,tl>).

Proof We prove the equivalence by expanding the

meanings of both sides.

1- h/,T)„,<a, 0n> Bc/(a,L^V^) iff

V/'(/*(a,/,I') - h/',T)M,<ai -..*> L^VV) iff

VI'(R(a,I,r) - (|=(/',T)m,«», ...» U or

NC/.T),^',^, a„,a> VO)

iff V7'(J2(a, 7, /') - (0 G T(< oi, a„, a >) or

r=(/',T)Jl#1<ai,...,o»,<t> VO)

2- t=(/,T)M,<a, a»> LBel(o,<j>)V Bel(a,r/>) iff

NWAf.Oi LBel(a,<f>) or

F(/,T)M,«»i,...,an>

iff Bel{a,<j>) G T(< ai,...,a„ >) or

V/'^a./.JO^N/'.TW.C, an,a> V>)

From the semantics of MAE, we have Bel(a, <j>) G T(<

ax, ...,an >) iff <j> G T(< ai, ...,a„,a >). In addition,

by the classical first order equivalence <j> V Vx(V>(x) —+

a(x)) = Vx(i[>(x) —► (<j> V a(x))) where x is not free in

<t>, (2) is equivalent to (1).

Q.E.D

Despite the above equivalence result, it is worth to

point out that Bel(a,<j> V ip) is not equivalent to

Bel(a,<j>) V Bel(a,4>) in the same spirit that L<j> V ip

is not equivalent to <j> V xj> or L<j> V LV>. All these in-

equivalencies are confirmed by the semantics of the

proposed logics.

Similarly, we can extend the above two theorems in

the conjunctive case.

Theorem 11 Bel(a,^L<f> A V) = -iLBel(a,d>) A

Bel(a,ip).

Theorem 12 Bel{a,L<t>Aip) = LBel(a,<f>)ABel(a,ip).

It follows that

Theorem 13 Bel(a, -iL^) = ->LBel(a,<j>).

Theorem 14 Be/(a,L^) = (LBe/(a,<£).

Using these basic theorems, we can now prove the fol

lowing general result.

Theorem 15 Every MAE formula A can be equiva-

lently transformed to a MAE formula Trans(A) that

does not contain any L operator inside the scope of

any Bel operator.

Proof We prove the theorem inductively on the com

plexity of the formula A.

1. Clearly, if A is an ordinary atom, Trans(A) = A.

2. Let the induction hypothesis be that the theorem

holds for formulae of complexity less or equal than

n. In the following, we consider A of complexity

n+1.

3. • If A is <j> V i>, then by the induc

tion hypothesis, 4> = Trans(<f>) and

= Trans(ip). Therefore, Trans(A) —

Trans(<f>) V Transty). Similarly, the result

holds for conjunction4.

• If A is ->d>, then by the induction hypothe

sis, <j> : Trans{<f>). Therefore, Trans(A) =

-<Trans(d>).

• If A is L(f>, by the induction hypothesis,

Trans(<j>) does not contain any L operator

inside the scope of any Bel operator. There

fore Trans(A) = LTrans(<j>)

• If A is Bel(a, <f>) where a is any agent, then

by the induction hypothsis, Trans(4>) must

have L outside the scope of any Bel operator.

Since Trans(<j>) can only be in one of the four

forms: (La), (->La), (La)O/? or (-.La)0/?

where O G {A, V}, then by the basic theo

rems and by the induction hypothesis on the

fact that Bel(a,0)'s complexity is at least 1

less than that of Bel(a,<j>), we have the fol

lowing transformation for the four forms re

spectively:

Trans(A) = <

LBel(a,a)

-<LBel(a,a)

LBel(a, a)OTrans{Bel(a, /?))

I -iLBel(a,a)OTrans(Bel(a,l3))

It follows from Theorem 15 of Conjecture 1 for the

MAE logic.

Theorem 16 T is a MAE extension of a MAE theory

A iff T is an MAE extension of Trans(A) .

This theorem suggests that MAE is essentially equiv

alent to AEEPU.

4 We assume that the implication —► will be expressed

in terms of other logical connectives in a standard way.
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7 Subsumption of Morgenstern's

formulation

The wffs of Morgenstern's multiagent autoepistemic

logic (MANML) are defined by the following rules

• if <p is an ordinary propositional wff, then <p is a

MANML wff

• if <p is a MANML wff, then La<j> is a MANML wff

where a is a constant of the MANML language

representing an agent

• if <f> and xp are MANML wffs, so are <j> A xp, <p V xp

and -xf)

Morgenstern did not provide a definition for a

MANML extension. Instead, she extends the stabil

ity property of AE logic to MANML. A ANML theory

T is stable if it is closed under the following syntac

tical rules where h denotes the ordinary propositional

derivability.

1. if Pu.., P„€T, Pu..,Pn\-Q, then QeT

2. if LaPi,..,Lapn er, P1,..,P„hg,LaQeT

3. LaP6TiffLaLaPer

4. LaP9TirTLa-,LaPeT

5. Some commonsense principles of arrogance

• Principle of Moderated Arrogance (PMA)

if LxLy(Lya A ->LY0 -* 7) G T, LjfLya G

T, and LxLY/3 B T, then LxLY-y G T

• Principle of Cautious Arrogance (PCA)

If LxLy(Lya A ->LY0 -> 7) € T, L^Lya G

T, LxLY/3 3 T, and Lx/3 9 T then

LxLy7 G T

Definition 10 A MANML wff <f> is directly in the

scope of a wffhxxp if <f> is contained in xp and is not

contained by a wffLYa which is also contained in ip.

In this section, we shall show that Morgenstern's for

mulation is subsumed by the extrospective approaches

presented in this paper. Before we prove this re

sult, we first define a modular transformation TRAN

that maps Morgenstern's MANML wffs to MAE wffs.

The transformation TRAN(xp) simply replaces (start

ing from the inner most scope to the outmost scope of

xp) every MANML wff of the form La<p in xp that is not

directly in the scope of a wff Laa in xp by LBel(a,<p)

and every MANML wff of the form La<p in xp that is

directly in the scope of a wff Laa in xp by L<p.. For

example, given xp as L„(p —► Lap), TRAN(xp) will be

LBel(a,p —► Lp).

With the above transformation, we can now show that

Morgenstern's Formulation (MF) is subsumed by the

K-class of reflexive MAE logics. Here K-class does not

put any restriction on the accessablity relationship R

in the valuations of MAE logics.

Theorem 17 Let A be a set of MANML wffs. Let M

be the reflexive K-class MAE extension of TRAN(A).

Then M satisfies the stability conditions of MF.

Proof We prove this theorem by proving that every

syntactical rule of Morgenstern's Formulation (MF) is

satisfied in the K-class reflexive MAE extension M.

1. Since the semantics of a MAE logic satisfies that

of the ordinary propositional logic, clearly rule (1)

of MF is satisfied.

2. Since TRAN(LaPi) is LBe/(a,P.) which is

equivalent to Bel(a,Pi) in a reflexive MAE

extension, and the possible worlds seman

tics of the MAE logic satisfies the property

that if Pe/(a,P1),..,Pe/(a,Pn), Pi,..,P„ h Q,

Bel(a,Q), rule (2) of MF is thus satisfied.

3. Since TRAN(LaP) is LPe/(a,P) and

TRAN(LaLaP) is LBe/(a,LP) which is equiv

alent to LLBe/(a, P) by Theorem 16, and since

LPe/(a, P) is equivlent to LL5e/(a, P) in a MAE

extension, thus rule (3) of MF is satisfied.

4. Since TRAN(LaP) 9 M is equivalent to

->LL5e/(a, P) G M in a MAE extension

and TRAN(La^LaP) is LPe/(a,--LP) which is

equivalent to L->LPe/(a, P) (by Theorem 16)

which is equivalent to ->LLBe/(a, P) in a MAE

extension, thus rule (4) of MF is satisfied.

5. Morgenstern's principles of arrogance

• Principle of Moderated Arrogance (PMA)

This principle follows implicitly from the

MAE logic. That is, in MAE,

if LBel(X, LBel(Y, La A ->L0 -» 7)),

LBel(X,LBel{Y,a)),

and -^LLBel(X,LBel(Y,0)),

then LPe/(X,LBe/(Y,7)).

Using theorem 16, this property is equivalent

to the following simplified form in a MAE

extension,

if LBel(X,Bel(Y,a))

A^LBel(X,Bel(Y,0))

->Bcl(X,Bel(Y,y)),

and Bel(X,Bel(Y,a)),

and -^LBel{X,Bel(Y,f3)),

then Bel(X,Bel(Y,y)).

• Principle of Cautious Arrogance (PCA)

This principle is not a property of MAE.

However it can be explicitly represented in

the given MAE theory due to Theorem 16.

For example, we can modify the above sim

plified form by the following property

if (LBel(X,Bel(Y,a))
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A^LBel(X,Bel(Y,/3)) A

-^LBel(X,/3)A

-+Bel(X,Bel{Y,y))),

and -iLBel(X,Bel(Y,l3)),

and ->LBel(X,/3),

then Bel(X,Bel(Y,y)).

This property is again satisfied in a MAE ex

tension.

The significance of this result are three-folds. First,

the K-class reflexive MAE logic provides a seman

tics and a definition of a MANML AE extension for

Morgenstern's syntactical formulation . Second, by

the equivalence of the presented two extrospective ap

proaches, the result shows there readily exist a proof

method (like the one outlined in Section 4) for Mor

genstern's formulation. Thirdly, the result shows that

Morgenstern's formulation is only just one class of

MAE logics.

Now lets consider Morgenstern's example "Bill be

lieves that Alex believes that if Alex had an older

brother, Alex would know about it ". Let Q stand

for the sentence: Alex has an older brother. This ex

ample would be represented in the extrospective view

as follows

Bel(Bill,Bel(Alex,Q - LQ))

or equivalently (by the Trans function in Theorem 15)

as

->LBel(BiU,Btl(Alex,Q)) — Bel(BiU, Bel(Alex,^Q))

Let the formula be the only formula in the given MAE

theory. Then Bel{Bill, Bel(X, ->Q) follows from the

MAE logic. In contrast, Morgenstern's theory has to

rely on the explicit PMA principle in order to conclude

the corresponding result.

Now suppose we want to apply the PCA principle in

stead in the above example. Then the example should

be represented in the first place as follows

-iLBel(Bill,Bel(Alex,Q))

A->LBel(Bill,Q)

— Bel(Bill,Bel(Alex,^Q))

In this way, if the theory contains only the above for

mula and the formula Bel(Bill,Q), then we will not

conclude Bel(Bill, Bel(Alex,-<Q)).

8 Conclusion

In this paper, we have argued for an extrospective

view of autoepistemic reasoning in which introspec

tion of an agent's beliefs is performed from an ex

ternal agent point of view. We have presented two

approaches of the extrospective view to formalize a

multiagent autoepistemic logic based on Moore's AE

logic and Schwarz's reflexive AE logic. The first ap

proach involves the replacement of the "base" logic of

AE logic by an epistemic logic so that autoepistemic

reasoning can only be performed (implicitly by God)

outside the scope of any agent. We have shown that

the semantics, extensions and proof methods of this

approach can be easily developed on the basis of their

counterparts from an AE logic. The second approach

allows autoepistemic reasoning within the scope of any

nested agents. We have provided a multiagent general

ization of McDermott and Doyle's autoepistemic logic

framework. We have also both intuitively and logi

cally justified that Moore's and Schwarz's AE logics

are in fact readily extedible to multiagents, contrary

to Reiter's claim. To demonstrate the generality of

our approaches, we have also shown that the proposed

extrospective approaches subsume Morgenstern's for

mulation and at the same time provide a semantic ac

count and proof method for her formulation.

The results developed in this paper have been applied

to the formalization of the DEMO(theory,t) notion

in metalogic programming in the spirit of Jiang [90]

where Clark's negation as failure (NAF) [78] is ex

tended for a logic program of beliefs. Under this for

malization, not DEMO(theory,t) in metalogic pro

gramming will be rewritten as -iLBel(theory,t) in

AEEp". The equivalence between MAE and AE13*"

enables one to transform the not inside the scope of

a DEMO predicate to the outside of the scope. For

example, DEMO{th\,q\- not DEMO(th2,p)) can be

transformed to

DEMO{th\,q):- not DEMO{th\, DEMO(th2,p)).

Halpern [93] and Lakmeyers [93] independently pro

posed multiagent extensions to Levesque's logics of

only knowing [90] with similar (but not identical) se

mantic accounts. However their languages still es

sentially take Morgenstern's introspective view in the

multiagent context. In [Jiang 93c], we have presented

an extrospective multiagent extension of Levesque's

logic of only knowing (ONL). The general idea is again

to replace the ordinary part of Levesque's ONL logic

by an epistemic logic in two different formalizations.

One is to disallow the modal operators (e. O, L, N )

of Levesque's ONL logic to appear inside the scope of

any Bel operator of the epistemic logic. The other is

to relax this restriction.

Unlike the equivalency result demonstrated in this pa

per, the two formalisms that extend Levesque's ONL

logic to multiagents are not equivalent. In fact, the

second formalism is strictly more expressive than the

first. For example, from {Bel(a,Op)}, we can derive

Bel(a, L-iLg); while from {OBel(a,p)}, we can addi

tionally derive L->Lg. The inequivalency nevertheless

does not contradict what we have argued in this paper

since Levesque's ONL logic is strictly more expressive

than Moore's AE logic. For example, Levesque's ONL
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can reason about Moore's meia-theoretic AE exten

sions at an object level.

Furthermore, as we have shown in [Jiang 93c], the two

formalisms are still equivalent if we restrict their lan

guages to wffs that do not contain any O and N op

erators. Consequently, if we restrict the languages to

the ones mentioned in this paper and close both them

by an O operator, they would still be equivalent, thus

confirming again the conjecture made in this paper.

For example, although OBel(a.p) and Bel(a,Op) are

not quivalent, howevver OLBel(a,p) and OBel(a,Lp)

are.
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Abstract

Despite the long history of classical planning,

there has been very little comparative analysis of

the performance tradeoffs offered by the multitude

of existing planning algorithms. This is partly due

to the many different vocabularies within which

planning algorithms are usually expressed. In this

paper, I show that refinement search provides a

unifying framework within which various planning

algorithms can becast and compared. I will provide

refinement search semantics for planning, develop

a generalized algorithm for refinement planning,

and show that all planners that search in the space

of plans are special cases of this algorithm. I will

then show that besides its considerablepedagogical

merits, the generalized algorithm also (i) allows us

to develop a model for analyzing the search space

size, and refinement cost tradeoffs in plan space

planning, (ii) facilitates theoretical and empirical

analyses of competing planning algorithms and

(iti) helps in synthesizingnew planning algorithms

with more favorable performance tradeoffs. I will

end by discussing how the framework can be

extended to cover other planning models (e.g.

state-space, hierarchical), and richer behavioral

constraints.

1 Introduction

The idea of generating plans by searching in the space of

(partially ordered or totally ordered) plans has been around

for almost twenty years, and has received a lot of formal

ization in the past few years. Much of this formalization

has however been limited to providing semantics for plans

and actions, and proving soundness and completeness results

for planning algorithms. There has been very little effort

directed towards comparative analysis of the performance

tradeoffs offered by die multitude of plan-space planning

algorithms.1 Indeed, there exists a considerable amount of

disagreement and confusion about the role and utility of

even such long-standing concepts as ' 'goal protection" , and

' 'conflict resolution' ' ~ not to mention the more recent ideas

such as "systematicity."

An important reason for this state of affairs is the seem

ingly different vocabularies and/or frameworks within which

many of the algorithms are usually expressed. The lack of

a unified framework for viewing planning algorithms has

hampered comparative analyses and understanding of de

sign tradeoffs, which in turn has severely inhibited fruitful

integration of competing approaches.

In this paper, I shall show that viewing planning as a re

finement search provides a unified framework within which

the complete gamut of plan-space planning algorithms can

be effectively cast and compared.2 I will start by character

izing planning as a refinement search, and provide semantics

for partial plans and plan refinement operations. I will then

provide a generalized algorithm for refinement planning, in

terms of which the whole gamut of the so-called plan-space

planners can be expressed. The different ways of instantiat

ing this algorithm correspond to the different design choices

for plan-space planning. This unified view facilitates sep

aration of important ideas underlying individual algorithms

from "brand-names", and thus provides a rational basis

for understanding the design tradeoffs and fruitfully inte

grating the various approaches. I will demonstrate this by

using the framework as a basis for analyzing search space

size vs. refinement cost trade-offs in plan-space planning,

and developing novel planning algorithms with interesting

performance tradeoffs.

The paper is organized as follows: Section 2 provides

the preliminaries of refinement search, develops a model for

"This research is supported in part by an NSF Research Initi

ation Award IRI-9210997, and ARPA/Rome Laboratory planning

initiative under grant F30602-93-C-0039. Special thanks to David

McAllester for many enlightening (e-mail) discussions on refine

ment search, and Bulusu Gopi Kumar for critical comments.

'The work of Barrett and Weld [1] as well as Minton et.

al. [16, 17] are certainly steps in the right direction. However,

they do not tell the full story since the comparison there was

between a specific partial order and total order planner. The

comparison between different partial order planners itself is still

largely unexplored.

2Although it has been noted in the literature that most existing

classical planning systems are "refinement planners," in that they

operate by adding successively more constraints to the the partial

plan, without ever retracting any constraint, no formal semantics

have ever been developed for planning in terms of refinement

search.
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Algorithm: Refinement Search(sol, R)

Initialize open with Aft, the node with initial

(null) constraint set

Begin Loop

If open is empty, terminate with failure

Else, non-deterministically pick a node A/" from open

IfsolCA/-,*?) returns a candidate c.

Then return it with success

Else, choose some refinement operator 72. £ R,

(Not a backtrackpoint.)

Generate Tt(Af), the refinements of

n with respect to H.

Prune any nodes in H(Af) that are inconsistent.

Add the unpruned nodes in H(Af) to open.

End Loop

estimating the size of the search space explored by a re

finement search, and introduces the notions of systematicity

and strong systematicity. Section 3 reviews the classical

planning problem, and provides semantics of plan-space

planning in terms of refinement search. Specifically, the

notion of candidate set of a partial plan is formally defined

in this section, and the ontology of constraints used in rep

resenting partial plans is described. Section 4 describes the

generalized refinement planning algorithm, discusses its var

ious components, and explains how the existing plan-space

planners can all be seen as instantiations of the generalized

algorithm Section 5 discusses the diverse applications of

the unifying componential view provided by the generalized

algorithm. Specifically, we will see how the unifying view

helps in explicating and analyzing the tradeoffs (Section

5.1) . facilitating comparative performance analyses (Section

5.2) , and synthesizing planning techniques with novel per

formance tradeoffs (Section 5.3). Section 6 discusses how

the generalized algorithm can be extended to handle richer

types of goals (e.g. maintenance goals, intermediate goals),

and other types of planning models (e.g. HTN planning,

state-space planning). Section 7 presents the concluding

remarks.

2 Refinement search Preliminaries

A refinement search (or split-and-prune search [18]) can be

visualized as a process of starting with the set of all potential

candidates for solving the problem, and splitting the set

repeatedly until a solution candidate can be picked up from

one of the sets in bounded time. Each search node Af in

the refinement search thus corresponds to a set of potential

candidates, denoted by ((A/*)).

A refinement search is specified by providing a set of re

finement operators (strategies) R, and a solution constructor

function sol. The search process starts with the initial node

Af$ , which corresponds to the set of all potential candidates

(we shall call this set K).

The search progresses by generating children nodes by the

application of refinement operators. Refinement operators

can be seen as set splitting operations on the candidate sets

of search nodes - they map a search node Af to a set of

children nodes {Af'} such that Vi ((Af'} C (AT)).

Definition 1 Let R be a refinement strategy that maps a

node Af to a set of children nodes {Af!}. R is said to be

complete if\J{ ((Af-)) = ((AT)) (i.e., no candidate is lost in the

process ofrefinement).

R is said to be systematic if V^.^. ((Af{} n ((A/?)) = 0-

The search terminates when a node Af is found for which

the solution constructor returns a solution candidate, A

solution constructor sol is a 2-place function which takes a

search node Af and a solution criterion SQ as arguments. It

will return either one of three values:

1. *fail*, meaning that no candidate in ((A/*)) satisfies the

solution criterion

2. Some candidate c € ((Af)) which satisfies the solution

criterion (i.e., c is a solution candidate)

3. -L, meaning that sol can neither construct a solution

candidate, nor determine that no such candidate exists.

Figure 1 : An algorithm for generic refinement search

In the first case, Af can be pruned. In the second case

search terminates with success, and in the third, Af will

be refined further. Af is called a solution node if the call

sol(A/\ Sq) returns a solution candidate.

Definition 2 (Completeness of Refinement Search) A re

finement search with the refinement operator set R and a

solution constructor function sol is said to be complete if

for every solution candidate c of the problem, there exists

some search node Af that results from a finite number of

successive refinement operations on Af% (the initial search

node whose candidate set is the entire candidate space),

such that sol can pick up cfrom Af.

Search nodes as Constraint Sets: Although it is con

ceptually simple to think of search nodes in terms of their

candidate sets, we obviously do not want to represent the

candidate sets explicitly in our implementations. Instead, the

candidate sets are typically implicitly represented as gener

alized constraint sets associated with search nodes (c.f. [6])

such that every potential candidate that is consistent with

the constraints in that constraint set is taken to belong to

the candidate set of the search node. Under this representa

tion, the refinement of a search node corresponds to adding

new constraints to its constraint set, thereby restricting its

candidate set. Anytime the set of constraints of a search

node becomes inconsistent (unsatisfiable), the candidate set

becomes empty, and the node can be pruned.

Definition 3 (Inconsistent Search Nodes) A search node is

said to be inconsistent if its candidate set is empty, or

equivalently, its constraint set is unsatisfiable.

Search Space Size: Figure 1 outlines the general refine

ment search algorithm. To characterize the size of the search

space explored by this algorithm, we will look at the size of

the fringe (number of leaf nodes) of the search tree. Suppose

?i is the dth level fringe of the search tree explored by the

refinement search. Let > 0 be the average size of the

candidate sets of the search nodes in the dth level fringe, and

Pd(> 1) be the redundancy factor, i.e., the average number

of search nodes on the fringe whose candidate sets contain a

given candidate in K. It is easy to see that | Td\xKd = \1C\x.pi

(where 1. 1 is used to denote the cardinality of a set). If 6 is
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the average branching factor of the search, then the size of

(Ith level fringe is also given by bd. Thus, we have,

|^| = b* = B2LE£ (1)

In terms of this model, a minimal guarantee one would

like to provide is that the size ofthe fringe will never be more

than the size of the overall candidate space |/C|. Trying to

ensure this motivates two important notions of irredundancy

in refinement search: systematicity and strong systematicity.

Definition 4 (Systematicity and Strong Systematicity)

A refinement search is said to be systematic if for any

two nodes M and M' falling in different branches of the

search tree, then ((Af)) n ((.A/"')) = 0 (i.e., the candidate sets

represented by M and N' are disjoint). Additionally, the

search is said to be strongly systematic if it is systematic

and never refines an inconsistent node.

From the above, it follows that for a systematic search, the

redundancy factor, p. is 1. Thus, the sum of the cardinalities

of the candidate sets of the termination fringe will be no

larger than the set of all potential candidates K. For strongly

systematic search, in addition to p being equal to 1 , we also

have k > 1 (since no node has an empty candidate set) and

thus 1^1 < |£|.Thus,

Proposition 1 The fringe size of any search tree generated

by a strongly systematic refinement search is strictly bounded

by the size ofthe candidate space (i.e. \K.\).

It is easy to see that a refinement search is systematic

if and only if all the individual refinement operations are

systematic. To convert a systematic search into a strongly

systematic one, we only need to ensure that all inconsistent

nodes are pruned from the search. The complexity of the

consistency check required to effect this pruning depends

upon the nature of the constraint sets associated with the

search nodes.

3 Planning as Refinement Search

In this section, we shall develop a formal account of plan-

space planning as a refinement search. Whatever the exact

nature of the planner, the ultimate aim of (classical) planning

is to find a ground operator sequence, which when executed

in the given initial state, will produce desired behaviors or

sequences of world states. Most classical planning tech

niques have traditionally concentrated on the sub-class of

behavioral constraints called the goals of attainment [5],

which essentially constrain the agent's attention to behaviors

that end in world states satisfying desired properties. For

the most part, this is the class of goals we shall also be

considering in this paper (the exception is Section 6, which

shows that our framework can be easily extended to a richer

class of goals).

The operators (aka actions) in classical planning are mod

eled as general state transformation functions. We will be

assuming that the domain operators are described in ADL

[19, 20] representation with Precondition and Effect formu

las. The precondition and effect formulas are function-less

first order predicate logic sentences involving conjunction,

negation and quantification. The precondition formulas can

also have disjunction, but disjunction is not allowed in the

effects formula. The subset of this representation where both

formulas can be represented as conjunctions of function-less

first order literals, and all thevariables have infinitedomains,

is called the TWEAK representation (cf. [2. 10]).3

From the above definitions, it is clear that any potential

solution for a planning problem must be a ground operator

sequence. Thus, viewed as a refinement search, the can

didate space. AC, of a planning problem, is the set of all

ground operator sequences. As an example, if the domain

contains three ground actions ol.a2 and a3, then the regular

expression {al |a2|o3}* would describe the candidate space

for this domain. We will next define when a ground operator

sequence is considered a solution to a planning problem in

classical planning:

Definition 5 (Plan Solutions) A ground operator sequence

S '. 0\,02,-- <*n is said to be a solution to a planning

problem [I, Q], where I is the initial state of the world,

and Q is the specification of the desired behaviors, if the

following two restrictions are satisfied:

1. S is executable, i.e., 1 \- prec(o\), o\(Z) h precfa)

and On-iion-2- • • (oi(J))) h precion) (where prec(o)

denotes the preconditionformula ofthe operator o) and

2. The sequence of states I, oi(T), On(on-\---

(oi(I))) satisfies the behavioral constraints specified

in the goals ofthe planning problem.

For goals ofattainment, the second requirement is stated

solely in terms of the last state resulting from the plan

execution: o^On-i • • -(oi(J))) V Q. A solution S is said to

be minimal if no operator sequence obtained by removing

some ofthe operatorsfrom S is also a solution.

Traditionally, the completeness ofa planner is measured in

terms of its ability to find minimal solutions (cf. [22, 19, 14]):

Definition 6 (Planner Completeness) A planning algo

rithm is said to be complete if it can find all minimal

solutionsfor every solvable problem.

3.1 Refinement Search Semantics for Partial Plans

When plan-space planning is viewed as a refinement search,

the constraint sets associated with search nodes can be seen as

defining partial plans (in the following, we will be using the

terms "search node" and "partial plan" interchangeably).

The candidate set of a partial plan will be defined as all

the ground operator sequences that satisfy the partial plan

constraints.

The partial plan representation used by refinement

planners can be described in terms of a 6-tuple:

(T, O, B, ST, C, A) where:

• T is the set of steps in the plan; T contains two

distinguished steps to and .

• ST is a symbol table, which maps steps to domain

operators. The special step to is always mapped to

the dummy operator start, and similarly t^, is al

ways mapped to fin. The effects of start and the

3In TWEAK representation, the list of non-negated effects is

called the Add list while the list of negated effects is called the

Delete list.
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preconditions of fin correspond, respectively, to the

initial state and the desired goals (of attainment) of the

planning problem.

• O is a partial ordering relation over T.

• B is a set of codesignation (binding) and non-

codesignation (prohibited bindings) constraints on the

variables appearing in the preconditions and post

conditions of the operators.

• £ is a set of auxiliary constraints. Auxiliary constraints

are best seen as putting restrictions on the ground

operator sequences being represented by the partial

plan (see below).

• A is the set ofpreconditions oftheplan, which are tuples

of the form (c, s), where c is a condition that needs to

be made true before the step a € T. These include

the preconditions and secondary preconditions [19] of

all the actions introduced during planning process (see

Section 4). A is sometimes referred to as the agenda of

the plan.

Informally, the candidate set of a partial plan, V, is the set

of all ground operator (action) sequences that are consistent

with the step, ordering, binding and auxiliary constraints of

V. Before we can formalize mis notion, we need a better

characterization of auxiliary constraints.

Auxiliary Constraints: Informally, auxiliary constraints

should be seen as the constraints that need to be true for a

ground operator sequence to belong to the candidate set of a

partial plan. They can all be formalized as unary predicates

on ground operator sequences. We will distinguish two

types of auxiliary constraints: monotonic constraints and

non-monotonic constraints.

Definition 7 (Monotonic Auxiliary Constraints) An aux

iliary constraint C is monotonic ifgiven a ground operator

sequence S that does not satisfy C, no operator sequence S'

obtained by adding additional ground operators to S will

satisfy C.

Monotonic constraints are useful because of the pruning

power they provide. Ifnone ofthe ground operator sequences

matching the ground linearizations of a partial plan satisfy

its monotonic constraints, then that partial plan cannot have

a non-empty candidate set. and thus can be pruned. For this

reason, we will call the set ofmonotonic auxiliary constraints

of a partial plan its auxiliary candidate constraints (Ce),

and the set of non-monotonic auxiliary constraints of a

partial plan are called auxiliary solution constraints, (C,).

Although auxiliary solution constraints cannot be used to

prune partial plans, they can be used as a basis for selection

heuristics during search (see the discussion of MTC-based

goal selectors in Section 4.2, and that of filter conditions in

6).

Almost all of the auxiliary constraints employed in clas

sical planning can be formalized in terms of two primitive

types ofconstraints: intervalpreservation constraints (IPCs),

and point truth constraints (PTCs):

Definition 8 (Interval Preservation Constraint) An inter

val preservation constraint, (si, c, Sj) ofa plan V is said to

be satisfied by a ground operator sequence S according to

a mappingfunction M that maps steps ofV to elements of

S, ifand only if every operator o in S that comes between

M(si) and M(sj) preserves the condition c (i.e., ifc is true

in the state before o, then c will be true in the state after its

execution).4

Definition 9 (Point Truth Constraint) A point truth con

straint (c@s) is said to be satisfied by a ground operator

sequence S with respect to a mappingM thatmaps steps of

V to elements ofS, ifand only ifeither c is true in the initial

state, and is preserved by every action ofS occurring before

M(s), or c is made true by some action S[j] that occurs

before M(s), and is preserved by all the actions between

S\j] andM(s).

It is easy to see that interval preservation constraints

are monotonic constraints, while point truth constraints are

non-monotonic. In our model of refinement planning, IPCs

are used to represent book-keeping (protection) constraints

(Section 4.3) while PTCs are used to represent the solu

tion constraints. In particular, given any partial plan V,

corresponding to every precondition (C, 3) on its agenda,

the partial plan contains an auxiliary solution constraint

(C@s).s

We are now ready to formally define the candidate set of

a partial plan:6

Definition 10 (Candidate set of a Partial plan) Given a

partial plan V : (TtO,B,ST, C,A), a ground operator

sequence S is said to belong to V's candidate set, p3}, if

and only if there exists a mapping function M (called can

didate mapping) that maps steps ofV (excepting the dummy

steps to and t^) to elements of S, such that S satisfies all

the constraints ofV under the mappingM . That is,

1. Mis consistent with ST. That is, ifM maps the step s

to S[i] (i.e., the iih element in the operator sequence),

then S[i] corresponds to the same action as ST(s).

2. M is consistent with the ordering constraints O and

the binding constraints B. For example, ifsi -< a; , and

M(ai) = S[l] and M(8j) = S[m], then I < m.

3. S satisfies all the auxiliary candidate constraints (Cc)

under the mapping M.

Definition 11 (Solution Candidate of a Partial Plan)

A ground operator sequence S is said to be a solution

candidate of a partial plan V.ifSisa candidate ofV and

S satisfies all the auxiliary solution constraints ofV.

4Note that the plan does not have to make c true.

■Notice that this definition separates that the agenda precondi

tions from solution constraints. Under this model, the planner can

terminate without having explicitly worked on the preconditions

in the agenda (as long as the solution constraints are all true).

Similarly, it also allows us to post solution constraints that we do

not want the planner to explicitly work on (see the discussion about

filter conditions in Section 6).

''Note that by our definition, a candidate of a partial plan may

not be executable. It is possible to define candidate sets only in

terms of executable operator sequences (or ground behaviors). We

will stick with this more general notion of candidates, since coming

up with an executable operator sequence can it self be seen as part

of planning activity.
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Given the definitions above, and the assumption that

corresponding to every precondition of the plan, there exists

a point truth constraint on the auxiliary solution constraints,

we can easily prove the following relation between solution

candidates and solutions of a planning problem:

Proposition 2 Let I be the effect formula of to, and Q be

the precondition formula of too ofV. If a ground operator

sequence S is a solution candidate ofa partial plan V, then

S solves the problem [T, Q] according to Definition 5.

Example: To illustrate the definitions above, suppose the

partial plan V is given by the constraint set below, where the

auxiliary constraints are interval preservation constraints as

described above (the agenda field is omitted for simplicity):

/ {*0,tl,t2,*oo},{t0-:ti,ti -«*2,*2-i*oo},<&, \

( {*i -»oi,<2-» 02. to -» start, too -» fin}, )

\ t(ti,P,*2>,(t2, «,*«,)} /

Consider the ground operator sequence 5 : 010302. It

is easy to see that as long as the action 03 preserves p, 5

will belong to the candidate set of V. This is because there

exists a candidate mapping, M : {t\ —» S[l], t2 —» 5[3]}

according to which 5 satisfies all the constraints of V (the

interval preservation constraint (ti , p, tj) is satisfied as long

as 03 preserves p). Similarly, the ground operator sequence

S' : o\020$ belongs to the candidate set of V if and only if

05 preserves q.

Search Space Size: Search space size of a refinement

planner can be estimated with the help of Eqn. 1. A

minor problem in adapting this equation to planning is that

according to the definitions above, both candidate space and

candidate sets can have infinite cardinalities even for finite

domains. However, if we restrict our attention to minimal

solutions, then it is possible to construct finite versions of

both. Given a planning problem instance P, let Un be the

length of the longest ground operator sequence that is a

minimal solution of P. Let K, be the set of all ground

operator sequences of up to length lm- |£| provides an

upper bound on the number of operator sequences that need

to be examined to ensure that all minimal solutions for the

planning problem are found. In the rest of the paper, when

we talk about the candidate set of a partial plan, we will be

concerned about the subset of its candidates that belong to

K.

32 Candidate sets and Ground Linearizations

Traditionally, semantics for partial plans are given in terms of

their ground linearizations (rather than in terms of candidate

sets, as is done here).

Definition 12 A ground linearization (aka completion) of

a partial plan V :(T, O, B, ST, C, A) is afully instantiated

total ordering ofthe steps ofV that is consistent with O (i.e.,

a topological sort) and B.

A ground linearization is said to be a safe ground

linearization ifand only ifit also satisfies all the auxiliary

candidate constraints.1

7Note that safe ground linearizations do not have to satisfy

auxiliary solution constraints.

For the example plan discussed above, tot 1*2*00 is the only

ground linearization, and it is also a safe ground linearization.

Safe ground linearizations are related to candidate sets in the

following technical sense:

Proposition 3 Every candidate S belonging to the candi

date set ofa partialplan V : (T, OtB,ST,C, A) is either a

minimal candidate, in that it exactly matches a safe ground

linearization ofV (except for the dummy steps to and

and modulo the mapping of ST), or is a safe augmenta

tion of a minimal candidate obtained by adding additional

ground operators without violating any auxiliary candidate

constraints.

This proposition follows from the definition of candidate

constraints. Consider any candidate (ground operator se

quence) 5 of the plan V. Let M be the candidate mapping

according to which 5 satisfies the Definition 10. Consider

the operator sequence S' obtained by removing from 5 every

element S[t] such that M does not map any step in V to

S[i]. From the definition of candidate set, it is easy to see

that S' must match with a ground linearization ofV. Further,

since 5 satisfies all the auxiliary candidate constraints, and

since candidate constraints are monotonia it cannot be the

case that 5' violates them. Thus. 5' matches a safe ground

linearization of the plan.

For the example plan discussed above, 0102 is a mini

mal candidate because it exactly matches the safe ground

linearization to* 1*2*00 . under the mapping ST. The ground

operator sequence 01030204. where 03 does not add or delete

p. and 04 does not add or delete q, is a candidate of this plan.

It can be obtained by augmenting the minimal candidate

01 02 with the ground operators 03 and 04 without violating

auxiliary candidate constraints.

During search, it is often useful to recognize and prune

inconsistent plans (as they clearly cannot lead to solutions).

Proposition 4, which is a direct consequence of Proposition

3. provides a method of checking consistency in terms of

safe ground linearizations:

Proposition 4 A search node in refinementplanning is con

sistent if and only if the corresponding partial plan has at

least one safe ground linearization.

4 A generalized algorithm for Refinement

Planning

The algorithms Find-plan and Refine-Plan in Figure

2 instantiate the refinement search within the context of

planning. In particular, they describe a generic refinement-

planning algorithm, the specific instantiations ofwhich cover

the complete gamut of plan-space planners. Table 1 char

acterizes many of the well known plan-space planners as

instantiations of the Ref ine-Plan algorithm. The algo

rithms are modular in that individual steps can be analyzed

and instantiated relatively independently. Furthermore, the

algorithms do not assume any specific restrictions on action

representation, and can be used by any planner using ADL

action representation [19].

The refinement process starts with the partial plan V% ,

which contains the steps to and too, and has its agenda

and auxiliary solution constraints initialized to the top level
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Algorithm Find-Plan(J, £7) Parameters: sol: Solution

constructor function.

1. Initialize the open list with the null plan V% :

({to, too}, {to -< too}, 9, {to —» start, too -»

fin}, £j , At), where corresponding to each goal m 6 G.

At contains (gi, too), and £« contains (a«@too).

2. Nondeterministically pick a partial plan V from open.

3. If 301(7*, Q) returns a solution, return it, and terminate.

If it returns */«/», skip to Step 2. If it returns -L, call

Refine-plan^) to generate refinements of V. Add all

the refinements to the open list; Go back to 2.

Algorithm Refine-PlanCP) /*Returns refinements of V */

Parameters: (t) pick-prec: the routine for picking the

preconditions from the plan agenda for establishment, (it)

interacts?: the routine used by pre-ording to check if a

pair of steps interact, (tit) conflict-resolve: the routine

which resolves conflicts with auxiliary candidate constraints.

1. Goal Selection: Using the pick-prec function, pick a pre

condition {C, s) (where C is a precondition of step a) from

V to work on. Not a backtrack point.

2.1 . Goal Establishment: Non-deterministicaliy select a new or

existing establisher step a' for (C, a). Introduce enough or

dering and binding constraints, and secondarypreconditions

to the plan such that (i) a' precedes a (tt) a' will have an

effect C, and (m) C will persist until a (i.e., C is preserved

by all the steps intervening between a' and a). Backtrack

point; all establishmentpossibilities need to be considered.

22. Book Keeping: (Optional) Add auxiliary constraints noting

the establishment decisions, to ensure that these decisions

are protected by any later refinements. This in rum reduces

the redundancy in the search space. Theprotection strategies

may be one of goal protection, interval protection and

contributor protection (see text). The auxiliary constraints

may be one of point truth constraints or interval preservation

constraints.

3. Tractability Refinements: (Optional) These refinements

help in making the plan handling and consistency check

tractable. Use either one or both:

3.a. Pre-Ordering: Impose additional orderings between

every pair of steps of the partial plan that possi

bly interact according to the static interaction metric

interacts?. Backtrack point; all interaction or

derings need to be considered.

3,b. Conflict Resolution: Add orderings, bindings and/or

secondary (preservation) preconditions to resolve con

flicts between the steps of the plan, and the plan's

auxiliary candidate constraints. Backtrack point; all

possible conflict resolution constraints need to be

considered.

4. Consistency Check: (Optional) If the partial plan is inconsis

tent (i.e., has no safe ground linearizations), prune it.

5. Return the refined partial plan (if it is not pruned).

goals of attainment (preconditions of too)- The procedure

Refine-Plan specifies the refinement operations done

by the planning algorithm. Comparing this algorithm to

the refinement search algorithm in Figure 1, we note that

it uses two broad types of refinements: the establishment

refinements (steps 2.1, 2.2); and the tractability refinements

(step 3). In each refinement strategy, the added constraints

include step addition, ordering addition, binding addition, as

well as addition of auxiliary constraints. In the following,

we briefly review the individual steps of these algorithms.

4.1 Solution Constructor function

As discussed in Section 3, the job of a solution-constructor

function is to look for and return a solution candidate from

the candidate set of a partial plan. Since enumerating and

checking the full candidate set can be prohibitively expen

sive, most planners concentrate instead on the safe-ground

linearizations of the plan (which bound the candidate set

from above; see Proposition 3), and see if any of those

correspond to solution candidates. In particular, the follow

ing is the default solution constructor used by all existing

refinement planners (with respect to which completeness

results are proven):

Definition 13 ( All-sol) Given a partial plan V, all-sol re

turns with success only when V is consistent, all ofits ground

linearizations are safe, and each safe ground linearization

corresponds to a ground operator sequence that is a solution

candidate ofV.

The termination criteria ofall-sol correspond closely to the

notion of necessary correctness of a partially ordered plan,

first introduced by Chapman [2]. Existing planning systems

implement All-sol in two different ways: Planners such

as Chapman's TWEAK [2] use the modal truth criterion

to explicitly check that all the safe ground linearizations

correspond to solutions (we will call these the MTC-based

constructors). Planners such as SNIP [15] and UCPOP

[22] depend on protection strategies and conflict resolution

(see below) to indirectly guarantee the safety and necessary

correctness required by all-sol (we call these protection based

constructors). In this way, the planner will never have to

explicitly reason with all the safe-ground linearizations.

42 Goal Selection and Establishment

The most fundamental refinement operation is the so-called

establishment operation. It selects a precondition (C, s) of

the plan (where C is a precondition of a step a), and refines

(i.e., adds constraints to) the partial plan such that different

steps act as contributors of C to s in different refinements.

Chapman [2] and Pednault [19] provide theories of sound

and complete establishment refinement. Pednault' s theory is

more general as it deals with actions containing conditional

and quantified effects.8 It is possible to limit Refine-Plan

to establishment refinements alone and still get a sound and

complete (in the sense of Definition 2) planner (using the

default solution constructor all-sol described earlier).

In Pednault's theory, establishment of a condition c at

a step 5 essentially involves selecting some step «' (either

Figure 2: A generalized refinement algorithmforplan-space

planning

And also separates checking truth of a proposition from plan

ning to make that proposition true, see [10].
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Soln. Constructor Goal Selection Book-keeping | Tractability Refinements

Tweak [2] MTC-based MTC-based None None

(0(n4) for TWEAK rep;

NP-hard with ADL)

(0(n4) for TWEAK rep;

NP-hard with ADL)

UA [16] MTC-based 0(n4) MTC-based 0(n4) None Unambiguous ordering

Nonlin [26] MTC (Q&A) based Arbitrary O(l) Goal Protection via Q&A Conflict Resolution

TOCLM Protection based O(l) Arbitrary O(l) Contributor protection Total ordering

Pedestal [14] Protection based O(l) Arbitrary O(l) Interval Protection Total ordering

SNLP [15]

UCPOP [22]

Protection based

0(1)

Arbitrary Contributor protection Conflict resolution

00)

MP, MP-I [8] Protection based Arbitrary (Multi) contributor protection Conflict resolution

SNLP-UA Protection based 0(1)/

MTC based/0(n4)

Arbitrary O(l)/ Contributor protection Unambiguous Ordering

(cf. Section 5.3.1) Pick if nec. false. /0(n4)

Table 1 : Characterization of existing planners as instantiations of Re fine-Plan

existing or new), and adding enough constraints to the plan

such that (i) a' < a, (it) a' causes c to be true and (Hi) c is

not violated before 5. To ensure it, we need to in general

ensure the truth of certain additional conditions before a".

Pednault calls these the causation preconditions of a" with

respect to c. To ensure Hi. for every step a" of the plan, we

need to either make a" come before a', or make a" come

after a, or make a" necessarily preserve c. The last involves

guaranteeing truth of certain conditions before a". Pednault

calls these the preservation preconditions of a" with respect

to c. Causation and precondition preconditions are called

secondary preconditions of the action. These are added to the

agenda of the partial plan, and are treated in the same way as

normal preconditions. (This includes adding a PTC (c@a) to

the auxiliary solution constraints, whenever a precondition

(c, a) is added to the agenda; see Section 3.1).

Goal Selection: The strategy used to select the particular

precondition (C, a) to be established, (called goal selection

strategy) can be arbitrary, can depend on some ranking based

on precondition abstraction [24], and/or demand driven (e.g.

select a goal only when it is not already necessarily true

according to the modal truth criterion [2]). The last strategy,

called MTC-based goal selection, involves reasoning about

truth of a condition in a partially ordered plan, and can be

intractable for general partial orderings consisting of ADL

[19] actions (see Table 1, as well as the discussion of

pre-ordering strategies in Section 4.5.1.).

43 Book Keeping and Protecting establishments

It is possible to do establishment refinement without book

keeping step. Chapman's TWEAK [2] is such a planner.

However, such a planner is not guaranteed to respect its

previous establishment decisions while making new ones,

and thus may have a high degree ofredundancy. Specifically

such a planner may (i) wind up visiting the same candidate

(potential solution) in more than one search branch (in terms

of our search space characterization, this means p > 1), and

(ii) wind up repeatedly establishing and clobbering the same

precondition. The book-keeping step attempts to reduce

these types of redundancy.

At its simplest, the book-keeping may be nothing more

than removing each precondition from the agenda of the

partial plan once it is considered for establishment. When the

agenda ofa partial plan is empty, it can be pruned without loss

ofcompleteness (this is because the establishment refinement

looks at all possible ways of establishing a condition at the

time it is considered).

A more active form of book-keeping involves protecting

previous establishments in a partial plan, while making new

refinements to it. In terms of Ref ine-Plan, such pro

tection strategies can be seen as posting auxiliary candidate

constraints on the partial plan to record the establishment

decisions, and ensuring that they are not violated by the

later refinements. If they are violated, then the plan can be

abandoned without loss of completeness (even if its agenda

is not empty). The protection strategies used by classical

partial order planners come in two main varieties: interval

protection (aka causal link protection, or protection inter

vals), and contributor protection (aka exhaustive causal link

protection [8]). They can both be represented in terms of the

interval preservation constraints.

Suppose the planner just established a condition c at step

a with the help of the effects of the step a'. For planners

using interval protection (e.g.. PEDESTAL [14]), the book

keeping constraint requires that no candidate of the partial

plan can have p deleted between operators corresponding

to a' and a. It can thus be modeled in terms of interval

preservation constraint (a',p, a). Finally, for book keeping

based on contributor protection, the auxiliary constraint

requires that no candidate of the partial plan can have p

either added or deleted between operators corresponding to

s' and a.9 This contributor protection can be modeled in

terms of the twin interval preservation constraints (a',p, a)

and (a',-ip, a).

While most planners use one or the other type of protec

tion strategies exclusively for all conditions, planners like

NONLIN and O-Plan [26. 27] post different book-keeping

constraints for different types of conditions. Finally, the

interval protections and contributor protections can also be

generalized to allow for multiple contributors supporting a

given condition (see [8] for a motivation and formal treatment

of this idea).

While all the book-keeping strategies described above

avoid considering same precondition for establishment more

than once, only the contributor protection eliminates the

redundancy of overlapping candidate sets, by making estab-

9See [7] for a coherent reconstruction of the ideas underlying

goal protection strategies.



336 S. Kambhampati

lishment refinement systematic. Specifically, we have:

Propositions Establishment refinement with exhaustive

causal links is systematic in that partial plans in differ

ent branches of the search tree will have non-overlapping

candidate sets (thus p = I).

This property can be proven from the fact that contrib

utor protections provide a way of uniquely naming steps

independent of the symbol table mapping (see [15, 7]). To

understand this, consider the following partial plan (where

the agenda and the auxiliary solution constraints are omitted

for simplicity):

/ {*0,*1,*oo},{*0-!*1,*1 X*oo},0, \

M '■ ( {*i ~* °ii *o -» start, t<» —» fin}, )

\ {(*l>P.*oo){tl,-'P,too)} /

where the step f 1 is giving conditionp to too . the goal step.

Suppose ti has a precondition q. Suppose further that there

are two operators 02 and 03 respectively in the domain which

can provide the condition q. The establishment refinement

generates two partial plans:

/ {to,tl,t2,too},{toXt2,t2Xtl,ti ^too},0, ,

M : ( {ti —» o\,tt —► 02, to —► start, too —* fin},

\ {(*l,Pi*oo),(tl,->P,too),(t2ig.*oo),(t2,-,9.too>} /

/ {to)tl,t2,too},{to-;t2,t2Xti,t1 -<too},0, \

Mi'A |*i -»oi.t3 -*O3,t0-» start, too -» fin}, )

\ {(*l,P.*oo),(*l,-,P,*oo)(t2,9,too)(t2,-'9,too)} /

Consider the step t2 in M\ . This can be identified inde

pendent of its name in the following way:

"The step which gives q to the step which in turn

gives p to the dummy final step' '

An equivalent identification in terms of candidates is:

' 'The last operator with an effect q to occur before

the last operator with an effect p in the candidate

(ground operator sequence) ' '

The contributor protections ensure that this operator is 02

in all the candidates ofM and 03 in all the candidates ofA/2.

Because ofthis, no candidate ofM can ever be a candidate of

A/2, thus ensuring systematicity ofestablishment refinement.

4.4 Consistency Check

The aim of the consistency check is to prune inconsistent

partial plans (i.e., plans with empty candidate sets) from

the search space, thereby improving the performance of the

overall refinement search. (Thus, from completeness point

of view, consistency check is an optional step.) Given the

relation between the safe ground linearizations and candidate

sets, the consistency check can be done by ensuring that each

partial plan has at least one safe ground linearization. This

requires checking the consistency of orderings, bindings

and auxiliary constraints of the plan. Ordering consistency

can be checked in polynomial time, binding consistency is

tractable for infinite domain variables, but is intractable for

finite domain variables. Finally, consistency with respect to

auxiliary constraints is also intractable for many common

types of auxiliary candidate constraints (even for ground

partial plans without any variables). Specifically, we have:

Proposition 6 Given a partial plan whose auxiliary candi

date constraints contain interval preservation constraints,

checking if there exists a safe ground linearization of the

plan is NP-hard.

This proposition directly follows from the result in [25],

which shows that checking whether there exists a conflict-

free ground linearization of a partial plan with interval

protection constraints is NP-hard.

45 Tractability refinements

Since, as observed above, the consistency check is NP-hard

in general, each call to Refine-Plan is also NP-hard. It

is of course possible to reduce the cost of refinement by

pushing the complexity into search space size. Specifically,

when checking the satisfiability of a set of constraints is

intractable, we can still achieve polynomial refinement cost

by refining the partial plans into a set of mutually exclusive

and exhaustive constraint sets such that the consistency of

each ofthose refinements can be checked in polynomial time,

while preserving the completeness and systematicity of the

search. This is the primary motivation behind tractability

refinements. There are two types of tractability refinements:

pre-ordering and conflict resolution. Both these aim to

maintain partial plans all of whose ground linearizations are

safe ground linearizations.

45.1 Pre-ordering refinements

Pre-ordering strategies aim to restrict the type of partial

orderings in the plan such that consistency with respect

to auxiliary candidate constraints can be checked without

explicitly enumerating all the ground linearizations. Two

possible pre-ordering techniques are total ordering and un

ambiguous ordering [16]. Total ordering orders every pair

of steps in the plan, while unambiguous ordering orders a

pair of steps only when one of the steps has an effect c. and

the other step either negates c or needs c as a precondition

(implying that the two steps may interact). Both of them

guarantee that in the refinements produced by them, either

all ground linearizations will be safe or none will be.10 Thus,

consistency can be checked in polynomial time by examining

any one ground linearization.

Pre-ordering techniques can also make other plan handling

steps, such as MTC-based goal selection and MTC-based

solution constructor, tractable (c.f. [16. 7]). For example,

unambiguous plans also allow polynomial check for neces

sary truth of any condition in the plan. Polynomial necessary

truth check can be useful in MTC-based goal selection and

termination tests. In fact, unambiguous plans were originally

used in UA [16] for this purpose.

4.52 Conflict Resolution Refinements

Conflict resolution refines a given partial plan with the aim

of compiling the auxiliary constraints into the ordering and

binding constraints. Specifically, the partial plan is refined

(by adding ordering, bindingor secondary preconditions [19]

to the plan) until each possible violation of the auxiliary can

didate constraint (called conflict) is individually resolved.

The definition of conflict depends upon the specific type

Li the case of total ordering, this holds vacuously true since the

plan has only one linearization
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of auxiliary constraint. An interval preservation constraint

(«*»Pi»j) is violated (threatened) whenever a step a' can

possibly come between ti and ij and not preserve p. Re

solving the conflict involves either making 5' not intervene

between 5, and «; (by adding either the ordering a' -< 4

or the ordering aj -< a'), or adding secondary (preservation)

preconditions of a', required to make a' preserve c [19], to

theplan agenda (and the correspondingPTCs to the auxiliary

solution constraints; see Section 3.1). When all conflicts

are resolved this way, the resulting refinements will have the

property that all their ground linearizations are safe. Thus,

checking the partial plan consistency will amount to check

ing for the existence of ground linearizations. This can be

done by checking ordering and binding consistency.

5 Applications of the Unified Framework

The componential view of refinement planning, provided by

the Refine-Plan algorithm has a variety of applications

in understanding and analyzing the performance tradeoffs in

the design of plan-space planning algorithms. I will briefly

discuss these in this section.

5.1 Explication and analysis of Design Tradeoffs

We have seen that the various ways of instantiating

Refine-Plan algorithm correspond to the various choices

in designing the plan-space planning algorithms. The model

for estimating search space size, developed in Section 2,

provides a way of analyzing the search space size vs. re

finement cost tradeoffs provided by these different design

choices. Understanding these tradeoffs allows us to predict

the circumstances under which specific techniques will lead

to performance improvements.

If C is the average cost per invocation of the

Refine-Plan algorithm, b is the average branching factor

and d, is the effective depth of the search, then the cost of

the planning (in a breadth-first regime) is C x \Tim | (where

Ti, is the size of the fringe at d,th level of the search tree.

From Section 3 (Eqn. 1), we have

C itself can be decomposed into three main components:

C ■ Ce + Ce + C,, where C«, is the establishment cost

(including the cost of selecting the open goal to work on),

C, is the cost of solution constructor, and Cc is the cost of

consistency check. The average branching factor, b can be

split into two components, bt, the establishment branching

factor, and bt the tractability refinement branching factor,

such that b = bt x bt. bt and bt correspond, respectively, to

the branching made in steps 2 and 3 of the Refine-Plan

algorithm.

This simple model is remarkably good at explaining and

predicting the tradeoffs offered by the different ways of

instantiating Ref ine-Plan algorithm. One ubiquitous

tradeoff is between that of search space size (\Td\) and

refinement cost (C): almost every method for reducing

C increases T&. and vice versa. For example, consider

the MTC-based and protection-based solution constructors

discussed in Section 4.1. Protection based constructors

have to wait until each precondition of the plan has been

considered for establishment explicitly, while the MTC-

based constructors can terminate the search as soon as all

the preconditions in the partial plan are necessarily correct

(according to the modal truth criterion). MTC-based solution

constructors can thus allow the search to end earlier, reducing

the effective depth of the search, and thereby the size of the

explored search space. In terms of candidate space view,

such stronger solution constructors lead to larger «<j at the

termination fringe. However, at the same time they increase

the cost of refinement C (specifically the C, factor). For

example, MTC-based solution constructor has to reason with

all safe ground linearization of the plan explicitly, and can

thus be intractable for general partial orderings involving

ADL actions [10, 2]. Protection-based constructor, on the

other hand need only check that the agenda is empty, and

that there are no unresolved conflicts (which can be done in

O(l) time).

Book-keeping techniques aim to reduce the redundancy

factor pi. This tends to reduce the fringe size, \Ti\. Book

keeping constraints do however tend to increase the cost of

consistency check. In particular, checking the consistency

of a partial plan containing interval preservation constraints

is NP-hard even for ground plans in TWEAK representation

(c.f. [25]). Tractability refinements primarily aim to reduce

the Ce component of refinement cost. In terms of search

space size, tractability refinements further refine the plans

coming out of the establishment stage, thus increasing the

(bt component of the) branching factor.

This \Ti\ vs. C tradeoff also applies to other types

of search-space reduction techniques such as deferment of

conflict resolution [21, 7]. Since conflict resolution is

an optional step in Refine-Plan, the planner can be

selective about which conflicts to resolve, without affecting

the completeness or the systematicity of Ref ine-Plan.

Conflict deferment is motivated by the idea that many of the

conflicts are ephemeral, and will be resolved automatically

during the course ofplanning. Thus, conflict deferment tends

to reduce the search space size by reducing the tractability

branching factor bt . This does not come without a penalty

however. Specifically, when the planner does such partial

conflict resolution, the consistency check has to once again

test for existence of safe ground linearizations, rather than

order and binding consistency (making consistency check

intractable once again). Using weaker consistency checks,

such as order and binding consistency check, can lead to

refinement of inconsistent plans, thereby reducing nd and

increasing \Ti\.

5.1.1 Depth First Search Regimes

Although the above analysis dealt with breadth-first search

regimes, the Ref ine-Plan algorithm also allows us to

analyze the performance of different planning algorithms in

depth first regimes [7]. Here, the critical factor in estimating

the explored search space size is the probability that the

planner picks a refinement that contains at least one solution

candidate. Even small changes in this probability, which we

shall call success probability, can have dramatic effects on

performance.

To illustrate, let us consider the effect of tractability

refinements on the success probability. If we approxi

mate the behavior of all the refinement strategies used by
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Refine-Plan as random partitioningofcandidate set of a

plan into some number of children nodes, then it is possible

to provide a quantitative estimate of the success probability.

Consider the refinement of a plan V by Ref ine-Plan.

Suppose that V has m solution candidates in its candidate

set. If b is the average branching factor, then Refine-Plan

splits V into b different children plans. The success proba

bility is just the probability that a random node picked from

these 6 new nodes contains at least one solution candidate.

This is just equal to q(m, b) where q(m, b) is the binomial

distribution:11

**»-l'(7)^H)'

It can be easily verified that for fixed m, g(m, 6), the

success probability, monotonically decreases with increas

ing b. As the success probability reduces, the size of the

explored search space increases. Thus, under random parti

tioning model, the addition of tractability refinements tends

to increase the explored search space size even in depth-first

search regimes. The only time we will expect reduction in

search space size is if the added refinements distribute the

solutions in a non-uniform fashion, thereby changing the

apparent solution density (of. [17]).

5.2 Facilitation of Well-founded Empirical

Comparisons

Given the variety of ways in which Refine-Plan can be

instantiated, it is important to understand the comparative

advantages of the various instantiations. While theoretical

analyses of the comparative performances are desirable,

sometimes either they are not feasible, or the performance

tradeoffs may be critically linked to problem distributions.

In such cases, comparisons must inevitably be based on

empirical studies.

The unified framework offers help in designing focused

empirical studies. In the past, empirical analyses tended to

focus on a wholistic "black-box" comparisons of brand-

name planning algorithms, such as TWEAK vs. SNLP

(c.f. [13]). It is hard to draw meaningful conclusions from

such comparisons, since when seen as instantiations of our

Refine-Plan algorithm, they differ on a variety of di

mensions (see Table 1). A more meaningful approach,

facilitated by the unifying framework of this paper, involves

comparing instantiations of Ref ine-Plan that differ only

on a single dimension. For example, if our objective is

to judge the utility of specific protection (book-keeping)

strategies, we could keep everything else constant and vary

only the book-keeping step in Ref ine-Plan. In contrast,

when we compare TWEAK [2] with SNLP [15], we are

not only varying the protection strategies, but also the goal

selection, conflict resolution and termination (solution con

structor) strategies, making it difficult to form meaningful

hypotheses from empirical results.

{{q(rn,n) is the probability that a randomly chosen urn will

contain at least one ball, when m balls are independently randomly

distributed into n urns. This is equal to probability that a randomly

chosen urn will have all m balls phis the probability that it will

have m - 1 balls and so on plus the probability that it will have 1

ball

In [1 1], I exploit this experimental methodology to com

pare the empirical performance of a variety of normalized

instantiations of Ref ine-Plan algorithm. These experi

ments reveal that the most important cause for the perfor

mance differentials among different refinement planners are

the differences in the tractability refinements they employ.

Although tractability refinements increase the bt component

of the branching factor, they may also indirectly lead to a

reduction in the establishment branching factor. be. The

overall performance of the planner thus depends on the in

terplay between these two influences. The book-keeping

(protection) strategies themselves only act as an insurance

policy that pays off in the worst-case scenario when the

planner is forced to look at a substantial part of its search

space.

S3 Designing planners with better tradeoffs

By providing a componential view ofthe plan-space planning

algorithms, and explicating the spectrumofpossibleplanning

algorithms, the unified framework also facilitates the design

of novel planning algorithms with interesting performance

tradeoffs. We will look at two examples briefly:

5.3.1 Strong systematicity with polynomial refinement

As we noted earlier, a refinement search is strongly sys

tematic if it is systematic, and never refines an inconsistent

node. From Table 1, we see that there exist no partial or

der planning algorithms which are both strongly systematic

and have polynomial time refinement complexity. SNLP,

which uses contributor protection, is systematic and can be

strongly systematic as long as the consistency check is pow

erful enough to remove every inconsistent plan from search.

However, checking whether a general partially ordered plan

is consistent with respect to a set ofexhaustive causal links is

NP-hard in general [25]. This raises the interesting question:

Is it possible to write a partial order planning algorithm

that is both strongly systematic and has a polynomial time

refinement cycle?

Our modular framework makes it easy to synthesize such

an algorithm. Table 1 describes a novel planning algorithm

called SNLP-UA which uses exhaustive causal links for

book-keeping, and uses a pre-ordering refinement whereby

every pair of steps s\ and s2 such that an effect of si pos

sibly codesignates with a precondition or an effect of 52,

are ordered with respect to each other.12 Such an ordering

converts all potential conflicts into either necessary conflicts,

or necessary non-conflicts.13 This in turn implies that either

all ground linearizations are safe or none of them are. In

either case, consistency can be checked in polynomial time

by examining any one of the ground linearizations. SNLP-

UA is thus strongly systematic, maintains partially ordered

plans, but still keeps the refinement cost polynomial. It could

thus strike a good balance between systematic planners such

as SNLP and unsystematic, but polynomial-time refinement

12Note that mis definition of interaction is more general than

the one used by UA [17]. It is required because of the contributor

protections used by SNLP-UA (see [7]).

13For actions with conditional effects, a necessary conflict can

be confronted by planning to make the preservation preconditions

true for the interacting step.
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planners such as UA. In [1 1], I provide empirical compar

isons between SNLP-UA and other possible instantiations of

Refine-Plan.

532 Polynomial eager solution-constructors

As discussed in Section 4. 1 , all-sol, the solution constructor

used in all existing plan-space planners returns with success

only when all the safe ground linearizations of the partial

plan are solutions. Our refinement search paradigm suggests

that such solution constructors are over-conservative since

the goal of planning is only to find one solution. In contrast,

eager solution constructors, that stop as soon as they find

a safe ground linearization that is a solution, will reduce

solution depth, increase k, and there by reduce search-space

size. The most eager constructor, which I call all-eager-

constructor, would stop as soon as the partial plan contains

at least one safe ground linearization that is a solution.

Unfortunately both the all-sol and all-eager-constructor are

NP-hard in general, as the problem of finding necessary

and possible truth of a proposition in a partially ordered

plan can respectively be reduced to them [10]. This raises

the interesting question: Are there any domain-independent

eager solution-constructors that are tractable? I answer the

question in the affirmative by providing a family of tractable

eager solution constructors called k-eager-constructors:

Definition 14 (k-eager Constructor) Given a partial plan

V, a k-eager-constructor randomly enumerates at most k

ground linearizations ofV, and returns any one ofthem that

is safe and corresponds to a solutionfor V.

The k-eager-constructors are tractable since they only enu

merate and check at most k different ground linearizations.

Based on the value of k, they define a family of solu

tion constructors whose cost increases and effective solution

depth reduces with increasing k. Finally, the solution depth

of k-eager-constructor is guaranteed to lie between that of

all-eager-constructor and the MTC-based all-sol solution

constructor, thus providing an interesting balance between

the two. Empirical studies are currently under way to assess

the practical impact of these constructors.

5.4 Pedagogical explanatory power

The unifying framework also has clear pedagogical advan

tages in terms of clarifying the relations between many

brand-name planning algorithms, and eliminating several

long-standing misconceptions. An important contribution of

Ref ine-Plan is the careful distinction it makes between

book-keeping constraints or protection strategies (which aim

to reduce redundancy), and tractability refinements (which

aim to shift complexity from refinement cost to search space

size). This distinction removes many misunderstandings

about plan-space planning algorithms. For example, it clar

ifies that the only motivation for total ordering plan-space

planners is tractability of refinement. Similarly, in the past

it has been erroneously claimed ( e.g. [13]) that the system-

aticity of SNLP increases the effective depth of the solu

tion. Viewing SNLP as an instantiation of Refine-Plan

template, we see that it corresponds to several relatively

independent instantiation decisions, only one of which, viz.,

the use of contributor protections in the book-keeping step,

has a direct bearing on the systematicity of the algorithm.

From the discussion in Section 4, it should be clear that

the use of exhaustive causal links does not. ipso facto, in

crease the solution depth in any way. Rather, the increase

in solution depth is an artifact of the particular solution

constructor function, and the conflict resolution and/or the

preordering strategies used in order to get by with tractable

termination and consistency checks. These can be replaced

without affecting the systematicity property. Similarly, our

framework not only clarifies the relation between the un

ambiguous planners such as UA [17] and causal-link based

planners such as SNLP [IS], it also suggests fruitful ways

of integrating the ideas in the two planning techniques (cf.

SNLP-UA in Section 5.3.1).

6 Extending the framework

In this section, I will discuss how the Refine-Plan

framework can be extended to handle a wider variety of

behavioral constraints (beyond goals of attainment), as well

as other types of planning models.

Maintenance goals are a form of behavioral constraints

which demand that a particular condition be maintained (not

violated) throughoutdie execution ofthe plan (e.g. keep A on

B while transferring C to D; avoid collisions while traveling

to room R). They can be modeled in the Refine-Plan

algorithm simply as auxiliary candidate constraints. For

example, we can maintain On(A, B) by adding the inter

val preservation constraint (to, On(A, B), too) to V% in the

Find-Plan algorithm in Figure 2.

Intermediate goals are useful to describe planning prob

lems which cannot be defined in terms of the goal state

alone. As an example, consider the goal of making a round

trip from Phoenix to San Francisco. Since the initial and

final location of the agent is Phoenix, this goal cannot be

modeled as a goal of attainment, i.e.. a precondition of too

(unless time is modeled explicitly in the action representa

tion [23]). However, we can deal with this goal by adding

an additional dummy step (say tp) to the plan such that tD

has a precondition At(Phoenix) and f«, has a precondition

At(SFO), and t0 -< tD ■< *».

Many refinement planners (especially the so-called task

reduction planners) use extensions such as condition-typing

[26], time-windows [27] and resource based reasoning

[27, 28]. Many of these extensions can be covered with

the auxiliary constraint mechanism Tune windows and

resource reasoning aim to prune partial plans that are in-

feasible in terms of their temporal constraints and resource

requirements. These can, in principle, be modeled in terms

of monotonic auxiliary constraints. Condition typing allows

the domain user to specify how various preconditions of an

operator should be treated during planning [26]. In particu

lar, some planners use the notion offilter conditions, which

are the applicability conditions of the operators that should

never be explicitly considered for establishment. Filter con

ditions thus provide a way for the domain writer to disallow

certain types of solutions (e.g., building an airport in a city

for the express purpose of going from there to another city)

even if they satisfy the standard definition of plan solutions

l4In the past, some researchers (e.g. [4]) have claimed (mis

takenly) that intermediate goals of this type cannot be modeled in

classical planning without hierarchical task reduction.
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(see Definition 5). Filter conditions can be modeled as

point truth constraints, and included in the auxiliary solution

constraints (without adding them to the agenda) [12]. Since

they are (non-monotonic) solution constraints, they cannot

be used to prune partial plans. However, they can be used

as a basis for selection heuristics (viz., to prefer partial plans

which have already satisfied filter conditions).1

Finally, Refine-Plan can also be extended to cover

planning models other than plan-space planning. To

cover state-space planners (cf. [1]), we need to allow

Refine-Plan to use incomplete establishment refine

ments, and backtrack over goal-selection to make the overall

search complete. The HTN planners (cf. [27. 4]) can be

modeled by extending the refinement algorithm such that its

main refinement operation is task reduction rather than estab

lishment (with establishment refinement being a particular

way of reducing tasks); see [12].

7 Conclusion

In this paper, I have shown that refinement search provides

a unifying framework for understanding the performance

tradeoffs in plan-space planning. I have developed a formal

ization ofplan-space planning in terms of refinement search,

and gave a generic refinement search algorithm in which the

complete gamut of plan-space planners can be cast. I have

shown that this unifying framework facilitates explication

and analysis of performance tradeoffs across a variety of

planning algorithms. I have also shown that it could help

in designing new algorithms with better cost-benefit ratios.

Although I concentrated on the plan-space planners solving

problems involving goals of attainment. I have shown (Sec

tion 6) that the framework can be extended to cover richer

types of behavioral constraints, as well as other types of

planners (e.g. state-space planners, hierarchical planners).
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Abstract

We define and study a high-level language for

describing actions that extends the language A

introduced by Gelfond and Lifschitz. The new

language, Alio, allows us to describe actions with

indirect effects (ramifications) and simple forms

of nondeterminism. A translation from ARo into

a formalism based on circumscription is proved

to be sound and complete.

1 Introduction

Describing properties of actions and their effects on the state

of the world has long been considered one of the central

problems in the theory of knowledge representation. The

approaches proposed in the literature differ by the temporal

ontologies they use (linear or branching time, time points

or intervals, situations, events or histories), by the logic

used (classical logic, its nonmonotonic extensions, logic

programming), and by other details of the formalization

(which objects are reified, which circumscription policy is

used, etc.).

In this area of research, it turned out to be difficult to discuss

the possibilities and limitations of the available methods in

a precise and general way. The tradition is to explain every

new approach with reference to a few standard examples,

such as the blocks world or the "Yale Shooting" story and

its enhancements. Competing approaches are evaluated and

compared mostly in terms of their ability to handle these

examples. Such analysis does not say much about the range

of applicability of each method.

Several recent publications, including [Pednault, 1989],

[Lifschitz, 1991], [Lin and Shoham, 1991], [Reiter, 1991]

and [Sandewall, 1992], attempt to overcome this problem

and to discuss representing action in a methodical and theo

retically sound way. Gelfond and Lifschitz [1993] address

this issue by introducing a simple "high-level" language,

called A, designed specifically for describing the effects of

actions. Here, for instance, is the "Yale Shooting" domain

Vladimir Lifschitz

Department of Computer Sciences

and Department of Philosophy

University of Texas at Austin

Austin, Texas 787 1 2- 1 1 88

encoded in A:

initially -'Loaded,

initially Alive,

Load causes Loaded, ( 1 )

Shoot causes ->Alive if Loaded,

Shoot causes -•Loaded.

The first two lines are "value propositions"—they provide

information about the values of fluents, such as Loaded or

Alive, at a specific point in time (in this case, in the initial

situation). The other three are "effect propositions"—they

describe the effects of actions, such as Load or Shoot. The

semantics of A allows us to determine which value propo

sitions are "entailed" by this domain description. One such

proposition, for instance, is

-•Alive after Load; Wait; Shoot.

The available methods for describing actions in logic can

be characterized as translations from high-level action lan

guages into monotonic or nonmonotonic logic-based for

malisms. The claim that such a method is adequate turns

then into a mathematically verifiable property of the corre

sponding translation. Competing methods can be compared

by comparing the high-level languages to which they are

applicable.

In [Gelfond and Lifschitz, 1 993], for instance, a new method

for representing actions in logic programming is specified

as a translation from a subset ofA into a logic programming

language, and the translation is proved to be sound relative

to the semantics of A. In [Kartha, 1993], the methods for

formalizing action in classical logic proposed in [Pednault,

1989] and [Reiter, 1991], as well as the use of circumscrip

tion in [Baker, 1991], are described as translations from

A, and the soundness and completeness theorems for these

translations are stated. In the same spirit, A is translated

into abductive logic programming in [Dung, 1993] and [De-

necker and De Schreye, 1993], and into equational logic

programming in [Thielscher, 1994].

If a theorem prover, or a query evaluation procedure, is

available for the target language of such a translation, then

it becomes possible to use the translation for the automation

of reasoning about action. For example, the logic program

ming interpreter XOLDT [Chen and Warren, 1992] is put to
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such use in [Lifschitz et ai, 1993], the abductive procedure

SLDNFA in [Denecker and De Schreye, 1993], and the the

orem prover of [Boyer and Moore, 1988] in [Subramanian,

1993].

In [Thielscher, 1993], the language A is related to the ideas

of [Sandewall, 1992].

In spite of its extremely simple syntax, A provides a frame

work for discussing some interesting cases of reasoning

about action, including temporal projection with incom

plete information about the initial situation, reasoning from

the future to the past ("explanation"), and some forms of

hypothetical reasoning ("if a different sequence of actions

were performed. . ."). In many ways, however, the expres

sive possibilitiesof this language are limited. This has led to

the development of a few enhancements of A. Dung [ 1 993]

proposed a "relational" version of A, in which fluents and

actions may have arguments. In [Denecker and De Schreye,

1993] and [Thielscher, 1994], dialects of A are outlined in

which one can describe actions with nondeterministic ef

fects. Baral and Gelfond [1993] extend A by an operator

for the concurrent execution of a set of actions. The dialect

of A defined in [Lifschitz, 1993b] provides symbols for

time intervals.

This paper addresses yet another limitationofA—its inabil

ity to represent domain constraints. In A, any combination

of fluent values represents a possible state of the system.

The extension of A presented below is, in this respect, dif

ferent. We will be able, for instance, to extend domain

description ( 1 ) by the constraint

always Walking D Alive, (2)

where Walking is a new fluent name. This constraint tells

us that an assignment of truth values to fluents represents a

state only if it makes the conditional Walking D Alive true.

The domain description consisting of propositions (1) and

proposition (2) entails, for instance, the value proposition

-^Walking after Load; Wait, Shoot.

Note that the fluent Walking does not occur in the effect

propositions. Thus any change in the value of Walking is

an indirect effect, or ramification, of the actions that have

been performed. The possibility oframifications is the main

feature of the dialect ofA introduced here. We call this lan

guage AHo; A stands for "actions," H for "ramifications,"

and the subscript 0 is used to distinguish this language from

the more expressive language AH that will be defined in

the journal version of the paper.

Besides the ability to describe indirect effects, the new lan

guage has other expressive possibilities that A lacks. It al

lows us to specify not only "fluent preconditions"—thecon

ditions that need to be satisfied in order for an action to affect

a specific fluent—but also "action preconditions," which, if

violated, make the execution of an action impossible.1 In

AHo, we can specify a "coordinate frame" in the space of

'This terminology belongs to Reiter [1991].

situations, as suggested in [Lifschitz, 1990]; the common-

sense law of inertia applies only to the fluents that belong

to the frame. Finally, the effects of the actions described in

Alio can be nondeterministic.

The syntax of the new action language is described in Sec

tion 2. Examples illustrating the use ofthe language are pro

vided in Section 3, and its semantics is defined in Section 4.

In Section 5, we show how two well-known properties of

first-order logic—the replacement theorem and the theorem

on the conservativeness of definitional extensions—can be

extended to AHo. In Section 6, the language A from [Gel-

fond and Lifschitz, 1993] is embedded into Alio.

In Section 7, we use the ideas of [Baker, 1991] to define

a translation from AHo into the formalism of nested ab

normality theories [Lifschitz, 1994]. This formalism is

based on circumscription, and permits nested applications

of the circumscription operator. In this framework, Baker's

approach to the frame problem can be presented in a partic

ularly simple form. At the end of the section, a soundness

and completeness theorem is stated. It shows that, in the

new version, Baker's method is applicable to some exam

ples of nondeterministic actions.

2 Syntax of AHo

2.1 Formulae and Propositions

To be precise, AHo, like A, is not a single language, but

rather a family of languages. A particular language in this

group is characterized by

• a nonempty set of symbols, that are called fluent

names, or fluents,

• a subset of fluent names, that is called the frame,

• a nonempty set of symbols, that are called action

names, or actions.

A formula is a prepositional combination of fluents.

There are four types ofpropositions in AHo—value propo

sitions, effect propositions, release propositions, and con

straints.

A value proposition is an expression of the form

C after A, (3)

where C is a formula, and A is a string of actions. Infor

mally, (3) asserts that C holds after the sequence of actions

A is performed in the initial situation. For instance,

Heads after Toss

is a value proposition, where Heads is a fluent and Toss is

an action.

An effect proposition is an expression of the form

A causes C if P, (4)
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where A is an action, and C and P are formulae. Intuitively,

(4) asserts that A, if executed in a situation in which the

precondition P is true, makes C true. For instance,

GetOnBoard causes OnBus if HasTicket

is an effect proposition, where GetOnBoard is an action,

and OnBus and HasTicket are fluents.

A release proposition is an expression of the form

A releases F if P, (5)

where A is an action, F a fluent which belongs to the frame,

and P a formula. Intuitively, (5) says that F is exempt from

obeying the commonsense law of inertia when the action A

is executed in a situation when the precondition P is true.

This is useful for expressing the effects of nondeterministic

actions. For instance, the fact that the action Toss nonde-

terministically changes the frame fluent Heads is expressed

by the release proposition

Toss releases Heads if True.

(True stands for some standard tautology, and False will

denote the negation of True.)

Finally, a constraint is a proposition of the form

always C, (6)

where C is a formula. Intuitively, (6) asserts that C holds

in all possible situations. We will sometimes identify a

constraint (6) with the formula C.

A domain description, or domain, is a set of propositions.

2.2 Notational Conventions

In formulae, we will omit some parentheses, as customary

in classical logic. If A in a value proposition (3) is empty,

we will write this proposition as

initially C.

Otherwise, the members of A will be separated by semi

colons. An effect proposition (4) will be written as

A causes C

if P is True, and as

impossible A if P

if C is False. A release proposition (5) will be written as

A releases F

if P is True.

3 Examples

In this section we show how some systems involving action

and change can be described in AHo. Our comments on

the "models" of these domain descriptions will turn into

precise statements after the semantics of AHo is described

in the next section.

The reader familiar with the language A from [Gelfond and

Lifschitz, 1993] will notice that any domain description in

A can be viewed as a domain description in Alio in which

all fluents belong to the frame; we only need to agree to

identify an effect proposition

A causes F if P\ , . . . , Pn

in the sense of A with

A causes F if Pi A...AP„.

In Section 6, this will be discussed in more detail.

The following examples illustrate some of the expressive

possibilities of Alio that A lacks.

Example 1: Action Preconditions. The door in a hotel

room can be opened by inserting the entry card. In the initial

situation, the door is closed. We use two propositional flu

ents HasCard and DoorOpen, both belonging to the frame.

There is one action InsertCard. The propositions are

initially -'DoorOpen,

InsertCard causes DoorOpen,

impossible InsertCard if ->HasCard.

This domain has two models; in one model, HasCard is

false in the initial situation, and in the other model it is

initially true. In the first model, the action of inserting the

card cannot be executed.

Example 2: Nonframe Fluents. There are two switches

and a light; the light is on only when the switches are both

on or both off [Lifschitz, 1990]. This system can be de

scribed using three propositional fluents Switch], Switch2

and Light; only the first two belong to the frame. There are

two action names, Toggle! and Toggle!. The propositions

are:

always Light = (Switch I = Switch!),

Togglel causes ->Switchl if Switchl,

Toggle] causes Switchl if ->Switchl ,

Toggle2 causes ->Switch2 if Switch2,

Toggle2 causes Switch2 if -^Switch2.

This domain has 4 models that differ by the initial states of

the switches.

It is essential in this example that the fluent Light is not

included in the frame. Otherwise, the effects of the actions

would be indeterminate. For instance, the effect of Togglel

would be to change either the values of Switch! and Light

or, surprisingly, the values of Switchl and Switch2.

Example 3: Ramifications. As discussed in the intro

duction, this can be illustrated by the domain description

consisting of propositions (1) and proposition (2). All flu

ents are included in the frame. There are two models that

differ by the initial value of Walking.
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Example 4: Nondeterminism. The "Russian Turkey

Shoot" [Sandewall, 1992] is the enhancement of the orig

inal shooting story in which there is an additional action

of spinning the gun's bullet chamber. More precisely, we

think of Spin as the action of looking to see whether the

chamber is empty, inserting a bullet if it is, and then giving

it a spin. We extend (1) by the proposition

Spin releases Loaded.

This domain has infinitely many models. In fact, the set of

its models has the cardinality of the continuum. To select

a specific model, we need to specify, for every string of

actions that ends with Spin, whether or not Loaded is true

after these actions are executed sequentially from the initial

situation.

In each of the following two examples, the set of models

has the cardinality of the continuum also.

Example 5: Restricted Nondeterminism. A part of a

table is painted white, and a part black. There are two

actions: picking up a block and dropping it onto the table;

the latter may put the block entirely within the white region,

or entirely within the black region, or touching both the

white and black regions. This example was suggested to us

by Ray Reiter (personal communication, March 1 1, 1992).

It can be described in AHo using two frame fluents. White

and Black, which express that the block is, at least partially,

on the corresponding part of the table:

PickUp causes -*WhiteA -<Black,

Drop causes White V Black,

Drop releases White,

Drop releases Black.

The second proposition shows that the values of fluents after

the execution of Drop, although not predetermined by their

values in the previous situation, are not totally arbitrary

either.

Example 6: Implicit Nondeterminism. Each of two light

bulbs is controlled by a switch. The action of turning on the

light is nondeterministic, because it is not specified which of

the switches is used. In the following description, Switch]

and Switch2 belong to the frame, and Light does not:

always Light = (Switch! V Switch!) ,

TurnOn causes Light,

TurnOff causes ->Light.

There are no release propositions here, and the effect propo

sitions do not include disjunctions; the nondeterminism in

this domain description is due entirely to the presence of a

constraint.

4 Semantics of AHo

4.1 States and Transition Functions

In this section, we consider truth-valued functions on the set

of fluents. Such a function <r can be extended to arbitrary

formulae according to the truth tables ofprepositional logic.

We say that cr is a state of a domain D if it maps every

constraint in D to T ("true").

For instance, the domain consisting of propositions ( 1) and

(2) has 6 states; they are the truth-valued functions on

{Loaded, Alive, Walking)

that make the formula Walking D Alive true.

The semantics of Alio shows how the effect propositions

and release propositions of D define a nondeterministic

transition system with this set of states, whose input sym

bols are actions. We will describe this transition system by

a function Res that maps an action and a state to a set of

states. The elements of Res(A, cr) are, intuitively, the states

that differ from <r as dictated by the effect propositions for

A, but, at the same time, differ from cr as little as possible.

In determining the "difference" between <r and the elements

of Res(A, <t), we will consider only the frame fluents not

released by the release propositions for A.

As a preliminary step, define Reso(A,cr) to be the

set of states <r' such that, for each effect proposition

A causes C if P in D, <r'(C) = T whenever a(P) = T.

The set Res(A, cr) will be defined as the subsetof/?«o(^, &)

whose elements are "close" to a.

In order to make this precise, the following notation is

needed. The distance p(cr\ , <r2) between states o\ and cr-i is

the set of fluents on which the states differ:

p(<r\,<T2) = {F\<Tl(F)?Cr2(F)}.

Furthermore, for any action A and any state cr, we define

I(A, cr) to be the set of frame fluents F such that, for every

release proposition A releases F if P in D, cr(P) = F.

Intuitively, I(A, <r) is the set of frame fluents to which

inertia should apply when A is executed in state a. If D

includes no release propositions for A, then I(A, a) is the

whole frame. For the domain of Example 4, I(A,cr) is

the frame {Loaded, Alive} unless A = Spin, in which case

I{A,a) = {Alive}.

Now the transition function Res corresponding to D is

defined as follows: Res(A,a) is the set of states cr1 e

Reso(A, cr) for which p(<r, cr') n I(A, cr) is minimal rela

tive to set inclusion—in other words, for which there is no

cr" € Reso(A, cr) such that p(cr, cr") C\ I(A, cr) is a proper

subset of p(cr, cr') D I(A, cr).

Consider, for instance, the domain of Example 4. We will

represent a state a by the set of fluents F such that cr(F) =

T. In this notation,

Reso(Load, {Alive}) — {{Loaded}, {Loaded, Alive}},

Res(Load, {Alive}) = {{Loaded, Alive}};

Reso(Spin, {Alive}) is the set of all states, and

Res(Spin, {Alive}) = {{Alive}, {Loaded, Alive}}.

4.2 Models and Entailment

A structure is a partial function from strings of actions to

states whose domain is nonempty and prefix-closed. If
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a structure 4* is defined on a string A, we say that A is

executable in 4*. Intuitively, ^(A) represents the state that

results from the execution of the members ofA sequentially

from the initial situation.

A value proposition (3j_is true in a structure 4* if A is

executable in 4* and 4*(j4)(C) = T.

A structure 4* is a model of a domain D if every value

proposition in D is true in 4*, and, for every string of actions

A executable in 4* and every action A,

• if AA is executable in 4*, then

V(AA) € Res(A,V(A)),

• otherwise, Res(A, 4*(4)) = 0.

Consider, for instance, the domain of Example 1 . Its states

can be represented by subsets of {HasCard, DoorOpen).

The only action in this domain is InsertCard, and its tran

sition function is defined by the equations

r {o-U {DoorOpen}},

Res(lnsertCard, cr) — < if HasCard € <J,

1 0, otherwise.

It is easy to see that this domain has two models. In one

model, 4*i, the only executable string ofactions is the empty

stringt, and4'i(e) = 0. In the other model ,4*2, every string

of actions is executable, and

4*2(^4) = I iHasCani}' ifA — e,

\ {HasCard, DoorOpen}, otherwise.

We say that a domain description is consistent if it has a

model. Two domain descriptions are equivalent if they have

the same models.

A value proposition is entailed by a domain description D

if it is true in every model of D.

43 Restricted Monotonicity

When an effect proposition, a release proposition, or a con

straint is added to a domain description, the set of value

propositions entailed by the description often changes in a

nonmonotonic fashion: Some of the propositions entailed

by the original description are not entailed by the extended

one. This cannot happen, however, when a value proposi

tion is added. It is clear from the definition of a model given

above that adding a value proposition to a domain descrip

tion can only make the set of its models smaller, and thus

make the set of value propositions entailed by it larger. This

is what one would intuitively expect, because an additional

value proposition in a domain description expresses merely

an additional assumption about the "trajectory" under con

sideration.

The observation made above is a "restricted monotonicity

property" in the sense of [Lifschitz, 1993c]. Propositions of

all four types play the role of postulates, and value proposi

tions play the role of sentences, assertions and parameters.

A similar fact about the language A is stated in [Lifschitz,

1993c] as Proposition 3.

5 Two Theorems about Domain

Descriptions

In this section, we show how two ideas familiar from classi

cal logic—the "replacement property" and the notion of an

explicit definition—can be applied to the language AUq.

5.1 Replacement

Let T be a set of constraints. We say that formulae A and B

are equivalent with respect to T if the formula A = B is a

prepositional consequence ofT. If, for instance, T includes

the constraint from Example 6, then Light is equivalent to

Switchl V Switch2 with respect to T.

Theorem 1. Let D be a domain description, let T be a

subset ofthe constraints in D, and let A and B be formulae

equivalent with respect to T. If a domain description D1

is obtained from D by replacing A by B in some or all

occurrences in any value propositions, effect propositions,

and constraints that do not belong to T, then D and D' are

equivalent.

This theorem shows, for instance, that the domain of Ex

ample 6 is equivalent to

always Light = (Switchl V Switch!),

TurnOn causes Switchl V Switch2, (7)

TurnOff causes ->Switchl A ->Switch2

and to

always Light = (Switch2 V Switchl),

TurnOn causes Light,

TurnOff causes ->Light

(take T = 0).

Note that Theorem 1 does not allow us to replace a frame

fluent F in a release proposition (5) by an equivalent one.

In fact, such a replacement can produce a non-equivalent

domain. This is shown by the following example:

always F\ = Fi,

A releases F\ ,

A releases Fi.

Replacing F\ by F2 in the second line would change the set

of models.

5.2 Explicit Definitions

A constraint in a domain description D is an explicit defi

nition of a fluent F if it has the form

always F = C, (8)

and F

• does not belong to the frame,

• does not occur in C,

• does not occur in any other propositions in D.

For instance, the constraint in (7) is an explicit definition of

Light.
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Theorem 2. Let D be a domain description that includes

an explicit definition ofa fluent F, and let D' be the domain

description obtained from D by deleting this definition and

deleting F from the language. A valueproposition that does

not contain F is entailed by D if and only if it is entailed

byD1.

Thus in AHo, as in classical logic, definitional extensions

are conservative.

6 Relation to A

We claimed in Section 3 that the language A from [Gelfond

and Lifschitz, 1993] can be viewed as a subset of AHq.

Now this assertion can be given a precise meaning.

In this section, the terms that have different definitions in the

languages A and Alio, such as "proposition," "structure,"

"entailed" and "consistent," will be understood in the sense

of the language A, unless stated otherwise.

First, we need to review the syntax and semantics of A. We

begin with two nonempty sets ofsymbols, called fluents and

actions. A fluent expression is a fluent possibly preceded

by -i. A value proposition is of the form

F after A, (9)

where F is a fluent expression, and A is a string of actions.

An effect proposition is of the form

AcsmsesFU Pu...,Pn, (10)

where A is an action, and each of F, P\ , . . . , Pn (n > 0)

is a fluent expression. This proposition is said to describe

the effect ofA on F, and the fluent expressions P\,...,P„

are said to be its preconditions. A proposition is a value

proposition or an effect proposition. A domain description

is a set of propositions.

The semantics ofA can be described as follows. A state is

a truth-valued function on the set of fluents. Given a fluent

F and a state cr, we say that F holds in cr if cr(F) = T; ->F

holds in a if <r(F) = F. A transition function is a function

from pairs (A, cr), where A is an action and a is a state, to

state. A structure is a pair (cro, O), where co is a state (the

initial state of the structure), and <I> is a transition function.

For any structure M and any string of actions A\ . . .Am,

by M*x "Am we denote the state

<t>{Am, $(Am-i , . . . , 4>(Ai, (T0) ...)),

where <1> and <ro are the transition function and the initial

state of M. We say that a value proposition (9) is true in M

if F holds in the state MA , and that it is false otherwise.

A structure (<to, <D) is a model of a domain description D

if every value proposition in D is true in (<to,<I>), and,

for every action A, every fluent F, and every state cr, the

following two conditions are satisfied:

(i) if D includes an effect proposition describing the effect

of A on F (~>F) whose preconditions hold in cr, then

F (-.F) holds in 4>{A,cr);

(ii) otherwise, F holds in <S>(A, cr) if and only if F holds

in cr.

As in the case of AHo, we say that D is consistent if it has

a model; a value proposition is said to be entailedby D if it

is true in every model of D.

For a consistent domain description in the language A, there

is a simple one-one correspondence between its models as

defined here and its models in the sense of Section 4:

Theorem 3. Let D be a consistent domain description in

the language A. IfM is a model of D in the sense ofA,

then the function _

A^MA (11)

is a model of D in the sense of Alio. Moreover, every

model ofD in the sense ofAlio has form (11) for exactly

one model M ofD.

Corollary. Let Dbea consistent domain description in the

language A. A value proposition is entailed by D in the

sense ofA ifand only if it is entailed by D in the sense of

AK0-

Without assuming the consistency of D, the assertions of

Theorem 3 and of the corollary would be incorrect. For

instance, the domain description

A causes F,

A causes ->F,

although inconsistent in A, has models in the sense ofAHo

(with e as the the only executable string of actions).

7 Translating from ARq into

Circumscription

In this section, we use A1Zo to study the range of applicabil

ity of the approach to representing actions by circumscrip

tive theories developed in [Baker, 1991]. Baker's method

is applied in [Lifschitz, 1991] to a class of reasoning prob

lems characterized in terms of their syntactic form, and in

[Kartha, 1993] to the problems expressible in A. Here we

further extend that work by showing how the method can

be applied to AHo-

We restrict attention to finite domain descriptions, that is,

to domain descriptions with finitely many fluents, actions

and propositions.

7.1 Nested Abnormality Theories

The formalism of nested abnormality theories is introduced

in [Lifschitz, 1994]. Its use is demonstrated there by re

casting several familiar applications of circumscription in

its framework—inheritance hierarchies, the domain closure

assumption, and the causal minimization approach to the

frame problem.
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The difference between this formalism and earlier uses of

circumscription for formalizing knowledge can be charac

terized as follows. A "circumscriptive theory" is usually

defined by a list of axioms A\ , . . . , An that may contain the

abnormality predicate Ab, and by a list of predicate and/or

function constants2 C\ , . . . , Cm that are "described" by the

axioms and thus are allowed to vary in the process of cir

cumscribing Ab [McCarthy, 1986]. A possible syntax for

such theories is

Cu...,Cm : Ah...,An. (12)

The circumscription operator allows us to translate (12)

into the language of classical logic by forming the circum

scription of the abnormality predicate Ab relative to the

conjunction of the axioms A\ A . . . A An with C\ , . . . , Cm

allowed to vary; we denote this circumscription by

ORC[Ai A . . . r\ An;Ab;Cu . . . ,Cm). (13)

(See [Lifschitz, 1993a] for the definition ofthe circumscrip

tion operator.) Unfortunately, this is not general enough for

the purpose of representing defaults, and "prioritized cir

cumscription" is proposed in [McCarthy, 1986] as a more

general representation tool. In nested abnormality theories,

we generalize (12) in a different way: each Ai in (12) is

allowed to be a "block" of form (12), so that axioms be

come "nested." Intuitively, each block can be viewed as a

group of axioms that describes a certain collection of pred

icates and functions, and the embedding of blocks reflects

the dependence of these descriptions on each other.

It is also convenient to replace the predicate constant Ab in

(13) by an existentially quantified predicate variable. The

abnormality predicate usually plays an auxiliary role in a

formalization; what we are actually interested in are the log

ical consequences of (13) that do not include Ab. To put it

differently, if ( 1 3) is denoted by F(Ab) , and ab is a predicate

variable of the same arity as Ab, then what we are interested

in are the consequences of the sentence 3abF(ab). The

effect of this modification in the context of nested abnor

mality theories is that the abnormality predicate becomes

local to the block in which it is used. The syntax of simple

abnormality theories is defined in such a way that Ab may

even have different arities in different blocks.

We turn now to the formal treatment of the subject. The

definitions below are reproduced from [Lifschitz, 1994].

Consider a language L of classical logic which may have

variables of several sorts and higher-order variables. We

assume that L does not include Ab among its symbols. For

any list r\, of sorts of variables available in L, by

Lt,...t„ we denote the language obtained from L by adding

Ab as a Jfc-ary predicate constant taking arguments of the

sorts 71, 7fc. Blocks are defined recursively as follows:

For any list of sorts t\ , and any list of function and/or

predicate constants C\ , . . . , Cm (m > 0) of L, if each of

Ai, . . . , An (n > 0) is a formula of Ln...Tk or a block, then

{Ci,...,Cm : A\,...,An}

2Object constants are viewed as function constants of arity 0.

is a Woclc. A nested abnormality theory is a set of blocks,

called its axioms.

The semantics of nested abnormality theories is character

ized by a map <p that translates blocks into formulae. It

is convenient to make p defined also on formulae of the

languages LT, . . .TJk . If A is such a formula, then <pA stands

for the universal closure of A. For blocks we define, recur

sively:

<p{Cu...,Cm : Al,...,An} = 3abF(ab),

where

F(Ab) = CTRC[<pAi A . . . A <pAn;Ab;Cu . . .,Cm].

Note that, for any block A, <pA is a sentence not containing

Ab.

A sentence A of L will be identified with the block {: A).

It is easy to see that A) is equivalent to A.

For any nested abnormality theory T, <pT stands for

{<pA | A e T}. A model of T is a model of <pT in the

sense of classical logic. A consequence of T is a sentence

of L that is true in all models of T.

7.2 Language

We will transform a finite domain D in the sense of the

language AHq into a nested abnormality theory whose lan

guage L has variables of three sorts: for fluents, actions and

situations. These variables will be denoted respectively by

/> fi i /it • ■ -I a> ai> 02i • • -i *i 8i i *2i m addition, L has

predicate variables A, X\ , A2, . . . that range over properties

of fluents.

The language has the following object constants:

• the fluents of D,

• the actions of D,

• the situation constants So and ±.

It also includes the binary function constant Result, which

takes an action and a situation as arguments, and produces

a situation.

The constant _L is needed because we want to talk about

actions that may not be executable, such as InsertCard in

Example 1 . Intuitively, J. represents the value "undefined",

so that the assertion that a is not executable in situation s

will be represented by

Result(a, s) = ±.

Finally, L has two predicate constants:

• the unary predicate FrameFluent, whose argument is

a fluent,

• the binary predicate Holds, whose two arguments are

a fluent and a situation.
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Note that "formulae" as defined in Section 2. 1 are not among

the formulae of L. To avoid confusion, we will refer to

formulae in the sense of Section 2.1 as "domain formulae."

For any domain formula C, by T(C, s) we will denote the

formula of L obtained from C as the result ofreplacing each

fluent name F by Holds(F, s). For instance, T(->Alive A

Loaded, s) stands for

->Holds{Alive, s) A Holds(Loaded, s) .

For any string of actions A\ . . . Am, by[A\ ... Am] we will

denote the ground term

Result(Am, Result(Am-\ , . . . , Result(Ai , So), . . .)).

73 Law of Inertia and Existence of Situations

Our translation (3 from AHo into nested abnormality theo

ries uses two defaults that play an important role in appli

cations of default reasoning to the frame problem.

According to the commonsense law ofinertia, the value of

a frame fluent normally remains unchanged after perform

ing an action. Formulas describing how actions change the

world represent exceptions to this default. The common-

sense law of inertia is expressed by the formula

FrameFluent(f) A -<Ab(f, a, s) D

[Holds{f, Result(a, s)) = Holds(f, «)].

This formula will be denoted by LI.

According to the existence of situations principle, for any

assignment of values to fluents, there normally exists a sit

uation in which every fluent takes the assigned value. Rec

ognizing the role of this principle was a major contribution

of [Baker, 1991]. Constraints represent exceptions to this

default. For instance, the constraint

Holds(Walking, s) D Holds(Alive, s) (14)

shows that there is no situation in which Walking is true

and Alive is false. The existence of situations principle is

expressed by the formula

-iAb(X) D 3s[s ? ± A Vf{Holds(f, s) = A(/))].

This formula will be denoted by ES.

As denned below, the nested abnormality theory (3D rep

resenting a finite domain D consists of several formulas,

including LI and ES, arranged into a system of blocks. We

should not worry about by the fact that Ab has three argu

ments in LI and only one argument in ES: these formulas

will appear in two different blocks.

7.4 Translating Propositions

We will define how to construct, for each proposition P in

D, the corresponding formula (3P. These formulas will be

included in the translation (3D of D.

If P is a value proposition (3), then /?P is

p]#±A T(CM)-

The first term expresses that the sequence of actions A is

executable. For instance, the proposition

Heads after Toss

is translated as

Result(Toss,S0) # -LA Holds(Heads, Result{Toss, S0))-

If P is an effect proposition (4), then (3P is

T(P, s) A Result{A, s) ^ ± D T(C, Result(A, *)).

For instance, the proposition

Shoot causes -'Alive if Loaded

is translated as

Holds{Loaded, s) A Result(Shoot, s) £ J_ D

->Holds(Alive, Result(Shoot, s)).

If P is a release proposition (5), then f3P is

T(P,s)DAb(F,A,s).

This formula will accompany the commonsense law of in

ertia U, so that the law of inertia will be disabled in ap

plication to F when A is executed in the presence of the

precondition P. For instance, the proposition

Spin releases Loaded

is translated as

Ab (Loaded, Spin, s)

(if we disregard the trivial antecedent T(True, s), which

equals True).

Finally, if P is a constraint (6), then 0P is T(C, For

instance, (2) is translated as (14).

7£ Definition of (3D

Now we are ready to define the representation (3D of a finite

domain D as a nested abnormality theory.

By F we will denote the set of fluents in the language of

D, by Fr the set of frame fluents, by A the set of actions.

Furthermore, let Dv, De, Dr and Dc be the parts of D con

sisting of its value propositions, effect propositions, release

propositions and constraints, so that

D = DvUDeUDrUDc.

The axioms of (3D are as follows.

Group 1. Unique names axioms:

F^F2

for all pairs of distinct fluents Fi , F2 € F,

A> ^A2

for all pairs of distinct actions A\ , A2 G A, and
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Group 2. Domain closure axioms:

V /=*

FeF

V a = A.

Group 3. The universe of situations is assumed to be suffi

ciently large:

3«1 , • • • , SN /\ Si ^ Sj ,

i<«j<Ar

where JV = 2lFl + 1.

Group 4. Translations of the value propositions:

fiP (P € Dv).

Group 5. Characterization of FrameFluent:

{FrameFluent :

FrameFluent(f) D Ab(f),

FrameFluent(F) {F € Fr)

}•

By enclosing the formulae FrameFluent(F) for all F in Fr

in a block along with

FrameFluent(f) DAb(f),

we express the "closed world assumption" for FrameFluent:

a fluent satisfies this predicate only if it represented by a

constant from Fr.

Group 6. Characterization of Holds and Result:

{Result :

U,

PP (PeDr),

{Result :

Result(a, s) = J. D Ab(a, s),

Result(a, _L) = ±,

PP (P€De),

{Holds :

ES

0P (P G De)

The innermost block represents the basic assumption about

the universe of situations: for any assignment of truth values

to fluents, there exists a situation in which every fluent takes

the assigned value, unless such a situation is declared im

possible by one of the constraints in D. In the intermediate

block, the formula

Result(a, s) = 1 D Ab(a, s)

expresses that, normally, an action is executable. Thus the

intermediate block tells us that an action can be executed

unless this is prohibited by the propositions in D. The

outermost block says that the values offluents do not change

unless this is required by the propositions in D.

The nesting of blocks reflects our intention to decide first

what kinds of situations exist, then which actions can be

executed, and then what the effects of actions are.

7.6 Soundness and Completeness

Consider a finite domain D. Let *F be a model of £>, and

let M be a model of pD. We say that M is similar to *¥ if,

for every value proposition P, P is true in *P if and only if

M satisfies PP.

Theorem 4. Let D be a finite domain. For any model *F

ofD, there exists a model M ofPD similar to *P. For any

model M ofPD, there exists a model *F ofD such that M

is similar to

The following corollary expresses the soundness and com

pleteness of the translation.

Corollary. For any finite domain D and any value propo

sition P, /3D entails PP ifand only ifD entails P.

8 Conclusion

In addition to the expressive possibilities ofA, the language

,47£o allows us to represent actions that may be impossi

ble to execute, fluents that are exempt from inertia, actions

with indirect effects and simple nondeterministic actions.

It has properties similar to the replacement theorem and to

the theorem on the conservativeness of definitional exten

sions familiar from classical logic. There is a sound and

complete translation from Alio into the language of nested

abnormality theories.

The treatment of value propositions in the semantics of

A1Zo is analogous to the "filtering" method advocated by

Sandewall [1989], [1992]. Indeed, the value propositions

included in D do not affect the construction of the corre

sponding transition function Rer, they are taken into account

only when we define which of the "trajectories" described

by this transition function are counted as the models of D.

Similarly, in the nested abnormality theory f3D, the trans

lations of the value propositions form a separate group of

axioms that is not placed in the range of any circumscrip

tions.

The use of nested abnormality theories, instead of conjunc

tions of circumscriptions as in [Baker, 1991] and [Lifschitz,

1991], leads to a simpler and more natural presentation of

Baker's method. Moreover, the use of conjunctions of cir

cumscriptions along the lines of that earlier work does not

seem to lead to satisfactory results when actions can be non-

deterministic. This will be discussed in detail elsewhere.
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Abstract

A key problem in case-based reasoning is

the representation, organization and main

tenance of case libraries. While current ap

proaches rely on heuristic and psychological

ly inspired formalisms, terminological logics

have emerged as a powerful representation

formalism with clearly defined formal seman

tics.

This paper demonstrates how the indexing

of case libraries can be grounded on termi

nological logics by using them as a kind of

query language to the case library. Indices of

cases are represented as concepts in a termi

nological logic. They are automatically con

structed from the symbolic representation of

cases with the help of a well-defined abstrac

tion process. The retrieval of cases from the

library is grounded on concept classification.

The theoretical approach provides the for

mal foundation for the fully implemented

case-based planning system MRL. The use

of terminological logics allows formal proof

of properties like the correctness, complete

ness and efficiency of the retrieval algorithm,

which has rarely been done for existing case-

based reasoning systems.

1 INTRODUCTION

Reasoning from second principles has emerged as a

new research paradigm in problem solving. Instead

of searching a solution by reasoning from scratch, this

method bases the entire problem-solving process on

the reuse and modification of previous solutions.

Current approaches are within the field of case-based

reasoning which is defined as a general paradigm for

reasoning from experience [Slade, 1989]. Approaches

to case-based reasoning rely mainly on psychological

theories of human cognition and have led to a wide

variety of proposals for the representation, indexing

and organization of case libraries, cf. [CBR-91, 1991;

CBR-93, 1993].

Case-based systems reason by approximation and simi

larity. In order to solve a new case by reusing an exis

ting one from a case library, several reasoning tasks

have to be addressed: First, an index is derived from

the new case by extracting those of its features that

are abstract enough to make a case useful in a variety

of situations as well as concrete enough to be easily

recognizable in future situations. In most approaches,

the index vocabulary is a subset of the vocabulary used

for the symbolic representation of cases, cf. [Kolodner,

1993].

The index of the new case is used as a search key on

which the retrieval of applicable old cases is based.

The aim of retrieval is to determine "good cases" effi

ciently in the library—those that make relevant predic

tions about the current case. Besides the need for an

efficient search strategy, the retrieval problem implies

the matching problem, which is a serious bottleneck for

case-based reasoners, cf.[Kolodner, 1993; Slade, 1989;

Riesbeck and Schank, 1989]. As we cannot expect

that features of different cases coincide completely, so-

called partial matches have to be computed and cases

with best-matching indices have to be retrieved. Fi

nally, the set of retrieved cases is ordered according to

ranking heuristics and the "best" case is determined.

Research in case-based reasoning proposes various so

lutions to the problems of retrieval, indexing and

matching. A common characteristic of these solutions

is that they are described in an informal way. This

makes it difficult to compare the various approaches,

to prove their formal properties and to extend them

to other applications.

Nevertheless, practice imposes the following require

ments on case-based reasoners:

• The behavior of a system should be predictable.

It should be possible to verify whether the system

implements the intended behavior correctly.
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• The derivation of indexes should be done auto

matic instead of "hand-coded" , which is still usual

in many approaches.

• The retrieval algorithm should find a solution to a

new case, if this solution exists in the case library.

• If no direct solution can be determined, the re

trieval algorithm should determine the case that

best meets the search criterion.

Consequently, this implies the need for case-based rea

soning systems with formal semantics. The retrieval

algorithm should have the following formal properties:

• Correctness: The retrieved case is guaranteed

to meet the search criterion.

• Completeness: Retrieval of existing solutions to

new cases from the case library is ensured.

• Complexity: The retrieval algorithm is proved

to be efficient, i.e. it runs in polynomial time.

A case-based reasoning system with these properties

can be expected to meet the challenge of scaling-up:

The system's behavior remains predictable, sound and

efficient even when it is applied to large-scale real-

world problems. Surprisingly, it turns out that prob

lems like the correctness and completeness of the re

trieval algorithm have not been widely discussed in the

literature on case-based reasoning.

The work described in this paper is motivated by re

search in case-based planning. The reuse and modi

fication of plans is a valuable tool for improving the

efficiency of planning, because it avoids the repetition

of planning effort. Therefore, plans that have been

obtained as solutions for planning problems are stored

in plan libraries for further use. The retrieval of a

good plan from a plan library is identified as being

a serious bottleneck for plan reuse systems in [Nebel

and Koehler, 1993a; Nebel and Koehler, 1993b]. Con

sequently, efficient and theoretically well-founded re

trieval and update procedures for plan libraries have

to be developed.

The approach presented in this paper suggests the in

tegration of terminological logics into a hybrid rep

resentation formalism for case-based reasoning. Re

trieval from and updating of case libraries are ground

ed on a clearly defined formalism with proper seman

tics. Their behavior becomes predictable and formal

properties like the completeness and soundness of the

retrieval algorithm can be proved.

2 THE SOLUTION

While case-based reasoning aims at developing a sci

entific model of human memory, research in knowledge

representation and reasoning has led to concept lan

guages of the KL-ONE family [Brachman, 1978], al

so called terminological logics. Terminological logics

support a structured representation of abstract knowl

edge. In contrast to earlier representation formalisms,

terminological logics possess formal semantics. The

Tarski style declarative semantics leads them to be

considered as sublanguages of predicate logic [Brach-

mann and Levesque, 1984]. With that, the mean

ing of expressions within the formalism is clearly de

fined and it is possible to verify whether or not the

knowledge-representation system correctly implements

the intended behavior. Furthermore, terminological

logics provide special-purpose inference algorithms like

subsumption and classification. These properties of

terminological logics clearly suggest their use in case-

based reasoning.

2.1 FORMALIZING CASE-BASED

REASONING

A case represented in a case library consists of three

major parts, cf. [Kolodner, 1993]:

• initial situation: A state description, pre, speci

fying the preconditions, on which the solution rep

resented in the case relies.

• resulting situation: The goal state, goal, that

is achieved when the solution is carried out.

• solution: A solution S that solves the problem

specification of the case C = (pre, goal).

Case-based reasoning starts with a new case in the

form of a problem specification

(prenew , goalneul)

for which a solution has to be found in the case library.

• Given: a new case Cnew

• Wanted: a solution S0id from the case library

To find this solution, a search key is derived from the

problem specification, which has to reflect the main

properties of the problem. Usually, the search is done

in the state space rather than the solution space. This

means, instead of searching the case library directly

for solutions, it is searched for similar problem specifi

cations. This is justified by the following observation:

the solution S0id is the result of a previous problem-

solving process, i.e. it solves an old case C0td in the

sense that

Sold (= Cold

This means, a solution which is applied in an initial

situation satisfying pre achieves a resulting situation

satisfying goal. This suggests a search of the case li

brary for previous problem specifications, i.e. old cases,

which entail the problem specification of the new case

in the sense that each solution for Cold is a solution

for Cnew-
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Cold N Cnew

If this relationship between Cold and C„ew holds, then

the new case has been shown to be an instance of a

case from the library. This implies that solving C0id is

sufficient for solving Cnew. Consequently, the solution

Sold stored in C0id will solve

2.2 REASONING BY APPROXIMATION

Searching a case library according to the |= relation

ship is obviously too restrictive. Such a search algo

rithm would only retrieve solutions from the case li

brary. But obviously, a "good" case is one that can be

easily adapted to obtain the desired solution. Further

more, the retrieval process is based on an index that

is obtained from Cnew instead of directly taking the

specification of Cnew. Therefore, an index of a case

is computed with the help of an encoding scheme w

mapping the case

C„ew = (prenew,goalnew)

to its index

u(Cnew) = (u(prenew),u>(goalnew))

The encoding scheme formalizes an abstraction pro

cess: A detailed specification of a particular case is

mapped to an abstract index reflecting the main fea

tures of that case. The degree of abstraction is de

termined by the particular encoding scheme, which is

used in the case-based reasoning system. This means

that different encoding schemes can define different de

grees of abstraction in a case-based reasoning system.

The encoding scheme w has to possess the following

formal property:

If C0id -> Cntm then u>(C0td) -* u(Cnew)

This theorem gives a monotonicity property of u. An

existing subset relationship between the models of the

cases Cold and Cnew is preserved as a subset relation

ship between the models of the indices w(C0id) and

w(Cne„).

If M[PM] C M[Pnew] then M[u>(P0id)] C M[w(Pnew)]

This monotonicity property of the encoding scheme en

sures that an existing solution can be found by search

ing the case library along the |= dimension between in

dices. Note that the inverse of the monotonicity prop

erty does not hold in general. A case retrieved from

the library, the index of which entails the new index,

will not, with certainty, provide a solution to the new

case. This reflects reasoning by approximation. The

retrieval algorithm approximates the ^ relationship

between the cases when it compares the indices of the

cases. Thereby, it extends the solution set computed

by the retrieval algorithm.

The definition of a particular encoding scheme depends

on three factors:

• the representation formalism for the cases,

• the representation formalism for the indices,

• the application domain.

In Section 3, we illustrate the definition of an encod

ing scheme for a case-based planning system. The

representation formalism for the cases is a temporal

planning logic. The representation formalism for the

indices is a terminological logic. The application do

main comprises planning tasks arising in a subset of

the UNIX operating system.

2.3 REASONING BY SIMILARITY

The second aspect of case-based reasoning is reasoning

by similarity. Case-based systems compute the simi

larity of cases by comparing the placement of the cases

in the abstraction hierarchy or by computing their dis

tance on a qualitative or quantitative scale, cf. [Kolod-

ner, 1993J. A formalization of the notion of similarity

is beyond the scope of this paper. Nevertheless, the

encoding scheme allows to define when a case is more

specific than another one:

Definition 1 A case C\ is defined as being more spe

cific than a case Ci, if w(C\) f= w(C2) holds for their

indices.

Remember, that a case contains three major parts: its

initial situation, its resulting situation and the solu

tion. The entailment relation between cases can there

fore be reduced to relations between initial and result

ing situations. A case is an instance of a stored case

if

• the new initial situation entails the old initial sit

uation prenew \= preoid, i-e. the solution S0id is

applicable to the new initial situation,

• the old resulting situation entails the new result

ing situation goal0id (= goalnew, i.e. Soli solves at

least the new problem.

Furthermore, each index w(C) = (u>(pre),u)(goal))

comprises two components, namely the encoding of the

initial situation, pre, and the encoding of the resulting

situation goal. Obviously, testing u(C0id) \= w(CneU/)

can be reduced to computing relations between the

encodings of both situations:

u(prenew) f= u>(preoid) and u^goaloid) \= u(goalnew)

Strong and weak retrieval algorithms can thus be

defined. A strong retrieval algorithm determines

reusable cases by testing

w(pre„eu>) \=u(pre0id) and u(goalold) \= w(goalnew)
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This guarantees that existing solutions can be found

in the case library. Furthermore, more specific cases

are retrieved according to definition 1.

If strong retrieval fails to find a more specific case, the

search criterion is replaced by a weaker one: A weak

retrieval algorithm can test

u{prenew) (= w(pre„id) QHw{goal0id) \= v{goalnew)

Thus, we can ground the retrieval of cases on different

well-defined relations between indices that possess for

mal semantics. This overcomes the problem of defining

partial matches between cases, the semantics of which

remains often unclear.

2.4 HYBRID REPRESENTATION

In this paper, we propose a hybrid representation for

malism for case libraries: The major parts of a case,

the case entry, are represented in a formalism that

adequately represents problems and solutions in the

underlying application domain, e.g. the planning for

malism used by a case-based planner.

The index of the case is represented as a concept in a

terminological logic. The relation [= between indices

is determined by computing the subsumption relation

(denoted with C) between concepts. With that, the

retrieval of a reusable case from the case library can

be grounded on concept classification.

The encoding scheme defines the degree of abstraction

that is reflected in the indices: a given case is mapped

to an index reflecting the main properties of the case.

Note that the encoding scheme may map several spe

cific cases to the same index. This means, the index

represents a description of an abstract class of specif

ic cases occurring in a particular application domain.

The case related to this index represents one possible

specific instance of that class.

Terminological logics have the following advantages:

They provide indices with clearly defined semantics.

The monotonicity property of the encoding scheme

w can be proved. The encoding scheme implements

a representational shift from the vocabulary for the

symbolic representation of cases to the indexing vo

cabulary represented in a terminological logic. This

leads to a well-defined abstraction process. Further

more, the indexing vocabulary can be automatically

built by the case-based reasoning system: If the vo

cabulary for the symbolic representation of cases is a

logical formalism, a case will be represented as a for

mula in this logic. The index of the case is obtained

by a transformation of the formula with the help of

the encoding scheme. The result is a first-order logic

formula that can be interpreted as a concept definition

in the terminological logic, cf. Section 3.

The mathematical properties of various terminologi

cal logics are well understood. In particular, termi

nological languages with decidable subsumption rela

tions have been identified. Remember, that retrieval

from case libraries must be efficient, i.e. the complex

ity of the retrieval algorithm must be investigated.

The use of a terminological logic with a polynomial

subsumption algorithm ensures that the retrieval al

gorithm runs in polynomial time as well.

Most of the indexing schemes used in case-based rea

soning, for example discrimination networks [Feigen-

baum, 1963], restrict the case library to have a tree

structure. In using terminological logics, case libraries

are indexed on a more general lattice structure provid

ed by the subsumption hierarchy.

3 AN EXAMPLE

The MRL system [Koehler, 1994a] is the case-based

planning component of the system PHI [Bauer et ai,

1993], a logic-based tool for intelligent help systems.

PHI integrates plan generation as well as plan recogni

tion. Plan generation can be done from first principles

by planning from scratch and from second principles

by reusing previously generated plans with MRL [Bi-

undo et al., 1992]. The example application domain of

PHI is the UNIX mail domain where objects like mes

sages and mailboxes are manipulated by actions like

read, delete, and save.

3.1 THE PLANNING LOGIC

The logical basis of PHI and MRL is the interval-based

modal temporal logic LLP [Biundo and Dengler, 1994].

LLP provides the modal operators O (next) , 0 (some

times), □ (always) and ; (chop), the binary modal op

erator, which expresses the sequential composition of

formulae. As in programming logics, control struc

tures like iterations and conditionals and local vari

ables are available, with values that may vary from

state to state.

Plans are represented by a certain class of LLP formu

lae. They may contain, e.g. basic actions which are ex

pressed by the execute predicate ex, the chop operator,

which is used to express the sequential composition of

plans, and control structures.

The atomic actions available to the planner are the ele

mentary commands of the UNIX mail system. They are

axiomatized like assignment statements in program

ming logics. State changes which are caused by exe

cuting an action are reflected in a change of the values

of local variables which represent the mailboxes in the

mail system. For example, the axiomatization of the

de/eie-command which deletes a message x in a mail

box mbox reads
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Vz open.flag(mbox) = T A

delete.flag(msg(x,mbox)) = F A

ex(delete(x , mbox))

—> O delete.flag(msg(x,mbox)) — T

The state of a mailbox is represented with the help of

flags. The precondition of the </e/efe-command is that

the mailbox mbox is open, i.e. its open.flag yields the

value true (T) and that the message x has not yet been

deleted, i.e. its delete.flag yields the value false (F).

As an effect, the action sets the delete.flag of message

x in mailbox mbox to the value true in the next state.

Planning problems are represented with the help of for

mal plan specifications in the logic LLP. They contain

the specification of an initial state, the preconditions

of the plan, and the specification of the goals that have

to be achieved by executing the plan.

As an example, assume that a plan PI for the planning

problem "read and delete a message m in the mailbox

mybox" has to be found. As preconditions, we assume

that the mailbox mybox has already been opened and

that the message m has not yet been deleted. The

formal specification of the preconditions prep\ and the

goals goalpi in the logic LLP reads as follows:

prep\: open.flag(mybox) =TA

delete.flag(msg(m, mybox)) = F

goalpi: $[read.flag(msg(m, mybox)) = TA

(^[delete.flag(msg(m, mybox)) =T]]

It should be noted that in using the logic LLP in a

planning system it becomes possible to specify tempo

rary goals with the help of nested sometimes operators,

i.e. goals that have to be achieved at some point and

not necessarily in the end, something which could not

be done in the usual STRIPS or TWEAK type plan

ning systems, cf. [Kautz and Selman, 1992]. In the

example, the goal specification requires the message

to be read first and then deleted.

The plan PI, which solves this planning problem, is a

simple sequence containing the actions type and delete:

PI: ex(type(m, my6ox));ex(«fe/ete(m, mybox))

To obtain this plan by case-based planning in MRL,

appropriate candidate plans have to be retrieved from

the plan library. In the example, we assume that the

plan library contains the candidate plans P2 and P3:

P2: if open.flag(mbox) = T

then ex(empty.action)

else ex (mail(mbox)) ;

ex(type(x, mbox));ex(delete(x , mbox))

P3: n := 1 ;

while n < length(mbox) do

if sender(msg(n, mbox)) = joe

then ex(type(n,mbox));

ex(delete(n, mbox))

else ex (empty.action);

n := n + 1

od;

The plan P2 is an example of a conditional plan. It

contains a case analysis on the state of the mailbox

mbox: If the mailbox is open, the message x can be

read and deleted. If the mailbox is closed, we first have

to open it before the plan can be executed. The case

analysis results from incomplete information about the

preconditions for plan P2:

prep^: delete.flag(msg(x , mbox)) = F

As a precondition for P2 we only know that the mes

sage has not been deleted, but information about the

state of the mailbox not available.

In contrast to the goal specification goalp\ , the specifi

cation of goals in goalp2 specifies no temporary goals,

but a conjunctive goal:

goalp2'. (>[read-flag(msg(x,mbox)) = TA

delete.flag(msg(x, mbox)) = T]

The plan P3 is an example of an iterative plan read

ing all messages from sender joe in the mailbox mbox.

The specification of its preconditions and goals con

tains universally quantified formulae:

prep3-. open,flag(mbox) =TA

Vx [sender(msg(x, mbox)) — jot

—► delete.flag(msg(x, mbox)) = F]

goalpy. 0 [Vx [sender(msg(x, mbox)) = joe

—¥ read.flag(msg(x,mbox)) = T A

delete.flag(msg(x,mbox)) = T]]

Only a very restricted syntactic class of LLP formulae

is used for the specification of preconditions and goals.

For example, only implicit negation of atomic formulae

occurs in implications. Furthermore, atomic formulae

are equations assigning constants to terms of a very re

stricted syntactic structure. The term msg(x,mbox)

denotes an arbitrary message in a mailbox. Unary

functions like read.flag and delete.flag represent fea

tures of this message. The effects of actions are reflect

ed in changed features.

The plans P2 and P3 can be easily adapted in order

to obtain the desired plan PI:

• PI corresponds to the then-branch of P2 when

deleting the superfluous empty.action.
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• PI corresponds to the sequential body plan of

P3 when deleting the superfluous iterative con

trol structure and the test on the sender of the

message.

Consequently, P2 and P3 should both be retrieved

from the case library as possible reuse candidates. Fur

thermore, the retrieval algorithm should differentiate

between P2 and P3:

On one hand, both plans P2 and P3 are applicable in

the initial state specified for PI because their precon

ditions are entailed by prep\. On the other hand, P2

is more "similar" to the desired plan than the plan P3:

it reads and deletes an arbitrary message as required

in the new case PI, while P3 reads all messages from

a particular sender—an additional condition, which is

not required in PI.

The identification of P2 and P3 as appropriate

reusable cases requires abstraction from

• specific objects occurring in the specifications,

• temporary subgoal states,

• universally quantified goals.

The effect of actions which reflect in a change of fea

tures of a message have to be preserved during the

abstraction process.

These requirements are reflected in the definition of

the encoding scheme u>, which is used in MRL to map

LLP plan specifications to concepts in a terminological

logic.

3.2 THE TERMINOLOGICAL LOGIC

The terminological logic ACC [Schmidt-SchauB and

Smolka, 1991] is chosen as a starting point for the ter

minological part of the representation formalism for

case libraries because of its expressiveness and math

ematical properties. Concept descriptions in ACC are

built from concepts, intersection, complements and

universal role quantifications. The logic possesses a

decidable and complete subsumption algorithm which

is PSPACE-complete. This means that deciding sub-

sumption in ACC is intractable. Remember that we

required the retrieval algorithm to be efficient, i.e. to

run in polynomial time to cope with the scaling-up

problem. To obtain polynomial complexity, two solu

tions can be adopted:

1. Giving up completeness.

2. Restricting the terminological logic.

Giving up completeness in an application system of

ten also implies giving up correctness, because inabil

ity to detect existing subsumption relations may lead

to incorrect behavior of the system. In particular for

case-based systems, the incompleteness of the retrieval

algorithm leads to the following problems:

• Existing cases solving the new case may be not

found in the case library. This can lead to an

undesirable computational overhead in case-based

reasoning because the system does not reuse the

best available case during problem solving.

• Uncontrolled growth of the case library may oc

cur. Equivalent cases are added to the library

because the incomplete subsumption algorithm is

unable to recognize the equivalence of indices.

Therefore, the second solution is adopted by restrict

ing concept descriptions to a normal form for which

a sound, complete and polynomial subsumption algo

rithm exists. We define a subset of ACC comprising so-

called admissible concepts that are consistent concept

descriptions in conjunctive normal form. They are on

ly built from primitive components, i.e. existential role

restrictions of the form 3R.C and 3R.-<C where C is

required to be a primitive concept and R is restricted

to be a chain of primitive roles. The following sub

sumption algorithm is defined for admissible concepts

Definition 2 SUBS(u,t) : C\ —► {true, false}

SUBS(u,t) computes its result using the rules:1

zC.x,zC.y —¥ 2C1AJ (1)

iCz 4 lAyCz (2)

xOz,yC.z iVyC: (3)

2C1 -t zCiVj (4)

x C x (5)

Theorem 1 SUBS is sound, complete and decides the

subsumption relation in polynomial time for admissible

concepts.

The proof can be found in [Koehler, 1994b].

The expressiveness of admissible concepts is sufficient

to adequately represent the mail domain.2 As an ex

ample, consider the LLP formula

<C> read.flag(msg(x , mbox)) = T

The interpretation of this formula is a message at a

certain position in a particular mailbox at a certain

world state, the read-flag of which is set to the value

'This rule set is equivalent to a sound and complete rule

set for lattices given in [Givan and McAllester, 1992] that

decides the defined inference relation in polynomial time.

Note, that SUBS(u, t) is incomplete for arbitrary concept

descriptions in ACC.

'This property may not generalize to other application

domains, see Section 5.
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true. Figure 1 illustrates a subset of the primitive con

cepts and roles representing the mail domain. Starting

with the concept STATE, role chains can be composed,

which describe the state of a particular message at a

particular position in a particular mailbox at a certain

world state. Consequently, the admissible concept

3 mbox o pos o mesg o read.flag.T

abstracts the LLP example formula.

sender

 

delete_flag

[SENDER] [VALUE ) ( VALUE )

Figure 1: A Subset of the Mail Terminology

3.3 DEFINING THE ENCODING SCHEME

The encoding scheme w maps LLP plan specifications

to indices in ACC on the basis of the declarative se

mantics both logics possess. It depends on the source

logic LLP as well as on the target logic ACC.

LLP plan specifications are a restricted class of tempo

ral logic formulae containing modal operators. In order

to map them to concept descriptions they are trans

lated into first-order predicate logic using the method

developed in [Frisch and Scherl, 1991], which has been

extended to LLP in [Koehler and Treinen, 1993]. The

result of the translation is a formula in a predicate

logic with constraints. The constraint theory repre

sents temporal information, e.g. which subgoal has to

hold in a particular state. In a next step, the con

straint theory is eliminated, preserving the satisfiabil

ity of the formula. The elimination of the constraint

theory implements a process of temporal abstraction:

the temporal information is eliminated from the for

mula.

The encoding scheme abstracts from specific objects

by replacing constants with existentially quantified

variables. Furthermore, universal quantification is re

placed by the weaker existential quantification. An n-

ary function is encoded as an n + 1-ary relation. Each

n + 1-ary relation is encoded by n binary relations.

These abstraction operations are justified by the re

stricted syntactic structure of terms and formulae.

After the abstraction process has been completed, the

conjunctive normal form of preconditions and goals

is computed. Of course, the computational effort for

this operation grows exponentially with the length of

the formulae. But remember that the subsumption

algorithm is only complete for concepts in conjunctive

normal form. Nevertheless, for pragmatic reasons it is

more efficient to compute the normal form only once

during the encoding process instead of computing it

several times during the classification of an index.

Finally, the remaining set of formulae is syntacti

cally transformed into sets of formulae of the form

<f>c(x) '■ 3yP(x,y) AQ(y). The declarative semantics

of terminological logics allow primitive concepts to be

seen as unary predicates and primitive roles to be seen

as binary predicates. This identification can be ex

tended to arbitrary concept descriptions, i.e. to every

concept C a predicate formula <j>c(*) can be associat

ed. Consequently, a concept C : 3P.Q corresponds to

the formula <f>c{x). A model of the formula 3x<f>c(x)

is a model of the concept C and vice versa. In par

ticular, C is unsatisftable if and only if 3x<j>c(x) is

unsatisfiable [Hollunder et at., 1990].

In the example, the following encoding of precondi

tions and goals is obtained:3

u(prepi ): 3 mbox o open.flag.T H

3 mbox o pos o mesg o delete.flag.F

ui(goalpi): 3 mbox o pos o mesg o read.flag.T n

3 mbox o pos o mesg o delete.flag.T

w(prepj): 3 mbox o pos o mesg o delete.flag.F

ui{goalp?): 3 mbox o pos o mesg o read.flag.T l~l

3 m6ox o pos o mesg o delete.flag.T

u(prep3): 3 mbox o open.flag.T n

[ 3 mbox o pos o mesg o sender.->S U

3 mbox o pos o mesg o delete.flag.F]

u(goalp3): [3 mbox opos o mesg o sender.->S U

3 mbox o pos o mesg o delete.flag.T] n

[ 3 mbox o pos o mesg o sender.->S U

3 mbox o pos o mesg o delete.flag.T]

3.3.1 Proving the Monotonicity Theorem

To ensure that the retrieval algorithm performs pre

dictably, the monotonicity property has to be proved

3TRUE is abbreviated to T, FALSE is abbreviated to

F, and SENDER is abbreviated to S.
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for the encoding scheme used in MRL.

An old plan solving the old planning problem

ipreoid,goal0id) is reused as a solution for a new plan

ning problem (pre„euM goalnew) in MRL if

prenew h preaid and goal0u h goalnew

can be successfully proved in the logic LLP [Koehler,

1994a]. Therefore, we have to prove the following in

stance of the monotonicity theorem:

Theorem 2

Ifprenew h preol<i then u(prenew) C u(preaid) and

if goal0id h goalnew then w(goalaid) C u(goalnew)-

The proof of the theorem can be found in [Koehler,

1994b]. The correctness of the encoding scheme used

in MRL relies on the syntactic restrictions which are

imposed on terms and formulae. Nevertheless, we be

lieve that the general idea to ground the formalization

of abstraction on the definition of an encoding scheme

is widely applicable.

3.4 FORMALIZING THE RETRIEVAL

The results of the encoding process are the admissible

concepts u>(pre) and u(goal) from which the index of

a case is obtained as the pair (w (pre), u> (goal)). Now,

the retrieval of a plan from the plan library is formal

ized as follows:

Given the description of a new case, the index of this

case is computed first. Then, this index is classified

in the plan library. Two classification operations are

available:

to the index w(F2) is more specific than the new plan

ning problem that has to be solved. The plan P2 is

activated as a possible reuse candidate and sent to the

plan modification module of MRL [Koehler, 1994a].

The index of plan P3 does not meet the criteria re

quired by strong classification, since the subsumption

test between the goal concepts fails. This plan is not

considered as being similar to the desired plan.

Terminological Logic Part

,-WP3)
' 1 T 1

 

classification of the current index

plan retrieval

\ Planning Logic Part ,

plan entries are provided

to plan modification

P3

while ... dd

P2

it open

then ...

plan-library update

plan-entry construction

relation to the index

P1

ex(read);

ex(delete)

• strong classification

• weak classification

Strong classification classifies the new index by com

puting the required subsumption relations between en

codings of preconditions and goals:

u(prentw) C u(pre0id) and u>(goalotd) C. u(goalnew)

The result of the classification process determines the

position of the new index in the plan library. All in

dices that are subsumed by the new index are con

sidered as potential reuse candidates. The plans be

longing to the subsumed indices are assumed to be

applicable in the current initial state and to reach all

of the current goals.

In the example, strong classification of the new index

(w(prepi), u(goalpi)) inserts this index at the position

shown in Figure 2. Obviously, (u(prep2),uj(goalp2)) is

subsumed by the new index. According to Definition 1,

the planning problem stored in the plan entry related

Figure 2: A small Sample Case Library

Weak classification is activated when strong classifica

tion fails to retrieve a reuse candidate. It is based on

a weaker search criterion and can classify according to

goals or preconditions:

w(preneu,) C u(pre0id) or u(goalold) C uj(goalntw)

Note, that every case that meets the criteria of strong

classification also meets the weaker criterion used by

weak classification. In the MRL system, plans are

reused if they are applicable in the current initial state.

Therefore, weak classification in MRL classifies accord

ing to preconditions:

v(prencw) C u(pre0id)

In the example, weak classification retrieves P2 and

P3, because the subsumption test on the encodings of

preconditions is successful. Nevertheless, plan P3 is

considered as being less appropriate for the solution of

PI than P2 according to the weaker search criterion.
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Figure 2 illustrates the hybrid representation of the

plan library in MRL for the example under consid

eration. The terminological logic part supports the

structuring of the plan library. Retrieval and update

are grounded on classification by computing the sub-

sumption hierarchy of indices. The planning logic part

supports the representation of planning knowledge in

plan entries.

3.5 RANKING OF CASES

Strong as well as weak classification can retrieve sever

al appropriate reuse candidates from the case library.

Consequently, a ranking sequence is needed for the

candidates in order to find the best one.

Strong classification determines plans from the plan

library that are supposed

• to be applicable in the initial state and

• to achieve at least all of the current goals.

This implies that the candidate set retrieved by strong

classification may contain plans which achieve super

fluous goals, i.e. goals that are currently unnecessary.

Actions achieving these goals have to be eliminated

from the reused plan by optimizing it. The ranking

of the candidates is therefore grounded on an estima

tion of the optimization effort for each candidate. The

ranking heuristic estimates the number of superfluous

actions that have to be eliminated from the candidate

plan.

Observe that the subsumption hierarchy for indices

is defined such that a plan 61 achieving more atom

ic goals than a plan 62 is placed closer to the bottom

concept than 62. Consequently, the estimated opti

mization effort for a plan, the index of which is placed

closer to the bottom concept, is higher than the es

timated optimization effort for a plan, the index of

which is immediately subsumed by the current index.

Therefore, strong classification only adds a case to the

solution set, if its index is immediately subsumed by

the current index.

The estimation of the optimization effort proceeds as

follows:

• The ranking heuristic compares the goal con

cept of the current index u{goalnew) with the

goal concepts of all immediately subsumed indices

u(goal„idi).

• It computes the number of primitive components,

which occur in u(goaloidi ), but not in u(goalnew).

• The case with the smallest number is selected

as the best candidate according to the ranking

heuristic.

The heuristic estimates the number of atomic subgoals

that are achieved by a candidate plan but that are

not required in the current plan specification. It as

sumes that this number reflects the minimal number

of primitive actions in the candidate plan that have to

be eliminated. Therefore, the plan with the smallest

number is selected as the best reuse candidate and sent

to the plan modification module. If several candidates

receive the same ranking value, one of them is selected

arbitrarily.

Definition 3 Let Coidx , . • . , Cold. 6e the set of can

didates retrieved by strong classification of w(Cneu,).

The goal concepts occurring in the indices of the can

didates are uigoaldd^, . . . ,u(goal0idH ), the goal con

cept occurring in the current index is u>(goalnew). The

set of primitive components that occurs in a concept c

is denoted by PK[c], while their number is denoted by

N[c].

The optimization effort for each candidate is defined

as

OPTu(goalol<li) = N[PK[u(goalMi)] \ PKMffoa/neiB)]]

The ranking heuristic TIopt selects the candidate with

the smallest optimization effort:

"Hopt = { Coid,\OPTw(goaiolij =

rnin(oPTu(goal.,di), . . . ,OPTu(goal.,in)}}

Weak classification determines plans from the plan li

brary that are only supposed to be applicable in the

initial state.

The goal concepts of the candidate plans can be related

to the goal concept of the current case in two ways:

1. u)(goalnew) C.u(goaloid)

This means that we can expect the candidate plan

to achieve only a subset of the goals required in

the current case.

2. u(goalnew) \£w(goalold) and

u{goal0u) £ w{goalntxu)

No subsumption relation holds for the goal con

cepts of the candidate and the current case. We

have to expect that the candidate achieves oth

er goals than those required in the current plan

specification.

Therefore, the ranking heuristic for candidates re

trieved by weak classification relies on the following

assumptions:

• Every candidate is applicable in the current initial

state.

• No candidate achieves all of the current goals, i.e.

every candidate has to be modified.

Consequently, the heuristic estimates the modification

effort for each candidate as follows:
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• The ranking heuristic compares the goal concept

of the current index u>(goalnew) with the goal con

cepts u/(goal0i,ii ) of all indices occurring in the so

lution set.

• It computes the intersection of the concepts, i.e.

the number of primitive components occurring in

w(goalnew) as well as in ui(^oa/0^. ).

• This number measures the modification effort by

an estimation of the number of current atomic

goals that are achieved by each candidate.

The candidate with the biggest number is selected

as being the best reuse candidate, because it is as

signed the highest "success rate" and therefore its

modification effort is estimated as being minimal. Fur

thermore, the ranking heuristic verifies whether the

ranking value of the best candidate exceeds a low

er bound: it requires that at least half of the prim

itive components from u(goalnew) must be contained

in uigoaloijt). If this condition is satisfied, the rank

ing heuristic assumes that the best candidate achieves

at least half of the current atomic goals.4

Definition 4 Let C0idi . ■ • • . Coidn be the set of candi

dates retrieved by weak classification of u(Cnew) . The

goal concepts occurring in the indices of the candidates

are u>(goal0i<il), . . . ,u(goal0idH), the goal concept oc

curring in the current index is u(goalnew). The set of

primitive components that occurs in a concept c is de

noted by PK[c], while their number is denoted by N[c].

The estimated success rate for each candidate is de

fined as:

MODu{goaioldi) =

N [PK[U(goalold, )] n PK[u(goalnew)]

The ranking heuristic Hmod selects the candidate with

the biggest success rate that exceeds the lower bound:

Kmod - | Coidi | MODw(goalolJt) =

max [hiODu(goatol<li ),..., MODu(goal<>l<ln ))

and

MOD i i \ > wH>Ml—)l\

If no candidate receives a ranking value which exceeds

the lower bound, all candidates are rejected because

their modification effort is too costly. In this situa

tion, case-based planning reports a failure and plan

ning from scratch with the PHI planner is activated.

The ranking heuristics guide the interaction between

case-based planning and plan generation, see Figure 3.

Plan generation is activated when

• no candidate can be retrieved from the library,

• the modification effort is estimated as being too

costly for all potential candidates.

strong classification

search for applicable plan

reaching all current goals

falls

weak classification

search (or applicable plan

approximation

optimization effort

best candidate

activates

plan modification

succeed approximation of

modification effort

lower bound

Activation of Plan Generator

*The definition of an appropriate lower bound may dif

fer for different case-based planning systems.

Figure 3: Heuristic Guidance of Case-based Planning

The update of the plan library is activated when

• no reusable plan is found and planning from

scratch is performed,

• the retrieved plan has to be optimized or modified.

During the update of the plan library a new plan en

try is built. Three sources of information are avail

able: the formal plan specification Cnew, the gener

ated or modified plan Snew and the proofs performed

during deductive plan generation and plan modifica

tion [Koehler, 1994a]. The plan entry is built out of

Cnew, Snew and information that is extracted from

the proofs. It is related to its index w(Pneu/) that was

already computed and classified during the retrieval

process. The index determines the position of the new

plan entry in the plan library. It is now available for a

subsequent case-based planning process.

4 IMPLEMENTATION

The system MRL has been implemented as an inte

grated part of the PHI system in SICSTUS Prolog.

The plan library can be static as well as dynamic:

A static library comprises user-predefined typical

plans. The system retrieves these plans for reuse, but

does not add new plans to the library. A dynamic plan

library grows during the lifetime of the system. MRL

starts with an empty library and incrementally adds

new plan entries to it. The system thus automatically

builds a taxonomy of abstract descriptions of typical

planning problems that occur in the application do

main.

The application of terminological logics leads to re

markable properties of the system:
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The mapping of specific planning problems to abstract

classes helps to keep the plan library small. Only one

representative for each class is added to the plan li

brary. Instances of planning problems which belong to

the same class can be solved by instantiation or easy

modification of the retrieved candidate plan. Further

more, the implementation of the representational shift

from specific planning problems to abstract problem

classes with the help of the encoding scheme requires

only marginal computational costs.

The polynomial complexity of the subsumption algo

rithms leads to an efficient retrieval of candidate plans

in polynomial time, cf. [Koehler, 1994b].

The completeness of the subsumption algorithm en

sures that existing solutions are found in the plan li

brary. This leads to efficiency gains of the case-based

planner compared to the generative planner because

the system can reuse any solution that exists in the

plan library.

5 RELATED WORK

Recently, the representation of plans based on termi

nological knowledge-representation systems has led to

several approaches, which extend terminological logics

with new application-oriented representational primi

tives for the representation of actions and plans.

One such an extension is the system RAT [Heinsohn et

al., 1991] which is based on KH1S [Baader et al.,

1992]. RAT is able to implement reasoning about

plans by inferences in the underlying terminological

logic. The system simulates the execution of plans,

verifies the applicability of plans in particular situa

tions and solves tasks of temporal projection.

An application of terminological logics to tasks of plan

recognition is developed in T-REX [Weida and Lit-

man, 1994]. Plans in T-REX may contain conditions

and iterations as well as non-determinism in the form

of disjunctive actions.

More complex application domains may require the in

tegration of more expressive terminological logics into

the hybrid representation formalism for case libraries.

A future direction of work is the integration of stochas

tic approaches and the parallelization of the search.

A successful application of a probabilistic method for

NP-complete inference problems is described in [Sel-

man et al., 1992]. The usefulness of non-systematic

search strategies in planning is demonstrated in [Lan-

gley, 1992; Minton et al., 1992].

6 CONCLUSION

We have presented an application of terminological

logics as a kind of query language in case-based rea

soning. Indices are built from concept descriptions.

The retrieval and update operations working on case

libraries are formalized as classification operations over

the taxonomy of indices.

An example taken from the field of case-based plan

ning demonstrates the applicability of the theoretical

framework. The behavior of the case-based planner

becomes predictable and theoretical properties like the

correctness, completeness and efficiency of the retrieval

algorithm can be proved.
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Abstract

Probabilistic AI planning methods that minimize

expected execution cost have a neutral attitude

towards risk. We demonstrate how one can trans

form planning problems for risk-sensitive agents

into equivalent ones for risk-neutral agents pro

vided that exponential utility functions are used.

The transformed planning problems can then be

solved with these existing AI planning methods.

To demonstrate our ideas, we use a probabilis

tic planning framework ("probabilistic decision

graphs") that can easily be mapped into Markov

decision problems. It allows one to describe prob

abilistic effects of actions, actions with differ

ent costs (resource consumption), and goal states

with different rewards. We show the use of proba

bilistic decision graphs for finding optimal plans

for risk-sensitive agents in a stochastic blocks-

world domain.

1 Introduction

In recent years, numerous planning methods have been de

veloped that are able to deal with stochastic domains.1 Con

sider the stochastic domains for which it is easy to construct

plans that always reach a given goal for sure (at least, in

the limit). Then, one needs a criterion for choosing among

these plans. Such a metric is for example the execution

cost of the plans: One quantifies the "resource consump

tion" (for example, time, energy, or money) of an action

with a single real number that depends only on the action,

the state it is executed in, and the resulting state. Then,

the execution cost of a plan is defined to be the sum of the

resource consumption costs of all actions executed from the

time at which the agent begins until it stops in a goal state.

Since the execution cost of a probabilistic plan can vary

'Examples of probabilistic planning methods include [Smith,

1988], [Bresina and Drummond, 1990], [Christiansen and Gold

berg, 1990], [Hanssonera/., 1990], [Koenig, 1991], [Dean etai,

1993], [Kushmerick et aL, 1993], and many others.

from plan execution to plan execution, almost all probabilis

tic planning methods that take execution cost into account

use the expected execution cost as ranking criterion: Out

of all plans that guarantee to achieve the given goal, they

choose the one that minimizes the expected execution cost

(when optimizing) or one whose expected execution cost

is smaller than a given number (when satisficing). Since

they do not take the variance of the execution cost into ac

count, they assume that the agent that executes the plan has

a risk- neutral attitude.

However, people are usually not risk-neutral. A risk-

seeking agent ("gambler") is willing to accept a plan with

a larger expected execution cost if the uncertainty is in

creased and vice versa for a risk-averse agent ("insurance

holder"): If a plan is executed only once (or a small number

of times), then — among all plans with the same expected

execution cost — the larger the variance of the execution

cost, the larger the chance to do much better than average.

Of course, the chance to do much worse rises as well.

Imagine, for example, that your task is to design a robot

for the annual AAAI robot competition, where it has to

complete a given task (for example, "find the coffee pot")

in as short a time as possible. You want the robot to win the

competition, but — in case it loses — do not care whether it

makes second or last place. You know that your robot is not

much faster than your competitors' robots, maybe even a bit

slower, but cannot assess the capabilities of the other robots

in enough detail to use them for determining the utilities

of the various task completion times of your robot. In this

case, you probably want your robot to take chances, and

thus a risk-seeking attitude should be built into the robot's

planning mechanism.

It is possible to achieve a risk-sensitive attitude by ranking

plans not according to their expected execution costs, but

according to their expected execution costs plus or minus

a fraction of the variances [Filar et ai, 1989] [Karakoulas,

1993], or by searching for plans whose execution costs are

optimal in the best or worst case ("nature acts like a friend or

enemy") [Heger and Karsten, 1992] [Heger, 1994], see also

[Moore and Atkeson, 1993]. However, utility theory [von

Neumann and Morgenstern, 1947] — a subfield of decision



364 S. Koenig and R. G. Simmons

theory — provides a normative framework for making de

cisions according to a given risk attitude, provided that the

agent accepts a few simple axioms and has unlimited plan

ning resources available. The key result of utility theory

is that, for every attitude towards risk, there exists a utility

function that transforms costs c into real values u(c) ("utili

ties") such that it is rational to maximize expected utility. Its

application to planning problems has been studied by [Et-

zioni, 1991], [Russell and Wefald, 1991], [Haddawy and

Hanks, 1992], [Wellman and Doyle, 1992], [Goodwin and

Simmons, 1992], and others. Therefore, we would like to

stay within this framework.

In this paper, we describe a planning framework ("prob

abilistic decision graphs") that can easily be mapped into

Markov decision problems and of which cost-annotated de

cision trees (the kind used in utility theory) are a special

case. It allows one to describe probabilistic effects of ac

tions, actions with different costs (resource consumption),

and goal states with different rewards (goodness). We show

that replacing all costs and rewards with their respective

utilities, but leaving the planning mechanism unchanged,

usually leads to erroneous results. Furthermore, the best

action to execute in a state can depend on the total cost that

the agent has already accumulated when deciding on the

action.

For utility functions of a certain class, however, planning

problems for risk-sensitive agents can be transformed into

equivalent planning problems for risk-neutral agents which

can then be solved with dynamic programming methods or

probabilistic AI planning methods that minimize (or sat-

isfice) expected execution cost. The transformation has

the property that the better a plan is for the transformed,

risk-neutral planning problem, the better it is for the origi

nal, risk-sensitive planning problem as well. Our approach

builds on previous work by [Howard and Matheson, 1972]

in the context of Markov decision theory. A blocks-world

example is used to illustrate our ideas and show how the

optimal plan depends on the degree of risk-sensitivity of

the agent.

2 The Planning Framework

The following representation of probabilistic planning

problems was used in [Koenig, 1991]. A similar frame

work has recently been used by [Dean et ai, 1993] and is

commonly used for table-based reinforcement learning.

Planning is done in a state space. 5 is its finite set of states,

so € S the start state, and GC 5 a set of goal states. A

plan determines at every point in time which action the

agent has to execute in its current state. In a goal state s,

the agent receives a (positive or negative) one-time goal

reward2 r[s] and then has to terminate. The goal rewards

reflect that different goal states can be of different value

2From here on, we use the terms "rewards" and "costs" as

follows: Rewards can be positive or negative values, but costs are

always negative values.

to the agent. However, to keep the following discussion

simple, we will use only planning examples for which all

goal rewards are zero. In a non-goal state s, the agent

can choose an action a from a finite set of actions A(s).

Nature then determines the outcome ofthe action with a coin

flip: with transition probability p" [s, $*], the agent incurs an

action cost c"[s, /] < 0 and is in successor state s1. Thus,

we assume that the outcomes of all action executions are

mutually independent given the current state of the agent

(Markov property). The action costs reflect the resources

consumed, for example, time needed or effort spent. We

assume that the values of all parameters are completely

known and do not change over time. We do not assume,

however, that the planner uses a planning approach that

operates in the state space (instead of, say, the space of

partial plans).

For a given plan, we define the probability of goal achieve

ment of state 5 as the probability with which the agent

eventually reaches a goal state if it is started in s and obeys

the plan. If this probability equals one, we say that the plan

solves s. A plan that solves the start state is called admissi

ble. In the risk-neutral case, a plan is evaluated according

to the expected total reward of the start state. The expected

total reward v[s] of state s for a given plan is the expected

sum of the reward of the goal state and the total cost of the

actions that are executed from the time at which the agent is

started in s until it stops in a goal state (given that it obeys

the plan). Similarly, the expected total utility u[s] of state s

is the expected utility of the sum of the goal reward and the

total cost of the executed actions.

The planning framework described above is very general.

For example, one can easily represent goal states in which

the agent does not have to stop (that is, goal states that the

agent can leave in order to reach a different goal state that

has a larger goal reward). This is necessary if one wants

unsolvable states to have an expected total reward that is

finite instead of minus infinity. One could, for example,

allow the agent to stop in any state, but penalize it for

stopping in a non-goal state. (In this case, all non-goal

states must be converted to goal states that have a very

small goal reward and can be left again.)

For risk-neutral agents, the planning framework is isomor

phic to Markov decision problems [Mine and Osaki, 1970].

A state-action mapping ("stationary, deterministic policy")

specifies for every state the action that the agent has to exe

cute when it is in that state. For Markov decision problems,

one can restrict plans to state-action mappings without los

ing optimality.

We use an easier-to-depict representation for probabilistic

planning problems here, which we call "probabilistic deci

sion graphs", that resembles the kind of decision trees that

are used in utility theory. Its building blocks are shown

in Figure 1. Every state corresponds to a (large) circle.

The large circle of a non-goal state s contains a decision

tree that consists of a decision node (square) followed by

chance nodes (small circles), one for every a £ A(s). Tran

sition probabilities and action costs are specified for every
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Figure 1: Building Blocks

outcome of the actions. The circle of a goal state contains

a value node (diamond) for the goal reward. To represent

a planning problem, these building blocks have to be con

nected so that there are no dangling outcome arrows. In

addition, the start state is marked with an incoming arrow

that has no source state and is labeled "start."

Note that probabilistic decision graphs can have cycles:

cycles do not imply that a decision depends on itself, but

that a decision depends on the same decision made at an

earlier point in time. In the following, we will distinguish

two simplifications of this planning framework, namely

acyclic probabilistic decision graphs and the even simpler

acyclic probabilistic decision graphs without shared sub

trees ("cost-annotated decision trees"). The last two vari

eties are commonly used in utility theory.

3 The Problem

We suspect that researchers have largely ignored the ques

tion of how to incorporate risk-sensitive attitudes into their

planning mechanisms because they assume that by replac

ing all costs and rewards with their respective utilities

(for an appropriate utility function) one can achieve risk-

sensitive attitudes without changing the planning mecha

nisms. In the following, we use acyclic probabilistic deci

sion graphs to demonstrate that this is not necessarily the

case after reviewing how to use dynamic programming tech

niques to determine optimal plans for risk-neutral agents.

3.1 Planning for Risk-Neutral Agents

A risk-neutral agent has to solve planning task PT1 : given

a complete specification of the planning problem, find a

plan for which the start state has the largest expected total

reward.

An optimal state-action mapping for planning task PT1 can

be determined in polynomial time with dynamic program

ming techniques. To solve an acyclic probabilistic decision

graph, we could transform it as follows: First, we propa

gate the action costs to the value nodes. This amounts to

duplicating shared subtrees, since every path from the start

state to a goal state needs to have its own value node. The

resulting decision tree can then be solved in time linear in

its size: the expected total reward of a value node is the

sum of its goal reward and the accumulated costs, the ex

pected total reward of a chance node is the average over the

expected total rewards of its successor nodes weighted with

the transition probabilities, and the expected total reward

of a decision node is the maximum of the expected total

rewards of its successor nodes. The action that achieves

the maximum is the optimal decision for the decision node.

The expected total reward v[s] of a (non-goal) state s is

equal to the expected total reward of the decision node that

it contains, and the optimal action a[s] for the state is the

same one that is optimal for its decision node.

The transformation outlined above can be done in linear

time if no subtrees are shared. However, if subtrees are

shared, it is expensive, since the number of paths — and

therefore the size of the transformed decision tree — can be

exponential in the number ofstates of the original tree. For

tunately, it is well known that the following dynamic pro

gramming technique ("[averaging-out-and-]folding-back")

solves acyclic probabilistic decision graphs for risk-neutral

agents on the original tree in linear time, that is, without

duplicating shared subtrees.

ir[s] forsGG

max yV[5,/](c"[i,i/] +v[/]) otherwise

a[s] := arg max Vpa[s, s'^s, s1] + v[/])

a*Ms)7?s

fovseS\G

Thus, one evaluates every subtree only once and the run

time of the algorithm is linear in the size of the original

decision tree. Dynamic programming algorithms, such as

this one, can be used to solve planning task PT1, because

the Markov property holds for all states: the expected total

reward v[s] of every state (and thus the optimal action a[s]

for the state) is independent of how the agent reached the

state.

3.2 Planning for Risk-Sensitive Agents

A risk-sensitive agent has to solve planning task PT2: given

a utility function and a complete specification of the plan

ning problem, find a plan for which the start state has the

largest expected total utility.

Planning task PT2 can be solved for probabilistic deci

sion graphs without action costs by first replacing all goal

rewards with their respective utilities and then using any

planning method for risk-neutral agents. In reality, how

ever, the probabilistic decision graphs of planning task PT2
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start
 

means: irrelevant for the example

Figure 2: A Planning Problem with a Shared Subtree

do have action costs. Similarly to how we proceeded earlier

for risk-neutral agents, we could first propagate the action

costs to the value nodes (which involves duplicating shared

subtrees if they exist). Next, all rewards at the value nodes

are replaced with their respective utilities. Finally, folding-

back is used to determine an optimal plan. Remember that

this method has an exponential run-time in the worst case

(and is not directly applicable to cyclic probabilistic deci

sion graphs). As an example, consider the partly specified

planning problem shown in Figure 2. This planning prob

lem contains a shared subtree that represents the choice

between a deterministic lottery3 A (reward -0.48 for sure)

and a non-deterministic lottery B (rewards -0.10 and -1 .00

with equal probability). The application of folding-back on

this planning problem for a risk-seeking agent with utility

function u(c) = — -v/—c (for c < 0) is shown in Figure 3.

(Actions that are sub-optimal are "crossed out" with two

horizontal lines.)

It is not optimal to simply replace all costs and rewards with

their respective utilities and then use folding-back on the

resulting tree, because in general u(c\ +c{) ^ u(c\ )+«(c2) for

two rewards c\ and c% (that is, the value function is no longer

time-additive). In fact, dynamic programming methods can

no longer be used in any way without considering the total

action cost that the agent has already accumulated when

Lottery" is a term from utility theory. A lottery is recursively

defined to be either a reward that is received for sure (that is, with

probability one) or a probability distribution over lotteries.

Man

 

-0.43 - -V-l-020) ) - u(-O.M)

Figure 3: Solution for a Risk-Sensitive Agent

deciding on the actions, because the Markov property does

not necessarily hold for risk-sensitive agents [Raiffa. 1968].

Consider again the planning problem from Figure 2. As

demonstrated in Figure 3 for u(c) = —y/—c, the agent

should choose lottery B if it has already accumulated ac

tion costs of -0. 10 when deciding between the two lotteries.

However, if the accumulated action costs are - 1 .00, it should

prefer lottery A. This can be explained as follows: The agent

is risk-seeking, since its utility function —yf^c is convex,

but the convexity decreases the more negative c gets. The

action costs that the agent has already accumulated have

to be added to all rewards of a lottery. For example, if

the accumulated action costs are -0.10, then lottery B be

comes "rewards -0.20 and -1.10 with equal probability." If

the agent has already accumulated cost - 1 .0, then lottery B

becomes "rewards -1.10 and -2.00 with equal probability."

Thus, the more action costs the agent accumulates, the more

negative the total rewards become and the less risk-seeking

the agent is. Since the agent accumulates more and more

action costs over time, it becomes less and less risk-seeking.

This problem makes planning very inefficient. One can

circumvent it with planning methods that have a limited

look-ahead. The planner of [Kanazawa and Dean, 1989],

for example, determines the plan that generates the largest

expected total utility in the first n steps, executes the first

action of the plan, and repeats. Such planning methods still

duplicate shared subtrees (since they "unroll" the underly

ing Markov decision problem), but one can now control
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the amount of work required for one iteration by varying

the look-ahead n. These, and related heuristic planning

methods, suffer from the limited horizon problem and their

success depends critically on the structure of the planning

task.

4 A Solution

Our proposed method for incorporating risk-sensitive atti

tudes involves transforming planning task PT2 into a plan

ning task PT3, which can then be solved with any standard

(that is, risk-neutral) planning method. The resulting, op

timal plan for planning task PT3 is optimal for the risk-

sensitive planning task PT2 as well. The key to accom

plishing this task is to utilize utility functions that maintain

the Markov property.

Consider utility functions with the following property

(called "constant local risk aversion" [Pratt, 1964] or "delta

property" [Howard and Matheson, 1972]): if all rewards

of an arbitrary lottery are increased by an arbitrary amount,

then the certainty equivalent of the lottery is increased by

this amount as well. (If the expected utility of a lottery is

x, then «"'(*) is called its certainty equivalent.) The only

utility functions with this property are the identity function,

convex exponential functions k(c) = yc for 7 > 1, con

cave exponential functions u(c) = —jc for 0 < 7 < 1, and

their strictly positively linear transformations [Watson and

Buede, 1987]. Since these utility functions are parameter

ized with a parameter 7, one can express a whole spectrum

of risk-sensitivity, ranging from being strongly risk-averse

to being strongly risk-seeking. The larger 7, the more risk-

seeking the agent is, and vice versa. For 7 approaching

infinity, for example, the agent is "extremely risk-seeking":

it assumes (wrongly) that nature does not flip coins to deter

mine the outcomes of its actions, but makes the ones happen

from which the agent benefits most [Koenig and Simmons,

1993]. Similarly, for 7 approaching zero - the other ex

treme case - the agent thinks that nature hurts it as much

as it can. Such "extremely risk-averse agents" believe in

Murphy's law: If anything can go wrong, it will. They

have recently been studied in the AI literature by [Moore

and Atkeson, 1993] and [Heger, 1994].

These utility functions have the advantage that they main

tain the Markov property [Howard and Matheson, 1972]: if

the agent executes an action in its current state and behaves

optimally afterwards, then it faces a lottery. There is one

lottery for every action that the agent can execute in its

current state. The lottery with the largest expected utility

or, equivalently, the largest certainty equivalent identifies

the optimal action. Before determining the certainty equiv

alents, however, one has to add the action costs that the

agent has already accumulated to all (goal) rewards of ev

ery lottery. This increases the certainty equivalent of every

lottery by the same amount (namely, the accumulated ac

tion costs), since the utility function has the delta property.

Thus, when comparing lotteries, one can ignore the accu

mulated action costs.

[Howard and Matheson, 1972] apply utility functions with

the delta property to Markov decision problems with finite

and infinite time horizons. In the later case, they assume

a non-goal oriented task, and every state-action mapping

has to determine an irreducible (that is, strongly connected)

Markov chain. As shown in [Koenig and Simmons, 1994],

their analysis can be applied to non-goal oriented plan

ning and reinforcement learning tasks if the agent is risk-

sensitive towards variations of the reward that it receives

per action execution. Unfortunately, our goal-oriented plan

ning task PT2 does not possess the properties required by

Howard and Matheson, and thus we cannot use their meth

ods and proofs unchanged.

4.1 Planning for Risk-Seeking Agents

In the following, we will temporarily restrict our attention

to risk-seeking agents with utility function m(c) = yc (or

any strictly positively linear transformation thereof) for risk

parameter 7 > 1. For these utility functions, we show how

to calculate the expected total utility of a given plan. Then,

we will transform the planning problem into one for a risk-

neutral agent and show how to solve it.

4.1.1 Calculating the Expected Total Utility of a Plan

Assume that, for some planning problem, a plan (that is,

a state-action mapping) is given that assigns action a[s] to

non-goal state s. The expected total utility of this plan, that

is, the expected total utility u[so] of its start state so. can

recursively be calculated as follows.

The (expected) total utility ofa goal states is u[s] = n(r[s]) =

y*'K After the agent has executed action a[s] in a non-goal

state s, it incurs action cost caW[*,s/] and is in successor

state s1 with probability pa','[j,s']. In state s1, it faces a

lottery again. This lottery has expected total utility tils']

and certainty equivalent u~\u[tf]) = log,, "[s7]. According

to the axioms of utility theory, the lottery can be replaced

with its certainty equivalent. Then, the agent incurs a total

reward of cal'][s,s,] + iT '(«[/]) with probability pa[s][s,s'].

Thus, the expected total utility of s can be calculated as

follows:4

u[s] = £^*W]«(c*wM] + «~W]))

yes

yes

yes

yes

yes\c

4This corresponds to the policy-evaluation step in [Howard

and Matheson, 1972] with the "certain equivalent gain" £ = 0.
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s'eG

This system of linear equations is always uniquely solvable.

4.1.2 Transforming the Planning Problem

To show how every planning task PT2 for a risk-seeking

agent can be transformed into an equivalent planning task

PT3 for a risk-neutral agent, we assume again that a state-

action mapping is given. We use the same symbols for

planning task PT3 that we used for PT2, but overline them.

Since (without loss of generality) a risk-neutral agent has

utility function u(c) = e, it holds that u[s] = v[s]. A goal

state s has (expected) total utility u[s] = u(r[s]) = r[s]. The

expected total utility of a non-goal state s is

us] = £/>fli'W]«(^w[*yi+«~W]))

s'es

Comparing these results with the ones in the previous sec

tion shows that u[s] - u[s] for all states s € S and all plan

ning problems if and only if three equalities hold: f[s] =

7*" for j € C. Furthermore, p*1!*,/] = p"ls][s,s']y^l''s']

and c"w [s, J] = 0 for s G S \ G and J G 5.

Thus, planning task PT2 for a risk-seeking agent with utility

function u{c) = jc is equivalent to the following planning

task PT3 for a risk-neutral agent:

Introduce one additional goal state s with

goal reward zero. Otherwise, the state space,

action space, start state, and goal states remain

unchanged. The goal reward of any goal state

5 ji s is 7',s|. When the agent executes action a in

a non-goal state s, it incurs an action cost of zero

and is in successor state J with transition prob

ability pa[s][s, s,]7c""['A These probabilities do

not sum up to one. With the complementary tran

sition probability 1 - E^p"'"^, /fr^"11*'1,

the agent incurs an action cost of zero and is in

successor state s.

Thus, given 7, one transforms planning task PT2 into the

above planning task, for which one then determines the

plan with the largest expected total reward. The transfor

mation is trivial and can be done in linear time, since both

representations are of the same size.

The only reason for introducing state s is to make the prob

abilities sum up to one. Since its expected total reward is

zero, it will not show up in the calculations. The specifi

cation of PT3 for the risk-seeking planning problem from

Figure 2 is shown in Figure 4. Note that, although they can

both be expressed with probabilistic decision gTaphs of the

 

Figure 4: Transformation

same topology, the specification of the planning problem

for PT3 differs fundamentally from the one of PT1 . For ex

ample, an obvious difference is that all actions of planning

task PT3 have action cost zero. Therefore, action costs can

be ignored for risk-sensitive planning.

4.1.3 Finding Optimal Plans

Planning task PT3 can be solved with probabilistic AI plan

ning methods or, alternatively, with dynamic programming

methods, called Markov decision algorithms.

It is interesting to note that the plan with the largest ex

pected total utility is not necessarily admissible even if an

admissible plan exists, as shown in Figure 5 for a risk-

seeking agent with utility function u(c) = 2C. If the agent

chooses action A, then the expected total utility of the plan

is 0.50u(-oo) + 0.50w(-l) = 0.25, but the plan is not ad

missible. If the agent chooses action B, then it achieves a

total (expected) utility of 1.00u(-3) = 0.125 and reaches

the goal state for sure. Thus, the inadmissible plan results

in a larger expected total utility. This cannot happen for

risk-neutral agents, since the optimal risk-neutral plan is

always admissible if an admissible plan exists. The reason

why the plan with the largest expected total utility is no

longer guaranteed to be admissible for risk-seeking agents

is shown in Table 1 : While for risk-neutral agents all in

admissible plans have certainty equivalent minus infinity,

this is no longer true for risk-seeking agents. The table also

shows that this situation cannot arise for risk-averse agents.

It should be pointed out that, from the standpoint of utility

theory, there is absolutely no problem with optimal plans
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1.00/1.00

Figure 5: The Optimal Plan is Inadmissible

Table 1: Possible Certainty Equivalents of Plans

agent is ...

certainty equivalent u '(u[s0]) of...

an admissible plan an inadmissible plan

risk-neutral «"'(«[i0]) > —
u'l(uU0]) = —

risk-seeking «"'(«[i0])>-~ u-\u[s0])

risk-averse u"1 («[*„]);> —

(utility function has delta property)

that are inadmissible. However, if one insists on using

utility theory only to choose the best plan among all ad

missible plans, one can utilize that the optimal plan for a

risk-seeking agent is guaranteed to be admissible if every

state is solvable.5 Thus, if some states are unsolvable, one

can remove the unsolvable states from the planning prob

lem before solving it [Koenig, 1991]. The optimal plan

of the resulting planning problem is then guaranteed to be

admissible.

The optimal plan for the transformed planning task PT3

can be determined with dynamic programming algorithms.

If the probabilistic decision graph is acyclic, it can be

solved in linear time with folding-back. For cyclic prob

abilistic decision graphs, it can be formulated as Markov

decision problem, that can then be solved in polynomial

Properties such as this one can easily be proved using the any

time property of Markov decision algorithms such as the policy-

iteration algorithm.

time with Markov decision algorithms. The representa

tion as Markov decision problem proves that one can in

deed restrict plans to ~tate-action mappings without losing

optimality and, furthermore, that there exists at least one

state-action mapping that is optimal for all possible start

states. It turns out that the Markov decision problems for

planning task PT3 have a simpler structure than the ones

for PT1 (namely, all state-action mappings determine ab

sorbing Markov chains). This simplifies the optimization

algorithms.

In order to determine an optimal plan for planning task PT3,

one can for example use value-iteration [Bellman, 1957],

policy-iteration [Howard, 1964], Q-learning [Watkins,

1989], or linear programming. As an example of such a

dynamic programming technique consider a simplified ver

sion of Howard's single-chain policy-iteration algorithm

[Howard, 1964] [Howard and Matheson, 1972]. One can

either use the algorithm on the transformed planning task

PT3 or, as we have done here, adapt the algorithm so that it

works on the original planning task PT2:

1. Choose an arbitrary state-action mapping a[s] € A(s)

for all j 6 S \ G.

2. (value-determination operation) Solve the system of

linear equations

u[s] = £ lV*WW]

+ Y^Pa[s][s,s']y^'Y*'l

forse S\G.

3. If no u[s] for any s € S\G has changed in the pre

vious step (from the value that it had in the previous

iteration), then stop. An optimal state-action mapping

is to select action a[s] in state s € S\G.

4. (policy-improvement routine) Set for every s € 5 \ G

a[s) := argraax( V p"[j,j']/1,','l«[i/]

5. Go to 2.

This algorithm is an anytime algorithm. The term "anytime

algorithm" was coined by [Boddy and Dean, 1989]), and

[Bresina and Drummond, 1990] first developed an anytime

planner. The policy-iteration algorithm is an anytime al

gorithm in the sense that the expected total utility of no

state can decrease from one iteration to the next, but the

expected total utility of at least one state strictly increases,

until the optimal state-action mapping is found in finite

time [Howard, 1964]. Thus, the expected total utility of

the currently best plan cannot decrease from iteration to
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m

start goal

There are seven goal states, all of which are equally preferable.

In every blocks-world state, one can move a block that has a clear top

onto either the table or a different block that has a clear top, or paint a

block white or black.

Moving a block takes only one minute to execute, but is very unreliable.

With probability 0.10, the moved block ends up at its intended destina

tion. With probability 0.90, however, the gripper loses the block and it

ends up directly on the table. (Thus, moving a block to the table always

succeeds.)

Painting a block takes three minutes and is always successful.

Figure 6: A Blocks-World Problem

iteration. A solved state remains solved in the following it

erations and an admissible plan stays admissible. Anytime

planning methods can be used to determine — according

to decision-theoretic criteria — when to stop planning and

start executing the plan, because the possible future increase

in plan quality does not justify the effort of planning any

further.

However, dynamic programming algorithms are brute-force

search algorithms and thus are often impractical, since they

do not utilize available domain knowledge such as how dif

ferent actions interact with each other. AI planning meth

ods, on the other hand, are knowledge-based. Although

AI planning methods, such as the ones of [Smith, 1988] or

[Dean et ai, 1993], are usually not able to guarantee the

optimal ity of their plans, they can be used for risk-seeking

planning instead ofMarkov decision algorithms. The larger

the expected total reward of the plan that they determine for

planning task PT3, the larger is the expected total utility of

the same plan for the corresponding planning task PT2.

4.1.4 Example: A Stochastic Blocks-World

We use the blocks-world problem that is stated in Figure 6 to

illustrate this planning method. Figure 7 shows four of the

state-action mappings that solve it, and Figure 8 illustrates

how the certainty equivalents u~\u[sq]) = log7 u[so] of

the four plans vary with the natural logarithm of the risk

parameter 7.

Plan A, which involves no risk and can be executed in six

minutes (that is, has total reward -6.00), has the largest

expected total reward of all plans (not just the four plans

shown) and will therefore be chosen by a risk-neutral agent.

However, plan A is not necessarily optimal for a risk-

seeking agent. When executing plan D, for example, the

agent can reach a goal state in only three minutes if it is

lucky.
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Figure 7: Some Plans for the Blocks-World Problem

The optimal plan for a risk-seeking agent is the one with

the largest expected total utility or, equivalently, certainty

equivalent. Since Plan A is deterministic, its certainty

equivalent equals the (expected) total reward of its start

state, no matter what the risk-attitude of the agent is. The

other three plans are non-deterministic. Thus, their cer

tainty equivalents increase, the more risk-seeking the agent

becomes, and different plans can be optimal for differ

ent degrees of risk-seeking attitude. Figure 8 shows that

plan A is optimal in the interval ln7 £ (0.00,0.93]. For

In 7 G [0.94, 4.58], plan C is optimal, and plan D should be

chosen for In 7 6 [4.59, 00). (These statements hold for all

plans, not just the four plans shown in the figure.)

In order to be able to apply probabilistic planning meth

ods other than Markov decision algorithms, we explicitly

transform the planning problem into one for a risk-neutral

agent. The original planning problem can for example be

expressed with augmented STRIPS-rules [Koenig, 1991],

three for the move actions ("move block X from the top of

block Y on top of block Z," "stack block X on top of block

Y," "unstack block X from block Y") and one for the paint

action ("paint block X with color C"). The first move action
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Figure 8: Certainty Equivalents (Risk-Seeking Case)

can be expressed as follows:

move(X,Y,Z)

precond: on(X,Y), clear(X), clear(Z),

block(X), block(Y), block(Z) ,

unequal (X, Z)

outcome :

/* the primary outcome */

prob: 0.1

reward: -1.0

delete: on(X,Y), clear(Z)

add: on(X,Z), clear (Y)

outcome :

/* failure: block X falls down */

prob: 0.9

reward: -1.0

delete: on(X,Y)

add: clear (Y) , on (X, table)

The transformation changes the transition probabilities, ac

tion costs, and goal rewards. In particular, the STRIPS-rules

are transformed as shown in Section 4.1.2. For example,

for 7 = 2, the above STRIPS-rule is transformed into the

following one:

move(X,Y, Z)

precond: on(X,Y), clear(X), clear(Z),

block(X), block(Y), block(Z) ,

unequal (X, Z)

outcome :

/* the primary outcome */

prob: 0.05

reward: 0.0

delete: on(X,Y) , clear(Z)

add: on(X,Z), clear (Y)

outcome :

/* failure: block X falls down */

prob: 0.45

reward: 0.0

delete: on(X,Y)

add: clear (Y) , on (X, table)

With the complementary probability (0.5), the action exe

cution results in the new goal state s, that has goal reward

zero, but is not modeled explicitly. All other goal states (i.e.

the goal states of the original, risk-seeking planning prob

lem) get assigned a goal reward of one. Now, one can use

any planning method that maximizes expected total reward

on the transformed STRIPS-rules to determine an optimal

plan for the risk-seeking agent.

4.2 Planning for Risk-Averse Agents

For risk-averse agents, one can proceed as outlined for

risk-seeking agents in the previous section. In this case,

one has to use a function from the family u(c) = ~jc

(or any strictly positively linear transformation thereof)

for 0 < 7 < 1. Although the values /fl'][s, s,]-,c*']l'<s']

can no longer be interpreted as probabilities (since

Hj'esP"'1^5' ^jT > one can use tne sarne meth

ods as in the risk-seeking case if one takes care of one

complication: The solution u[s0] of the system of linear

equations from Section 4.1.1 can now be finite even for

plans that have expected total utility minus infinity. The

planning methods can then erroneously return such plans

as optimal solutions. Fortunately, these plans are easy to

characterize ("plans that have at least one cycle with 'prob

ability' greater than one"), and one can remedy the problem

by either initializing the dynamic programming algorithms

more restrictedly or extending them slightly. Details are

given in [Koenig and Simmons, 1994].

If there are cycles in probabilistic decision graphs, then —

unfortunately — the expected total utilities of admissible

plans (and thus their certainty equivalents) can be minus in

finity. Imagine for example an extremely risk-averse agent.

Thus, given a plan, the agent assumes that nature will try

to keep it away from a goal state. The agent assigns a

plan an expected total utility of minus infinity if a vicious

nature could indeed prevent it from reaching a goal state.

In this case, utility theory might no longer be able to dis

tinguish admissible plans from inadmissible ones. Table 1

shows that this problem can not arise for risk-neutral or

risk-seeking agents.

As an example, consider again the blocks-world domain

from Section 4. 1 .4. Figure 9 shows how the certainty equiv

alents of the four plans for the blocks-world problem vary

with the natural logarithm of the risk parameter 7 if the

agent is risk-averse. The optimal plan for such an agent is

always plan A, independent of 7. Although the certainty

equivalent of plan A is defined for all values of In 7, the

certainty equivalents of plans B, C, and D are finite only for
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Figure 9: Certainty Equivalents (Risk-Averse Case)

-0.1 1 < In 7 < 0 (that is, 0.9 < j < 1). They are minus

infinity for smaller values of In j.

5 Conclusion

This paper focuses on probabilistic planning for risk-

sensitive agents, since there are many situations where it

is not optimal to determine plans that minimize expected

execution cost. We use acyclic and cyclic probabilisticdeci-

sion graphs as the planning framework and use utility func

tions that possess the delta property. These utility functions

cover a whole spectrum of risk-sensitive attitudes from be

ing strongly risk-averse to being strongly risk-seeking, and

fill a gap between approaches previously studied in the AI

literature.

We have shown that one can use standard probabilistic

planning methods to solve risk-sensitive planning prob

lems. However, it is not enough to replace all costs and

rewards with their respective utilities. Instead, one can

transform the acyclic probabilistic decision graph into a

different probabilistic decision graph of equal size, that one

can then optimize for a risk-neutral agent in linear time with

dynamic programming methods. Cyclic probabilistic deci

sion graphs can be solved in a similar way in polynomial

time with Markov decision algorithms.

This approach to risk-sensitive planning allows one to

augment risk-neutral probabilistic AI planning algorithms,

since one can use any planning method on the transformed

planning problem that minimizes (or satisfices) expected

execution cost to determine an optimal (or satisficing) plan

for a risk-seeking agent. The better a plan is for the trans

formed planning problem, the better it is for the original

planning problem as well. Although the derivation of the

transformation requires some knowledge of utility theory

and Markov decision theory, the transformation itself is

very simple and can be applied without any understanding

Attitude 0«of the formalisms involved.

We believe that much of the work in operations research or

decision theory can be utilized for AI research in a similar

way. These disciplines have a different approach to decision

making than AI and, consequently, most of their methods

might not be interesting from an AI point of view. However,

they also offer results that are useful for other problem solv

ing approaches. These results can (and should) be utilized

by AI researchers.
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Abstract

Recent advances in hill-climbing satisfiabil

ity methods have solved hard classes of prob

lems, which are difficult for existing system

atic methods such as Davis-Putnam. In this

paper we examine a class of problems de

rived from crossword puzzles that is diffi

cult for the hill-climbing methods, yet is eas

ily solved by standard forward-checking al

gorithms. The characteristic feature of this

class is its hierarchical nature: clusters of

dependent variables, with a small number

of connections between the clusters. Al

though the results are experimental and not

theoretical, we speculate that any hierarchi

cal constraint-satisfaction problem with cer

tain characteristics will be difficult for naive

greedy algorithms.

1 Introduction

Recently, hill-climbing methods for constraint satisfac

tion problems (CSPs) have found solutions for some

hard problems, including hard scheduling, random

3SAT and random graph-coloring problems. Instances

of these methods include min-conflicts [6] and GSAT

[10, 9]. Solving a CSP means finding an assignment for

all the variables in the CSP that satisfies all the con

straints. The common idea behind the hill-climbing

methods is to choose an initial assignment for the vari

ables (which almost always does not satisfy all con

straints), and then modify the assigment incrementally

to satisfy more and more constraints. These methods

are nonsystematic, in that they randomly search se

lected portions of the space.

In this paper we concentrate on GSAT and its variants

applied to prepositional satisfaction problems. The

utility of GSAT for typical AI applications is an open

question. There has been some work on toy plan

ning problems using GSAT [5], and the min-conflicts

method has been successfully applied to large-scale

scheduling for the space shuttle [6, 11]. Still, many

AI problems such as diagnosis and planning exhibit

structure that is very different from the randomly gen

erated problems that hill-climbing methods seem to be

most successful on, and there has been no systematic

study of how GSAT performs. There are some reasons

for this; the main one is that it is difficult to generate

random instances of hard problems that exhibit struc

ture. A second one is that GSAT itself is a moving

target. For example, it was reported that assymet-

ric graph coloring [9] and simple planning problems

[5] were very difficult for the original version of GSAT.

Additional mechanisms enabled GSAT to equal or sur

pass the performance of systematic algorithms. The

main effect of these mechanisms — weights on clauses

and random walk — appears to be in moving an as

signment out of local minima so it can continue to

explore the space.

Many naturally-occurring problems exhibit very deep

local minima, and these should cause serious trouble

for GSAT. For example, the Tower of Hanoi puzzle is

a planning problem that has many such minima, since

whenever most of the disks are on the goal peg, they

must all be unstacked in order to place the largest disk

on the bottom. This problem also is a challenge for

other constraint-satisfaction or planning methods, and

current GSAT version do as well as the best systematic

algorithms. The question then arises: are there classes

of problems with deep local minima that are difficult

for GSAT but still easy to solve by other methods?

The answer given here is "yes" (at least until yet an

other mechanism is added to GSAT). A general class

of satisfiability problems with hierarchical structure is

relatively easy to solve by standard foward-checking

algorithms, while GSAT's performance is 3 to 4 orders

of magnitude worse. The performance of GSAT ap

pears to be related to the hierarchical nature of the

problem, that is, when the structure is collapsed to a

flat set of constraints, GSAT's performance improves

remarkably.

The next section discusses abductive inference and the

conversion to satisfiability. Following this, the problem
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class and experiments are presented, and an analysis

of the results.

2 Graph crosswords

We have experimented with a class of problems gen

eralized from crossword puzzles, which we call graph

crosswords (GCWs) because the structure is not nec

essarily planar. A GCW consists of a set of word in

stances, each composed of squares containing letters.

Letters must combine to form legal words from the

dictionary for the GCW. Here is an example of a word

instance:

Alphabet: a, b, c, d

Dictionary: bad, cad, cab

Instance w\ : (ti>i = bad) V (u>i = cad) V (u>i = cab)

(wi = cad) D («i = c) A («2 = a) A («3 =

etc.

The important axioms here are the disjunctions that

encode the allowed choices for words instances. For the

GCW to be satisfied, each word instance must contain

a word from the dictionary.

At the letter level, there are constraints saying that

exactly one letter fills each square:

(«l = a) V (*! = 6) V («! =c)V («!=</)

-(s!=a)V-.(«i=6)

-i(«i = a)V-.(*i=c)

etc.

Finally, there is a set of connections between the

squares of instances, establishing the "cross" part of

the crossword, e.g., if s\ and s& are supposed to be the

same square, then there are constraints:

(«i = a) V ->(s8 = a)

(s8 = a) V --(si = a)

(«! = 6) V -.(«8 = 6)

(fi8 = 6) V -.(«! = 6)

etc.

A complete GCW is specified by the parameters

GCW(A,D,W,C), where A is the alphabet, D the dic

tionary of words over A, W a set of word instances,

and C the set of connections between instances. This

GCW is solvable if there exists an assignment of let

ters to squares that satisfies all the axioms. The con

straints force each of the word instances in a satisficing

assignment to be filled with a dictionary word.

GCW problems exhibit definite structure. Each word

instance forms a tight cluster of interdependent vari

ables whose size varies with the length of the instance.

Constraints between instances enforce restrictions on

pairs of words occupying the connected instances, and

so form bridges between the clusters.

3 The experiments

GCWs are a good model for experiments because they

have several parameters that can be varied to give dif

ferent types of problems. For simplicity we consider

all words in a given problem to be the same size.

Three parameters control the size of the clusters: the

size of word instances (Si), the alphabet and dictio

nary size. We fixed the alphabet size at 10 and the

dictionary size at 10 (we have also tried experiments

with larger values; they do not affect the results re

ported here). This leaves the single parameter 5,- to

control cluster size.

The number of clusters is given by the number of word

instances Ni . Connectivity between the clusters is con

trolled by the parameter Cjj, the number of connections

per instance. For these experiments we used a constant

*0low connectivity of C< = 2.

Experiments were run by setting the parameters Ni

and Ci, then generating a random satisfiable instance

of GCD(A,D,W,C). 10 random words over A were gen

erated, and Ni of them (with possible repetitions) were

chosen to give an assignment so that a satisfiable set

of random connections could be generated.1

For all experiments, we used version 24C (April 1993)

of GSAT. After some experimentation and consul

tation with GSAT guru Bart Selman, both clause

weights and random walk options were used. Random

walk was set at -.5 for all experiments; the weight in

crement was 100, and weights were reset after every

200 flips (sometimes this would increase for harder in

stances of GCW). The number of flips was either x5

or sometimes xlO for harder instances.

For comparison, we used a systematic method, a ver

sion of the Davis-Putnam algorithm called tableau [2].

This method chooses a variable to assign, propagates

the results of the assignment using unit resolution, and

then repeats the process, backing up when it finds a

contradiction. No special effort was made to make

tableau more efficient on GCW. There are no parame

ters to adjust; a simple binary clause count is used as

a heuristic for which variable to assign.

The first series of experiments fixed the word size Si

at 6, and varied the number of instances Ni. Data

for several runs and problems were averaged and pro

duced the results in Table l.a. Runtimes are for a

Sparcstation ELC.

GSAT performed relatively poorly on this set of prob

lems. Its runtimes are at least quadratic in the prob-

1 Ordinary crosswords do not have repeated words, but

GCW allows them. Additional constraints could be gener

ated to enforce unique usage, but this makes it impossible

to generate problems with large Ni over small dictionaries.

2Tableau does not have a random component, so only

one run was used for each problem instance.
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Time (sec)

# words vars clauses GSAT Tableau

2 143 797 1

4 285 1593 10

10 711 3981 100

20 1421 7961 420

40 2841 15921
*

< 1

100 7101 39801
*

1.5

400 28401 159201
*

13

1000 71001 398001
*

30

Table 1: Results of GSAT and tableau on GCW with

a dictionary of 10 6-letter words. An asterisk indicates

the time limit of 30 minutes was exceeded.

Time (sec)

# words vars clauses GSAT Tableau

20 62 3481 14

40 1241 6961 160 < 1

100 3101 17401 717 2

200 6201 34801 10540 3

400 12401 69601
*

7

Table 2: Results of GSAT and tableau on GCW with

a dictionary of 10 2-letter words. An asterisk indicates

the time limit of 4 hours was exceeded.

lem size, and the cutoff of greater than 30 minutes run

time occurs early, on problems of size 40. By contrast,

the tableau method had no trouble with problems as

large as 1000, and only memory limitations prevented

experiments with higher values. Tableau could solve

problems at least 100 times as large as GSAT. These

are not hard problems (for example, they are not at a

crossover point [7], and there are generally many dif

ferent satisficing assignments); what is the source of

GSAT's difficulties? To test the hypothesis that it is

the structure of the GCW, we performed two addi

tional experiments. In the first, we reduced the size

of word instances Si to 2. Data for several problem

sizes Ni are shown in Table 2. With just 2-letter

words, GSAT shows at least an order of magnitude

improvement over the same GCW with 6-letter words,

and solves problems 5 times as large. The results for

tableau are virtually unchanged, since it is searching

essentially the same space.

Finally, we tried an alternate encoding of GCW in

which there are no variables for the letters. Instead,

all constraints were generated as binary constraints be

tween forbidden word pairs, based on the connections

between the instances [4]. So, for example, if word in

stances 1 and 2 were connected by their second letter,

"dog" and "man" would be a forbidden pair for fill

ing them in. Compared to the letter encoding, there

are more clauses (quadratic in the dictionary size), but

Time (sec)

GSAT# words vars clauses

40 441 7450 6

100 1101 18845 25

200 2201 36966 113

400 4401 74443 232

Table 3: Results of GSAT on GCW with a dictionary

of 10 6-letter words, no letter structure.

these is no cluster structure. Data for several values

of Ni are given in Table 3. Note that we have used

the original word size Si = 6. There is an even more

dramatic improvement in GSAT's performance, with

solutions to GCW's two orders of magnitude larger

than in Table 1.

4 Analysis

Our analysis indicates that it is the hierarchical clus

ter structure of the GCW problems that determines

GSAT's poor performance relative to tableau. These

results are dramatic when plotted against each other,

in Figure 1. GSAT does very poorly on GCW prob

lems with large clusters; as the clusters get smaller, it

does progressively better, although tableau still is the

clear winner by at least an order of magnitude. This

data is a strong confirmation of the hypothesis that

the hierarchical structure of the GCW encoding is dif

ficult for GSAT to cope with. We tried a number of

other experiments to eliminate other possible causes

of the difference. For example, we varied the number

of words in the dictionary and the number of letters in

the alphabet; neither had more of an effect on GSAT

than on tableau. Also, we raised 5< to 10; as expected,

GSAT fared even worse, and we could not find solu

tions in the maximum time for size 10 problems, while

tableau remained unaffected.3

The question remains as to why GSAT performs poorly

on GCW problems as the size of clusters 5,- grows. The

number of variables and the number of clause go up

linearly with the size of the problem, so GSAT should

not be overwhelmed by this. The solutions are rel

atively easy to find for tableau, involving almost no

backtracking, so the constraints lead fairly directly to

the solutions: these are not intrinsically hard prob

lems.

Examining the difference between tableau and GSAT

helps to pinpoint the factors that make tableau ef

ficient here. Tableau starts by assigning a value to

3GSAT did about twice as badly on very small prob

lems (Ni < 4) for values Si = 10 than for Si = 6). The

differences at small Ni tend not to be as pronounced be

cause there are very few connections among clusters that

have to be satisfied.
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Figure 1: Comparison of runtimes for GSAT with various size of Sj.

some variable, propagating the results by unit resolu

tion, and then finding another variable to instantiate.

Whenever a contradication is detected, it backtracks

chronologically, undoing the assignment of the most

recent variable. For GCWs, the binary-clause heuris

tic of tableau generally picks a word-instance variable

to assign, since this will generate the most unit resolu

tions, filling in the letters of the squares and eliminat

ing all competing words and perhaps some choices in

connected instances. Then it chooses another word,

until the problem is solved or it is forced to back

track. Relatively few variable assignments are neces

sary, since they force so many others; tableau searches

a relatively small space, on the order of Si x Ni . It is a

very directed search: instantiating a word gives imme

diate information about the suitability of connecting

words.

Once GSAT has settled down from the initial random

assignment, it has assigned a unique word to each word

instance, along with the corresponding letters. Some

of the connections or some of the letters may be in

consistent; it then chooses one of these to flip, and

eventually through a series of flips the assignment set

tles down into an almost satisfied state. GSAT has to

perform a number of flips to do this, 2 x (5< + 1). The

problem seems to be that the search for a new low-

potential state is not directed enough: in making one

connection consistent, GSAT can easily choose a word

instance that makes its other connection inconsistent.

Haphazardly, it eventually finds an assignment to all

word instances that satisfies all connections.

One hypothesis we had was that the size of the al

phabet and dictionary domains was critical: there

were too many possibilities for words or for letters

for words. But increasing these parameters did not

change GSAT's performance significantly (nor did it

affect tableau). Since the number of unit resolutions

performed by tableau goes up at least linearly with

the size of the domains, the fact that there were a

large number of unit resolutions could not have been

the critical factor. Further, the structure of unit res

olution is very shallow: there are no long chains of

dependent variables that are propagated by tableau.

So the presence of unit propagation or chains of unit

propagation by itself is not the critical factor, as some

have speculated [5]. Also, GSAT performs very well on

some problems with large numbers of unit resolutions,

such as the N-queens problem.

Our conclusion is that the cluster structure of the

problem leads to GSAT's difficulties. The size of the

clusters relative to the connection structure is con

trolled by the parameter 5,-, the size of words. As

this parameter gets larger, the number of variables

that GSAT must change to repair a broken connection

grows linearly, and the effect of the connection con

straints is diluted, turning the greedy heuristic into an

undirected instantiation of clusters that perhaps even

tually solves all constraints. But, it is important to

note another characteristic of the cluster variables in
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GCW: satisficing assignments tend to have large Ham

ming distances between them. If this were not the

case, it would be easy to modify some of the variables

to satisfy the connections, without changing the whole

cluster.

In terms of the search landscape, the clusters create

deep local minima which are hard for GSAT to climb

out of; and when it does, the connection constraints

do not provide a directed way of finding an assign

ment to clusters that satisfies more of the connections.

The tableau procedure, on the other hand, makes the

right moves in the search space, collapsing all of the

variables at each cluster to a single choice node.

5 Conclusion

GSAT, even with modifications for random walk and

weighted clauses, performs very poorly on easy clus

tered hierarchical problems such as those in graph

crosswords. The characteristic of these clusters is that

there is a set of tightly interdependent variables, with

a large Hamming distance between satisficing assign

ments for the variables. The simplicity of the problems

comes from having relatively few connections between

the clusters. GSAT works best on a level playing field;

clusters tend to confuse it.

Hierarchical problems arise naturally in many AI prob

lems, including planning, scheduling, diagnosis, and

signal interpretation. On a more abstract level, many

AI problems can be recast as abductive inference, e.g.,

in diagnosis we seek to posit a set of underlying causes

that explains the observed symptoms [8, 1]. The struc

ture of such inference is often hierarchical, as we gener

ate intermediate-level hypotheses that account for re

lated observations. If one wants to use GSAT on these

problems, then it is helpful to "compile out" as much

of the intermediate structure as possible. In general

this will lead to an explosion in the number of con

straints, as in the case of crossword puzzles. It can

also be difficult, since it amounts to performing de

ductive inference about the unsatisfiability of sets of

assignments.

There are two interesting lines of research suggested

by these results. One is to adopt forward-checking

methods in nonsystematic search. GSAT does poorly

because its variable flips are not at the right level of

search abstraction; instead, it should be flipping as

signments of words and letters simultaneously. We

have started to investigate hill-climbing systems that

use a limited amount of forward-checking; the difficult

problems are deciding when to cut it off, and when to

undo it.

Another question to be answered is whether GSAT

does worse than systematic methods on CSP's. The

data in Figure 1 suggest that tableau is better for sim

ple graph crossword CSP's even when there is no clus

ter structure, i.e., problem is a binary CSP. Is this the

case for harder CSP's near a crossover point? Gins

berg [3] has shown that hard crossword puzzles could

be solved by dynamic backtracking, but were impossi

ble for GSAT, although it was an early version with

out random walk and clause weights. Will GSAT do

poorly on hard, randomly-generated CSP's?
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Abstract

We study the complexity of quantifier elimi

nation and decision in first-order theories of

temporal constraints. With the exception of

Ladkin, AI researchers have largely ignored

this problem. We consider the first-order the

ories of point and interval constraints over

two time structures: the integers and the ra-

tionals. We show that in all cases quantifier-

elimination can be done in PSPACE. We also

show that the decision problem for arbitrar

ily quantified sentences is PSPACE-complete

while for 3* sentences it is Incomplete. Our

results must be of interest to researchers

working on temporal constraints, computa

tional complexity of logical theories, con

straint databases and constraint logic pro

gramming.

1 INTRODUCTION

The study of temporal constraints has recently re

ceived much attention from the AI community [A1183,

LM88, Lad88, VKvB89, vBC90, DMP91, KL91,

Mei91, vB92, Kou92, GS93, SD93]. Much of this work

draws upon concepts and techniques from the litera

ture of general constraint satisfaction [Mon74, Mac77,

DP88]. With the exception of [Lad88], all previous re

search has concentrated on temporal constraints which

are quantifier-free formulas in some first-order the

ory of time. The problems studied include deciding

whether a set of constraints is consistent, comput

ing the minimal network corresponding to a set of

constraints, finding one solution, performing variable

elimination and enforcing global consistency.

[Lad88] studied the first-order theory of qualita

tive interval-to-interval relations introduced by Allen

'Current Address: Planning Applications Research

Centre (IC-Parc), Dept. of Computing, Imperial College,

London SW7 2BZ, U.K. Email: msk@doc.ic.ac.uk

[A1183] and gave a quantifier-elimination (and deci

sion) algorithm. This algorithm works by reducing

quantifier-elimination in the given theory to quantifier-

elimination in the first-order theory of rational order.

The only deficiency of Ladkin 's work is that he does

not discuss the complexity of his algorithm. He simply

assumes that quantifier-elimination in the theory of ra

tional order will be done using standard methods and

cites [CK73] as a reference. However [CK73] (as well

as any other standard logic text-book) does not take

complexity issues very seriously; thus their algorithms

are usually inefficient.

In this paper we follow the line of research initiated by

[Lad88] and extend it by considering more expressive

languages of temporal constraints. Our contributions

can be summarized as follows:

1 . We study the first-order theory of (qualitative and

quantitative) point constraints over the integers.

The atomic formulas (i.e., constraints) in this the

ory are of the form * ~ c or — tj ~ c where ~

can be <, > or = and c is an integer. We show

that elimination of quantifiers can be achieved

in PSPACE (theorem 4.5) and that the decision

problem is PSPACE-complete (theorem 4.1). For

3jt sentences of this theory the complexity of the

decision problem is Sj-complete (theorem 4.3).

2. We also study the first-order theory of (qualita

tive and quantitative) point constraints over the

rationals. The atomic formulas in this theory are

of the form t ~ c or U — tj ~ c where ~ can

be <, > or = and c is a rational. The complex

ity results for this theory are similar: elimination

of quantifiers can be achieved in PSPACE (the

orem 5.5) and the decision problem is PSPACE-

complete (theorem 5.1). For 3* sentences of this

theory the complexity of the decision problem is

also -complete (theorem 5.4).

3. Finally, we briefly turn to the first-order theories

of point and interval constraints over the inte

gers (or rationals). As a direct collorary of the

above results we point out that the complexity of
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quantifier-elimination and decision for these the

ories does not change due to the introduction of

interval constraints (section 6).

The above results will be important for researchers

in constraint databases [KKR90] and constraint logic

programming [CMT92]. They should also be interest

ing to the theoretical computer science community in

general. This is so because the first-order theory of

point constraints over the integers is a subtheory of

Presburger arithmetic while the first-order theory of

point constraints over the rationals is a subtheory of

real addition with order.

The rest of this paper is organized as follows. In sec

tion 2 we introduce the theories of point constraints

which we will consider. In section 3 we present stan

dard quantifier elimination algorithms for these theo

ries. In sections 4 and 5 we use these standard algo

rithms as a basis for the development of more sophis

ticated quantifier elimination algorithms. In section 6

we extend our results to theories of point and inter

val constraints. Finally, section 7 presents our conclu

sions.

2 FIRST-ORDER THEORIES OF

POINT CONSTRAINTS

In this paper we study the first-order theories of point

and interval constraints over two linear and unbounded

time structures: the set of integers Z and the set of ra

tionals Q. In this section we consider points to be our

only time entities. In the first theory that we con

sider, points will be identified with the integers. The

language diPCL (discrete Point Constraint language)

will allow us to make stamements about points in time.

diPCL is a first order language with equality defined

as follows. The non-logical symbols of diPCL include

a countably infinite set of (point or integer) constants,

function symbol — of arity 2 and predicate symbol <

of arity 2.

The set of terms of diPCL are defined as follows:

• Constants and variables are terms.

• If ti, <2 are variables or constants then <i — ti is

a term.

An atomic formula of diPCL is a formula of the form

t ~ c or c ~ t where ~ is < or =, and t is a term. The

set of well-formed formulas of diPCL are defined as

usual (i.e., they are built up from the atomic formulas

using quantifiers and connectives). As usual, we will

write <i < <2 instead of <i = <2 V t\ < 12, <2 > *i

instead of t\ < <2, and <i > <2 instead of t\ = ti V t\ >

The symbols of diPCL are interpreted with respect to

the fixed structure Z which captures our assumptions.

The domain of Z is Z. To each constant symbol, Z

assigns an element of Z. To function symbol — , Z

assigns the function — i which is the subtraction oper

ation for integers. To predicate symbol <, Z assigns

the relation <z ("less than") over the integers.

We will take the theory of structure Z to be the theory

of point constraints in linear, unbounded and discrete

time. This theory will be denoted by diPC.1

Example 2.1 The following is a diPCL sentence:

(Vx)(Vy)(x - y < 5 D (3z)(x - z < 3 A z < 2)).

Let us now develop a theory of point constraints which

is exactly like diPC except that the time structure is

the set of rational numbers. Points will again be our

only time entities. This time they will be identified

with the rationals. The language dePCL (rfense Point

Constraint Language) will allow us to make stame

ments about points in time. dePCL is a first order

language with equality defined as follows. The non-

logical symbols of dePCL include a countably infinite

set of (point or rational) constants, function symbol —

of arity 2 and predicate symbol < of arity 2.

The set of terms of dePCL are defined exactly as for

diPCL. An atomic formula of dePCL is a formula of

the form t ~ c or c ~ t where ~ is < or =, and t is

a term. The set of well-formed formulas of dePCL are

defined as usual.

The symbols of dePCL are interpreted with respect to

the fixed structure Q which captures our assumptions

for dense time. The domain of Q is Q. To each con

stant symbol, Q assigns an element of Q. To function

symbol — , Q assigns the function —q which is the

subtraction operation over the rationals. To predicate

symbol <, Q assigns the relation <q over the ratio

nals.

We will take the theory of structure Q to be the theory

of point constraints in linear, unbounded and dense

time. This theory will be denoted by dePC.

3 NAP7E QUANTIFIER

ELIMINATION ALGORITHMS

Let us first define our terminology. The following def

inition is standard [End72, CK73].

Definition 3.1 A theory Th admits elimination of

quantifiers iff for every formula <j> there is a quanti

fier free formula <j>' such that Th \= <j> = 4>' ■

Proposition 3.1 The theories diPC and dePC admit

elimination of quantifiers.

'We adhere to the following convention. If a theory is

denoted by Th, the language of Th will be denoted by ThL.
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Proof: Let us assume that ^ is a formula of diPCL

or dePCL. We can find a quantifier-free formula <j>'

equivalent to d> in the following way:

1. Compute the PNF (Qh) ■■ (Qtm)tl>(tu ... ,tm) of

<t>-

2. Eliminate quantifier (Qtm) as follows. Let Q be 3

and 6i V • • • V 0k be the DNF of V>(<i , • • • , <m)-

In the case of a dePCL formula, eliminate vari

able im from each 0j to compute B\ using Fourier's

algorithm.2

In the case of a diPCL formula, first transform ev

ery strict inequality into a weak one and then ap

ply Fourier's algorithm. Fourier's algorithm does

not give correct results for arbitrary linear in

equalities over the integers but does work correctly

for diPCL inequalities. The resulting expression

is0J V ••• V 0'k.

Now let us assume Q is V and 6i V • • ■ V 0*

is the DNF of -^rp(ti , . . . , tm). Eliminate variable

tm from each 6i to compute d\ as above. The

resulting expression is ->(0- V • • • V 0'k).

3. Repeat step

2 to eliminate quantifiers (Qtm-\), . . . , (Qti) to

obtain a quantifier-free formula in DNF.

4. Simplify the above DNF formula as follows. Until

no other change is possible, substitute true A o

by a, true V a by true, false A a by false and

false V a by a.

The correctness of the above procedure can be verified

easily. For diPC a similar method appears in [Rab77].

Notation 3.1 If <j> is a formula then \<j>\ denotes the

length of <f>.

Theorem 3.1 Let <j> be a diPCL or dePCL formula

with K variables and M quantifiers. The quan

tifier elimination algorithm of proposition 3.1 com

putes a quantifier-free DNF formula equivalent to <p

in 0(MK2\<f>fK(-K+1))M) time.

Proof: There can be at most two types of con

straints involving a single variable i or a difference

x, — Xj\ one giving an upper bound and/or one giv

ing a lower bound. Thus if we have K variables, we

can have K(K + 1) types of constraints. The for

mula r(>(ti, . . . ,tm) can have at most constraints

2 Fourier's algorithm was originally proposed for linear

inequalities over the reals [Sch86]. Eliminating a variable z

from a conjunction of inequalities using this algorithm can

be done as follows. First all inequalities involving x are

written in the form L < x or i < U where L and U do not

contain x. Then for every pair of inequalities L < x and

x < U, x is eliminated and the resulting inequality L < U

is returned. Finally, all inequalities which do not involve x

are also returned.

of each type. Therefore the DNF form of rp can con

tain 0(\ip\K(K+1^) disjuncts and each disjunct can con

tain at most K(K + 1) constraints. Finally, after M

quantifier eliminations the resulting formula can have

0(M(/f(K>1))M) disjuncts. The time to eliminate a

variable from a disjunct is 0(K2). The result follows

easily. ■

The above quantifier elimination algorithms are sim

ple but inefficient. The problem with these algorithms

is the transformation into DNF; this creates an expo

nential blow-up in time and space complexity. We will

now turn to better algorithms which avoid transfor

mations into DNF.

4 AN IMPROVED QUANTIFIER

ELIMINATION ALGORITHM

FOR diPC

First, we present a decision procedure for sentences of

diPCL. Then we use this procedure for developing a

quantifier elimination algorithm for arbitrary diPCL

formulas.

Our starting point will be the quantifier elimination

technique of [FR75]. The main point of this technique

is that "given a particular theory, one gives an elimi

nation of quantifiers procedure, analyzes it to see how

large constants can grow, and then uses this analysis

(...) to limit quantifiers to range over finite sets instead

of an infinite domain" [FR75].

We start with a definition from [FR75] .

Definition 4.1 Let i be an integer. We will say that »

is limited by the positive integer L, denoted by i X L,

iff \i\ < L.

As usual, we will also write i y j when j X i. The

following definitions introduce additional notation.

Definition 4.2 Let <j> be diPCL formula. Then

(Vz ^ L)4> is a shorthand for the formula

(W)(z > -L A z < L D <p)

and (3z < L)<j> is a shorthand for

(3z)(z > -L A z < L A <j>).

Definition 4.3 Let <j> be a diPCL formula. The ex

pression maxabs{<j>) will denote the maximum absolute

value of the integers appearing in <f>.

The following lemmas are at the heart of the elimina

tion of quantifiers.

Lemma 4.1 Let us assume that t is a vector of vari

ables, y is a variable, <j>(J, y) is a diPCL formula with
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K quantifiers and t is a vector of elements of I limited

by W. Then Z (= (Qy)^(r, y) iff

Z\={Qy< 2*\maxabs{<j>) + 1) + W + 2)<f>(r, y).

Ift = (), the lemma holds with W = 0.

Proof: Let us eliminate quantifiers from d> using the

procedure of proposition 3.1. After the first quanti

fier is eliminated, the integer constants in the result

ing formula are limited by 2maxabs{4>) + 1. With

a simple inductive argument, we can show that af

ter all K quantifiers are eliminated the integer con

stants in the resulting formula d>'(t, y) are limited

by 2K maxabs(<f>) + 2* — 1 or (more compactly) by

2* (maxabs(<j>) + 1).

Now let us consider the formula d>'(r,y). Every

point constraint in this formula can be written in

the form y ~ c where ~ is < , = or > and c is lim

ited by 2* (maxabs(<j>) + 1) + W + 1. The truth

value of <j>'{j, y) is the same for all y such that y y

2K (maxabs{tf>) + l) + W + 2. Therefore the truth value

of {Qy)<t>'(ci, t, y) can be determined by simply deter

mining the truth value of 4>'{r, y) for every integer lim

ited by 2K (maxabs(<t>) + 1) + W + 2. ■

Lemma 4.2 Let us assume that <j> is a diPCL sen

tence. Let (Qi<i ),.-., (Qi<tK) be all the quantifiers of

<f> in left to right order of appearance. Then Z |= <j> iff

Z \= <f>' where <j>' is the same as <j> except that (Qiti) is

substituted by (QiU <2K+i-2(maxabs((j>) + l) + i+l)

for alli= l,...,K.

Proof: The sentence <f> can be written as {Q\ti)4i\{t\)

where is a formula with K — 1 quantifiers. Thus

lemma 4.1 implies that Z \= (Qiti)ipi(ti) iff

Z 1= {Qih ^ 2K-\maxabs{<f>) + 1) + 2)V>i(ti).

A similar inductive argument gives the result. ■

Remark 4.1 The models of computation used in

the rest of this paper are deterministic and non-

deterministic Turing machines with a read-only input

tape, a fixed number of read/write work tapes and a

write-only output tape where the head can never move

left. The time of a computation is its length. The space

of a computation is the number of cells visited on the

work tapes. Precise definitions of these notions and

the associated time and space complexity classes can

be found in the standard literature [Joh90].

If i > 1 then log i will denote [log2 i] . By convention

we assume that log 1 = 1.

Formulas will be represented by the standard binary

encoding. Integers are written in binary. Rationals

are written as fractions of two integers. Variables are

chosen from vq,Vi,Vio etc. (i.e., subscripts are written

in binary). Finally, the size of all integer constants in

a formula 4> is assumed to be less than log |<£|.

The following theorem gives the exact complexity of

the decision problem for diPC.

Theorem 4.1 Let <j> be a diPCL sentence. The prob

lem of deciding whether Z \= <f> is PSPACE-complete.

Proof: Lower bound. PSPACE-hardness follows from

a straightfoward reduction from Quantified Boolean

Formulas [Sto77].

Upper bound. It easy to write a recursive algorithm

diPC-Eval which can be used to decide whether Z ^

<j> using lemma 4.2. diPC-Eval can be implemented

by a deterministic Turing machine which uses a stack

for storing the activation record of each recursive call.

Whenever diPC-Eval is called with argument a quan

tified subformula <j>' of <j>, it determines the truth

value of <j>' by cycling through integers limited by

22K~2(maxabs(4>) + 1) + K + 1. Such integers can

be written using 0(|^|) space. Therefore diPC-Eval

needs 0(|^| ) space for keeping track of the current

assignment to the quantified variables of <j>. No more

space is required for bookkeeping. Thus deciding if

Z [= <j> can be done in 0(|<£|2) space. ■

The reader is invited to compare the above theorem

with the following result.

Theorem 4.2 [Ber80] The problem of deciding a sen

tence of length n of Presburger Arithmetic is complete

for the class \Jk>0 TA[22"" , n].

The class TA[t(n), a(n)] is the set of all problems solv

able by alternating Turing machines using at most

t(n) time and a(n) alternations on inputs of length

n [Ber80, Joh90].

Let us now consider diPCL sentences with a fixed num

ber of alternations of quantifiers.

Definition 4.4 Let £ be a first-order language and k

be a fixed natural number. A 3* (resp. Vt) formula of

C is a formula in prenex normal form with k alterna

tions of quantifiers beginning with an existential (resp.

universal) quantifier.

Theorem 4.3 Let <j> be a 3k sentence of diPCL. The

problem of deciding whether Z ^= <f> is Y?k-complete.

A corresponding Wk bound can be established for Vjt

sentences of diPCL.

It might be interesting to compare the above result

with the following result of [RL78].

Theorem 4.4 There exist constants d, e > 0 such

that a deterministic Turing machine can decide a sen

tence with length n > 4 and at most K alternations of

quantifiers, in the first order theory of integer addition

with order, in 0(2dnK+*) space and 0(22*" ) lime.
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4.1 OPEN FORMULAS

We will now present a quantifier elimination algorithm

for open formulas of diPCL. Let us assume we have a

formula <f>(t) of diPCL such that t is the vector of all

the free variables of <f>. A quantifier free formula <j>'

equivalent to <f> can be found in the following way. At

first, using the techniques presented above, we esti

mate how large integer constants can grow in the con

straints of a quantifier-free formula equivalent to <j>.

Then we use this information to construct a finite par

tition of the space zl'l into regions with the following

properties:

1. Every region can be represented by a conjunction

of atomic diPCL formulas.

2. The truth value of the sentence <f>(r) is the same

for all points r in the same region.

Therefore we can check whether all points in a region

satisfy <f>(t) by picking a single point in the region and

checking whether Z |= <j>(7) is true. The latter check

can be done using the algorithm diPC-Eval of theo

rem 4.1. Every conjunction of atomic formulas which

represents a region for which this check succeeds be

comes a disjunct in the DNF form of <j>'. Similar tech

niques have been used in the context of query process

ing in constraint databases by [KKR90].

The technical tools which we will introduce imme

diately come from the temporal constraint literature

[DMP89]. Similar tools have also been used under

various names in [Rev90, CM90] for studying the com

plexity of query evaluation for Datalog with integer

gap-order constraints. Let C be a set (i.e., conjunc

tion) of diPCL inequalities in variables x\, . . . , x„. The

binary inequality constraint network (BICN) associ

ated with C is a labeled directed graph G = (V, E)

where V = {l,...,n}. Node i represents variable Xi

and edge represents the binary constraints in

volving Xi and Xj . Let us assume that the constraints

on Xj — Xi are Xj — Xj < dij and Xj — x, > —dji

where —dji < dij. Then the corresponding BICN N

will have an edge i —» j labeled by the convex interval

Nij = [—dji, dij]. Unary constraints are represented

with the introduction of a special variable xo = 0.

The notions of solution set, consistency and minimal

ity are defined as usual [DMP91]. We will also use

a function Constraints(N) which gives the set of bi

nary constraints represented by BICN N. The formal

definition of Constraints is omitted.

An alternative graph representation will also be use

ful. Let C be a set of diPCL inequalities in vari

ables xi,...,x„. The distance graph associated with

C is a directed labelled graph G = (V, E) where

V = {1 n}. Node i represents variable x, and

edge (»', j) represents the binary constraints involving

Xi and Xj. If there is a constraint Xj — x, < dij in C

then edge i —* j of the associated distance graph will

be labelled by dij. The concept of minimal distance

graph can be defined similarly with the concept of min

imal network. Given the minimal network associated

with a set of weak inequality constraints, it is trivial to

construct the associated minimal distance graph (and

vice versa). The set of constraints Constraints(G)

represented by a distance graph G is defined as for

BICN.

Definition 4.5 Let Z C Z and Z ^ 0. An integer

BICN with bounds from the set Z is a consistent BICN

with all edges labeled with [c, c],(c, oo) or (—oo,c)

where c € Z.

If an integer BICN has n + 1 nodes (including the 0-th

one which corresponds to variable xo = 0), we will say

that it is of size n.

Let us now define the concept of a formula correspond

ing to a BICN N.

Definition 4.6 Let TV be a BICN of size n. The for

mula with free variables x = (xi, . . . , x„) correspond

ing to N is the diPCL formula i\,iCon,tTainu(M)f

where M is the minimal network equivalent to N . This

formula will be denoted by $(N).

Definition 4.7 If <j> is a diPCL formula with K quan

tifiers and vector of free variables t then Z$ will denote

the set of integers

{i : i G Z and |t| < \t\ 1K (maxabs(<j>) + 1)}.

The following lemma tells us how to partition the an

swer space into regions.

Lemma 4.3 Let<f>(t) be a diPCL formula. Then there

is a quantifier-free formula <l>'(t) equivalent to <f> with

the following properties:

1. 4>' is in DNF

2. Every disjunct of <f>' is the diPCL formula corre-

sponding to an integer BICN N of size \t\ with

bounds from the set Z$.

Proof: Let <£i(/) be the quantifier-free formula

V-i(t) V • • V Vm(t)

equivalent to <f> obtained by the algorithm of propo

sition 3.1. Let us also assume that the only rela

tion symbol appearing in V"i is <• As in the proof

of lemma 4.1, integer constants in <f>\ are limited by

2* (maxabs(<j>) + 1).

Let N\ , . . . , 7Vm, , (mi < m) be the minimal BICN

corresponding to the consistent V«'s (* =

Let us create the formula
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where

ip'i= f\ n, for all t = l,...,mi.

r}£Constraintt(N,)

Every integer r, such that tk — ti < r (or tk — <; = r)

is a conjunct in some ip[, is the length of the shortest

(simple) path connecting nodes k and / in the minimal

distance graph for Ni [DMP91]. The number of edges

in a simple path is |<| and the label of each edge is

limited by 2K (maxabs(<p)+ l). Therefore every integer

in fa is limited by |<| 2K (maxabs(<j>) + 1).

We can now obtain a formula equivalent to <f>2 in the

desired form as follows:

1. From every xp[ construct a conjuction of disjunc

tions ip" in the following way.

(a) For every pair of variables tk,ti such that

tic — ti = ri is in V"i> add tk — </ = r\ to xp".

(b) For every pair of variables tk,ti such that

tk — t, < ri and f* — <i > r-i is in xp\, add

V h-U=r

ri<r<r3

to t/4'.

(c) For every pair of variables such that only

tk — 1\ < ri is in tp'it add conjunct

<t-<, <-A V \J tk-t, = r

-A<r<r,

to \f{ where A = |<| 2K {maxabs{<j>) + 1).

(d) For every pair of variables such that only

tk — ti > r2 is in xp'it add conjunct

\J tk - U = r V tk - t, > A

r3<r<A

to rp" where A is as above.

(e) For every pair of variables tk, ti such that

tp'i contains no constraint involving tk and ti,

add conjunct

tk-U< -A V \J tk-ti = rVtk-t, >A

ri <r<ra

to ^" where A is as above.

2. Transform every V"(<) in DNF. Let

0i(<) V ••• V en(t)

be the resulting formula.

3. Let Mi , . . . , M„, , (ni < n) be the minimal BICN

corresponding to consistent 0,'s (i = l,...,n).

The wanted formula <^'(f ) is

v ... v ^.(i)

where

e'i= f\ r], foralli = l,...,n1.

ijeCon»troin(j(Mi)

The following lemmas give some important properties

of integer BICN.

Lemma 4.4 Let r be an element ofZn. For any set

Z C Z, there exists a unique integer BICN N with

bounds from Z such that Z (= $(7V)(r).

Proof: Existence is obvious. For the uniqueness part,

we simply observe that N\ ^ 7v"2 implies that &(Ni) A

$(^2) is inconsistent. ■

The following lemma allows us to verify the truth of

a diPCL formula over a region of the answer space by

verifying its truth over a point in this region.

Lemma 4.5 Let <f>(t) be a diPCL formula and N be

an integer BICN with bounds from the set Z$. Then

Z \= <b(N) D <piffZ^ <P(t) is true for an arbitrary

t such that Z |= ${N)(t).

Proof: The "only if part is trivial so we consider the

"if part. Let us assume that there is 7 € zl'l such

that Z |= $(N)(t) and Z f= rp(7). Let

<t>'(t) = 0i(<)) V ... V

be the diPCL formula equivalent to <j> computed as in

lemma 4.3. Then there exists a single disjunct ff,-(I) of

<j>' such that Z \= 0,(r). But then 0, must be *(Ar)

from lemma 4.4. Therefore Z \= V($(N) D <f>) since

$(N) is a disjunct of <f>'. ■

Now we are ready to demonstrate the main result of

this section.

Theorem 4.5 Let <j> be a diPCL formula. A

quantifier-free formula equivalent to d> in DNF can be

computed in PSPACE.

Proof: Let us assume that t is the vector of all free

variables of <b. We can compute a quantifier-free for

mula equivalent to <j> in DNF as follows. We generate

one by one all integer BICN of size li| with bounds

from Z$. For every such BICN N, we find a solution 7

of N and check whether Z |= <b(T) using the algorithm

diPC-Eval of theorem 4.1. If this check succeeds, the

diPCL formula corresponding to N becomes a disjunct

of the resulting quantifier-free formula. The correct

ness of this procedure follows from lemmas 4.3 and

4.5.

Finding a solution of a BICN can be done in the fol

lowing way. We first compute the minimal network M

equivalent to N. Then we find a solution of M using

backtrack-free search as follows [DMP91]. We initially

assign the value 0 to to- Then we assign to t\ any value

which satisfies the constraints involving <i and to- We

proceed in the same fashion with <2><3 and so on.

It is not difficult to show that the above procedure can

be implemented by a deterministic Turing machine in
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PSPACE. A detailed proof can be found in [Kou94a].

5 AN IMPROVED QUANTIFIER

ELIMINATION ALGORITHM

FOR dePC

Let us now turn to quantifier elimination and decision

for dePCL. We will first develop a decision procedure

for sentences of dePCL. Then we will use this proce

dure for developing a quantifier elimination algorithm

for arbitrary dePCL formulas.

At first we show that we can confine our attention to

formulas of dePCL involving only integer constants.

A similar result appears in [Alu91] in the context of

checking emptiness of the language of a timed automa

ton.

Definition 5.1 Let <j> be a formula of dePCL and r G

Q. Then <j>r will denote the formula which is obtained

from <j> by replacing each rational constant c by r • c.

Lemma 5.1 Let <j> be a formula of dePCL with free

variables t. If r G Q, r > 0 and f G Qn then

QMF-r] iff QMr[*-r-r].

Proof: Use induction on the structure of <j>. ■

The following definition will be used heavily in the

subsequent discussion.

Definition 5.2 A quantifier Qz is limited by the frac

tion A/B, denoted by Qz < A/B, if, instead of ranging

over all rational numbers, it ranges over all numbers

whose numerator is limited by A and whose denomi

nator is B.

Lemma 5.2 Let <f> be the following dePCL sentence

{Qltl)-(QKtK)1>(tl,.-.,tK).

Lei us also assume thai only integer constants are in

volved in <j>. Then Q ^ <j> iff Q ^ <j>' where </>' is the

same as <j> except that {QiU) is substituted by

for alli=\,...,K.

Proof: We will use induction on the order of appear

ance of the quantifier in <f>. We assume that <j> is in

PNF. Note that the proof still goes through when this

assumption is dropped.

Base case, i = 1. Let us eliminate quantifiers

(Qiti), ■ ■ ■ i (Qk*k) from <t> using the procedure of

proposition 3.1. The integer constants in the resulting

formula (Qi<i)^'(<i) are limited by 2K~l(maxabs(<j>)+

1) (this can be shown as in lemma4.1). These integers

partition Q into a set S of 4 • 2K ~ 1 (maxabs(<j>) + 1 ) + 3

intervals of the form (—oo, r) or [r, r] or (r, r + 1) or

(r,oo) where r < 2K~1(maxabs(<f>) + 1). The truth

value of <j>'(ti) remains the same for all t\ in the same

interval of S. Therefore we can determine the truth

value of {Qti)(j>'(ti) in Q by determining the truth

value of <j>'{t\) while <i ranges over a finite set of rep

resentatives, one for each interval of S. The set

SreP = {(<!+ t2)/2, (h + t2)/2 + 1 : <i , i2 G Z and

<i.<2 ^ 2K-1(maxabs(<p) + 1) }

is an appropriate set of such representatives.

The elements of 5rep are rationals limited by

2K+1(maxabs(4>) + l)/2.

Inductive step. Let us now assume that the lemma

holds for quantifiers (Qit\), . . . , (Qiti). We will show

that the lemma holds for as well. From the

induction hypothesis we have Q |= d> if and only if

Q f= where <f>\ is

(Q.t. ^ 2K+3'-'(marab.(*)+l)j

(Qi+lti+l) -(QKtK)rl>(h,...,tK)-

Let us eliminate quantifiers (£J,+2'»'+2)! • ■ i {QkIk )

from <j>i using the procedure of proposition 3.1 to ar

rive at the following formula 4>i'.

(Qiti^ 2K+1(maj2a>'W+1))---

{Qi+iU+i)i>i(ti, . . . ,U+i).

The truth value of fa depends on the truth values of

all formulas

(Qi+iU+\)iPi(n, . ..,n.*i+i)

where

2K+z'-2(maxabs{4>) + 1)

rj < ^ J = 1, • •

The atomic formulas of (Qi+i<f+i)^i(Ti, . . . , 7-,- , tg+i)

are of the form tj+i ~ r or ~ Tj +r where 1 < j <

i, ~ is < , < or =, tj is a rational limited as above and

r is an integer limited by 2K~(t+l}(rnaxabs(<t>) + 1).

Let us now observe that every rational limited by

2K+3>-2(maxabs(<t>) + l)/2', where 1 < j < i -

1, is included in the set of rationals limited by

2K+3i-2(maxabs(4>) + 1)72'. Therefore Tj + r is a ra

tional limited by 2K+3i-l(maxabs(<j>) + l)/2*.

Using an argument similar to the one given for the base

case, we can see that the quantifier (Q,+ii,+i) can be

limited to range over rationals that are the average of

two rationals limited by 2K+3i-1(maxabs((j>) + l)/2',

or are one smaller or one larger than all such av

erages. As a result, (Q,+it,+i) can be limited by
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2K+3(i+1*>-2(maxabs(<i>) + l)/2,+1. The result follows.

■

Definition 5.3 If <f> is a dePCL formula then

maxabs(<b) will denote the maximum absolute value

of the integers which appear in <j> as numerators or de

nominators. If <f> involves only integer constants then

maxabs(<j>) will denote the maximum absolute value of

the integers which appear in <j>.

We are now ready to prove the basic result of this

section.

Theorem 5.1 Let <f> be a dePCL sentence. The prob

lem of deciding whether Q \= <j> is F'SPACE- complete.

Proof: Lower bound. PSPACE-hardness follows from

a straightfoward reduction from QBF [Sto77].

Upper bound. An algorithm for this problem can

proceed as follows. First, we transform <j> into for

mula <b' which involves only integer constants. This

can be done by multiplying every fraction p/q of <j>

by the product of all denominators of fractions in

<j>. Therefore every integer in <f>' will be limited by

maxabs{4>)W+l . We can conclude that

l*'l< H(|^| + l)log(moxa65(^))<

2 \<b\2 log(ma:ra&s(</>)) < 2 \<j>\2 log |^|

and maxabs(<j>') < maxabs(<j>)^+1 .

Then we can devise a recursive algorithm dePC-Eval,

similar to diPC-Eval, which decides <f>'. This algo

rithm will make use of lemma 5.2 to limit quantifiers

over finite sets of rationals. Every such rational has

a numerator limited by 24K~2(maxabs(<j>') + 1) and a

denominator limited by 2K where K is the number of

quantifiers in <b'. Storing the numerator of each one of

these rationals requires

IK - 2 + \og(maxabs(<t>') + 1) <

4K - 1 + \og(maxabs{4>)W+1) <

4K - 1 + + 1) log{maxabs(<b)) < 0{\<j>\ log \<j>\)

bits while storing the denominator requires 0(|4|) bits.

Thus dePC-Eval needs 0{\4>\2 log \<b\) space for keep

ing track of the current assignment to the quanti

fied variables of <j>' . No more space is required for

bookkeeping. Therefore the total space requirement

ofDEPC-EvAL is 0(\<j>\2log\<j>\). U

It might be interesting to compare the above result

with the following theorems. The first one considers a

theory which is less expressive than dePC. The second

deals with the full first-order theory of real addition

with order.

Theorem 5.2 [FG77] Deciding a sentence of length n

in the first order theory of rational order can be done

in deterministic space 0(n log n).

Theorem 5.3 [Ber80, BM80] The problem of decid

ing a sentence of length n in the theory of real addition

with order is complete for the class \Jk>QTA[2" ,n].

The next theorem follows easily from the above discus

sion. It is also a consequence of the fact that deciding

a formula of the same form in the first-order theory of

real addition with order is also Ej-complete [Son85].

Theorem 5.4 Let <f> be 3* sentence of dePCL. The

problem of deciding whether Q |= <j> is Ej- complete.

A corresponding n£ bound can be established for V*

sentences of dePCL.

5.1 Open Formulas

We will now present a quantifier elimination algorithm

for open formulas of dePCL. We will proceed as in

the case of diPCL formulas. The following lemma will

allow us to concentrate on dePCL formulas involving

only integer constants.

Lemma 5.3 Let <j> be a formula of dePCL and <j>' be

a quantifier-free formula equivalent to <p. If r € Q

and r > 0 then <j>' = Vr-' where is a quantifier-free

formula equivalent to <j>T.

Proof: Let x be the vector of variables in 4>' . If x G

Qjrl then the following equivalences prove the lemma

(with help from lemma 5.1):

Q M'[* ^ x] iff Q M[* x] iff

Q |= <j>r[x 4- r • x] iff Q |= 1>[* — r ■ x] iff

QMr->[*«-*]-

Now assume we are given a formula <f> of dePCL. We

can find a quantifier-free formula equivalent to ^ as fol

lows. First we transform <j> into a formula <j>T which has

only integer constants by multiplying every fraction by

an appropriate integer r. Then we find a quantifier-

free formula ip equivalent to <£r . Finally, we compute

rpr-i which is a quantifier-free formula equivalent to <j>.

Let us then assume that <f>(T) is a formula of dePCL

which involves only integer constants, and t are all

the free variables of <j>. A quantifier free formula <$>'

equivalent to <j> can be found in the following way. At

first, we estimate how large integer constants can grow

in the constraints of the answer. Then we use this

information to construct a finite partition of the space

QH into regions with the following properties:

1. Every region can be represented by a conjunction

of dePCL-constraints involving only integer con

stants.

2. The truth value of the sentence d>(r) is the same

for all points r in the same region.
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Therefore we can check whether all points in a region

satisfy <j>(t) by picking a single point r in the region and

checking whether Q \= <f>(7) is true. The latter check

can be done using the above algorithm dePC-Eval.

Every conjunction of constraints representing a region

for which this check succeeds, becomes a disjunct in

the DNF form of <j>' .

Let us now introduce the machinery required for pre

senting our method. We first define rational BICN.

Definition 5.4 A rational BICN with bounds from

the set Z C Z is a consistent BICN with all edges

labeled with [c, c], (c, d), (c, oo) or (—00, c) where c < d

and c,d£ Z.

The size of a rational BICN is defined as for integer

BICN.

Let us now define the concept of a formula correspond

ing to a rational BICN N.

Definition 5.5 Let TV be a rational BICN of

size n. The formula with free variables x =

(xi i„) corresponding to N is the dePCL formula

/\e^c<mstraint.(M)6 where M is the minimal network

equivalent to N . This formula will be denoted by

Definition 5.6 If <f> is a dePCL formula with K quan

tifiers and vector of free variables t then Z# will denote

the set of integers

{»' : i € Z and |t| < \t\ 2Kmaxabs(<f>)}.

The following lemmas help to establish the main result.

The reader can easily notice the similarity with the

development of section 4.1. Lemma 5.4 tells us how to

partition the answer space into regions. Subsequent

lemmas give properties of rational BICN. The proofs

of some of the lemmas are omitted.

Lemma 5.4 Let <j>(t) be a dePCL formula involving

only integer constants. Then there is a quantifier-free

formula <j>'(t) equivalent to <b with the following prop

erties:

1. <p' is in DNF

2. Every disjunct of <p' is the dePCL formula cor

responding to a rational BICN N of size \t\ with

bounds from the set Z^,.

Proof: First, we transform <j> into an equivalent

quantifier-free formula <f>\ using the algorithm of

proposition 3.1. Integer constants in <j>\ will be lim

ited by 2K maxabs(<f>) . Then we proceed as in lemma

4.3. ■

Lemma 5.5 Let f be an element o/Q". For any set

Z C Z, there exists a unique rational BICN N with

bounds from Z such that Q \= <b(N)(r).

Lemma 5.6 Let 4>(i) be a dePCL formula involving

only integer constants. If N is a rational BICN with

bounds from the set Z4 then Q |= $(N) D <j> iff

Q |= <f>(j) for an arbitrary f such that Q \= $(N)(f).

The following theorem gives the main result of this

section.

Theorem 5.5 Let <f> be a dePCL formula. A

quantifier-free formula equivalent to <f> in DNF can be

computed in PSPACE.

Proof: Let us assume that <f> has K quantifiers and

t is the vector of all its free variables. We can find

a quantifier-free formula equivalent to <j> as follows.

First, we transform <j> into a formula <p' which involves

only integer constants. This can be done as in theorem

5.1: we multiply every fraction of <j> by the product P

of all denominators effractions in <j>.

Secondly, we generate, one by one, all rational BICN

of size |<| with bounds from

Z? ={i : i € Z and |i| < \t\ 2K maxabs((f>)^+1}

(since maxabs(<p') < maxabs(<t>)^+1). For each BICN

N, we find a solution r of N (using the minimal net

work M) and check whether Q (= 4>'{r) using algo

rithm dePC-Eval of theorem 5.1. If this check suc

ceeds then we divide each constant of $(N) by P and

use the result to form a disjunct of the returned for

mula. The correctness of this procedure follows from

the previous lemmas. It is not difficult to see that the

above algorithm can be implemented by a determinis

tic Turing machine in PSPACE [Kou94a]. ■

6 THEORIES OF POINT AND

INTERVAL CONSTRAINTS

We will now extend the theory diPC to take inter

val constraints into account. We define the language

diTCL (discrete Temporal Constraint .Language)

which is an extension of diPCL. The time entities in

this language are points and intervals. Points are iden

tified with the integers while intervals are considered

to be pairs of points. diTCL has two sorts: Z (for

points or integers) and Xz (for integer intervals). The

non-logical symbols of diTCL include a countably in

finite set of constant symbols of sort Z (the point or

integer constants), function symbols L and R of sort

(Iz, Z), function symbol — of sort (Z, Z, Z) and

predicate symbol < of sort (Z, Z).

The set of simple terms of diTCL are defined by the

following rules:

• Constants are simple terms.

• A variable of sort Z is a simple term.

• If t is a variable of sort Iz then %l and %r are

simple terms.
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The set of terms of diTCL can now be defined as fol

lows:

• Simple terms are terms.

• If <i and <2 are simple terms then <i — <2 is a term.

An atomic formula of diTCL is a formula of the form

t ~ c or c ~ t where ~ is < or = and t is a term. The

set of well-formed formulas is defined as usual.

The symbols of diTCL are interpreted with respect

to the fixed structure ZI^ which captures our as

sumptions. ZI^ assigns to the sort Z the set of in

tegers Z, and to the sort lz the set of integer intervals

Int(T) = {(a,b) : a,b £ Z and a <j 6}. To each

constant symbol of sort Z, ZI^ assigns an element

of Z. To function symbols L ana R, ZI7 assigns the

functions l,r : Int(2) —* Z such that7((a,6)) = a

and r((a,6)) = 6. These functions map each interval

to its left and right endpoint respectively. To func

tion symbol — , ZI^ assigns the function — 1 which is

the subtraction operation over the integers. To predi

cate symbol <, ZI^ assigns the relation <i over the

integers.

We will take the theory of structure ZI^ to be the

theory of point and interval constraints in linear, un

bounded and discrete time. This theory will be de

noted by diTC.

In a simililar way we can extend dePC to account for

time intervals. The corresponding theory will be called

deTC and its language deTCL. Detailed definitions can

be found in [Kou94a].

Let us observe that we can introduce all the interval-

to-interval relations and point-to-interval relations of

[Mei91] as defined relations in these theories.

We can now use the results of sections 4 and 5 and a

translation from diTCL to diPCL (as in [Lad88]) to

achieve the following results. Details can be found in

[Kou94a].

Theorem 6.1 The decision problem for arbitrary

diTCL or deTCL sentences is PSPACE-complete. The

decision problem for 3* sentences of diTCL or deTCL

is Y?k- complete.

Theorem 6.2 Let <j> be a diTCL or deTCL formula.

A quantifier-free formula equivalent to <j> in DNF can

be computed in PSPACE.

a special case of the theory of real addition with or

der. We have shown that in both cases quantifier-

elimination can be done in PSPACE. We have also

shown that the decision problem for arbitrarily quan

tified sentences is PSPACE-complete while for 3* sen

tences it is Ej-complete. The bounds for the two theo

ries of point constraints do not change if intervals and

interval constraints are introduced.

Our results will be interesting to researchers in con

straint databases [KKR90] but also to the theoretical

computer science community in general. In [Kou94a,

Kou94b] the results of this paper are used to study

the complexity of query evaluation in indefinite tem

poral constraint databases. In related work [Rev90]

considered Datalog with integer gap-order constraints

(Datalog**). A gap-order constraint is a constraint of

the form:

x = c, x = y, x < c, c < x or x — y < g

where x,y are variables ranging over Z, c € Z, g € Z

and g > 0. Revesz showed that Datalog<* queries over

integer gap-order databases can be evaluated in closed

form. In addition recognizing whether a certain tuple

is in the answer to a query can be done with PTIME

data complexity.3 Independently the above problem

has been solved in [CM90] who have also considered

gap-order constraints over a dense domain. The only

difference with [Rev90] is that [CM90] do not consider

data complexity thus the complexity of their query

evaluation procedure is EXPTIME.
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7 CONCLUSIONS

In this paper we discussed the complexity of quanti

fier elimination and decision algorithms for the theory

of point constraints over the integers (diPC) and over

the rationals (dePC). The theory diPC is a special case

of the theory of Presburger arithmetic while dePC is

3The notion of data complexity was originally intro

duced in [Var82] in the context of query evaluation for

relational databases. When we consider data complexity,

we measure the complexity of evaluating a query over a

database as a function of the database size only; the query

program and the database schema are considered fixed.
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Abstract

An intelligent agent, reasoning symbolically

in a continuous world, needs to infer proper

ties of the behaviors of continuous systems.

A qualitative simulator, such as QSIM, con

structs a set of possible behaviors consis

tent with a qualitative differential equation

(QDE) and initial state. This set of behav

iors is expressed as a finite tree of qualita

tive state descriptions. In the case of QSIM,

this set is guaranteed to contain the "actual"

behavior under certain circumstances. We

call this property the "soundness" of QSIM.

The behavior tree can then be interpreted

as a model for statements in a branching-

time temporal logic such as Expressive Be

havior Tree Logic (EBTL), which we intro

duce. Because QSIM is sound, validity of an

EBTL proposition (necessarily p) implies

the corresponding theorem about the dynam

ical system described by the QDE. Therefore,

at least for universals, statements in temporal

logic about continuous systems can be proved

by qualitative simulation. This allows a hy

brid reasoning system to prove such common-

sense statements as "what goes up (in a con

stant gravitational field) must come down",

or to do such expert reasoning about dynam

ical systems as proving the stability of a non

linear, heterogeneous controller.

1 INTRODUCTION

The world is infinite and continuous. A logical proof is

finite and discrete. Nonetheless we want, and reason

ably expect, to use logic to draw reliable conclusions

about continuous behavior in the world.

A qualitative differential equation (QDE) is a symbolic

description expressing a state of incomplete knowledge

of the continuous world, and is thus an abstraction of

an infinite set of ordinary differential equations. Qual-

Benjamin Shults

Department of Mathematics
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Austin, TX 78712

bshultsCmath . utexas . edu

itative simulation, using an algorithm such as QSIM

[Kuipers, 86], predicts the set of possible behaviors

consistent with a QDE and an initial state.

The QSIM algorithm generates a tree of qualitative

states representing a branching-time description of

the possible behaviors of the system being described.

Qualitative simulation can be viewed as proving a the

orem of a very specialized form:

QSIM h QDEAQState{t0) -+ or{QBehi,. . QBehn)

where QDE is a qualitative differential equation,

QState(to) is a qualitative description of an initial

state, and each QBehi is a sequence of qualitative

states. The QSIM Guaranteed Coverage Theorem

states that this prediction describes all possible be

haviors of all ordinary differential equations which are

consistent with the given qualitative differential equa

tion and initial state [Kuipers, 86]. The set of predic

tions may, however, include spurious predictions, those

not corresponding to any real solution.

Building on the basic qualitative simulation algorithm,

a variety of methods have been developed for filtering

out additional classes of spurious behaviors, obtain

ing tractable predictions from a wider range of models

while retaining the QSIM coverage guarantee. These

methods include deeper types of mathematical anal

ysis, application of partial quantitative information,

appeal to carefully chosen additional assumptions, and

change of the qualitative level of description [Kuipers,

93b].

Since the qualitative model and behavior tree are ex

pressible in logic, we can show that a logical statement

$ follows from the model by showing that it follows

from the behavior tree. We do this by showing that

the behavior tree can serve as a logical model for

Since the qualitative behavior tree is a branching-time

description of temporal sequences, the appropriate lan

guage for such statements $ is some form of modal

temporal logic [Emerson, 90]. Temporal logic aug

ments propositional logic with operators for temporal

relations on time-varying truth-values, such as some

times, always, eventually, and until. Modal logic adds
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operators for relations among truth-values in alternate

possible worlds (i.e., alternate behaviors), such as nec

essarily and possibly.

We introduce Expressive Behavior Tree Logic (EBTL)

as a tool for expressing statements about QSIM be

havior trees, and hence about the continuous systems

they describe. EBTL is a branching time temporal

logic closely related to CTL and CTL* [Emerson, 90].

We describe an algorithm for checking the validity of

an EBTL statement against a given QSIM behavior

tree.

Based on the QSIM Guaranteed Coverage Theorem,

we prove that for any EBTL statement $ which is

universal in a sense defined below, if $ is true for the

qualitative behavior tree predicted by QSIM, then the

corresponding theorem holds for any ordinary differen

tial equation consistent with the QDE that generated

the QSIM behavior tree.

There are a number of applications of model-based rea

soning that can profit from reliable inference over the

set of all possible behaviors of a continuous system.

Since applications - such as monitoring, diagnosis, and

design - must often cope with conditions of incomplete

knowledge, the ability to reason with all possible be

haviors of a system described by a qualitative model is

particularly valuable. A discussion of potential appli

cations is provided in [Kuipers, 93a] , and a specific ap

plication to the validation of heterogeneous controllers

is provided in [Kuipers & Astrom, 94] and briefly at

the end of this paper.

2 BTL AND EBTL

Behavior Tree Logic (BTL) is a branching-time tempo

ral logic. The theory of branching-time temporal log

ics is described in [Emerson, 90]. BTL is intended to

be an extension and customization of Computational

Tree Logic (CTL) to work with QSIM behavior trees.

We are more interested in its more expressive exten

sion, Expressive Behavior Tree Logic (EBTL), which

is similar to CTL* [Emerson, 90]. Customization is

necessary because CTL only applies to infinite tem

poral structures. A QSIM behavior tree is finite al

though it may be considered to represent an infinite

tree. (In this paper, when we say "a QSIM behavior

tree" we are referring to the actual output of the QSIM

algorithm after finite time. Therefore, although the

structure may grow without bound if QSIM were al

lowed to run indefinitely without memory constraints,

a QSIM behavior tree in our discussion is necessarily

finite. However, our theorems are applied to the often

infinite trees represented by these finite structures.)

Therefore, we have modified the logic so that it is ap

plicable to finite QSIM behavior trees. Our definitions

are only slight modifications (or complexifications) of

Emerson's definitions of CTL and CTL*.

2.1 TERMINOLOGY AND NOTATION

In this section we define the structures related to the

theory of Expressive Behavior Tree Logic. QSIM be

havior trees are distinguished motivational examples

of these structures but EBTL is applicable to a gen

eral class of behavior trees. A QSIM behavior tree

[Kuipers, 86] can easily be compared to a temporal

structure in the sense defined in [Emerson, 90]. This

motivates the following general definition.

Definition 1 In (E)BTL, a behavior tree M is an

ordered triple (S, R, L) where

S is a set of states,

R is a binary relation on S, and

L is a labeling which maps each state s to an interpre

tation of all atomic proposition symbols in s.

It is useful to view a behavior tree as a directed graph

with node-set S and arc-set R. Without loss of gener

ality, we can assume that a behavior tree is a tree (thus

the name), i.e. an acyclic directed graph in which each

node has at most one predecessor and there is exactly

one root. The root is the only node with the property

that it has no predecessor and every node is accessible

from it.

It may be helpful for the reader to beware of confus

ing the structures associated with the logic EBTL (of

which QSIM behavior trees are examples) with QSIM

structures. The logic EBTL may be applied to struc

tures other than QSIM behavior trees. When we de

scribe the application of EBTL to QSIM trees, many

details such as the unwinding method for handling cy

cle pointers and the labeling of states will be made

more explicit. We will try to make it clear when we

are referring to the QSIM structures.

We let A(x) denote the length of a finite ordered set x.

A behavior x = (so, si, sj, . . .) in a behavior tree M is

any path in the behavior tree which either terminates

at a state with no .ft-successors or is infinite. In case x

is of infinite length, we say A(x) = oo. By a path x =

(so, si , «2i • • ■) we mean that for all 0 < » < A(x) — 1,

(si, s,+i) € R- If A(x) = oo then by i < A(x) — 1 we

mean i is any nonnegative integer. Notice that the last

state in a finite behavior x = (so, sj , «2> • • •) is «a(*)-i-

In this paper we do not require sq to be the root of the

behavior tree as is customary when referring to QSIM

behaviors.

For simplicity we sometimes write x € M to mean

that x is a behavior in M . We say the behavior x =

(so>*i>*2> • • •) starts at the state so, and that so is the

first state of x. We will say that a behavior x' € M'

extends a behavior x = (so, »i , . . . , sn) in M if the first

n+1 states in x' are (so, s\ , . . . , s„). When we speak of

one tree M being a subset of another tree M' if every

behavior in M extends some behavior in M' . We call
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a behavior rooted if it starts at the root of its tree.

We now describe the behavior quantifiers and the basic

temporal operators on propositions. We prefer to give

the reader a rough description before the formal syntax

and semantics are defined. Suppose some state so and

behavior x starting at so are given. The two behavior

quantifiers are

(necessarily p), which is true if p is true

of every behavior starting with 8q, and

(possibly p), which is true if p is true of

some behavior starting at so-

The elementary temporal operators are (next p) and

(until p q).

(next p) is true of the behavior x if p is true

of the behavior obtained from x by delet

ing its first state, and

(until p q) is true of x if g is true of

some state in x and p is true of every

state preceding the first state in which

q is true. We may also call this rela

tion strong-until, to distinguish it from

weak-until to be defined below.

Let it be stressed that these descriptions are only given

in order to give the reader a rough idea. The exact

meaning of these operators comes from the formal def

inition of the syntax and semantics of the logic which

are in subsequent sections. We use the following ab

breviations:

(eventually p) =

(strong-until true p)

(always p) =

(not (eventually (not p)))

(strict-precedes p q) =

(and (not q)

(strong-until (not (next q)) p))

(weak-precedes p q) =

(eventually (and p (next (eventually q))))

(strong-precedes p q) =

(and (strict-precedes p q) (eventually q))

(weak-until p q) =

(or (strong-until p q) (always p))

(inf initely-often p) =

(always (eventually p))

(almost-everywhere p) =

(eventually (always p))

These last two expressions seem to presume an infinite

tree. The problem of reasoning about the infinite tree

represented by a finite QSIM behavior tree is discussed

later.

The statement (strict-precedes p q) is true of a

behavior if p is true in some state in the behavior and

q is not true in any state previous to the first state

in which p is true. The statement (weak-precedes p

q) is true of a behavior if q is true in some state in

the behavior following some state in which p is true.

The statement (strong-precedes p q) is true of a

behavior if q is true in some state in the behavior and

p is true in some state previous to the first state in

which q is true.

An expression in BTL is formed by an application of

a behavior quantifier to a single one of the usual tem

poral operators: always, strong-until, weak-until,

next, or eventually. EBTL is much more expressive

because it allows boolean combinations and nestings of

the behavior quantifiers and the usual temporal opera

tors. Thus every statement in BTL is also a statement

in EBTL, but "infinitely often" and "for all but finitely

many" and other interesting statements can only be

expressed in EBTL.

Our BTL is closely related to Emerson's CTL and our

EBTL is closely related to Emerson's CTL*. The most

noticeable difference is that BTL and EBTL are appli

cable to finite trees as well as infinite trees. Because

(E)BTL is applicable to finite trees, the temporal op

erator next may seem ambiguous. This is so because

some states do not have a successor. Therefore, we

must distinguish between what is called strong-next

and weak-next. The statement (strong-next p) is

true of a behavior if the behavior has a second state

and p is true of that state. The statement (weak-next

p) is true of a behavior if the behavior has no next

state or if the behavior has a second state and p is

true of it. In our discussion, we consider next alone

to mean weak-next. However, the language includes

both terms and the user of our program may use both.

In the following two subsections we give the formal

definitions of BTL and EBTL.

2.2 SYNTAX

The formal definitions of the syntax for the tempo

ral operators and behavior quantifiers informally de

scribed above are given below. These definitions follow

the treatment of CTL(*) in [Emerson, 90]. The defini

tion of the syntax includes three state-formula genera

tors, followed by one behavior-formula generator in the

case of BTL, but followed by three behavior-formula

generators in the case of EBTL. A state formula is

a formula which is true or false of a state and a be

havior formula is a formula which is true or false of

a behavior. State formulae in both BTL and EBTL

are generated by rules (S1-S3) below. The behavior

formulae in BTL are generated by the rule (BO) below.

The behavior formulae in EBTL are generated by rules

(B1-B3) below.
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Definition 2 The syntax of EBTL is defined as fol

lows.

(51) Each atomic proposition P is a state formula,

(52) if p, q are state formula then so are (and p q)

and (not p),

(53) if p is a behavior formula then (possibly p)

and (necessarily p) are state formula,

(BO) if p, q are state formulae then

(next p), (strong-next p), (strong-until p

q), (always p), (weak-until p q) and

(eventually p) are behavior formula.

(Bl) each state formula is also a behavior formula,

(B2) if p, q are behavior formula then so are (and p

q) and (not p),

(B3) if p, q are behavior formula then so are

(next p), (strong-next p), (strong-until p

q), (always p), (weak-until p g) and

(eventually p).

There are several things to notice here. First notice

that (BO) is subsumed by (Bl) and (B3). There

fore every expression in BTL is in EBTL. Also no

tice that the following formula is well-formed in

both BTL and EBTL: (strong-until (possibly

(next p)) (necessarily (next p))). However,

EBTL is strictly more expressive because, for exam

ple, (necessarily (precedes p q)) and (possibly

(not (weak-until p q))) are expressible in EBTL

but not in BTL. We also allow the standard boolean

abbreviations for or and implies.

2.3 SEMANTICS

The following notation is needed before the semantics

of our logic can be defined. Given a behavior x —

(so, «i, «2> • • •), for 1 < t < A(x) — 1 we let x' denote the

behavior («j, s<+2, . . .), which is the subbehavior

of a; starting at s,-. I.e. it is the behavior obtained from

x by deleting from x the first t states.

Notice that if A(x) is finite, then x' is not defined for

: > A(x) - 1 and that A(x') = A(x) - i.

Now we are ready to give the semantics for the lan

guage. We write M, so ^= $ (respectively M,x ^ $)

to mean that state formula $ (respectively behavior

formula $) is true in the behavior tree M at the state

so (respectively of the behavior x). Each item below

gives the interpretation of the corresponding item in

the syntax above.

Definition 3 Ifs0 is a state in M and x = («o, *i, • . ■)

is a behavior in M starting at so, then we inductively

define ^ as follows:

(51) M, so (= P if and only if P is true in L(s0),

(52) M, s0 (=(and p q) if and only if M,so [= p and

M, s0 |= q,

M,sq ^=(not p) if and only if it ts not the case

that M, so \= p,

(53) M, so ^=(possibly p) if and only if there is a

behavior y in M starting at sq , such that M, y ^

P,

M, so ^(necessarily p) if and only iffor every

behavior y in M starting at Sq, M,y |= p.

(Bl) M, x ^= p if and only if M, so \= p,

(B2) M, x (=(and p q) if and only if M,x \= p and

M,x\=q,

M,x |=(not p) if and only if it is not the case

that M,x \= p,

(B3) M, x f=(strong-until p q) if and only if there

is a nonnegative integer i < A(x) — 1, such that

M, x* \= q and for every nonnegative integer j < i,

M, x' |= p,

M, x ^(next p) if and only if A(x) = 1 or

M,xl\=p,

M,x (=( strong-next p) if and only if A(x) > 1

and M, x1 \= p,

M,x ^=(weak-until p q) if and only if for ev

ery nonnegative integer j < A(x) — 1, if for every

nonnegative integer k < j we have M,xk ^(not

q), then M, x^ ^ p,

M,x ^(always p) if and only if for every non-

negative integer j < A(x) — 1, M, x3' \= p,

M,x (=(eventually p) if and only if there is

a nonnegative integer j < A(x) — 1, such that

M, x> \= p,

The semantics of BTL formulae are the same as those

given above with (B3) giving the semantics of the for

mulae given in (BO) of the definition of the syntax.

Now that the semantics are defined, the reader will

notice that there are two definitions of the following

operators: weak-until, always and eventually. We

have given semantic definitions for these operators and

we have also defined them as abbreviations of expres

sions involving strong-until and next. The proofs

of the equivalence of these definitions are omitted be

cause they are straight-forward but tedious manipu

lations of quantifiers, negation symbols, and boolean

operators.

3 QSIM AND THE

IMPLEMENTATION OF THE

LOGIC

Here we consider how the logic is implemented and

applied to QSIM. First, we define the relations that

make finite QSIM behavior trees into possibly infinite
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trees. Second, we show exactly how QSIM behavior

trees and the trees they represent are used as logical

models for EBTL statements. Finally, we discuss the

implementation of the program which checks the truth

of statements in EBTL against a QSIM behavior tree.

We call the program TL for "temporal logic" .

3.1 QSIM AS A MODEL FOR (E)BTL

Qualitative simulation with QSIM produces a tree of

qualitative states, linked by successor and transition

relations.1 A QSIM behavior is a path in the behavior

tree, terminating at a leaf of the tree, but not nec

essarily starting at the root state. (This differs from

normal usage.) Each state describes the qualitative

value of each variable appearing in the QDE model.

The qualitative value of a variable v over a state s

is of the form (qmag, qdir), where qmag describes the

magnitude of v as equal to a landmark value or in an

open interval defined by two landmarks, and qdir is

the sign of the derivative v' of v. By considering the

qualitative values of the variables at s, and the con

straints in the QDE, QSIM is able to derive a number

of properties of the state, including quiescence, stabil

ity, cycles, etc. Please see [Kuipers, 86, 94] for more

detailed information on QSIM.

A QSIM behavior tree is made a logical model for

statements in EBTL in the following way. A QSIM

behavior tree M is an ordered triple (5, R, L) where

the set S of states is the set of states in the output

of the QSIM algorithm, the set R is the union of the

QSIM successor and transition relations, and the in

terpretation L{s) is as follows.

For the sake of brevity, we consider only the atomic

propositions associated with any QSIM state s which

are of one of the following forms:

(status tag) where tag is an element of

{quiescent, stable, unstable, transition, cycle}.

Such a proposition is true exactly when tag is a

member of the QSIM structure s. status associ

ated with the state s.

(qval v (.qmag qdir)) where v is a variable of the

state s, qmag is a landmark or open interval

defined by a pair of landmarks in the quan

tity space associated with v, and qdir is one of

{inc, std, dec, ign}. Such a proposition is true

exactly when the value of v in the state s matches

the description (qmag qdir).

The expressiveness of the application of EBTL to

QSIM could easily be increased without adding to the

complexity by adding expressiveness to this proposi-

1 There is also a completion relation not discussed here,

that holds between an incomplete state description and a

complete one consistent with it. Handling this relation is a

straight-forward extension of the methods discussed here.

tional part of the language. In particular, we could

allow propositional formulae other than the two given

above. For example, we could add the ability to com

pare the values of two variables, or to consider quan

titative information about variable values.

By a QSIM behavior we mean a path in a QSIM be

havior tree, not necessarily starting at the root state,

such that the last node in the path has no fl-successor.

We call the state at which a behavior starts the first

state of the behavior. In this paper, when we say "a

QSIM behavior tree" we are referring to the finite out

put of the QSIM algorithm. That is to say, given a

qualitative differential equation and allowed a finite

amount of time to run, QSIM will return a finite tree.

The finiteness of QSIM trees may seem to be a terrible

limitation. For example, expressions such as "for all

but finitely many" and "infinitely often" would appar

ently never be sensibly satisfied by a QSIM behavior

tree. However, a QSIM behavior tree may represent

an infinite behavior tree.

3.2 THE TREE REPRESENTED BY A

QSIM BEHAVIOR TREE

QSIM has two ways of presenting a behavior over an

infinite time-interval with a finite sequence of qual

itative states. First, a fixed-point of a behavior is

represented by a state with status quiescent. Sec

ond, repeated patterns in a behavior can be described

by cycles. A cycle state in a QSIM behavior is one

that matches a previously-generated state elsewhere in

the behavior tree, so its successors are already repre

sented by the successors of the previously-generated

state. The user may select the state-matching cri

terion, and whether cycles must lie within a single

behavior or may cross among behaviors. With re

spect to the tree M represented by a QSIM behav

ior tree M, the expressions (inf initely-often p)

and (almost-everywhere p) have exactly the desired

meaning. The solution to the problem of reasoning

about the infinite tree in finite time is discussed later.

Definition 4 The ordered pair (s{,Sj) of states is in

a status-bound relation if either of the following two

conditions holds:

(1) The proposition (status quiescent) is true of

Si, and Si — Sj or

(2) the proposition (status cycle) is true ofsi, and

Sj is a successor of the previous state s' in the tree

such that s' = s,-.

If the ordered pair (si , S2) is an element of the set of

status-bound relations, then we say that (si,S2) is a

cycle relation if Sy ^ S2-

Definition 5 (Represented Tree) The posstbly in

finite tree M = (S, R, L), represented by a QSIM be

havior tree M = (S, R, L), is the tree which results by
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adding the status-bound relations to the set R. The

set R is the union of R with the set of status-bound

relations. The set S is the union of S and the new

states which are generated first as second elements of

status-bound relations and then by the unwinding pro

cess. (Cf. [Emerson, 90] for a precise definition of

unwinding.) We will call the new states copies of the

state in S to which they correspond. Each new state

inherits the interpretation L(s) of its proposition sym

bols from the state of which it is a copy.

3.3 CLOSED BEHAVIOR TREES

In the best case, every behavior in the tree returned by

QSIM terminates with a quiescent or cycle state. We

will call such a tree closed. There are cases, however,

in which QSIM does not return a closed tree regard

less of how long it is allowed to run. In cases where

QSIM returns a tree which is not closed, the Guaran

teed Coverage Theorem does not necessarily apply. If

the behavior tree M is not closed then it is possible

that the actual behavior of the system is not repre

sented in M.

Using the normal QSIM simulation style, creating new

landmarks for critical values and applying a strong

cycle-match criterion (all variables have identical land

mark values), certain systems such as the damped

spring have infinite behavior trees. In such cases, the

QSIM algorithm cannot produce a closed behavior tree

in finite time. However, by applying the envisionment

simulation style (no new landmarks and weak cycle-

match criterion), every qualitative model has a finite

behavior tree. [Kuipers, 94] discusses this and a vari

ety of methods for obtaining tractable behavior trees.

3.4 THE PARTIAL EXTENSION OF A

BEHAVIOR TREE

Given an EBTL statement $ to check against a QSIM

behavior tree M , we can define a partial extension

M($) of M,

M C Af($) C M

that is finite (where M might not be) and enough

larger than M to make the truth value of M,so |= $

be the same as that of M($), so |=

In section 3.6 we will prove that if the truth checker

is given a QSIM behavior tree M and a statement $

in EBTL, then it returns the truth value of $ regard

ing the generally larger tree M represented by M . As

we will see, this tree can be infinite and complex. We

think of a statement in EBTL as a question which the

user is asking about the given behavior tree. The user

expects the program to respond with the truth value

of M, so ^ where M is the possibly infinite tree

represented by the QSIM tree M and s0 is the root of

the tree. The program TL accomplishes this by con

structing the partial extension of the given QSIM tree

and checking the truth of the given expression on this

larger yet still finite tree. The proof is accomplished

by showing that the partial extension of the tree is

large enough to decide the question

The reader may find it helpful to examine Figure 1 for

a motivation of the following definitions. The partial

extension M(<!>) of M depends also on It is con

structed from M and $ by expanding M according to

the structure of nestings of until and next statements

in

Let us now give the needed definitions. Recall that

a QSIM behavior tree M is necessarily finite. The

until extent, x(until), of a behavior x in M is a set

of possibly truncated behaviors in M which extend

x. The addition of these longer behaviors enlarge M

exactly enough to answer properly any propositional

until statement.

Definition 6 The until extent x(until) of a finite be

havior x = (so, s\, . . . , s„) is the singleton set contain

ing x unless (status cycle) is true of sn in which

case x(until) is the set of paths x' in M extending x

but truncated at the first state s € x' at which the fol

lowing property is satisfied:

The Until Property: s is not in x and either (status

quiescent) is true of s or (status cycle) is true of

s and s is a copy of some previous state in x'.

It is important to understand that the until extent of a

behavior x in a finite QSIM tree M is a finite set of fi

nite behaviors. To see this we need to recall two facts.

First, QSIM behavior trees are finitely branching. Sec

ond, cycle states occur only at the terminal states of a

QSIM behavior tree, thus there are only finitely many

cycle states in a finite QSIM tree. If some x' € x(until)

were infinite, it would have to pass through infinitely

many cycle states. Thus it would have to pass through

one of them more than once, contradicting the Until

Property. Since each behavior in x(until) is finite, and

M is finitely branching, x(until) must be finite.

The next extent, z(next), of a behavior x in M is the

set of possibly truncated behaviors in M which are

sufficiently extended to answer a propositional next

question.

Definition 7 The next extent x(next) of a finite be

havior x = (sq,s\, . . . ,sn) is the set of paths x' in M

extending x but truncated at the first state s € x' satis

fying one of the following properties: (status cycle)

is true of sn and s satisfies the Until Property or

(status quiescent) is true at s and s is not in x.

A similar argument as the one given above shows that

the next extent of a finite behavior in a finite behavior

tree is a finite set of finite behaviors.
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Mbefore unwinding
 

M($)after partial unwinding

Figure 1: Partial unwinding for $ = (until p q),

along first behavior only.

Each cycle state is expanded, stopping each

branch at the second occurrence of a given cycle

state. The double circles represent cycle states.

Definition 8 We define the partial extension M($)

generated by a tree M and an EBTL expression $ re

cursively as follows:

If $ is a proposition then M($) = M,

if $ is (and p q) then A/($) is the union of

M(p) and~M(q).

if $ is (not p), (possibly p) or

(necessarily p), then M($) = M(p),

if $ is (strong-until p q) then M($) is

the union over each behavior x £ M(p) U

M(q) ofx(until), or

if $ is (next p), or (strong-next p), then

M($) is the union over each behavior x £

Af(p) ofx(next).

Notice that the paths in the until and next extents of a

behavior in M are generally not behaviors in M or M.

They may, however, be behaviors in M($) for some $.

Our implemented prover TL, given as inputs a QSIM

tree M and an EBTL expression returns true if

and only if M, s \= $ where s is the root state of M .

We will prove that it is enough for the truth checker

to examine M($), which in fact is what TL does. To

be specific, we have defined the partial extension of a

behavior tree generated by a QSIM behavior tree M

and an EBTL statement to be at least as large as the

largest tree generated by TL in the process of checking

$ on M . It, however, should be clear that this tree

must be finite. This is true because each statement in

EBTL is finite and each QSIM behavior tree is finite.

We will prove that given an EBTL expression $ and a

QSIM behavior tree M , TL correctly returns the truth

or falsity of $ in the behavior tree M represented by

M in finite time.

We need a way of distinguishing, for a given subex

pression $o of whether $o is in the scope of a

necessarily or of a possibly quantifier. The defi

nition in the next subsection fulfills this need.

3.5 IMMEDIATE SCOPE

We recursively define an occurrence of p being in the

immediate scope of a behavior quantifier as follows:

Definition 9 (Immediate Scope)

The occurrence of p in (possibly p) is in

the immediate scope of possibly.

// (and p q), (not p), (strong-until p

q), (next p), (strong-next

p), (always p), or (eventually p) oc

curs in the immediate scope of possibly

then these occurrences of p and q are

said to occur in the immediate scope of

possibly.

The occurrence of any EBTL expression

which can not be shown to be in the im

mediate scope of possibly by the above

conditions is in the immediate scope of

necessarily.

Other temporal operators are treated as abbrevia

tions of expressions involving the operators mentioned

above.

Consider the following example of an EBTL expres

sion:

(and (possibly

(strong-until p (necessarily q)))

(next (possibly r)))

The and and its arguments are in the immediate

scope of necessarily as is the occurrence of q.

Also (possibly r) is in the immediate scope of

necessarily. However, the strong-until statement

and its arguments are in the immediate scope of

possibly.

3.6 CORRECTNESS OF THE

IMPLEMENTATION

Now we come to the promised proof. Because TL ex

amines the partial extension M($) of M, what we re

ally need to prove is the following:
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Theorem 1 If M is a QSIM behavior tree with root

s and $ is an EBTL state expression, then

M,s\= Af(*),« |=

The proof goes by induction on the structure of If

$ is a proposition, then the theorems are obvious.

Also it is clear how to handle the booleans, i.e. we

simply pass the proof on to their arguments.

If $ is of the form (necessarily p) then we must

really prove the following: M,x ^ p for all behaviors

x G M if and only if M(p),x' \= p for all behaviors

x' G M(p). If $ is of the form (possibly p) then we

must prove the following: M,x \= p for some behavior

x G M if and only if M(p),x' ^= p for some behavior

x'GM(p).

So the interesting parts of the proof will be when $

begins with a temporal operator within the immediate

scope of either necessarily or possibly. Theorem 2

takes care of the case when a strong-until statement

occurs in the immediate scope of necessarily.

Theorem 2 If $ is of the form (strong-until p

q) , then M,x ^= $ for all rooted behaviors x G M

if and only if M($),x' \= $ for every rooted behavior

i'6M($).

Proof: (^) Suppose M,x \= $ for every behavior

x G M starting at the root. Let x' be a behavior in

M($) starting at the root. Suppose for the sake of

contradiction _that for every nonnegative integer k <

A(x') — 1, if M($),x'* \= q, then there is a number

/ < k such that M($), x'1 ^ p. There is a behavior x

in Af^ which extends x'. The existence of this behavior

in M contradicts our hypothesis.

(•^) Now suppose that for every behavior x' G M($)

starting at the root

M{Q),x' \=Q (1)

Suppose for refutation that for every behavior x in M

starting at the root, for all i < A(x) — 1 if M, x' (= q,

then there is a nonnegative integer j < i such that

M, xJ ^ p. There are two cases to consider.

First we suppose there is a rooted behavior x G M

such that for all i < A(x) — 1, M, x' )fc q. Let x' be a

behavior in M($) which x extends. (I.e. cut off x at

its first state which satisfies the Until Property.) The

existence of this x' G M($) contradicts our hypothesis

(!)•

Now suppose that there is a rooted behavior x G M

such that for every i < A(x) — 1 such that M,x' (= q

there is a j < i such that M, xi J£ p and that such an

i^xists. Choose i to be the smallest number such that

M,x* (= q. Let j < i be such that A/,xJ \fc p. Let y

denote the path from the root to the first state, s, in

x* . Suppose there is a state s in y which satisfies the

Until Property. If such a state exists then the path

(so, »i, . . . , s) is a behavior in M($). The existence of

this behavior contradicts the hypothesis (1). If there is

no state in y satisfying the Until Property, then there

is some behavior x' in M(<J>) which extends the path

y. This behavior once again contradicts our hypothesis

(!)•

This completes the proof.

Theorem 3 takes care of the case when a strong-until

statement occurs in the immediate scope of possibly.

Theorem 3 // $ is of the form (strong-until p

q) , then there is a rooted behavior x G M such that

M,x (= $ if and only if there is a rooted behavior

x' G Af (*) such that M($), x' (=

Proof: First, suppose there is a rooted behavior,

call it x, in

M such that M,x ^ There is a path x' G M($)

which x extends. Suppose for contradiction that for all

nonnegative integers k < A(x') — 1 if Af($),x'* ^ q

then there is a nonnegative integer / < k such that

A/(*),x" fcp.

If_M(*),x/fc (= q for some Jfc < A(x') - 1 and

M($), x" p for some I < k then the same is true for

x G M which is a contradiction.

If there is no * < A(x') - 1 such that M($),x'* ^

q, then it must be the case that for every state t G

x',M($),t (= p. Thus far, we have assumed nothing

about the behavior x G M except that M,x |= We

know that for any such behavior there is a smallest

number t(x) such that M,x'^ ^ q. Let i be the

smallest of all of the i(x) ranging over behaviors x for

which M,x \= $ and let x now denote the behavior

corresponding to i. If there is no state, s, in the path

y = («0i *i> ■ • • i *<) satisfying the Until Property, then

there is a behavior x' G M($) which extends y. In

this case we are done becuase M($),x' \=

If there is a state in y which satisfies the Until Prop

erty, then we let s denote the first such state. Ei

ther (status quiescent) or (status cycle) must

be true at s (or s has no successors). In the former

case we are done becuase the path (*0)*i» • • •»*) 18 a

behavior in M($). In the latter case, we delete from y

the state of which s is a copy and the states between

it and s. What^remains of the path y is again a trun

cated path in M, but a shorter path, and M , z ^ $ for

any path z G M which extends y. But this contradicts

our assumption that the state s< G x was the nearest
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state to the root satisfying these conditions.

(<=) Now suppose there is a behavior x' £ Af (<£) such

that M($),£' \= There is a behavior x € M which

extends x'. Thus we are done.

This completes the proof.

Similar theorems follow for next expressions and the

other temporal operators can be treated as abbrevia

tions of these two.

Therefore, it is enough for the truth checker to exam

ine only M($) when trying to check M, so ^ Since

the until (or next) extent of a behavior in a QSIM tree

starting at any state is finite and each EBTL expres

sion is finite, the truth checker will terminate with the

correct answer.

4 THE MAIN THEOREM

Our main theorem states that, under appropriate hy

potheses, the answer that TL gives to an EBTL state

ment concerning a QSIM behavior tree will be true

of the solution to any differential equation consistent

with the qualitative differential equation which pro

duced the QSIM behavior tree.

Before we state our main theorem we need some nota

tion, definitions and a lemma. We define the parity of

a position in an EBTL expression as follows:

Definition 10

The first operator in any EBTL expression

given to TL is in a position of parity 0.

If (not p) occurs in a position of parity n £

{0, 1}, then p is in a position of parity

n + 1 (mod 2).

If (O p) or (O p q) occurs in a position of

parity n £ {0, 1} and O is some tempo

ral, boolean, or modal operator other than

not, then p and q occur in positions of

parity n.

Recall that (implies p q) is an abbreviation of (not

(and p (not q))) so if (implies p q) occurs in a

position of parity n £ {0, 1} then p is in a position of

parity n + 1 (mod 2) and q is in a position of parity

n. This follows the use of "positive" and "negative"

position in [Wang, 60].

Definition 11 An EBTL expression $ is said to be

universal if every occurence of the behavior quantifier

possibly is in a position of parity 1 and every occur

rence of the behavior quantifier necessarily is in a

position of parity 0.

With a little thought, the reader will see that if a for

mula is universal, then the truth checker should exam

ine the entire tree in order to establish the truth of the

formula. This is the motivation for the definition.

If <J> is a universal formula in EBTL, then <£' denotes

the linear-time behavior formula obtained from $ by

deleting all occurrences of the behavior quantifiers.

For example, if

$ = (necessarily

(strong-until p (necessarily g))),

then

=( strong-until p q).

We are now ready to proceed to the details of our

main theorem. We say a real-valued function, u, sat

isfies a given QSIM qualitative behavior description if

the qualitative description of the function matches the

given qualitative behavior. The following theorem is

proved in [Kuipers, 86].

Theorem 4 (Guaranteed Coverage) Let F = 0 be

an ordinary differential equation with solution u, a

real valued function. Let C be a QDE with which

F = 0 is consistent. Let M be the QSIM behavior

tree generated by the QSIM algorithm applied to C.

If M is closed, then u satisfies some QSIM behavior

x = («o > *i > *2> • • •) in M where so is the root state of

M.

Theorem 5 (The Main Theorem) Let $ be a uni

versal state formula in EBTL. Let u and M be as in

the hypotheses of the Guaranteed Coverage Theorem.

Let so be the root state of M. If A/($),so f= then

is true of the qualitative description of u.

Proof: Suppose M($),so |= as in the hypotheses

of the theorem. By definition, is a behavior formula.

For simplicity, let us start by replacing every occurence

of the temporal operators weak-until, always,

precedes, strong-precedes, inf initely-often,

almost-everywhere, and eventually with ex

pressions involving only the temporal operator

strong-until and next. (Since M is closed, it makes

no difference whether we consider next to be strong or

weak.) This is made possible by the abbreviations on

page 3. So now is a behavior formula whose only

temporal operators are next and strong-until. By

the Guaranteed Coverage Theorem and the fact that $

is universal, it is enough to show that is true of ev

ery behavior in M starting at sq. So, by the results in

section 3.6, we need only to show that M($'),x \=

for every behavior x in M ($') starting at sq. So let x

be a behavior in M($) starting at sq. We will induct

on the complexity of Unless otherwise noted, ref

erences to (S1-S3,B1-B3) refer to the definition of the

semantics.

If is an atomic proposition, then is a state for

mula by (SI) of the definition of the syntax of EBTL.

Since is a propositional state formula, $ = (Cf.
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(S3) of the definition of the syntax of EBTL). There

fore M($'),x (= by hypothesis and we are done.

Suppose is of the form (and p q). Then we reduce

to the case of showing M(p), x |= p and M(q),x \= q.

Suppose <£' is of the form (not p) . Then we reduce

to the case of showing that it is not the case that

M(p),x (=p.

Suppose is of the form (strong-until p q). We

reduce to showing that for some nonnegative integer

j < \(x) — 1 and for all nonnegative integers k < j,

M(q),xi [= q and M(p),xk f= p.

Suppose is of the form (next p) where p is a be

havior formula. It must be the case that A(i) > 1,

otherwise M,x \= $ could not have been true (Cf.

(B3)). Thus we reduce to proving M(p),x1 (= p.

In each case we have reduced to a more simple ex

pression. The obvious induction argument on the com

plexity of finishes the proof.

5 APPLICATIONS OF EBTL AND

QSIM

EBTL may be useful any time QSIM is used. QSIM

has been used to simulate controllers, human organs

and disease, abstract and real physical systems, electri

cal circuits, population dynamics, chemical reactions,

etc.

5.1 PROVING PROPERTIES OF

CONTROLLERS

Kuipers & Astrom [1994] have used TL and QSIM to

prove properties of heterogeneous control laws. A het

erogeneous controller is a nonlinear controller created

by the composition of local control laws appropriate

to different operating regions. Such a controller can

be created in the presence of incomplete knowledge of

the structure of the system, the boundaries of the op

erating regions, or even the control action to take, an

alyzed, even in the presence of incomplete knowledge,

by representing it as a qualitative differential equation

and using qualitative simulation to predict the set of

possible behaviors of the system. By expressing the de

sired guarantee as a statement in EBTL, the validity

of the guarantee can be automatically checked against

the set of possible behaviors. Kuipers & Astrom [1994]

demonstrate the design of heterogeneous controllers,

and prove certain useful properties, first for a sim

ple level controller for a water tank, and second for

a highly nonlinear chemical reactor.

It should be noted that [Moon, et. al., 92] used CTL to

prove a guarantee for a discrete-time control system.

EBTL and QSIM make it possible to apply temporal

logic to continuous-time control systems, and indeed

to dynamical systems in general.

The program TL is equally easily applied to the be

havior trees output by QSIM extensions such as NSIM

and Q2, which use quantitative bounding information

and produce quantitative bounds on the predictions.

For these applications a slight extension of the propo-

sitional part of the language is helpful. We add the

ability to include numerical information in the state

propositions. This added expressiveness does not add

to the complexity of the algorithm.

The program can be and has been used on terminals

which do not support the graphics needed to see QSIM

trees. In these circumstances, the user can learn ev

erything he may need to know about a QSIM tree by

evaluating a few carefully chosen EBTL statements.

5.2 TL AS A DEBUGGING TOOL FOR

QSIM MODELS

Because QSIM is not complete, a QSIM tree may con

tain behaviors which do not correspond to real behav

iors. Therefore, the truth of an EBTL statement (e.g.

one beginning with the quantifier possibly), does not

imply the truth of the corresponding statement in an

actual behavior. This apparent limitation, however,

can be and has been used as a debugging tool. For ex

ample, if the QSIM user knows that a certain sequence

of events cannot occur in a real behavior, he can use

TL to find out if that sequence of events occurs in any

of the behaviors in the QSIM tree. The implemented

program TL allows EBTL formulae to have side effects.

Therefore, it can be used to print out the undesirable

behaviors or states which satisfy a certain EBTL for

mula. In the actual TL code, there are features which

make this process very easy.

5.3 EXAMPLES

We demonstrate the use of TL to ask and answer ques

tions about two simple models: the undamped oscilla

tor, whose behavior tree is rooted in the initial state

SS; and the damped oscillator, whose behavior tree is

rooted in the state DS.

Undamped Oscillator The simple spring con

serves energy, so all behaviors are cycles, as shown by

the behavior tree in figure 1. The three behaviors dif

fer according to whether the amplitude of the oscilla

tions passes a predefined landmark value. The queries

shown demonstrate that the simple spring never be

comes quiescent, always reaches a cycle state, and

necessarily has an infinite sequence of events crossing

x = 0 in opposite directions.

(TL SS ' (necessarily

(always (not (status quiescent) ))) )

=> T
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(TL SS '(necessarily (eventually (status cycle))))

-> T

(TL SS ' (necessarily

(and (inf initely-often (qval x (0 inc)))

(inf initely-often (qval x (0 dec)))))

-> T

(TL SS ' (necessarily

(inf initely-often

(precedes (qval x (0 dec) )

(qval x (0 inc))))))

-> T

Damped Oscillator The damped spring loses en

ergy. The first behavior is a cycle representing a de

creasing oscillation. The second two are partial cycles

followed by "nodal" convergence to quiescent states at

the origin (indicated by circled dots in the behavior

tree). This finite behavior tree represents an infinite

family of behaviors, oscillating a finite number of half-

cycles around the origin before "nodal" convergence.

Each of the universal questions asked about the simple

spring behavior is false of the damped spring, but the

corresponding existential statements are true.

 

(TL DS '(possibly (always (not (status quiescent))))

=> T

(TL DS '(possibly (eventually (status cycle))))

-> T

(TL DS '(possibly (eventually (status quiescent))))

=> T

(TL DS ' (possibly

(and (inf initely-often (qval x (0 inc)))

(inf initely-often (qval x (0 dec)))))

-> T

(TL DS ' (possibly

( inf initely-often

(precedes (qval x (0 dec))

(qval x (0 inc))))))

-> T

6 FUTURE DIRECTIONS

QSIM and EBTL can be combined to help in the de

sign of a QDE. One possibility is to allow EBTL for

mulae as part of the input to the QSIM program. In

this case, QSIM would only generate those behaviors

which are models for the EBTL formulas. I.e. QSIM

would test the satisfiability of the conjunction of the

EBTL formulas. This would allow a qualitative model

to be described jointly by a QDE and an EBTL de

scription of its behavior.

The limiting case, with an EBTL specification of the

desired behavior and no QDE, raises an intriguing

possibility. QSIM would predict all behaviors consis

tent with continuity and the EBTL specifications. A

recently-developed program called MISQ takes as in

put a set of qualitative behaviors and produces the

minimal QDE capable of producing that behavior

[Richards, et al, 92]. This would be useful, for exam

ple, to a controller designer who knows that he wants

certain qualitative events to occur, not to occur, or

to occur infinitely often. By providing this specifica

tion in the form of EBTL formulas, this combination

of EBTL, QSIM, and MISQ might be able to design

the appropriate QDE model.

Work is currently being done with the goal of automat

ically generating natural explanations of the structures

associated with QSIM. This requires the detection of

certain common features in physical systems, e.g. neg

ative feed-back loops, oscillation, etc. While EBTL is

useful for many parts of this process, more expressive

ness is clearly required.

In particular, it will be important to compare (not

just quantify over) behaviors and states, and to com

pare and quantify over variables in the QDE. In some

cases this can be done in EBTL, though awkwardly.

It would not be enough to build EBTL on a first-order

logic instead of a propositional logic, since quantifica

tion to compare behaviors, states or variables must be

' scoped outside of the modal and temporal operators.

This would undoubtedly have a substantial impact on

complexity.

7 MISCELLANY

7.1 COMPUTATIONAL COMPLEXITY

Checking the validity of statements in BTL is poly-

) nomial, and EBTL is exponential, in the size of the

statement. However, since the statements are typically

not enormous, the more important constraint is that

validity checking is linear in the size of the behavior

tree.

7.2 CODE

The code for QSIM is available via anonymous ftp at

cs.utexas.edu in the directory ftp/pub/qsim. The

up-to-date version of TL will be included with the re

lease of QSIM by KR'94.

7.3 RELATED WORK

Related work has been done in applying temporal log

ics to various models. Some of the logics developed

have been able to express more quantitative time in

formation. Since QSIM does not express information

about the "real" length of time intervals, these lan
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guages are not practicable in our situation. We specif

ically mention for example [Jahanian, 88]. In this pa

per, real time systems are modeled in the Modechart

language. Statements in Real Time Logic can be

checked against a Modechart model. Real Time Logic

is undecidable in general but certain classes of state

ments are shown to be decidable. These languages are

suited for time-critical systems. However, if all that is

important is the order of events, then languages such

as CTL* are sufficiently expressive. In [Moon, 92],

statements in CTL are checked against state transition

graphs generated from programmable logic controller

ladder diagrams. The specific application in [Moon,

92] is to chemical process control. Possibly the most

work has been done in applications of temporal log

ics to computer processes such as parallel computing.

[Emerson, 90] and [Lichtenstein, 84] are examples of

such work. [Collins, 89] took an early step in the ap

plication of temporal logic to QSIM.

7.4 HISTORY

In 1989, Kuipers began discussing the application of

branching-time temporal logic to QSIM with David

W. Franke and E. Allen Emerson. In 1990, Kuipers

wrote the code on which TL is based. In 1992-93,

Shults added the finite unwinding of cycle states and

discovered the new theorems presented in this paper.

8 CONCLUSION

This paper has presented a method using modal and

temporal logic to prove properties of the behavior of

a continuous physical system. If the user can describe

a physical system in terms of a set of qualitative con

straints, then by using QSIM and TL, he or she can

prove theorems about the behavior of any real sys

tem consistent with those constraints. We therefore

provide a meaningful and sound interpretation for the

phrase, "proof by simulation."

We expect that this link between logic-based and

simulation-based inference methods will support a va

riety of hybrid reasoning techniques that could be of

substantial value.
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Abstract

A major challenge in knowledge representa

tion has been to devise reasoning mechanisms

that are computationally feasible. The prob

lem is that knowledge is usually incomplete

and hence calls for very expressive represen

tation languages like that of first-order logic,

yet reasoning about incomplete knowledge is

undecidable when based on classical logic.

Over the past decade there have been several

semantic approaches defining decidable forms

of first-order reasoning. The computational

gain, however, came at the price of losing too

many useful inferences. In this work we take

one of these existing weak reasoners and ex

tend its power without losing decidability by

moving from an unsorted to a sorted logic.

In contrast to similar work by Frisch, we are

not limited to formulas in a certain normal

form and our approach extends to introspec

tive reasoners as well.

1 Introduction

A major challenge in knowledge representation has

been to devise reasoning mechanisms that are compu

tationally feasible. The problem is that knowledge is

usually incomplete and hence calls for very expressive

representation languages like that of first-order logic,

yet reasoning about incomplete knowledge is undecid

able when based on classical logic.

In answering this challenge, there have been proposals

of weaker models of reasoning for incomplete knowl

edge bases which try to avoid the complexities of clas

sical logic and still allow for useful inferences. In one

line of research [Lev84b, Fri86, Pat87, Lak92a], the

new forms of implication are given a model theoretic

semantics, which makes them more intuitively com

pelling and also easier to analyze than most other ap

proaches that are based on some form of syntactic re

striction on the inference process. In a nutshell, the

above semantic approaches work as follows. In clas

sical logic, the implications of a set of assumptions

are those sentences that hold in all interpretations or

worlds where the assumptions are true. One way to

weaken implication then is to allow more worlds than

just the classical ones. The intuition is that fewer

things hold in a larger set of possibilities. To intro

duce non-standard worlds into the picture, the above

approaches use either a three-valued logic [Fri86] or a

four-valued one [Lev84b, Pat87, Lak94, Lak92a], which

derive from the notion of tautological entailment, a

fragment of relevance logic [AB75, Dun76].

Probably the greatest pay-off of the above work has

been the semantical characterization of decidable first-

order reasoning. However, the cost of this achievement

was very high in that the new forms of implication are

very weak. In particular, modus ponens is thrown out

altogether, which severely limits their applicability.

For example, let us consider the following KB:

VxElephant(z) D Mammal(a:)

Va:Mammal(x) D Harm_Blooded(i)

Va;Wann-Blooded(i;) D Has(x, eyes)

Elephant(c/yde)

If the predicates are given a three- or four-valued se

mantics according to the above approaches, neither

Has(c/yde, eyes) nor even Mammal(clyde) can be in

ferred from the KB. Frisch [Fri86] already realized

this problem and suggested the following approach

to at least handle simple taxonomic inferences as in

this example, which require the use of modus ponens.

His idea was to enrich the logic by switching to a

sorted language. The sorts are unary predicates like

Elephant or Mammal, which receive a classical two-

valued semantics, while the other predicates like has

are given the weaker, in his case three-valued, seman

tics. The KB is then divided into 2 parts, the sort

theory, which contains information about sorts only,

and a part which contains other assertions that may

reference the sorts via restricted variables. The above
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example KB can then be reformulated as

Va;Elephant(x) D Mammal(x)

VzManunal(j;) D Warm_Blooded(x)

Elephant(c/j/de)

Var:Wann_Blooded Has(z, eyes)

Here the first 3 sentences make up the sort theory,

which can be reasoned about classically, and only the

predicate Has is interpreted in a non-standard way, and

sure enough, Has (clyde, eyes) can now be inferred.1

Notice that, while sorts in classical logic do not add to

the expressive/deductive power of the logic, they do in

this nonstandard setting.

In addition to introducing standard sorts into a non

standard logic, Frisch also worked out restrictions on

the sort theories, which allowed him to use his exist

ing inference engine for the unsorted logic. In essence,

the only upgrade necessary was a module for sorted

unification. While sorted unification is undecidable in

general, important cases of decidable sorted unifica

tion have been identified, for example [Wal88, Sch89,

CD91, Uri92]. An example of a simple kind of sort

theories, which subsumes our example KB and which

yields decidable sorted unification can also be found

in [Fri91]. Although Frisch did not elaborate on the

connection with his earlier work, it does not seem hard

to combine the result on decidable sorted unification

with his work on non-standard sorted deduction to

obtain a more powerful decidable first-order reasoner

than was established previously.

So what is there left to do? A major drawback of

Frisch 's three-valued logic, at least from a concep

tual point of view, is that the semantics is only de

fined for sentences in prenex normal form. Further

more, his logic does not seem to generalize well to

an epistemic logic, which would allow introspective

reasoning, whose value for knowledge bases has been

well established (see, for example [Lev84a]). In pre

vious work, Lakemeyer presented an approach to un

sorted decidable reasoning which avoids these short

comings [Lak94, Lak92a]. In this paper, we demon

strate how to enhance the power of such a reasoner

without sacrificing decidability by incorporating sorts

into the logic. Even though Frisch's work is closely re

lated, his results cannot be ported in a straightforward

way. For one, we allow arbitrary formulas, not just

formulas in prenex Skolem normal form. While this

is not an issue in classical unsorted first-order logic,

the situation changes both in classical sorted logic and

in our nonstandard logic, where normal form transfor

mations are no longer equivalence preserving. Further

more, Frisch's results on sorted deduction rely heav

ily on applying the Herbrand Theorem, which does

'To see why reasoning is still weaker than in classi

cal logic, just add the assertions VxHas(x, feathers) D

Has(x,eyes), VxHas(x, fur) D Has(x,eyes),

and Haa(opus, feathers) VHas(opus, fur). Has(op«s, eyes)

cannot be concluded.

not hold in our case.2 Instead we present a syntac

tic characterization of sorted deductive reasoning in

terms of a modification of the unsorted version given

in [Lak94, Lak92a]. Furthermore, these results are ex

tended to account for sorted introspective reasoning as

well.

The rest of the paper is organized as follows. In Sec

tion 2, we introduce the logic BLq, which extends the

logic BLq of [Lak94] by adding sorts. Besides introduc

ing the semantics, we also discuss various properties

of the new logic. In Section 3, we show how a decid

able sorted reasoner can be obtained in this framework.

Section 4 extends the results to an introspective rea

soner. Finally, we summarize our results in Section

5.

2 The Logic BL\

The logic introduced here extends the logic BLq of

[Lak94] by introducing sorts and restricted variables

into the language.

Let us begin by reviewing the main features of the old

logic. BLq is a logic of belief,3 which models the beliefs

of a deductively limited agent.4 The question whether

the agent believes a sentence a given that he believes

the sentences in his KB amounts in this logic to the

question whether the formula BKB D B/? is valid.5 A

key result is that these belief implications are decidable

in BLq . What is the semantics of the belief operator

B?

Belief is defined in a possible-world fashion.6 Intu

itively, we should think of an agent who imagines a set

of states of affairs or situations M, which are described

in more detail below. The agent is then said to believe

a sentence a just in case a (or, as we will see below, a

slightly modified a) holds in all situations in M.

In order to prevent beliefs from being closed under

logical implication, we limit an agent's ability to rea

son by cases in the following ways. For one, we allow

beliefs not to be closed under modus ponens. For ex

ample, if p, q, and r are atomic facts, we allow an

agent to believe (p V q) A (-<q V r), yet fail to believe

(pVr). Another way reasoning by cases is limited is

2 While a variant of the Herbrand Theorem may very

well hold, it is likely rather unwieldy.

3 For stylistic reasons, we will often use the terms knowl

edge and belief interchangeably although the logics di-

cussed here really model beliefs that need not be true in

the real world.

4In BLq and BL% beliefs are nonnested. This restriction

is lifted in the next section.

5 Here, KB is understood as the (finite) conjunction of

the sentences in the knowledge base.

6 Possible-world semantics is due to Kripke [Kri63]

and was first introduced for epistemic logics by Hin-

tikka [Hin62]. See also [HM85] for a brief review.
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by weakening what we call existential generalization

from disjunctions in the sense that an agent may be

lieve P(a) V P(6) for a predicate P and distinct terms a

and 6, yet fail to believe 3xP(x).

In BL9 , closure under modus ponens is avoided by de

coupling the notions of truth and falsity within situa

tions. Instead of assigning either true or false to atomic

facts (predicates applied to individuals), situations are

allowed to assign independent true-support and false-

support to atoms. This corresponds to using four

truth values {}, {true}, {false}, and {true, false},

an idea originally proposed to provide a semantics for

a fragment of relevance logic called tautological entail

ment [AB75, Dun76]. Note that the classical worlds

of possible-world semantics are a special kind of situa

tions, namely those where each atomic fact has either

true- or false-support but not both. In BLq, classi

cal worlds are used to provide the standard notions

of truth and validity. Non-classical situations are only

allowed to be part of what agents imagine (denning

their beliefs).

In order to weaken existential generalization from dis

junction, BLq restricts the interpretation of existential

quantifiers within belief. Roughly, we require that an

agent who believes the existence of an individual with

a certain property must be able to name or give a

description of that individual, although we do not re

quire the agent to know who the individual is. More

concretely, for 3iP(r) to be believed there must be a

closed term t (e.g. father(john)) such that P(t) is true

in all accessible situations. In general, if the existen

tial appears in the scope of universal quantifiers, the

corresponding universals may (but need not) occur in

the description chosen for the existential.

Given BLq , the extension to a sorted logic BL% is actu

ally quite simple. We simply distinguish special unary

predicates as sorts and give them the usual 2-valued

instead of a 4-valued semantics. Furthermore, when

choosing a term for an existential quantifier when in

terpreting belief we also require that the term meets

the same sort restrictions as the variable which it re

places.

2.1 Syntax

The underlying language is a modal first-order dialect

with countably infinite predicate and function symbols

of every arity. The unary predicates are partitioned

into two sets, one containing ordinary unary predi

cate symbols and the other containing sort symbols,

which can also be used as restrictions of variables (see

below). Furthermore, there is a countably infinite set

N of standard names, which are syntactically treated

like constants.7 Given the usual definitions of terms

and atomic formulas, a primitive term (formula)

7 As we will see shortly, standard names serve as our

global universe of discourse for the semantics of the logic.

is a term (atomic formula) with only standard names

as arguments.

Since we are dealing with a sorted logic, variables

can occur both restricted and unrestricted. An un

restricted variable consists simply of a variable name

with the usual semantics, that is, the variable ranges

over all elements of the universe of discourse. A re

stricted variable consists of a variable followed by a

colon followed by a sort symbol. An example is x:t.

In this case, we also say that x is of type r. Again the

semantics is the obvious one, namely that the variable

ranges only over individuals that are members of the

sort in question.

The formulas of £ are constructed in the usual way

from the atomic formulas, the connectives -i and V,

the quantifier 3, and the modal operator B with the

restriction that, if Ba is a formula, a may not contain

any B.8 To simplify the technical presentation below,

we also require that no variable is bound more than

once within the context of a B. Formulas without any

occurrences of B are called objective and formulas

where every predicate and sort symbol occurs within

the scope of a B are called subjective. A formula

a is called an S-formula iff a contains no restricted

variables and the only predicate symbols are sort sym

bols, a is called an A-formula iff a contains no sort

symbols except as part of a restricted variable. Sen

tences are formulas without free variables. Similarly,

ground terms are terms without free variables.

Notation: To enhance readability, we often drop the

restriction-part of variables when a variable is uniquely

identified by its name within a formula. For example,

Vx:T3y:T'P(x:T, y.r') is written as Vx:T3y:r'P(x, y).

Sequences of terms or variables are sometimes writ

ten in vector notation. E.g., a sequence of variables

(xi,...,Zt) is abbreviated as x (the Xi may be ei

ther restricted or unrestricted). Also, 3x stands for

3xi . . .3xjfc. If a formula a contains the free variables

x\,...,Xk, a[x\/t\, . . . ,Xk/tk] denotes a with every

occurrence of Xi replaced by <j.

Definition 1 Exist. Quantified Variables and a$

Let a be a formula. A variable x or x:r is said to be

existentially (universally) quantified in a iff the

subformula 3x0 (3x:t/?) occurs in the scope of an even

(odd) number of ->- operators.

Let a be an objective sentence with existentially quan

tified variables Xi,...,x>. denotes a with all 3xi

(3x{:t) removed for all 1 < i < k.

Definition 2 Admissible Terms9

8Other logical connectives like A, D , and = and the

quantifiers V and Vx : tau are used freely and are defined

in the usual way in terms of ->, V, and 3. For example,

Vx : r stands for ->3z : i—■.

9The reader should note that our use of admissible is
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Let a be an objective formula and x (x:r) an existen-

tially quantified variable in a. A term t is said to be an

admissible substitution for x (x:r) with respect to a

iff every variable y (y:r) in t is universally quantified

in a and x (x:r) is bound within the scope of y (y:r).

If the context is clear, we often say t is admissible for

x (x:t) ort is admissible.

To illustrate the previous definitions, let a =

3x:r(Vy:r'[P(i:r, y.r') V 3zQ(z)]). Then a* is simply

(Vy:7-'[P(x:r,y:r')VQ(z)]). Note that x:r and z, which

are existentially bound in a, occur free in oA Now

consider the constant a and the term f(y.r'), where

y.r1 is the same variable as in a and oA Then a and

/(y:r') are admissible for x:r and z, respectively, and

a*[x:T/a,z/f(y:r')] = Vy[P(a, y:r') VQ(/(y:r'))]. Note

that for the substitution to work as intended, we need

the assumption that no variable within a is bound by

an existentially quantifier more than once.

2.2 Semantics

For the semantics, we begin by defining situations and

worlds just as in [Lak94] except that sorts are treated

as 2-valued unary predicates. Note that all situations

are defined over the standard names as the universe

of discourse. Besides simplifying the technical treat

ment, this allows for a simple but intuitive treatment

of quantifying-in.10

Definition 3 Denotation Function

A denotation function d is a mapping from closed

terms into the standard names such that

1. d(n) = nifn€N

2. d(f(t1,...,tk))=d(f(d(t1),...,d(tk))) o.w.

We remark that any two denotation functions that

agree on all primitive terms also agree on all other

terms, that is, they are identical.

Definition 4 First-Order Situations

A situation s is a triple s = (T, F, d),

where T and F are subsets of the set of primitive for

mulas and d is a denotation function. In addition, we

place the following restrictions on sorts:

1. For all sort symbols r and for all standard names

n, r(n) is a member of exactly one ofT or F.

2. For all sort symbols t there is a standard name n

such that r(n) G T.

Note that a primitive formula P(n), where P is not a

sort symbol, may be in exactly one of the two sets T

quite different from that in [Fri91].

10 See [Lev84a] for more details on this use of standard

names and [Kap71] for a discussion of quantifying-in.

and F or in both or in neither of them, thus giving

rise to a four-valued semantics. However, if P is a sort

symbol, then P{n) must be in exactly one of T and

F, which gives sorts the usual two-valued semantics.

Furthermore, sorts are required to be nonempty, that

is, for every sort there must be at least one standard

name that satisfies it at a given situation. We will see

later that this restriction is significant in order to allow

certain normal form transformations.

We now define worlds, where the two-valued restriction

is extended to all primitive formulas.

Definition 5 Worlds

A situation w = {Tw,Fw,dw) is called a world, iff

P(n) G Tw P(n) g Fw for all prim. form. P(n).

We are now ready to define the semantic rules for the

interpretation of the sentences of BL%. Due to the

4-valued nature of the semantics, the following rules

define independent true- and false-support denoted by

f=T and ^F , respectively) for sentences instead of

the usual truth conditions.

Let M be a set of situations and let s = (T,,F,,d,)

be a situation. Let P(i) be an atomic sentence and r

be a sort symbol. Let a und /? be arbitrary sentences

except in rule 6, where a is objective.

1. M,8 (=r P(i) <=> P(d,(i)) e t,.

M,s\=F P(t) P(d,(t)) G F,.

2. Af , s (=T -ia M, s a.

M, s ^=F "•<* M, s ]=■? a.

3. M, s |=T a V 0 <=> Af, s (=T a or M, s \=T p.

M, s \=F a V P Af , s (=F a and M, s ^=F P-

4. Af, s |=T 3xa <=> for some n G N,

M,s |=T a[x/n].

Af, s (=F 3xq <=> for all n G N,

M,s |=F a[x/n].

5. Af, s ^T 3x:t a •<=> for some n E N,

r(n) G T, and M, s ^T a[x/n\.

Af, s \=F 3x:ra <=> for all n G W such that

T(n)£T„M,8\=y a[x/n].

Before giving the semantic rules for B we need to in

troduce the notion of a faithful substitution t for a vari

able x:r relative to a situation s, which simply means

that all appropriate ground instances of that t belong

to the sort r at s.

Definition 6 Faithful substitutions

Given a variable x:r, a term t with free variables

x, a situation s = (T,,F,,dt) and a set of situa

tions Af, t is called a faithful substitution of x:r iff

M,s ^=T Vxr(<). (We apply the definition also to un

restricted variables. In this case, every substitution is

faithful. Furthermore, the definition is extended in the

obvious way to apply to sequences of terms as substi

tutions of sequences of variables.)
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Let a be a sentence and x a sequence of the exis-

tentially quantified variables in a.

6. M, s Bo <=>■ there are admissible terms t for

x such that for all s' 6 M, t is a faithful substitu

tion of x and M,s' f=T a^[x/i\.

M,s ^=F Ba <=> M,s (^t Bo.

Note the nonstandard interpretation of existential

quantifiers within belief. The rule says, intuitively,

that the agent must know a term for each existentially

quantified variable, and knowing a term means that it

must be the same in all situations the agent considers

possible. This way, the interpretation of existential

quantifiers is much more restrictive than in classical

modal logics and existential generalization from dis

junction is no longer possible.

In order to give notions such as truth and logical impli

cation their classical meaning in BL\ , these are defined

with respect to worlds only. More precisely, let M be

a set of situations and w a world. A sentence a is true

at M and w if M, w ^T a and false otherwise, a is

logically implied by a set of sentences T (Tf=a) iff for

all worlds w and for all sets of situations M, if 7 is

true at M and w for all 7 € T, then a is true at M

and w. a is valid (^a) if a is implied by the empty

set. Finally, a is satisfiable if ->a is not valid.

Notation: If a is objective, we also write s ^=T a

(s \=F a) instead of M, s \=i a (M, s ^=t o), since the

true- or false-support of a depends only on s. Simi

larly, we write M \=t a (M ^P f) iff is subjective.

2.3 Properties of the Logic

Given that validity is defined with respect to worlds

and sets of situations, BL\ if restricted to objective

formulas is just an ordinary sorted first-order logic ex

cept that some additional valid sentences arise due to

the fact that sorts are required to be nonempty. For ex

ample, for any sort symbol r, 3xr(x) is valid. The use

of standard names as the universe of discourse yields

no special properties compared to classical first-order

logic.12

The semantics of BL\ can easily be seen to reduce

to the semantics of the unsorted logic BLq of [Lak90]

if restricted to the language of the unsorted logic.

Hence the properties of sentences that contain neither

11 In a related semantics, Frisch [Fri86] is able to define

the meaning of all logical operators and quantifiers compo-

sitionally. Unfortunately, the price of full compositionality

is that the semantics is defined only for formulas in prenex

normal form.

12 However, this would change if we added = as a built-

in predicate. For example, VzV3/(z = y) would no longer

be satisfiable. See also [Lev84b] for a logic with standard

names and equality, where these issues are discussed in

more detail.

restricted variables nor sort symbols are exactly the

same as those of BL1.

2.3.1 Properties of Belief

One of the peculiar properties of BLq is that beliefs

generally do not have equivalent normal forms such as

prenex conjunctive normal form or PCNF (see [Lak94]

for details). This is caused by the restricted interpre

tation of existential quantifiers within belief and hence

this property carries over to BL\ as well. However, be

liefs that do not contain existentially quantified vari

ables can always be converted into any of the standard

normal forms without losing equivalence. This fact

will be very useful in the next section on decidability

and its proof is completely analogous to the one in the

unsorted case.

Definition 7 An objective sentence a is said to be

existential-free if a contains no existentially quanti

fied variables.

Theorem 1 Normal Form Theorem

Let a be an existential-free objective sentence and lei

«pcnf be a converted into prenex conjunctive normal

form. Then (=Ba = Bccpcnf-

The proof is essentially as in classical logic, but relies

crucially on the assumption that sorts are nonempty.

To see why, assume we drop the condition of nonempty

sorts and let M = {s}, where s is a situation such that

s Vx-ir(x) for some sort symbol r and s P(a)

for some predicate symbol P and constant a. Let a =

(Vx:rQ(x))AP(a). Then aPCNP = Vx:r(Q(x)AP(a)).

It is easy to see that s supports the truth of oPCnf vac

uously because of the empty sort, but s does not sup

port the truth of a. Hence Ba and BoPCnf would not

be equivalent in general if we allowed empty sorts.13

To see what the sorted-logic approach buys us in weak

ening the deductive power as far as belief is concerned,

let us briefly review the main limitations of the un

sorted part of our logic. Let p and q be distinct prim

itive formulas, P a unary predicate other than a sort

symbol, and a and 6 distinct closed terms. Then

Beliefs are not closed under modus ponens:

&{BpAB(pDq))DBq

A valid sentence need not be believed:

(^-B(pV^p)

A logical equiv. of a belief need not be believed:

t5£BPDB(pA(?V-g))

Beliefs can be inconsistent without

every sentence being believed:

^(BpAB(-p))DBg

This problem with normal form transformations in the

sorted case is also noted in [Fri91]. That paper, however,

side-steps the issue by considering only prenex normal form

sentences in the first place.
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No existential generalization from disjunction:

^B(P(a) V P(6)) D B3xP(x)

With S-sentences, however, we regain some of the pre

viously lost deductive power.

Theorem 2 Let a be an S-sentence and let /? be an

arbitrary sentence.

1. [=Bo AB(a D 8) D B8

2. From ^=a infer \=Ba for all existential-free S-

seniences a.

Proof:

1 . The proof is a straightforward adaptation of one

for the same property of a two-valued variant of

BLq , the unsorted version of BLq, and can be

found in [Lak92b].

2. Let a be an existential-free S-sentence such that

and let M be a set of situations. Since a

is existential-free, M ^=T Be* iff for all s £ M,

s (=T a. Given an arbitrary s € M, it is easy to

see that there must be a world w, which agrees

with s on the true- and false-support of all prim

itive formulas r(n), where r is a sort symbol. By

assumption, w \=T a and hence s \=t a. M

Note that for modus ponens to work only a is re

quired to be an S-sentence. Note also that, although

S-sentences have a standard two-valued interpretation

at situations, the proviso for necessitation is necessary

because of our non-standard interpretation of 3. For

example,

|^B3xr(x), where r is a sort symbol.

To see why this is so, let M consist of two situations

s and s' such that only r(n) is true at s and only

r(m) is true at s' for different standard names n and

m. Furthermore, let the denotation functions be such

that no term other than n and m denotes n and m,

respectively. It is easy to see that there is no ad

missible substitution (closed term) t such that for all

s* € M, s* ^=T T(t) and, therefore, M B3xt(x),

even though ^=3xr(x) because of the assumption of

non-empty sorts.

2.3.2 Quantifying-in

With regards to quantifying-in and unrestricted vari

ables, it is not hard to see that we obtain exactly the

same properties as in the unsorted logic BLq .

Proposition 1 Let a be an objective formula with free

variable x and let n be a standard name.

1. |=3xBa D B3xa

2. (=Ba[i/n] D 3xBa

3. t=VxBa D BVxa if a is existential-free1*

I (=BVxa D VxBa

With that we are able to model the distinctions be

tween knowing who and knowing that in a simple but

intuitive manner, that is, the distinction amounts to

either knowing the standard name of an individual or

not.

Interestingly, none of the above properties holds if x is

a restricted variable. For example,

1. f^3x:rBP(x) D B3x:rP(x)

2. (^BVx:rP(x) D Vx:rBP(x)

It is actually not hard to see why these properties

fail. In the case of (1.), for example, let M be a set

of worlds such that M ^=t BP(n) for some standard

name n and M |^t BP(m) for all m ^ m. Also, let

it be a world such that n is of sort r and let s be

a situation in M such that n is not of sort r. Then

M, w [=T 3x:rBP(x) yet M,w \jtT B3x:rP(x). On the

other hand, we do obtain the following weaker proper

ties regarding quantifying-in.

Lemma 2.1

A j=BVx:ra = VxB(r(x) D a)

if a is existential-free.

2. |=3x:rBa D B3xa

Proof : Here we only prove the second part. Let

M be a set of situations and w a world such that

M, w [=T 3x:rBa. Then there is some n G N

such that w ^=t and there are faithful and ad

missible terms <i,...,tjb for the existentially quanti

fied variables xi,...,xt in a such for all s G M,

s (=T a^[xi/<i, . . . , xt/<i, x/n], which is the same as

s \=r (3xq)^[xi/<i, . . . , Xk/tk, */»»]■ Notice that n is

an admissible substitution of x and n is trivially faith

ful for x in 3xa because there is no restriction. In

addition, the <, are admissible and faithful for the f,

in 3xa. Hence M |=t B3xa. ■

3 On Decidable Belief Implication in

BLl

In this section we consider the question of deciding

belief implications in BL\, that is, deciding the va

lidity of formulas of the form Ba D B/3. If a and

/? contain no sort symbols (and hence no restricted

variables) the question was settled in [Lak94], where

it was shown that belief implication for the unsorted

logic BLq reduces to Patel-Schneider's t-entailment,

14 See [Lak90] for an example why the Barcan formula

fails in the general case.
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for which a decision procedure exists [Pat87]. It is

not hard to see that, in general, belief implication in

the case of BL\ is undecidable. This is because deter

mining whether a belief implication holds subsumes

the question whether an objective first-order formula

with monadic predicates and function symbols is valid,

which is known to be undecidable.15

The idea to obtain a decidable fragment of sorted belief

implication is as follows. First, we assume that the left

hand side of the belief implication is separated into two

parts, one which contains the sort theory (S-sentences)

and the other which is about assertions other than

sorts (A-sentences). Using a restriction on sort theory

introduced by Frisch, we first develop a syntactic char

acterization of belief implication (Theorem 9), which

generalizes an analogous result for the unsorted logic in

a modular way. Given this result, it follows that belief

implication is decidable if we restrict ourselves to sort

theories that allow sorted unification to be computable

(Theorem 10). Finally, we present a restriction on sort

theories borrowed from [Fri91] that actually meets this

criterion.

3.1 A Syntactic Characterization of Sorted

Belief Implication

Following Frisch, we use E to denote a finite set of

S-sentences, which is called a sort theory. Abusing no

tation, we use E to denote both the set of S-sentences

and the conjunction of its elements, which is no harm

in the finite case.

Definition 8 ft- correspondence16

Let E be a sort theory and let ft be the set of sort sym

bols occurring in E. A world w and E ft-correspond iff

w (=T E and Ef=r(n) for all r en and for all n € N

such that w [=t r(n)-

As shown in [Fri91], ^-correspondence has the ef

fect of banning disjunctive information from sort the

ories or, more precisely, such sort theories logically

imply a disjunction of sort literals iff one of the dis-

juncts is implied. For example, while the sort theory

{r(n) V r'(n)} does not ^-correspond to any world,

{r(n) A Vxr(x) D t'(x)} does. Moreover, we obtain

the following property.

Lemma 3.1 Let E be a sort theory which ft-

corresponds to some world w* . Then for every r Eft

there is a standard name n such that E^r(n).

Proof : Let r £ ft. By assumption, sorts are

nonempty and, hence, w*^r(n) for some n £ N. By

^-correspondence, E[=r(n). ■

15 Without function symbols, however, the monadic pred

icate calculus is decidable.

16This definition was origi

nally proposed by Frisch [Fri91] and is presented here in

a slightly modified way to suit our style of semantics.

Note: in the following, a and /? always denote A-

sentences. Also, let E denote a sort theory, where ft

is the set of sort symbols occurring in E, such that E

7S-corresponds to some world and that all restrictions

mentioned in A-formulas are included in ft. Further

restrictions to sentences are added whenever necessary.

Theorem 3 Skolemization Theorem

For any objective formula, j let ySK3 denote 7 with

all existentially quantified variables skolemized. Then

|=B(E A a) D Bp iff f=B(ESK3 A E' A aSK3) D Bp,

where E' = A><7gs a and S = {Vj/r(/x(i/)) | x:r is an

existentially quantified variable, fx is the correspond

ing Skolem function and y are unrestricted variables.}

Lemma 3.2 Let ESKa and E' be as in the previous

theorem. Then ESKaAE' ft- corresponds to some world.

Proof : By assumption, E ^-corresponds to some

world w. It is easy to see that skolemizing E preserves

TJ-correspondence. Hence let Eskb TJ-correspond to

some world w' .

By Lemma 3.1, for every r £ ft there is some nT € N

such that w'\=r(nT) and E^=r(nT). Let w* be a world

just like w' except that the denotation function d*

of w* maps the Skolem functions mentioned in E'

as follows: for all n £ Nk d*(r(fx(n)) = nT, where

VyT(fx(y)) occurs in E' and fx is a k-ary Skolem func

tion for the existentially quantified variable x:t. With

that construction, it is easy to see that ESK3 A E' ft-

corresponds to w* . ■

It should be noted that for Skolemization to work, it is

essential that sorts are nonempty. To see why, assume

we allow empty sorts and consider the sentence a =

Vx->r(a:) A (3y:rP(y) V q(6)) and aSKa = Vx-r(z) A

r(c) A (P(c) V Q(6)). Ba is satisfiable: simply let M =

{s}, where s ^T Q(b) AVi-ir(i). BaSK3, on the other

hand, is not satisfiable. Hence Bc*sk3 logically implies

every formula, while Ba does not.17

Theorem 4 Let E and a be existential-free. Let x be

the existentially quantified variables and y the univer

sally quantified variables in f3. Then

(=B(E A a) D BP iff (=B(E A a) D Bp* [x/i\ for some

admissible t such that E(=Vy7y(tf,-) for all i where r,- is

the restriction of the variable x,-.

The following two theorems allow us to eliminate uni

versal quantifiers on the right hand side of a belief

implication assuming the right hand side is already

existential-free.

17As was shown in [Fri91], if the formula is already in

prenex normal form, skolemization works even if sorts are

empty. Unfortunately, as we saw earlier, prenex normal

form conversions are not equivalence preserving when sorts

are empty.
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Theorem 5 Let (3 be existential-free. Then

(=B(E A a) D B(Vz:t/3) iff

(=B(E A a) D ViB(r(x) D /?).

Theorem 6 Let (3 be existential-free and n* a stan

dard name which occurs nowhere in a, 0, or E. Then

|=B(E A a) D VzB(r(x) D 0) iff

(=B(E A a) D B(r(n*) D /?[*/n*]).

The following theorem allows us to move the S-

sentence r(n*) introduced in the previous theorem to

the left hand side and append it to the sort theory.

Theorem 7 Let a be a quantifier-free S-sentence and

lei 0 be existential-free. Then

|=B(E A a) D B((7 D 0) iff |=B(E A a A a) D B/3.

Theorem 8 Zei E 6e an existential-free sort theory,

Vf^a, an existential-free A-sentence in PCNF, and

/\0j a quantifier-free A-sentence in CNF. Then

B(EAV£/\a<) DB/\/3j iff

for every 0j there is an a, and a substitution u for

z such that E^7>(ujt) (for all k where the restriction

of Zk is Tk) and every literal in ai[z/u\ occurs in 0j

(denoted as ati[z/u\ C 0j).

In the following theorem, which gives us the desired

syntactic characterization of sorted belief implication,

we only consider the case where the left hand side

of the belief implication is already in Skolem normal

form. This is done merely for convenience and sim

plicity. The result generalizes easily to formulas not in

Skolem normal form using Theorem 1 and 3.

Theorem 9 Let E be a sort theory in Skolem nor

mal form with a set 72. of sort symbols such that E 72-

corresponds to some world. Let a and 0 be A-sentences

whose sort symbols are included in 72. Furthermore, let

a = Vz/\a, be in Skolem PCNF. Let x be a sequence

of the existentially quantified variables of 0 and y a se

quence of the universally quantified variables of 0, and

let f\0j be the matrix of (3* converted into PCNF. Lei

n* be a subsiiiution for y consisting of distinct stan

dard names occurring nowhere in E, a, and f3. Fi

nally, let E' = E U {r(n) \ y:r is the i-the variable in

y and n is the i-th standard name in n*}

Then (=B(EAa) D B/? iff there are admissible substi

tutions t for x not containing any standard names of

n* and E'^VyrJt(<t) (for all k where is the restric

tion of variable x^) such that for every 0j there are

cti and closed terms u for z with E'(=rjt(ut) (for all k

where r* is the restriction of variable zjt ) such that

aiWqctfjlx/ilXy/i?].

Proof : (Sketch) |=B(E A a) D Bf3 iff (by Theo

rem 4) there are admissible t such that E^Vyrt(t*)

(for all k where is the restriction of variable ar*)

and ^B(EAa) D B/?*[£/t] iff (by Theorem 1)(=B(EA

a) D BVy f\ fy*[x/i\. As in the unsorted case [Lak94],

it can be shown that such admissible terms t, if

they exist, can be chosen such that none of the

standard names of n* occurs in t. By succes

sive applications of Theorems 5, 6, and 7 we

obtain |=B(E A a) D BVy /\Pj*[x/t\ iff (=B(E' A

a) D B(A#*[z/<])[y7n*] iff (by Theorem 8) for ev

ery (3j there are a< and closed terms u for z with

E'^=T>(ufc) (for all k where is the restriction of vari

able zk) such that <*,•[£/ S] C {^[x/t^ly/n*]. ■

The reader should note that the theorem reduces to

an analogous result in the unsorted case [Lak94] if

the sort theory is empty and, hence, the A-sentences

contain no restricted variables. However, proving the

sorted version turned out to be a rather delicate mat

ter. For example, note that the sort theory E is re

quired to 72-correspond to some world. In the course

of the various transformations, the sort theory is ex

tended according to Theorem 7 and, in the general

case, also due to Skolemization (Theorem 3). Luckily,

all these transformations preserve 72-correspondence.

It is also worth pointing out that Theorem 7 does not

hold for arbitrary S-sentences a and A-sentences j3.

Again, luckily, its application in Theorem 9 only re

quires the restricted versions of o~ and 0.

In the following, we discuss under what conditions this

syntactic characterization of belief implication leads to

a decision procedure.

3.2 When is Belief Implication Decidable?

In the unsorted logic BLq , testing for belief implica

tion reduces, roughly, to finding most general unifiers

of certain expressions, which are sets of literals corre

sponding to (sub-)clauses of the sentences in question

(see [Lak92a, Pat87]). Since unification is called only

a finite number of times and since unification is com

putable in the unsorted case, then so is belief implica

tion.

The same idea applies in the sorted case except that

instead of most general unifiers we need to com

pute what is called most general well-sorted unifiers

(ZMGU's) [Fri91]. Given a sort theory E, a well-sorted

unifier of a set of expressions is a unifier such that every

substitution t of a variable x:r has the property that

Ef=Vyr(<), where y is a sequence of the free variables

in t. As pointed out in [Fri91], finding a most general

well-sorted unifier may be undecidable depending on

the form of the sort theory E. For one, two expressions

may have infinitely many EMGU's and even finding

one may be hard because it requires testing whether

E logically implies other sentences, a problem that is

undecidable for arbitrary sort theories with function
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symbols.

However, if we assume that sort theories are of a form

such that all EMGU's of a set of expressions can be

computed, then it is not hard to see that Theorem 9

specifies an algorithm to compute belief implication.

Theorem 10 Let T be a class of sort theories satisfy

ing the conditions of Theorem 9 such that sorted uni

fication is computable and there are at most finitely

many most general well-sorted unifiers of a set of ex

pressions.

Then the problem of determining the validity of belief

implications of the form B(EAa) D B/?, where E €E T

and a and ft are A-sentences whose restrictions occur

in E, is decidable.

Proof : (Idea) Without loss of generality, let us as

sume that E and a are both in Skolem normal form

and that a = Vf^aj is, in addition, in prenex con

junctive normal form. Furthermore, let f\ftj be the

matrix of ft.

First, compute all most general well-sorted substitu

tions (z/u,x,i) such that cti[z/u] C ftj[x/i] for ev

ery a, and ftj . Given our assumptions, there are only

finitely many such substitutions. On the basis of these

substitutions determine, again by well-sorted unifica

tion, whether there are substitutions t for x that work

for all ftj and whether these can be turned into admis

sible terms. Since admissibility is a simple syntactic

criterion, this can be done effectively. ■

Finding decidable forms of sorted unification has been

an active area of research, which can be applied to de

fine different classes of decidable belief implication in

light of Theorem 10. Early work on decidable sorted

unification includes [Wal88, Sch89] . More recent devel

opments are reported in [CD91, Uri92], for example.

Frisch and Cohn [FC92] present a general criterion un

der which sorted unification is computable.

We end this section with a concrete example taken

from [Fri91] of a class of sort theories with decidable

sorted unification.

Definition 9 (Frisch) Monomorphic Tree Restric

tion

A sort theory E over the set of sort symbols TZ satis

fies the monomorphic tree restriction iff the following

conditions are met.

1. E contains only S-sentences of the form

(a) Vxr(x) D t'{x), where r and r' are distinct

sort symbols and

(b) VxY(t), where r is a sort symbol and t is ei

ther a standard name, a constant, or a func

tion symbol with only variables (x) as argu

ments.

2. For any r and t' in H there is at most 1 sentence

of the form (a).

3. There are no two sentences Vxr(<) and Vj/r'(t')

such thai t and t' unify.

4. For all r in Hthere is some n G N such that

E^T-(n).18

It is straightforward to show that a sort theory that

satisfies the monomorphic tree restriction also satis

fies ^-correspondence (Definition 8). Also note that

in Theorem 9, if E satisfies the monomorphic tree re

striction, then so does E'. Frisch showed that for sort

theories which satisfy the monomorphic tree restric

tion most general well-sorted unifiers are unique and

computable. Hence, together with Theorem 10 we im

mediately obtain the following result.

Theorem 11 Let E be a sort theory that satisfies the

monomorphic tree restriction, 71 the set of sort sym

bols in E, and let a and ft be A-sentences whose vari

able restrictions are included in 71. Then the validity

problem for B(E A a) D Bft is decidable.

As a final remark, we note that belief implication in

the unsorted case was shown to be equivalent to Patel-

Schneider's t-entailment [Pat87, Lak94]. Hence our

notion of sorted belief implication can be regarded

as an approach to sorted t-entailment as well. Patel-

Schneider actually extended t-entailment himself, but

in a very different way. Instead of moving to a sorted

language, he coupled his four-valued base logic with a

four-valued terminological logic to reason about taxo-

nomic information. How the two approaches compare

needs further investigation.

4 Sorted Introspective Reasoning

So far we confined our attention to deductive reason

ing. However, having adopted a modal approach with

an explicit model of an agent's beliefs, it is not too dif

ficult to extend our results to agents who can reason

introspectively about their own beliefs. In [Lak90], an

introspective extension of the unsorted logic BLq was

presented. Here we sketch how these results can be

carried over to the sorted case in a fairly straightfor

ward way. As in [Lak90], we allow nested beliefs from

now on, but disallow quantifying-in. 19

In order to properly model introspective agents who

know about what they know and do not know, it is

not sufficient to allow nested formulas such as B-iBa,

but we also need to model the concept that a sen

tence (or set of sentences) is all that is known [Lev90].

18This condition is absent in Frisch's definition since he

allows nonempty sorts.

19Quantifying-in together with nested beliefs gives rise

to a host of complications already in the unsorted

case [Lak91].
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Intuitively, if a knowledge base KB contains only the

primitive formula p, then in order to conclude that a

different fact q is not known, one needs the assump

tion that p is all KB knows.20 Thus we extend our

language by adding a new operator O, where Oct is

read as "a is all that is known/believed" or, for short,

"a is only-known/believed." Note that the operators

B and O can be arbitrarily nested.

Following [Lev90, Lak90], the semantics of O is fairly

straightforward. Recall that for existential-free a, be

lieving a means that a holds in all situations of a given

set M . To convey that a is all that is known, we re

quire that a is not only believed at M, but that M is as

large as possible, that is, we require that any situation

that satisfies a must be in M. As explained in more

detail in [Lak90], a minor complication arises with re

spect to only-believing formulas with existential quan

tifiers. For example, since 03xP(x) implies B3x?(x),

any set of situations M that satisfies 03xP(x) must

be such that M \=T BP(<) for some closed term t. In

tuitively, this term should act like a Skolem function,

since nothing concrete is known about it. For that

reason, we add a set PSk of function symbols of every

arity to the language with exactly that purpose, that

is, when only-believing a sentence a, the terms (called

sk-terms) that replace the existential quantifiers must

be constructed from this set of "generic" function sym

bols.

We are now ready to extend the semantics of BL\ to

nested B's and O.

Definition 10 A quantifier within a formula a occurs

at the objective level of a if it does not occur within

the scope of a modal operator.

Definition 11 Sk-terms

Let a be a sentence and x an existentially quantified

variable bound at the objective level of a. Let U(x)

be a sequence of the universally quantified variables in

whose scope x is bound. Let f 6 FsK be a function

symbol of arity \U(x)\ occurring nowhere else in a.

Then f(U(x)) is called an sk-term (for x).

For the following rules, let x = {x\ , . . . , x*) be a

sequence of the existentially quantified variables

bound at the objective level of a.

6. M,s \=T Ba there are admissible terms t

for x such that for all s', if s' £ M then t is a

faithful substitution of £ and M, s' f=T a^[x/i\.

M, s (=F Ba <=> M, s Ba

7. M, s t=T Oa <=> there is a sequence of distinct

sk-terms <Sk such that for all s' , s' £ M iff <Sk is a

faithful substitution of x and M,s' \=t a^[x/<SK]-

M,s \=F Oa <=> M,s \£T Oa

20 Note that Bp means that at least a is believed and

we obtain (^Bp D ->Bg. Hence B is too weak to model

introspective KB's.

Notice that the semantic rule for B has not changed at

all. Also note that besides the use of sk-terms instead

of arbitrary admissible terms, the main difference be

tween B and O is the replacement of "then" by "iff."

Truth, logical implication etc. are defined the same

way as for BL\ .

4.1 Some Properties

Here we confine ourselves to some of the main proper

ties that result from the new features of the language,

O and nested modalities. Let a and /? be arbitrary

sentences and let p and a be subjective sentences. Let

false denote the unsatisfiable S-sentence r(n) A->r(n)

for some sort symbol r and standard name n.

O implies B:

f=Oa D Ba

Perfect introspection:

(=Ba D BBa and |=->Ba D B->Ba

Self-knowledge is (mostly) accurate:

(=Bcr A -.Blaise D a

(Accuracy fails only in the case of the empty set

of situations.)

Self-knowledge is complete:

\=a D Ba

Self-knowledge is closed under MP:

|=B(pA(--pV<r)) D B«r

The above results show that agents with this model

of belief have perfect knowledge about their own be

liefs even if their beliefs about the world are limited.

Note that these properties are exactly the same in the

unsorted and sorted case.

4.2 Decidable Introspective Reasoning: the

Sorted Case

A formula is called basic if it does not contain any

occurrences of the operator O. In the following we are

interested in the question which basic beliefs follow

from an objective knowledge base. More precisely, we

identify the epistemic state of an objective introspec

tive objective KB with the set {basic a | [=OKB D Ba

and a does not contain sk-terms.}. The motivation

behind banning sk-terms from the epistemic state is

that, intuitively, these should be thought of as inter

nal identifiers used by the KB and not visible to a user

who is querying the KB. (See [Lak90] for a more de

tailed discussion.)

In [Lak90] it was shown that for the unsorted language,

membership in the epistemic states of objective KB's

is decidable. The key to the proof of this theorem is

the reduction of the problem to the nonintrospective

case. It turns out that an exactly analogous reduction

works for the sorted logic, as the following theorems

show.
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Theorem 12

Let a and /? be objective sentences such that (3 does

not contain sk-terms. Then (=Oa D B8 iffBa 3 B/3.

Theorem 13 Let the problem of determining the va

lidity of 8a D B/? be decidable, where a and (3 are

objective and where /? is an A-sentence not containing

sk-terms.21

Then the problem of determining the validity of

Oct D B7 is decidable, where a is objective and 7 is

a basic A-sentence not containing sk-terms.

The proof is a straightforward adaptation of the

proof of the corresponding result in the unsorted case

in [Lak90].

We conclude this section with a (very) small example.

Let us go back to our initial KB about animals. Let

■(

VxElephant(x) 3 Manmial(x),

VxManunal(x) D Warm_Blooded(x)

Elephant(c/j/de)

■I

be the sort theory and let

a = Vx:Wann_Blooded Has(x, eyes).

Then

\=0(E A a) D B(3x:Elephant has(x, eyes)

A-iBhas(dum6o, eyes)).

The query (the R.H.S. of the belief implica

tion) is evaluated recursively by first determin

ing whether (=B(E A a) D Bhas(dum6o, eyes)) holds,

which fails because the KB has no information about

Dumbo, and then determining whether ^B(E A

a) D B3x:Elephant has(x,eyes) holds, which suc

ceeds with Clyde substituting for x.

5 Conclusion

In this paper we extended a logic of limited belief that

is based on a four-valued semantics by introducing

sorts into the language. By giving sorts a classical

two-valued semantics, we obtained a more powerful

reasoner and by imposing various restrictions on the

sort theories, we were able to show that the reasoning

power can be increased without sacrificing decidability.

In contrast to similar work by Frisch, we are not limit

ing ourselves to sentences in prenex normal form and

our results generalize to introspective reasoners as well.

Finally, since the unsorted part of the logic subsumes

Patel-Schneider's t-entailment, our work also provides

a generalization of t-entailment to the sorted case.

Since the decidability of reasoning in this framework

hinges only on the decidability of sorted unification,

21 Note that the decidability results considered in the last

section are special cases.

new developments in this area seem readily applica

ble. However, the framework itself leaves room for im

provement. For example, a truly useful KR language

requires the use of equality. Furthermore, quantifying-

in greatly enhances the expressive power in the intro

spective case. While these features have been included

in the unsorted case, it is an open problem how this

can be accomplished in a sorted logic.
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Abstract

We offer a system to capture the relation

ship between knowledge and belief, which

also sheds new light on each of them in iso

lation. In the case of knowledge, we strongly

reject the property of negative introspection.

In the case of belief, we propose a distinction

between belief (whose defeasibility is recog

nized by the agent) and certainty (whose de-

feasibility is not). The relationship between

the three notions - knowledge, certainty, and

belief - goes far beyond mere hierarchy. In

particular, knowledge has the flavor of be

lief that is stable under incorporation of cor

rect facts. We explore these first through a

model theory, which is based on the notions

of the agent's subconscious biases and its con

scious preferences (or plausibility measure).

We then provide a sound and complete ax

iomatic system, and point to some of its il

luminating properties. We compare our con

struction to previous ones in AI and philos

ophy, and in particular point to connections

with recent work in AI based on conditionals.

(Proofs of our theorems are omitted from this

version of the article, hence the subtitle.)

1 Introduction

In recent years there has been a great deed of inter

est in formal reasoning about knowledge and belief

within AI and distributed computing; we will assume

familiarity with this area of research and not repeat

its history or philosophical origins. The aim of the
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work reported here has been to clarify the relationship

between knowledge and belief, which have received

the most detailed independent treatment in these two

fields. However, although the goal has been to clarify

the relationship between the two rather than studied

either of them further in isolation, in pursuit of our

goal we were forced to re-examine some conventional

wisdom about each one. In particular, we were led to

distinguish between two senses of 'belief,' reject the

standard notion of idealized 'knowledge,' and propose

an alternative.

1.1 Main highlights

The message of our research can be summarized in the

following items:

1. One should distinguish between 'knowing,' 'being

certain that,' and 'believing.' Knowledge entails

certainty which entails belief, but there is more

structure to the three notions than mere hierar

chy. The intuition behind 'certainty' is that, to

the agent, the facts of which he is certain appear

to be knowledge; there is no such connection be

tween certainty and belief. Thus, 'John is cer

tain that' is equivalent to 'John is certain that

John knows that,' but 'John believes that' is not

equivalent to 'John believes that John is certain

that,' and definitely not to 'John believes that

John knows that.' (In fact, in our system 'John

believes that John knows that' will turn out to be

equivalent to 'John is certain that.')

2. Negative introspection - e.g., "if John does not

believe then he believes that he does not believe"

- is an acceptable idealization for belief and cer

tainty, but not for knowledge. We therefore ac

cept the standard system for belief (KD45), ap

ply it to certainty as well, but reject the standard

system for idealized knowledge (S5); instead we

adopt a weaker system (S4.3).

3. Certainty and belief can be related semantically

to knowledge via two partial orders on possible

worlds, one a refinement of the other. These par



416 P. Lamarre and Y. Shoham

tial orders have intuitive interpretations - one de

scribes an agent's subconscious prejudice, and the

other describes his conscious measure of plausibil

ity, or preferences.

4. We provide sound and complete axiomatic sys

tems for these semantics; from the mathematical

point of view, these are the deepest results.

5. Our constructions can be understood as shedding

light on an intriguing informal slogan, put forward

in philosophy, according to which knowledge is

'belief that is stable with respect to the truth.'

6. The partial-order-based construction creates a

tie with work on preference-based nonmono

tonic logics [Sho88, KLM90], conditional logics

[Lew73, Del87, Bou92a, KS91], and belief revision

[KM91]. In particular, we are able to show that

our construction strictly generalizes a Boutilier's

conditional-based construction.

A couple of our insights turn out to be rediscovery of

ideas already published in philosophy (but which are

new to computer science and AI); this is true mostly of

item 1 above somewhat of item 2, to which Lenzen's

work [Len78b] is the most relevant. Other insights,

and all technical results, are novel.

1.2 Some intuitions about knowledge,

certainty, and belief

Before we start a technical construction, let us expli

cate some of our intuitions which led to it. Similar

intuitions have appeared already in the philosophical

literature, but we feel that it is important to articu

late them here since they are crucial to understand

ing our formal construction, and have not been ar

gued widely enough (in particular, to our knowledge

they have never apeared in AI or distributed systems).

We start with an observation about the commonsense

term 'belief.' In everyday life this term is used in more

than one way, a point well noted within philosophy

(cf. [BP83], pp 214ff). Belief is usually distinguished

from knowledge by its being defeasible (that is, the

agent can believe something falsely, but not know it),

but this defeasibility might exhibit different properties.

In particular, on different readings of the term, the be

lieving agent may or may not be aware of this defea

sibility. Thus, on one reading of belief, the agent can

believe something and admit that he might be wrong,

as in "the robot believes there is an obstacle in front of

it but it is not absolutely certain" (perhaps because it

knows that its sensors occasionally malfunction). On

other readings, this is not the case, as in "The robot

firmly believes that there is an obstable in front of

it, but in fact there is none." The difference between

these two senses of belief is manifested in a number

of properties, which hold in one version but not the

other. For example, the statement "if the agent be

lieves something then he believes that he knows it" is

valid in the second version but not in the first. From

here on we will use the term 'belief to refer to the

belief of the first kind (in which the agent is aware of

the defeasibility), and 'certainty' to refer to the other

kind.1

Next we make an observation about knowledge. It has

become routine in AI and computer science to capture

an idealized version of this notion by the S5 system.2

Formal definition of S5 is not needed at this point;

suffice it to say that properties of the resulting formal

notion of knowledge differ significantly from properties

of its commonsense counterparts. This is in principle

acceptable, the formal notion being an idealization to

begin with. However, one property of the formal no

tion is particuarly troubling, namely, negative intro

spection: If the agent does not know a fact, then he

knows that he does not know it. Past objections in AI

and computer science to this property - for example,

by Vardi [Var85] and Levesque (personal communica

tion) - tended to be brushed aside. And indeed, when

knowledge is studied in isolation from any other atti

tude, it is hard to fully expose the unreasonableness of

the negative introspection property.

However, when one considers the notion of certainty

in conjunction with knowledge, the problem becomes

apparent. Recall that the notions of knowledge and

certainty we are after are typified by the sentence "the

robot is certain that there is an obstacle in front of

it, but in fact the way is clear." Consider this ex

ample further. On the one hand, since to the robot

its certainties seem like knowledge, the robot is cer

tain that it knows that there is an obstacle in front

of it. On the other hand, since in reality there is no

obstacle, the robot does not know that there is an ob

stacle (since by definition knowledge must be correct).

If knowledge had the negative introspection property,

the robot would then know that it does not know it,

and thus also be certain that it does not know it. But

surely the robot cannot simultaneously be certain that

it knows a fact and certain that he does not know it?

Indeed, the reader who has not been subjected to in

doctrination in one of the disciplines mentioned may

wonder why we belabor an obvious point. Be that as

it may, we will definitely reject S5 as a reasonable ba

sis for defining knowledge. Instead, we will start with

a weaker system. This system will be stronger than

S4, and hence will still embody substantial idealiza

tion (in particular, closure of knowledge under tau

tological consequence and positive introspection; see

below), but none as deadly as negative introspection.

'It may be argued that there is a single coherent ab

straction spanning both senses of belief discussed here; we

will not take a stance on this, as it does not impact the

discussion in the paper.

"In economics a standard model of knowledge is that

based on partitions [Aum76|; this turns out to be equiva

lent to the S5 system.
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Armed with these intuitions about knowledge, cer

tainty, and belief, we can begin the formal develop

ment. The rest of the paper is organized as follows. In

section 3 we develop the model theory for knowledge,

certainty, and belief, preceding the technical defini

tions with intuitive explanations. In the section follow

ing that, we present a sound and complete axiomatic

system, and point to some facts about the three mental

attitudes that are illuminated by the axioms. We end

with discussion of related work and a brief summary.

2 Belief, certainty, and knowledge:

the language

In this article we restrict the discussion to the sin

gle agent, prepositional case. We start with a classi

cal propositional language, and augment it with three

modal operators, one 'absolute' and two 'relativized':

If a and <p are any (possibly modal) formula, then Ka,

C^ot and B^a are also formulas. The intuitive readings

of these operators are, respectively, 'the agent knows

a,' 'the agent is certain of a, given evidence (or hy

pothesis) yj,' and 'the agent believes a, given evidence

ip.' We also introduce two additional 'absolute' op

erators by definition: Ca =def CTruea and Ba =def

BTruea (where True is any tautology).

3 Belief, certainty, and knowledge: a

model theory

In this section we endow our language with formal se

mantics; in the next section we provide a sound and

complete axiomatization relative to these semantics.

Our formal construction is short and mathematically

simple. We could simply present it and ask the reader

to accept it on the basis of the properties of the corre

sponding axiomatic system (and, as we shall see in

the next section, these properties are attractive in

deed). However, we feel that intuitive motivation of

the construction is as important as its formal proper

ties, and hence we will precede the half-page of formal

definition with several pages of explanations. Hope

fully, after these explanations the definition will be

well motivated, and will not seem like an artificial de

vice engineered to achieve certain formal results.

We start with a standard possible-worlds structure,

that is, a collection of models and a binary ('accessibil

ity') relation between them.3 Our intuitive interpreta

tion of this relation is somewhat unique, however. The

usual description of an epistemically-accessible world

is a world considered possible by the agent. This is

3 Although the development here is self-contained, we

do assume familiarity with basic modal logic, possible-

worlds- or Kripke-semantics, and the standard Hintikka-

style application of modal logic to reasoning about mental

attitudes.

not our interpretation. Instead, we will take w2 be

ing accessible from wi to mean that w2 is at least as

easy for the agent to imagine as Wi . The worlds the

agent actually considers possible are the worlds that

are the most-easily imaginable. More generally, we

are interested in the worlds actually imagined by the

agent given any 'evidence' or 'assumption' formula <p.

These are defined to be exactly the most-easily imag

ined worlds among the worlds that satisfy <p (that is,

the most-easily imagined among the (p-worlds, not the

(^-worlds among the most-easily imagined; the latter

intersection could be empty). When we speak simply

of the most easily imagined worlds, without mention

of any evidence, we will mean the worlds most easily

imagined given the tautological evidence.

The accessibility relation describes a certain bias or

prejudice of the agent. This prejudice plays a role

similar to that of preference in nonmonotonic logics

[Sho88, KLM90], in that it leads agents towards some

worlds and away from others. In our case, an impor

tant ingredient in the intuitive interpretation is that

the agent is completely unaware of its prejudice, and

hence also of the non-most-easily-imagined worlds.4

We will impose some requirements on the prejudice

relation (denoted Rk). First, we require it to be re

flexive and transitive. In addition, we require it to be

connected: For any worlds wj , w2, and w3, if (wiRkw2

and WiRkw3) then (w2Rkw3 or w3Rkw2). Those fa

miliar with modal logics will recognize that these three

conditions define an S4.3 accessibility relation. The

motivation behind the first two requirements is pre

sumably clear, given the intuitive reading of Rk ■ The

third property is less obvious, but can be motivated

by appealing to the distinction between equivalence

and noncomparability. The "prejudice" Rk encodes

nature's way of guiding the agent, revealing some pos

sibilities and hiding others. Nature is deterministic:

There is a unique collection of possible worlds that it

reveals, by making them easiest to imagine. If among

the Rk-minimal worlds there were two that were non-

comparable, that would mean that we simply do not

have the information about how easy nature has made

them to imagine relative to one another, and that

further information about nature might eliminate one

from the most-easily-imagined set.

Our third property amounts to demanding full disclo

sure on the part of nature, but there is a subtlety. We

have said that the set most-easily-imagined of worlds

must form a cluster of mutually Reconnected worlds,

but that does not require the full connectedness prop

erty. In fact, if all we cared about were connectedness

of the minimal Rk set then we could do with only

the S4.2 system. However, as we shall see, we will be

interested in not only the initial most-easily-imagined

4 It is possible to generalize the construction and assign

a separate prejudice relation to each world, but we do not

pursue this further in this article.
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worlds, but more generally in the most-easily-imagined

worlds given any particular evidence. Each particu

lar evidence will eliminate some subset of the possible

worlds, and we will require that most-easily-imagined

worlds among the remainder also all be Rk-equivalent.

The full connectedness requirement provides us with

just this property. (As we will mention later, previous

work that ignored the notion of evidence, for example

by Voorbrak [Voo90], indeed ended up with the S4.2

logic.)

We now have all the ingredients necessary to define

both knowledge and certainty: Given the structure

and a world w in the structure, the agent is said to

know (f in w iff <p holds in all worlds that are as easy

to imagine as w, and to be certain of a (given evidence

(p) iff or holds in the most easily imaginable worlds in

the structure.5 Certainty thus depends on the struc

ture as a whole, but not on the particular 'real' world;

the same property will be true of belief (see below).

Knowledge, in contrast, may vary among worlds in

the structure.

A minor technical comment: In the following, we will

assume that no two worlds in the structure satisfy ex

actly the same set of formulas (though they may agree

on all the propositional ones). This is a harmless as

sumption, since if two worlds do agree on all formu

las in a model this model can be replaced by one in

which these two worlds are merged, without affecting

the truth value of any formula in any world.

What then is the intuition behind these two defini

tions? The intuition behind the definition of certainty

has already been given: The agent is aware of only

the most easily imagined among those that are com

patible with the evidence, and thus is certain of a fact

if and only if it holds in all of those. The definition

of knowledge, however, while very standard from the

technical point of view, is supported by a somewhat

more involved intuition. In fact, it turns out that this

intuition is closely linked with a certain informal view

on knowledge and belief, namely that knowledge is be

lief that is 'stable with respect to the truth'; that is,

the agent is said to know a fact if he believes it, and

will continue to believe it no matter what true facts he

might learn in the future. We find this view quite ap

pealing. It is apparently an old one within philosophy

(cf. [Sta93, PS78]); we ourselves learned it from John

McCarthy (personal communication), who had come

up with it independently.

One way to understand our definition of knowledge is

as a formal embodiment of this informal view (except

that we appeal to the 'certainty' version of belief). The

5 This latter definition requires some care, since in in

finite structures the 'more easily imagined' relation need

not be well founded, and hence the 'most easily imagined

worlds' may not exist. Our formal definition will be a bit

more complicated because of this fact.

intuition is that as the agent is supplied additional in

formation true about that real world, the set of most-

easily imagined worlds moves up the prejudice order,

without ever moving beyond the real world. Given

complete information about the real world, and given

the assumption that no two worlds in the structure

agree on all formulas, the agent will consider the real

world and only it. Of course, any particular language

may not be sufficiently expressive to completely char

acterize a world; in particular, our language with only

finite formulas isn't. However this shouldn't stop us

from using more expressive languages in our semantic

definitions; in particular, we may use infinitary logic.

And indeed, one way to capture the informal philo

sophical slogan is to define knowledge in a world w

to consist of the facts that hold in all the most eas

ily imagined E-worlds, for any (possibly infinite) Y,

true in w. It turns out that this definition coincides

with our definition of knowledge. It is obvious that

our definition is at least as strong as this one, since

no (finite or infinite) evidence true at w will compel

the agent to consider worlds that are not at least as

easy to imagine as w. To see the other direction of

the equivalence, assume that a is known in w under

the new definition, and let w' be any world that is as

easy to imagine as w. Denote by E the conjunction of

all (propositional and modal) formulas true in w, and

by E' the conjunction of all formulas true in w'. Since

by assumption all worlds in the structure are pairwise

distinguishable by some formula, clearly the most eas

ily imagined Ei V E2-worlds consist of either w and w'

or of w' alone. Therefore a is true at w'.

Belief is now the last notion to be explained. It will

be relatively straightforward. Here we introduce a

new ordering on worlds (denoted Rb), representing the

agent's ranking of plausibility (or preferences, if you

will): W!Rbw2 will be interpreted to mean that w2

is at least as plausible as W], Rb will be required to

be a preorder (that is, reflexive and transitive),which

accords well with this intuitive interpretation" Given

this relation, the beliefs of the agent given evidence

<p are defined as the facts that holds in all the most-

plausible ^-worlds. Unlike the intuitive interpretation

of prejudice, the agent is assumed to be aware of the

preference ordering; if the agent chooses to concentrate

on some worlds as a result of this preference it does so

consciously, and recognizes the risk incurred.

The prejudice ordering and the plausibility ordering of

any given agent are not independent relations. Intu

itively, the agent's subconscious bias leads him to con

sider certain possibilities, and among those the agent

consciously makes finer distinctions. Informally, one

can think of Rb as identical to Rk, except that when

*In contrast with the deterministic effect of nature, the

preferences of the agent may well leave him with noncom-

parable possibilities. The property of connectedness is thus

not imposed on the Rb relation.
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two worlds axe mutually Rk -accessible then their Re-

relationship is completely unconstrained. Formally, we

impose two conditions to capture this intuition. First,

if a two worlds are ordered by plausibility, they must

be ordered the same way by prejudice (if wjRbw2 then

wiRkw2). In other words, the prejudice ordering is a

refinement of the plausibility ordering. However, this

is not an arbitrary refinement; if one world is strictly

higher than another in the prejudice ordering, the con

scious preference must reflect this fact. Formally: if

\viRrW2 and not w2RkWj then wjRbw^

This concludes the informal introduction. As we have

mentioned, the formal definition is short and relatively

simple.

Definition 1 KCB-structure

A KCB-structure is a tuple M =

(W, RK) Rb, v) such that:

• W is a non empty set of world.

• RkQWxVV is a reflexive, transitive, and

connected relation.

• RbCWxW is a reflexive and transitive

relation.

• These two relations satisfy the following

conditions:

- if WiRbw2 then wiRkw2

- if wiRrw2 then either w2RkW! or

wiRbw2

• v is a valuation function.

The satisfiability relation is then defined in the stan

dard fashion (in the following, || tp ||w ' Rk = {w' |

wRkw' and M,w'f=y>}, that is, the set of <£-worlds that

are at least as easy to imagine as w):

Definition 2 Satisfiability relation

Let p be a propositional variable and a, 3,

be some formulas.

Let M be a structure and w a world of this

structure.

• M,w^=p iff wGv(p).

• M,w^=aA/3 iff M,w^a and M,wf=/3.

• M,w^-ia iff not M,wf=a.

• M,w^=Ka iff for all w' if wRkw' then

M,w'f=a.

• M,w(=C^a iff for all Wj [if

wi£|| V llw' Rk then there is a w2 such

that {w2€|| ||w,' Rk and for all w3 (if

W3G|M|w2'Rk then M,w3h<*)}].

• M.w^B^a iff for all

Wj [if Wje|| <p ||w' Rk then there is a w2

such that {w2e|| ip ||w ' Rk and wiRbw2

and for all w3 (if w3€|| <p ||w ' Rk and

w2Rbw3 then M,w3^=a)}].

Unlike the definition of the operator K, which is stan

dard, the definitions of C and B are perhaps a little

hard to grasp. If the relation Rk does not induce

any infinite descending chain then our definition of

C^a exactly and simply states that a is true in all

the most-easily-imagined ^-worlds. However, our def

inition is not restricted to the bounded case, but for

infinite descending chains more subtlety is required:

We require that ip be false everywhere in the chain,

or else that the chain contain a world Wj satisfying ip

such that a is true in all the ^-worlds following wj

in the chain (including Wi itself since Rk is reflexive).

This construction has already been used, for exam

ple to prove some connections between modal logics,

conditional logics and non-monotonic preference infer

ence relations in [Lam91]. Similar considerations on

Rb support the definition of B^.

4 Belief, certainty, and knowledge: an

axiomatic system

Consider the following axiomatic system:

Definition 3 Axiomatic system

The system contains the axioms of the propo

sitional calculus plus:

• knowledge

K(a->/3)-(Ka-»K/3)

Ka—»a

Ka-KKa

• belief

B^aABv^-»B^(aA/3)

B^aAB^a-^B^a

B^AB^a—BvA*a

• knowledge and belief

K(v<-V')-'(B,'a<-BVa)

K(a^8)-*(B*a-+B*8)

Ka-»B^a

-1K-la-»(Ba/3-»-.BQ -.0)

B^a—KB^a

-.B^a-»K(K-.v>V-.B¥'a)

• certainty

CfQ <-*B*K(<p~*a)

The system is closed by the propositional in

ference rules plus:

We also define two 'absolute' versions of the

C and B operators:

Ba =def BTruea

Ca =def C^a

The system is surprising in a number of ways, so let

us first assure the reader of its relevance:



420 P. Lamarre and Y. Shoham

Theorem 1 Soundness and Completeness

For any formula a, ha iff f=a

A few comments about this system. First, note that

the modal axioms K, T, and 4 appear in the axiomati-

zation of the operator K, but axiom 5 (negative intro

spection) does not; recall the discussion in the intro

duction in which we argued that this is a feature, not a

bug. And if our informal arguments were not enough,

here is an additional formal one: Adding negative in

trospection to our system is equivalent to adding the

axiom Ka<->Ca (in the sense that, adding either of

them to the system enables the derivation of the other

one).

Another feature may be surprising: It may at first

seem that there is no axiom on K to ensure the con

nected property required for relation Rk . In fact stan

dard axiom for connectedness is a theorem of the sys

tem, by virtue of the links between knowledge and

belief.

The belief-related axioms may be also surprising in

at least two ways. First, they might seem weak; for

example, no mention is made of positive or negative

introspection properties. In fact, all the KD45 prop

erties hold for belief, but they follow from the other

axioms and need not be postulated. The proposition

below underscores this fact. Second, the reader might

notice an uncanny resemblance between these axioms

and the some axioms suggested in the context of con

sequence relations. In particular, these axioms are a

simple adaptation of the axiom and the rules proposed

by Kraus, Lehmann, and Magidor in [KLM90] for pref

erential inference relations. This is not that surprising,

however, since the notion of preference has been used

to give an intuitive underlying explanation of belief.

The links between these inference relations and S4 are

now well known (see, for example, [Lam91]).

The axioms linking knowledge and belief are perhaps

the most interesting. Among them, the first two

are also simple adaptation of rules used by Kraus,

Lehman, and Magidor to characterize preference in

ference relations. The third one is probably the most

intuitive; we know of almost no approach to knowledge

and belief that denies this connection between them

at least in the special case in which p = True.7 The

fourth axiom is a generalized D axiom for belief (the

special case, in which a = True, is yields D). The last

two axioms reflect the intuition that an agent, while

perhaps being wrong about what it knows and what

it does not, is the best judge of what it currently be

lieves. Indeed, it is a widely accepted epistemological

7One exception of which we are aware is Voorbrak's

formulation [Voo90] which distinguishes between 'objec

tive' and 'subjective' knowledge; the former does not have

the K—>B connection. However, in our view the usual

reading of 'know' corresponds to what he calls subjective

knowledge.

view that we have 'privileged access' to our own doxas-

tic states (cf. [Len78b]). The last axiom corresponds

to the application of the same intuition to negative

beliefs. It is perhaps the hardest to understand, since

the naive way to capture the intuition might have been

by -iB^a—►K(-iB¥,a). However, this simpler axiom ig

nores the possibility of assumptions that are known to

be false, and is valid only for the case of <p = True.

We have already mentioned that the system, while per

haps appearing somewhat weak at first glance, in fact

is quite powerful. Here are some of its consequences:

Proposition 1 Some theorems

The following formulas are theorems of the

previous axiomatic system:

• Belief

intramodal

Bor—>-iB-i»

B"(a—0)-*(B*a—B*0)

B^a-^B^a

-.B¥,a-fB^-.Bv,a

iBa-^B^-iBa

intermodal

->K-«p-> (B^a-»-iB^-ia)

C(y>-»a)-»Bva

CWa

-.B^a—B^K^—a)

introspection

Ka-B*Ka

B^a-^KB^a (axiom)

-.Bv'a-*K(K-i^V-.B^a) (axiom)

-.B^a—K^-^B^a)

• Certainty

intramodal

Ca-»-.C->a

Cv(a-*0)-*(C*,a->Cv/3)

Co—C^Ca

-.C^a-»Cv-.C^a

-.Ca—C-iCa

intermodal

-iK-vp—(Cc*—-.C'-ioj)

K(v?-a)—Ccr

introspection

Ka—C^Ka

Ca-^KCa

-.C'a—K(K-.¥>V-.C'*a)

-iCvo-»K(vJ->->Cva)

• Knowledge

K(Ka-»/J)VK(K0-»a)

• of special note

Ca«BKa«nKnKa«CKa

Ka<->B^aa
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Also, the following inference rules are valid:

ha ha

Many more properties of the system could be dis

cussed, but we will focus on only three points. The

two first ones are related to the formula ->K-iKa.

First, note in the above proposition that we could

have introduced this formula as the definition of cer

tainty. In some sense this would have been more ele

gant, in that only a single modality is involved. And

indeed, this was exactly Lenzen's definition of 'convic

tion' [Len78b]. It is also a construct that has been

mentioned in connection with nonmonotonic logics,

first by Siegel [Sie90] and more recently by Schwarz

and Truszczynsky [ST94]. However, while we consider

the coincidence of definitions further validation of our

own, we find our definition (enabled by the introduc

tion of a second operator, B) possibly more intuitive.

Second, consider the formula ->K-iKa—»K-iK->a,

which, when added to the S4 system, defines the sys

tem S4.2 (equivalently, consider the semantic property

of convergence: If two worlds w\ and u>2 are accessible

from a third, then there is a fourth model accessible

from both wi and w^). Although many authors have

proposed it as an interesting property (including all

those mentioned in the above paragraph), it is quite

hard to make intuitive sense of it. However, when we

rewrite it using the operator C it becomes Ca—»-iC-ia

which is our first theorem and simply the standard re

quirement that beliefs be consistent. Lenzen [Len78b]

observed this fact before us. He defined the dual op

erator P ('the agent considers it possible that') by

Pa*-*->C->a, and used the form Ca—>Pa to argue that

'. . . "the" logic of knowledge most probably is S4.2'

and certainly that ' [ this logic ] must be at least as

strong as the system S4.2 . . . [ and ] at most the system

S4.4 which is S4 plus a—»(Ca—»Ka).' We will return

to discussion of S4.2 and S4.3 in the Section 5.

Finally, let us consider the last equivalence:

Ka<->B""*a. It suggest that it is possible to find an

axiomatization in which only the operator B appears,

all the others operators being introduced by definition.

We do not claim that such an axiomatic system would

illuminate these operators; in fact we would find it

rather opaque. But it is interesting to note that as,

suggested in the introduction, knowledge can be de

fined in terms of belief. In our semantic development

we interpreted this reduction according by appealing

to the notion of knowledge as belief that is stable given

any true evidence. This alternative definition of knowl

edge suggestions a different intuitive reduction: B~'Qa

says that the beliefs under the hypothesis ->a are not

consistent (because of the axiom B°a), which together

with axiom (-iK-ia-»(B°/3->->BQ->/3)) says that a is

known iff the beliefs relative to its negation are incon

sistent. It is interesting that these two conceptually

quite different reductions of knowledge to belief end

up coinciding.

5 Related work

Philosophers have been interested in the notions of

knowing and believing for a long time, and obviously

we cannot do the literature justice here. A good

overview can be found in Lenzen's [Len78a]. Of that

literature, we single out two references. One is Hin-

tikka's foundational work on applying possible-worlds

semantics to knowledge and belief [Hin62], on which

most work in the area, including our own, builds. The

other is Lenzen's own recent work [Len78b], with which

our work has many ties. Like him, we introduce the

three operators K, B, and C, having the same intu

itive interpretations. Lenzen puts forward a collection

of axioms regarding the various modalities, all of which

are valid in our framework. Like us, Lenzen accepts

the KD45 system for certainty (or conviction). From

this point on our work extends that of Lenzen.

First, Lenzen is less specific about the properties of

the knowledge operator; his conclusions are that "[ the

logic of knowledge ] must be at least as strong as

the system S4.2 . . . [ and ] at most the system S4.4

which is S4 plus a—♦(Ca—»Ka)." (In contrast, Voor-

brak [Voo90] is more decisive; he argues for S4.2 as

"the" logic of knowledge.) To understand our take

on this, it is useful to consider three modal systems:

S4.2, S4.3, and S4F (also known sometimes as S4.3.2).

Although the differences between them might at first

seem like obscure mathematical trivia, in fact these dif

ferences expose interesting conceptual issues. Seman-

tically, in S4.2 the accessibility relation is a convergent

preorder, in S4.3 a total preorder, and in S4F a total

preorder with at most two distinct equivalence classes.

We have explained why, when considering the notion of

certainty and belief under evidence, the S4.3 structure

is the sensible choice. It also follows from our explana

tion that if one does not care about such relativized no

tions, and thus only about the single set of most-easily-

imagined worlds, the properties of S4.2 are sufficient.

On the other hand, if all one cares about are knowl

edge and the unrelativized notion of certainty, then one

does not need the full generality of S4.2; in this case

all that is needed is a binary distinction between most-

easily imagined worlds and non-most-easily imagined

worlds, as captured in the S4F system. Interestingly,

the system S4F was recently shown by Schwarz and

Truszczynsky [ST94] to have an intimate connection

with nonmonotonic logic; in light of the similarity be

tween our construction and elements in nonmonotonic

logics this is perhaps not that surprising.

Thus one dimension in which we extend Lenzen's work

is in shedding further light on the particular properties

of knowledge, and another related one is our introduc

tion of the notion of evidence. Most importantly, how
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ever, Lenzen does not give a complete formal system,

either semantic or syntactic, for the three notions. He

lists many of the syntactic properties of these three

notions, but does not provide semantics and thus can

not prove soundness and completeness. We not only

provide a model theory and prove soundness and com

pleteness, but in fact are able to give intuitive motiva

tion for the model theory and relate it to philosophical

intuitions.

Artificial Intelligence is another field in which these

notions have been used, and, again, we do not aim to

discuss here all the relevant work. As we have men

tioned, generally (though not universally) the notion

of knowledge in AI includes the negative introspec

tion, which we explicitly reject. It appears that in

most of AI work no distinction is made between cer

tainty and knowledge. In fact, sometimes the notion

of knowledge is explicitly equated with certainty; this

may help explain the presence of the negative intro

spection axiom. From the technical standpoint we

can easily endow the operator K with S5 properties

by adding the axiom C^cn-^Ka to our system (or, in

the special case of unrelativized certainty, we would

add the axiom Ca—>Ka); however, as we explained,

we object to S5 in the first place.

A previous attempt to link the notions of knowl

edge and belief within AI was made by Moses and

Shoham [MS93], which had a very similar notion of

relativized belief. An interesting connection between

belief and nonmonotonic inference relation was noted

there. Specifically, the authors presented three defini

tions, in some of which the belief was nonmonotonic:

Just as in our system, increasing the strength of the

hypothesis could reduce the set of beliefs. However this

nonmonotonic behavior held only when the hypothe

ses were strengthened to the point of contradicting

the agent's knowledge; in all other circumstances, the

belief operators presented in [MS93] were monotonic.

Another major element is that Moses and Shoham's

work is centered on an attempt to reduce belief to

knowledge. In contrast, here we argue that belief in

volves an extra ingredient, namely preference (or plau

sibility). This notion of preference crystalizes the re

lationship between belief and commonsense reasoning;

indeed, the notion of preference has been borrowed

directly from the study of nonmonotonic inference re

lations, see [Sho88, KLM90]. It is precisely this notion

of preference that gives rise to the nonmonotonic be

havior of the belief operator presented here.

This connection between the belief operator and the

nonmonotonic inference relations makes for a perfect

transition to another connection, this time with con

ditional logics. There are now well known connections

between conditional logics and nonmonotonic infer

ence relations (see [Bel91, CS92, CL92]). Indeed, one

may well read the B^a construct as a kind of con

ditional, tp=>a. There have been several attempt re

cently to relate conditionals to the notion of knowl

edge and belief. Of these we will discuss two, the one

by Boutilier and the other by Friedman and Halpern.

(However, let us at least mention another paper pub

lished in the proceedings of KR94, by Brafman and

Tennenholtz [BT94]; the main thrust of that paper is

unrelated to the present article, but when they address

the issue of belief change they offer two models of be

lief - one based on a total order on worlds, the other

based on a partial order.)

In the long version of this article we will discuss the

connection Boutilier's work [Bou92a, Bou92b] in more

detail. Here we will have to be brief; in particular we

will mention only the aspect of his system that are

the most relevant to ours, which will not reflect the

full power of his formalism. Like us, Boutilier intro

duces a Kripke structure with a reflexive, transitive

and connected accessibility relation. One originality

of his work is that two modal operators are defined:

the usual necessity operator (noted O), and another

one which corresponds to truth in all the structures.

Intuitively, this last operator (denoted □) "looks" at

all the worlds connected to the actual one: the worlds

which are accessible form the actual world via the ac

cessibility relation and the ones for which the actual

world is accessible. Using these two operators, a con-

ditional operator is then defined: a=>f3 =def V

0(c*AO (a-+/3). Most of Boutilier's constructions are

based on these three operators.

In order to make a connection between our system and

his, we need to place some additional restrictions on

our own. First K and C must be equated (Kcr«-»Ca).

Second, we must add the axiom of 'rational nonmono-

tonicity' proposed by Kraus, Lehmann and Magidor

(-iB^-iV ABvcc->BvAV,a ) to ensure a connected prop

erty for Rb • Under these two assumptions, it turns out

that his operator □ and our K (and C) coincide, as do

his >p=>a and our B^a. To summarize, then, although

Boutilier started with very different motivations, his

system can be interpreted as a special case of our con

struction. We find this interesting, even though the

special case is achieved by equating K and C, which

clearly we oppose in principle.

The other, more recent related work is by Friedman

and Halpern [FH94]. That paper covers a lot of

ground; we will restrict the discussion to the part rel

evant to our system. Like us, they start with a Kripke

structure whose necessity operator is interpreted as

a knowledge operator. Unlike us, they adopt the S5

system, which we clearly reject as long as the knowl

edge interpretation is retained (however, there is no

reason in principle why they could not develop their

ideas while adopting S4.3 or any other system). Then,

rather than introduce a single preorder on the struc

ture, they assign to each world such a preorder; as

we said in explaining our construction, this is an ul
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timately necessary degree of generality that we have

chosen to avoid for now. This preorder is used to de

fine a conditional in the standard way - ip=>a holds

iff a holds in the minimal <p worlds - and belief is de

fined by B^a =def K(<p=>at). They then specialize the

construction in a number of ways and prove proper

ties of the resulting systems. Thus their construction

contains elements missing from ours - most notably,

world-dependent preorders - whereas our construction

contains elements missing from theirs, such as a dis

tinction between knowledge, certainty, and belief. In

general there appear to be some important differences

in the intuition behind the constructions. We have

given a detailed explanation of the intuition behind

our construction, but at this time have not yet devel

oped sufficient intuition about theirs to make a more

detailed comparison.

Overall, it is reassuring that many different re

searchers, all with different motivations, have ended

up with similar formal constructs; this is a good in

dication that what otherwise might have seemed like

esoteric formal systems, such as S4.3, are actually of

some significance to AI.

6 Conclusions

We have offered a system to capture the relationship

between knowledge and belief, which also sheds new

light on each of them in isolation. In the case of knowl

edge, we strongly reject the property of negative intro

spection. In the case of belief, we propose a distinction

between belief (whose defeasibility is recognized by the

agent) and certainty (whose defeasibility is not). The

relationship between the three notions - knowledge,

certainty, and belief - went far beyond mere hierar

chy. In particular, knowledge had the flavor of belief

that is stable under incorporation of correct facts. We

explored these first through a model theory, which is

based on the notions of the agent's subconscious biases

and its conscious preferences (or plausibility measure).

We then provided a sound and complete axiomatic sys

tem, and pointed to some of its illuminating proper

ties. We have shown that our construction produces

attractive formal properties, which accord well with

some previous work in philosophy, computer science,

and AI. We have also attempted to provide compre

hensive inutitive motivation behind the construction,

so that theory need not be accepted on the basis of its

formal properties alone.

In a companion paper we specialize the construction,

and look at the special case in which no 'evidence'

formulas appear (or, equivalently, where the only ev

idence is True); as we have mentioned, in that case

we can restrict the attention to the S4F system. In fu

ture work we would like to extend the theory to handle

relativization to arbitrary information, even incorrect

one, and thus attain full integration with the notions

of belief revision, update, and other forms of mental

dynamism. Also, as we have mentioned, we would

like to generalize the construction to account for par

tial orders that vary by world. Finally, in this article

we have restricted the discussion to the propositional,

single-agent case; clearly an extention to the multi-

agent and first-order cases is called for, and the latter

may prove challenging.
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Abstract

One way to think about STRIPS is as a map

ping from databases to databases, in the fol

lowing sense: Suppose we want to know what

the world would be like if an action, repre

sented by the STRIPS operator a, were done

in some world, represented by the STRIPS

database Vq. To find out, simply perform

the operator a on X>o (by applying a's ele

mentary add and delete revision operators to

Vo). We describe this process as progressing

the database Vq in response to the action a.

In this paper, we consider the general prob

lem of progressing an initial database in re

sponse to a given sequence of actions. We

appeal to the situation calculus and an ax-

iomatization of actions which addresses the

frame problem (Reiter [14], Lin and Reiter

[7]). This setting is considerably more gen

eral than STRIPS. Our results concerning

progression are mixed. The (surprising) bad

news is that, in general, to characterize a pro

gressed database we must appeal to second

order logic. The good news is that there are

many useful special cases for which we can

compute the progressed database in first or

der logic; not only that, we can do so effi

ciently.

1 INTRODUCTION

One way to think about STRIPS is as a mapping from

databases to databases, in the following sense: Sup

pose we want to know what the world would be like

if an action, represented by the STRIPS operator o,

were done in some world, represented by the STRIPS

database Vq. To find out, simply perform the operator

a on X>o (by applying a's elementary add and delete

revision operators to Vq). We describe this process as

"Fellow of the Canadian Institute for Advanced

Research

progressing the database T>o in response to the action

a (cf. Rosenschein [15] and Pednault [9]). The result

ing database describes the effects of the action on the

world represented by the initial database.1 However,

it may not always be convenient or even possible to

describe the effects of actions as a simple process of

progressing an initial world description. As we shall

see in this paper, once we go beyond STRIPS-like sys

tems, progression becomes surprisingly complicated.

In this paper, we consider the general problem of pro

gressing an initial database in response to a given se

quence of actions. We appeal to the situation calculus

and an axiomatization of actions which addresses the

frame problem (Reiter [14], Lin and Reiter [7]). This

setting is considerably more general than STRIPS.

Our results concerning progression are mixed. The

(surprising) bad news is that, in general, to character

ize a progressed database we must appeal to second

order logic. The good news is that there are many

useful special cases for which we can compute the pro

gressed database in first order logic; not only that, we

can do so efficiently.

The need to progress a database arises for us in a

robotics setting. In our approach to controlling a

robot,2 we must address the so-called projection prob

lem: Answer the query Q(do(A, So)), where do(A, So)

denotes the situation resulting from performing the se

quence of actions A beginning with the initial situation

So- This can be done using regression (cf. Waldinger

[17], Pednault [10], and Reiter [13]) to reduce the pro

jection problem to one of entailment from the initial

database, consisting of sentences about the initial sit

uation So- Unfortunately, regression suffers from a

number of drawbacks in this application:

1This is also the way that database practitioners think

about database updates (Abiteboul [1]). In fact, the

STRIPS action and database update paradigms are essen

tially the same. Accordingly, this paper is as much about

database updates as it is about STRIPS actions and their

generalizations.

Joint work with Yves Lesperance, Hector Levesque,

Bill Millar and Richard Scherl.
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1. After the robot has been functioning for a long

time, the sequence A, consisting of all the actions

it has performed since the initial situation, is ex

tremely long, and regressing over such a long se

quence becomes a computational burden.

2. Similarly, after a long while, the world state often

becomes so rearranged that significantly many fi

nal steps of the regression become entirely unnec

essary.

3. Most significantly, for robotics, perceptual actions

(Scherl and Levesque [16]) lead to new facts being

added to the database. But such facts are true in

the current situation - the one immediately fol

lowing the perceptual action - whereas the other

(old) database facts are true in So. Reasoning

about databases containing mixed facts - facts

about the current and initial situations - is very

complicated, and we know of no satisfactory way

to do this.

Our way of addressing these problems with regression

is to to periodically progress the robot's database. In

particular, every perceptual action is accompanied by

a progression of the database, coupled with the addi

tion of the perceived fact to the resulting database.

We envisage that these database progression compu

tations can be done off-line, during the time when the

robot is busy performing physical actions, like moving

about.

2 LOGICAL PRELIMINARIES

The language £ of the situation calculus is a many-

sorted first-order one with the sorts state for situa

tions, action for actions, and object for anything else.

We have the following domain independent predicates

and functions: a unique constant So of sort state; a bi

nary function do(a, s) that denotes the state resulting

from performing the action a in the state s; a binary

predicate Poss(a, s) that expresses the conditions for

the action a to be executable in the state s; and a

binary predicate <: state x state. We shall follow con

vention, and write < in infix form. By s < s' we

mean that s' can be obtained from s by a sequence of

executable actions. As usual, s < s' will be a short

hand for s < s' V s = s'. We assume a finite num

ber of state independent predicates which are the ones

with arity object11 , n > 0, a finite number of state

independent functions which are the ones with arity

object" —♦ object, n > 0, and a finite number of fluents

which are predicate symbols of arity object" x state,

n > 0.

We shall denote by £2 the second-order extension of

£. Our foundational axioms for the situation calculus

will be in £2 (Lin and Reiter [7]), because we need

induction on situations (Reiter [12]).

We shall frequently need to restrict the situation cal

culus to a particular situation. For instance, the initial

database is defined to be a finite set of sentences in £

that do not mention any state terms except So, and

do not mention Poss and < . For this purpose, for any

state term st, we shall define £,< to be the subset of

£ that does not mention any other state terms except

st, does not quantify over state variables, and does not

mention Poss and <. Formally, it is the smallest set

satisfying

1. <p G C,t provided <p G £ does not mention any

state term.

2. F(ii, ...,t„,st) G C,t provided F is a fluent of the

right arity, and fi tn are terms of the right sort.

3. If <p and <p' are in C,t, so are -up, tpV <p', <p A <p',

<p D <p', <p = <p', (yx)ip, (3x)<p, (Va)y>, and (3a)ip,

where x and a are variables of sort object and

action, respectively.

We remark here that according to this definition,

(Wa)F(do(a,So)) will be in £<j0(a,s0)- This may seem

odd when we want sentences in £,< to be propositions

about situation st. Fortunately, we shall use £,< only

when st is either a ground term or a simple variable of

sort state.

We shall use £jt to denote the second-order extension

of £Jt by predicate variables of arity object", n > 0.

So the second-order sentence (3p)(Vz).p(ar) = F(x, So)

is in £|o, but (3p)(Vz)(3s).p(x, s) = F(x,SQ) is not,

since the latter quantifies over a predicate variable of

arity object x state. Formally, £2t is the smallest set

satisfying

1. Every formula in £Jt is also in C%t.

2. p(ti,...,t„) G £jt provided p is a predicate vari

able of arity object", n > 0, and ti, t„ axe terms

of sort object.

3. If <p and ip1 are in £2f , so are -up, y> V <p'', <p A<p',

ip D (p', (p = <p', (Vx)<p, (3x)ip, (Va)<p, (3a)ip,

(Vp)y>, and (3p)ip, where x and a are variables

of sort object and action, respectively, and p is a

predicate variable of arity object", n > 0.

3 BASIC ACTION THEORIES

We assume that our action theory V has the following

form (cf. Reiter [14] and Lin and Reiter [7]):

V = E U V„ U Vap U Vuna U 2>s„ ,

where

• E, given below, is the set of the foundational ax

ioms for situations.
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• V,, is a set of successor state axioms of the form:3

Poss(a, s) D F(x, do(a, s)) = $f(x, a, s),

where F is a fluent, and ^f(x,a,s) is in £,.

• Vap is a set of action precondition axioms of the

form:

Poss(A(x),s) = *A(x, s),

where A is an action, and ^a(x, s) is in Ct.

• fUna is the set of unique names axioms for ac

tions: For any two different actions A(x) and

A'(y), we have

and for any action A(x\, ...,x„), we have

;4(xi ,...,*„) = A(yi,...,y„) D

xi = 2/1 A • ■ • Ax„ = y„.

• T>s0 , the initial database, is a finite set of first-

order sentences in Cs0-

We shall give an example of our action theory in a

moment. First, we briefly explain our foundational

axioms E since they are independent of particular ap

plications. E contains axioms about the structure of

situations. Formally, E is the following set of axioms:

So # do(a,s),

do(ai,«i) = do(a2,s2) D (ai = a2 Asi = s2),

(VP)[P(50) A (Va, •)(/>(«) D P(do(a,s))) D (Vs)P(s)],

->s < So,

s < do(a, s') = (Poss(a, s')As< s').

Notice the similarity between E and Peano Arithmetic.

The first two axioms are unique names assumptions.

They eliminate finite cycles, and merging. The third

axiom is second-order induction. It amounts to the

domain closure axiom which says that every situation

has to be obtained from repeatedly applying do to So 4

The last two axioms define < inductively.

E is the only place where axioms about the structure

of situations can appear. It is needed only if we want

to show, usually by induction, that a state constraint

of the form (Vs).C(s) is entailed by an action theory.

For the purpose of temporal projection, in particular

progression as we shall see, V has exactly the same

effect as V — E: For any formula ip(s) in and any

sequence A of actions,

V\=<p<do(A,S0))

3In the following, unless otherwise stated, all free vari

ables in a formula are assumed to be universally quantified

from the outside.

4 For a discussion of the use of induction in the situation

calculus, see (Reiter [12]).

iff

V„ U Vap U Vuna U 2>5„ N <f(do(A, So)).

This follows directly from the following proposition

which will be used throughout this paper.

Proposition 3.1 Given any model M ofV„ L)T>ap U

Puna U2?s0, there is a model M' ofV such that:

1. M' and M have the same domains for sorts ac

tion and object, and interpret all state indepen

dent predicates and functions the same;

2. For any sequence A of actions, any fluent F, and

any variable assignment a:

M',a\= F(x,do(A,S0))

iff

M,cr\= F(x,do(A,S0)).

Example 3.1 An educational database (Reiter [14]).

There are two fluents:

• enrolled(st, course, s): student st is enrolled in

course course in state s.

• grade(st, course, grade, s): the grade of st in

course is grade in state s.

There are two state independent predicates:

• prerequ(pre, course): pre is a prerequisite course

for course course.

• better(grade\ , gradel): grade grade! is better

than grade grade2.

There are three database transactions:

• register(st, course): register the student st into

course course.

• change(st, course, grade): change the grade of

the student st in course course to grade.

• drop(st , course): drop the student st from course

course.

This setting can be axiomatized as follows.

V,, is the set of following successor state axioms:

Poss(a, s) D

enrolled(st, c, do(a, s)) =

a = register(st, c) V

enrolled(st, c,s) A a ^ drop(st, c),

Poss(a, s) D

grade(st, c, g, do(a, s)) =

a = change(st, c) V

grade(st, c, g, s) A (Vff')a ^ change(st, c, g').
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Vap is the set of following action precondition axioms:

Poss(regi8ter(st, c), s) = (Vpr).prerequ(pr,c) D

(3g).grade(st,pr, g, s) A better(g, 50),

Poss(change(st, c, g), s) = True,

Poss(drop(st, c),s) = enrolled(st, c, s).

Vs0, the initial database, can be any finite set of ax

ioms about the initial state, for example, the following

ones:

John ^ Sue # C100 ^ C200 Aprereou(C100,C200),

enrolled(Sue, C100, So),

enrolled(John, C100, S0) V enrolled(John, C200, S0).

m

4 FORMAL FOUNDATIONS

Let a be a ground simple action, e.g.

enroll(Sue, C100), and let Sa denote the state term

do(a,So). A progression 7>sa ofVs0 in response to a

should have the following properties:

1. 7>sa is a set of sentences about state Sa only, i.e.,

in CSa or in C2Sa.

2. For all queries about the future of Sa,V is equiv

alent (in a suitable formal sense) to

EU2?„UP0pUPunaU275„

In other words, Vsa acts like the new initial database

wrt all possible future evolutions of the theory follow

ing or.

To define progression, we first introduce an equivalence

relation over structures. Let M and M' be structures

(for our language) with the same domains for sorts

action and object. Define M' ~sa M iff the following

two conditions hold:

1. M' and M interpret all predicate and function

symbols which do not take any arguments of sort

stale identically.

2. M and M' agree on all fluents at Sa- For every

predicate fluent F, and every variable assignment

M', a |= F(x, do(a, S0)) iff M, a \= F(x, do(a, S0))-

It is clear that ~sa is an equivalence relation. If

M' ~s„ M , then M' agrees with M on Sa on flu

ents and state independent predicates and functions,

but is free to vary its interpretation of everything else

on all other states. In particular, they can interpret

Poss and do differently. We have the following simple

lemma.

Lemma 4.1 // M M', then for any formula <p

in Cs , and any variable assignment a, M,a ^= <p iff

M',a"\=<p.

So we define

Definition 4.1 A set of sentences Vs„ in CSo is a

progression of the initial database T>sa to Sa (wrtV)

iff for any structure M, M is a model ofVsa iff there

is a model M' ofV such that M ~s<> M' .

Notice that we define the new database only up to logi

cal equivalence. We allow the new database to contain

second-order sentences because, as we shall see later,

first-order logic is not expressive enough for our pur

poses.

Proposition 4.1 Let Vsa be a progression of the ini

tial database to Sa. Then

models(T>) C mode/s(E U T>„ U Vap U Vuna U Z>s„ )•

Proposition 4.2 Let Vsa be a progression of the ini

tial database to Sa. Then for every model M of

XUV„UVapUVunaUVSa,

there exists a model M' of V such that:

1. M' and M interpret all state independent predi

cate and function symbols identically.

2. For every variable assignment a, and every pred

icate fluent F,

M',o-\=Sa < sAF(x, s) iffM,cr\=Sa< s/\F{x, s).

Proof: Let M be a model of

E UX>„U Vap UVunaUVSa.

Since M is a model of Vsa , there is a model M' of

EUP„U Vap OVunaUVSo

such that M' ~sa M. It can be easily seen that M'

satisfies the desired properties. ■

From these two propositions, we conclude that V and

E U V„ U Vap U 2>u„a U VSa agree on all states > Sa.

So Vsa really does characterize the result of progress

ing the initial database in response to the action a.

Furthermore, the following theorem says that the new

database, when it exists, entails the same set of sen

tences in C\ as V:

Theorem 1 Let Vsa be a progression of the initial

database to Sa. For any sentence ip G £| , Vsa \= f

iffV \= <p.

Proof: If V ^= ip, then by Lemma 4.1, we have

VSa (= <p. If VSa \= ip, then V (= <p by Proposi

tion 4.1. ■
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From this theorem, we see that if T>sa is a progres

sion, then it is a strongest post- condition (cf. Pednault

[9], Dijkstra and Scholten [3], and others) of the pre

condition T>s0 wrt the action a. A result by Pednault

[9] shows that Vsa cannot in general be a finite set

of first-order sentences in Csa ■ In the following, we

shall extend this result, and show that 2>s„ cannot in

general be a set of first-order sentences in Csa ■

4.1 Progression Is Not Always First-Order

Definable

At first glance, the fact that progression cannot al

ways be done in first-order logic may seem obvious in

light of Theorem 1, and the fact that V includes a

second-order induction axiom. However, as we men

tioned in section 3, for the purpose of progression, V is

equivalent to V — E, which is a finite set of first-order

sentences.

We shall construct a basic action theory V and two

structures Mi and M2 with the following properties:

1. Mi \=V.

2. Mi and Mi satisfy the exactly same set of sen

tences in Csa ■

3. There is no model M' of V such that M' ~s„ M2.

It will then follow from our definition that for X>, the

progression of the initial database to Sa cannot be in

Csa ■ This is possible because for M ~sa M' to hold,

M and M' must be isomorphic with respect to sort

object; but in number theory, there are nonstandard

models that satisfy exactly the same set of first-order

sentences as the standard model, and it is this prop

erty which we now use to show that progression is not

always first-order definable.

We now proceed to construct a such basic action thery.

Consider the following theory V with a unary fluent

Fi, and a binary fluent F2, one action constant sym

bol A, one constant symbol 0, and one unary function

symbol succ:

VSo = 0. Vuna = 0.

Vap = {(Vs).Poss(A, s) = True).

V„ is the following pair of axioms:

Poss(a,s) D [Fi(do(a,s)) = (3x)~>F2(x,s)],

Poss(a,s) D (Vx).F2(x,do(a,8)) =

x = 0 A F2(0, s) V

F2(x, s) A (3y).x = succ(y) A F2(y, s) V

nF2(i,s)Ai^0A

(Vy)(i = succ(y) D ->F2(y,s)).

To understand the successor state axioms, think of

the constant symbol 0 as the number 0, and the

unary function succ as the successor function. F\

simply keeps track of the truth value of F2 in the

previous state, and for F2(x, do(a, «)) to be true,

either x = 0 and F2(x,s), or both F2(x,s) and

F2(predecessor(x),s) have the same truth values.

Consider a structure M such that:

1. M is a standard model of arithmetic with respect

to sort object. Thus the domain for object in M

is the set of nonnegative numbers, 0 is mapped to

the number 0, and succ is mapped to the successor

function.

2. M \= Fi(do(A,S0))A(yx).F2(x,do(A,S0)).

Our first observation is that there cannot be a model

M' of V such that M ~sA M' . Suppose otherwise.

Then M' also satisfies the above two properties 1 and

2. From M' (= V„, and M' (= Fi(do(A,S0)), we

have M' |= (3x)->F2(x,S0). Similarly, from M' \=

(Vx).F2(x, do(A, So)), by the successor state axiom for

F2, we have M' |= F2(0,S0) A F2(succ(0),S0) A • • •.

Thus M' \= (Vz).F2(x, So), a contradiction. Therefore

there is not a model M' of V such that M ~5a M' .

We now show that there is a model M' of V such that

for any sentence <p in CsA, M (= <p iff M' (= <p- By

Skolem's theorem (cf. Kleene [5], page 326), there is

a first-order structure M* such that for any sentence

<p in CsA , M ^= <p iff M* ^ <p, and (M, 0, succ) and

(M* ,0,succ) are not isomorphic, i.e., M and M* are

not isomorphic on sort object. In particular, M* ^=

Fi(do{A, So)) A (Vz).F2(i, do(A, S0)). Now revise M*

into a structure M' such that:

1. M' and M* have the same domains for sorts

action and object, and interpret state indepen

dent predicates and functions the same.

2. M' (= (Va,s)Poss(a,s).

3. M' \=El)VunaUVSo.

4. For the truth values of the fluents on So: M' ^

Fi(So), and for the truth values of F2(x,So), we

have that for any variable assignment a:

(a) If a(x) is a standard number, i.e., there is a

n > 0 such that M',a ^ x = succ"(0), then

M',a\=F2(x,So).

(b) If <r(x) is a nonstandard number, i.e., there is

no n > 0 such that M', a(x) \= x = succ"(0),

then M' ,o~ ^ -iF2(x,5o). Notice that since

M* and M are not isomorphic on sort object

with respect to Peano arithmetic, there must

be a nonstandard number in the domain of

M* , and thus in the domain of M' .

5. For the truth values of the fluents on do(A,So):

For any fluent F, and any variable assign

ment a, M',a F(x,do(A,S0)) iff M',a f=

F(x,do(A,S0)).
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6. Inductively, for any variable assignment a, if

M',<r \=do(A,S0) < s,

then the truth values of the fluents on s will be de

termined according to the successor state axioms

and the truth values of the fluents on do(A,So);

if

M', a |= So < 8 A -<do(A, So) < «,

then the truth values of the fluents on s will be de

termined according to the successor state axioms

and the truth values of the fluents on So- This

will define the truth values of the fluents on every

state because M' \= (is).So < s, which follows

from the fact that M' \= (Va, s)Poss(a, s).

It is clear that M' ~sA M*. It follows that M' and

M satisfy the same set of sentences in CsA ■ We now

show that M' satisfies the successor state axioms. By

the construction of M' , we only need to prove that it

satisfies the successor state axioms instantiated to So

and action A, i.e.

M' \= Po8s(A,So) D [F1(do(A,S0)) s (3x)^F2(x,S0)],

and

M' \= Poss(A,S0) D (Vx).F2(x,do(A,S0)) =

x = OAF2(0,S0)V

Fi{x, So) A (3y).x = succ(y) A F2(y, So) V

->F2(x, So) A x ^ 0 A

(Vy)(i = succ(y) D ^F2(y,S0))-

To show the first one, we need to prove that M' ^=

(3z).-^^(s, So)- This follows from our construction of

M' and the existence of nonstandard numbers in the

domain of M' . To show the second one, we need to

prove that

W |= (Var).i = OAF2(0,50)V

F2(x, So) A (3y).x = succ(y) A F2(y, S0) V

-iF2(i,50) A 1 ^ OA

(Vy)(i = succ(y) D ->F2(y, S0)).

There are three cases:

1. If x = 0, then F2(0, So) follows from our construc

tion.

2. If a; = succn(0) for some n > 0, then both

F2(succn(0),S0) and F2(succ"-1(0), S0) hold.

Thus F2(x,S0) A (3y).x = succ(y) A F2(y,S0)

holds;

3. If x is a nonstandard number, then F2(x, So)

does not hold. Furthermore, for any y such that

x = succ(y), y is also a nonstandard number, so

F2(y, So) does not hold either. Thus ->F2(x, So) A

x ^ 0 A (Vy)(x = succ(y) D ->F2(y, S0)) holds.

Therefore, M' satisfies the successor state axioms in

stantiated to So and A. So M' (= T>„. This means

that M' f= T>, and M' and M satisfy the same sen

tences in CsA ■ Following the discussion at the begin

ning of the example, we see that the new database at

Sa for V cannot be captured by a set of first-order

sentences.

4.2 Progression Is Always Second-Order

Definable

We now show that, by appealing to second-order logic,

progression always exists. We shall first introduce

some notation.

Given a finite set Va, of successor state axioms, we

define the instantiation of V,, on an action term at and

a state term st, written V,s[at, st], to be the sentence:

A Poss(at,st)D

F is a fluent (Vf).F(x, do(at, st)) = <bF(x, at, st),

where

(ya,s).Poss(a,s) D (V2)[F(z, do(a,s)) = <bF{x,a,s)]

is the successor state axiom for F in V,,.

Given a formula <p in £2, the lifting of <p on the state

st, written <p] st, is the result of replacing every fluent

atom of the form F(<i, ...,tn,st) by a new predicate

variable p{t\, ...,t„) of arity object". For instance,

enrolled(John, C200, S0)Aenrolled(John, C100, 50) T 50

is p(John, C200) A p(John, C100).5

Lemma 4.2 The following are some simple properties

of lifting:

1. If tp is a sentence thai does not mention st, then

tp]st is <p.

2. If f is a sentence in C?tt, then <p f st is a state

independent sentence.

S. If (p does not contain quantifiers over states, then

ip \= iplst-

Now we can state the main theorem of this section:

Theorem 2 Let T>sa he the union of Vuna together

with the sentence:

(3pi,-,Pt){ A pA0„[a,So](iW*«)}tSb.

where

1. pi,-..,Pk are the new predicate variables intro

duced during the lifting.

'Lifting as we have defined it does not generally pre

serve logical equivalence. For instance, [(Vs).F(a)] T So ■

(Vs).F(s), but the logically equivalent [F(S0) A(Vs).F(s)]T

So is p A (Vs).F(s). Fortunately, we shall only be lifting

those sentences that do preserve logical equivalence.
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2. Va w " sentence in Cs0 such that

Poss(a,S0) = *a

is an instance of the the axiom inVap correspond

ing to the action of a.

3. V„[a,So](Poss/^la) is the result of replacing

Poss(a,So) by tfa in V,, [a, Sol-

Then Vsa is a progression ofVs0 to Sa wrt V:

Proof: First, it is clear that the sentences in T>sa are

in £|a.

Let M be a structure. We need to show that M |= T>sa

iff there is a model M' of V such that Af ~s„ Af'.

Suppose that there is a model Af' of V such that

M ~s„ M'. By Lemma 4.2, V (= VSa, thus M' |=

VSa. Therefore by Lemma 4.1,M(= VSa.

Now suppose that M |= T>sa ■ Then there is a variable

assignment a such that

M,<r\= f\ ^A2?„[a,5o](Po««/*a)T50.

Now construct a structure M' such that

1. M and M' have the same universe, and interpret

all state independent function and predicate sym

bols identically.

2. For every fluent F, if F(x,S0) is lifted in Vs. as

p, then

M', a |= F(**, So) iff M, <r f= p(x).

3. M' ^=2>„U Pap.

4. If Af' \= ->*0, then for any fluent F, and any

variable assignment a1,

M'J (= F(x,S0) iff M,<r' (= F(x,Sa).

It is clear that such a M' exists. We claim that

M ~5et Af' . There are two cases:

1. If Af' ->*0, then it follows from our construction

that for any fluent F, and any variable assignment <r',

Af', </ |= F(x, 5a) iff M, <r' (= F(x, 5a).

2. If M' (= *„, then since Af' \= Vap, and 2>ap \=

Po8s(a,So) = therefore M' |= Poss(a,So). But

M' |= V„. Thus for any fluent F, and any variable

assignment a",

M', a' \= F(x, Sa) iff M', <r' \= <3>F(x, a, S0), (1)

where $F is as in the successor state axiom for F in

V„. Now since M' ^ *a, by our construction of M',

we have that M,a \= #otS0. But

M,a\=V..[a,So](Poss/^a)^S0.

Therefore for any fluent F, and any variable assign

ment a1 such that <r'(p) = <r(p) for any predicate vari

able p,

Af , </ (= F(x, Sa) iff M', a' \= $F(x, a, S0) 1 S0. (2)

But for any variable assignment a1 such that ^(p) =

<r(p) for any predicate variable p, since $f(x, o, So) is

in Cs0, by our construction of Af',

My\= <M*> a. So) T So iff M', a1 (= $F(x - a. S0),

Therefore from (1) and (2), we see that for any fluent

F, and any variable assignment a' ,

M', a' (= F(x, Sa) iff M, <r' (= F(x, Sa).

It follows then that Af ~sa A/'. By the construction

of Af' and the fact that M |= T>una, we have that

M' (= V„ U Pap U2>uno. Thus from Proposition 3.1,

there is a model M" of V such that M' ~Sa Af". Then

by the transitivity of ~s„, we have that Af ~sa M".

This concludes the proof that T>sa as defined is pro

gressed database. ■

It is clear that the theorem still holds when the initial

database Vs0 is a finite set of second-order sentences in

£|o. Therefore, at least in principle, the theorem can

be repeatedly applied to progress the initial database

in response to a sequence of actions.

The new database Vsa as defined in the theorem can

be unwieldy. However, it can often be simplified by

using the unique names axioms in Vuna, as we shall

see in the following example.

Example 4.1 Consider our educational database.

The instantiation of the successor state axioms on

drop(Sue,C100) and S0, 2>„[drop(Sue,C100),S0], is

the conjunction of the following two sentences, where

a = drop(Sue, C100) and Sa = do(a, So):

Poss(a.So) D enrolled(st,c,Sa) =

a = register(st, c) V

enrolled(st, c, So) A a ^ drop(st, c),

Pos8(a, So) D grade{st, c, g, Sa) =

a = change(st, c) V

grade(st , c, g, s) A (Vjf')" # change(st, c, g').

By unique names axioms, these two sentences can be

simplified to

Poss(a,So) D enrolled(st, c, Sa) =

enrolled(st, c, S0) A (Sue ^ st V C100 ^ c),

Poss(a, So) D grade(8t, c, S«) = grade(st, c, g, s).

By 2>ap,

Poss(ct, So) = enrolled(Sue, C100, S0).
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Thus V„[ot, So](Poss/il!a) is the conjunction of the

following two sentences:

enrolled(Sue, C100, So) D enrolled(st,c,Sa) =

enrolled(st, c, S0) A (Sue ^ st V C100 ^ c),

enrolled(Sue,C'100, S0) D

grade(st,c, g, Sa) = grade(st, c, g, s).

Thus (3pi,P2)[/\v€Vso f A 2>„[a,S0](PoW*a)] T S0

is

(3p1,p2).Jo/in ^ Sue / C100 ^ C200 A

Pi(John, C100) V pi(John, C200) A

Pi(Sue, C100) A prere9u(C100, C200) A

Pi(Sue, C100) D enrolled(st,c, Sa) =

p^s*, c) A (Sue 7^ s< V C100 ^ c) A

Pi(Sue,C100) D grade(st,c,g,Sa) =

P2(«<,C,ff).

This is equivalent to

Jo/in # Sue ^ C100 ^ C200 A

preregu(C100,C200)A

(3pi , p2).pi(John, C100) V pi (John, C200) A

pi(5ue,C100) A

enrolled(st, c, Sa) =

P!(s<, c) A (Sue ^stV C100 ^ c) A

grade(st, c, g, Sa) = P2(st, c, g),

which is equivalent to

John f Sue ± C100 ^ C200 A

prerequ(C100, C200) A

(3pi).pi(John, C100) V pi(John, C200) A

pi(Sue,C100) A

enrolled(st, c,Sa) =

p^st, c) A (Sue ^ s< V C100 ^ c),

which is equivalent to

John ? Sue £ C100 ^ C200 A

preregu(C100, C200) A

enrolled(John, C100, Sa) V

enrolled(John, C200, Sa) A

-<enrolled(Sue, C100, Sa) A

(3pi).enro//ed(s<, c, Sa) = Pi(s<, c).

Finally, we have a first-order representation for T>sa,

which is Vuna together with the following sentences:

John ^ Sue ? C100 ^ C200,

preregu(C100,C200),

enrolled(John, C*100, Sa) V enrolled(John, C200, Sa),

^enrolled(Sue, C100, S„).

To summarize, we have shown that in general, progres

sion is definable only in second-order logic. However,

there are some interesting special cases for which pro

gression can be done in first-order logic. We shall give

two such special cases.

5 PROGRESSION WITH

RELATIVELY COMPLETE

INITIAL DATABASES

We say Vs0 is relatively complete (wrt state indepen

dent propositions) if it is a set of state independent

sentences together with a set of sentences, one for each

fluent F, of the form:

(W).F(x,So) = UF(x),

where Up(x) is a state independent formula whose free

variables are among x. Clearly, for relatively complete

Vs0 , if it is complete about the state independent sen

tences: For any state independent sentence II,

either VSo |= H or VSo \= ill,

then it is also complete about So: For any sentence <p

in £s0 .

either VSo \= <p or VSo ^= ->ip.

Theorem 3 Lei V be an action theory with a rela

tively complete initial database Vs0, and let a be a

ground action term such that V \= Poss(a,So)- Then

the following set:

Duna U {<p | <p £ T>s0 is state independent} U

{(Vi).F(£, do(a, So)) = *f(Z, «, S0)[S0] |

F is a fluent}

is a progression ofVs0 to Sa, where

1. or, So) is as in the successor state axiom for

F in V„;

2. $f(x, «jSo)[So] is the result of replacing, in

$f(x, a, So), every occurrence of F'(t,So) by

II/" (t), where Hp1 is as in the correspond

ing axiom for F' in T>s0, and this replacement

is performed for every fluent F' mentioned in

$r(£,a,S0).

Proof: Denote the set of the sentences of the theorem

by S. Clearly, S is a set of first-order sentences in Csa ■

It is easy to see that S \= Vsa ■ Conversely, it is clear

that V \= S. Thus by Theorem 1, VSc, (= S. ■

Clearly, the progressed database at Sa as given by the

theorem is also relatively complete. Thus the theo

rem can be repeatedly applied to progress a relatively

complete initial database in response to a sequence

of executable actions. Notice that the new database
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will include T>una and the state independent axioms

in t>s0 ; therefore we can use these axioms to simplify

M*,a,So)[So].

Example 5.1 Consider again our ed

ucational database example. Suppose now that the

initial database Vs0 consists of the following axioms:

John ? Sue # C100 # C200,

6etrer(70,50),

prerequ(C 100, C200),

enrolled(st,c,So) =

(st = John A c = C100) V (st = Sue A c = C200),

grade(st,c,g,S0) =

st = Sue Ac = C100 Ag = 70.

Clearly T>s0 is relatively complete, and V \=

Poss(a,So), where a = drop(John, C100). From the

axiom for enrolled in T>sa, we see that Ue„roiied(st, c)

is the formula:

(st = John A c = C100) V (st = Sue A c = C200).

Now from the successor state axiom for enrolled in

Example 3.1, we see that &enroiied(st, c, a, s), the con

dition under which enrolled(st, c, do(a, s)) will be true,

is the formula:

a = register(st,c)V(enrolled(st,c,s)Aa ^ drop(st,c)).

Therefore $enroiUd(st, c, a, So)[So] is the formula:

drop(John, C100) = register(st, c)V

{[(st = John A c = C100) V (st -SueAc = C200)]A

drop(John, C100) ^ drop(st, c))}.

By the unique names axioms in Vuna, this can be sim

plified to

(st = John Ac- C100) V (st -Sue Ac = C200)A

(John £stV C100 ^ c).

By the unique names axioms in T>s0 , this can be fur

ther simplified to

st = Sue A c = C200.

Therefore we obtain the following axiom about

do(a,So):

enrolled(st, c, do(a, So)) = st = Sue Ac — C200.

Similarly, we have:

grade(st, c, g, do(a, S0)) = st = SueAc = ClOOAg = 70.

Therefore a progression to do(drop(John, C100), So) is

Puno together with the following sentences:

John ? Sue ^ C100 / C200,

6e«er(70,50),

preregu(C100,C200),

enrolled(st, c, do(ct, So)) = st = Sue A c = C200,

grade(st, c, g, do(a, So)) = st = Sue A c = C100 A g = 1

6 PROGRESSION IN THE

CONTEXT FREE CASE

In this section we consider progression wrt context-

free action theories. A successor state axiom for F is

context free iff it has the form:

Poss(a, s) D F(x, do(a, s)) =

(3u)(a = A1((1,u)AEl)V - V

(3v)(a = Am((m,v)AEm) V

F(x, s) A ^(3w)(a = Bx(xi, w) A Em+1) A ■ ■ A

-*(3r)(a = Bn(x„,r) A Em+n),

where and Xj denote sequences of all, or just some

(including none) of the x, the A's and B's are ac

tions, and E\,..., Em+n are propositional formulas con

structed from equality literals over the domain objects,

i.e., they are quantifier free, and do not mention terms

of sort state and action. The successor state axioms

in our educational database are all context free. So

are the following successor state axioms:

Poss(a,s) D holding(x,do(a,s)) = a = pickup(x) V

holding(x, s) A a ^ drop(x) A ~>(3u)a = put(x, u).

Po8s(a, s) D on(x, y, do(a, s)) = a = move(x, y) V

on(x, y, s) A ->(3z)(a = move(x, :)Az / y).

The following successor state axiom is not context-free:

Poss(a, s) D dead(x, do(a, s)) =

(3y).a = explode-bombjat(y) A close(x, y, s) V

dead(x, s).

Given any action terms Ai(ti) and ^2(^2), by the

unique names axioms, the equality Ai(t\) = ^2(12) is

either equivalent to false or, when A\ and A2 are the

same, equivalent to ti = i^.6 Thus, given any action

term A(t), the instantiation of a context-free successor

state axiom on A(t) is equivalent to

Poss(A(i),s) D

F(x, do(A(t), s)) = [EF V (F(x, s) A

where Ep and E-,f are propositional formulas con

structed from equality literals over the domain objects.

This is logically equivalent to

Poss(A(t),s) D

[EF V (F(x, s) A -.£^f)] D

F(x,do(A(t),s)), (3)

6x = y is an abbreviation for 21 = pi A • • • A x„ = yn-

Notice that when both x and y are the empty sequence,

? = y is logically equivalent to true. It is equivalent to

false when x and y have different length.
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Poss(A(t),s) D

[iEF A (->F(S, s) V E-.F)] D

->F(x,do(A(i),s)). (4)

For instance, by the above successor state axiom for

holding, we have

Poss(drop(x), s) D holding(y,do(drop(x),s)) =

holding(y, s)Ay^x.

Here Eholding is false, and E-,noiding is x = y.

Now assume that:

1. I?s0 is a set of state independent sentences, and

sentences of the form

ED±F(x1,...,xn,S0), (5)

where E is a propositional formula constructed

from equality literals over the domain objects. For

example,

ontable(x, So),

x £ AD -<ontable(x,So),

x = A Ay = B D on(x, y, So),

are all of this form.

2. X>s0 is coherent in the sense that for every fluent

F, whenever (Vx).£i D F(x,S0) and (Vx).^ D

->F(x,So) are in Z>s0, then

{ip\<p G Vs0 is state independent} \= (Vx).-^(E\AE2).

This means that Vsa cannot use axioms of the

form (5) to encode state independent sentences:

For any state independent sentence <j>, T>s0 (= <t>

iff

{ip | <p G T>s0 is state independent} ^= <£.

3. ViS is a set of context-free successor state axioms.

4. a is a ground action term, say A(t).

5. a is possible initially: V |= Poss(a,So).

For example, our educational database in Example 3.1

with the following initial database:

Stic ^ John ^ C100 ^ C200 ? 50,

st = Sue A c = C100 D enrolled(st, c, S0),

st = Sue Ac = C200 D ->enrolled(st, c, So),

st = Sue Ac = C100 Ag = 50 D grade(st, c, g,So),

satisfies the above conditions for a = drop(Sue, C100).

To compute T>sa , use Theorem 1 to construct a set S,

initially empty, of sentences as follows:

1. If v? € T>s0 is state independent, then <p G S.

2. For any fluent F, by (3) and (4), the coher

ence assumption, and the assumption that V ^

Poss{ct, So), add to S the sentences

EF D F(x,do(a,S0)),

E-,F D -iF(x,do(a,S0)).

3. For any fluent F, if (Vx).E D F(x,S0) is in

2?s0> then, by (3) and the assumption that V \=

Poss(a, So), add to S the sentence

E A D F(x, do(a, S0)).

4. For any fluent F, if (V£).£ D ->F{x,S0) is in

Vs0, then, by (4) and the assumption that V \=

Poss(a, So), add to S the sentence

A E D ->F(S, do(a, S0)).

For example, consider again our educational database

with the above initial database, and

a = drop(Sue, C100),

we have

Poss(a, s) D enrolled(st, c, do(a, s)) =

enrolled{st, c, s) A -<(st = Sue A c = C100),

Poss(a, s) D grade(st, c, g, do(a, s)) =

grade(st,c,g,s).

Thus Eenroled is False, E-,enroiied is

st = SueAc = C100,

and Egracie and E-,grade are both False. Then the

above procedure will give us the following set S:

John ^ Sue £ C100 ^ C200 ^ 50,

(st = Sue A c = C100) D ^enrolled(st, c, Sa),

(st = Sue A c = C200) D ->enrolled(st, c,Sa),

st = Sue A c = C100 A g = 50 D grade(st , c, g,Sa)-

As we show in the following theorem, together with

DUna, this is a progression of T>sa to Sa,

Theorem 4 Under the afore-mentioned assumptions,

S\JVuna is a progression ofT>s0 to Sa.

Proof: It is clear that V \= S U Vuna, and S is a set

of sentences in Csa- Therefore by Theorem 1, Vsa \=

SUVuna. To prove the converse, we show that for any

model M of S U Vuna, there is a model M' of V such

that M ~5Q M'. Suppose now that M is a model of

SUZ>una. We construct M' as follows:

1 . M' and M have the same domains for sorts action

and object, and interpret all state independent

predicates and functions the same.

2. For each fluent F, M' interprets it on So as fol

lows:
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(a) For every variable assignment a, if (Vf).£ D

F(x,S0) is in VSo, and M,<r (= E (thus

M', a \= E as well), then M' , a |= 50).

(b) Similarly, for every variable assignment, if

(Vx).E D ->F(S, So) is in VSo, and M, <r |= £

(thus M',<7 |= £ as well), then M',<t [=

(c) For every variable assignment <r, if F(x,So)

has not been assigned a truth value by one of

the above two steps, then M',a |= F(x,So)

iffM,(7 |= F(x,do(a,50)).

Notice that by the coherence assumption for Vs0 ,

our construction is well-defined.

3. M' interprets Poss according to T)ap, and inter

prets the truth values of the fluents on reachable

states according to VSi.

4. M' [= E. This can be done according to Proposi

tion 3.1.

Clearly M' (= V. We show now that M ~5„ M'. For

any fluent F, suppose the successor state axiom for it

is

Poss(a, s) D F(x, do(a, s)) = EFV (F(x, s) A ->E-,F).

Given a variable assignment <r, suppose M',<r ^=

F(x,do(a,So)). Since V \= Poss(a,So), by the above

successor state axiom, there are two cases:

1. M',(T (= Ef . This implies M,a \= EF. Now since

EF D F(x,do(a,So)) G S, and M is a model of

5, thus M,a \= F(x,do(a,So)) as well.

2. M', a |= -.EF A F(x, So) A ^E^F. From M', a (=

F(x,So), by our construction, either M, <r

F(x, t/o(a, 5o)), or there is a sentence E D

F(x,So) in X>s0 such that M, a \= E. Suppose

it is the latter. Then by our construction of 5,

it contains E A ->E^F D F(x,do(a,S0)). Thus

M, o ^ F(x, do(a, So)) as well.

Similarly, if M',<r \= ->F(x,do(a,So)), then M, <r f=

->F(x, do(a, So)) as well. Therefore M ~50 M'. ■

We have some remarks:

1. The new database S has the same form as 2>s0>

so this process can be iterated.

2. The generation of S is very fast, and the size of 5

is bounded by the sum of the size of Z>s0 and the

twice the number of fluents.

3. The E'b in context free successor state axioms can

be any state independent formulas. Thus a lim

ited context dependency can be handled.

We emphasize that the results of this section depend

on the fact that the initial database has a certain spe

cific form. In fact, a result by Pednault [9] shows that

for context-free actions and arbitrary Vs0 , progression

is not always guaranteed to yield finite first-order the

ories.

7 SUMMARY

1. We have argued the need for progressing a

database.

2. We have defined a formal notion of progression,

and showed that in general, to capture it we need

second-order logic.

3. We have studied two special cases for which pro

gression is first order definable, and which can be

done efficiently.

4. Although we don't discuss them here, there are

other cases for which progression can be done in

first order logic. One such case concerns actions

with finitary effects, i.e. for any fluent, the action

changes the truth values of the fluent at only a

finite number of instances.

5. The complexity of progression depends on both

the form of the initial database, and the form of

the action theory. A relatively complete initial

database can be progressed efficiently wrt any suc

cessor state axioms. On the other hand, even for

context free successor state axioms, progression is

not guaranteed to yield finite first-order theories.

6. In a companion paper (Lin and Reiter [8]) we ex

plore the consequences of our results on progres

sion for the semantics of STRIPS-like systems.

Ever since STRIPS was first introduced (Fikes

and Nilsson [4]), its logical semantics has been

problematic. There have been many proposals in

the literature (e.g. Lifschitz [6], Pednault [11],

Bacchus and Yang [2]). These all have in common

a reliance on meta-theoretic operations on logical

theories in order to capture the add and delete

lists of STRIPS operators, but it has never been

clear exactly what these operations correspond to

declaratively, especially when they are applied to

logically incomplete theories. In the companion to

this paper, we provide a semantics for STRIPS-

like systems in terms of basic theories of actions

in the situation calculus. On our view, STRIPS

is a mechanism for computing the progression of

an initial situation calculus database under the

effects of an action. We illustrate this idea by

specifying two different versions of STRIPS in the

situation calculus as well as a generalization of

STRIPS that appeals to relational database the

ory.
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Abstract

This paper analyzes a language for actions and

the deontic modalities over actions — i.e., the

modalities permitted, forbidden and obligatory.

The work is based on: ( 1 ) an action language that

allows the representation ofconcurrent and repet

itive events; (2) a deontic language that allows the

representation of "free choice permissions"; (3)

a proof procedure that admits a logic program

ming style of computation; and (4) a facility for

nonmonotonic inference based on negation-as-

failure. Applications of the language to several

problems of common sense reasoning are also

discussed. In particular, by imposing a "causal

assumption" on the deontic modalities, we obtain

an interesting solution to the frame problem and

the ramification problem. This first part of the

paper includes a model theory, and a sequel will

include a proof theory, with soundness and com

pleteness results for various fragments of the lan

guage.

1 Introduction

A standard approach to the representation of actions is to

take the state of the world as primary, and to encode actions

as transformations on states. McCarthy's situation calcu

lus [IS] is the best known historical example, but classical

dynamic logic [33, 10] adopts essentially the same ontol

ogy. There are several problems with this approach, not the

least of which is the difficulty of extending the formalism

to complex actions. To be sure, recent work has shown how

to extend the situation calculus to represent continuous and

partially ordered events [9], and concurrent, possibly con

flicting, actions [14, 3]. But these are heroic efforts, and

the complex machinery that seems to be required for these

extensions is strong evidence of a recalcitrant ontology.

An alternative approach is to take actions as primary, and to

treat the state of the world as a derivative notion. The event

calculus of Kowalski and Sergot [11] is one example of this

approach, as is the work of Allen, et al. [2, 1] on action and

time. Within the framework of dynamic logic, Pratt's early

work on process logic [34] and his more recent work on

action logic [35] reflect a similar shift in perspective from

a world consisting of a sequence of states to a world con

sisting of a set of actions. One justification for this shift in

perspective is the fact that the most important properties of

ordinary actions — e.g., concurrency and nondeterminism

— are easier to express in a language in which actions are

first-class objects.

But let us look more closely at the concept of an action. In

our ordinary experience, actions have agents, and agents

have choices. Are there constraints on the choices of

agents? Indeed, there are, and in common sense reasoning

these constraints are often expressed by the deontic modali

ties: We say that actions are either permitted (P),forbidden

(F), or obligatory (O). Shouldn't these modalities also be

incorporated into our representation language?

In this paper, we investigate a language for actions and the

deontic modalities over actions, and we show how this lan

guage can be used to model various aspects of common

sense reasoning. Our work is related to recent work on

the relationship between deontic logic and dynamic logic

[30, 42, 27, 28], but it is based on the following develop

ments:

1: The action language is based on [25]. In [25], McCarty

and van der Meyden treat actions as predicates over a linear

temporal order, and draw a distinction between basic ac

tions and defined actions. Defined actions are represented

by Horn clauses with (optional) linear order constraints, and

the defined predicates are circumscribed to capture the in

tended interpretation of these Horn clauses as definitions.

With this device, it is easy to represent concurrent and repet

itive events, and to construct partially ordered plans. It is

also easy to select an appropriate temporal ontology for a

particular application, since discrete time and continuous

time are just minor variations of a single logical language.

2: The deontic language is based on much earlier work

in [16, 17]. In fact, the deontic modalities in the present

paper are essentially the same as the deontic modalities in

[16, 17], but applied to the action language in [25]. One

significant feature of this early work is the fact that P is a
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"free choice permission", and this interpretation is carried

forth into the present paper, with one modification (see Def

inition 4.2 and related text). Another modification in the

present paper involves the deontic conditional. The system

in [16, 17] was a dyadic deontic logic, with a counterfac-

tual conditional, whereas the present paper uses intuitionis-

tic implication [39] for the deontic conditional. This change

was motivated by a desire to be able to answer queries in

the deontic language and the action language, uniformly,

in the style of a logic program [18, 19], particularly where

negation is involved.

3: Since the action definitions in [25] make use of circum

scription, entailment in the action language is not recur

sively enumerable, and this property is inherited by the de

ontic language. Nevertheless, there are proof methods for

important special cases. If the definitions are nonrecursive,

then circumscription is equivalent to predicate completion

[6, 37, 12]: A PROLOG-style interpreter for this case is dis

cussed in [23]. If the definitions are linear recursive, then

a special inductive proof method based on second-order in-

tuitionistic logic may be applicable: A PROLOG-style in

terpreter for this case is discussed in [22]. The combination

of these two special cases is illustrated in [24] for a first-

order language without a linear temporal order, and in [25]

for the action language. Also, for yet another special case,

circumscriptive inference in the action language is actually

decidable [29]. One of the objectives of the present work

is to extend these special proof techniques from the first-

order language and the action language to the full deontic

language.

4: Finally, since deontic rules take the form of Horn

clause logic programs, we can represent nonmonotonicity

by negation-as-failure. There are numerous proposals for

the semantics of negation-as-failure, of course, but the ap

proach that works best in our system is based on partial

intuitionistic circumscription [26], or PIC, for short. The

PIC semantics agrees with the perfect model semantics [36]

for stratified rules, and for unstratified rules it is strictly

stronger than the well-founded semantics [41] and strictly

weaker than the stable model semantics [8]. Most impor

tantly, the PIC semantics is based on a version of circum

scription that can be immediately generalized to the present

system of deontic logic. This means that we can apply

negation-as-failure directly to the deontic modalities, P, F

and O, with interesting consequences. For example, we can

say that the actions of a particular agent are permitted un

less they are explicitly forbidden; or, conversely, we can

say that the actions of a particular agent are forbidden un

less they are explicitly permitted.

This first part of the paper analyzes our action language and

develops a model theory for the deontic language, essen

tially covering points (1) and (2) above. A discussion of

the proof theory and the semantics of negation-as-failure is

reserved for a sequel.

One of the main features of deontic logic is the fact that ac

tors do not always obey the law. Indeed, it is precisely when

a forbidden action occurs, or an obligatory action does not

occur, that we need the machinery of deontic logic, to de

tect a violation and to take appropriate action. On the other

hand, for purposes of planning, it is often useful to assume

that actors do obey the law. We call this the causal assump

tion, since it enables us to predict the actions that will occur

by reasoning about the actions that ought to occur. As we

will see, it is straightforward to incorporate the causal as

sumption as an additional constraint in the deontic seman

tics.

Moreover, if we adopt the causal assumption, we can use

the machinery of deontic logic to reason about the physical

world. The slogan is simple:

Causation is Divine Obligation.

Coupled with negation-as-failure, this principle provides an

interesting solution to both theframe problem and the ram

ification problem. The basic idea is to posit an actor named

'nature', who always obeys the law, but can be overridden

in particular situations by the actions of other agents. We

will see how this works in Section 2.

Following an informal exposition and several examples in

Section 2, we discuss events and actions in Section 3, and

then develop a semantics for the deontic modalities in Sec

tion 4. Several properties of the semantics are established

in this section, including two theorems that will be needed

in the proof theory. Section 5 then concludes with a discus

sion of related work.

2 Intuitions and Applications

The fundamental assumption underlying the action lan

guage in [25] is the idea that, at some level of detail, we

can identify a set of basic events. This level of detail might

be quite coarse in a particular application. For example,

we could take 'SwimLap(a;, tj, ti) A ti < to be a basic

event in which the actor x swims one lap of the pool be

tween the time 1 1 and the time ti, ignoring the finer details

about how this action is accomplished. We can then define

more complex events by a set of Horn clauses. For exam

ple, the event in which x swims some finite number of laps

between t\ and ti could be defined by the recursive Horn

clauses:

SwimLaps(x,ti,t2) <= SwimLap(z,ti,f2) Ati < ti,

SwimLaps(i, ti,<2) <=

SwimLap(a;,*i,i3) A SwimLaps(z,<3,t2) A

ti < *3 < <2,

and the event in which x and y each swim some finite num

ber of laps, with x finishing first, could be defined by the

conjunction:

SwimLaps(a;,ti,t2) A SwimLaps(y,ti,f3)A

In principle, if this representation turns out to be too coarse

for a particular application, we can increase the level of
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detail, and define 'SwimLap' itself in terms of more basic

predicates, such as the position of the swimmer over time,

or even the movement of the swimmer's arms and legs.

An important property of basic events is that they are

definite relative to the chosen level of detail, whereas

a defined event could be indefinite. If we only know

'SwimLaps(ai , ti, t2)' for a particular actor ai and the par

ticular times ti and t2, then we don't know how many laps

ai swam, or how fast she swam them. But basic events

should not have this kind of ambiguity. Formally, basic

events should have the disjunctive and existential proper

ties, that is, a disjunction Av B should be entailed by a

basic event only if either A is entailed or B is entailed, and

an existentially quantified proposition (3x)P(x) should be

entailed by a basic event only if P(x)9 is entailed for some

substitution B. (See Section 3 below for a more detailed

discussion of this requirement.)

Now, there is one important class of basic events that in

volve changes in the state of the world, and this fact has

consequences for our choice of a logic. Suppose B is a

first-order predicate with a single argument. We might

want to define an event in which the state of the world

changes from a time ti at which B(x) is true to a time tj

at which -<B(x) is true. As a convenient notation for such

an event, we write: B(x)[t]} o ->B(x)[t2) A t\ < t2. For

this event to be basic, however, we require: (i) that B is

itself a base (i.e., undefined) predicate in the first-order lan

guage, and (ii) mat the overall logic is intuitionistic rather

than classical. These two conditions will guarantee that ba

sic events generate only definite changes in the state of the

world [18]. Similarly, suppose C is a first-order predicate

with two arguments. We might want to define an event:

C(x, y)[t{\ o (Vto)->C(to, y)[t2] At\ < t2. The same condi

tions will guarantee that this event, too, generates only def

inite changes in the state of the world. (Note also that B(x)

and C(x, y) art neither true nor false in this example when

t is between t\ and t2, as long as we use intuitionistic rather

than classical logic.) Finally, a useful class of events con

sists of the nonevents, such as B(x)[t\ , t2] or -*B(x)\tu *a]>

which assert that B(x) remains true, or remains false, re

spectively, over the interval from t\ to t2. Again, our con

ditions guarantee that these are definite events.

The concept of an event does not itself include the con

cept of agency, but if we pair an event a(t\,tj) with an

agent x we have an action. We write DO(a(ti, <2), x) to

say that x is (somehow) responsible for the occurrence of

a{tut2), or that a{t\,t2) is (somehow) carried out by the

agent x. Such statements are veridical. That is, if x does

a(t i , t2), then a(t i , t2) is true. The converse does not hold,

of course. We can observe an event a{t\,t2) without de

ducing ~DO(a{t\,t2), x) for any x. (If we wanted to make

such an inference, and ascribe responsibility to a particular

agent, we would have to do so by abduction [31], not by

deduction.)

In our language, the deontic modalities have a syntax

similar to the syntax of DO. We write: Y(a(t\,ti),x),

F(a(ti,t2),x) and 0(a(tiyt2), x), where a(ti,t2) is an

event and x is an agent. The intuitive reading of

0(a(ti, t2), x) is straightforward. It means: "The actor x

is obligated to perform the action a(t\, t2)." The intuitive

reading of F and P is more subtle, since actions can be in

definite. To say that x is forbidden, F, to perform the action

a(t i , t2) means that all the ways of performing a(t i , t2) are

forbidden. Analogously, P is a "free choice permission".

To say that x is permitted, P, to perform the action a(ti,t2)

means that all the ways of performing a(t\,t2) are permit

ted. This is different from the weaker form of permission,

-iF, that is usually studied in deontic logic. To say that x

is not forbidden, -<F, to perform the action a(ti , t2) means

simply that there is some way of performing a(ti,t2) that

is permitted. These distinctions are difficult to express in

standard deontic logic, but they are easy to express in our

language because of the sharp contrast between definite and

indefinite actions.

Finally, to complete the system, we write deontic condi

tionals as Horn clause logic programs, using any formulae

we want from the action language, including the constraints

on time. We also allow negation-as-failure to appear in the

deontic conditionals, so that the following expressions are

possible:

F(a(tut2),x) <= y(x,U)A~8(x,tht2)Ati <t2,

0{a(tut2),x) ~F(a(tuti),x} Ati <t2,

where a, /3 and 7 are events, and the symbol '~' denotes

negation-as-failure. Notice that the first rule here applies

negation-as-failure to /?, an expression in the action lan

guage, while the second rule applies negation-as-failure to

an expression in the deontic language. The second rule

says, intuitively, that a is obligatory if it is not forbidden.

There are obvious applications of these ideas in legal do

mains [20]. For example, an adequate representation of the

concept of a corporation requires a representation of the

"bundle of rights" available to the corporation's creditors

and the owners of its stock. Here is a simplified illustra

tion:

Example 2.1: Consider a closely held corporation, c, with

three stockholders, ai, a2 and a3, and a bank, b, as its

sole creditor. The corporation is obligated to pay inter

est to the bank, in some fixed amount of dollars, d, per

month. Assuming that we have properly defined the action

TransferDollars(x, y, n, <)', we could write this obligation

as follows:

0(TransferDollars(c,b,d,t),c) <= Month(t),

where the predicate 'Month' simply tests that t is the be

ginning of the month. This is what we mean when we say

that the bank has a "right" to receive 'd' dollars in interest

from the corporation each month. The stockholders might

also have a "right" to receive dividends each quarter, but the

specification of this right would be quite different. First, we
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would write the following free choice permission:

P((3n)TransferDollars(c, a,-,n,t),c) <= Quarter(t),

for t = 1, . . . , 3. By itself, this rule allows the corporation

to select a stockholder, a< , and a dollar amount, n, in making

the transfer, but such a completely free choice would then

be constrained by the following obligation:

0(TransferDollars(c, aj,nj,t),c) •<=

TransferDollars(c, a,-, nj, t) A n, x r; = n,- x r,-,

for i ^ j. Here, r, is the fraction of total stock owned by

a, , so this rule expresses the fact that a dividend must be a

pro rata distribution of assets to all stockholders. □

The deontic modalities are also useful for expressing plan

ning problems. The following example is adapted from

[25].

Example 22: Imagine two actors, ai and a2, moving

around in a suite of rooms, t\, . . . , r„. We define an action

'Move(x, y, z, ti, t2y as follows:

Move(x,y,z,*i,t2) <=

In(x, y)[ti,t] A In(x, z)[t, t2] A

Connected(j/, z) A t\ < t < t2,

Move(x,y,z,*1,<2) ■«=

la(x,y)[ti,t] A Move(x, u, z,t,t2) A

Connected(y, u) A ti < t < t2,

where 'In(x,j/)' asserts that actor x is in room y, and

'Connected(y, z)' asserts that room y is connected by a

doorway to room z. Suppose the actors ai and a2 are for

bidden to be in the same room at the same time. We could

represent this forbidden event by:

InSameRoom(to, t%)

In(ai,j/)[*i,<2] Aio<<i <t<t2<t3A

In(a2, y)[V„ *2] A to < t\ < t < t'2 < t3l

and then assert:

F(InSameRoom(to,<3), ai&a2) (1)

to represent the prohibition itself. (In this encoding, we

are treating ai&a2 as a single agent, and ignoring the dif

ficult problems of joint agency.) Given (1), we would like

to know if the following action is also forbidden:

Swap(t0,<3) Move(ai,rj,r_,-,t0,<3) A

Move(a2,ri,ri,t0,<3),

where r, and Tj are any two arbitrary rooms. In other words,

we would like to know whether (1) implies:

F(Swap(<o,*3),ai&a2), (2)

taking the universal closure over to and t^. The answer de

pends on the connectivity of the rooms, and the solutions

are discussed in [25]. Semantically, however, if (l)does not

imply (2), then there exists some way to swap the positions

of the two actors without violating the deontic constraints

— i.e., there exists a permitted plan. □

In the previous example, we were able to formulate a plan

ning problem without reference to the frame problem be

cause our two agents controlled all the actions relevant to

the plan. We can use the same idea to formulate a classi

cal STRIPS planning problem. In this case, however, it is

necessary to modify the representation somewhat. In Ex

ample 2.2, we specified all possible actions by definitions,

and then asserted that certain actions were forbidden. We

assumed, in effect, that all actions are permitted unless they

are explicitly forbidden. In the blocks world, we will turn

this around, and assume that actions are forbidden unless

they are explicitly permitted. (Think of this modality as

"can do" rather than "may do".) Here is a simple exam

ple:

Example 23: Consider a blocks world with a base predi

cate 'On(x, j/)', in which x is a block and y is either another

block or a location on the table. Define the following action:

Move(x,j/,z,ti,t2) <=

(Vw)->On(w,x)[tht2]A

On(x, y)[t{\ o (Viu)-On(iU, y)[t2] A

(Vip)-iOn(to, z)[ti] o On(x, z)[t2] Mi<t2

This action simultaneously (i) maintains the fact that there

is nothing on x, (ii) clears x from its location on y, and (iii)

puts x on z. To handle the frame problem, we also define

the following actions:

HoldOn(x,y,ti,t2) <= On(x, y)[ti,t2] A <i < t2,

which maintains the fact that x is on y, and

HoldClear(x,*i,*2) <= (Vw)-iOn(w,x)[tut2] Ati < t2,

which maintains the fact that there is nothing on x. We now

assert that a particular actor, ai, is permitted to perform any

bounded set of these actions concurrently, as long as the

preconditions are satisfied:

P(Move(x,y,z,ti,i2)A

m

/\HoldOn(u,i,u,2,*i,<2)A

i=i

n

f\ HoldClear(ttj,<i,<2),ai> •«=

i=i

(Vu>)-.On(to, x)[*i] A On(x, y)[t{\ A

(Viu)-.On(w,z)[*i] A

m n

/\ On(u<i, ui2)[h] A /\ (Ww)^Oq(w, Uj)[ti] A

t\ < t2

This is a free choice permission, and if we assert this per

mission for all m < M and n < N, then ai is allowed to

select any blocks that it wants to 'HoldOn' and 'HoldClear'.

To turn this into a planning problem, assume that we have

also specified a 'Start' condition and a 'Goal' c adition. To

show that there is no way for ai to get from 'Start' to 'Goal',



Modalities Over Actions, I. Model Theory 441

we try to prove:

F(Start[*0] o Goalfo], ai) <= t0 < tk,

under the assumption that all actions are forbidden unless

they are explicitly permitted. If this proof fails, we will

have a sequence ofpermitted actions that achieves the goal.

□

Notice that this is a "monotonic" solution to the frame prob

lem, in the spirit of [13]. There are no frame axioms, just a

collection of actions that explicitly change the state of the

world. Unlike the solution in [13], however, our solution

does not require us to update the complete state ofthe world,

since the robot only needs to "hold onto" those blocks that

are relevant to the planning problem. This may seem unre

alistic (for example, it requires the robot to have N+M+l

arms !), but this is just the first step in our analysis. It is easy

to modify the example so that the inertial actions occur by

default:

Example 2.4: Let 'Move', 'HoldOn' and 'HoldClear' be

defined as in Example 2.3. For convenience, we define

the following actions as the opposites of 'HoldOn' and

'HoldClear', respectively:

ChangeOn(z,r/,f.3) •<=

On(x, y)[t3] o (Vto)-.On(tw, y)[U] A t3 < U

ChangeClear(a;,t3) <=

(Vio)-'On(tt;, x)[<3] o On(z, x)[<4] A f.3 < U

Intuitively, we want to assert that 'On' and 'Clear' persist

unless some specific action changes them. We can write

this as follows:

0{HoldOn(x,y,ti,t2), nature) •<=

On(x,j/)[ti]Ati <t2A

~(3a,t3)

[DO(ChangeOn(x,y,<3),a) A*i <t3< t2],

0(HoldClear(x,fi,<2), nature)

(Viw)-.On(t«, x)[U] A U < t2 A

~(3a,t3)

[DO(ChangeClear(x,t3),a) Af-i < t3 < tj],

where the symbol '~' denotes negation-as-failure. We thus

postulate an actor named 'nature' who is obligated to per

form the actions 'HoldOn' and 'HoldClear' unless some

other action intervenes. (Remember: 'nature' always obeys

the law!) We can now simplify the free choice permission

for ai :

P(Move(a;,y,z,<i,t2),ai) <=

(Vtu)-On(io, x)[U] A On(x, y)[ti] A

(Vw)->Oa(w,z)[U] A*i < t2,

and let 'nature' do some of the work. □

The encoding in Example 2.4 suggests that we might en

counter problems with the ramifications of an action, but

these problems can also be solved using deontic modalities.

Here is a standard example, from [38]:

Example 2J: Imagine a university database system, in

which the relation 'In(s, c)' means that student s is enrolled

in course c. The possible actions are 'Add' and 'Drop',

which are defined as follows:

Add(s,c,<i,t2) <= ->In(s,c)[ti] ola(s,c)[t2] Ati < t2

Drop(s,c,f.i,f2) <= In(s,c)[<i] o -.In(s,c)[t2] A<i <t2

(In this example, time is usually discrete, and t2 is usually

the immediate successor of t\.) Assume the existence of

two deontic rules that permit (P) a student to add a course

if she is not already enrolled in it, and to drop any course in

which she is currently enrolled. There are also two deon

tic rules that obligate (O) the university to maintain a stu

dent's enrollment status unless the student herself adds or

drops a course. These rules are similar to the inertial rules

in Example 2.4. Finally, assume that a student is required

to take 'cheml20\ a laboratory course, whenever she takes

'chem 110'. We could represent this requirement as follows:

0(ln(s, cheml20)[ti, <2]VAdd(s, cheml20, U,t2), s)

<= Add(s,chemll0,ti,<2),

0(-iIn(s, cheml 10)[ti , t2] VDrop(s, cheml 10, *i,fa), s)

<= Drop(s,cheml20,<i,<2),

Thus, if a student always obeys the law and is initially en

rolled in no courses at all, she will always satisfy the uni

versity regulations governing enrollment in 'cheml 10' and

'cheml20'. □

We now discuss the logic that makes these representations

possible.

3 Events and Actions

This section develops a language for events and actions, and

thus establishes a foundation for the deontic language in

Section 4. In particular, we discuss here the concept of a

basic event, and we clarify the distinction between definite

and indefinite actions. Our logic is intuitionistic, rather than

classical, and we show that this choice is dictated by a desire

to include statechanges in the class of basic events. Most

of the technical results in this section are borrowed from

[21], where they are developed for a one-sorted (atempo-

ral) language. To save space, we will not recapitulate this

material here, but simply indicate how the definitions and

theorems can be modified to apply to a two-sorted (tempo

ral) language. The reader is urged to consult [21] for a more

thorough analysis of circumscription in intuitionistic logic,

and to consult [29] for a further discussion of indefinite ac

tions.

Let £ be a function-free first-order language with two sorts:

an object sort and an order sort. The object sort includes

constants and variables, written x\,x2, . . ., but the order

sort includes only variables, written t\ , t2, . . .. We will as

sume that the object arguments always precede the order ar

guments in the signature of the language, so that the pred

icate P(x\,...,xn,ti,...,tm) has arity (n, m). A com
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mon device in the interpretation of intuitionistic logic (see,

e.g., [7]) is to extend the original language by a new set of

constants, which can then be used to specify a total domain

for a Kripke structure. Accordingly, let £(c, t) be the lan

guage £ augmented by an arbitrary set of constants c for the

object sort, and an arbitrary (but disjoint) set of constants t

for the order sort. We asssume that t is isomorphic to the ra

tional numbers, and therefore countable, and for simplicity

we assume that c is countable as well. Moreover, we will

use the natural order on the rationals to interpret the special

order atoms in £, i.e., the atoms t\ < t2. Thus the total

domain t is a dense linear order.

The main idea underlying the Kripke semantics of intuition

istic logic, however, is that we should work with partial do

mains and partial models. We thus write a Kripke struc

ture for £ as a quintuple {W, C,h, u, o), where W is a

nonempty set of worlds, C is a partial order on W, u is

a monotonic mapping from the worlds of W to nonempty

sets of object constants in £(c, t), and o is a monotonic

mapping from the worlds of W to nonempty sets of or

der constants in £(c, t). (Note that o(w), for a particu

lar world to G W, could be a finite linear order, or a sin

gleton, or an infinite linear order that is not dense.) In

tuitively, the third component of the Kripke structure, h,

tells us the ground atomic formulae that are true at each

to G W. Formally, we first define an intuitionistic relation

R of arity (n, m) to be a function that assigns to every world

to G W a subset of the Cartesian product u(to)n xo(w)m,

subject to the requirement that R(wi) C R(vn) when

ever w\ C v>2. We then define h to be a mapping from

the predicate constants in £ to the set of intuitionistic re

lations on W. The atomic clause of the "forcing" relation

[7] is thus: to, W (= P(ci,...,c„,ti,...,tfn)ifandonlyif

(ci, . . . , cn, ti, . . . , tm) G h(P)(w), for P a predicate con

stant of arity (n, m). For the order atoms: to, W (= ti < t2

if and only if ti and t2 are both in o(w) and U is less than

t2 in the natural order on the rationals. Among the com

pound formulae, the definitions of forcing for conjunction,

disjunction and existential quantification depend only on a

single world, to, as in classical logic, but the definitions for

implication and universal quantification are nonclassical:

to, W t= B <= A iff

w', W (= A implies w',W \= B for every to' □ w in

W, and the constants in A and B are in u(to) or o{w),

to, W |= {Vx)A(x) iff

w', W |= A(c) for every to' □ to in W, and for all

object constants c in u(to'),

to, W \= (Vt)A(t) iff

to', W |= .4(t) for every to' □ to in W, and for all

order constants t in o(to').

Now let A be a closed sentence in C. U w, W \= A for

every to G W, we say that (W, C, h, u, o) satisfies A. If

to, W (= A for every to G W such that the constants in A

axe in u(to), then we say that A is true in (W, C, h, u, o).

Finally, if <j> is a set of sentences and ^ is a sentence, we

write <f> ^ V if OIUy ifV" 's tniem every Kripke structure

that satisfies </>.

We now apply the machinery of [21], which was developed

for a one-sorted (atemporal) language, to the two-sorted

language £. First, to state the circumscription axiom, we

need to extend £ to include (at least) the second-order uni

versal quantifier, but this works in the two-sorted case ex

actly as it does in the one-sorted case. If is a finite set

of Horn clauses, including order constraints, and if P is

a tuple consisting of the defined predicates in 71, i.e., the

predicates that appear somewhere on the "left-hand side"

of 71, then we are interested in "the circumscription of P

in 7i(P)," which is denoted by Circ(R,{P)\P). Second,

to analyze this circumscription, we need the concept of a

final Kripke model. Let Ji = (Wi,Ci,hi, ui,oi) and

J2 = {Wi, C2, h2, U2, o2) be two Kripke structures for £.

We say that a mapping r : W\ —» W2 is a homomorphism

from J\ into J% if and only if (i) it preserves C, and (ii) it

preserves h, u and o relative to some fixed (but arbitrary)

domain isomorphism 1. (Note that this is possible only be

cause we have assumed that the total domains c and t are

countable.) Now let K be an arbitrary class of Kripke struc

tures and assume that K — (W, C, h, u, o) is a member of

K.

Definition 3.1 K is a final Kripke structure for K if and

only if, for every J G K and every domain isomorphism t,

there exists a unique homomorphismfrom J into K.

It is easy to see that two final Kripke structures for K are

isomorphic, and thus either one could be designated as "the"

final Kripke structure for K.

We typically use Definition 3.1 as follows: We take K to be

the class of Kripke structures that satisfy some set of first-

order rules K, and we try to find a final Kripke structure,

K, for K. If such a K exists, we call it the final Kripke

model for H. It then turns out (see Proposition 3.7 in [21])

that a universally quantified implication is entailed by TI if

and only if it is true in K. Notice, however, that Defini

tion 3.1 is not restricted to first-order theories, and could

apply equally well to second-order theories, such as the cir

cumscription axiom. On the other hand, not every instance

of the circumscription axiom has a final Kripke model (see

Section 5 of [21] for the discussion of a counterexample).

In fact, the existence of a final Kripke model seems to be

one measure of the coherence of a circumscribed theory in

intuitionistic logic.

It is thus of some interest that we can always construct a

final Kripke model for Circ(Tl(P);P) when TL determines

the class of events discussed in Section 2. These rules look

like Horn clauses, but they include special expressions like:

B(x)[ti] o -,B(x)[t2] and (Vto)--C(to,i/)[ti,t2]. Our ap

proach is to treat these special expressions as atomic predi

cates in an extended language £', and to define their mean

ing by a set ofrules outside the scope of the circumscription

axiom. Thus, if B(x, t) and C(x, y, t) are base predicates

in £, i.e., predicates in £ that are not defined in 71, we would

adopt the following definitions:



Modalities Over Actions, I. Model Theory 443

Definition 3.2

B(x)[ti]o^B(x)[t2] «- B(xtti)A[±-t=B(z,t2)]

->B(x)[ti]oB(z)[t2] O [±<=B{x,ti)] A B(x,t2)

C(x, y)[U] o {Vw)->C(w, y)[t2) O

C(x, y,U)A (Vw)[L<^C(w, y, t2)]

(yw)^C{w,y)[ti]oC(x,y)[t2) &

(Vw)[L<=C(w, y, ti)] A C(x, y, t2)

B(x)[ti,t2] B(x,U) A B(x,t2) A

(Vt)[B(i,t) <=<i < t < t2]

^B(x)[tut2] ->B(x,ti)A-^B(x,t2)A

(Vt)[±<=B(x,t) AU <t<t2]

C(x,y)[tut2] «• C(x,y,ti)AC{x,y,t2)A

(Vt)[C(x,y,t)<=ti <t<t2]

(Vw)-iC{w,y)[tut2] O

(Vw)-iC(w, y, <i) A (Vw)^C(w, y, t2) A

(Vu>, t)[X<=C(tw, y, <) A U < t < t2]

(We could extend this list in obvious ways, but this is suf

ficient for the examples in Section 2.) Let V be the set of

all such definitions. Even though our special expressions

are "defined" in V, we will treat them as base predicates in

since they are not defined in TI. We now proceed to the

construction of the final Kripke model.

Let c be any countable set of object constants distinct from

the constants in £, and let the total order domain, t, be the

rational numbers. Let H be the set of all triples {B, U, Q),

where U is any nonempty set of object constants in £ or

c that includes the constants in H, Q is any nonempty set

of rational numbers, and B is any Herbrand interpretation

for the base predicates in £' over the universes U and Q.

Set (BuUhQi) C {B2,U2,Q2) if and only if Bx C B2

and Ui C U2 and Qi C Q2. We note that H U {(0, 0, 0)}

is a complete lattice under this order, and we use TV and

'U' to denote the meet and join, respectively, in this lattice.

It is obvious that any subset of H could be interpreted as a

Kripke structure for the base predicates in £'. Simply define

u((B, U, Q)) = U and o((B, U, Q)) = Q, and define:

h(P)((B,U,Q)) = {(c",tra) | P(cn,H g B)

for every base predicate P in £'. Now, using the tech

niques in [18], let W* be the largest subset of H such that

(W*, Q, h, u, o) satisfies the definitions in V. (This set

can always be constructed as the greatest fixed point of the

"deletion" transformation associated with V.) For the de

fined predicates in £, let S% g 1 (B) be the least fixed point

of the van Emden-Kowalsk! one-step consequence" oper

ator for % [40] over the universes U and Q that includes B.

(For the details of this construction, see [21].) We can now

define:

h*(P)({B,U,Q)) =

{(cn,tm)\P(c\tm)€S%tQUB)}

for every predicate P in £'. Note that h*(P) = h(P)

whenever P is a base predicate. Our main result is:

Theorem 33 Let H be a set of Horn clauses in £' with

defined predicates P, and let V be given by Definition

3.2. Then (W*, C, h*, u, o) is the final Kripke model for

Circ(Tl(P);P)UV.

This result follows by a minor modification of Theorem 4.7

in [21].

Now that we have constructed the final Kripke model for

Circ{Tl(P)\P) U V, we can discuss the concept of definite

and indefinite events. Consider the following:

Definition 3.4 Let T be a theory in a language £, and let

A, B and A{x)be atomicformulae in £. We say that T has

the disjunctive property if:

T\=AVB iff T (= AorT (= B.

We say that T has the existential property if:

T |= (3x)A(x) iffT^ A(x)8for some 0.

It should be apparent that TiUV would not have these prop

erties if entailment were interpreted classically, even in a

simple language without linear order constraints. For ex

ample, if 'Q(a)«=-.B(b)' is in 2>, then Q(a)VB(b) is en

tailed in classical logic, but neither atom is entailed by it

self. If 'P(sc)<^Q(z)' and T(z)-<=B(x)' are also in K, then

(3x)P(x) is entailed in classical logic, but there is no substi

tution 8 such that P(x)6 is entailed. However, in intuition-

istic logic, the disjunctive and existential properties would

hold. In fact, we can make a stronger statement. Let be a

set of Horn clauses and let V be a set of definitions includ

ing "embedded implications" and "embedded negations,"

as in Definition 3.2. Let <f> be a conjunction of atomic for

mulae, and assume that if>\, V>2 and ij>(x) are also atomic.

Then:

HUV (= VmVV-2^ iff (3)

TI UP |= ij>i<^<t> orKUV f=

and

%UV\= {3x)r/>{x)-t=<f> iff (4)

H U V (= il>{x)6<^4> for some 6,

as long as entailment is interpreted intuitionistically. (If <j> or

ip, or both, have free variables in these entailments, we sim

ply take the universal closure on the right-hand side.) These

results follow from the fact that the final Kripke model for

H U V has an intersection property analogous to the model

intersection property of Horn clause logic (see [18]). Intu

itively, (3) and (4) show that we can assert the conjunction

<j> in the context of a theory H u V and the disjunctive and

existential properties will still hold.

However, the situation becomes more complicated when

we add circumscription and an order sort. Let us say that <f>

is a definite event if (3) and (4) still hold for the two-sorted

language £' when the theory TI u V is strengthened to the
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theory Circ(R,(P);P) U V. It is now insufficient that 4> is

a conjunction of atomic formulae. For example, if TL in

cludes:

P «= Q(a) and P <= Q(b),

then Q(a)VQ(b)<=P is entailed by Circ(H(P);P), but nei

ther Q(a)<=P nor Q(b)<=P is entailed. In general, the dis

junctive and existential properties will not hold in the con

text of a circumscribed theory if denned predicates are in

cluded in <f>. Even if <f> consists entirely of base predicates,

the disjunctive and existential properties are not guaranteed.

For example, suppose B(t\ , t2) is a base predicate andH in

cludes the rules:

P^ B(ii,t2) Aii <t2,

Q<=B(ti,t2)AU >t2.

Then, because t\ and t2 are interpreted over a linear order,

the universal closure of PVQ<=B(tj, t2) is entailed by H,

but neither P<=B(*i, t2) nor Q-$=B(ij, t2) is entailed.

Obviously, we can correct this problem if we specifically

assert the order relations on 1 1 and t2. This will give us the

class of basic events. If B(xi , . . . , x„, f) is a base predicate

with only one order argument, then B(x\,...,xn,t) is a

basic event. UB(x\,. ..,xn,t\,t2) is a base predicate with

two order arguments, including the predicates in Definition

3.2, then

B(xi,...,xn,t,t),

B(x\,...,zn,tut2) A<i < t2,

B(xi,...,x„,ti,t2) Ati > t2,

are all basic events. (Again, these definitions, as well as

Definition 3.2, could be extended, but this is sufficient for

the examples in Section 2.) The following proposition now

follows easily from an analysis of the final Kripke model

for Cirt(H(Py, P)UV:

Proposition 3J5 If <f> is a basic event, then the disjunctive

and existential properties stated in (3) and (4) holdfor the

strengthened theory Circ(R.(P);P) U V in the two-sorted

language C with linear order constraints.

Intuitively, basic events are the minimal (nonempty) defi

nite events, and they correspond to the minimal (nonempty)

worlds of (W*, C, h* u, o). We will use this fact in the

following section.

4 Deontic Modalities

This section develops the semantics of P(a,x), F(a, x)

and O (a, x), as well as the semantics of DO(a, x). Theba

sic idea is to use the final Kripke model (W*, C, h*, u, o)

to define two concepts: (i) the denotation of an action a,

written fa] ; and (ii) the Grand Permitted Set, written V.

The deontic modalities are then interpreted as statements

about the possiblerelationships between fa] andP. This is

a variant of the deontic semantics first presented in [16, 17].

Consider a basic event, such as 'SwimLap(i,ti,<2) Ati <

t2 . To assert that a particular agent, Co = x9, performs this

event at the particular times t\=t\9 < t28 = t2 is to assert

that Co determines the evolution of a very small piece of the

world between ti and i2. A natural way to represent this fact

in W* is to point to the set:

V = {w | w, W* (= SwimLap(a:,ii,*2)0}.

This set has a least element, nV, corresponding to the small

piece of the world controlled by Co, but it also includes all

possible completions of I~IV, corresponding to the myriad

ways that other agents (as well as Co herself, wearing a dif

ferent hat!) could determine the evolution of the world, at

ti and t2, and at all other times t. When we associate such a

set with a particular agent, we think of it as a basic action.

Since all actions are defined by Horn clauses from basic ac

tions, we adopt the following:

Definition 4.1 The denotation of a ground action a, writ

ten fa], is defined recursively asfollows:

• Ifa = B6for some base predicate B and some ground

substitution 6, then

{w | w, W* \= B8) G M

• If a = R8for some ground substitution 0, where R is

defined by the rule

R <= Qi A . . . A Qk A O,

and ifVi G \Q%&\ fori = 1, . . . , k, and if the order

constraints 08 are satisfied in the natural order on the

rationals, then

V\ n . . . n Vu g \a] .

Because of the way {W*, C, h*, u, o) is constructed, every

V G fa] is a principal filter in W*, i.e., it is an upward

closed subset with a least element. We want the Grand Per

mitted Set, V, to have the same property, so we simply de

fine V for the agent Co to be any arbitrary set of principal

filters in W*. Intuitively, V represents thepermissible ways

that Co can determine the evolution of the world.

We are now ready to define the modalities, P, F and O.

Given a Kripke structure (W, C, h, u, o) for the action lan

guage, we extend it to a deontic structure (W, V, Q, h, u, o)

by adding a specification of the Grand Permitted Set. More

precisely, there may be many Grand Permitted Sets, at least

one for each actor, c, and each of these may vary with to in

W, since we are still working with intuitionistic logic. Let

us denote these sets by Ve(w), and include them all in the

specification V. In general, the domains of (W, C, h, u, o)

may be different from the domains of (W*, C, h*, u, o),

but they are isomorphic, and it simplifies our notation if we
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assume that they are identical. Thus, although \a] and V

are actually denned on W*, we will write them as if they

used the constants in (W, C, h, u, o).

Definition 42 Let {W, V, C, h, u, o) be a deontic struc

ture, and let a be a ground event. The forcing conditions

for P, F, O are:

• to, W (= P(a, c) iff, for all to' □ w in W, thefollow

ing condition holds:

: V G \a\ —► (5)

3V : V C V A V G PcK)-

• u», W |= F(a, c) (ft for all to' □ to in W, thefollow

ing condition holds:

VV, V" : V € [a| A V" C V —> (6)

V <£ Vc(w').

• w,W \= 0(a, c) iff, for all to' □ to m W, thefollow

ing condition holds:

yyi . V G <pc(w>) (7)

3V:V'CV A V€ [a].

To understand these definitions, recall that V CV means

that V says more about the world than V, since nV □

nV. Also note that Vc(w) is allowed to vary arbitrarily, i.e.,

nonmonotonically, over C, but the deontic atoms P(a, c),

F(a, c) and O (a, c) increase only monotonically over C by

virtue of the definition of forcing. (This will turn out to be a

useful feature when we subsequently investigate negation-

as-failure.)

Definition 4.2 can be simplified in the case of F and O, as

shown by the following:

Lemma 43 Condition (6) in Definition 4.2 is equivalent

to:

Vw : to, W* |= a —► {to' G W* | to' □ w} <£ V, (8)

and condition (7) in Definition 4.2 is equivalent to:

Vto : {w' € W* | w' □ to} e V —► to, W* |= a. (9)

Proof: We outlinethe proof for F(a,c,t). Assume (6), and

choose a w such that w, W* f= a. Since ( W*, C, h*, u, o)

is the final Kripke model for Circ(K{P);P)DV, this means

that a G S% q T (B) for some (B, U, Q). Thus there exists

a V G \a] such that {to' G W* \ to' □ to} C V, and

from (6) we conclude that {to' G W* \ to' □ to} £ V.

Conversely, assume (8) and choose any V G fa] and any

V C V. If V G V, then V has a least element too, and

V = {w' G W* | w' □ wo}. But then too, W* (= a, and

(8) implies that V £ V, a contradiction. Thus V g" P.

The proof for 0{a, c, t) is similar. □

This result shows that our definition ofF and O is basically

the same as the definition in [16, 17]. The differences are

minor: V was defined in [16, 17] on the least elements of

the principal filters in W*, whereas here it is defined on

the principal filters themselves. With this translation, all of

the results in [16, 17] for F and O carry over to the present

work. Note also the rough intuitive reading of (9): "a is

obligatory if it is true in all permitted worlds." This means

that our logic, for F and O, is similar to standard deontic

logic [5].

However, for P, Definition 4.2 differs both from standard

deontic logic and from the logic presented in [16, 17]. The

contrast with standard deontic logic has already been dis

cussed: It should be clear from condition (5) that P is a

"free choice permission." The other difference is more sub

tle. The definition of P in [16, 17] would be translated as

follows:

VV : V G \a\ V G Vc{w'). (10)

This is a plausible definition, but it has a curious conse

quence: P(a,c)=>-->0(/3,c) whena and/? are disjoint ac

tions. (This fact was first pointed out by Ron van der Mey-

den.) For example: "If you are permitted to sell your house

this year, then you are not obligated to pay your taxes." If

P is defined using condition (5), however, permission and

obligation are independent (see Theorem 4.8, below). Un

der the current interpretation, it is possible to say that you

are "permitted to sell your house this year" if, in fact, you

are "permitted to sell your house and pay your taxes this

year." Moreover, that would be a necessary implication,

since P(aA/3, c)=>P(a, c) becomes a valid formula when

P is defined using condition (5). Although there are situa

tions in which condition (10) seems appropriate (for exam

ple, if we wanted to focus very narrowly on a specific plan

ning problem, and ignore all extraneous obligations), the

current version of Definition 4.2 seems closer to our com

mon sense intuitions about permission and obligation.

Now that we understand the semantics of P, F and O, it is

simple to define a compatible semantics for DO. Since the

permissible actions available to an agent, c, are represented

in our system by Ve(w), which is a set of principal filters in

W*, the action actually taken by an agent, c, should be rep

resented by a single principal filter in W*. Let us write this

as Dc(w). We need a veridicality assumption, of course,

and this can be conveniently encoded by the unique homo-

morphism t from (W, C, h, u, o) into (W*, Q, h*, u, o).

We thus stipulate that

r({to' G W | w' □ to}) C £>c(to),

for all w G W, which implies that r(to) □ nDc(w). Fi

nally, we include the sets Dc(w) in a new component, D,

of our deontic structure:

Definition 4.4 Let {W, D, V, Q, h, u, o) be a deontic struc

ture, and let a be a ground action. The forcing condition

for DO is:

• u), W (= DO(a, c) iff, for all to' □ to in W,

3V : De(w') C V A VG \a\.



446 L T. McCarty

It should now be clear what it means to say that an agent al

ways "obeys the law", namely: Dc(w) must be an element

0/ the Grand Permitted Set!

Definition 4.5 (W, D, V, Q, h, u, o) is causalfor the agent

c iffDe{w) G Vc{w)for all w G W.

Proposition 4.6 If {W, D, V, Q, h, u, o) is causal for the

agent c, then

f=±«=DO(o,c) AF(«,c),

(=DO(o,c) <=0(a,c)

Proof: Immediate, from Definitions 4.2, 4.4 and 4.5. □

We conclude this section with two theorems that are useful

for the development of a proof theory. The first theorem

states that certain inferences involving O and F can be re

duced to inferences in the action language.

Theorem 4.7 Assume that 0(a,), F{#), 0(7) and ¥{y)

are deontic atoms with identical agents, x, and let f denote

a special nullarypredicate that does not appear inn or V.

Then

n m

|=0<7>^/\0(a.-)A/\F(#) (11)

1=1 1=1

iff

n m

CircVKP);P) U D (= 7 V f <= /\ a,- A /\ f<=A. (12)

t=l i=l

Similarly,

n m

|=F(7>^/\0(a.)A/\F{A) (13)

i=l 1= 1

iff

n m

Circ(K(P);P)U V \= f <= 7 A f\ a,< A /\ f<=/3j. (14)

1=1 i=i

Proof: We outline the proof for (11), and note that the proof

for (13) is similar. Assume that (11) is false. Then, by Def

inition 4.2 and Lemma 4.3, there exists a Grand Permitted

Set V such that condition (8) holds for all /?,, and condi

tion (9) holds for all a, but fails for 7. Thus, for 7, there

exists some wo such that {to' G W* \ to' □ too} G V but

too, W* ^ 7. Suppose we add the special nullary predicate

f to the worlds of W*, so that

h*(f)(to) = {()} iff {w' G W* I w' □ to} g V.

Then to0, (= <*i by (9), and to0, W* (= f by (8),

but too, W* \fc 7 V f. Since f does not appear in H or V,

however, we still have a Kripke model for Circ{7L{P);P)\J

V, and hence a countermodel to (12).

Conversely, assume that (12) is false. Then there exists a

Kripke structure, J, in a language including f that satisfies

Circi1l(P);P) U V but falsifies the implication in (12) at

some world u>o- Let r be the unique homomorphism from

J, with the fs removed, into (W*, C, h*, u, o), and then

add the fs back to the worlds of W* so that r preserves h(f)

as well. In addition, for those worlds of W* that are not in

the image of t, add f to to whenever to, W* (= # for some

i. (Note that this cannot affect r(too), since r(too), W* \fc f

and r(too), W* ^ for all t.) Now define a Grand Per

mitted Set V on W* by setting

{w' G W* I to' □ to} G V iff

to, W* |= a, for t = 1, . . . , n, and w, W* £ f.

It is straightforward to verify that this V provides a counter-

model to (1 1) at t(ioo). In particular, we have {to' G W* \

to' □ t(ioo)} G V by construction but r(too), W* ^ 7-

and thus condition (9) fails for 7. □

The second theorem states that inferences about O are in

dependent from inferences about P.

Theorem 4.8 Assume that O(aj), P(y3, ) andO(j) are de

ontic atoms with identical agents, x. Then

n m

(= 0(7) <^ /\ 0(a.) A /\ P{ft) (15)

i=l i=l

iff

n

|= 0(7) <= /\ 0(a,). (16)

t=i

Proof: It is obvious that (16) implies (15). For the con

verse, assume that (16) is false. Then there exists a Grand

Permitted Set V\ such that condition (7) in Definition 4.2

holds for all a, but fails for 7. Thus, for 7 we have:

3V : V G Vi A VV : V C V —► V £ (17)

Construct a new Grand Permitted Set by defining

Vt = {Vi CI V2 I Vi € Pi, V* € [Al for some t},

and then setting V = V\ Wi- (Note: It is necessary to ver

ify that is a set ofprincipal filters in W*.) Using this new

V, we note that condition (5) in Definition 4.2 now holds

for all Pi, and condition (7) still holds for all a,. Moreover,

condition (7) still fails for 7, since (17) obviously remains

true when we replace 7>i by V1UV2. We have thus shown

that (15) is false. □

These two theorems show that it is possible to construct

a simplified proof theory for certain fragments of our lan

guage. If we use O and F, but not P, Theorem 4.7 shows

that the most important inferences in the deontic language

can be reduced to inferences in the action language, which

can then be solved using the techniques of intuitionistic

logic programming, as in [22, 23]. If we use O and P, but
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not F, Theorem 4.8 shows that we can compute the obliga

tions first, and then compute the permissions independently,

which turns out to be very simple. On the other hand, if we

mix all three modalities in a single system, the situation is

more complex. It is interesting to note that all the examples

in Section 2 fall into one category or another, and there may

be cognitive (and computational!) reasons why this is so.

We will discuss these observations on the proof theory in

the second part of this paper.

5 Discussion

In standard deontic logic [5], modalities are applied to

propositions, but there have been several attempts to de

velop a deontic logic in which modalities are applied to ac

tions, as in the present work. A natural approach is to com

bine deontic logic with dynamic logic [33, 10] or process

logic [34], and the earliest example of this approach seems

to be [16, 17]. Meyer, et al„ have investigated a variant of

dynamic logic in which a special atom, v, is added to the

language to denote a violation of the norms [30, 42], and

they have shown that this system has some attractive prop

erties as a deontic logic. A system proposed by van der

Meyden, and shown to have a sound and complete proof

theory in [27], is interesting because of the way it combines

weak permission with free choice permission, but it does

not seem to offer a natural concept of obligation. Another

system, proposed by van der Meyden in [28], applies the

techniques of logic programming to a deontic specification

language, including the idea of a minimal model semantics

and a least fixed-point operator.

An alternative approach, which is prominent in the philo

sophical literature, is to add the deontic operators to a lan

guage that already includes the modal action operator "see

to it that," or stit [32, 4]. In such a language, we can say

things like "the agent x is obligated to see to it that p," where

p is any arbitrary proposition. The intuitions underlying

such a modality are very different from the intuitions under

lying dynamic logic, and even further removed from the in

tuitions underlying process logic. The focus, in stit theory,

is on the goals that an agent is trying to achieve, whereas the

focus in dynamic logic and process logic is on the trajecto

ries of possible actions. The present paper clearly belongs

in the latter camp: We can talk about agents achieving goals

in our language, as in Examples 2.3 and 2.4, but these are

derived concepts, not primitives.

It is unlikely that the merits of the various proposals for de

ontic logic will be judged on their semantics alone. More

likely is an evaluation based on the utility ofa particular for

malism for the pragmatic tasks ofcommon sense reasoning.

For this, at a minimum, we need to look at the proof theory,

and at the facilities for drawing nonmonotonic inferences.

These topics will be discussed in the sequel.
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Abstract

Suppose we are given a theory of system be

havior and a set of candidate hypotheses.

Our concern is with generating tests which

will discriminate these hypotheses in some

fashion. We logically characterize test gen

eration as abductive reasoning. Aside from

defining the theoretical principles underly

ing test generation, we are able to bring to

bear the abundant research on abduction to

show how test generation can be embodied

in working systems. Furthermore, we address

the issue of computational complexity. It has

long been known that test generation is NP-

complete. This is consistent with complexity

results on the generation of abductive expla

nations. By syntactically restricting the de

scription of our theory of system behavior or

by limiting the completeness of our abduc

tive reasoning, we are able to gain insight into

tractable test generation problems.

1 INTRODUCTION

Diagnostic reasoning is often viewed as an iterative

generate-and-test process. Given a description of a

system together with observations of system behavior,

a set of candidate diagnoses is produced which account

for the observed behavior. From the set of candidate

diagnoses, one or more tests is generated, executed

and the observed behavior fed back into the diagnostic

problem solver to determine a new set of candidate

diagnoses. In this paper we specifically examine the

task of test generation as it applies to hypothetical

reasoning, and in particular to diagnosis.

Consider a set of hypotheses HYP which we entertain

about some state of affairs represented by a first-order

sentence E. We are concerned with generating tests

to discriminate these hypotheses relative to some hy

pothetical reasoning goal. In a diagnosis setting, the

hypotheses could represent potential diseases, the di

agnostic goal, to eliminate a particular disease can

didate from consideration and the tests, observations

of symptoms or medical test results. In an active vi

sion setting, the hypotheses could represent candidate

interpretations for an object in a scene, the goal, to

uniquely identify the object by candidate elimination

and the tests, observation of new visual features result

ing from a camera movement. Hypothetical reasoning

covers a range of AI applications, all characterized by

the objective of generating hypotheses and then dis

tinguishing these hypotheses relative to some theory

through the use of testing. Diagnosis, plan recogni

tion, image understanding and aspects of natural lan

guage understanding are all instances of hypothetical

reasoning problems.

Hardware designers have examined the problem of test

generation for years. It is acknowledged to be com

putationally costly; even the problem of generating

tests for simple combinational Boolean circuits is NP-

complete (Ibarra and Sahni, 1975). Much of what is

found in the traditional design literature is test gener

ation algorithms for specific classes of digital circuits.

These algorithms are not directly applicable to the di

versity of test generation problems in hypothetical rea

soning domains. In the AI test generation literature,

the emphasis has also been on diagnosis of digital cir

cuits. DART (Genesereth, 1984) and GDE (de Kleer

and Williams, 1987) for example, both provide mech

anisms for rudimentary test generation within their

diagnostic frameworks. Much of the AI literature fo

cuses on strategies to deal with complexity, such as the

use of hierarchical designs (Shirley and Davis, 1983),

(Genesereth, 1984), probabilities (de Kleer, 1991) and

look-up tables (Meerwijk and Preist, 1992). Computa

tional architectures have been proposed for generating

tests for circuits (Shirley, 1986). Interestingly, there

has been little to no formal analysis of the problem of

test generation in the AI literature. Our objective is

to move beyond the specific problem of testing digi

tal circuits and to examine the general problem of test

generation for hypothetical reasoning, including diag

nosis.
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In an earlier paper, Mcllraith and Reiter (Mcllraith

and Reiter, 1992) provided a logical characterization

of testing for hypothetical reasoning. They character

ized tests in terms of the prime implicates PI(E) of

E. Since the ATMS computes (many) P/(E) in gener

ating diagnoses, it was shown that some propositional

tests could simply be "read off" from P/(E) with no

further computation necessary. Many tests are thus

generated for free. While a nice result for ATMS-based

problem solvers, it is of limited use for hypothetical

reasoning problem solvers that do not compute the

prime implicates of E.

In this paper we take the logical characterization of

tests introduced in (Mcllraith and Reiter, 1992) and

use it as a basis for examining the task of test gen

eration. We augment and extend the framework to a

first-order characterization. Then we recast test gen

eration as abduction. In so doing, we are able to ap

ply the abundant research on abduction to gain in

sight into the generation of tests. Specifically, we show

how the theoretical characterization can be embodied

in a variety of a different computational mechanisms.

Finally, we examine the issue of complexity, gaining

insight into tractable and intractable test generation

problems.

2 PRELIMINARIES

We review and expand upon the testing framework

provided in (Mcllraith and Reiter, 1992). A fixed first-

order language is assumed throughout. E will be a

fixed sentence of the language, and will serve as the

relevant background knowledge describing the system

under analysis. For example, in the case of circuits,

E might describe the individual circuit components,

their normal input/output behavior, their fault mod

els, the topology of their interconnections, and the le

gal combinations of circuit inputs (e.g. (de Kleer and

Williams, 1987), (Reiter, 1987)). We also assume a

fixed set HYP of hypotheses. In the case where E

describes a circuit, HYP might be the set of diag

noses which we currently hold for this device. How

we arrived at the set HYP will be largely irrelevant

for our purposes. HYP could be a set of abductive

hypotheses (Poole, 1989), the result of a consistency-

based diagnostic procedure (de Kleer et al., 1992), or

any other conceivable form of hypothesis generation.

We make two assumptions about H £ HYP. The

first assumption is that H be a conjunction of distin

guished ground literals of the language. The second

assumption is that the truth status of the hypotheses

is unknown, i.e., V# G HYP, E £ H and E £

A test specifies certain initial conditions which may be

established by the tester, together with an observation

whose outcome in the physical world determines the

test conclusions. The initial conditions must be con

sistent with the theory and with the current hypothe

ses being entertained. For example, in circuit diagnosis

the initial conditions of a test might be the provision of

certain fixed circuit inputs, and the observation might

be the resulting value of a circuit output, or the value

of an internal probe. In the medical setting, the initial

conditions might involve performing a laboratory pro

cedure like a blood test, and the observation might be

the white cell count. In an active vision setting, the

initial conditions might involve changing the camera

angle or moving objects in the scene, and the observa

tion might be some aspect of the corresponding image.

Some tests do not dictate initial conditions. Such is

the case when the test involves simply reading a sensor

value or querying a user.

To provide a formal definition of a test, we distinguish

a subset of ground literals of our language, called the

achievable literals. These will specify the initial condi

tions for a test. In addition, we define a distinguished

subset of the literals of our language called the observ-

ables. Thus, a test specifies some initial condition A

which the tester establishes, and an observable o whose

truth or instantiated value the tester is to determine

from the physical world.

Definition 1 (Test) A test is a pair (A, o) where A

is a conjunction of achievable literals and o is an ob

servable.

We distinguish between two types of tests, truth

tests, which tell us whether the observable is true in

the physical world, and value tests, which tell us what

instance of the observable is true in the physical world.

Definition 2 (Truth Test) Let the observable o be

a ground literal. A truth test is a test (A,o), whose

outcome a is one of o, ->o.

(bloodJest, hepatitis-A.virus) is an example of a

truth test. As a result of performing (bloodJest,

hepatitis-A.virus) in the physical world, the truth

value of hepatitis-A.virus is established; the out

come of the test is either hepatitis-A.virus, otherwise

-> hepatitis-A.virus.

In contrast, a value test establishes the existence and

truth status of an instance of the observable in the

physical world.

Definition 3 (Value Test) Let the observable o con

tain at least one uninstantiated variable. A value test

is a test (A, o) whose outcome a is a ground literal o ,

the instantiation of the observable o, or its negation.

An example of a value test would be ({},

colour(object, X)), where X is an uninstantiated vari

able. As a result of performing ({}, colour(object, X))

in the physical world, the outcome might be

colour(object,red), establishing the existence and

truth value of a particular instance of the observable.



Generating Tests Using Abduction 451

Definition 4 (Confirmation, Refutation) The

outcome a of the test (A,o) confirms H G HYP iff

Hr\AAH is satisfiable, and Ef\A\=HDa. a refutes

H iff E A A A H is satisfiable, and £ A A^ H D ->a.

Not all conjunctions A of achievable literals will be le

gal initial conditions, for example simultaneously mak

ing a digital circuit input 0 and 1. Since £ will encode

constraints determining the legal initial conditions, we

require that E A A be satisfiable. Moreover, hypothe

sis H could conceivably further constrain the possible

initial conditions A permitted in a test. For exam

ple, the hypothesis that a patient is pregnant would

prevent a test in which an x-ray is performed. In

such a case, E would include a formula of the form

pregnant D ->xjray so that T,Apregnantr\x.ray would

be unsatisfiable, in which case the very idea of a con

firming or refuting outcome of such a test would be

meaningless.

(Mcllraith and Reiter, 1992) show that a refuting test

outcome allows us to reject H as a possible hypothesis,

regardless of how we arrived at our space of hypothe

ses, HYP. A confirming test outcome is generally of

no deterministic value except in the case where our

space of hypotheses is defined abductively and HYP

is comprised of all and only the hypotheses being con

sidered. In such a case, it was shown that there is a

duality between confirming and refuting tests and that

a confirming test outcome has discriminatory power,

eliminating hypotheses which do not explain it, by

virtue of the definition of abductive hypothesis.

Discriminating tests are characterized as those tests

(A, o) which are guaranteed to discriminate an hypoth

esis space HYP, i.e., which will refute at least one

hypothesis in HYP, regardless of the test outcome.

Definition 5 (Discriminating Tests) A test (A,o)

is a discriminating test for the hypothesis space HYP

iff E A A A H is satisfiable for all H G HYP and there

exists Hi, Hj G HYP such that the outcome a of test

(A, 6) refutes either Hi or Hj, no matter what that

outcome might be.

By definition, a discriminating test must refute at least

one hypothesis in the hypothesis space.

Definition 6 (Minimal Discriminating Tests)

A discriminating test (A, o) for the hypothesis space

HYP is minimal iff for no proper subconjunct A' of

A is (A',o) a discriminating test for HYP.

Minimal discriminating tests preclude unnecessary ini

tial conditions, for example unnecessary medical tests,

camera movement, etc. Only those conditions neces

sary for producing the test outcome are invoked.

In many instances our theory will not provide us with

discriminating tests. Relevant tests are those tests

(A, o) which have the potential to discriminate an hy

pothesis space HYP, but which cannot be guaranteed

to do so. Given a particular outcome a, a relevant test

may refute a subset of the hypotheses in the hypothe

sis space HYP, but may not refute any hypotheses if

-ia is observed. Since there is no guarantee a priori of

the outcome of a test, these tests are not guaranteed

to discriminate an hypothesis space.

Definition 7 (Relevant Tests) A test (A,o) is a

relevant test for the hypothesis space HYP iffY,/\Ar\H

is satisfiable for all H G HYP and the outcome a of

test (A,o) either confirms a subset of the hypotheses

in HYP or refutes a subset.

By definition, a relevant test confirms or refutes at

least one hypothesis in HYP.

Definition 8 (Minimal Relevant Tests)

A relevant test (A, o) for the hypothesis space HYP

is minimal iff for no proper subconjunct A' of A is

(A',o) a relevant test for HYP.

Example 1. To illustrate, consider a simple medical

diagnosis problem where we suspect that a patient is

suffering from either mumps, measles, chicken pox or

flu.

HYP = {mumps, measles, chicken-pox, flu}

E =

(measles D redspots) A (chicken-pox D red-spots)

A (mumps D swollen-glands) A (flu D fever)

Both the hypothesis that the patient has measles and

the hypothesis that the patient has chicken pox, in

fer the observation of red spots. However, neither the

hypothesis that the patient has mumps or the hypoth

esis that the patient has the flu infer anything about

the existence or lack of existence of red spots. As a

result, the outcome of a test to observe red spots will

only provide discriminatory information if we observe

redspots to be false. In such a case we can refute

both chicken-pox and measles. However, if we ob

serve red-spots to be true, we are unable to reject any

of the four hypotheses. Thus, the test ({}, red-spots) is

an example of a minimal relevant test. No discriminat

ing test exists for our theory E and hypothesis space

HYP.

(Mcllraith and Reiter, 1992) further showed that if

HYP contains all and only the hypotheses to be con

sidered, and if the space of hypotheses is defined ab

ductively, then every relevant test acts as a discrim

inating test. In our example above, if these con

ditions are met, then the outcome redspots of the

relevant test ({}, redspots) would eliminate flu and

mumps since neither hypothesis abductively explains

redspots.

Example 2. Consider a bin-picking problem where a

smart computer vision system is trying to identify fruit
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coming down a conveyor belt. The fruit is limited to

apples, lemons, limes and bananas. Hypotheses are

defined abductively.

HYP =

{is(object, apple), is(object, lemon), is(object,lime),

is(object, banana)}

E =

(is(object, apple) D colour(object,red)) A

(is(object, lemon) D colour(object, yellow)) A

(is(objeci, lime) D colour(object, green)) A

(is(object, banana) D colour(object, yellow)) A

(is(object, apple) ©* is(object, lemon) ©

is(object,lime) © is(object, banana))

By performing the value test colour(object, X) with

outcome colour(object, red), that one test would allow

us to uniquely identify the object on the conveyor belt

as an apple. In contrast, we might have had to perform

a number of truth tests before arriving at the same

hypothesis space.

Finally, there is an even weaker notion of a test which

has the potential to provide further information about

the hypothesis space, but which generally does not

uniquely discriminate hypotheses.

Definition 9 (Constraining Test) A test (A,o) is

a constraining test for the hypothesis space HYP iff

Y.AAAH is satisfiable for all H € HYP and the

outcome a of test (A, o) either confirms or refutes a

conjunction of hypotheses drawn from HYP.

A constraining test has the potential to further con

strain or limit the hypothesis space, but not in itself

eliminate any hypotheses, except in the limiting case.

The limiting case occurs when the conjunction of hy

potheses contains only one hypothesis. In such a case,

a constraining test becomes a relevant test.

To illustrate the notion of a constraining test, con

sider E |= Hi A #2 ~D b, and consider the test (A, b).

If the outcome a of test (A,b) is ->b, then E A A A

->b [= -iHi V -iH2- The outcome of the test constrains

the hypothesis space and refutes the conjunction of

hypotheses Hi A H?. Although the test did not re

fute an individual hypothesis, it has provided further

discriminatory information. Given this test outcome,

if another test results in the refutation of -iHi (i.e.,

the entailment of Hi), then the additional information

from the constraining test (A,b) enables refutation of

H2 (i.e., the entailment of -1H2).

Proposition 1 (Test Relationships) Every

discriminating test is a relevant test. Every relevant

test is a constraining test.

'The connective © is used for notational brevity to in

dicate exclusive-or

3 TEST GENERATION AS

ABDUCTION

Suppose we are given a theory of system behavior, a

set of hypotheses, a set of achievables and a set of

observables. The task is to generate a test, drawn from

the set of achievables and observables which will meet

some hypothetical reasoning objective. The objective

could be to refute a particular hypothesis, to confirm

a particular hypothesis, or simply to discriminate the

space.

Intuitively, the generation of tests, particularly the

generation of observable outcomes seems to be de

ductive in nature. Given a theory E and achievable

A, conjoin the hypothesis H and predict observations.

Test whether those observations are indeed true, and

if they are false, refute H.

There are several problems with using deduction to

generate tests. Theorem provers generally use resolu

tion refutation to deduce whether or not a particular

proposition is true, not to deduce what is true (i.e., all

logical consequences of a theory). Furthermore, deduc

tion alone does not resolve the problem of identifying

both the achievables and the observables of a test.

A better formulation of test generation is as theory

formation. Given E and the objective of generating

a test to attempt to eliminate H £ HYP, what test

could be conjoined to E to potentially refute HI (i.e.,

Find a test (A, o) with outcome a such that HAAAa [=

The pattern of inference is easily recognized as

abduction.

It is logically equivalent to finding a test (A, o) with

outcome a such that HAAAH \= ->a.

In this section, we characterize test generation as ab

duction (Cox and Pietrzykowski, 1986), (Poole et al.,

1987). We limit ourselves to the examination of truth

tests, but the generation of value tests are a simple ex

tension of these results. The sections to follow examine

some practical benefits of this theoretical characteri

zation.

Definition 10 (Abductive Explanation) Given a

first- order theory E and a ground literal obs, E, a con

junction of literals is an abductive explanation for obs

iff E A E (= obs and E A E is satisfiable.

Definition 11 (Min. Abductive Explanation)

E is a minimal abductive explanation for obs iff no

proper subconjunct of E is an abductive explanation

for obs.

Testing is performed to meet some hypothetical rea

soning objective. Often the objective is simply to per

form tests which will eliminate the maximum num

ber of hypotheses. In other instances, it may be de
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sirable to confirm a particular hypothesis, to refute

a particular hypothesis or to discriminate (and thus

eliminate) some subset of hypotheses in the hypoth

esis space HYP. The strategy for selecting the type

of test to generate may depend on the user's or sys

tem's goals and objectives. It may be influenced by

decision theoretic measures of utility such as the cost

(in dollars, time or human terms) of computing or ex

ecuting a test, the criticality of a particular hypothesis

being true or false, information gain etc. Strategies for

generating tests may also depend on probabilities re

lating to the expected outcome of a particular test or

the probability that a particular hypothesis is true or

false. We do not address these issues in this paper, but

rather focus on the underlying task of test generation.

We characterize the notion of confirmation and refuta

tion in terms of abductive explanations. Further, we

demonstrate how a variety of tests may be character

ized and hence generated abductively. The following

proposition is a direct result of Definition 4.

Proposition 2 (Confirmation, Refutation) The

outcome a of the test (A, o) confirms H G HYP iff

E A A A H is satisfiable, and A A ->a is an abductive

explanation for ->H . a refutes H iff E A A A H is

satisfiable, and A A a is an abductive explanation for

Example 3. Returning to the axioms provided

in Example 1, the outcome red-spots of the test

({}, red-spots) confirms measles and chicken-pox

since ->redspots is an abductive explanation for both

-^measles and ichicken-pox . Similarly, the out

come -iswollen-glands of the test ({}, swollen-glands)

would refute mumps since iswollen-glands is an ab

ductive explanation for -<mumps.

If our objective is to establish the truth or falsity of

a particular hypothesis Hi G HYP, we ideally want

to generate and perform a minimal individual discrim

inating tests. As a result of this test, we will know

either Hi or ->Hi. For example, we may want to es

tablish whether or not a patient is suffering from the

particularly virulent hepatitis A. In a vision applica

tion, we may want to pick out all the apples from a

bowl of fruit. Both examples may be addressed by

performing individual discriminating tests.

Theorem 1 (Individual Discriminating Tests)

(A, o) is an individual discriminating test for Hi G

HYP iff

1. E A A AH is satisfiable V# G HYP;

2. AAo is an abductive explanation for ->Ha

E A A £

S. AA~<o is an abductive explanation for Hi;

T,AA^Hi.

The condition that E A A £ and E A A £ Hi

ensure that it is the observable and not the achiev

able which is refuting the hypotheses. Note that this

condition is addressed through the use of minimal ab

ductive explanations in every minimal test defined in

this section.

Corollary 1 (Min. Ind. Discriminating Tests)

(A, o) is a minimal individual discriminating test for

Hi G HYP iff

1. HA A AH is satisfiable V# G HYP;

2. AAo is a minimal abductive explanation for-^H,;

S. A A ->o is a minimal abductive explanation for

Ha

4. A = A' A A".

The following corollary also pertains to minimal indi

vidual discriminating tests.

Corollary 2 (Min. Ind. Discriminating Tests)

{A, o) is a minimal individual discriminating test for

Hi G HYP iff

1. HA A AH is satisfiable Vtf G HYP;

2. AAoA~>o is a minimal abductive explanation for

HiV->Hi.

Condition 2 of Corollary 2 is trivial in the sense that

o A -to is vacuously false, Hi V is vacuously true

and false D true. However, this corollary will still

be of assistance in computing minimal individual dis

criminating tests in the sections to follow.

Example 4. To illustrate the concepts in this section,

we take liberties with our domain and extend the E de

scribed in Example 1 by conjoining the following three

axioms:

{hepatitis-A A bloodJest D hepatitis.A-virus) A

(->hepatitis-A A bloodJest D -ihepatitis-A.virus) A

(mumps D iredspots) A (hepatitis-A D jaundice)

HYP = {mumps, measles, chicken-pox, flu,

hepatitis-A}

(bloodJest,hepatitis-A-virus) is a minimal individual

discriminating test for hepatitis-A since bloodJest A

hepatitis-A-virus is a minimal abductive explanation

for hepatitis-A, and bloodJest A -ihepatitis-A.virus

is a minimal abductive explanation for -ihepatitis.A.

As noted previously, many domains do not provide

discriminating tests. In such cases, we must settle for

a relevant test in order to attempt to eliminate hy

potheses. Relevant tests are those tests which have

the potential to discriminate an hypothesis space, but

which cannot be guaranteed to do so since they only

discriminate if a is observed, but not if ->a is observed.

In this instance we want to generate and perform an

individual relevant test.
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Theorem 2 (Individual Relevant Tests)

(A, o) is an individual relevant test for the hypothesis

space HYP iff

1. E A A AH is satisfiable V# G HYP;

2. A ho is an abductive explanation for

E A 4

Corollary 3 (Min. Ind. Relevant Tests)

(A, o) is a minimal individual relevant test for the hy

pothesis space HYP iff

1. E A A AH is satisfiable V# G HYP;

2. AAo is a minimal abductive explanation /or

Further to Example 4., ({}, jaundice) is a minimal in

dividual relevant test for the hypothesis hepatitis-A,

since -ijaundice is a minimal abductive explanation

for ->hepatitis-A. A test outcome of jaundice pro

vides no discriminatory information. Recall again that

when the space of hypotheses is defined abductively

and when HYP represents all the hypotheses to be

considered, then the observation of jaundice would

result in the elimination of all hypotheses in HYP ex

cept hepatitis-A, since it is the only hypothesis which

explains the observation of jaundice.

Unless we are interested in focusing on a particular hy

pothesis, our testing objective will likely be to perform

tests which refute a maximum number of hypotheses

in the hypothesis space. Ideally we want to generate

minimal discriminating tests because they guarantee

that the outcome, when conjoined to E will refute at

least one hypothesis in HYP.

Theorem 3 (Discriminating Tests)

(A,o) is a discriminating test for the hypothesis space

HYP iff

1. E A A AH is satisfiable VrY € HYP;

2. 3Hi G HYP such that A Ao is an abductive ex

planation for ->Hi; E A A J£ ->Hn

3. 3Hj G HYP such that A A ->o is an abductive

explanation for -<Hj; E A A ^ ~<Hj.

Corollary 4 (Minimal Discriminating Tests)

(A,o) is a minimal discriminating test for the hypoth

esis space HYP iff

1. E A A AH is satisfiable V/Y G HYP;

2. 3Hi G HYP such that A Ao is a minimal abduc

tive explanation for ->//,•;

3. 3Hj G HYP such that A A->o is a minimal ab

ductive explanation for-^Hj;

4- A = A' A A".

Again, when discriminating tests do not exist or are

not achievable, relevant tests are the next best alter

native.

Theorem 4 (Relevant Tests)

(A, o) is a relevant test for the hypothesis space HYP

iff

1. HA A AH is satisfiable V# G HYP;

2. 3Hi G HYP such that A Ao is an abductive ex

planation for ->Hi; EAi4 ^ -'Hi.

The definition of minimal relevant test follows from

the theorem above, as per Corollary 2.

Finally, if no relevant test exists or is unachievable, a

constraining test may be desirable.

Theorem 5 (Constraining Tests)

(A,o) is a constraining test for the hypothesis space

HYP iff

1. E A A AH is satisfiable VH G HYP;

2. A A o is an abductive explanation for

3. ZAApy^yp^Hi.

We add the third condition to eliminate both the cast

where the test achievable alone causes the conjunc

tion of hypotheses to be refuted and the case where

the conjunction of hypotheses is already refuted by E.

For example, if our theory states that Hi and Hj are

mutually exclusive (i.e., ->(i/,- A Hj)) then no test is

needed to discriminate them. If condition 3 is vio

lated, then a constraining test must be designed using

a subset of HYP for which condition 3 holds.

Corollary 5 (Minimal Constraining Tests)

(A,o) is a minimal constraining test for the hypothesis

space HYP iff

1. HA A AH is satisfiable VH G HYP;

2. A A o is a minimal abductive explanation for

V h.ghyp "v"«-

4 PRACTICAL BENEFITS

There are many benefits to formal specification of a

reasoning task. Primarily, it provides a non-procedural

specification of the task from which meta^theoretic

properties may be proven. From it, we are able to

assess the impact of assumptions, of syntactic restric

tions etc. Furthermore, it enables us to realize the

task relative to the specification and to establish cor

rectness proofs for our algorithms. In this particular

instance, we are fortunate that we have characterized
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test generation in terms of abduction, an inference pro

cedure that boasts a large body of research. As a re

sult, we are able to immediately exploit research in

abduction to gain valuable insight into test generation.

Here, we examine two issues: the mechanization of test

generation and tractable abductive test generation.

4.1 MECHANIZING TEST GENERATION

By characterizing test generation as abduction we may

employ existing abductive reasoning mechanisms to

generate tests. In this section we propose several dif

ferent approaches for generating tests abductively us

ing theorem proving techniques. Some of the mech

anisms are propositional, while others are first order.

Recall that a first-order theory of finite domain can be

transformed into a propositional theory; thus enabling

the use of propositional machinery.

The general problem of abductive test generation is

to find a test (A, o) satisfying a logical formula of the

form T, A A AO h X, where O represents o or ->o and

X represents an individual (negated) hypothesis or a

disjunction of negated hypotheses. O and X are de

termined by the type of test and are specified in The

orems 1-5 and Corollaries 1-5 of the previous section.

For example, when generating an individual relevant

test, as specified in Theorem 2, O would be o and X

would be ->Hi.

By Proposition 1, we know that every discriminating

test is a relevant test and that every relevant test is a

constraining test. Thus, the various tests can be gener

ated from a basic core. If we are interested in individ

ual tests to refute Hi, then we can try to find a minimal

individual relevant test which provides an abductive

explanation for -<Hi, as per Corollary 3. The result

ing test (A,o) may then be examined to see whether

it can satisfy the further requirements of a minimal

individual discriminating test. Alternatively, we can

use Corollary 2 to attempt to generate an individual

discriminating test which provides an abductive expla

nation for Hi V->Hj, but unlike the previous strategy,

if this attempt fails we have no test to fall back on.

To eliminate random hypotheses drawn from HYP, a

strategy which minimizes the possibility of producing

no test is to employ the criteria of Corollary 5 to gen

erate a minimal constraining test and then examine

whether it fulfills the more stringent requirements of a

minimal relevant test or a minimal discriminating test

(Corollary 4).

In order to compute tests, we must perform both con

sistency testing and actual generation of the abduc

tive explanations. For formula F, E U F is consistent

iff E 1/ ->F. First-order logic is semi-decidable. (i.e.,

Given first-order proof theory and a closed formula,

a proof will be found if the formula is valid, but the

proof procedure may not terminate if the formula is

not valid.) Consequently, there is no decision pro

cedure for determining the consistency of first-order

formulae in general. Fortunately, there are decidable

first-order theories. In particular, first-order Horn the

ories without function symbols are decidable. Simi

larly, some applications with finite domains may be

rewritten as propositional theories, which are decid

able. If all else fails, consistency checking can be ap

proximated. For example, if after a certain outlay of

resources the formulae have not been proven to be in

consistent, then assume that they are consistent. It

is up to the developer of an individual application to

ensure that consistency checking is decidable either by

syntactic restrictions on E or by using some reasonable

approximation of consistency checking.

The problem of finding an abductive explanation AAO

for X may be computed in several different ways. By

recasting the problem E A A A O h X using the de

duction theorem, we can categorize the different ap

proaches to generating abductive explanations.

• Proof-tree completion

- ZAAAOA-iXY-1,

• Direct-proof method

- Xr- AAOD X,

- E A -*X r- -<A V -O,

• Model Generation2

- E* AXY- \JtOi.

Recall that X and O are defined as per Theorems 1-5

and Corollaries 1-5, and are limited by the restrictions

of the specific computational machinery.

4.1.1 Proof-tree Completion

EAylAOhXis equivalent to E A A A O A ->X h 1.

As such, the problem of generating an abductive ex

planation for X may be recast as finding a refutation

proof for X which employs literals drawn from a dis

tinguished set of achievables and observables. Cur

rently the most popular mechanism for computing ab

ductive explanations, this technique is often referred

to as proof-tree completion.

To generate tests, E and ->X may be conjoined and

converted to clausal form. Linear resolution may be

used to attempt to derive J.. The proof will fail, but

will result in so-called dead ends. If these dead ends

can resolve with achievables and observables to de

rive ± then the minimal achievables and observables

required for the proof constitute an abductive expla

nation for X and may constitute a test if they adhere

to the specific test criteria defined in Theorems 1-5 or

Corollaries 1-5.

Example 5. Returning to Example 4, in or

der to find at least a minimal constraining test

2Severe restricitons apply. See Section 4.1.3.
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for HYP given E, we must convert E to clausal

form and conjoin -i V/figjjyp Thus, we con

join -i(-im«mps V -imeasles V -ichickenjpox V ->//w V

-i/iepait<ts_A) (which is equivalent to mumps A

measles A chicken.pox A //« A hepatitis-A) to E. The

proof will terminate at several dead ends including

redspots, -<redjspots, swollen-glands etc. The ad

dition of any of these observables would complete the

proof, but only the observable redspots will fulfill the

criteria for a minimal discriminating test defined in

Corollary 4. Thus, ({}, red-spots) is a minimal dis

criminating test for E and HYP.

There are several proof-tree-completion-style abduc-

tive inference engines (e.g., (Pople, 1973), (Cox and

Pietrzykowski, 1986), (Cox and Pietrzykowski, 1987),

(Poole, 1988), (Poole et al., 1987)). The Theo

rist framework (Poole, 1989) is one such engine, but

the implementation differs slightly in that the distin

guished explanation literals (achievables and observ

ables, in our case) are added to E a priori and rather

than deriving dead ends, Theorist merely notes the dis

tinguished explanation literals which were employed in

the refutation proof.

The available implementation of Theorist provides a

more sophisticated development environment for users

to perform both abductive explanation and prediction.

The prediction facilities, like our deductive theorem

provers tell us whether or not a particular formula is

true, not what formulae are true. Theorist classifies

user-provided formulae as Facts, Defaults, Conjectures

and Observations. Both Defaults and Conjectures are

used to generate abductive Explanations for Observa

tions. Defaults are also used for prediction.

There are several ways in which the Theorist develop

ment environment may be employed to generate tests.

The simplest way is to define achievables and observ

ables as Conjectures and to use them to generate ab

ductive explanations for a user-supplied X as per The

orems 1-5 and Corollaries 1-5. Alternatively, the The

orist environment could be modified to enable test gen

eration to occur in conjunction with hypothesis gen

eration. It would require the creation of a new set

of user-provided formulae called Conjecturable-tests,

which would contain either achievables and observ

ables, or predefined tests. Taking advantage of the

abductive explanation generation machinery already

in place, Theorist could take the set of Explanations

(hypotheses equivalent to HYP) and generate abduc

tive explanations drawn from Conjecturable-tests as

per Theorems 1-5 and Corollaries 1-5. This would

provide the tests to discriminate the original hypoth

esis space Explanations and enable hypothesis gener

ation and test generation to be performed simultane

ously.

Finally, off related interest, Sattar and Goebel (Sat-

tar and Goebel, 1991) provided a mechanism within

the Theorist system for recognizing so-called crucial

literals which provides a basis for identifying discrim

inating tests of the form ({},o). They compute the

crucial literals using consistency trees.

4.1.2 Direct-proof Method

Aside from proof-tree completion, there are several

ways of generating tests using a direct proof method.

The term direct proof method is often used to refer to

the task of consequence finding - finding the conse

quences of a theory. E A A A O h X may be recast

as both E h A A O D X and E A ->X r- ->A V ->0

(assuming E A ->X is consistent). In both cases, tests

may be found from the logical consequences of E and

E A ~*X , respectively. Unfortunately, while resolution

is refutation complete (complete for proof-finding), it

is not deductively complete and so does not find all

the logical consequences of a theory.

Fortunately, in the case of test generation, we are only

interested in a subset of the logical consequences of our

theories. Specifically, we want the minimal3 clauses of

the form ->A V ->0 V X and ->A V ~>0 respectively, and

we don't need them all, unless we want to select the

best tests. Recent advances have been made in devel

oping complete consequence-finding theorem provers

for first-order and propositional theories. In partic

ular, Inoue (Inoue, 1991) has developed a complete

resolution procedure for consequence-finding, general

ized to finding only interesting clauses having certain

properties. A set of so-called characteristic clauses

can be defined to specify both a set of distinguished

literals from which the characteristic clauses must be

drawn and any other conditions to be satisfied. In

our case, the characteristic clauses would be of the

form -^A V ->0 V X and ->A V -<0 respectively. The

augmentation of the theorem prover with a skip rule

allows it to focus on generating only the characteristic

clauses, rather than generating all minimal logical con

sequences and further pruning to retrieve the desired

subset of clauses. Following Theorems 1-5 and Corol

laries 1-5, we can then use such a consequence-finding

system to generate tests.

The RESIDUE system (Finger and Genesereth, 1985)

used in the implementation of Genesereth's well-

known Design Automated Reasoning Tool (DART) is

also a first-order consequence-finding procedure; how

ever, RESIDUE does not focus search as extensively

as Inoue's system (Inoue, 1991). RESIDUE was em

ployed in DART to generate potential diagnosis candi

dates by direct proof, and was also used for rudimen

tary test generation.

When dealing with propositional theories, the task of

finding the minimal logical consequences of a theory

is by definition equivalent to computing the prime im

plicates of that theory.

3We use the term minimal as per Definition 11.
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Definition 12 (Prime implicates) C is a prime

implicate for E ij(f E f= C, and for no proper subset C

ofC does T.\=C'

At the core of the well-known assumption-based truth

maintenance system (ATMS) (de Kleer, 1986) is

the computation of certain prime implicates of a

propositional Horn theory, E (Reiter and de Kleer,

1987) . Thus, the ATMS contains a propositional

consequence-finding procedure for E. In this discus

sion, we refer to the ATMS in the broadest context,

to include its extensions beyond Horn theories, to in

clude probabilistic focusing and to include those sys

tems which compute prime implicates incrementally

(Kean and Tsiknis, 1990).

The ATMS identifies a distinguished set of literals

called assumptions which act as the primitive ab-

ducible literals for production of abductive explana

tions. (Mcllraith and Reiter, 1992) identified one way

of acquiring certain tests from the side effects of the

ATMS's computations for generating diagnoses, Hi.

Since the ATMS calculates prime implicates of E of

the form Hi D o, some tests of the form ({}, o) would

be generated for free through the normal operation

of the ATMS. In order to actually generate tests us

ing the ATMS, we take advantage of the fact that the

ATMS is an abduction engine and make the achiev-

ables and observables assumptions. This is almost like

operating the ATMS backwards. Rather than diag

nostic candidates being the abductive explanations for

observations, the tests are the abductive explanations

for refutable hypotheses. Tests are those (A, o) for

which A A O D X is a prime implicate of E and (A, o)

satisfies all other criteria specified for the test.

Depending upon the application, there may be many

achievables and observables and this may not be the

most efficient mode of test generation. On a positive

note, tests are generally composed of one observable

and a minimal number of achievables, so the potential

for an exponential number of environments is limited.

This, along with probabilistic focusing of the ATMS

may make the ATMS or one its generalizations a viable

mechanism for test generation.

4.1.3 Model Generation

We mention this last approach to abductive test gen

eration only to be thorough, because it is of very

limited use in practical test generation applications.

Model generation (e.g., Satchmo (Manthey and Bry,

1988) ,(Denecker and de Schreye, 1992)) and model

finding techniques (e.g., GSAT (Selman et al., 1992)

may be used to generate abductive hypotheses in lim

ited cases. Console et al. (Console et al., 1991) showed

that abductive explanations could be generated deduc

tively from the Clark's completion E* of a causal Horn

theory E. By augmenting a causal Horn theory with

completion axioms, we explicitly provide that a partic

ular effect, e entails a disjunction of possible causes, c, ,

i.e., E* A e h Vic«- The causes, c, can be determined

by generating the minimal models of E* A e.

These results may be applied to a very restricted class

of test generation problems. In particular, those prob

lems for which tests are restricted to ({},o) and for

which completion of the theory can be computed with

respect to the refutation of causes, not with respect

to the potential effects. Specifically, the completion

axioms would state that a particular refuted hypothe

sis (no<_/f,) implied a disjunction of possible test out

comes o\ V not.02 V ...0*. In order to compute a test

to refute the hypothesis Hi, the set of minimal mod

els for E* A notJ{i would be computed using a model

generator. The tests ({}, o) would be the distinguished

literals o,- retrieved from the minimal models.

This approach seems both awkward and impractical.

A better proposal for producing tests via model gener

ation is to generate the model for Horn theory EA-'X.

Tests of the form ({},o) could then be retrieved as

the distinguished observables of the minimal Herbrand

model.

4.2 TRACTABLE TEST GENERATION

From the computer hardware literature, we know that

the general problem of test generation, even for simple

combinational Boolean circuits is NP-complete (Ibarra

and Sahni, 1975). Similarly, we know that finding an

abductive explanation in the general case is NP-hard

(Selman, 1990). The challenge with computationally

hard problems is either to attempt to deal with the

worst-case complexity by employing problem-specific

strategies such as probabilistic focusing of algorithms

or alternatively to define tractable classes of the prob

lem. Tractable classes may often be achieved by limit

ing the expressive power of a theory, or by limiting the

completeness of reasoning. In the abduction research,

there are a few simple classes of tractable abduction

problems. In this section, we examine the complexity

results on abduction to attempt to provide insight into

classes of tractable tests generation problems.

In defining tractable abductive test generation prob

lems, we may avail ourselves of certain properties of

test generation that occur generally or in certain hy

pothetical reasoning domains. They are as follows:

1. There is no need to generate all tests

In generating tests, there is always a trade-off be

tween the cost of computing tests and the cost of

performing tests. In many instances, the cost of

performing a test is cheap while the generation of

tests is expensive. Consequently, we need not cal

culate all tests or even the best test. Computing

any relevant test is generally of value.

2. Some application tests are limited to ({},o)

There are many application domains for which
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tests require no achievable literals. This issue was

discussed in (Mcllraith and Reiter, 1992). For

example, some applications have a great deal of

sensor data available. It is the job of test genera

tion to select which sensor data to "observe"; no

achievable preconditions are required. In other

domains, tests of the form ({},o) may be per

formed by simply querying the user as to the

truth value of the test proposition o. This may be

the case for certain medical diagnosis problems or

when performing certain natural language under

standing tasks.

3. An exponential number of tests is unlikely

Many tests are composed of one observable literal

and few if any achievable literals. As such, the

number of minimal tests generated as abductive

explanations is unlikely to be exponential in the

number of observables and achievables.

Selman (Selman, 1990), Levesque (Levesque, 1989)

and Bylander et al. (Bylander et al., 1991) have all

defined classes of tractable abductive reasoning prob

lems. There are some gaps in the complexity results

that need to be filled in to deal fully with test gen

eration, however from the existing results we can gain

some insight into what makes test generation problems

tractable, or for that matter, intractable.

Complexity results for abduction are often based on

the ATMS. Consequently, the term assumption refers

to the distinguished set of literals from which expla

nations are composed. It is equivalent to our set of

observable and achievable literals when abduction is

applied to test generation.

It has long been known that there may be exponen

tially many abductive explanations for a given literal

((McAllester, 1985), (de Kleer, 1986)) and so listing

them all would take exponential time. For test gen

eration, we are often uninterested in listing all tests

as explained by Property 1 above. Even if we were,

by Property 3, we would be unlikely to have an ex

ponential number of tests. Assuming, there are not

an exponential number of tests, we proceed to define

certain complexity results for test generation, viewed

as an abductive task.

Selman (Selman, 1990) states that the problem of gen

erating abductive explanations for theories composed

of arbitrary clauses is NP-hard, because of the con

sistency check on E. Consequently it follows directly

from (Selman, 1990) that:

Proposition 3 // E is i conjunction of arbitrary

clauses, the problem of generating a test is NP-hard.

We would hope that the story would be better for Horn

clause theories. Selman further shows that even when

E is composed of Horn clauses, that finding an abduc

tive explanation for a letter q, where the explanation

must be derived from a set of assumptions, is NP-

hard. This seems discouraging, but upon analysis of

the complexity proof, we see some hope. The proof

is based upon a reduction from the NP-complete de

cision problem "path with forbidden pairs." In this

instance, the forbidden pairs are mutually incompat

ible assumptions drawn from our assumption set. It

would appear that if we got rid of the problem of for

bidden pairs, that the complexity problem would be

resolved. This indeed appears to be the case.

Bylander et al. (Bylander et al., 1991) define the class

of independent abduction problems. This class of prob

lems has a polynomial time algorithm for finding an

explanation, if one exists. The trick is to get rid of Sel-

man's forbidden pairs - to ensure that no assumptions

are mutually incompatible in the one instance and to

then additionally ensure that there are no cancellation

interactions among the assumptions.

If our tests are composed of single literals, then we

don't have to concern ourselves with the compatibility

of achievables/observables. Property 2 shows that this

is a reasonable assumption for tests in certain appli

cation domains. Following (Bylander et al., 1991), we

show that:

Proposition 4 If E is a conjunction of Horn clauses

and tests are of the form ({},o), then a test may be

generated in polynomial time, if such a test exists

This follows directly from the results in (Bylander et

al., 1991).

For the general case, the question remains as to

whether it seems reasonable to assume that no achiev

ables/observables are mutually incompatible. Note

that achievables/observables 5i and 52 are defined to

be mutually incompatible iff E f= ->(S\ A 52).

To be able to assume no mutually incompatible achiev

ables/observables, we would have to assume that for

every achievable Ai and observable o, that E -> (v4iA

A2), E £ -i (oiA o2) and E £ -. (AiA oi). While it

may be possible to make this assumption in specific

instances, it is unlikely to be true in the general case.

In circuit diagnosis for example, let A\ be input = 1,

A2 be input = 0, obviously E |= -,(A\ A.A2). Similarly,

since observations can generally be positive and nega

tive literals, if we let o\ = -><>2 then E ^= ->(oi A 02).

We state the following proposition for those situa

tions where there are no mutually incompatible achiev

ables/observables.

Proposition 5 //E is a conjunction of Horn clauses

and no two literals drawn from the set of achievable

and observable literals are mutually incompatible with

respect to E, then a test may be generated in polyno

mial time, if such a test exists.

Finally, Levesque (Levesque, 1989) and Selman (Sel
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man, 1990) define a linear time algorithm for finding

certain explanations of a literal from Horn clause the

ories. Although motivated by different concerns, their

algorithm and results are virtually the same. The ex

planations produced are those that are explicitly rep

resented (Levesque, 1989) in E. Further, it is not re

quired that they be drawn from a set of distinguished

literals.

The algorithm searches through the clauses of E to

find clauses containing the literal q, the literal to be

explained. The negation of the other literals in the

clause form the explanations. For example, if ->H is

to be explained and x V y V ->H is a clause in E, then

the abductive explanation ->x A ->y would be found in

linear time. Levesque proposes using this algorithm to

define a form of limited abductive reasoning in which

explicit explanations are determined first, followed by

a chaining process to find implicit explanations.

These results tell us that if we have tests (A, o) explic

itly represented in E as ->AV ->oV ->Hi, then they can

be found in linear time, (along with other extraneous

explanations that do not contain the desired distin

guished literals and thus are not tests per se). Sim

ple causal theories where clauses in E are of the form

hypothesis D observable (e.g., disease D symptom)

would contain such explicit tests. This is an argument

in favor of encoding or even caching tests explicitly in a

theory to make them computationally easy to generate

(Meerwijk and Preist, 1992).

Definition 13 (Explicit test) (A, 6) is an explicit

test to potentially refute H € HYP if ->A V ->o V ->H

is a clause in T

Proposition 6 7/E is a conjunction of Horn clauses,

an explicit test may be generated in linear time, if such

a test exists.

This follows from results in (Levesque, 1989) and (Sel-

man, 1990).

5 SUMMARY

We provide three main contributions towards research

in test generation. First, we characterize test gener

ation as abductive reasoning. As a consequence, we

are able to define the notions of discriminating tests,

relevant tests, individual discriminating and relevant

tests, and constraining tests all in terms of abductive

explanation. We then outline a variety of approaches

to abductive reasoning which can be modified and em

ployed to perform test generation. Finally, we examine

the research on tractable abductive reasoning to gain

insight into tractable and intractable test generation

problems.

This paper provides both a theoretical and computa

tional framework for test generation, which is lacking

in the test generation literature. From this framework

and some of the proposed procedures for test gener

ation, there is opportunity for experimental work to

analyze the efficacy in practice of some of these alter

native approaches to test generation:
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Abstract

The notion of preferential entailment has

emerged as a generalization of circumscrip

tion. The important properties of this no

tion are investigated, and they are applied

to various "concrete" examples of circum

scription. We study only "classical" prefer

ential entailment, i.e. the underlying logic

is classical. The equivalence between the

two notions of preferential entailment and of

circumscription is made precise. The two

other main contributions of this text are

a complete study of cumulativity with re

spect to well-foundedness, even for prefer

ential entailments based on non transitive

preference relations, and the description of

"reverse monotony" , which is a fundamental

property of circumscriptions.

1 Introduction

We begin with a reminder about preferential entail

ment. We need preference relations which enjoy none

of the properties which are generally considerered as

necessary. For example, we need to consider relations

which are not transitive or which are neither antireflex-

ive nor antisymetrical if we want to encompass the var

ious existing circumscriptions. However, all the pref

erence relations examined in this text are natural and

simple, besides of being useful in artificial intelligence.

We precise the results about cumulativity, reasoning

by cases, contraposition and related matters. Circum

scriptions are "syntactic" by nature, even if they do

posess a semantics, which is precisely given by pref

erential entailment. Thus, a preference relation natu

rally associated to a circumscription cannot be defined

from any relation between models: it must be some

how coherent with the syntax.

We show that a powerful property, reverse monotony,

is verified by any of the circumscriptions considered

here. Then, we are able to apply our general re

sults to all these circumscriptions. Among the vari

ous examples given, we show that there are not easy

connections between the classical second order well-

foundedness and its first order counterpart, one conse

quence being that there are cases where the first order

circumscription is cumulative while the second order

version is not, and conversely. Also, we provide exam

ples (with pointwise circumscription and with strong

circumscription) illustrating the utility of our defini

tions for non transitive preference relations

In section 2, we remind the definitions of preferential

entailment and of the preference relations associated,

extending the notion of well-foundedness to preference

relations which are not transitive. In section 3, we

show precisely how circumscriptions can be considered

as preferential entailments, and conversely. Section 4

gives the relevant properties of preferential entailment.

Section 5 gives some concrete examples of circumscrip

tions, together with their "natural" preference rela

tions. Several examples are provided, chosen to give

examples and counter-examples to some properties ex

amined in the preceding sections.

2 Preferential entailment

We refer the reader to [BS88], [Sho88], [Mak88] and

[KLM90], but we provide complete definitions, as these

texts need some adaptations in order to deal with cir

cumscriptions. We start from a standard logical notion

of inference.

Notations 2.1 C denotes a first order language, T is

a theory (i.e. a set of formulas) in C If $ is a formula

(resp. T a theory) in C, and ft an interpretation over

C, we note as usual ft \= T if ft is a model of T and

T \= <b (resp. T (= T') if any model of T is a model

of $ (resp. T). Th(T) denotes the entailment clo

sure of T. C also contains "=" and an infinite number

of individual variables. = is a metasymbol meaning

"equivalent to". If ft is an interpretation over C, if P

is a predicate symbol, $ a formula, / a function sym

bol, all of arity k, in £, then:
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- The set denotes the domain of fi.

- The subset (or 1$^) of denotes the exten

sion of P (or $) in ft.

- The application from to denotes the in

terpretation of / in /i. If k = 0, f)1 is assimilated to

its own image.

Our models and interpretations are normal (= inter

preted as identity). C^, the language of ft, adds to C

a name for each element in . □

Considering some preferred models among the models

of a theory T is useful in knowledge representation if

we want to deal with incomplete information or rules

with exceptions. Here are the precise definitions in

volved:

Definitions 2.2 A binary relation -< among the in

terpretations over C is a preference relation. A model

ft of a theory T is a model of T minimal for ~< (or is

minimal for (T, -<)) iff there exists no model u of T

with v ■< ft; in this case we note ft T. If any model

of T minimal for -< is a model of <j> (resp. T'), we note

TN^ (resp. T \=< T).

The relation between a theory T and a formula <j>

is a preferential entailment. Each preference relation

-< gives rise to one preferential entailment \=^, but

each preferential entailment may be associated to var

ious preference relations. If some preference relation

-< associated to ^ is antireflexive, antisymetrical and

transitive, is an ordered preferential entailment. □

If a preference relation -< is not transitive, we may

cautiously use its transitive closure:

Notations 2.3 Let -< be a preference relation, we

note ^ for its transitive closure, and -<q- for the re

striction of -< to the class of the models of a theory

T.

A model is minimal for (T, -<) iff it is minimal for

(T, -<q-) iff it is minimal for (T, -<q-). However, gen

erally -<j- does not coincide with (p^f. V fi -<<j- v

then fi -< v but the converse is not guaranteed, even if

fi and v are models ofT.asji^i/ may be true thanks

to interpretations which are not models of T. Thus we

may not restrict our attention to transitive preference

relations without loss of generality: a model of T may

be minimal for -< and not for x\

The important notion of well-foundedness appears un

der various forms in the literature. The following def

initions give the notions useful for circumscriptions.

Definition 2.4 T is well-founded for a preference re

lation -< iff for any model fi of T not minimal for -<,

there exists v minimal for (T, -<) with v -< ft. If

any theory T in C is well-founded for -<, the pref

erence relation -< is well-founded (this is global well-

foundedness).

It is rare that a theory is well-founded for a non tran

sitive -<. Several important circumscriptions give nat

urally rise to non transitive relations, e.g. strong cir

cumscription. The preference relation naturally asso

ciated to pointwise circumscription is anti-transitive:

if fi\ -< ft2 and fi? -< J13 then fi\ /13. Also, some no

tions of common sense reasoning can be rendered by

a preferential entailment only if the associated prefer

ence relation is not transitive [Ryc90]. Thus it is im

portant to give a milder definition in this case. Before

that, we need a preliminary result.

Theorem 2.1 If T is well-founded for -< and if T

<j>, then T U {<j>} is well-founded for

For a general <f>, T may be well-founded while T U

{<j>} is not (see example 5.1). Theorem 2.1 explains

why so many results given in [Mak88] or [KLM90]

for their strong notion of global well-foundedness are

also true with the more reasonable condition of well-

foundedness of a given T. We must keep this result in

mind when defining the useful notion for a non tran

sitive preference relation. The proof is easy, but it is

convenient in this text to give a preliminary lemma.

Definition 2.5 A theory T is well-behaved for -< iff

for any sentence tj> we have: if T <j>, then the mod

els minimal for (T U {<j>}, -<) are the models minimal

for (T, X).

Lemma 2.2 IfT is well-founded for -<, then T is well-

behaved for -<.

Proof: For any T, <j>, a model minimal for (T, -<)

which happens to be also a model of <j>, is minimal

for (T U {<f>}, -<). Thus, if T <j>, a model minimal

for (T, X) is minimal for (T U {<£}, -<).

Now, let us suppose that T <j>, and that fi is min

imal for (T U {<£},-<). As T is well-founded, either

fi ^=_< T or there exists v with u T and v -< fi. As

v \=-< T, v is a model of T U {<j>}, which contradicts

ft (=.< (T U {<{>}), thus fi (=.< T. The proof of theorem

2.1 follows easily. □

We need two new definitions for non transitive rela

tions as the most natural one (the first one) does not

satisfy theorems 2.1 and 4.8:

Definition 2.6 A theory T is weakly well-founded for

a preference relation -< iff for any model ft of T not

minimal for (T, -<), there exists v minimal for (T, -<)

with v -<<j- ft.

Definition 2.7 A theory T is mildly well-founded for

a preference relation -< iff it is weakly well-founded

and for any sentence (j> such that T <j> and any

models ft and u minimal for (T U {<j>}, -<) we do not

have v -<<j- fi.

Property 2.3 T is mildly well-founded iff T is weakly

well-founded and well-behaved.
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Proof: =>: T is mildly well-founded. Let us suppose

T \=4 <t> and v minimal for (T U {4>},~<). If v ^ T,

there exists n with /i T and n ~<q- u (definition

2.6). As T ^, n is a model of <j>, and /i T

gives n (T U {<[>}), which contradicts mild well-

foundedness.

^=: Let us suppose T is weakly well-founded and well-

behaved, T and n is minimal for (T U {^}, -<).

As T is well-behaved, is minimal for (T, -<). Thus, it

cannot exist a model v of T, and a fortiori of T U {<£},

such that f -<q- /i. □

Note that we have given a "unitary version" , we could

also give the "general - or infinitary - version" of well-

behaveness (in the finite propositionnal case, these two

notions coincide):

Theorem 2.4 . Let T be a theory such that for any

theory T' in the language C, we have: if (T T'

and T \=. T) then a model is minimal for (T, -<) iff it

is minimal for (T',-<).

If T has this property ( "general version of well-

bekaveness"), then T is well-behaved for -<.

Proof: Clear, just take T to be T U {<t>}.

Remarks 2.1 1) Contrarily to definition 2.6, defi

nition 2.7 is an acceptable candidate which respects

theorem 2.1: if T is mildly well-founded for -< and if

T <j>, then T U {</>} is mildly well-founded for -<

(proof: use property 2.3).

2) If -< is transitive then the three kinds of well-

foundedness coincide.

3) Any well-founded theory is mildly well-founded, and

any mildly well-founded theory is weakly well-founded,

but the converses are not guaranteed (see examples

5.4, and 5.5 or 5.6). □

Definition 2.4 is the classical meaning of the expression

"well-founded" in the literature about circumscription

(see e.g. [BS85, EMR85, Lif86]). In mathematical

texts, "well-founded" (cfe.g. [CK73, p. 150]), prevents

the existence of infinitely decreasing chains, which is

not the case with definitions 2.4, 2.6, 2.7. Bounded

in [Sho88] corresponds to this "mathematical mean

ing". If -< is transitive, boundedness implies well-

foundedness but a condition so strong is not neces

sary to get the theorems 4.2 and 4.8 . If the relation

is not transitive, boundedness only implies weak well-

foundedness (converse false, see example 5.5); bound

edness implies neither well-foundedness nor mild well-

foundedness (see example 5.4), and thus it is not really

interesting.

Definition 2.4 corresponds roughly to what is called

stoppered relation in [Mak88] or smoothness condition

in [KLM90]. The differences are:

1) Only the "global" notion of -<-well-founded-ness is

defined in these texts. It is more frequent that some

theory T is well-founded for -<.

2) None of these texts examine what happens with non

transitive preference relations.

3) In [KLM90], the preference relation -< is defined

between sets of models.

4) In [Mak88], the notion of models is not necessarily

the classical one.

These last two complications are unnecessary for all

the circumscriptions studied in this text.

Note that if or ~^rf ls reflexive, T cannot be

(weakly) well-founded for -< (see example 5.7).

3 Circumscriptions

We generalise the notion of circumscription, intro

duced [McC80, McC86] in order to express some com-

monsense problems formally.

Definitions 3.1 A process which, toany T closed for

entailment, associates a new theory T = Th(T U Tc)

for some theory Tc, is a pre-circumscripiion.

A great number of the "circumscriptions" which have

been introduced in the literature are particular cases

of preferential entailment. Thus, we call "circumscrip

tion" a pre-circumscription for which there is an associ

ated preference relation -<, such that, for any theory T

and any formula * in C, we have: T ^ $ iff T \=<

We use the notation Circg(T) to denote a (particular

but unprecised) circumscription of T. □

Thus, for any circumscription Circg, there exists a

preference relation -< such that for any theory T and

any formula * in C: Circg(T) f= * iff T

Note that generally we may associate many preference

relations to one given circumscription.

Conversely, to any preference relation -< we may asso

ciate one (and only one) circumscription. Indeed, to

any theory T, we may associate the set T whose ele

ments are ail the formulas <f> which are true in all the

models of T minimal for -<.

Thus, with our definitions, the two notions of preferen

tial entailment and of circumscription are equivalent.

We choose to keep the two expressions, using the for

mer (T ■ ■ ■) when focusing on a preference relation

and the latter (Circg(T) \= ■ ■ ■) when the emphasis

is put on the formulas Te added to T. See also in

subsection 5.2, describing two "concrete examples" of

circumscription, a comment about the utility of keep

ing the two points of view in mind.

Note that any model minimal for (T, -<) is a model

of Circg(T), but that the converse is not guaranteed,

i.e., a preference relation X is not necessarily "coher
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ent" with respect to the syntax:

Definition 3.2 A preference relation -< is coherent iff

for any first order theory T, the class M^(T) of all

the models minimal for (T, -<) is the class of all the

models of some theory T in C (clearly T C 7"').

The preference relations -< "naturally associated" to

all the circumscriptions defined in the litterature and

respecting definition 3.1 are coherent, but it seems

likely that they have also some other properties. Till

now, we are unable to characterize these properties.

One could think that the seemingly benign following

property would be a good candidate:

"For any interpretations ft, u and ft', if v -< fi and

if ft and ft' are elementarily equivalent, (i.e. for any

formula <j> in £, ft |= <j> iff y! (= <f>), then there exists u'

elementarily equivalent to v and such that v' -< ft' I"

Unfortunately, there are counter-examples showing

that the preference relation naturally associated to

the classical first order predicate circumscription does

not necessarily respect this property. Here we mean

the "naturally associated" preference relation -< (see

section 5). When any preference relation is allowed,

[Moi94] shows that for any circumscription, we can

find some -< associated to it which respects the fol

lowing property, which implies the preceding property

and also coherence:

Definition 3.3 A relation -< is compatible with ele

mentary equivalence iff for any interpretations ft, ft',

v and i/', if fi and fi' are elementarily equivalent and

if v and v' are elementarily equivalent, then fi -< u iff

ft' -< v'.

Now, we examine briefly the other way: we start from a

pre-circumscription, is it a "circumscription", i.e. does

it exist a preference relation -< such that for any the

ory 7", the models minimal for (T, -<) are exactly the

models of T? This is not always the case as a simple

example in propositional logic shows:

Example 3.1 C is a propositional language with only

one proposition symbol A. Thus, we have only four

theories in C, closed for entailment, which simplifies

the definition of the operation . We take as defini-

tion: Th(Av^A) = Th(A), Th{A) = Th(A A ^A),

Th(iA) = Th{^A), Th(A A -^A) = Th(A A ^A).

It is impossible to find any -< corresponding to this

pre-circumscription. This is easy to verify as there are

only here two propositionnal interpretations (one with

A, one with -'A), thus only 2^2 ' = 16 possible X (see

also example 4. 1). □

We end our general presentation by two ways of com

bining relations. CirCgj(T) and CirCg2(7~) are two

circumscriptions associated to -<i and -<2 respectively.

Their union gives a circumscription, associated to the

relation -<i®-<2 (fi -<i®~<2 v iff fi -<i v or ft -<2

Their intersection gives the circumscription associated

to -<i®-<2 (fi Xi®-<2 v iff fi -<i v and ft -<2 If

}=.<! and (=_<3 are ordered preferential entailments, so

is (=-<i®-<3- All what we will say about "circumscrip

tions" apply to these unions (this includes priority cir

cumscription) and intersections.

4 General properties

We make now a survey of the main properties of pref

erential entailment (i.e. of circumscription). Let us

first give a well-known obvious result:

Theorem 4.1 For any formula <t> in C, if T ^= <j> then

T (j>, i.e.: T T. In terms of circumscription:

Circg(T) (= T. This is called "reflexivtty" e.g. in

[KLM90].

Here is one partial converse very useful for standard

circumscription.

Definition 4.1 A formula $ in C is positive for (T,

-<) iff ft -<j v implies C |$|„.

A formula 4> is negative for (T, -<) iff is positive

for (T, X).

Theorem 4.2 T is a theory (weakly) well-founded for

-<. For any sentence <f>in C positive for (T, -<), we have

T \=<4> only if T (= <f>.

We cannot get any new positive sentence by cir

cumscription of a (weakly) well-founded theory (note

that the notions of positiveness and well-foundedness

depend on the circumscription considered). This

fact, which encompasses two results in [EMR85] and

[Jae86], is well known for standard circumscriptions

[Moi88a]. This is one of the few properties which re

quire only weak well-foundedness.

Proof: We suppose <j> positive for (T, -<), T <j> and

T weakly well-founded for Let ft be a model of

T. As T is weakly well-founded, there exists v model

of T minimal for -< and such that either v = ft or

v X7- ft- v is minimal for (T, x), so it is a model of <j>.

Moreover, as <f> is positive for (T, -<) and as u ^= <f>, we

get ft |= <j>. □

Here is another well-known property, easy corollary of

theorem 4.2 (indeed, the false formula ± is positive

for (T, -<) for any T and any -<):

Theorem 4.3 If T ^= _L then 7 |=x ±. If T is

(weakly) well-founded for X, then T ± only if

T\=±.

The interest of this result is that for some circumscrip

tions, we know wide classes of theories which are well-

founded. For these theories, circumscription cannot

provoque inconsistency.
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Here are two other obvious results. Firstly, circum

scribing a circumscribed theory does not add anything:

Circg(Circg(T)) = Circg(T) (idempotence of cir

cumscription [Mak88]).

Secondly, if T <j> and T rp then 7 (=.< 0 A rp.

This is sometimes called "and rule", (obvious: if any

model minimal for (T, -<) is a model of 0 and of ip,

then it is a model of 0 A \l>).

The following result is more or less folklore in cir

cumscription literature (see e.g. [Moi88a], [Som90] or

[KLM90]). [Mak88] gives it also but requests the un

necessary condition that -< must be well-founded.

Theorem 4.4 Any preferential entailment allows to

reason by cases: for any theory T and any sentences

0i, 02 and V> in C, i/Tu{0i} xp anrfTu{02} f=-<

xp, then T U {0i V 02} \=< ip.

Proof: Let us suppose that T U {<f>\} \=< xp and that

T U {02} \=< xp, and let /i be a model minimal for

(T U {0i V 02}, ■<). Then, n is a model of T U {0i}

or of T U {02}. If /i is a model of T U {0i }, then it is

minimal for ((T U {0i}), -<). Otherwise, there would

exist u model of T U {0i}, thus of T U {0i V 02}, such

that v < fi, which would contradict the fact that /i is

minimal for (T U {0i V 02}, -<). □

Corollary 4.5 [Mak88] If (7 U {0}) |=x i/> and (T U

{-0}) r=« V> then T V-

Also, if T = T' then T |=x ^ iff T V (this is

called "left logical equivalence" in [KLM90]).

Here is another easy result:

If T 0 and T (= 0 => V>, then T xp.

As left logical equivalence, this result is trivial for pref

erential entailments. It has been introduced (in an

other context) in [Bes88] under the name "compound

modus ponens" and is generally now referred to as

"right weakening" [KLM90].

Theorem 4.6 (cf observation 5 in [Mak88]) Any pref

erential entailment is transitivitively cumulative: for

any theory T and sentences <p,xp in £, T 0 and

TU{0} xj> imply T \=< xp.

It is well known that the inference defined by circum

scription is non monoionic for some T, i.e.:

generally, Circg(T U {xp}) £ Circg(T).

In terms of preferential entailment: for some sentences

0 and xp, we may have T 0 and T U {xp} |fc.< 0.

One weakening of monotony remains true:

Definitions 4.2 A preferential entailment has the

property of cumulative monotony for T iff, for any

sentences xp, 0 in £■ if T N-< 0 an^ 1 N-< V" then

(Tu{0}) (=„ V-

This is called "restricted" or "cautious" monotony in

[Gab85] or [KLM90], sometimes it is also called "tri-

angulation".

An inference relation is cumulative iff it is transi

tively and monotonically cumulative: for preferential

entailments, cumulative monotony and cumulativity

are synonymous (theorem 4.6). □

Clearly, well-behaveness is the semantical counterpart

of cumulativity:

Theorem 4.7 A preferential entailment is cumulative

for T iff T is well-behaved for -<.

Theorem 4.8 (cf observation 6 in [Mak88]) If T is

(mildly) well-founded for -<, then (=_< is cumulative

for T.

The proof is an adaptation of Makinson's proof which

uses only global and standard well-foundedness and

global cumulativity. It suffices to use property 2.3 or

lemma 2.2, and then theorem 4.7. This result is not

true with the weak version of well-foundedness (see ex

ample 5.4).

The general converse is false (see example 5.3): cumu

lativity may hold while T is not (weakly) well-founded

for -<.

Generally contraposition does not hold:

Definition 4.3 A preferential entailment allows the

contraposition for T iff for any sentences 0 and xp, if

7 U {0} (=.< xp then T U {-<xp} |=-< ~"0-

Theorem 4.9 A preferential entailment allows the

contraposition for T iff it is monotonic for T.

For a proof, see [Moi92]. This does not contradict a

different affirmation in [KLM90] which does not deal

only with preferential entailment. In [KLM90]'s for

malism, only one way is true, the other way being

false. Note also that [KLM90] defines contraposition

only for an empty T; however, as noted in [FLM91],

for preferential entailment this is not a real difference,

at least as far as T can be finitely axiomatized.

Some restricted contraposition remains:

Theorem 4.10 [Moi92] If xp is positive for (T, -<) we

have: if Tu {0} xp then T U {->xp} -.0.

Concerning general formulas, it is known that stan

dard circumscription may or may not allow the con

traposition with some formulas 0 and xp, depending

of the policy of circumscription, that is which predi

cates are to be ciscumscribed or are allowed to vary.

However, the problem of choosing a policy of circum

scription corresponding to the expected behavior is not

a trivial one and does not have yet a general solution.

Another interesting feature of preferential entailment

is that it respects the deduction principle, also called
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e.g. in [KLM90], the "hard part" of the deduction

theorem:

Theorem 4.11 (e.g. [Sho88]) For any sentences <j>

and V> if T U {</>} (=-< V> then T (<j> => ip).

For circumscriptions, thanks to the full deduction the

orem for classical entailment, we may give a useful

form to theorem 4.11 and provide a "general version":

Theorem 4.12 For any theory T and any sentence 4>

we have:

- (Circg(T) U {<j>}) |= Circg(T U {>}).

We also have, for any theories T and T:

- (Circg(T) U T) \= Circg(T U 7").

One extreme case is when T is empty:

- Circg(0) U T \= Circg(T).

Proof: Let n be a model of (Circg(T) UT'), i.e. a

model minimal for (T, -<) which happens to be a model

of T'. If n is not minimal for (TuT',-<), then there

exists a model v of TuT' such that u -< p. v is a model

of T, which contradicts the fact that /i is minimal for

(T, -<). Thus n is minimal for (T U T', -<), i.e. n is a

model of Circg(T UT'). □

With Circg(T) ^ T, this result puts limits to

the circumscription. We call this property "reverse

monotony" (RM for short). Indeed, monotony (plus

reflexivity) is Circg(T U {<f>}) (= (Circg(T) U {<f>}).

RM shows that the more axioms are introduced into

the circumscribed theory, the less new results (besides

the original axioms) the circumscription produces. As

this property is important, here is another form:

R.M1: Let T\ and T2 be two theories, then (renaming

T as 71 and T UT as T2), we get :

if T2 |= Ti , then Circg(Tj) UT2(= Circg(7"2).

Example 4.1 We examine example 3.1 again. We

had the pre-circumscription: Th(A V ->A) = Th(A),

ThjA) = Th{A A ^A), Th(^A) = Th^A),

Th(AA-<A) = Th(AA^A).

The property RM is violated: 77i(0) U {A} \fr

Th(<bD{A}). Indeed, Th(Q) = Th(A V -,A), Th(H U

{A}) = Th(A), Th(A) is inconsistent while 77i(0) U

{A} is equivalent to Th(A).

Any circumscription satisfies RM, so this is another

way of proving that this pre-circumscription is not a

circumscription.

Note that RM alone would not suffice: [Moi94] gives an

example of a pre-circumscription verifying RM which

is not a circumscription. □

RM is fundamental because a lot of the properties of

circumscriptions may be considered as corollaries of

RM. This has already been noted for theorem 4.11,

and it is easy to verify also for idempotence and for

theorems 4.4 and 4.6.

The converse of theorem 4.11 (the "right detachment"

rule, also called the "easy part" of the deduction the

orem because it is trivial for ordinary logic) is in

teresting also. As [Sho88] has noted, it is equiva

lent to monotony: no "interesting" preferential en

tailment respects fully this converse. However, a par

tial converse holds, which may help the automatiza

tion of circumscription: when a new negative sentence

comes, we need not to recalculate the circumscription

from scratch, all we need is to add this sentence to

the previously calculated circumscription. This result

is well known for standard circumscriptions (cf e.g.

[Moi88a]).

Theorem 4.13 If <j> is negative for (T,-<) then

(Circg(T) U {<j>}) = Circg(T U {<£}).

[in terms of preferential entailment: for any sentence

rl>, T U {4} K V «^Th^ #

We define now the relations associated to various kinds

of circumscriptions. As this has already been detailed

[MR91, Moi92], we give only the main lines, with rep

resentative examples.

5 Some circumscriptions viewed as

preferential entailment

T is now a finitely axiomatizable theory in C

5.1 Domain circumscription

In many situations only the objects named, directly

or not, are supposed to exist. Domain circumscription

([McC80] amended by [Mor85, EM87]) noted Circdi,

formalizes this idea. In the lines of [McC86] for predi

cate circumscription, we may also define a second order

domain circumscription Circd2.

Definition 5.1 n and v are interpretations over L.

We denote v < /i, iff: D„ C D^, and

- for each function / in C, if e G D*, then /^(e) =

Me),

- for each predicate P in C, n Dkv = |P|„.

This is the classical notion of sub-interpretation in

logic, see e.g. [End72, p.90-1].

Theorem 5.1 [Dav80] Any model of T minimal for

< is a model of Circdi (T) and of Circd2(T).

The converse is true for Circd2(T) (adapt [Lif86] for

domain circumscription, e.g. using [McC80] or [MR91]

which relate domain circumscription to predicate cir

cumscription), but for Circdj (T) we need a more so

phisticated relation.

Theorem 5.2 The models of Circd2(T) are the

models of T minimal for <.
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Definition 5.2 (e.g. [KK71, p. 115-135]) A subset S

of D* is definable with parameters in fi when there

exists a formula $ in of arity it, such that S — l^l^.

If $ is in C, S is definable in fi.

Definition 5.3 If u < fi and if Dv is definable with

parameters in fi, we note u <l ft.

Theorem 5.3 [Mor85, MR91] The models of

Circdi(T) are the models of T minimal for

[=< and are ordered preferential entailments.

Domain circumscription minimises the domain, while

predicate circumscription minimises some relations.

There are ways to express the former in terms of the

latter, so we will not elaborate further here.

5.2 Predicate circumscription

Definition 5.4 [McC80, PM86] The first order cir

cumscription of P in T with Q varying, noted

Circi(T : P; Q), adds the following axiom schema to

7: (SAC)

{T[p,qJ AVx (p[x]=>P(x))} => Vx (P(x)=>p[x]),

for every lists p =

(Pi > • • • . Pm), q = (fli 9n) of formulas in C.

7~[p,q] is T except that each occurrence of Pj and Qj

is replaced by p, and qj , respectively.

Vx(p[x]=>P(x)) stands for: Vxj . . .xm(pi[xi]

Pl(xi)) A . . . A \pmlXm] => Pm(xm)).

The square braquets in Pi[x<] mean that p, may have

free variables other than Xj = (xn, . . . , x,t,), where fc,

is the arity of P, (see [BMM89] for the need of extra

free variables in first order circumscriptions).

Definition 5.5 (see [McC86, Lif86]) The second or

der circumscription o/P in T, wtth Q varying, noted

Circ2(T: P; Q), adds the following axiom to T:

(AC) VpVq {[T[p,q]AVx (p(x) => P(x))] =>

Vx(P(x)=>p(x))}.

p and q are sequences of predicate variables p< or qj ,

having the same arity as P, or Qj .

Circ denotes indifferently Circi or Circ2.

Definitions 5.6 • Let ft and v be two interpretations

over C. We write ft =P; q v when fi and v are identical

except that there is no condition on the extensions of

the Pi's and of the Q/s.

• If moreover each \Pi\n and \Qj\n is definable with

parameters in u, we write fi =p. q v.

• If n =P. q v (resp. fi =P. q v) and also \Pi\p C

|Pi|„ for 1 < j < n, with some \Pi\f, C \Pi\v, we note

H <p, q v (resp. fi <p. q u).

Theorem 5.4 [McC80] Every model ofT minimal for

<P. q is a model of Circ(T: P; Q).

This is the soundness of circumscription. <P. q in

duces the "intended semantics" of circumscription.

<Pj q gives the precise semantical characterization for

first order circumscription:

Theorem 5.5 • [BHR88, Bes89] The models of

Circi(T : P; Q) are the models of T minimal for

• [Lif86] The models of Circ2(T : P; Q) are the models

of T minimal for <P) q.

As with domain circumscription, a model minimal for

<p, q is minimal for <p. q. If T is such that the con

verse is also true, we have the completeness of first

order circumscription [PM86]. The second order ver

sion simplifies the notations (superficially) and the se

mantics. But it makes things harder when it comes

to automatization. That is why the two versions are

useful.

In "second order circumscriptions" as they are defined

and used in the literature, we start from a first or

der theory T anyway, and we are interested by the

first order formulas that the circumscription entails.

Thus, definition 3.1 is respected. This is clear from

the "preferential entailment point of view" of defini

tion 2.2: <P. q is the preference relation naturally as

sociated.

From the "circumscription point of view" of definition

3.1, it is not so obvious. However Tc does exist: for

instance take the set Circ2(T : P; Q) of all the formu

las in C true in all the models minimal for (T, <P. q),

less T. Generally, there is no easy way to describe

such a Tc without leaving first order logic. The sim

plest way, suggested in definition 5.5, uses second order

logic: Circ2(T : P;Q) = C n Th2(T U {AC}), Th2

denoting the second order entailment closure.

With the first order circumscription, it suffices to take

Tc = SAC which is an infinite but easily described set

of formulas in C

So, for first order circumscriptions, a Te such as in

definition 3.1 is easy to describe, while a -< conforming

to definition 2.2 is harder to describe; for second order

circumscriptions, it is the opposite. Anyway, the two

versions are particular cases of our general definitions.

Definitions 5.7 • [Lif86] A theory T is (P ^-well-

founded iff it is well-founded for <P. q.

• [Moi88a] T is definably (P;Q)-well-founded iff it is

well-founded for <Pi q.

Universal (thus Horn) theories are always (P;Q)-well-

founded [BS85, EMR85, Lif86]. There is no simple

relationship between these two notions (see examples

5.2 and 5.3), and universal theories are not guaranteed

to be definably well-founded (see example 5.2).

It is easy to find examples showing the importance of

well-foundedness in theorem 4.8:
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Example 5.1 T is T', S, where

T' = BxVy (P(x) A (P(y) /(y))),

Vx [P(i) => P(/(*))], 0=0; and

S = Vx x^/(x), VxVy [(/(x)=/(y)) => (x=y)]

(5: Separation axioms).

Circ(T : P) (= J_, thus e.g.: Circ(T : P) |= <£, where

= P(0) (this is a well-known example of inconsis

tent circumscription, see e.g. [EMR85]).

However Circ(T A <j> : P) is consistent so Circ(T : P)

is not cumulative. Indeed, here is a model fi of Tli{<f>}

minimal for <p (thus also minimal for <p): take =

\P\fl = IN the set of natural integers, 0^ = 0 6 IN and

fft being the successor function in IN.

T is not well-founded, neither for <p nor for <lP.

Also, this is an example of a theory 5 which is well-

founded for <p (being universal), while some S A T ,

i.e. T, is not (cf theorem 2.1). □

In example 5.2, the first order circumscription is cu

mulative while the second order one is not. In example

5.3, the opposite situation occurs:

Example 5.2 (cf example 4.6.1 in [Moi88a])

T : P(0), Vx (P(x) => P(/(x)))

0^0', Vxx#/(x) I

VxVy(/(x) = /(y))=>(x = y) (S)

Vx(0^/(x) A 0'//(x)). J

Circi(T : P) \= -.P(O') (take p[x] = P(x) A x^0' in

the circumscription axiom schema).

Now, choose <f> = Vx (P(/(x)) P(x)). Circi(T :

P) (= (take p[x] = Vx {P(x) [x = 0V3y (x = /(y)A

P(y))]} which gives Circi(T : P) (= Vx {P(x) => [x =

0 V By (x = /(y) A P(y))]}, then use (5)).

TA«i is: P(0) A Vx (P(x) O P(/(x))) A (S).

This is Kueker's example of incompleteness of first or

der circumscription.

CirCl(T A $ : P) £ -.P(O') (see [PM86]). A short

proof of this fact uses the following model v of T A

<t> A P(O'): A, = \P\„ = IN U Z', where IN = {0, 1, • • •}

and Z' = {•••, —1', 0', 1', • • •} are copies of the sets of

natural and relative integers respectively; 0„=0 6 IN,

0'„ = 0' € Z'. IN is not definable with parameters in

v (see [BMM89]), so with fi =p u and |P|^= IN, we

do not have fi =P u, thus we do not have fi <P v.

The axioms of T A <j> make that v is a model of T A <j>

minimal for <6p.

• The first order circumscription is not cumulative:

Circi(T : P) \= <f>, Circi(T A <f> : P) CirCl(T : P).

T is not definably well-founded (see [Moi88a], or use

theorem 4.8).

Note that Circi(T : P) is consistent.

• The second order circumscription is cumulative, as

T is P—well-founded, being universal. □

Example 5.3 (see [MR90]). C contains the symbols:

0, 1 (constants), ©, <g> (binary functions), the pred

icates P (unary) and < (binary). We use the infix

notations x < y, x © y and x ® y. T contains the

axioms of real closed field (see [KK71] p.60: it is an

ordered field in which every element is a square or

the opposite of a square, and every polynom with an

odd degree has a zero) with the following axiom, stat

ing that the extension of P is the whole domain, or

an additive subgroup with a smallest positive element:

Vx P(x) V {VxVy [(P(x) A P(y)) => P(x © y)] A

VxVy [(P(x) A x © y = 0) P(y)] A 3x [P(x) A 0 <

xAVy((P(y)A0<y) (x < y V x = y))]}.

• Let fi be a model of T such that |P|^ ^ Dp. Such

models exist: take D^=IR (real numbers), |P|^=Z (rel

ative integers).

We define v such that v <p ft and |P|„ = (1 © 1) ®

(= {y/^x 6 |P|^, y = x © x}). v is a model of T

and »/ <p /i.

• Let fi' be a model of T A Vx P(x). The only de

finable subsets of are finite unions of intervals, as

the theory of real closed fields allows the elimination

of quantifiers (see [KK71, p.59-64]). So, there is no

model of T such that u <p fi' .

• For every model fi" of T, there exists v such that

f(<p)r I*" (we can always find a subgroup).

We have proved: Circi(T : P) = T A Vx P(x),

Circ2(T:P) is inconsistent.

Also from these results it is easy to show that:

• The first order circumscription is cumulative. In

deed, for any formula^ such that TaVx P(x) \= 4>, we

have Circt(T A<j> : P) = TaVx P(x) = Circi(T: P).

However T is not definably P-well-founded: this con

dition is sufficient for cumulativity, but it is not nec

essary. As -<, which is <SP here, is transitive, T is not

weakly well-founded for -<• This is a counter-example

to the full converse of theorem 4.8.

• The second order circumscription is not cumulative.

With^' = P(l)AVy((P(y)A0<y) =>(l<y V l=y))

we have: Circ2(T : P) (= <j>' and Circ2(T A <j>' : P) fi

Circ2(T: P). Indeed Circ2(TA<£' : P) is consistent as

the model fi given above is minimal for (TU {<#'}, <p).

• Finally let us remind two results of [MR90]:

1) This example shows that theorems 4.9 and 4.11 in

[PM86] are false if the theory is not well-founded.

2) Circi(T: P) gives the most unexpected result of a

circumscription: Vx P(x). □

To conclude on the subject, note that there exist also

examples where T is definably well-founded (which

is not the case in example 5.3) without being well-

founded (example 5.2 in [MR90]).
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5.3 Pointwise circumscription

Definition 5.8 [Lif88] P being a predicate, P/y is de

fined by: P/y(x) = (P(x) Ax/y). The pointwise cir

cumscription of P in T, noted Cppp(T : P) adds to

T the axiom T[P/y] ->P(y), which is one instance

of the circumscription axiom schema of Circi(T : P).

Pointwise circumscription is important for at least two

reasons:

• As we add one formula only, we do not have to guess

which instances of a possibly infinite axiom schema

are useful, as with standard circumscription. And for

some theories we have equivalence between Circj(T :

P) and Cppp(T : P) [Lif88].

• This circumscription simulates and generalizes the

notion of predicate completion [Moi88b].

Definition 5.9 If (i =p v and if |P|M is \P\V less ex

actly one element, we note ft K.i-,p v

(we may indifferently write fi —p v or n =p v here, as

\P\ft is definable with one parameter in v).

Theorem 5.6 A model of Cppp(T : P) is a model

of T minimal for <i-p.

(For a proof, straightforward, see [MR91]).

Example 5.4 T: P(a) A Vx (x = a V x = b V x = c).

Let n, v and v' be three particular models of T:

D„ = D„ = Dv, = |P|„ = {a,6,c}; \P\V = {a, 6};

\P\*> = {«}•

v' is minimal for (T, <i,p), v' <i.p fi, but we do not

have v' <\.p fi.

The models of Cppp(T : P) are the models of T in

which |P|^ = {a^}.

Cppp(T : P) = Tu{Vx (P(x) => (x = a))}. T has ten

models (up to isomorphism): it is easy to verify that

<\-p is weakly well-founded (it is even "bounded" in

Shoham's meaning), while it is neither well-founded

nor mildly well-founded.

Cppp(T : P) is not cumulative: it entails <j> = (a ^

6 A a ^ c) => (P(b) •» P(c)) and V H (a ^ 6 A a ^ c) =>

->P(b) while Cppp(T A <j> : P) does not entail ip. O

Now comes a second example, where -< is mildly well-

founded without being well-founded.

Example 5.5 C contains five predicate symbols E,

Ei, E2, P (unary) and < (binary, we note x < y), the

symbol = and one unary function symbol /. We de

scribe T informally, as a complete list of axioms would

not be readable. Any x verifies one and only one for

mula among E(x), Ei(x) and E2{x). < is a discrete

and total order, defined only on E, without smallest

or greatest element. / is a mapping from Ei onto Ei,

from Ei onto E, and from E onto E2 which satisfies

Vx (f3(x) = x). P D E is a final interval of E (i.e:

Vx (P(x) A x < y) =^ P(y)) which has a smallest ele

ment for < . For the sake of brevity, let us note e this

element (e is a new symbol, but any formula contain

ing e may be translated into a formula in C). We have

also: Vx((£!(x)Ax#/2(e)) => P(x)), Vx(E2(x)Ax?

/(e)) P(x)), and P(/(e)) => P(/2(e)). We have

described all the axioms of T, which is finitely axiom-

atizable.

 

T has only three kinds of models: those verifying

4,0 = -P(/2(e)), (resp. 0, = P(/2(e)) A -P(/(e))

and <j>2 = P(/(e))) which have an extension for P

which is like "P" (resp. "PI" and "P2") on the draw

ing. To = Th(T U {<*o}), T\ = Th(T U {>i}) and

T2 = Th(T U {^2}) are complete theories. The com

plete proof is tedious but not very hard, once we recall

that the theory of total discrete order without end-

points is complete, and that the elements of this the

ory are undiscernible (no first order formula using only

< and =, with one free variable, can be true for some

elements in a model and false for other elements, cf e.g

[CK73, p. 101, 147-150]) and once we remark that the

interpretation of / is completely defined in any model

of T.

The models of T minimal for <i p are the models of

To- Indeed, if p is a model of To, we cannot remove

one single element in |P|,, without contradicting some

axioms in T. If n is a model of Ti, we can remove

/2(e) from |P|^ (this gives a model yl of To). If n is a

model of T2, we can remove /M(e) from |P|P (this gives

a model y! of Ti), and also we could remove e (this
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giving a model fx" of T2). This describes all the pos

sibilities, thus T is weakly well-founded for <\.p but

it is not well-founded (note that T is not "bounded"

in Shoham's meaning).

T is well-behaved. Indeed, let <f> be a formula true

in all the models minimal for (T,<\.p), and T' be

T U {4>}. T0 (= T and T (= T, thus as T0, 7\ and

T2 are complete theories, T is equivalent either to To,

or to To n Ti , or to T0 n T2 , or to T0 n Ti n T2 , i.e

T (the intersection of theories closed for entailment is

the theory having for models the union of the classes

of models of each theory). In each case, the models

minimal for (T', <\.p) are exactly the models of To-

Note that the drawing of a model of T above is also

a good illustration of the relation <\.p among models

of T, once we remove the curved arrows. The straight

arrows representing / or < correspond now to <i:/>.

The points representing elements in E (respectively

E\, E2) correspond now to models of T2 (respectively

T!,T0).

It can be shown that there are no examples of this kind

with pointwise circumscription without an infinite se

quence of models. □

We give now an example of the same kind with a

"compound" circumscription, involving the less clas

sical circumscription Circnonunjv(T : P) which adds

-iVx P(x) to any theory T:

Example 5.6 T is Vz (x = a V x = b), a ^ 6, P(a) V

^P(6).

We use: Circg(T : P) = Cppp(T : P) U

Circnonumv(T : P).

7 has only three models (up to isomorphism): =

Dv = Dx = {a,b}, \P\X = 0, |P|„ = {a}, \P\V =

{a, b). The relation -< naturally associated to this cir

cumscription is: A X (*, fi ■< v, and v ~< v. The only

minimal model is A. T is not well-founded for -<: there

exists no v' minimal for (T, -<) with u' ■< v; however,

-< is weakly well-founded for Now, there are only

two non trivial T such that T \=+ T and T )=■ T

(Ta denotes the theory of A): 7 \ n T^ and 7\ n 7 v.

In each case the only minimal model is A, thus T is

well-behaved (theorem 2.4). Here is an illustration of

the relation -< in this case:

i : :Q

Note the analogies with the preceding example: we

get here a preference relation which is the "quotient"

of the relation <p of example 5.5 by elementary equiv

alence.

It is another example of a relation which is mildly well-

founded without being well-founded (T is cumulative

for the "circumscription" considered here). □

Note that <7~p is antisymetric and antireflexive. How

ever, pointwise circumscription is not an ordered pref

erential entailment notion, contrarily to domain and

predicate circumscriptions.

5.4 Strong circumscription

This circumscription is introduced in [Lif88] under the

name strong pointwise circumscription. It is useful

because the axiom is simpler than the standard cir

cumscription axiom, and it is equivalent to standard

circumscription for Horn theories and well-founded

logic programs [Moi90]. Also it is a simulation of

the "Closed World Assumption" (CWA) as denned in

[Rei78]. It is a kind of CWA not restricted to ground

terms.

Definition 5.10 The second order strong circum

scription of P in 7, with Q as varying, noted

Circf2(T : P;Q), is accomplished by adding the fol

lowing axiom to T: VpVq {T[p, q] Vx(P(x) =>

P«)>-

There is also a first order version Circfi(T:P;Q).

Circf(T:P;Q) refers to any version.

Definition 5.11 [Moi90] We write v -<p; q H (re

spectively v -<p. q fi) when v =p;q /* (respectively

v =P.q fi) and IP,-^ — |Pi|„ ^ 0 for at least one i

(!<*'< n).

Theorem 5.7 [Moi90] • The models of Circf2(T :P:

Q) are the models of T minimal for -<p;q.

• The models of Circfi(T:P;Q) are the models of 7

minimal for -<p.q-

Remarks 5.1 a) If v <P. q fi, then v -<P; Q /j,

the converse is false. Thus, a model minimal for

-<P. q is minimal for <P. q (i.e. Circf(T:P;Q) entails

Circ(T:P;Q)), the general converse is false, although

it is true for some classes of theories including Horn

theories.

b) The relation -<p.q is not transitive.

c) v -<P) q \i means that in the extension of P in /i,

we remove at least one element, even at the price of

adding other elements in this extension.

a), b) and c) hold with *-relations.

Example 5.7 T: (P(a) V P(6)) A a f 6

T is is well-founded for <p, the relation naturally as

sociated to standard circumscription Circ(T:P).

With strong circumscription (first order or second or

der versions are equivalent here) the situation is dif

ferent. Circf(T:P) is inconsistent: from Circf(T:P),

->P(a) can be proved (choose x = b as p[x]), as can

-iP(6) (choose x = a as p[x]). No model of T is mini

mal for -<p.
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Here are two models of T: = Dv = {a, 6}, \P\n =

{a},!/3!, = {*}. We get i/ -<P ft, as a 6 \P\„, a g

|P|„ and (i -<p v. Thus, we have /i {-<p)t I* and

In fact -<pT is reflexive here. □

-<p;q is antireflexive but this is not very interesting as

it is not transitive and as -<p.q is not antireflexive.

Neither -<PiQ nor -<p.q are antisymetrical. Strong

circumscription is our second example of a not or

dered preferential entailment, and its preference rela

tion -<psq has yet less properties than <\.p. However,

the results of sections 2, 3 and 4 apply.

6 Conclusion

Our goal was to unify all the results about various

kinds of circumscriptions, including domain, predicate

and formula circumscriptions. To that purpose, we

used a notion which in fact originated from the stud

ies about circumscription: preferential entailment. We

have made precise the equivalence between the two no

tions of circumscription and of preferential entailment.

We have exhibited one important property of all the

preferential entailments naturally associated to a cir

cumscription: coherence with respect to the syntax.

We have studied the unavoidable case of a preferential

entailment corresponding to a non transitive relation.

Also, we have isolated a powerful property of circum

scriptions: reverse monotony, which implies most of

the previously known properties of circumscriptions.

Several examples have been given, in order to illustrate

the utility of an appropriate preferential entailment

approach and of our definitions of well-foundedness in

the non transitive case. Two examples show that the

first order and the second order versions of predicate

circumscription do not behave in the same way with

respect to the important property of cumulativity.

The results of this paper apply also to more exotic

circumscriptions, including all kinds of pointwise cir

cumscription of [Lif88], closed or non recursive circum

scriptions of [BMM89], or definabilization of [MR91].
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Abstract

A novel decision method for autoepistemic

reasoning is developed and proved correct.

The method is applicable in a general set

ting, i.e. for an autoepistemic logic based

on a given classical logic. It provides a

decision procedure for a tightly grounded

form of autoepistemic reasoning based on L-

hierarchic expansions as well as for autoepis

temic reasoning based on Moore style ex

pansions and N-expansions. Prominent for

malizations of nonmonotonic reasoning, such

as default logic and circumscription, can be

embedded into autoepistemic logic based on

L-hierarchic expansions using simple local

translations. Hence, the method can serve

as a unified reasoning tool for a wide range

of forms of nonmonotonic reasoning. The

method is conceptually simple and the in

herent sources of complexity and targets for

optimization are clearly identifiable. As an

example of exploiting optimization possibil

ities a new decision method for Reiter's de

fault logic is developed where ideas from au

toepistemic reasoning are used to efficiently

prune the search space of applying default

rules when constructing extensions of a de

fault theory.

1 INTRODUCTION

We study the problem of automating nonmonotonic

reasoning. Several forms of nonmonotonic reasoning

have been proposed and in recent years research has

been focused on relationships between different for

malizations. Despite of different starting points and

underlying intuitions, leading approaches to nonmono

tonic reasoning have turned out to be closely related.

Our aim is to exploit the close connections so that a

single theorem prover could be used as a unified rea

soning tool for a wide range of forms of nonmonotonic

reasoning. An interesting approach is to choose some

formalization of nonmonotonic reasoning as a basic

system and develop a theorem prover for it. Decision

procedures for other forms of nonmonotonic reasoning

can then be realized by reducing decision problems in

a given formalization to decision problems in the ba

sic system. In this paper we consider the possibil

ity of using autoepistemic logic, originally introduced

by Moore (1985), as the basic system and we develop

a novel decision method for autoepistemic reasoning

which can serve as a basis for a unified reasoning tool

for nonmonotonic reasoning.

Besides autoepistemic logic, there are many other in

teresting alternatives to be used as a basic system in

cluding logic programming, default logic (Reiter 1980),

McDermott and Doyle style nonmonotonic modal log

ics (Marek, Shvarts and Truszczyriski 1991), and sys

tems based on two modalities (Lifschitz 1991). Au

toepistemic logic provides a rather expressive basic

language. This implies that other general approaches

to nonmonotonic reasoning such as default logic can

be captured using simple local translations. When us

ing a basic language with limited expressivity such as

that of logic programs more complicated translations

are needed. Autoepistemic logic has a uniform syntax

unlike default logic. This enables a unified treatment

of default rules, queries and integrity constraints. As

opposed to other approaches to formalizing nonmono

tonic reasoning based on modal logic, autoepistemic

logic is rather uncomplicated. It is a direct extension

of the underlying classical logic where only straightfor

ward principles of positive and negative introspection

are added but no modal axioms are needed. Moreover,

recent results show that autoepistemic logic covers a

range of prominent forms of nonmonotonic reasoning

(Konolige 1988, Marek and Truszczyriski 1989, Kono-

lige 1989, Marek et al. 1991, Elkan 1990). However,

some of the embeddings are rather complicated be

cause the original autoepistemic logic allows weakly

grounded conclusions which have to be eliminated

in the embeddings using extra conditions (Konolige

1988, Marek and Truszczyriski 1989) or complicated

translations (Gottlob 1993). In this paper we adopt a
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tightly grounded form of autoepistemic logic based on

L-hierarchic expansions (Niemela 1991) as the basic

system. In L-hierarchic expansions the troublesome

weakly grounded conclusions are excluded but with

out introducing any dependence on the syntactic rep

resentation of the premises. Furthermore, simple local

translations can be used to reduce decision problems

in other forms of nonmonotonic reasoning to decision

problems in autoepistemic logic based on L-hierarchic

expansions (Niemela 1992b).

Several decision methods have been proposed for au

toepistemic reasoning. Some of these (Moore 1988,

Stark 1990, Marek et al. 1991) are straightforward

applications of a particular finitary characterization

of autoepistemic reasoning, some (Niemela 1988) use

extensively a specific underlying proof method and

some (Marek and Truszczyriski 1991a, Junker and

Konolige 1990, Marek and Truszczyriski 1991b) are

based on the idea of mapping a decision problem in

autoepistemic logic into another problem. In this

work we develop a decision method for autoepis

temic logic in a general setting, i.e. for an autoepis

temic logic based on a given classical logic. At this

stage we do not want to commit to a particular un

derlying proof method and we aim at a conceptu

ally clear method where the sources of complexity

and targets for optimization are clearly identifiable.

Furthermore, we try to avoid exponential worst-case

space requirements which seem to be inherent in the

more advanced methods (Niemela 1988, Marek and

Truszczyriski 1991a, Junker and Konolige 1990, Marek

and Truszczyriski 1991b). This aspect is further dis

cussed in Section 4.

2 AUTOEPISTEMIC LOGIC

Autoepistemic logic is a modal logic with an operator

L which is interpreted as "is believed" . Autoepistemic

logic models the beliefs of an ideally rational fully in

trospective agent. The main object of interest in au

toepistemic logic is the set of beliefs of the agent given

a set of sentences as the initial premises of the agent.

The agent's ideal rationality implies that the agent be

lieves exactly every logical consequence of the initial

assumptions and her/his beliefs. Full introspection en

tails that the agent is capable of using both positive

introspection (if x is a belief, so is L\) and negative

introspection (if x is n°t a belief, then ->Lx is).

We consider a general setting where a classical calculus

CL is given and an autoepistemic logic CLae is built on

top of that. This kind of a general setting has already

been studied (Niemela 1992a). Let £ be the language

of CL. We extend £ by adding a monadic operator L

not appearing in £ and obtain an autoepistemic lan

guage £ae which is the language of CLae- The language

£ae is defined recursively as £ but with an extra for

mation rule: if <j> G £ne is a sentence, then L<j> G £ae.

Thus we consider autoepistemic logics where quan

tification into a modal context is not allowed even

if £ contains quantifiers (e.g. formulae of the form

VxLP(x) are not allowed). To simplify the treatment

we consider only closed formulae. So from here on we

let £ and £ae contain only closed formulae. In the

general setting an ideally rational agent believes the

logical consequences given by a consequence relation

^=ae which is a simple extension of the consequence

relation |=ci of CL where the L<f> formulae are treated

like atomic formulae in the propositional calculus.

To formalize a tight notion of autoepistemic reasoning

Niemela (1991) has proposed an enumeration-based

method where autoepistemic reasoning is defined as

a sequence of introspection steps of an ideally ratio

nal agent. The idea is to build a set of beliefs from

premises E by applying introspection to sentences in

the order given by an enumeration e. A set Be(E) is

constructed which contains all the results of introspec

tion. The set B'(E) together with E induces the set of

beliefs SEe(E) of an agent having initial assumptions

E after introspecting sentences in the order e.

Definition 2.1 Let E C C^. Let e = V'liV^i--- &e

an enumeration of sentences in £ae- Let Bq(E) = 0

and define BJ+1(E) for i = 0, 1, . . . as follows:

R« (y,_ /BJ(E)U{JW<+1} t/EuB;(E)Kelfc+i

;(E) U {-iL^ij+i} otherwise

Finally lei

oo

B'(E) = (jBf(E)

SE£(E) = {^e£ae|EUB'(E) Ke <f>).

To guarantee that the introspection principles of au

toepistemic reasoning are respected the enumeration e

is required to be acceptable with respect to the set of

premises.

Definition 2.2 An enumeration e is E-acceptable if

there is no i and no formula <j> such that ->L^ G B'(E)

but EUBJ(E) |=ae<£.

Example 1 Consider the propositional case, a set of

premises E = {-*Lp —► q) and an enumeration t —

q,p,... Then B< (E) = {-L9} as E 9 and Be2(E) =

{->Lg, ~<Lp} as E U B'(E) p. This enumeration

is not E-acceptable because -<Lq G B2(E) but E U

B2(E) Ke q. ■

We assume that the underlying consequence relation

(=ae is compact, i.e., if E (=ae <j>, there exists a finite

subset E' of E such that E' ^=ae <j>. For compact logics

the acceptability condition implies that the introspec

tion principles are not violated and the resulting set of

beliefs is a Moore style expansion (Moore 1985).
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Theorem 2.3 (Niemela (1992a)) For every ^-ac

ceptable enumeration e ofCae, SE£(E) is a Moore style

stable expansion o/E, i.e.

SEf (E) = {(j> | E U LSEe(E) U -.LSEf(E) |=M <t>}

holds where LA = {L<j> | i> G A}, ->A = | <j> G A},

and A = £ae - A.

Enumeration-based expansions, i.e. sets of beliefs in

duced by acceptable enumerations, are a proper sub

class of Moore style expansions. In the propositional

case they coincide with the N-expansions (Marek

et al. 1991) which are the same as iterative expan

sions (Marek and Truszczyriski 1989) (see (Niemela

1991)). The weakly grounded beliefs in N-expansions

can be eliminated by requiring enumerations to be L-

hierarchic. The resulting L-hierarchic expansions pro

vide an interesting tightly grounded form of autoepis

temic reasoning.

Definition 2.4 Let e be an enumeration ipi, fa, . . . of

sentences in C^. The enumeration e is L-hierarchic

iff for all fa, fa in t holds that if Lfa is a subformula

of ipj, then i < j.

A set of sentences A is an L-hierarchic expansion of

E iff A = SEe(E) for some Ti-acceptable L-hierarchic

enumeration t of C^.

Example 2 Consider the propositional case, a set of

premises

Z = {^Lp-+p] (1)

where p is an atomic formula and an enumeration

e = -<Lp, p, . . . Now e leads to an enumeration-based

expansion containing an ungrounded belief p (see also

(Niemela 1991)). However, e is not L-hierarchic. ■

An expansion of premises is a possible set of conclu

sions derivable from the premises. But as there are

premises with multiple expansions, the concepts of

cautious and brave reasoning are introduced. Given

a class of expansions, a formula is derivable from

a set of premises in the cautious sense iff it is in

every expansion of the premises and in the brave

sense iff it is at least in one of the expansions. We

denote the derivability relations with respect to L-

hierarchic, enumeration-based and Moore style expan

sions by hc(LE) , l~b(LE) , K(E) , hb(E) , K i K i

respectively.

Expansions are infinite sets of sentences and a finitary

characterization is needed to enable a computational

treatment of autoepistemic reasoning. We use a char

acterization based on full sets (Niemela 1990, Niemela

1992a). The notion of full sets provides a simple

and compact representation of expansions which is

straightforwardly applicable in the general setting con

sidered here. An overview of other approaches to char

acterizing expansions can be found in (Niemela 1992a).

First we introduce some notation. For an L\ formula,

q-atom(Lx) = q-atom(-iLx) = a°d for a set A,

q-atom(A) = {q-atom(<£) | <f> G A}. The set of all sub-

formulae of the form L\ of a formula <j> is denoted by

SfL(<£) and SfqL(«l>) is the set of all subformulae of the

form L\ of 4> which are not in the scope of another L

operator in <j>. We define a simple consequence relation

(=L which is given recursively on top of the underlying

consequence relation \=m>-

Definition 2.5 Given a set of sentences E and a sen

tence <j>,

EK* j/JEUSBB(» f=«<£

where SBE(» = {LX G SfLr>) | E f=L X}U

{^LX G -Sf<%) | E H X}.

A finitary characterization for Moore style expansions

can be provided in terms of sets of sentences con

structed from the Lx and ->Lx subformulae of the

premises satisfying a special fullness condition. A

full set serves as the kernel of a stable expansion; it

uniquely characterizes the stable expansion. In fact

there is a one-to-one correspondence between full sets

and expansions.

Definition 2.6 For a set of sentences E, a set A C

SfL(E) U ->Sf L(E) is H-full iff the following two con

ditions hold for every Lx G Sf L(E):

1. EUAh*X iffLxeA-

2. SUA t^ae x 'ff^Lx G A.

Theorem 2.7 (Niemela (1992a)) Let E be a set of

sentences of C^. Then a function SEe defined as

SEE(A) = {^G£ae|EUAK <i>)

gives a bijective mapping from the set of E-/ti// sets

to the set of Moore style stable expansions of E and

SEs(A) is the unique stable expansion A of E such

that ACLAU -•LA.

Example 3 The premise (1) has two E-full sets Ai =

{L->Lp,->Lp} and A2 = {-'L-'Lp, Lp). For example,

Ai is E-full as EU Ai (=« ->Lp and EUAi ^ae P- This

implies that E has exactly two Moore style expansions

SE=(Ai) and SEE(A2). As EU Ai £L P, P $ SEs(Ai).

However, ->LLp G SEE(Ai) as E U At |=L -<LLp. ■

A finitary characterization for enumeration-based ex

pansions is obtained by observing that full sets corre

sponding to enumeration-based (L-hierarchic) expan

sions are exactly those generated by acceptable (L-

hierarchic) enumerations. First we note that for a

finite enumeration the test for acceptability can be

stated in the following simple form.

Proposition 2.8 (Niemela (1992a))

Let en = rpi, . . . , rp„ be an enumeration of a finite set.
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Then en is ^-acceptable iff en satisfies the condition:

for all ^Ld> € B^(E), E U B'-(E) H=ae

Theorem 2.9 (Niemela (1992a)) Let E C £M be a

set of sentences such that SfL(E) is finite. If an enu

meration tn = V"i » • • • , V"n of {d> | Ld> € SfL(E)} is E-

acceptable, then B^n(E) is a E-/u// set and there exists

a H-acceptable enumeration e of such that SEf(E)

is the unique stable_ expansion A of E for which

B'"(E) C LAU-.LA (i.e. SEe(E) = SEs(B<"(E))j.

Furthermore, if e„ is L-hierarchic, then e is also.

Theorem 2.10 (Niemela (1992a)) Let E C £M

be a set of sentences. For every H-acceptable (L-

hierarchic) enumeration e of £ae, there exists a E-

acceptable (L-hierarchic) enumeration El of {d> \ L<j> £

SfL(E)} such that Bei(E) is the unique E-/a// set A

for which A C LSEE(E) U ->LSEe(E) holds and thus

SEf(E) = SEE(Bet(E)).

Example 4 The Moore style expansions in Exam

ple 3 are both characterizable using enumerations of

{<t> | L<b E SfL(E)} = {p,-Lp}: SEe(Ai) by the enu

meration €2 = p, ~<Lp and SEe(A2) by the enumera

tion e'2 = ->Lp,p, i.e. Ai = B^a(E) and A2 = B2="(E).

This implies that E has exactly two enumeration-based

expansions but only one L-hierarchic expansion, i.e.

SEE(B2'(E)). ■

3 OTHER FORMS OF

NONMONOTONIC REASONING

Autoepistemic logic based on L-hierarchic expansions

provides an interesting unified basis for a wide range

of forms of nonmonotonic reasoning. Leading formal

izations such as default logic, circumscription, logic

programs, justification-based truth maintenance sys

tems and forms of abduction can be embedded into

this variant of autoepistemic logic using simple local

translations and without extra conditions or restric

tion (Niemela 1992b). This implies that decision prob

lems in these approaches can be reduced to decision

problems in autoepistemic logic based on L-hierarchic

expansions without introducing additional computa

tional overhead.

Default logic (Reiter 1980) can be embedded into au

toepistemic logic based on L-hierarchic expansions us

ing the following translation.

AEDL(a:6l'--'S =

c

(La A L-iL-.&i A ■ ■ A L-*L-ybn) — c (2)

AEdlP, W) = W U {AEDL(d) | d e D) (3)

Theorem 3.1 (Niemela (1992b)) Let (D,W) be a

default theory where D is finite. Then a set E C C

is an extension of (D, W) iff E = Afl£ for an L-

hierarchic expansion A of AEdi,(D, W).

Default logic is closely related to the answer set seman

tics (Gelfond and Lifschitz 1990) of extended logic pro

grams, i.e. logic programs where classical negation (-<)

is allowed even in the scope of the negation-as-failure

operator (not ). Consequently, it is not surprising that

answer set semantics can be embedded into autoepis

temic logic using the following mapping.

LPae('o «— 'i, ■ ■ ■ ,'mi not lm+1, ■■ ■ , not /„) =

Llx A . . . A Llm A L-<Llm+1 A ... A L->Lln -» /0 (4)

Theorem 3.2 (Niemela (1992b)) Let P be a finite

extended logic program. S is an answer set of P iff

S is the set of literals in an L-hierarchtc expansion of

LPae(P).

When considering logic programs where classical nega

tion is not allowed, i.e. general logic programs, the

answer set semantics coincides with the stable model

semantics (Gelfond and Lifschitz 1990).

Corollary 3.3 Lei P be a finite general logic program.

S is a stable model of P iff S is the set of atomic

sentences in an L-hierarchic expansion of LPae(P)-

Elkan (1990) has shown that given a set of justifica

tions J the grounded model of J computed by a truth

maintenance system is just a stable model of J when

J is seen as a propositional logic program.

Corollary 3.4 Let J be a finite set of justifications.

M is a grounded model of J iff M is the set of atomic

sentences in an L-hierarchic expansion of LPae(J)-

4 AUTOMATING

NONMONOTONIC REASONING

In the general setting autoepistemic reasoning is de-

cidable if the underlying consequence relation ^=ae is

decidable (Niemela 1992a). Moreover, decision proce

dures can be obtained from the finitary characteriza

tion based on full sets in a very straightforward fash

ion. For brave reasoning an expansion containing a

given formula must be found and for cautious reason

ing it must be verified that a given formula is in all the

expansions. This can be achieved by constructing the

characterizing full set for each of the expansions and

performing the membership test on the basis of the full

set as implied by Theorem 2.7 using the consequence

relation (=l (see (Niemela 1992a) for details). How

ever, a decision procedure which is based directly on

the finitary characterization is not very practical be

cause to construct the full sets using a direct approach

it is necessary to iterate over every subset of the set

of L\ subformulae of the premises. If the cardinality

of a set is n, it has 2" subsets. Moreover, each iter

ation might be computationally costly, i.e. involve a

number of calls to a theorem prover for the underlying

consequence relation [=ae.
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Decision problems in propositional autoepistemic rea

soning are complete problems with respect to the sec

ond level of the polynomial time hierarchy (Niemela

1992a) which implies that any general decision method

for autoepistemic reasoning most likely has an expo

nential worst-case time complexity. However, a practi

cally oriented decision method should be able to take

advantage of possible regularities in a given set of

premises. For example, consider a set of premises

E = {po,Lp0 -*Pi,Lpi -*p2,...,Lpn-i -»p„}. (5)

A straightforward approach would examine the 2" sub

sets of {Lpo, . . . , Lpn-i) to find the unique E-full set

A = {Lpo, . . . , Lpn-i}. However, by carefully exploit

ing the monotonicity of the underlying consequence

relation (=ae it is possible to find the full set with

out iterating over the subsets: for any E-full set A,

EU A (=ae po holds and thus Lpo G A must hold which

in turn implies Lpi G A and so on.

We develop first a decision method for autoepistemic

reasoning based on L-hierarchic expansions. The deci

sion method builds E-full sets for L-hierarchic expan

sions of E. The E-full sets can be found by examining

the enumerations of the set {(j> \ L<f> G SfL(E)}. How

ever, the enumerations are not important but the sets

of beliefs induced by the enumerations. This obser

vation cuts the combinatorial explosion considerably

as typically there is a large number of enumerations

inducing the same E-full set. The full sets are de

veloped together as far as possible so that the same

computation is not repeated by exploiting the mono

tonicity of the underlying consequence relation \=^.

The novel decision method for autoepistemic reason

ing needs only a theorem prover for the underlying

monotonic consequence relation (=ae as a subroutine.

The approach differs from techniques where nonmono

tonic reasoning is reduced to another problem such

as a truth maintenance problem (Junker and Kono-

lige 1990), a theorem proving problem (Marek and

Truszczyrlski 1991b), or a constraint satisfaction prob

lem (Ben-Eliyahu and Dechter 1991). These reduc

tions provide valuable insights to the relationships

between the corresponding problems and enable new

techniques to be used for solving nonmonotonic rea

soning problems. However, while there are interesting

subclasses of nonmonotonic reasoning problems where

the problem size increases only polynomially as a re

sult of the reduction mapping (see, e.g. (Marek and

Truszczyrlski 1991b, Ben-Eliyahu and Dechter 1991)),

in the general case the reductions can lead to an expo

nential increase in the problem size. Hence the worst

case space complexity becomes exponential. Moreover,

the reductions are computationally complex.

As an example we consider the approach of Junker

and Konolige (1990). In this approach the premises

are required to be in a normal form with no nested

L operators. In the worst case, if a set of premises is

transformed into the normal form, its size might in

crease exponentially. Then the premises are mapped

to a set of justifications in a truth maintenance sys

tem. The size of the resulting set of justifications

can be exponential with respect to the size of the

premises and the mapping is computationally rather

complex. This is because the set of justifications cor

responding to premises E includes all monotonic jus

tifications <j> «— Wi,...,w„ where L<f> G SfL(E) and

{wi, . . . , cj„} is a minimal proof of <f> from H = {w |

->La V L0i V . . . V L0m Vu G E - £} , i.e. a minimal sub

set of H such that (En£)U{wi, . . .,w„} \=c\ <t> holds.

For an L<j> subformula of the premises, <j> can possess a

very large number of minimal proofs. The problem of

finding a proof of <f> from a hypothesis set H given a

background theory E, i.e. finding a set of H' C H such

that EU H' (=ci <f>, is closely related to logic-based ab

duction (Eiter and Gottlob 1992). If the background

theory is a set of clauses, then deciding whether there

is a consistent proof of an atom from a set of atoms is

Ej-complete in the propositional case (Eiter and Got

tlob 1992). As propositional brave autoepistemic rea

soning is also Ej-complete (Niemela 1992a), the search

problem of finding a consistent proof of an atom is at

least as hard as brave autoepistemic reasoning.

In Junker and Konolige's approach an expansion cor

responds to a suitable model of the justifications.

For example, strongly grounded expansions corre

spond to grounded models but deciding whether there

is a grounded model is NP-complete (Elkan 1990).

The exponential worst case space complexity and the

high time complexity of the reductions raise questions

about the usability of the reduction approaches as gen

eral decision methods for nonmonotonic reasoning.

4.1 A NOVEL DECISION METHOD FOR

AUTOEPISTEMIC REASONING

Figure 1 presents the function derLE which is the key

part of the novel decision method. The function derLE

is a skeleton for the decision procedures for brave and

cautious reasoning as well as for checking the existence

of expansions. For that purpose it contains an unspec

ified function test. By changing this function the var

ious decision procedures are obtained. The function

derLE takes as input a set of premises E, sets B and

F which give the common part of the E-full sets to be

considered and a sentence <j> which is just passed as an

argument to the function test.

The purpose of derLE is to return true iff there exists

an L-hierarchic expansion A of E containing BUF such

that test(E, A, <j>) returns true where A is the E-full set

corresponding A, i.e. A = SEe(A). This is achieved

by constructing E-full sets which contain B U F and

correspond to L-hierarchic expansions until a full set

A is found for which test(E, A,<£) returns true.

In the correctness proof of derLE we use the following
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FUNCTION derLE(E, B, F, <j>)

INPUT: Finite sets of sentences E, B, and F and

a sentence <f>.

(B,F) :=posLE(E,5,F);

IF for some -^L\ GB,EuBUF(=„x THEN

return false

ELSE IF Sf L(E) C q-atom(S) U F THEN

IF F C B THEN

return test(E, B, <j>)

ELSE

return false

ELSE IF for some L\ G SfL(E) - (q-atom(B) U F)

SfL(x) Q q-atom(fl) THEN

IF derLE(E, B U {->Lx},F, (j>) returns false THEN

return derLE(E, B, F U {LX}, <f>)

ELSE

return true

ELSE

return false.

Figure 1: A Skeleton for the Decision Procedures for

Autoepistemic Reasoning Based on L-hierarchic Ex

pansions

two notions. An enumeration e is fully L-hierarchic if

for every formula <j> in e for each subformula L\ of <j>,

X appears before <f> in e. The set B is generated by

some enumeration e if B = B'(E).

In the decision method the idea is to expand the set

B so that finally it contains every formula in a full

set. By Theorem 2.10 for every L-hierarchic expansion,

the corresponding full set is generated by some fully

L-hierarchic enumeration from E. This implies that

when deciding how to extend B the number of possi

bilities can be reduced by considering only those exten

sions which are generated by some fully L-hierarchic

enumeration. Hence in the decision method B is ex

tended only if the resulting set B' is generated by

some fully L-hierarchic enumeration em of a subset of

{<f> | L<j> G SfL(E)} from E, i.e. B' = B^,m(E). The

set F contains L\ sentences which should be included

in the full set to be constructed but are "frozen": a

sentence L\ G F is added to B only after B covers all

L\' subformulae of x, i e- Sf h(x) Q q-atom(B), and

EUB (=ae X holds. This ensures that B remains gen-

eratable from E by a fully L-hierarchic enumeration.

In derLE the results of positive introspection are first

propagated as far as possible using the function poslE

presented in Figure 2. The function exploits the mono-

tonicity of the underlying consequence relation f=ae

and expands the sets B and F , i.e. if B is included in

a full set and EUS ^=ae 4>, then L<f> belongs to the full

set provided it exists. It is straightforward to verify

that poslE has the following properties.

Proposition 4.1 Let (B' , F') = posLE(E, B, F).

FUNCTION posLE(E,fl,F)

INPUT: Finite sets of sentences E, B, and F.

REPEAT

B' := B;

FOR every Lx G SfL(E) - q-atom(B') DO

IF E U B Ke x THEN

IF Sf L(x) C q-atom(S) THEN

B:=BU{LX}

ELSE

F:=FU{LX)

UNTIL B = B';

return (B,F).

Figure 2: The Function poslE for Positive Introspec

tion Based on L-hierarchic Enumerations

(11) B C B' and F C F' and if q-atom(5) U F C

SfL(E), then q-atom(fl') UF'C SfL(E).

(12) If there is some fully L-hierarchic enumeration

generating B from E, then there is a fully L-

hierarchic enumeration generating B' from E.

(IS) If B U F C B^(E) for some ^-acceptable L-

hierarchic enumeration en of {x | Lx G SfL(E)},

then B' U F' C B^*(E).

(14) For all LX G Sf L(E), ifSiL(x) C q-atom(fl') and

E U B' (=„ x, then Lx G q-atom(fl').

Example 5 Consider the premises E in (5). Then

posLE(E,0,0) returns ({Lp0, Lpi, . . ., Lp„_i},(i). ■

After positive introspection if there is a conflict, i.e. if

some -'Lx has been included in the full to be con

structed (~>Lx G B) but x becomes a consequence

of the premises E and the full set under construction

(EUBUF ^=ae x)i there is no full set containing Bl)F

and false is returned. If there are no conflicts, B U F

covers the Lx subformulae of E and all the frozen be

liefs F have been included in B, B is a full set cor

responding to an L-hierarchic expansion and derLE

returns what test(E, B, <£) returns.

If there is some Lx G SfL(E) not covered by B U F,

Lx or -*Lx should be included in the full set. To en

sure that B extended by ->Lx is generated by some

fully L-hierarchic enumeration, only Lx formulae for

which SfL(x) C q-atom(5) are considered. Then we

know that if B is generated by a fully L-hierarchic

enumeration e, then B U {-'Lx} is generated by a fully

L-hierarchic enumeration, i.e. e extended by x- This

is because E U B ^ae x holds as otherwise Lx would

have been added to B in the function poslE.

There are two possibilities for such a formula Lx' ei

ther -'Lx is in the full set or Lx is in the full set. The

two alternatives are handled by backtracking. First B

is extended by ->Lx and if derLE(E, B U {->Lx}, F,<j>)
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returns false, L\ is taken as a frozen belief and derLE

returns what derLE(E, B, F U {Lx}, <i>) returns.

Example 6 (i) Consider the prepositional case and

the execution of derLE(E, 0, 0, 4>) where the premises

E are given in (5). As posle(E,0,0) returns

{{Lpo, Lpi, . . ., Lpn-i}, 0), backtracking is not needed

at all and the return value of dei-LE(E, 0, 0, 4>) is that

of

test(E,{Lp0,£pi, • ..,Lp„_i},<£).

(ii) Consider the premises E = {->Lp -* q, ->Lq —* p]

and the execution of derLE(E, 0, 0, 4>). Here then

P°sle(E, 0, 0) returns (0,0). As hp and Lq are not

covered by 0 and p and q have no Lx subformulae,

we can choose either of them. Let us choose Lp.

Hence derLE(E, {->Lp}, 0, <f>) is executed next. Now

Posle(E, {->Zp},0) returns ({~>Lp, Lq), 0) and

test(E,{-Ip,L9},^)

is executed. If this test returns true, derLE(E, 0, 0, <j>)

returns true. Otherwise derLE(E, 0, {Lp}, <j>) is exe

cuted. Because posle(E, 0, {Lp}) returns (0,{Lp}),

derLE(E, {->Lq}, {Lp}, <j>) is executed. Since now

PosLe(E, {-<Lq},{Lp}) returns {{->Lq,Lp},{Lp}),

test(E, {-'Lq, Lp}, <t>)

is executed. If this returns true, then derLE(E, 0, 0, <f>)

returns true. Otherwise derLE(E, 0, {Lp, Lq}, <f>) is

executed and because posle(E, 0, {Lp, Lq}) returns

(0, {Lp, Lq}), dert,E(E, 0, 0, <j>) returns false. ■

We aim to show that the function dei"LE is sound and

complete. For the proof it is sufficient that the func

tion posle which is used in derLE satisfies the four

conditions in Proposition 4.1. The next lemma shows

that the function derLE is sound, i.e. if it returns true,

there is a full set for which test succeeds.

Lemma 4.2 Let E be o finite set of sentences. If B

and F are sets of sentences such that q-atom(5)UF C

SfL(E), there is a fully L-hierarchic enumeration gen

erating B from E and derxE(E, B, F,<j>) returns true,

then there exists an L-hierarchic 'E-acceptable enumer

ation en of the set {x | Lx G SfL(E)} such that

BVFC B^"(E) and test(E, B^(E), </>) returns true.

Proof. We prove the lemma by induction on the car

dinality of the set

SL(E, B, F) = SfL(E) - (q-atom(fl) U F).

Let q-atom(5) UFC SfL(E), let there exist a fully

L-hierarchic enumeration generating B from E and let

derLE(E, B, F, <f>) return true.

The function derLE starts by introspection. Using

Proposition 2.8 and Proposition 4.1 (II, 12) the follow

ing basic result can be established which shows that

if Sf L(E) C q-atom(B) U F after introspection, an ac

ceptable enumeration exists.

(B) If SL(E,B',F') = 0 holds where (B',F') =

PosLe(E, B, F), then there exists an L-hierarchic

E-acceptable enumeration en of the set {x \

Lx G SfL(E)} such that BUFC B^*(E) and

test(E,B^(E),<£) returns true.

Let SL(E, B, F) = lb hold. Then also SL(E, B', F') = 0

holds where (B', F') = posLe(E, B, F) as B C B' and

F C F' by Proposition 4.1 (II). By (B) there exists

an acceptable enumeration for which test succeeds.

Let the cardinality of SL(E, B, F) be i. Let (B1, F') =

posLE(E, B, F). If SL(E, B', F') = 0, then (B) implies

that there exists an acceptable enumeration for which

test succeeds.

Assume then that SL(E,S',F') ^ 0 holds. Be

cause derLE(E, B, F, <f>) returns true, there is Lx G

SL(E,fl',F') such that SfL(x) Q q-atom(B') and

either derLE(E, B' U {->Lx},F' ,<j>) returns true or

derLE(E, B', F' U {Lx}, 4>) returns true.

Assume that derLE(E, B', F' U {Lx}, <j>) returns true.

The cardinality of SL(E, B', F' U {Lx}) is less than

i and q-atom(fl') Uf'U {Lx} C Sft(E). As B

is generated by a fully L-hierarchic enumeration, by

Proposition 4.1 (12) there is a fully L-hierarchic enu

meration em> generating B' . Hence by the inductive

hypothesis there exists an L-hierarchic E-acceptable

enumeration s„ of {x | Lx G SfL(E)} such that

B'UF'U {Lx} C B'-(E) and test(E, B*"(E), <f>) re

turns true. By Proposition 4.1 (II) B C B' and

FCF' which implies B U F C BV*(E).

On the other hand, consider now the case where

derLE(E,B' U {->Lx},F',<)>) returns true. The car

dinality of SL(E, B' U {->Lx\, F') less than i and

q-atom(5' U {^Lx}) UF'C Sf^(E). Let ero/+1 be Cm-

extended by x- Hence B' = B^^E) = B^?'+1(E).

As SfL(x) C q-atom(S') = q-atom(Bm1;' (E)) and as

em' is fully L-hierarchic, em/+i is fully L-hierarchic.

As Lx $ q-atom(S'). bY Proposition 4.1 (14) E U

B^'+,(E) t^ae X- Hence B' U {-*LX} = B%?(E).

Thus 5'U{-iLx} is generated by the fully L-hierarchic

enumeration £m'+i. By the inductive hypothesis there

exists an L-hierarchic E-acceptable enumeration en

of {x | Lx G SfL(E)} such that B' U {^Lx} U

F' C B^"(E) and test(E, B^"(E), 4>) returns true. By

Proposition 4.1 (II) BUFC B^(E). □

The next lemmashows that the function derLE is com

plete, i.e. if there is a full set for which the function

test succeeds, then derLE returns true.

Lemma 4.3 Let E be a finite set of sentences. Let e„

be an L-hierarchic T,-acceptable enumeration of {x \

Lx G SfL(E)} such that test(E, B^"(E), <f>) returns

true. Then for every set B of sentences and F of Lx

sentences such that BuF C B^"(E), derLE(E, B, F, 4>)

returns true.
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Proof. We prove the lemma by induction on the cardi

nality of SL(E, B, F) = SfL(E)-(q-atom(fl)U.F). Let

there exist an L-hierarchic E-acceptable enumeration

en of {x | Lx G SfL(E)} such that test(E,B*"(E),^)

returns true. Let B be a set of sentences and let F be

a set of Lx sentences such that BUFC BJ,"(E).

Using Proposition 4.1 (13, 14) and Proposition 2.8 it

is straightforward to establish a result showing that

if SL(E, B,F) = 0 after introspection, the function

derLE returns true.

(B) SL(E,B',.F') = 0 implies that derLE(E, B, F, <j>)

returns true where (B', F') — posle(E, B, F).

Let SL(E,fl,F) = 0. Then by Proposition 4.1 (II)

SL(E,B',F') = 0 where (B',F') = posLE(E, B, F).

Then by (B) derLE(E, B, F, <j>) returns true.

Let the cardinality of SL(E, B, F) be i and let B U

F C B;-(E). Let {B',F') = posLE(E, B, F). If

SL(E,S',F/) = 0, then by (B) derLE(E, B, F, i>) re

turns true.

Assume that SL(E, B',F') ^ 0. First we show that

there exists a formula Lx G SL(E,B',F') such that

SfL(x) ^ q-atom(B'). Consider a sentence V> which

is the sentence with the smallest index (in en) such

that Lipi G SL(E,5',F'). We show that SfL(V>.) C

q-atom(B'). Let Lipj G SfL(ipi)- As e„ is L-hierarchic,

j < i. Therefore Lipj G q-atom(5') U F' by the

minimality requirement for i. It sufficient to show

that Lipj G F' implies Lipj G q-atom(S') because

this implies Lipj G q-atom(B') and thus SfL(V>i) C

q-atom(B'). Let Lipj G F'. By Proposition 4.1 (13)

Lipj G B^"(E) and EUBjl^E) |=ae ipj holds. Using

Proposition 4.1 (13, 14) it can proved that

BJ^E) C B' (6)

holds by showing by induction on / that for all / =

0,1 j-i, BJ-(E) C B' holds.

As the enumeration e„ is L-hierarchic, then by (6)

SiL(ipj) C q-atom(Bjl1(E)) C q-atom(5') and EU

B' ^=ae ipj holds. By Proposition 4.1 (14) Lipj G

q-atom(fl'). Hence SfL(V>.) C q-atom(B')- So there

is Lx(= Lipi) G SL(E,B',F') such that SfL(x) C

q-atom(B').

If -.Lx G B^"(E) holds, then B' U {->Lx} U F1 C

B^n(E) holds as well. As the cardinality of SL(E, B' U

{->Lx}, F') is less than i, by the inductive hypothesis

derLE(E, B'U{->Lx], F', <p) returns true which implies

that derLE(E, B, F,<p) returns true. If ->Lx & BJ,"(E),

then LX G B'"(E) and B' U F'U {LX} Q B'"(E). As

the cardinality of SL(E, B', F' U {Lx}) is less than i,

by the inductive hypothesis derLE(E, B' , F'Li{Lx}, 4>)

returns true which implies that derLE(E, B, F, <p) re

turns true. □

As a direct consequence of Lemmata 4.2 and 4.3 we

have a soundness and completeness theorem for derLE-

Theorem 4.4 Let E be a finite set of sentences. Let

B and F be sets for which q-atom(S) UFC SfL(E)

and let there be a fully L-hierarchic enumeration gen

erating B from E. Then derLE(E, B, F, <f>) returns

true iff there exists an L-hierarchic ^-acceptable enu

meration e„ of the set {x \ Lx G SfL(E)} such that

BUFCB*"(E) and test(E, Bj,n(E), <£) returns true.

The theorem implies that if the underlying conse

quence relation is decidable, decision procedures

for |~c(le) , l~b(LE) , and the L-hierarchic expansion

existence problem can be obtained by employing an

appropriate function test and taking the empty set as

the initial common part of the full sets. These test

functions are straightforward to devise because mem

bership in an expansion is captured by the consequence

relation [=l, i.e. given a E-full set A, <j> is in the corre

sponding unique expansion iff E U A (=l <p.

Theorem 4.5 Let E C CM be a finite set of sentences

and <p G £«, a sentence.

1. 7/test(E, A,<j>) returns true, then derLE(E, 0, 0, <t>)

returns true t/f E has an L-hierarchic expansion.

2. 7/test(E, A,<p) returns true iff E U A (=L <t>, then

derLE(E, 0, 0, <p) returns true i/fE (~b(LE) <(>■

3. If test(E, A, <j>) returns true iffZUA ^L 4>, then

derLE(E, 0,0,<£) returns true iffY, b^LE) 4>-

Proof Clearly, q-atom(0) U 0 C SfL(E) and 0 is

generated from E by the empty enumeration which is

fully L-hierarchic, of course. Then by Theorem 4.4

derLE (E, 0, 0, <p) returns true iff there exists an L-

hierarchic E-acceptable enumeration £„ of {x | Lx G

SfL(E)} such that test(E, B^(E), <f>) returns true.

(1) Let test(E, A, <p) return true for every input. Then

by Theorems 2.9 and 2.10 derLE(E, 0, 0, <p) returns

true iff E has an L-hierarchic expansion.

(2) Let test(E,A,0) return true iff EUA |=L 4>- {=>)

Let derLE(E, 0, 0, <p) return true. Then there exists an

L-hierarchic E-acceptable enumeration e„ of {x | Lx G

SfL(E)} and EUB^(E) |=l <P- By Theorem 2.9 there

is an L-hierarchic expansion A of E such that

A = SES(B<"(E))

= {0e£ae|EUB^(E)K0}- (?)

Thus <p G A and E hb(LE) <P- (•*=) Let E (~b(LE) <t>

hold. Then there exists an L-hierarchic expansion

A of E containing <p. By Theorem 2.10 there ex

ists an L-hierarchic E-acceptable enumeration £„ of

{X | Lx G SfL(E)} such that A is given by (7). Thus

EUB^"(E) |=L <t> and test(E, B^-(E), <p) returns true.

Hence derLE(E, 0, 0, <p) returns true.

(3) Let test(E, A, <p) return true iff E U A £L <p. Sim

ilarly, by Theorems 2.9 and 2.10 it can be shown
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that derLE(£, 0, 0, <P) returns true iff there is an L-

hierarchic expansion of E not containing <p. □

The completeness results with respect to the second

level of the polynomial time hierarchy (Gottlob 1992,

Niemela 1992a) imply that there are two independent

sources of complexity in nonmonotonic reasoning:

• required monotonic reasoning and

• conflict resolution.

In the decision method the two sources are clearly

identifiable. In the autoepistemic framework required

monotonic reasoning is given by the underlying conse

quence relation (=ae and in the decision method this

task can be handled by a separate theorem prover. The

conflict resolution task emerges when deciding which

formula is included in the full set from the available L\

subformulae of the premises. In the decision method

the conflict resolution task is solved by a simple back

tracking scheme. If there is a conflict for some ->Lx'

included in the full to be constructed, the method

backtracks to the last choice point where some ->Lx

was added and retracts this choice. The other alter

native is explored by putting Lx as a "frozen" belief

to be included in the full set later. The same back

tracking mechanism can be exploited when searching

for an expansion containing a given sentence (brave

derivability) or an expansion not containing a given

sentence (cautious derivability). Notice that the deci

sion method can be implemented to run in polynomial

space provided that the theorem prover of (=ae runs in

polynomial space.

The decision procedures for |~c(E) , l~b(E) , and the

enumeration-based expansion existence problem can

be obtained easily by modifying the functions posle

and derLE slightly. The only change is that there is no

need to require that SfL(x) Q q-atom(fl) for the new

(->)Lx formulae to be added to B. The decision pro

cedures for (~c , (~b , and the Moore style expansion

existence problem can be devised by further modify

ing the function posle- Now the frozen beliefs can be

used in positive introspection because the grounded-

ness requirement for Moore style expansions is not as

strict as for enumeration-based expansions.

The decision method described above is completely

general. It does not rely on any additional assump

tions about the underlying logic which determines the

consequence relation |=ae. For example, no normal

form transformation of the premises is required. Prop

erties of the underlying logic as well as possible regu

larities of the sets of premises can be utilized to opti

mize the computationally costly subtasks in the deci

sion method: required monotonic reasoning and con

flict resolution. The theorem prover for (=ae can ex

ploit any special properties of the underlying logic or

restricted form of the premises to achieve highest pos

sible performance. An interesting topic of further re

search is to study possibilities of exploiting the regular

pattern in which the theorem prover for (=ae is used

and make use of previous computations when deciding

Optimization of conflict resolution is also a challenging

area of further research. An interesting approach is to

investigate the notion of safe disbeliefs. The idea is

to identify disbeliefs -<Lx such that x does not follow

from E and any possible extension of B U {-<Lx} U F.

This reduces backtracking as then B can be extended

safely by ->Lx since for -iLx a conflict is not possible.

4.2 A DECISION METHOD FOR

DEFAULT LOGIC

As an example of developing optimization techniques

we derive a new complete decision method for Reiter's

default logic. By Theorem 3.1 default logic can be seen

as a special case of autoepistemic logic based on L-

hierarchic expansions. The simple logical character of

the Lx sentences can be exploited when deciding (=ae

and the set of premises can be reduced considerably

when the premises are restricted to the form resulting

from the translation (2).

Proposition 4.6 (Niemela(1992a)) Let the under

lying logic be a first-order calculus. Let E C £ae be

a set of sentences of the form (Lbi A • ■ • A Lb„) —► c

where c £ C and n > 0 and A is a consistent set of Lip

sentences and their negations. Then for all <j> € C,

E U A \=„ 4> iff Hds(E, A) (=d <j>

where Hds(E,A) = {c | (Lbi A • • • A Lbn) -» c e

E and Lbi G A for all i = 1, . . . , n}.

An interesting notion of safe disbeliefs can be de

veloped for the subclass of autoepistemic sentences

resulting from the translation (2). The idea is to

strengthen the premises E by "assuming" ->L$ for ev

ery Lcj> £ B U F in addition to those -iL<b already in

B. It turns out that a disbelief -^Lip is safe if ip does

not follow from the strengthened premises E* and B

using positive introspection. The function safenegLE

in Figure 3 computes these safe disbeliefs

It is easy to exploit safe disbeliefs in the decision

method. Instead of propagating positive introspection

by using posle, both positive and safe negative intro

spection are propagated. This means that the function

introLE in Figure 3 is used instead of posle in the

beginning of derLE- Notice that introLE also com

putes safe disbeliefs which are based on the fact that

-iL-iLip belongs to every consistent L-hierarchic ex

pansion containing Lip. We call the resulting function

deroL- The function deroL is sound and complete

when given premises of the form resulting from the

translation (2).

Example 7 Consider the propositional case, the

premises E = {L->Lp —► q,L->Lq —* p) and the ex-
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FUNCTION safenegLE(E, B, F)

INPUT: Finite sets of sentences E,B, and F.

E* := {La -> c \ La A L-^Lbi A • • • A L->Lbn -* c G E,

for all i = 1, . . . ,n, --L6, G B or L6, £ B U F};

(S*,F'> :=posLE(E*,B,F);

return {-^Lip G ->(SfL(E) - q-atom(B)) | x/> G £,

S'UB* V>}-

FUNCTION introLE(E, B, F)

INPUT: Finite sets of sentences E,B, and F.

REPEAT

B' '= B'

(B,F) :=posLE(E, B,F);

B := Bl) safenegLE(E, B, F);

IF E U B is consistent and

there exist ^L\ G B THEN

B := B U {-.L-.LV' € -(SfL(E) - q-atom(B)) |

UNTIL 5 = B';

return (B,F).

Figure 3: Functions for Safe Negative Introspection

and Propagation of Introspection

ecution of derx>L(E, 0, 0, cf>). Compare this to Exam

ple 6 where safe negative introspection is not used.

First introLE(E, 0, 0) returns (0,0). Here we can ex

tend the full set by (-1)Lp or (^Lq. We choose

Lp. Hence first deroiXE, {-iLp}, 0, <j>) is executed.

Because ({—Lp, L-*Lp, Lq, ^L->Lq}, 0) is returned by

introLECE^Lp}^),

test(E, {-<Lp, L->Lp, Lq, -*L->Lq},(t))

is executed. If this test returns true, deroL(E, 0, 0, <j>)

returns true. Otherwise deroi/E, 0, {Lp}, <f>) is exe

cuted. As ({Lp, ->L->Lp, -'Lq, L-*Lq}, 0) is returned

by introLE(E, 0, {Lp}), deroiXE, 0, 0, <j>) returns what

test(E, {Lp, ->L->Lp, ~*Lq, L->Lq},4>) returns. ■

Theorem 4.7 Let E be a finite set of sentences of the

form (LaAL->L->b\A- ■ f\L-iL->bn) —* c. Let B and F

be sets of sentences such that q-atom(5)UF C SfL(E)

and let there be a fully L-hierarchic enumeration gen

erating B from E. Then deroiXE, B, F, <j>) returns

true iff there exists an L-hierarchic H-acceptable enu

meration en of the set {X \ L\ G Sf L(E)} such that

BUFC B^n(E) and test(E, B^n(E), <f>) returns true.

Proof. This is Theorem 4.4 except that the form of the

premises is restricted and the function introus is em

ployed instead of just poslE in deroL- To prove The

orem 4.4 it was sufficient that posle satisfied the four

conditions in Proposition 4.1. Hence to prove Theo

rem 4.7 it is sufficient to show that introLE satisfies

the same four conditions (11-14):

Let (B',F') = introLE(E, B, F).

(11) B C B' and F C F' and if q-atom(fl) U F C

SfL(E), then q-atom(B') U F' C SfL(E).

(12) // there is some fully L-hierarchic enumeration

generating B from E, then there is a fully L-

hierarchic enumeration generating B' from E.

(13) If B U F C B^-(E) for some Z-accepiable L-

hierarchic enumeration e„ of {x \ LX G SfL(E)},

then B'UF'C B^-(E).

(14) For all LX G Sf L(E), i/SfL(X) C q-atom(fl') and

E U B' 1=^ X, then LX G q-atom(B').

We prove that each condition is satisfied by showing

for every step in the body of the repeat loop in introLE

that if the condition holds before the step, then it holds

after the step. By Proposition 4.1 the conditions hold

for posle and it remains to show that the conditions

are satisfied by the two other steps where B and F are

modified in introLE-

(11) This clearly holds for introLE-

(12) Let B be generated by a fully L-hierarchic enu

meration from E.

(safenegLE) Let BBn = safenegLE(E, B, F). We

establish that there exists a fully L-hierarchic enu

meration generating B U BBn from E. We show

that for all ->L^ G BBn,

E U B U Bm ^ V- (8)

Now B U flSn is generated by an enumeration em'

which is obtained by extending em with formu

lae {ip | -iLV G Bsn} in some order. This is

because it can be shown that for every i, m <

i < rri, B>l(E) CflUB,„ which by (8) implies

EuB'rl(E) ^M fa and thus -iLxpi G B^"?'(E).

So it remains to show that (8) holds. We use the

following two results in the proof. The results are

straightforward to establish.

NegBels: Let B be generated by some fully L-

hierarchic enumeration from E. If L->Lb G B

and EUB is consistent, then -•Lb G B.

Incons: Let B be generated by some fully L-

hierarchic enumeration from E. IfEUBis

inconsistent, then E* U {L<f> G B \ <f> G C} is

inconsistent.

As for all -^Ltp G Ssn, E* U B* ^ ij>, (8) can be

proved by showing that for all -iLtp G Bsn,

E* U B* ^ae t/> implies E U B U Bm V- (9)

If E U B is inconsistent, then by (Incons) E* U

{L<f> £ B \ <p E C} is inconsistent. By Propo

sition 4.1 (II) B C B*. Then also E* U B* is

inconsistent. This implies Ssn = 0.
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Let E U B be consistent. Let E U B U Ban ^

ip hold. Then by Proposition 4.6 Hds(E, B U

B„„) Kl ^ holds. By Proposition 4.1 (II) B C

B* . Using this and (NegBels) we can show

Hds(E, fl U Ban) C Hds(E*,B*). (10)

By (10) Hds(E',B') \=cl iP holds and by Propo

sition 4.6 E* U B" |=ae V- holds. Hence (8) holds.

(-iL-iLip) Let E U B be consistent and there ex

ist ->L\ G B. Let ->L->Lip G Bsn' = {->L->Lip G

->(SfL(E) - q-atom(B)) | Lip G B] but assume

E U B U B»n< (=,„. As Lip G S, E U B U B8n<

is inconsistent. As Hds(E, Bl)Bsni) = Hds(E, B),

by Proposition 4.6 E U B is inconsistent, a con

tradiction. Hence for every ->L-^Lip G Bani,

EUBU58n' J^ae ->Lip which implies that there is a

fully L-hierarchic enumeration generating 5Ufl8n'

from E. Thus we have shown (12).

(13) Let there be a E-acceptable L-hierarchic enumer

ation e„ = rpi, .. ., V>„ of {x | L\ € SfL(E)} such

that B U F C B^"(E) holds.

(srfenegLE) Let Ban = safenegLE(E, B, F) and

we prove

fl8nCB^(E). (11)

Using Proposition 4.6, (NegBels), (Incons), and

Proposition 4.1 (14) for B* we can show by induc

tion on i that for all i = 1 n,

ipi G C and Lip{ G B-"(E) implies

E'US'KeVi- (12)

Using (12) it is straightforward to establish (11).

Let ^Lip G Bsn. Then E* U B* jtae 1> holds,

G SfL(E) and ip G £. Hence V is some in

the enumeration e„ . By (12) Lipi £ B'n(E) which

implies that -<Lipi G B^"(E). Hence (11) holds.

(-<L-'Lip) Let there exist ->Lx G 5. Let -<L->Lip G

fl8n, = {^L-iIV- G -.(SfL(E)-q-atom(5)) | Lip G

fl}. As -.Zoc £flC B^(E), E U B*"(E) is con

sistent. As Lip G B C B^n(E), by (NegBels)

-■L-iLip G B^n(E). Hence Bsn. C B^-(E). Thus

we have established (13).

(14) By Proposition 4.1 (14) holds for B\ where

(Bi,F\) = posle(E,5,F) and this implies that

(14) holds for B'.

□

The resulting decision method does not use the obvious

idea of building an extension of a default theory by try

ing to find a suitable order of applying the default rules

but it constructs the set of applicable rules by cau

tiously building a set representing the valid premises

of the rules, i.e. the set B. Autoepistemic logic of

fers a convenient language for this as it easy to repre

sent the fact that a prerequisite a of a rule holds (La)

and that it holds that a justification 6 is consistent

(L->L-i6). Every time a choice is made an approxi

mation of the intersection of the possible extensions

is constructed using safe disbeliefs and propagation of

positive introspection in a way which is closely related

to stationary default extensions (Przymusinska and

Przymusinski 1992). This can reduce the number of

choice points in backtracking considerably. However,

here we have integrated the approximation method ef

ficiently in the backtracking search: not only the par

tially constructed set of valid premises (B) is used but

also the information from the backtracking search, i.e.

the frozen beliefs F, are employed when constructing

the next approximation.

5 CONCLUSIONS

We have developed a novel decision method for au

toepistemic reasoning which is applicable in a general

setting, i.e. for an autoepistemic logic defined on top

of a given classical logic. The aim has been to de

vise a conceptually clear method where sources of com

plexity and targets for further optimization are clearly

identifiable. Two orthogonal sources can be identi

fied: classical reasoning and conflict resolution. The

classical reasoning task can be handled using a sep

arate theorem prover. The decision method imposes

no additional requirements leaving abundant room for

optimizations of the theorem prover. The conflict res

olution task is solved by employing a simple backtrack

ing scheme. The method exploits efficiently the mono-

tonicity of the underlying consequence relation to re

duce choice points in backtracking.

The method provides a direct decision procedure for

tightly grounded autoepistemic reasoning based on L-

hierarchic expansions and no additional groundedness

tests are needed. Decision methods for more weakly

grounded forms of autoepistemic reasoning based on

Moore style expansions and N-expansions are obtained

by minor adjustments. The method can be imple

mented to run in polynomial space in the propositional

case. Leading forms of nonmonotonic reasoning, such

as default logic and circumscription, can be embedded

into autoepistemic logic based on L-hierarchic expan

sions using simple local translations. Thus the method

can be used as a unified decision method for a large

range of forms of nonmonotonic reasoning. As an ex

ample of the optimization possibilities we develop a

new complete decision method for default logic where

the search space of applying default rules is pruned ef

ficiently by using ideas from autoepistemic reasoning.

The method provides an interesting approach to im

plementing truth maintenance systems as well as sta

ble model semantics and answer set semantics of logic

programs.
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Abstract

There is a growing recognition that part-

whole hierarchies are a very general form

of representation, widely used by humans in

commonsense reasoning. This paper devel

ops a terminological logic, and related infer

ence mechanisms for representing and reason

ing about composite concepts and individu

als. A basic terminological logic language is

extended with constructs for describing com

posite concepts in terms of their parts and

the relationships between them. A part-of

hierarchy is defined, based on the relation

ship of compositional inclusion. This part-

of hierarchy is analogous to, but different

from, the "is-a" hierarchy. Compositional in-

ferencing is defined as a process which in

fers the existence of a whole, based on the

existence of the required parts, where the

parts are in the necessary relationship to each

other. Three stable states are defined with

respect to compositional inferencing - compo

sitional extensions, credulous compositional

extensions and skeptical compositional con

clusions. This framework significantly en

hances and is complementary to, knowledge

representation and reasoning based on is-a hi

erarchies.

1 INTRODUCTION

In this paper we first motivate the importance devel

oping a logical system for reasoning about parts and

wholes. We then define the language we will use giving

syntax, semantics, completion rules and subsumption

definitions. We define the key relationships, builds and

compositional inclusion, on which we base our part-

of hierarchy, and explain the process of compositional

classification which allows us to build and maintain

'This author is currently visiting at The University of

Melbourne, Australia.

this hierarchy. We then define some notions of com

positional extensions where inferences are made about

the existence of compositions, based on the existence

of suitable parts in the correct relationships to each

other.

1.1 MOTIVATION

Part-whole hierarchies are a natural way for humans

to organise and represent objects in order to manage

and reason about the world, much of which can be seen

in terms of objects composed of other objects in a hi

erarchical fashion. There have been some efforts to

represent and manage composite objects in e.g. ob

ject oriented database systems [BeechMahbod 1988,

KimBertinoGarza 1989, Lambrix 1992] and this is

even regarded as a necessary facility for more com

plex database systems such as engineering databases

[Stonebraker et al. 1990, Atkinson et al. 1989]. There

is also an awareness that part-whole relationships may

be important for knowledge representation (KR), but

so far there has been very little done in this field. The

sort of reasoning we may hope to do in a KR system

supporting part-whole relations includes such things as

inferring the existence of composite objects based on

the existence of their parts, answering questions such

as whether a particular object is a part of some other

object, and determining whether one class is a possi

ble building block of another class. Determination of

attribute or role values based on propagation or inher

itance between part and whole is also an important

aspect.1

In this paper we propose a framework, based on termi

nological logics, for representing and reasoning about

this kind of part-whole relation. The addition of this

component significantly increases the general purpose

inferencing ability of the KR system and complements

the traditional is-a hierarchy on which such systems

are based.

1 Value propagation is not actually addressed in this

paper, but is an obvious extension to the framework

presented.
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Figure 1: couple and standard family

1.2 EXAMPLE

Imagine that we have a knowledge base that defines the

two concepts couple and standard family. A couple is

defined as being composed of a part, husband, (which

belongs to the concept man,) and a part, wife, (that

belongs to the concept woman), with the constraint2

that the wife is married to the husband:

couple ::=

(and (part husband man) (part wife woman)

(pp-constraint married wife husband))

A standard family is then defined as:

standard-family ::=

(and (part husband man) (part wife woman)

(part offspring child) (parts 2 offspring)

pp-constraint married husband wife)

pp-constraint mother wife offspring)

(pp-constraint father husband offspring))

meaning that a standard family is made up of a wife, a

husband and two offspring, where the wife is a woman,

the husband is a man and the offspring belong to the

concept child. In addition there are the constraints

that the wife is married to the husband, the wife is

mother to the offspring, and the husband is father to

the offspring. (See figure 1.)

If we are now given individuals a man, a woman and

two children who are in the appropriate relationships

to each other, we would like to conclude that we have

a standard family. Similarly we would like to observe

that couple is a module, or building block, of a standard

family.

The framework defined in the following sections aims

to support the above kind of reasoning in the context

of a terminological logic.

2 pp-constraint below stands for part-part-constraint,

i.e. a constraint between parts of a composition.

2 LANGUAGE

In our initial work we take a relatively simple ter

minological logic with only unstructured roles and a

limited number of constructs. We expect to be able

to extend this later to include a greater number of

constructs commonly found in terminological logics.

We also begin with a limited representational capac

ity with respect to parts, choosing, in the terminology

of [HalperGellerPerl 1992], to support only essential

parts of fixed cardinality in concept descriptions. In

common with [HalperGellerPerl 1992] we observe that

it is important to allow for a mechanism to distinguish

different kinds of parts - here we use a part name3.

We also consider it important to have the ability to

prescribe relationships between parts of a whole, and

thus introduce the notion of part-part constraints, or

necessary roles between parts.

2.1 SYNTAX

The language we will use is defined as follows:

concept ::=

T

l-L

| atomic-concept

| (and concept^)

| (all role concept)

| (atleast number role)

I (atmost number role)

| (part part-name atomic-concept)

I (parts number part-name)

| (pp-constraint role part-name part-name)

role ::= identifier

atomic-concept ::= identifier

part-name ::= identifier

number ::= non-negative-integer

Terminological axioms are used to introduce names for

concepts, and definitions of those concepts. Let A be

a concept name (identifier) and C be a concept de

scription, (concept), then terminological axioms can

be of the form:

A < C for introducing necessary conditions (primitive

concepts), or

A = C for introducing necessary and sufficient condi

tions (defined concepts).

A terminology (Tbox) T is a finite set of termino

logical axioms with the additional restrictions that (i)

every concept name used must appear exactly once on

the left hand side of a terminological axiom, (ii) all

concepts must be defined (appear on the LHS) before

3We assume the following properties for the part-whole

relation: (i) a part cannot be a part of itself and (ii) there

are no cycles in the part hierarchy. We incorporate these

properties in the definition of the Tbox (section 2.1) and

Abox (section 4).

(

(
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they are used, and (iii) T must not contain cyclic defi

nitions directly or indirectly, via either =, <, or a part

construct or any combination of these.

In the following we will use capital letters to denote

concepts (with the exception of T which will be used

for Tbox, M, Tl which will be used for sets of part and

role names, C which will be used for the set of atomic

concepts, and N which will be used for a number func

tion). Small letters will denote individuals, roles and

part-names, capital greek letters denote Aboxes or ex

tensions, and small greek letters denote sets of indi

viduals (except for e which denotes an extension func

tion). Where relevant the concept an individual be

longs to will be indicated by using the small letter

corresponding to the capital letter used for the con

cept. In that case an individual a is understood to

belong to concept A.

2.2 SEMANTICS

An interpretation of the language consists of a tuple

< V,e >, where T> is the domain of individuals (which

can be standard individuals, compositions and parts),

and e the extension function. The extension function

is defined in the standard way for terminological logics,

but extended to deal also with part names. Let M be

the set of part names, C be the set of atomic concepts,

and It the set of role names. Then,

e: (M - 2V*V) U (ft ^ 2V*V) U (C -> 2V).

For convenience we write x <„ y for <x,y> G e[n]

where n G M.

We have a standard semantics for that part of our lan

guage which is common to most terminological logics

(e.g. [Nebel 1990]). We give the semantics only for the

new constructs.

e[(part n A)] =

{*GZ>|VyGX>:y<1„x--yG e[A]}

e[(parts m n)] =

{x€V\t{y€V\y <nx} = m}

e[(pp-constraint r nl n2)] =

{ x G V I V yl,y2 G V:

(yl <nl x A y2 <„2 x) — <yl,y2> G e[r]}

Part names are really very similar to roles in standard

terminological logics. In our example of figure 1, a

usual way to define couple would be as having roles

husband and wife, where all the fillers of the wife role

belonged to the concept woman, and all those of the

husband role to the concept man. Additional atleast

and atmost declarations would be equivalent to the

parts construct. A significant difference however, is

that we are able to describe necessary relationships

between parts as well. In addition the 'roles' defined

by the part construct can be treated in a special way,

allowing us to make inferences about composition of

wholes. Essentially, part-of can be seen as a labeling

on certain roles, giving them a more specific semantics

than other roles.

2.3 SUBSUMPTION

Subsumption is defined as usual. CI subsumes C2 iff

c[C2] C e[Cl] for every interpretation <V,e>. We give

the relevant structural subsumption rule in the style

used by [Borgida 1993].

r- CI => cs

h (part n CI) => (part n CS)

We obtain the semantics that if A subsumes B, then

B may have additional kinds of parts, or more spe

cialised parts than A, and the constraints between the

parts of B may be stronger than those between the

parts of A. If A has mi n-parts, B has m2 n-parts and

ml ^ m2, then there is no subsumption relationship

between A and B. We believe this semantics to be intu

itive on the basis that if one has defined certain parts

to be essential for individuals of a given concept, then

all individuals of more specialised concepts must also

contain such parts. It could be argued that one would

prefer a more complex semantics, allowing for special

isations of a concept to have different parts than the

more general concept. However we believe that this

should be addressed eventually by the introduction of

'possible parts' into the language.

The subsumption algorithm for our language belongs

to the same complexity class as the subsumption al

gorithm for the standard part of our language. This

can be easily seen by mapping part names to roles,

the part construct to the all construct and the parts

construct to the and of the atleast construct and the

atmost construct.

2.3.1 Normalisation and Completion

The algorithm for calculating the subsumption rela

tionships requires that expressions are first normalised.

The standard part of the language is normalised in a

standard manner e.g. [Nebel 1990]. The relevant new

normalisation rules are the following:

h (and (part n CI) (part n C2)) =

(part n (and CI C2))

h (part til)= (parts 0 n)

ml ^ m2

1- (and (parts ml n) (parts m2 n)) = _L

For the purpose of our reasoning mechanism we also

complete the concept definitions by means of comple

tion rules which add a (part n T) or (parts 1 n)

to a definition in some cases. These rules enforce a

more complete specification and it is for this completed

form of the language that the defined relationships ap

ply. Completion is carried out as soon as a concept is
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defined, and the completed definition is used at all

times. The essence of these rules is that if the num

ber of parts is not given for a part named in a part

or pp-constraint clause, then the number of parts is

assumed to be one. If a concept is not given for a

part named in a pp-constraint or parts clause, the

concept is assumed to be T4.

For convenience we introduce some notation. If, after

normalisation and completion we have that

(part n A) occurs in the definition of B, then we say

that A is a direct n-pari of B. We define A' as an n-part

of B for all A' subsumed by A.

Definition 1 A' is a n-part of B (written A'<„B)

iff

( 3A : (A is a direct n-part of B) A (A subsumes A')).

Definition 2 A is a part of B (written A<B) iff

3n : A<nB.

If for a part name n, (part m n) occurs in the defini

tion of A, then we write that N(n,j4) = m, otherwise

N(n,j4) = 0. N(n,i4) represents the number of n-parts

which occur in the definition of A. The total number

of defined parts for a concept A, denoted N(j4), is

E„ N(n,A).

If (pp-constraint r nl n2) occurs in the definition of

A, then we write Anirn2.

3 KEY RELATIONS

The aim of our formalism and system is to be able to

discuss and reason about parts and wholes, or com

positions. We have already defined the notion of one

concept being a part of another. We now introduce

also the notion of module.

Definition 3 A is a module of B

(written A «mod B) iff

(i) ((N(A) < N(B))

(it) A (V n : N(n,A) < N(n,B))

(Hi) A (V n, C : C is a direct n-part of A —»

(C<nB))

(iv) A (V nl, n2, r ; (Bnirni A N(n\,A) > 0 A

N(n2,A) > 0) - Anlrn2))

In order for A to be a module for B we require that

(i) the number of defined parts in A is strictly less

4 Observe that the addition of a (part n T) actually

does not change anything to the definition of the concept

as (part n T) = T. The addition of (parts 1 n) terms

allows us to know the number of parts for each occurring

part name and thus gives us the case of essential parts of

fixed cardinality. Another way to obtain this case would

have been to require that each concept definition is required

to have a parts construct for each occurring part name.

than the number of defined parts in B; (ii) that all

part names defined for A are also defined for B, with

the number of each such defined part being at least

as many for B as for A; (iii) that the domains for

part names in A are included in the domains of those

part names for B; and finally (iv) that all constraints

defined between part names are at least as strong for A

as for B. A module is essentially a collection of parts,

such that none are redundant and the appropriate pp-

constraints required by the composition are fulfilled.

Individuals belonging to concepts representing parts

or modules of a concept C may be usable in building

individuals of concept C.

We define a relationship builds which is a combination

of pari and module, and which will form the basis of

our part-of hierarchy.

Definition 4 A builds B (written A < B) iff

(A < B) V (A <mod B)

In the example in figure 1 we have that man and

woman (as parts) build couple, while man, woman,

child (as parts) and couple (as a module) build

standard-family.

We note that the builds relationship is not transitive.

For example assume:

A ::= (and (part ni B) (part n2 D)

(parts 1 ni) (parts 1 n2))

and

B ::= (and (part n3 C) (part n4 E)

(parts 1 n3) (parts 1 n4))

then C builds B, B builds A, but C does not build A.

We also define the relation of compositional inclusion

which is the transitive closure of the inverse of builds.

Definition 5 B compositionally includes A

(written B > A) iff (A,B) e Ancfbuilds)

where Anc(builds) is the transitive closure of builds.

Lemma 1 -<(A < A)

Lemma 2 (A <nB) A (B <mod C) - (A <nC)

Lemma 3 (A <moA B) A (B <mod C) -

(A <mod C)

Theorem 1 Compositional inclusion is a partial or

der.

Proof

Assume that A > A. Then we would have that

a) By lemma 1 A < A is not possible.
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b) Assume there is a sequence (B, )*_0 of concepts such

that A < Bi < B7 ... < Bk< A.

1st case: All < are actually modules. By lemma 3 we

would have that A is a module of itself which gives us

a contradiction.

2nd case: In the other case we construct a new

sequence which does not contain any O which are

modules. This can be done using lemma 2. (E.g.

A < B\ < Bi < B3 < C where the first and the

last < are parts is contracted to A < B3 < C.) This

shows us then that we have a cyclic definition and thus

we have a contradiction.

(ii) By definition, compositional inclusion is transitive.

□

3.1 THE PART-OF HIERARCHY

Compositional inclusion is clearly a central relation

ship for discussing and reasoning about relationships

between parts and compositions. If, given an individ

ual, we wanted to consider what types of compositions

it could be 'part of, we would look at the concepts

which compositionally include the concept the indi

vidual belongs to. If we wanted to see what types of

parts may be used to build an individual belonging to

a composite concept A, we would look at the concepts

compositionally included in A.

The is-a hierarchy in terminological logic systems

can be seen as a data structure which is built and

maintained to give an efficient representation of the

subsumption relationship. We propose an analogous

structure for keeping track of the relationship of com

positional inclusion. We call this structure the part-of

hierarchy.

The notion of most specific subsumer allows an efficient

representation of the is-a hierarchy, as concepts are

only directly linked to their most specific subsumer.

This makes for a structure which is efficient to tra

verse when, for example, reasoning about what con

cepts an individual belongs to. Similarly we define the

notion of most composite includec, to allow a minimal

representation of the part-of hierarchy.

Definition 6 A is a most composite includee

ofB iff

(i) B >*A, A

(ii) -,(3A' : (B >*A')A(A' >A))

In the example in figure 1 couple and child are most

composite includees of standard-family.

Least composite includer is the inverse of most com

posite includee.

As new concepts are added into the hierarchy it may

be necessary to remove links, as well as to add new

links from and to the concept being added. This is

analogous to the way links are revised when building

the is-a hierarchy. Although compositional inclusion

seems similar to subsumption at first glance, it is not

merely a subrelation of subsumption as can be seen by

the following example:

A ::= (and (part ni CI) (part nj C2)

(parts 2 ni) (parts 1 nj)

(pp — constraint ni ri2 rl)

(pp — constraint ni n7 r2))

and

B ::= (and (part ni C3) (part n2 C2) (part n3 C4)

parts 3 ni) (parts 1 n2) (parts 4 TI3)

pp — constraint n\ r\2 rl))

where C3 subsumes CI.

A builds B and thus B compositionally includes A, but A

does not subsume B and B does not subsume A. Thus

the part-of hierarchy, while similar in nature to the is-a

hierarchy, is in fact different and separate from it.

4 COMPOSITIONAL EXTENSIONS

In our compositional terminological logic we wish to

extend our normal Ahox inferencing to include what

we will call compositional inferencing. (We assume in

this section that we have a given Tbox.) Composi

tional inferencing is based on the notion that (in cer

tain circumstances) we can infer compositions on the

basis of existence of their parts. This will amount to

adding inferred sentences in the Abox to obtain an

extended Abox. In inferring a composition we can look

for two different kinds of building blocks; parts, which

are the analogy on the individual level of the parts re

quired by the concept definitions, and modules, which

are compositions of parts, and also analogous to mod

ules at the concept level.

To assist in our definition of module (defined on indi

viduals) we introduce some notation for counting parts

of individuals, similar to that used for counting defined

parts of concepts. N(n,z) denotes |{ y \ y <n x } and

the total number of parts for individual x, denoted

N(x), is £3n N(n,ar). We then define the notion of

module as follows:

Definition 7 y is a module of x,

(written y <Jmod x) iff

(1 z,n : z <ny - z <„ x) A (N(y) < N(x)).

The language of the Abox, in which we can add our

inferences regarding compositions is as follows:

statement ::=

(concept-filler individual concept)

I (role-fillers individual role individual)

I (part-fillers individual part-name individual)

I (module-fillers individual individual)

(
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individual ::= identifier

The terms concept, part-name and role are defined as

for the Tbox syntax. If (concept-filler x C) appears

in an Abox, then this means that x G e[C]. Similarly,

(role-fillers x r y) means that < x, y > G e[r],

(part-fillers y n x) means that y <„ x, and

(module-fillers y x) means that y <mo{j *■

An Abox is a finite set of statements in the above lan

guage such that there are no cycles of parts. We say

that an individual is defined in an Abox if it appears

in one of the statements in the Abox. We will assume

that within one Abox an individual has a unique name.

We also make use of the following lemmas.

Lemma 4 (x <„ y) A (y <mod z) -* (x <„ z)

Lemma 5 (x <mod y) A (y <xaoA t) -*

(* <mod *)

It will be useful to have the analogue of compositional

inclusion for individuals.

Definition 8 x builds y (written x < y) iff

(3 n: x <n y) V x <dmod y

Definition 9 y compositionally includes x

(written y > x) iff (x,y) G Anc(builds)

where Anc(builds) is the transitive closure of builds.

In order to discuss compositional inferencing we first

define a relationship composes, between a set of poten

tial parts and modules, and a concept. The intuition

behind this relationship is that if we have all the pieces

to form a composition of a given concept, and those

pieces are in the relationship to each other expected

in a composition of that concept, then the pieces can

be said to compose that concept.

Definition 10 If a = {< a<,n,- >}*=1 and

0 = {6;}j=1 then < a,0 > composes C with respect

to Abox A iff the following conditions hold in A:

1) Vn,C : C'is a direct n-part ofC-+

((Va< : (< a,-, n >G a) — a,- G e[C'])

A (V6j , bjj : bj € 0 A b„ <nbj^ bjj G e[C']))

2) (Va,,n :< a,-,n >G a — 3C" : C <„ C)

A (ibj , bjj , n : (bj € 0 A bjj < „ bj) - 3C : C <n C)

3) Vn1,n2 : Cnirn3 -»

((Va,-, aj : (< a, , ni >G oA < aj, n2 >G a)

-►< a.-.a; >G e[r])

A (Va, , bj , bjj : (< a,- , m >G a A 6j G /? A 6;j <d „, 6;- )

-+< a,-,6i;- >ec[r])

A (Va< , 6j , bjj : (< a,- , n2 >G a A 6;- G /? A bjj <nibj)

-+<bjj,ai >€£[r])

A (V6,- , 6ii , 6;- , bjj -.(biEpAbj G /? A 6„- <d „ , 6,

A bii 6i) ~>< hi >e c[r]))

^ Vn : N(n,C) = |{a,- f< aitn >G o} + E»j€/,7V(n,6i)

^ (| « + « /? > 2)

The first condition required in the above is that all n-

parts in a and indirectly in 0 do belong to the concept

required for that part by the definition of the concept

being composed. The second condition ensures that

every member of a and every part of every member

of 0 is motivated by a requirement for such a part

in the definition of the concept being composed. The

third condition ensures that the constraints required

by the definition of the concept being composed, do

hold between the composing individuals. The fourth

condition ensures that the number of parts of a given

name in the set of composing individuals is exactly

equal to the number of parts of that name required by

the concept definition. The fifth condition ensures that

an individual belonging to a concept does not compose

this concept by requiring at least two individuals to

compose. We note that the definition does not allow

the composing set of modules and parts to contain

any extra parts not required by the definition of the

concept being composed.

We define compositional instantiation to be a map

ping from a tuple in the composes relationship plus

a system-generated unique identifier, to a set of Abox

sentences, thus allowing a composition to be realised.

Definition 11 If < {< aj.n,- >}*»i,{*j}J-i >

composes C with respect to Abox A and x is a system-

generated identifier then

Inst(< {< a,-,n, >}*=1, {bj}lj=l >,C,x) =

{ (^concept-filler x C),

(part-fillers ax ni x^,...,fpart-fillers a* n* x),

(module-fillers 61 x),..., (module-fillers 6j x))

We make the assumption that it is only reasonable to

infer a composition in those cases where the composi

tion is able to exclusively own its parts. To justify this

assumption, suppose we had a car defined as consisting

of the parts car-body, gearbox and engine, and a motor

bike as consisting of parts bike-frame, gearbox and en

gine. Suppose also we had an Abox with a car-body c,

two gearboxes gl and g2, an engine e, and a bike-frame

6. We would not want our compositional inferencing

mechanism to infer that we had both a car and a motor

bike, but that these two shared the same engine. We,

along with other investigators [HalperGellerPerl 1992],

consider this case of exclusive ownership of parts, to be

the most common situation. Thus our Abox language

allows a user to state explicitly that parts are shared,

but we do not infer composites which are obliged to

share their parts.5 One could envisage extending the

language to allow discrimination between sharable and

exclusively owned parts.

We define the notion of an instantiation being disal

lowed in those cases where it would result in failure of

the instantiated individual to exclusively own its parts.

s Parts are shared between a composition and its own

modules - it is sharing outside of the modular structure

which disqualifies compositional inference.
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Definition 12 Inst(< a,/? >,C,x) is disallowed in

A iff (i) (< a, (3 > composes C) with respect to A A

( (ii) (3a<, n,, y, n : (< a<, n, >G a) A ((a, <„ y) in

A-((y<lmodx) "» A u Inst(< >,C,x))

A-n((Kmody) in A U Inst(< a,0 >,C,x))) V

(Hi) (3ai,ni,y: (< aj,n, >G a) A ((a<«mody) «» A>>

A-,((j/<lmodx) A u 7ns'(< <*,P>,C,x))

M^modf) ,n A u l™t(< a,/3>,C,x))) V

(it,; (36, , n, y : (6, G /?) A ((6, < n y) in A;

Md/^mod1) ,n A u Inst(< a>P ><C>X))

A-,((I<1mod!') ,B A U In8t(< <*,P>,C,x))) V

(v) (36, , y : (&, G /?) A ((&, <1 mody) in Aj

M^mod1) ,n A U /n«*(< ot.jj >,{?,«))

A-((Kmody) in A U /n^(< a,/? >,C,r))))

Thus a disallowed instantiation w.r.t. A is one which

(i) can be composed in A but would result in either

(ii) one of the parts of the new individual being a part

of some separate6 individual in the new A, (iii) one

of the parts in the new individual being a module of

some separate individual in the new A, (iv) one of the

modules in the new individual being a part of some

separate individual in the new A, or (v) one of the

modules of the new individual being a module of some

separate individual in the new A.

A compositional extension, where no further infer

ences can be made regarding the existence of compo

sitions, is then defined as follows:

Definition 13 An Abox E is a compositional ex

tension of A under T iff it is the smallest Abox which

satisfies the following conditions:

1) AC E;

2) (< a, /? > composes C) with respect to E —*

3 x : ((Inst(< a,0>,C,x) CSjV

(Inst(< a,P >, C, x) is disallowed in H))

8) Va, 6, c, r»i, nj : ((a < „, 6) in E A(a < „3 c) in E) —►

((c<mod b) «'« S v (b <mod c) •'« E v

((a <n, b) in A A (a <„, c) in A))

Thus (1) the original Abox is always part of a composi

tional extension, (2) if it is possible to find individuals

(parts and modules) to compose a concept, then they

will be used to instantiate an individual of that con

cept in the compositional extension, unless this would

result in a disallowed sharing of parts,7 and (3) any

sharing of parts between individuals is either a result

of a situation given in the original Abox, or of shar

ing between a module and a 'larger' composition using

that module.

With separate individuals we mean that none of the

individuals participates in the other individual as a module.

'Sharing of parts is allowed between a module and a

composition using that module.

A compositional extension is then an Abox where we

can build no more compositions.

The outline of an algorithm for finding a compositional

extension is as follows:

Let A be the original Abox. The preprocessing step

generates new individuals for the parts of given indi

viduals in A which are not explicitly given and ini

tialises E to be this new Abox. This is done to easily

check the composes relation. The set Used is the set of

the individuals which have been used already to com

pose other individuals. The instantiate-intermediate-

modules step makes sure that when we instantiate an

individual we also instantiate as many as possible of its

potential modules and add these intermediate modules

to Used.

begin

Preprocess(A,Used,E);

repeat

if possible then

begin

choose a, 0, C such that

(i) a = {<<n,ni> <aii,nie> } such that

each Oi is defined in E,

(ii) 0 = { bi,...,bm } such that

each bj is defined in E,

(iii) < a,/3 > composes C with respect to E,

(iv) none of the a, in a is in Used,

(v) none of the bj in /? is in Used;

generate-unique-individual-name(x);

instantiate-intermediate-modules(a,/?);

E — E U Inst(< a,/?>,C,x);

Used <— Used U { ai,...,a* } U { 6i,...,6m }

end

else break

endif

endrepeat

end

It is in the process of choosing a suitable a,j3 and C,

that the part-of hierarchy helps structure the search

space. A non-used individual can first be placed with

respect to the part-of hierarchy. Each of the concepts

immediately below the individual (i.e. concepts which

compositionally include the concept representing the

given individual), are then candidates for the C pa

rameter in composes.

If there is some part(s) lacking8 in each least com

posite includer of an individual, then that individual

cannot be used in any composes. Similarly, if there is

some part(s) lacking in each most composite includee

of a concept, then neither that concept, nor any con

cept which compositionally includes that concept can

be formed.

Lacking implies not available and not able to be

composed.
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The part-of hierarchy can also be used to facilitate in

stantiation of the intermediate modules. The search

for such an intermediate module is limited to concepts

which are compositionally included by the C under

consideration and which themselves can be composed

by a combination of elements in the candidate a or (3.

We illustrate a simplified view of the algorithm out

lined using the example part-of hierarchy shown in

figure 2. For simplicity we assume that there are no

constraints between parts.

A B C

 

Figure 2: part-of hierarchy
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Assume an original Abox A as follows:

{(concept-filler a A), (concept-filler bl B),

(concept-filler b2 B), (concept-filler c C) }

Preprocessing sets E = A, Used = 0. We first take a,

and match to A in the part-of hierarchy. We investigate

a concept immediately below A, P, as a candidate for

composes. We find 61 and verify that

< {< a,nl >,< 61, ri2 >},0 > composes P and ful

fills the conditions required in choose. We instantiate a

new individual p and see that there are no intermediate

modules possible. We add a and 61 to Used and add

lnst(< {< a,nl >,< bl, n2 >},0 >,P,p) to E. We

take p, and investigate one of the concepts immediately

below P, namely Y, as a candidate for composes. We

find 62 and c such that

< {< c, n3 >,< 62, r»2 >},{?} > composes Y. We

see that we can instantiate an intermediate module q

as < {< c, r»3 >, < 62, n2 >}, 0 > composes Q. There

are no other intermediate modules to be instantiated and

thus we instantiate y using

< {< c,n3 >,< 62, n2 >},{p} >. We add p, q, c

and 62 to Used and add lnst(< <D,{p,q} >,Y,y) to E.

We cannot find any composes using y. As y is the only

non-used individual in E we are finished. E defines the

individuals a, 61, 62, c, p, q, y.

Theorem 2 For a given Abox A, there always exists

at least one compositional extension E.

We prove this by showing that the above algorithm

terminates, and that on termination, the final E is a

compositional extension.

(i) This algorithm terminates.

The initial Abox A contains a finite number of individ

uals. The preprocessing step may introduce new indi

viduals. As the number of defined parts for a concept

is finite and we have only a finite number of concepts

and we have no cycles, the number of newly intro

duced individuals is also finite. This also means that

we have a finite number of non-used individuals. In

each step in the algorithm we generate one new non-

used individual. (The intermediate modules are added

to Used.) However, to do this we need at least two old

individuals which participate in the composes relation.

This means that the number of non-used individuals

in each step reduces by at least one. As we started

out with a finite number of non-used individuals the

algorithm must terminate.

(ii) The final E is a compositional extension.

1) A C E;

2) Assume < a, /? > composes C with respect to E and

->((Inst(< a, (3 >,C,x) C E) and all y which would

share with x in E U Inst(< a,P >,C,x) would do this

module-wise. Then we have the following.

(a) If x would be a module of y\ then x would have

been an intermediate module and thus instantiated.

(b) If z would have sharing modules then we could use

the highest level modules among these to form a new

< a',/?' >. These highest level modules would then

be non-used individuals and thus the algorithm would

have instantiated x.

(c) If x would not share at all then the algorithm would

have instantiated x.

3) No sharing (except the allowed module-wise shar

ing) is introduced by the algorithm as only non-used

individuals are used in each step to compose the non-

used new individuals. The other new individuals are

intermediate modules and sharing is allowed here.

In cases where it would be possible to use parts for

building different composites, there will be a number of

compositional extensions, with no preferences between

them.

We wish to define preferences which, in the absence of

application specific preferences, we believe should al

ways be applied when inferring composites from parts.
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We have identified two such general purpose prefer

ences. We state these briefly, informally, then define

them formally and give examples to clarify our intu

itions.

1. Inferred composite individuals should make use of

given information at the most specific level possi

ble.

2. When inferring composite individuals on the basis

of their parts, we should infer as little additional

information as possible.

The application of these preferences will give what we

call credulous compositional extensions9.

In the compositional extensions which we generate,

we will have a number of individuals with system-

generated names. In order to be able to compare ex

tensions we need to define a notion of equivalent indi

viduals, which are the same except for differences in

system-generated names.

Definition 14 Given an original Abox A, composi

tional extensions Ei and E2 of A under T, an indi

vidual xl defined in Ei and an individual x2 defined

in E2, then we define saxne(xl,x2,Tli,'E2) <w follows:

1) If xl is defined in A V xl is defined in A then

(same(xl,x£,Hi,^2) iffxl=x2))

2) If xl is not defined in AAi2 is not defined in A

then (samefxl.xS.Zi,^) iff10

(i) ((VC : xl G eSl [C] ~ xl e eEa[C]) A

(«i)(oi = {< a,n >| a<nElxl}

Aa2 = {< b,n >| 6<J„Sax2} —

3/ : ari —► a2 : ((a)/ : ati —*■ 03 is 1 - 1 A

(6)Va, b, nu n2 : /(< a, nx >) =< 6, n2 >-►

m = n2 A same(a, 6, Ei, £2)))))

This definition states that an individual in the original

Abox can only be the same as itself and an individual

inferred by compositional inferencing (i.e. did not exist

in the original Abox) can only be the same as another

inferred individual. In the latter case we must have

(i) that they belong to the same concept, (ii) there

is a (a) one to one mapping between the parts of the

individuals, and that (b) corresponding parts are the

same according to this definition - i.e. non-inferred

parts are identical, while inferred parts are identical

except for name.

In order to capture preferences between individuals

which are not equivalent, we define two further rela

tions.

9The analogy is to credulous extensions in defeasible

inheritance, where these represent extensions where some

relatively indisputable preferences (specificity in the inher

itance case) have been applied, but there is still potential

for multiple extensions.

1 The symbol ce, means the extension function mapping

from the Tbox to the individuals in Si. Similarly «dnc,

means n-part in Si .

The first of these is something which we will call more

specific w.r.t. parts. The intuition motivating this def

inition is that if we are going to infer an individual on

the basis of the existence of the parts, we will pre

fer to infer an individual belonging to a concept which

makes use of the specific nature of the parts or the con

straints between them. For example, assume that we

build on our original example11 (figure 1), by adding

a definition for the concept of young standard family,

which is made up of a young couple with two children,

where young couple is a specialisation of couple. Given

a young couple and two children, with the appropriate

constraints holding, we would prefer to infer a young

standard family, rather than simply a family, though

both would be correct. We define this relation as fol

lows:

Definition 15 With respect to a particular Tbox T,

an individual i\ defined in Ei is more specific w.r.t.

parts than an individual i2 defined in E2, written

■rfo.ii, El, Eaj iff(3Cl,C2:

(») CI is a most specific concept defined in T such that

«i €es,[Cl]A

(ii) C2 is a most specific concept defined in T such that

*2 G e^[C2] A

(Hi) (V n: N(n,Cl) = N(n,C2)) A

(iv) In, A : A is a direct part of CI -* A <„ C2 A

(v) Vnl,n2,r : C2„ir„2 -» Cl„ir„2 A

(vi) (a) ((3n,A,A' : ((A is a direct n-part of CI)

A (A' is a direct n-part of C2)

A (A' subsumes A) A->(A subsumes A')))

V (6)(3nl, n2, r : Clnlrn2 A - C2nlr„2)))

This definition specifies that for j'i to be more specific

w.r.t. parts than i2, there must be most specific con

cepts, CI for »i and C2 for i2, (i,ii) such that (iii) both

concepts define the same part names and the same

number of parts for each part name; (iv) the domains

for the part names in CI are included in the domains

of those part names in C2; (v) all the constraints be

tween part names occurring in C2 also occur in CI;

and finally (v) (a) there is a part name which has a

strictly more specific domain in CI than in C2 or (b)

there is a constraint between part names which ap

pears in the definition of CI but not in the definition

of C2.

In the above case our intuition is that we prefer to com

pose the more specific individual, because it is mak

ing use of a more specific part, or constraint between

parts. However when specificity is based on aspects

other than specificity of parts, we intuitively prefer

to infer individuals which are as general as possible.

Assume again that we build on our original exam

ple by adding a definition for a rich standard fam

ily, which is the same as standard family except that

it has an additional feature (all bank-account large-

11 The additions to the example here are not intended as

a full specification of the concepts involved.
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positive- accounts). Given now that we have a couple

and two children in the appropriate relationships, we

would prefer to infer a standard family rather than a

rich standard family. We thus define the relationship

more general, which actually means more general, pro

viding that there is not already a relationship of more

specific w.r.t. parts.

Definition 16 With respect to a particular Tbox

T, an individual i\ defined in Ei is more gen

eral than an individual i2 defined in E2, written

gT/Uits.Ei.ZaJ iff

(i) -i st(»2,»i,£2,Ei)A

(ii) ((ori = {< a,n >| a<l„Sl»i} A

a2 = {< a,n>\ a<nEat2}) -»

3/ : ati —» oj : (/ is a 1 — 1 mapping A

(Vai,a2,ni,n2 : /(< Oi,i»i >) =< a2,n2 >-►

(nx = n2 A VC : oi € £Sl [C] «- a2 G eSa [C])))) A

(»i)(VC : »! 6 eEl [C] - i2 G A

(3C:i2eex,[C\*^heesl[C}))

Thus for i'i to be more general than i2, (i) i2 may not

be more specific w.r.t. parts than i'i, (ii) the parts in

»'i and t2 must belong to the same concepts, and (iii)

i'i must be strictly more specific than :2.

We are now ready to define a preference relation over

extensions, based on the above relations between indi

viduals.

Definition 17 E2 is preferred over Ei

(written E2 <T EXJ iff

3En, Ei2l E2i, E22 :

(i) En|jE12 = Ei AEnnE12 = 0

A E2i (J E22 = E2 A E2i n E22 = 0

(ii) A 3 mapping f : Ej —> E2 :

( (a) f: En — E21 is 1-1 A

(6)/ : Ei2 — E22 is 1-1 A

(c)Vx G En : same(x, f(x), Ei, E2) A

(d)(Vx 6 E,2 : (dl) sT(/(x),x,E2,Ei)

V(d2) gT(/(x),x,E2,Ei)

V(d3) 3x' G Ex2 : (x >*E x' A

(sT(/(x'), E2, Ei) V gT(/(x'), E2, Ei)))) A

(eKVx.yeEi :x ^^^^/(j;) >*Ea/(y)))

This definition states that we compare two extensions

by partitioning each extension into two disjoint parts

(i). The individuals in the first of these partitions can

be mapped directly to same individuals in the corre

sponding partition of the other extension (a,c). In the

remaining partition, in order for E2 to be preferred

over Ei, there must be a 1-1 mapping (b) between the

individuals in the second partition of each extension

such that (d) each individual in E2 is preferred to its

corresponding individual in Ei by a (dl) sT or (d2)

gx preference; or (d3) there is a St or gT preference

between compositionally included individuals. The in

tuition for the latter case is that the earlier decisions

in the building process are the most important. If we

make a 'wrong' choice earlier on, then we cannot trust

preferences based on individuals built from these less

preferred building blocks. Finally, (e) the mapping re

quires that for composite individuals compositionally

included individuals are mapped to compositionally in

cluded individuals of the corresponding individual in

the other extension.

We give the following small example to illustrate this

preference procedure.

P::= (and (parts 1 nl) (part nl A)

(parts 1 n2) (part n2 B))

P'::= (and (parts 1 nl) (part nl A)

(parts 1 n2) (part n2 B)

(all colour light-colour))

Q::= (and (parts 1 n3) fpart n3 P)

(parts 1 n4) (part n4 C))

Q'::= (and (parts 1 n3) (part n3 P')

(parts 1 n4) (part n4 C))

If we are given an Abox defining a, 6, and c, then two of

the compositional extensions, and the mappings between

their individuals will then be as follows:

Ea

a same a

6 same b

c same c

P gT(p,p',Ei,E2) p'

sT(9',9,E2,Ei) q'9

We have a gT preference (between the p's) favouring

Ei and a sT preference (between the q's) favouring E2-

However the sT preference is allowed to be overridden

due to the fact that the p's are compositionally included

in the q's. Thus Ei is preferred to E2.

A credulous compositional extension is then defined as

follows:

Definition 18 A compositional extension E of A un

der T is a credulous compositional extension of

A under T iff

VE' : (E' is a compositional extension of A under T

A E' <T E) E <T E'

We also have the following theorem.

Theorem 3 For a given Abox A, there always exists

at least one credulous compositional extension.

Due to space limitations we do not show the proof.

It builds a.o. on the transitivity of <Ct and the fact

that there are only a finite number of compositional

extensions for a given Abox A.

□
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Although credulous compositional extensions may al

low significant pruning in the space of all possible

compositional extensions, there are many situations

where we will have multiple credulous compositional

extensions. It is often not practical in real systems to

maintain multiple extensions. Thus we also define the

notion of a skeptical compositional conclusion, which

infers compositions only where there is no ambiguity

remaining after applying the preferences inherent in a

credulous extension.

Definition 19 A* is a skeptical compositional

conclusion of A under T iff

it is the largest Abox such that (Va : a defined in A* —►

(VE : E is a credulous compositional extension of A

under T —» 3a' : a' defined in E A same(a, a', A', E)))

Thus a skeptical compositional conclusion is in essence

the intersection of the credulous compositional exten

sions, but with allowance made for the arbitrary names

of system-generated compositions.

Theorem 4 For a given Abox A, there always exists

exactly one skeptical compositional conclusion (with

allowance made for the arbitrary names of system-

generated compositions).

This follows from the definition and theorem 3.

□

We observe that a skeptical compositional conclusion

is not necessarily a compositional extension, and illus

trate this with the following example:

P::= (and (parts 1 nl) (part nl A}

(parts 1 n2) (part n2 B))

Q:.= (and (parts 1 n2) (part n2 B)

(parts 1 n3) (part n3 C))

Z::= (and (parts 1 nl) (part nl A)

(parts 1 n2) (part n2 B)

(parts 1 n3) (part n3 C))

Assume we have an original Abox:

{(concept-filler a A), (concept-filler b B),

(concept-filler c C) }

We can build then two compositional extensions: Ei

defining a, b, c, p (with parts a and b), zl (with parts

a, 6 and c) and E2 defining a, b, c, q (with parts b and

c), z2 (with parts a, b and c). Both compositional ex

tensions are credulous compositional extensions. We can

see also that same(zl,z2). The compositional conclusion

defines then a, b, c, z with same(z.zl) and same(z,z2).

This is not a compositional extension as it is possible to

compose both p and q, and to instantiate one of them

according to the definition of compositional extension.

5 DISCUSSION AND

CONCLUSIONS

In this paper we have defined a language for describ

ing compositional concepts and a relationship which

allows us to maintain a compositional hierarchy, analo

gous to, but differing from the subsumption hierarchy.

This part-of hierarchy supports reasoning about com

positions, just as the subsumption hierarchy supports

reasoning about concept membership.

We have defined and discussed a process of composi

tional inference - the inferring of wholes from the ex

istence of their parts - and have defined three kinds of

stable states with respect to compositional inferencing;

compositional extensions, credulous compositional ex

tensions and skeptical compositional conclusions.

We have identified two preferences which should be

considered when comparing extensions - one for speci

ficity w.r.t. parts and one for generality when the speci

ficity w.r.t. parts is not present. We expect that there

are also further general purpose preferences which

should eventually be incorporated into the choice of

credulous extension. In particular it seems intuitively

that one would wish to have a preference for build

ing a single more complex individual, rather than a

number of disjoint, simpler individuals. However, def

inition and exploration of this type of preference is the

subject of further work, and will probably require ex

perimentation in application domains, prior to defini

tion. It is also possible that further exploration, both

theoretical and practical will lead to changes in the

preferences defined in this paper. However this work

is an initial step in defining a framework which can be

further refined and developed.

In this paper we have not considered a number of types

of questions whose answers can also be facilitated by

the representation described here. However it is clear

that questions like "/ want to build an individual be

longing to concept Z, what building blocks do I have

available?", or "We have a surplus of individuals be

longing to concept X, in what way could we use them?"

could be answered using reasoning mechanisms based

on the framework described here. Simpler queries re

garding whether one individual is a part of another

can of course also be supported, as can queries regard

ing whether an individual belonging to one concept

may be a part of an individual belonging to another

concept.

Most of the work that has been done in the area of

part-whole relations to date has been on one of two

subjects: (1) exploring the different styles of part-

of relationships (e.g. [WinstonChaffinHerrmann 1987,

IrisLitowitzEvens 1988]); and (2) allowing for repre

sentation of various part-of relationships in object

oriented databases, with support for some limited

sorts of behaviour based on these relationships (e.g.
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deletion of a part when a whole is deleted as in

[KimBertinoGarza 1989]).

Franconi [Franconi 1993] has suggested an extension

to terminological logics which allows for treatment of

collections as individuals. However his approach is ori

ented towards natural language systems, whereas ours

is oriented more to description of physical systems.

The KOLA system [JangPatil 1989] also incorporated

some aspects of part-whole relations. The emphasis

here was to allow classification of a concept as a spe

cialisation of some other concept in cases where some

role filler was a part of the role filler of the parent con

cept, as opposed to a specialisation of the role filler

(which is the normal subsumption case). This issue

is not addressed in our work, but would be a natural

area for further development. Napoli [Napoli 1992] de

fines co-subsumption as a special case of object-based

subsumption and uses this to manage a particular part-

whole relation, namely subgraph/graph inclusion. The

graphs are maintained in a hierarchy which is called

the reactive parionomy and is used in an application

for planning the synthesis of organic molecules. His

work tries to introduce reasoning about partial orders

(where part-of could be a special case) in object-based

systems, whereas our approach gives part-of a special

status with specific reasoning mechanisms.

An important area for future work in the framework

developed here is the extension to allow specification

of possible, but not necessary parts, and a more flex

ible approach to the specification of number of parts.

Mechanisms for inferring attributes of wholes from at

tributes of the parts, and vice versa is also an impor

tant area for continued work.

We consider the part-of relationship to be a central

mechanism for representation of and reasoning about

composite concepts and individuals, analogous to the

is-a relationship for representing and reasoning about

class organisation and membership. Inclusion of part-

whole representation and inferencing significantly en

hances the representation based on is-a hierarchies,

central to many knowledge representation systems.
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Abstract

This paper draws its inspiration from current

work in reactive planning to guide plan recog

nition using "plans as recipes". The plan

recognition process guided by such a library

of plans is called means-end plan recognition.

An extension of dynamic logic, called dy

namic agent logic, is introduced to provide a

formal semantics for means-end plan recogni

tion and its counterpart, means-end plan ex

ecution. The operational semantics, given by

algorithms for means-end plan recognition,

are then related to the provability of formu

las in the dynamic agent logic. This estab

lishes the relative soundness and complete

ness of the algorithms with respect to a given

library of plans. Some of the restrictive as

sumptions underlying means-end plan recog

nition are then relaxed to provide a theory of

reactive recognition that allows for changes

in the external world during the recognition

process. Reactive recognition, when embed

ded with the mental attitudes of belief, de

sire, and intention, leads to a powerful theory

of integrated reactive planning and recogni

tion. The primary contribution of this paper

is in laying the foundations for such an inte

grated theory.

1 INTRODUCTION

Classical planning and plan recognition have received a

great deal of attention within the Artificial Intelligence

(AI) community. Classical planning deals with reach

ing a desired state of affairs from the current state by

chaining through a given set of plan operators. Plan

recognition, usually treated as the reverse process of

planning, is concerned with inferring these operators

based on observations.

Over the past decade the focus of research in planning

has shifted from classical planning to reactive or situ

ated planning [6]. Reactive planning is based on two

premises: (a) the environment in which an agent is

situated is continuously changing; and (b) agents situ

ated in such environments have limited resources. This

has led to the development of various architectures and

techniques for guiding the agent in its decision-making

process, for making agents commit to their decisions

as late as possible and, once committed, to stay com

mitted as long as possible, within rational bounds.

Research in reactive planning has led to the re

definition of the notion of plans. Plans are used in two

different contexts: (a) plans as abstract structures or

recipes for achieving certain states of the world; and

(b) plans as complex mental attitudes intertwined in

a complex web of relationships with the other men

tal attitudes of belief and desire [15]. Plans as recipes

guide a resource-bounded agent in its decision-making

process, thereby short-circuiting the time-consuming

search through a possible space of solutions as done by

classical planning. Plans as mental attitudes constrain

the agent in its future decision-making by committing

it to previously-made decisions. The latter are called

intentions.

As noted by others1 this renaissance in planning, has

had very little impact on plan recognition. A major

ity of the work within plan recognition [1, 9, 13] is

still addressing the general problem of unconstrained

plan recognition. Although some of these approaches

use background knowledge (in terms of event hierar

chies [9] and plans [13]) as heuristics to guide the gen

eral recognition problem, they have not attempted to

use plans in the above sense to guide or constrain the

recognition process of resource-bounded agents in a

dynamic world.

The use of plans as recipes and as mental attitudes,

to guide and constrain the recognition process, respec

tively, will be called reactive recognition.

'Pollack [16] writes: "Yet, most research on plan recog

nition has taken place in isolation from the AI planning re

naissance. Could a marriage of these two research projects

bear any fruit?"
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Reactive recognition is applicable to a broad class of

problems where agents have limited resources and the

environment may change while the agents are doing

their recognition. However, it makes two important

assumptions: (a) the recognizing agent has complete

knowledge of the plans of other agents that it is try

ing to recognize; and (b) under any given situation

the recognizing agent has a small set of plans (i.e.,

hypotheses) that it is trying to recognize.

In this paper, we address a part of the reactive recogni

tion process, namely the use plans as recipes to guide

the recognition process and call it means-end plan

recognition2. In addition to the two assumptions (a)

and (b) of reactive recognition, means-end recognition

also makes the following assumptions: (c) the occur

rence of events in the external world is synchronous

with the recognition of events by the agent, i.e., the

agent cannot wait for an event to occur and there is

no memory of all the past events that have occurred;

and (d) the world is not changing while the agent is

performing the recognition.

Due to its restrictive assumptions means-end plan

recognition is of limited applicability. However, it lays

the foundation on which to build a theory of reactive

recognition. We present simple algorithms for means-

end plan recognition that make use of plans, similar

to those used in reactive planning systems, to deter

mine what means must be observed in order to recog

nize certain ends. We introduce a dynamic agent logic

that provides a logical semantics for means-end plan

recognition and means-end plan execution. In this pa

per, we are predominantly concerned with the theo

retical principles of means-end plan recognition and

its relationship to the algorithmic operational seman

tics. While we do not envisage the use of means-end

plan recognition in practical applications, we do see it

as an important first step towards reactive plan recog

nition. Extensions of the means-end plan recognition

algorithms to reactive recognition can be found else

where [19].

In spite of the initial skepticism towards reactive plan

ning, the approach has been quite successful com

pared to classical planning. This is due to the fact

that, in a substantial class of problem domains (such

as road-traffic management [3], space shuttle diagno

sis [8], air-traffic management [14], and air-combat

modelling [18]) execution of actions and decision

making tasks can be analyzed and codified as plans, in

a relatively simple manner. These domain-dependent

plans can then be effectively used by an agent to react

in dynamic domains under resource constraints. The

need for reactive recognition was motivated by the fact

that plan recognition in these domains is simpler than

the more general problem. In particular, an agent in

these domains is not attempting to recognize any arbi

trary plan, but instead knows that it is attempting to

recognize one out of a small set of plans. As a result,

we believe that there is a substantial class of problems

(i.e., those addressed by reactive planning) that are

amenable to techniques of reactive recognition.

2 MEANS-END PLAN EXECUTION

AND RECOGNITION

PLAN: Mak* Pasta Dish 1

Invocation condition:

(I {maAc-pasta-aish))

precondition:

(iA-kitche*)

PLAN: Hak* Pasta Dish 2

invocation condition:

U (madc-pasta-Ash))

bodj:

(! {maast-ordinary-pasta))

O

body:

(! (made-spagheiti-mari/iara))

O -O 

PLAN: Make Spaghetti tic

invocation condition:

(/ [mad* tyagtuni mini— «JJ

PLAN:

f<

body:

f/furfi rntUn)) fT f i if iJJ (boil)

O -O HD

body:

(make-gpaghetti)

O K>

PLAN: Mat* Spaghetti

Invocation condition:

body:

o

PLAN: Hake Mm

Invocation condition:

(I (madt-eauce)}

PLAN: Make Alfredo Sauce

(make-alfrtdo)

(! (made-iatce)) O *0

2 Analogously, we shall refer to the usage of plans to

guide the planning process as means-end plan execution.

Figure 1: Plan library for making pastas

In this section, we illustrate informally our approach

to the processes of plan execution and plan recognition

using a well known example from the literature [9].

Figure 1 shows a number of plans, at different lev

els of granularity, to make two types of pasta dish.

The BNF syntax of the plans is a simplified form of

what is described in the Procedural Reasoning System

(PRS) [5, 8] and is given in Figure 2.

A plan has a name, an invocation condition that can

trigger the plan, a precondition that needs to be true

before the plan body is started, a postcondition that is

true after the plan body is finished successfully and the

body of a plan which is an AND-OR acyclic graph with

the edges labelled with certain plan expressions. Fur

thermore, we assume that the plans are non-recursive.

In the BNF syntax an OR-node is represented as
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<plan> ::= <name> <invocation> <precond>

<postcond> <body>

<name> ::= string

<invocation> ::= !o

<precond>, <postcond> ::= a

<body> ::= <node> {- (<label>) -*}+ <body> |

<node> {+ (<label>) ->}+ <body> |

<node>

<label> ::= e | !a

<node> ::= symbol

{a}+ stands for one or more a's.

Figure 2: BNF syntax for Plans

-(<label>)-> and an AND-node as +(<label>)-* 3.

For a given proposition a, the expression (! a) means

achieve (or recognize the achievement of) a state of

the world where a is true. The expression (e) means

execute (or observe) the primitive plan or action e.

Consider first the process of plan execution where the

agent initially wants is in the kitchen and wants to

achieve a state in which it has made a pasta dish. To

achieve this end, the agent will perform means-end rea

soning and determine that two plans - namely, Make

Pasta Dish 1 and Make Pasta Dish 2 - are applica

ble. If the agent adopts the first plan, it will want to

achieve a state in which it has made ordinary pasta.

To achieve this it has to adopt Make Ordinary Pasta,

resulting in the agent wanting to achieve a state where

it has made noodles, and so on. This process continues

till the making of a pasta dish is completed or the ex

ecution fails as the agent was unable to complete one

of the steps successfully.

Now consider the process of means-end plan execution

in conjunction with means-end recognition. When an

executing agent executes a primitive plan, the observer

agent observes the (execution of the) primitive plan.

While the executing agent can choose an applicable

plan, one after the other, until one of them succeeds,

the observing agent should attempt to recognize all the

applicable plans simultaneously. Otherwise, both the

executing and observing agents are performing identi

cal operations. The correspondence between execution

and recognition and the conditions under which they

succeed are shown in Table 1. In this table, pi, ... pn

refer to the plans that can achieve a; and li, . . ., /„

refer to the labels appearing on the outgoing edges of

an OR-node or AND-node.

Now with this operational semantics let us run the ex

ample with the observer and executing agents having

the same library of plans and both in the kitchen. As

sume that the executing agent wants to make a pasta

3When displayed graphically all edges from an OR-node

are shown as arrows and all edges from an AND-node are

shown as arrows with has an arc connecting all the arrows.

dish and the observer agent wants to recognize this.

The executing agent can fulfill its desire by adopting

either the plan Make Pasta Dish 1 or the plan Make

Pasta Dish 2. However, the observer agent in order to

recognize this has to adopt both these plans for recog

nition. This would result in the observer wanting to

recognize whether ordinary pasta was being made or

whether spaghetti marinara was being made. This in

turn would result in the observer adopting the plans

Make Ordinary Pasta and Make Spaghetti Marinara in

the recognition mode. The adoption of Make Ordinary

Pasta would result in the observer agent wanting to

recognize the making of noodles and in turn the adop

tion of the plans Make Fettucini and Make Spaghetti

in the recognition mode. Assume that the execut

ing agent adopts the plan to make ordinary pasta by

first making fettucini and executes the action make-

feilucini. The recognition plans Make Spaghetti Mari

nara and Make Pasta Dish 2 of the observer agent

fail. Instead, the observer agent observes the primi

tive action of making fettucini and recognizes that this

results in the achievement of the desire to make noo

dles. Also, the observer now knows that the executing

agent is making an ordinary pasta (not a spaghetti

marinara) and that the next step would be to make

a sauce. Thus the observer decides to recognize the

making of a sauce and adopts the plans of recognizing

the making of alfredo sauce and the making of mari

nara sauce. This process continues till the entire Make

Pasta Dish 1 plan is recognized.

3 ALGORITHMS

In this section, we present algorithms for means-end

plan execution and recognition. We present simplified

propositional versions of the algorithms without tak

ing into account the mental attitudes (such as beliefs,

desires, and intentions) of agents. We extend these

algorithms to reactive planning and recognition and

embed them into a BDI-interpreter [21] elsewhere [19].

The algorithm means-end-recognition (see Fig

ure 3) takes as input a plan library given by P, a set

of propositions S, and an expression E, which could be

either a primitive plan or an achievement expression.

The algorithm then returns a "success" or "failure"

result and a set of propositions T that are true after

the recognition.

If the expression we are trying to recognize is a prim

itive plan or action, we invoke the function observe.

If the expression is an achievement expression, the Set

Of Applicable Plans (or SOAP) is computed from the

given plan library P. A plan is said to be applicable

if its invocation condition matches the incoming ex

pression and its precondition is contained in the set S.

Each plan in the set of applicable plans is recognized in

parallel by running recognize-plan until one of them

succeeds. The union of the postcondition of the plan
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Plan Entity Execution Recognition Success Condition

(«)
execute observe if e succeeds

if one of p, succeeds

if one of /,- succeeds

if all of li succeeds

(!o) with pi...p„

OR-node with /i . . ./„

AND-node with l\. . ./„

sequentially run pi to p„

in parallel run l\ to /„

in parallel run l\ to /„

in parallel run p\ to p„

in parallel run l\ to /„

in parallel run l\ to /„

Table 1: Comparison of Execution and Recognition

that succeeded and the final state of the succeeding

plan is given as the set of propositions T.

procedure means-end-recognition(P, S, E, T)

case type-of(E) is

primitive-action:

result = observe(E);

return(result);

achievement:

soap := {};

for p,- in P do

if ((E = invocation-condition(pj) and

(precondition^ ) C S)) then

SOAP := SOAP U p,;

in parallel for each p,- in SOAP do

result, = recognize-plan(P, S, body(p,), T,);

if (result, = success) then

T := T,- U postcondition(pi);

return(success)

return(failure).

Figure 3: Algorithm for means-end recognition

The algorithm means-end-execution is similar to

the algorithm means-end-recognition except that

observe and recognize-plan are replaced by

execute and execute-plan, respectively. Further

more, the applicable plans are run sequentially, one

by one, until one of them succeeds. If all of them fail

the execution process is said to have failed.

The functions observe and execute are primitives

that return "success" or "failure" depending on the

successful or failed observation or execution of an

event, respectively. The assumption that the observa

tion of events happen synchronously with the execu

tion of actions by other agents is built into the function

observe. In other words, if the event occurs before or

after the agent runs observe the event will not be ob

served.

The algorithm for recognize-plan (see Figure 4),

given a plan body, repeatedly recognizes the OR-nodes

and AND-nodes of the plan body until the END node

is reached or one of the nodes fails. The initial state

S gets continuously updated during the recognition of

OR-nodes and AND-nodes.

Given a node, the algorithm for recognizing an OR-

node performs means-end-recognition in parallel on

procedure recognize-plan(P, S, plan-body, T)

n := start-node(plan-body); Si := S;

while (not (end-node(n))) do

case type-of(n) is

OR:

result := recognize-OR-node(P, S,-, n, T,-, next);

AND:

result := recognize-AND-node(P, S,, n, Ti, next):

if (result = success) then

n:= next-node;

S,:=T.;

else return(failure);

T := T,-;

return(success).

Figure 4: Algorithm for recognizing a plan body

procedure recognize-OR-node(P, S, n, T, next)

in parallel for i = 1 to |out-arcs(n)| do

e,- = out-arcs,- (n);

resulti := means-end-recognition(P, S, label(ei), Ti);

if (result,- = success) then

next := dest-node(ei);

T := T<;

retum(success);

return(failure).

Figure 5: Algorithm for recognizing OR nodes

all the plan expressions labelling the out-going arcs of

the OR-node (see Figure 5). As soon as one of these

recognitions is successful it returns with the next node

to recognize. The algorithm for recognizing an AND-

node performs me&ns-end-recognition in parallel for

each out-going arc (see Figure 6). If any one of these

recognitions fail, the algorithm returns a failure. If all

these recognitions succeed, the algorithm returns with

the union of all the output sets T, .

The algorithm for executing a plan is very simi

lar, except that the recognitions of OR-nodes and

AND-nodes is replaced by the execution of OR-

nodes and AND-nodes. Algorithms for execut

ing OR-nodes and AND-nodes are similar to the

algorithms for recognizing OR-nodes and AND-

nodes, except that means-end-execution replaces

means-end-recognition.
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procedure recognize-AND-node(P, S, n, T, next)

in parallel for i = 1 to |out-arcs(n)| do

e,- = out-arcsj(n);

result,- := means-end-recognition(P, S, label(e,), Tj);

if (result,- = failure) then return(failure)

ip jj|ou<-arc»(n)|rp .

next := dest-node(e,);

return(failure).

Figure 6: Algorithms for recognizing AND nodes

Now let us go back to the example considered earlier.

Let us assume that the observing agent wants to recog

nize the making of a pasta dish. This corresponds to

the means-end recognition algorithm being called

with the expression: (! (made-pasta-dish)). This re

sults in the plans Make Pasta Dish 1 and Make Pasta

Dish 2 being added to the SOAP. Two instances of

the algorithm recognize-plan with the plan bodies

of Make Pasta Dish 1 and Make Pasta Dish 2 are set

up in parallel. The plan for recognizing Make Pasta

Dish 1 results in the means-end recognition algo

rithm being invoked with the expression: (! (made-

ordinary-pasta)), and so on. The calling of the vari

ous algorithms can be drawn graphically as shown in

Figure 7, which shows the state of the agent just before

the observation of events.

Now, if the agent observes (make-fettucini), i.e., the

observe function succeeds with the (make-fettucini)

event, the nodes marked (make-spaghetti) under

Make Spaghetti and Make Spaghetti Marinara will fail.

The expression (! (made-noodles)) will succeed be

cause it is sufficient for one of the plans to succeed

for the achievement expression to succeed. This will

result in the next step of the plan Make Ordinary

Pasta being invoked resulting in the achievement ex

pression (! (made-sauce)). This will result in the two

plans Make Marinara Sauce and Make Alfredo being

called resulting in calls to observe make-marinara and

make-alfredo. As the (make-spaghetti) under Make

Spaghetti Marinara failed, the expression (! (made-

spaghetti-marinara)) and the plan Make Pasta Dish

2 will fail. This will result in the observing agent infer

ring that the agent is not making a spaghetti marinara

and is possibly making a fettucini alfredo. If the agent

subsequently observes make-alfredo and the act boil

it can conclude that the agent used the plan Make

Pasta Dish 1 to make an ordinary pasta; namely, a

fettucini alfredo.

4 DYNAMIC AGENT LOGIC

There are two main approaches to reasoning about

programs using modal logics in the Theoretical Com

puter Science literature: the exogenous and endoge

nous approaches [12]. Dynamic logic is an exogenous

 

Figure 7: Call Graph for making pastas (just before

the first observation)

logic as it explicitly represents programs in the lan

guage. As opposed to this, endogenous logics such

as Computation Tree Logic (CTL) and CTL* [4] do

not represent programs explicitly but consider them

as part of the structure over which the logic is inter

preted. In theoretical computer science, dynamic logic

has essentially been superseded by the endogenous log

ics (particularly CTL* and a number of variants of it).

We have chosen an exogenous logic (i.e., dynamic

logic) to represent the plans of an agent as it fits nat

urally with the compositional nature of plans. When

one reasons about the mental state of an agent dur

ing the execution/recognition of a plan, an endoge

nous logic is more appropriate. Elsewhere [22] we have

developed endogenous logics CTLbdi and CTL*jDI to

represent the mental state of an agent that captures

the agent's beliefs, desires, and intentions. Rational

agents have to deal with mental states as well as plans

and a combination of exogenous and endogenous logics

would be ideal for these purposes. Mu-calculus [11], a

generalization of CTL* and Dynamic logic, could serve

this purpose.

Dynamic Logic (DL) first used for providing semantics

for programming languages [17] has also been used as

the basis for a logic of action [23] . We extend dynamic

logic in three ways. First, we provide the semantics

of plans from an internal agent viewpoint rather than

from an external observer viewpoint as is usually done

with dynamic logic. Second, we introduce the notion of

recognition as a first class entity. As a result, agents

not only have the choice to execute an action, they

also have the choice to observe an action. Third, we

allow the indirect call of plans facilitating means-end

reasoning — a notion central to means-end plan ex

ecution and recognition. Agents must be capable of

reasoning about the achievement of certain states of

the world (ends) without necessarily reasoning about
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the programs (means) that achieve these states of the

world.

In the following, we extend dynamic logic by explicitly

introducing agents and providing a semantics based

on an internal agent viewpoint. This logic, called Dy

namic Agent Logic (DAL), is better suited to reasoning

about plans than dynamic logic.

4.1 SYNTAX

Consider a language Co with a set of primitive propo

sitions PrimProp, a set of primitive plans or actions

PrimPlans and a set of agents A. The propositional

operators V and -> are used to form propositions, de

noted by a, ai, . . ., /?, 0\, The plan operators ;

(sequence), | (non-deterministic or), and || (parallel),

are used to form plan expressions, denoted by ir,The mixed operator ! (achieve) is used to con

vert propositions into plan expressions. The mixed

operators () (there exists an execution), [] (for all ex

ecutions), (()) (there exists a recognition), [] (for all

recognitions), are used to form dynamic propositions,

denoted by tf>, <j>i

The set of well-formed propositions, plan expressions,

and dynamic propositions are defined by the following

BNF notation:

a ::= p | ai V aj | -<a

t ::= a:c | !a | (*i | jt2) | (irl || tt2) | (*i ; *2).

<f> ::= a | ^i(x)^2 I <t>\[*]<t>2 I 4>\((*))<t>2 I <t>i[*]<i>2

In the above notation p is a primitive proposition, e is

an action, and a is an agent.4

In Section 2, we saw that a plan involved a name, an

invocation condition, a precondition, a postcondition,

and a body, which was an AND-OR graph with the

edges of the graph labelled with simple plan expres

sions. Formally, we define a plan to be a tuple of the

form (!a, oi, ir, where !a is the invocation condi

tion, ai is the precondition, t is the body of a plan

expressed as a plan expression, and (3\ is a postcondi

tion.

4.2 SEMANTICS

The semantics of dynamic logic is denned in terms of a

set of states, say S, and a state transition function that

maps programs (both primitive and non-primitive) to

a set of pairs of states, i.e., H:<i> —► 25 x * and a truth

assignment function, say L. The formula (ir)<f>2 is sat-

isfiable in a state / iff there exists (t u) G 7£(f) and <f>2

is true in u. Treating 7r as a program (rather than as a

4The formula 0i (t)^2 (and other variants) are similar

to Hoare triples and is merely a syntactic sugar for testing

for the truth of followed by (t)^j as in normal dynamic

logics. For convenience we shall abbreviate true(jr)^2 to

(*)<t>2, #i(x)true to ^i(ir), and true(ir)irt»e to (*■).

plan), this semantics is reasonable as no matter which

process executes the program ir the result should be

the same. However, in the case of plans, the notion

of agency — that is, which agent executes the plan

— can make an important difference. Although the

plans may be identical the capabilities [24] of agents

may vary significantly leading to different end results.

Unlike the semantics of dynamic logic, we introduce

a subjective view of the world by adopting a possible

worlds semantics.5 Under this view there are multiple

worlds each consisting of a set of states. The actions

executed by an agent in a world at a particular state

is given by a choice relation. A composition of such

choice relations results in the execution of a plan by an

agent. The actions observable by an agent in a world

at a particular state is given by an observe relation.

A composition of such observe relations results in the

recognition of a plan by an agent.

More formally we define a possible-worlds structure M

to be a tuple, M = {W, P, {Sw : w G W), A, {CJ(e):

w G W, a G A, and e G PrimPlans}, iO°(e): to €

W, a G A, and e G PrimPlans) , L) where W is a

set of worlds; P is a set of plans; A is a set of agents;

for each world w, Su, is a set of states; for each world

w, each agent a, and each primitive plan e is a choice

(observe) relation C°(e) (0°(e))C Sw x Sw; and La

is the truth assignment function that assigns to each

state in w a set of propositional formulas, i.e., Lw: Sw

— 2PrimPr°P. Associated with each world w and plan

7T we also define the derived relations £w(jr) C Sw x

Off and 72.M)(t) C These transition relations

correspond to executions and recognitions which are

a composition of various choice and observe relations,

respectively.

With these preliminaries we are now in a position to

define the semantics of DAL. We define the seman

tics only for execution and recognition formulas. The

semantics of other propositional formulas is straight

forward.

M, wt \= <t>\{^)4>2 iff if M, wt ^ 4>\ then there exists

u G Sw such that t£w(ic)u and M , wu ^= <£2-

M, tin f= M(*))<h iff

(a) M, Wi |= <t>i{ir)<p2] and

(b) if M, wt ^= <j>\ then

there exists « G Sw such that tHw(ir)u.

M, wt \= ^i[f]<£2 iff if M, wt \= 4>i then

for all b6 5u, such that t£w(ir)u, M , wu ^ ^2.

In dynamic logic [tt]4> is usually defined as -i{t)->o>.

As a result, unlike (x)<j>, [n]<t> does not imply that jt

terminates. We avoid this complication by defining [*]

independently and by requiring that all computations

of 7T terminate.

5This view is more important when we discuss the men

tal attitudes of agents performing executions and recogni

tions (see Section 5).
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Recognition of a plan can take place only if someone

is executing a plan — in a world devoid of any event

occurrences there is nothing to observe or recognize.

Also there needs to be an agent who is observing the

events for recognition to take place. The semantic def

inition of </h((t))<^2 captures these two conditions. The

formula [t]<^2 is defined analogously.

The semantics of the various plan expressions are given

by defining the transition relations Sw and Hw. For

primitive plans or actions the transition relations are

directly given by the choice and observe functions. For

plan expressions of the form !a we first look for all

plans in P whose invocation condition is !o. The tran

sition relations for !a is the set of all transitions such

that the precondition of such a plan is satisfied in the

initial state, there is a transition for the body of the

plan expression, and at the end of such a transition

the postcondition is satisfied. The transition relation

for sequences is the concatenation of the transition re

lations for the individual plan expressions. The transi

tion relation for non-deterministic OR is the union of

the transition relations for the individual plan expres

sions. The transition relation for the parallel operator

is the intersection of the transition relations of the indi

vidual plan expressions, if the intersection is non-null;

otherwise it is undefined.

More formally, we have the following definitions for

the transition relations. In the following definitions

Tw stands for either

£w(a:e) — C° (e) for a primitive plan e.

Hw(a:e) = 0„(e) for a primitive plan e.

T.(!o) = {(* t) | (a) (!a a, 6< ft) e P;

(b) M, w, \= a<;

(c) there exists t £ Sw such that sTw(Si)t and

(d) M, wt |= /?,,}

Tw(*i ; x2) = Tw(ni).Tw(ir^) = {(s u) | there exists

t € Sui such that sTw(ir\)t and there exists

« € Sw such that <7i,(3r2)u.

TW(T! I jr2) = T^tti) U Tufa).

||*2)

f T.(»i) D T^tj) if Tw(*i) n 7W(*7) ? 0

1 A otherwise

The model-theoretic semantics of execution and recog

nition is identical except for primitive plans. This is

because, except for the primitive plans, there is no

difference in the way the plans are used by an agent.

The semantics of | and || reflect the operational se

mantics (given by the algorithms) for OR-nodes and

AND-nodes. Note that the success condition for OR-

nodes is identical for both execution and recognition,

and similarly for AND-nodes.

The axiomatization6 for DAL is given below with the

*The axiom and inference rules are not the minimal

set; we have included some of the theorems of the system

modal operator M denoting Q, (()), fj, and ():

1. <f>iM(ir)4>2 = <f>rD (M{ir) A <j>2);

2. M(x)<£ A M(*)ip D M(*)(<t> A V);

3. M(n)(<t> V V) s M(*)(£ V M(*)1>;

4. M(xi | *-i)<t> = Mf*^ V M(7r2)oi;

5. M(ti || ir2)^ = M(*i)<l> A M(*2)<£;

6. M(*, ; *2)<t> = MfaWfa)*;

7. <f>i[n]4>2 D <t>i((*))4>2;

8. <£i[w]<02 3 <t>\{*)<l>i\

9. <£i[*]<£2 D <0i[jt]<£2;

10. M»»*2 =>

11. Modus Ponens.

12. Modal Generalization: From h <f> infer I- M(t)^.

13. Achievement Plans (1&2): From a given set of

plans P infer P h [!a] = A(<a,a„6„p.)eP

and similarly for [].

14. Achievement Plans (3&4): From a given set of

plans P infer P h «!a)) = V(!a,a.,<i,/J.)6P <*((W

and similarly for ().

The first six axioms and the inference rule Modal Gen

eralization are common to all the four modal opera

tors. Except for ||, the axioms are similar to those of

dynamic logic. Dynamic logic does not have the || op

erator. However, dynamic logic has a test operator (?)

and an iteration operator (*) which we have omitted

here for simplicity.7

Axioms (7)-(10) are multi-modal axioms that link the

various execution and recognition operators. The in

ference rules for achievement of states connects the

achievement expression with a plan that achieves the

state. In the case of all recognitions (executions) we

require that all the plans that achieve the state be rec

ognized (executed) and in the case of a single recogni

tion (execution) we just require one of the plans that

achieve the state to be recognized.

Note that we have associated agency only with respect

to an agent's actions (i.e., primitive plans). Extending

the syntax and semantics so as to associate the no

tion of agency to non-primitive plans is trivial, if all

the actions are performed by the same agent. How

ever, extending this choice to plans which involve ac

tions by other agents is a non-trivial task. This is

because it is not clear what it means for an agent a

to have the choice of executing a plan that involves

some other agent 6 executing an action. One possible

as axioms for the purposes of clarity.

Introducing the iteration operator will allow us to per

mit cyclic and recursive AND-OR graphs as plan bodies.

As the iteration operator x* is a nondeterministically cho

sen finite number of iterations of r we cannot have infinite

loops in the plan.
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interpretation is for agent a to send a message to b to

execute its action and wait for a successful completion

of that action. An operational semantics along these

lines was discussed elsewhere [10]. However, giving a

formal account of such a theory would involve extend

ing dynamic logic with the message passing paradigm

of CSP [7] and is beyond the scope of this paper.

4.3 RELATIONSHIP BETWEEN THE

ALGORITHMS AND THE LOGIC

Now we consider the relationship between the al

gorithms for plan execution and recognition intro

duced in Section 2 and the dynamic agent logic.

In particular, we want to establish the relation

ship between the successful running of the algorithm

means-end-recognition and the provability of recog

nition formulas in the dynamic agent logic. As a corol

lary, we get the corresponding relationship for means-

end plan execution.

First, we convert the AND-OR plan graphs discussed

in Section 2 into DAL expressions. The primitive plan

(e) is equivalent to (a:e) with a being the agent execut

ing/observing e. The plan fragment with two adjacent

arcs labelled li and /2 is equivalent to li;h. If /i . . . /„

are the labels on outgoing edges of an OR-node, they

are equivalent to /i | /j | . . . | /„. Similarly, if li ...

/„ are the labels on outgoing edges of an AND-node,

they are equivalent to /i || /2 || ... || /„. From these

basic transformations one can easily convert the body

of a plan into a single plan expression 6. A plan with

invocation condition (!a), precondition aj, postcondi

tion Pi , and a body whose equivalent plan expression

is 6, is treated as a formal plan (!a, en, 6, p\). For

example, the plan Make Ordinary Pasta is formally

equivalent to ((! (made-ordinary-pasta)), true, ((!

(made—noodles)),(\ (made-sauce));(a:boil)), true).

Having converted AND-OR plan exe

cutions/recognitions into equivalent DAL formulas we

now examine the successful running of the algorithms

with the provability of certain formulas.

Consider the simple case where the means-end-

recognition algorithm for agent a is given a set of plans

n, a set of propositions T, and an expression of the

form e where e is a primitive plan. If the algorithm

returns successfully with a set of propositions A, it

would be reasonable for us to assume that the equiva

lent recognition expression y({a:e))X is valid in the dy

namic agent logic, where y and A are conjunctions of

propositions in T and A. Note that a successful run of

the algorithm corresponds to there being at least one

recognition path (rather than all recognition paths)

where e is observed. If in fact the stronger recognition

formula, namely 7[a:e]A is valid in the dynamic agent

logic we can state that the means-end recognition al

gorithm will succeed with the input set of propositions

T and output set of propositions A. Formally, we have

the following proposition:

Proposition 1 (a) If means-end-recognition(Il, T, e,

A) returns "success" for agent a then h y({a:e))X.

(b) If h 7[a:e]A Men means- end-recognition(U, T, e,

A) returns "success" for agent a.

In the above cases y and A are the conjunction of all

propositions in T and A, respectively.

From the above proposition we can show that similar

results hold for executions.

Now let us consider expressions of the form (! <f>). We

want to show that if the means-end-recognition al

gorithm is called with a set of plans n, set of input

propositions T and the expression (! <j>), and succeeds

with the output set of propositions A then the corre

sponding recognition formula ?((! ^))A is provable with

respect to the set of plans n.

The first step in this proof involves transforming each

plan in the plan library into its formal equivalent as

detailed above. This step also converts the body of

plans into an equivalent plan expression. Next we need

to show that each step of the algorithm (i.e., observing

actions, recognizing plans, recognizing OR-nodes, and

recognizing AND-nodes), corresponds to the axioms

(or semantic definitions) of DAL; that is, observing

primitive actions (Proposition 1 above), axiom for ;

and inference rule for \a, axiom for |, and axiom for ||,

respectively. More formally we can state the following

theorem:

Theorem 1 // running means- end-recognition{JL, T,

(! a), A) by agent a returns "success" then U h 7((!

a))A, where y and A are conjunctions of propositions

in T and A, respectively.

Proof: The proof involves a case by case analysis of

all the algorithms.

means-end-recognition: If the input expression is

an achievement expression of the form !a then this al

gorithm first computes the set of applicable plans. The

invocation condition of plans of this set is !a and the

precondition of these plans is contained in the input

set of formulas T. This is equivalent to stating that

n h 7 D ai and so on till n h y D a„, where aj . . .

a„ are such that they are the preconditions of formal

plans whose invocation is !a.

Next the algorithm calls recognize-plan for each

one of the plan bodies of the set of applicable plans.

Let the plan expressions corresponding to these plan

bodies be 6i ...£„. As the entire means-end-

recognition algorithm succeeds (by the premise of the

theorem) at least one of these plan bodies, say will

succeed. Assuming that recognizing the plan body is

equivalent to t((^<))tj where r, is the conjunction of

T< , at the end of recognizing the plan we have H h
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7 D a,- D ((5<))r,-. Note that we have written 7 D aj

D . . . because, if the precondition is not satisfied the

plan body cannot be run.

The step that adds the postcondition of the plan re

sults in II h A = r,- A # . Continuing on from the pre

vious paragraph we also have II h 7 3 atj D ((£<)) 0% A

r<). From the inference rule for Achievement Plans 3

we have II h ((!q)) = a,- D ((j,-))/?,-. Hence, we have II

H 7 D<(!a))A. This is equivalent to II h 7((!a))A.

Now we prove our assumption that recognizing the

plan body is equivalent to 7(($i))fJ.

recognize-plan: Let the plan expression correspond

ing to a plan body 6,- be a sequence of 6n ... 6ij

plan expressions, i.e., 6i = 6u\. . .;6ij. Each one of the

6im where m = 1 to j corresponds to a plan expres

sion equivalent to the labelling of the outgoing arcs

of the node m. The node can either be an OR-node

or an AND node. Let us assume that recognizing

an OR-node or AND-node, m, is equivalent to II K

Oim^fiimhvim+i . where <Tjm is the state of the world

before recognizing 6im and <Tjm+i is the state of the

world after the recognition.

By the first step of the plan 7 = <rn. By our as

sumption above we have II h <Tn((6ii))<Ti2, when the

OR-node or AND-node corresponding to 6n succeeds.

When we go through the loop in the recognize-plan

for the second time S, now is <?ii. By assumption

above we have II h on^i^aa- Combining these two,

we have II h <rij((6<i))<r<3 A <r,-2((£,2))<7«3- From Ax

iom 1 for (()) and propositional axioms we have II h

fr<i ((^1 )) {(6»2))g»3- From the axiom for sequencing (Ax

iom 6) we have II h en ((#n 'AaJJfl'O- This process can

be continued for j steps of the loop, where j+1 is the

number of nodes of the plan. At the end of this we

will have II h <x,i((£,i;. . .;6ij))o-ij+i. Given that the se

quence of 6n , 6ij was equivalent to 6{ we have II h

0ii{{6i))<7ij+i- From the equivalences 7 = o~n and r, =

dj+i, we have II h f{{6i))n-

Now we prove that recognizing an OR-node, m, is

equivalent to II h <Tim((6im))<7im+\, where <r,m is the

state of the world before recognizing Ctm and ffim+i is

the state of the world after the recognition.

recognize-OR-node: Let plan expression 6<m = ^mi

I ■ • • I &imk, where k is the number of outgoing arcs from

node m. Each one of 6,mi to 6,mt is either a primitive

action or an achievement formula of the form !a. The

call to the means-end-recognition results in check

ing the provability or otherwise of (r,m((6,mi))<7,(m+i)i,

•■,*>m((j<m*)K(m+i)*- As the algorithm recognize-

OR-node succeeds, at least one of the arcs, say £imn

where n is one of l..k should succeed.

If ^imn = c then by Proposition 1 we have II h

fim((c))<T,(m+i)„ and (Tj(m+i)n = (Tim+l- If £»mn = !<*'

then invoking the current theorem for W results in II

r" <rim((]-a'))(Ti(m+i)n and o-,(m+i)n = Vim+l- In either

case, we have II h o-im((6imn))<Ti(m+i)n. We can replace

0|(m+l)n by ^Hm+l)! V . . . <T,(m+i)n V . . . (T,(m+1)t

and add disjuncts for all the other plan expres

sions to obtain II hrlm((£<mi))(<r<(m+1)1. . .<T<(m+i)t)

V ... V <Tim((6imn))(<Ti(m+i)i. . ^(m+i)fc)V ... V

<Tim((*im*»(*i(m+i)i- • -^i(m+i)i)- From the axiom for

non-deterministic or recognition (Axiom 4) we have,

n r- (Tim{(6iml I ... I 6imk))<rim+i, where <rim+1 =

't(m+i)iV ... V <ri(m+i)fc. This is equivalent to II I-

°~im

recognize-AND-node: The reasoning for the AND-

node proceeds in a similar manner to that of

recognize-OR-node, except that all the out-going

arcs of the AND node succeed. Hence we have

H r- <r<m((*imi))<7i(m+i)i and so on until n h

<rim{{6imk))<ri(m+i)k- By the axiom for (()) and proposi

tional axioms we can write this as n I- <r<m D (((£jmi))

A <T,(m+i)i A ... A ((Simk)) A (T^m+j)*). Once again by

propositional rearrangement this is equivalent to II h

Vim D ((((j<ml)} A (o-,(m+i)i A ... A ff<(m+i)i) A ... A

{{(6imk)) A (^(m+i)! A ... A <r,(m+i)t))- From the ax

iom for || for recognition (Axiom 5) we have n h <Tjm

D ((((*<ml||. • H^irni)) A (<Tj(m+i)i A ... A (Ti(m+i)k)-

Replacing 6im and from the axiom for (())(Axiom 1),

we finally have n h <rim((6imi))trim+i, where <rim+i =

0~i(m+l)l A ... A <Ti(m+l)k- A

The converse of Theorem 1 is false because there can

be recognition paths that fail to recognize a from the

given set of formulas I\ However, strengthening the

consequent of the above theorem we can state that if

it is provable from n that (! a) succeeds in all recogni

tion paths then means-end-recognition will return

"success" . More formally we have the following theo

rem:

Theorem 2 //II I- 7[! a] A, then running means-end-

recognition(U, T, (! a), A) by agent a will return "suc

cess", where 7 and A are conjunctions of propositions

in T and A, respectively.

Proof: The proof of this theorem is similar to that of

Theorem 1 except for two major differences:

• all the axioms used are that of [] , rather than {()) ;

and

• the proof proceeds in a bottom-up fashion, i.e.,

we first show that if n h 7[6jm]A, where 6im is a

plan expression with all parallel operators then an

AND-node that is labelled by the same expression

should succeed with the correct input and output

arguments. We progressively work ourselves from

recognizing OR and AND-nodes, to recognizing a

plan, to a means-end reasoner. Jk

These two theorems establish a strong relationship be

tween the means-end-recognition algorithm and the

recognition formulas of DAL. They provide the rel-
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ative soundness and completeness of the means-end

recognition algorithms with respect to a given set of

plans II.

As corollaries of these two theorems we also obtain

similar relationships between running the algorithm

means-end-execution and the execution formulas of

DAL.

Going back to our example consider the state of the

world where the executing agent has just executed

the primitive plan make-fettncini. The means-end-

recognition for the observer would succeed for make-

ftttucini. The corresponding recognition formula, in-

kitchen{{make-fettucini)) will be true in DAL. Now

from the inference rule for achievement plans, given

the set of plans II, for making and recognizing pas

tas we know that make-fettvcini is one way of achiev

ing made-noodles. Therefore the agent would recog

nize the achievement of made-noodles and hence the

formula in-kitchen{((\(made-noodles))) will be true in

DAL.

Independent of the algorithms for means-end recogni

tion and the above theorems we can prove from the

axioms and inference rules of DAL that given a set of

plans P (as in Figure 1), a set of observations O, which

includes the dynamic formula {(make-fettucini)), and

a set of propositions T that includes in-kitchen, we

can prove in DAL that {{(\(made-noodles))) . In other

words, P U O U T h ({(\(made-noodles))) .

5 REACTIVE RECOGNITION

As discussed earlier, means-end plan recognition is

based on two restrictive assumptions, namely, the

world does not change during recognition, and the oc

currence of events in the external world is synchronous

with the recognition of events by the agent. Now we

discuss modifications required to the algorithms for re

moving these assumptions.

To notice changes occurring in the environment during

the process of recognition, the recognition algorithm

has to return control to the main loop after every step

of the plan. The main loop can then decide based on

the new information from the environment if it is ra

tional to proceed with the plan it is currently running

or change its focus and invoke a new plan. This can

be done only if the run state of the plan is captured

from one step of the plan to the other, i.e., between

the interrupts from the environment.

Capturing the state of a plan which is partially run and

continuing to run it as long as there is no significant

change in the environment introduces the notion of a

commitment towards a plan. Such a commitment by

an agent towards a plan is called an intention. The

agent invokes a plan to satisfy a certain desire, i.e.,

the invocation condition of the plan. The precondition

of the plan are what the agent should believe to be

true before running the plan. Thus, we end up with

a belief, desire, intention (or for short mental-state)

interpretation of plan execution.

This mental-state interpretation of reactive plan exe

cution is well known within the community [2, 21, 24].

One can provide an analogous mental-state interpreta

tion of reactive plan recognition: if the agent acquires

a desire to recognize the achievement of a certain state

of the world it adopts all plans and intends to recognize

all such plans; intending to recognize a plan will result

in the agent adopting a desire to recognize the first

arc in the body of the plan; this will in turn result in

the agent adopting further intentions towards all plans

that can recognize the desire. At any point in time the

current recognition trace will enable the agent to infer

the beliefs, desires, and intentions of other agents.

Having inferred the mental state of other agents, the

agent can then base its future executions and recogni

tions on such inferred mental states. In other words,

one can write plans whose precondition involves the

beliefs, desires, and intentions of other agents, which

have been inferred by the above process. This leads to

a powerful model of interleaved reactive plan execution

and recognition.

Also one can modify the syntax and semantics of

plans so that the invocation condition captures the

achievement or the recognition of the achievement of

certain states explicitly. Similarly, the plan expres

sions labelling the edges can explicitly capture the ex

ecution/observation of primitive plans and the execu

tion/recognition of the achievement of certain states.

This would then provide a resource-bounded agent to

balance its observation acts and recognition desires,

with its execution acts and executional desires. In

other words, the agent can deliberate on whether to

sense or act and how long to sense before acting and

how long to act before sensing.

We get rid of the other assumption of synchronized

occurrence of events in the external world and the ob

servation of events by making agents wait indefinitely

to observe an event by suspending the corresponding

intention. This models an agent with fanatical or blind

commitment towards its recognition desires. A more

reasonable model for an agent would be to have an

open-minded or single-minded commitment [20]).

While the above commitment is the commitment of the

observing agent towards its own recognitions, the ob

serving agent may also need to assume (or better still,

recognize) the type of commitment adopted by exe

cuting agents. This leads to interesting possibilities in

terms of agents trying to recognize how other agents

are attempting to recognize their own actions. This

information can then lead to some agents trying to de

ceive other agents (e.g., their opponents in adversarial

domains) into believing that they are fulfilling certain
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desires, while in fact they are actually attempting to

thwart the recognition desires of the other agents.

6 COMPARISON AND

CONCLUSIONS

Regular and Context-free Languages: It is well

known that a Propositional Dynamic Logic (PDL) pro

gram can be viewed as a regular expression denoting

the set of its computation sequences [12]. In its sim

plest form the plans introduced in this paper can be

viewed likewise. However, the presence of precondi

tions, postconditions, and the indirect call of plans (as

done by the achievement operator) make the plans less

like a regular expression. In reactive recognition when

the preconditions can be complex modal formulas of

beliefs, desires, or intentions, the plans can no longer

be viewed as simple grammars for regular languages.

Allowing recursive calls of plans results in a context-

free grammar. This would correspond to context-free

PDL [12]. Once again with more complex precon

ditions these plans would no longer be equivalent to

context-free grammars.

Plan Recognition: Early work by Allen and Per-

rault [1] and more recently by Litman and Allen [13]

treat plan recognition as the reverse process of plan

ning (in the classical sense). Litman and Allen's work

make use of a plan library with a rich hierarchical

structure. However, unlike the theory outlined here,

these plans are used in a bottom-up fashion to con

struct an explanation of observed behaviour on the ba

sis of observed actions, rather than running the plans

in a top-down fashion as done in this paper.

Kautz [9] presents a formal approach to plan recogni

tion which makes use of an event hierarchy to guide the

recognition process. An explanation (c-entailment) is

constructed for each observation using the event hier

archy. Different possible explanations are combined by

selecting covering models that minimize the number of

events. This is done by circumscription. Kautz also

provides graph-based algorithms for plan recognition.

While Kautz's approach proceeds bottom-up, creating

an explanation for each observation and then merg

ing these explanations, the means-end plan recognition

proceeds top-down by requiring the agent to specify

what top-level states of the world it is expecting to

recognize and then constructing the explanation incre

mentally guided by the plans and the observation of

events. For example, in our approach the agent needs

to invoke the means-end recognition algorithm with

an expression such as (\made-pasta-dish) before the

making of a pasta dish; otherwise the agent will not

be able to recognize the making of a pasta dish, even

if it had such a plan. This is not the case in Kautz's

approach.

Kautz deals with a more powerful underlying interval

temporal logic compared to our state-based dynamic

logic. Also, when an observation does not match what

the function observe is expecting to observe the recog

nition plan fails. Thus, when extraneous events (i.e.,

events which are not associated with the current input

expression) occur the means-end recognition will fail to

recognize the plan, while Kautz's algorithm is robust

enough to infer such plans. The reactive recognition

algorithm discussed elsewhere [19] will recognize such

plans.

In spite of the above differences, our approach gives the

same result as Kautz, in limited cases, provided the fol

lowing assumptions are true: (a) events are observed

in the order in which they are specified in the plan

with no extraneous events; and (b) the agent chooses

a subset of plans from its plan library to recognize

and the final recognized plans fall within this subset.

For reactive recognition assumption (a) is not required.

Assumption (b) results in a loss of generality, but in

creases efficiency, thereby making the approach feasi

ble for resource-bounded agents situated in dynamic

worlds.

Means-end plan recognition is fairly constrained com

pared to general plan recognition. However, when em

bedded within the other mental attitudes of an agent

and combined with reactive planning it leads to a

more powerful theory. This paper lays the founda

tion for such an integrated theory of reactive planning

and recognition by providing theoretical principles of

means-end recognition and analyzing its relationship

to means-end execution. It also discusses how these

principles can be embodied within existing reactive

planning systems. Although a number of issues remain

to be addressed within this form of reactive recogni

tion and are the subject of future work, we feel that

the approach shows promise in a large number of appli

cation domains where reactive planning has been used

successfully [8, 14, 18].

In summary, the primary thrust of this paper is to shift

(at least partially) the focus of attention within the

plan recognition community towards reactive recogni

tion.
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Abstract

We investigate terminological cycles in the

terminological standard logic ACC with the

only restriction that recursively defined con

cepts must occur in their definition positively.

This restriction, called syntactic monotonic-

ity, ensures the existence of least and greatest

fixpoint models. This is the most general set

ting in which terminological cycles have ever

been considered. It turns out that as far as

syntactically monotone terminologies of ACC

are concerned, the descriptive semantics as

well as the least and greatest fixpoint seman

tics do not differ in the computational com

plexity of the corresponding subsumption re

lation. In fact, we prove that in each case

subsumption is complete for deterministic ex

ponential time. We then investigate thor

oughly the expressive power of the least and

the greatest fixpoint semantics of syntacti

cally monotone terminologies of ACC. In par

ticular, we prove a strict lower bound of their

expressive power in terms of ACC augmented

by regular role expressions. These results are

obtained by a direct correspondence to the

so-called propositional /i-calculus, which al

lows to express least and greatest fixpoints

explicitly. We propose ACC augmented by

the fixpoint operators of the /i-calculus as a

unifying framework for all three kinds of se

mantics.

1 Introduction

Terminological logics (also called concept languages)

have been designed for the logical reconstruction

and specification of knowledge representation systems

descending from Kl-one such as Back, Classic,

'This work was supported by a grant from the Deutsche

Forschungsgemeinschaft (DFG).

K111S, and Loom.1 These systems are able to rep

resent dictionary-like definitions, and their main task

is to classify these definitions into a hierarchy accord

ing to semantic relations like subsumption and equiva

lence. The dictionary-like definitions these systems are

able to represent are formulated in terms of two syn

tactic categories, called concepts and roles. These two

categories correspond to unary and binary predicates

respectively. Roles are often taken to be atomic, while

concepts can be built up from the universal concept T

and concept names by applying logical connectives as

well as quantification over roles. A typical example of

a definition of this kind is the following defining leaves

as nodes which do not have any branch:

Leaf = Node n ->3branch:T

It is perfectly straightforward to state the meaning of

such concept introductions in set-theoretical terms. As

usual, the meaning of concepts and concept introduc

tions is given in terms of interpretations and models.

An interpretation J over a domain A1 maps the uni

versal concept T to A , each concept name CN to

an arbitrary subset CN* of A1, and each role name

RN to a binary relation RN1 over A1. Moreover, the

logical connectives n, U and -> are interpreted as the

corresponding set operations on A1, whereas 3RN:

and V/ZAT: represent existential and universal quan

tification over the relation RN . The meaning of a

concept introduction is then given by requiring that

an interpretation is a model of C = D iff the interpre

tation maps C and D to exactly the same subset of

the domain. In the case of the concept introduction

given above, this means that each model has to satisfy

the following equation:

Leaf1 = Node1 n {d G A1 : -n3e, {d, e) G branch1}

There are also algorithms to compute both the sub

sumption and the equivalence relation between con

cepts, even with respect to finite sets of concept intro

ductions similar to the one just considered [14].

1 For a good overview of the so-called Kl-ONE family the

reader is referred to [19].
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Problems arise, however, when cyclic or recursive con

cept introductions enter the picture. It is entirely nat

ural to define, for example, a tree recursively as a node

which has only trees as branches:2

Tree = Node r\Vbranch:Tree (1)

The models of this cyclic concept introduction are

characterized by obeying the following equation:

Tree1 = Node1 n

{d€ A1 : Ve((d,e) € branch7), e € Tree1}

Unfortunately, such recursive equations do not always

have unique solutions, even when the interpretation of

all undefined concept and role names is fixed. Take, for

instance, an interpretation I the domain of which is

IN, the set of all natural numbers. Suppose, moreover,

Node1 is IN, while branch1 is the successor relation on

IN. Such an interpretation is a model of (1) just in

case the following equation is satisfied:

Tree1 = IN n {n € IN : V m(m = n + 1), m e Tree1}

= {n e IN : n + 1 € Tree1}

The question, then, is whether in all these models the

nodes are actually trees or not. However, the recur

sive equation above does not tell us anything about

that since it has two conflicting solutions, viz. one in

which Tree1 is IN, and one in which it is the empty

set. This gives rise to the question whether any of

these conflicting solutions should be preferred or not.

In fact, there is an ongoing discussion on which kind of

solution generally accords best with our intuition.3 In

essence, there are three rivals which should be taken

into consideration. First of all, simply allowing all so

lutions results in what Nebel [7, Chapter 5.2.3] called

descriptive semantics. The remaining two alternatives

allow only those solutions which are the least or great

est ones with respect to the interpretation of all de

fined concepts (i.e., those concept names which ap

pear on the left-hand side of a concept introduction).

The terms least and greatest, however, apply only to

solutions which agree in the interpretation of all unde

fined concept and role names. Nebel [7, Chapter 5.2.2]

called solutions of this kind least and greatest fixpoint

models. The previously mentioned model which inter

prets Tree as the empty set is, therefore, a least fix-

point model of (1), whereas the other one interpreting

Tree as IN is a greatest fixpoint model. But even if we

stick to one of these alternatives, it is not clear at all

how to obtain the corresponding inference algorithms,

except for very small languages [l].

In some cases, the consequences of choosing one

of these semantics can be clarified in terms of the

2 If this definition were intended to represent trees accu

rately, the concept Node would have to be defined properly,

i.e., it would have to be defined in such a way that each

Node has at most one branch-predecessor.

3Among others, Nebel [7, 8] as well as Baader [l] have

contributed to this discussion.

reflexive-transitive closure /Z* of a role. Baader [l,

Theorem 4.3.1] showed that the greatest fixpoint se

mantics forces the recursive definition of a tree (1)

to be equivalent to Tree = V'branch''-.Node, which is

neither the case for the descriptive nor for the least

fixpoint semantics. For this reason, Baader claimed

the greatest fixpoint semantics to come off best [l,

page 626]. However, least fixpoint semantics can ex

press quantification over branch* just as well. To see

this, take the following definition of a non-tree in con

trary to the one of a tree:

NonTree = ->Node U 3branch: NonTree (2)

That is to say, a non-tree is something which is ei

ther no node or which has some branch being a non-

tree. We shall see below that in this case only the

least fixpoint semantics forces (2) to be equivalent to

NonTree = 3branch* :->Node. As 3branch* :-<Node is

equivalent to ->V branch' .Node, this means that the

least fixpoint semantics of (2) expresses the very con

trary of the greatest fixpoint semantics of (1). Any

way, insofar as solely finite trees are concerned, the

least fixpoint semantics seems to be more adequate in

that it excludes infinite chains of the role branch. In

fact, we shall see that it forces (1) to be equivalent to

Tree = (V branch* -.Node) n ^branch" , where the con

cept 3branchu stipulates the existence of some infinite

chain of the role branch. We thus allow only acyclic

structures of finite depth, which is clearly a necessary

condition for being a finite tree.

It should be stressed that even though both (1) and (2)

alone have least and greatest fixpoint models, neither

{(1), NonTree = ->Tree} nor {(2), Tree = ->NonTree}

have any. This is due to the fact that no model can be

a least or greatest one with respect to the denotation

of a concept and its complement, unless the domain of

the model is empty. For instance, the interpretation

over IN considered above is a model of the terminology

{(1), NonTree = ->Tree} just in case the following two

equations are satisfied:

7Veez = {n G IN : n + 1 € Tree1} (3)

NonTree1 = IN \ 7Veez (4)

These equations have exactly two solutions in com

mon, namely one in which Tree1 is IN and NonTree1

is the empty set, while in the second it is the other way

around. Of course, neither solution is a least or great

est one with respect to both Tree1 and NonTree1 . It

seems to be counterintuitive that (1) alone has least

and greatest fixpoint models, whereas the terminol

ogy {(1), NonTree = ->7Vee} does not have any. Not

only that (1) alone has a least fixpoint model, but

there is also a least fixpoint model of (1) which is

a least fixpoint model of NonTree = ->Tree as well.

To see this, consider some least fixpoint model of

(1). In such a model Tree denotes a certain subset

of the domain. Now, with the interpretation of Tree

being fixed, there remains only one single model of
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NonTree = ->7Vee, viz. the one in which NonTree is in

terpreted as the complement of the denotation of Tree.

This model is therefore also a least fixpoint model of

NonTree = ->Tree. In other words, an interpretation

which is a least fixpoint model of (1) and which at the

same time is a least fixpoint model of (2) is not nec

essarily also a least fixpoint model of (1) together with

NonTree = ->7Vee.

The notion of least and greatest fixpoint semantics

as considered in the terminological logics literature

cannot tell these different situations apart. To over

come this deficiency, we introduce prefixes ft and u

as explicit references to least and a greatest fixpoint

semantics. In doing so, we can simply state that

n{(l), NonTree = ->7Vee} does not have any model,

while fi{NonTree = -i7Vee}} does have one.

Terminologies of the former kind are called least fix-

point terminology, whereas terminologies of the latter

kind are called complex fixpoint terminologies. Com

plex fixpoint terminologies, however, may contain not

only least, but also greatest fixpoint terminologies.

Having complex fixpoint terminologies at our disposal,

we can even reason about the different kinds seman

tics. For instance, we can conclude that the greatest

fixpoint semantics of (1) in fact expresses the very con

trary of the least fixpoint semantics of (2):

f {(1)}, n{(2)} \= NonTree = -,Tree

But what is perhaps most important is that it has

been overlooked in the whole terminological logics lit

erature that terminological cycles can be analyzed in

terms of the well-investigated propositional fi-calculus

in a perfectly straightforward way. The propositional

/i-calculus is an extension of propositional multi-modal

logic to reason about (concurrent) programs, proposed

by Kozen [6]. It extends the propositional multi-modal

logic K by fixpoint operators of the form fix.a and

vx.a where a can be an arbitrary formula of the propo

sitional /i-calculus. However, a restriction, called syn

tactic monotonicity, is imposed on a which requires

that the variable x may occur in a only positively.

The formulae (xx.a and ux.a explicitly represent the

least and the greatest fixpoints of a function loosely as

sociated with the lambda-expression Ax.a. As x may

occur in a only positively, this function is known to

be monotone. According to the well-known Tarski-

Knaster Theorem, this function therefore has both a

unique least as well as a unique greatest fixpoint [17].

It will turn out that least and greatest fixpoint termi

nologies can be represented straightforwardly in terms

of such explicit fixpoint operators. The only prerequi

site will be that recursively defined concepts may occur

in their definition only positively. This correspondence

will not only be easy to establish, but it will also pro

vide deep insights into the computational complexity

and the expressive power of least and greatest fixpoint

semantics, and moreover, in the most general setting

ever considered.

The remainder of the paper is devoted to exactly these

issues, but before we should give some principles of

standard terminological logics. The interested reader

can find omitted proofs in [13].

2 The Terminological Logic ACC

As a starting point, we fix the basic concept language

in terms of which terminologies will be formed. We de

cided to take the standard terminological logic ACC,

investigated by Schmidt-Schaufi and Smolka [14] in

their seminal paper. We did so because ACC is a well-

known concept language which has been investigated

thoroughly, and, in spite of its elegance, is quite strong

in expressive power.

Definition 1. Assume Af is the union of two disjoint,

infinite sets, called A/c and Afn, which contain nei

ther T nor ±.4 The elements of these sets are called

concept names and role names respectively. The

concepts of AjCC are inductively defined as follows:

1. Every concept name, T , and _L are concepts of

ACC.

2. If C and D are concepts of ACC and RN is a

role name, then Cn D, CU D, ->C, VRN:C and

3RN:C are all concepts of ACC.

Of course, we may use parentheses to resolve ambigu

ities.

As already mentioned in the introduction, concept

names are interpreted as arbitrary subsets of some do

main, while role names are interpreted as binary rela

tions over the domain. For this very purpose, so-called

C-valuations are introduced, which fix the interpre

tation of all elements of a set C of concept and role

names.

Definition 2. Assume £ is a set of concept and role

names and assume A is an arbitrary set. A re

valuation V over A is a function which maps each

concept name of £ to a subset of A and each role

name of £ to a binary relation over A.

We shall frequently make use of the fact that each £-

valuation V over A can be viewed as a subset of £ x A,

i.e., it can be viewed as the set {(TN,V(TN)) : TN €

£}.

Before specifying how arbitrary concepts of ACC are

interpreted, we introduce a useful projection operation

on binary relations.

Notation 1. Assume r C A x A is an arbitrary binary

relation over A and d 6 A. Then r(d) is defined to be

{e G A : {d,e) e r}.

4 Clearly, for both sets there should exist a deterministic

acceptor running in at most polynomial time.
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Definition3. An interpretation 2 is a triple

(A1, . , V), where Ax is a set, called the domain of

1, and V is a Af-valuation over Ax. Moreover, x is

a function, called the interpretation function of X,

which maps concepts of ACC to subsets of Ax and

role names to binary relations over A1. It extends V

to deal with arbitrary concepts of ACC and is induc

tively denned as follows: T1 is A1, Lx is 0, and TNX

is V(TN) whenever TN £ M. Now, suppose Cx as well

as have already been defined, where C and D are

concepts of ACC. Then x is defined as follows:

(C r\D)x = ^nD1

{C U D)x = CXUDX

H?)z = AX\CX

(VRN:C)X = {d e Ax : RNx(d) C Cx)

(3RN:C)X = {deAx:RNx(d)nCx?<b}

It can easily be verified that the interpretation func

tion ? of every interpretation (AX,.X,V) is uniquely

determined by Ax together with the ^-valuation V.

Having specified the syntax and the meaning of the ba

sic expressions in terms of which terminologies can be

formed, it remains to define what exactly constitutes

a terminology and what its meaning is.

Definition 4. Assume £ is a set of concepts and as

sume C and D are elements of C. Then C = D is

called axiom of C and it is a concept introduction

of C whenever C is a concept name. Axioms of the

form C=CnD are called primitive and are abbre

viated by C C D. A terminology of £ is a finite set

T of concept introductions of C such that for every

concept name CN there is at most one concept C such

that CN = C is an element of T.

Definition5. A concept or role name TN £ M is

called to be defined in the terminology T iff there is

a concept or role T such that TN = T is an element of

T. We denote with def{T) the set of all concept and

role names which are defined in T, whereas undef(T)

is/S\def(T).

Please bear in mind that undef(T) comprises all con

cept and role names which are not defined in T, no

matter whether they occur in T or not.

In order to state the meaning of terminologies we have

to specify their models. As usual, models are inter

pretations forcing something to hold. In case of termi

nologies, a model is simply an interpretation respect

ing every concept introduction of the terminology in

the sense that the left-hand side of the concept intro

duction must denote the same set as the right-hand

side. As terminologies such as {CN = ->C7V} should

not have any model, the domain of an model is re

quired to be nonempty.

Definition 6. An interpretation (Ax , x ,V) with a

nonempty domain Ax is a model of an axiom C = D

iff Cx = Er , and it is a model of a set of axioms iff

it is a model of each axiom of the set.

Recall that a primitive axiom CCDis treated as an

abbreviation of C = C n D. It should be stressed that

the models of C C D are exactly those interpretations

which interpret C and D according to the intended

subset relation. That is, an interpretation {AX,.X,V)

is a model of C C D iff Cx C Dx .

Having the notion of a model on hand, we can eas

ily define semantic relations such as subsumption and

equivalence.

Definition 7. Suppose A U {C = D] is an arbitrary

set of axioms. Then A is said to entail C = D iff every

model of A is also a model of C = D. Whenever this is

the case, we write A ^ C = D, possibly omitting the

curly brackets of A and A altogether if it is the empty

set. We say that D subsumes C with respect to A

iff A \= C Q D. Moreover, C and D are equivalent

iff (= C == D, and a concept is coherent iff it is not

equivalent to _L.

We close this section with a formal definition of cyclic

and acyclic terminologies.

Definitions. Assume T is some terminology and as

sume CN = C and CN' = C are concept introduc

tions of T. We say that CN = C directly uses

CN' = C iff C involves an occurrence of CN'. If 7-

uses denotes the transitive closure of directly uses over

T, then two concept introductions are defined to be

mutually dependent within T iff they T-use each

other.

The reader may check that the relation mutually de

pendent within T is always transitive as well as sym

metric, but it is not necessarily reflexive.

Definition 9. A terminology T is cyclic iff it contains

concept introductions which are mutually dependent

within T; otherwise it is acyclic.

It can easily be seen that as far as acyclic terminologies

T of ACC are concerned every anrfe/(T)-valuation Vu

can uniquely be extended to a model of T. That is to

say, there is exactly one model of T which extends V„

in the sense that an interpretation {AX,.X,V) is de

fined to extend a ^-valuation V„ over A iff Ax = A

and Vu C V. However, we have already seen in the

introduction that this does not apply to cyclic termi

nologies.

3 Syntactically Monotone Fixpoint

Terminologies

So far, we regarded simply all models of terminologies

as admissible. We now introduce prefixes fi and v to
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distinguish terminologies for which any model is ad

missible from those for which only least and greatest

fixpoint models are taken into account.

Definition 10. Assume £ is a set of concepts and T

is an arbitrary terminology of £. Then fiT is called

least fixpoint terminology of £, whereas i/T is a

greatest fixpoint terminology of £.

In order to state the meaning of such least and great

est fixpoint terminologies, /iT and v7 , all models of T

which agree in the interpretation of all undefined con

cept and role names of T must be compared to each

other, hence the following definition:

Definition 11. Suppose I = (AZ,.Z,V) and J =

(A^ , ,W) are arbitrary interpretations with A^ =

A1. If £ is a set of concept and role names, then J is

said to be ^-compatible with 2 iff for every TN € £,

TNJ is TN1.

Definition 12. Assume T is some terminology and

assume 1 = (A1, ? , V) is an arbitrary interpretation.

Then 7 is a least fixpoint model of T iff it is a

model of T and, additionally, for each other model

(A1,.*7 , W) of T which is tinde/(T)-compatible with

I, it holds that CN1 C CNJ , for every CN defined

in T. The greatest fixpoint models of T are de

fined correspondingly by requiring CN1 D CN^ in

stead of CN1 C CN^ . Furthermore, I is defined to

be a model of fiT (resp., uT) iff it is a least (resp.,

greatest) fixpoint model of T.

The motivation of the notion of a fixpoint model is

the observation that a terminology T together with an

undef(T)-valuation Vu over A induces a n-ary func

tion / : (2A)n (2A)n, provided that T comprises ex

actly n concept introductions. Consider, for instance,

the terminology {Tree = Node l~l V branch: Tree). This

terminology together with an unde/(T)-valuation Vu

over A induces a function nb : 2A —► 2A which can

be thought of as mapping each subset S of A to all

those nodes the only tranches of which are among S.

Formally, this function is defined for each S C A as

follows:

nb(S) = Vu(Node)n{deA:Vu(branck)(d)CS)

In the general case, this function will be defined in

terms of an interpretation 2 = (A, ,V) which ex

tends V„ in such a way that Tree1 is 5, i.e., 2 ex

tends the Af-valuation Vu U {(7>ee,5)}. Resorting to

this interpretation, nb(S) can simply be defined to be

(Node l~l V6rancA:7Vee) . This definition yields the in

tended function:

nb(S) = (Node r\Vbranch:Tree)x

= Node1 n {d € A1 : branch1'(d) C Tree1}

= Vu(Node) n {d e A : Vu(branch)(d) C S}

Next we give the general definition of the function in

duced by T and an undef(T)-valuation.

Definition 13. Suppose T is a terminology of the

form {CNi = C, : 1 < f < n}, where CNU...,CN„ are

ordered by some fixed total ordering on Nc- Suppose,

furthermore, Vu is an un<ie/(T)-valuation over A.

Then the function induced by T and Vu is the func

tion / : (2A)n -* (2A)" defined as follows: Assume

5i,...,5„ are arbitrary subsets of A and {A,.X,V)

is the interpretation which extends the Af-valuation

Vu U Vd over A, where Vd is {{CNi, Si) : 1 < i < n}.

Then /(S1,...l&)is(Cf,...lCS).

It should be clear that V„ U Vd is in fact a AT-valuation

because it combines an undef(T)-valuation with a

def(T)-valuation, so that each concept and role name

is handled either by the former or by the latter. In

the previous section, it has already been noted that

the interpretation function ? of every interpretation

(A1, .z', V) is uniquely determined by the N-valuation

V. The Cf 's of the definition immediately given above

are, therefore, uniquely defined.

Definition 14. Assume A is an arbitrary set and /

is some n-ary function mapping (2A)" into (2A)n.

An element (5i,...,5„) of (2A)n is called fixpoint of

/ iff f(S\, ...,S„) is (5i,...,5n), and such a fixpoint

is a least fixpoint of / iff for each other fixpoint

(S[,...,S'n) of /, it holds that 5, C 5,', for every i

(1 < i < n). The greatest fixpoints of / are de

fined correspondingly by requiring 5, D 5,' instead of

SiCS't.

A moment's thought should convince the reader that

there is a close connection between the fixpoints of the

function induced by a terminology and an undef(T)-

valuation Vu on the one hand, and models of T on

the other hand. Take, for instance, the already famil

iar terminology T = {Tree = Node I~IV branch -.Tree}

and the function nb induced by T and an arbitrary

undef(T)-valuation V„. Every model (AI,.I,V) ex

tending Vu is a model of T iff Tree1 is a fixpoint of

the function nb. Clearly, exactly the same close rela

tionship exists between the least and greatest fixpoints

of nb on the one hand, and the least and greatest fix-

point models of T on the other.

Lemma 1. Suppose T is some terminology, Vu is an

undef(T)-valuation over A, (AI,.I,V) is an arbi

trary interpretation extending V„, and f is the func

tion induced by T and Vu. Assume, moreover, def(T)

is {CNi, CNn}, where CN\, CNn are ordered by

the same ordering as in the definition of f. Then

T is a least (resp., greatest) fixpoint model of T iff

{CNi CN„) is the least (resp., greatest) fixpoint of

the function f .

To ensure the existence of least and greatest fixpoint

models of a terminology T the function induced by

T and an arbitrary un</e/(T)-valuation Vu should be

monotonically increasing. As customary, a n-ary func

tion / : (2A)n -> (2A)n is said to be monotonically
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increasing (or monotone, for short) iff for every two

elements S andj?7 of (2*)n, it holds that f(S) C S7

whenever S C S'. It should be clear that in this case C

indicates component-wise subset relation rather than

ordinary subset relation.

The monotonicity of the function induced by T and Vu

can be achieved by requiring all occurrences of concept

names which are defined in T to be positive, i.e., they

must occur in the scope of an even number of nega

tions. This restriction is called syntactic monotonicity.

Definition 15. A terminology T is syntactically

monotone iff all occurrences of concept names which

are defined in T are positive, i.e., they are in the

scope of an even number of negation signs -i. Clearly,

fiT and vT are defined to be syntactically monotone

iff T is syntactically monotone.

An immediate consequence of Theorem 3 .2 of [9] is the

fact that for each syntactically monotone terminology

T and for each undef(T)-valuation Vu, the function

induced by T and Vu is actually monotone. Apart

from the syntactic monotonicity, T is only required to

be equivalent to some first-order formula. It is folklore

that this is the case for all terminologies of ACC.

Lemma 2. Assume T is some syntactically monotone

terminology ofACC and Vu is an arbitrary undef(T)-

valuation over A. Then the function induced by T and

Vu is monotone.

According to the well-known Knaster-Tarski Theorem,

monotone functions always have least and greatest fix-

points [17]. In addition, this theorem states that the

least and greatest fixpoints of every monotone function

/ are unique, and, in particular, the least fixpoint of /

is the intersection of all its fixpoints, while the greatest

fixpoint of / is their union [it]. Whenever T is a syn

tactically monotone terminology of ACC, the Knaster-

Tarski Theorem can be applied to the function induced

by T and an arbitrary undef(T)-valuation in that the

previous lemma assures the monotonicity of this func

tion. According to Lemma 1 this result can be carried

over to the corresponding least and greatest fixpoint

models of T:

Proposition 1. Suppose T is some syntactically

monotone terminology of ACC. Then T has both a

least as well as a greatest fixpoint model. In particular,

an arbitrary interpretation (A1, ? , V) is a least (resp.,

greatest) fixpoint model of T iff for each CN which is

defined in T , CN1 is the intersection (resp., union) of

all CN^ where ? ranges over the interpretation func

tions of all models ofT which are undef (T)-compatible

with 1 .

In a nutshell, this means that the least and greatest

fixpoint terminologies of a syntactically monotone ter

minology can be characterized in terms of its ordinary

models.

In the introduction we argued that single least and

greatest fixpoint terminologies are too limited in at

least two respects. First of all, they do not allow for

reasoning about different kinds of semantics. Second,

we do need both least as well as greatest fixpoint ter

minologies of ACC whenever we want to express not

only universal, but also existential quantification over

the reflexive-transitive closure R' of a role. In fact, we

shall see in Section 5 that as far as syntactically mono

tone terminologies of ACC are concerned concepts like

3R*:C can be defined solely by least fixpoint termi

nologies, while V/£*:C can be defined solely by great

est fixpoint terminologies. At this very point it should

be stressed again that in this context it is not possi

ble to resort to the duality ^= VR'-.C = ->3R':-^C. To

see this recall that v{A = CnVR-.A} defines Vfl*:C,

but u{A = Cf\VR:A,A = ~>A} is neither syntactically

monotone nor does it have any model.

We introduce complex fixpoint terminologies just to

overcome these deficiencies. To do so, however, we

have to extend the notion of mutual dependence to

apply to terminologies rather than concept introduc

tions.

Definition 16. Let T\,..,T„ be terminologies the

union of which is T. Then T\,..,Tn are called to be

mutually dependent iff there exist two terminolo

gies % and Tj (1 < i,j < n,i ^ j) and two concept

introductions which are mutually dependent within T

such that one is an element of 7J, while the other is an

element of 7} .

Definition 17. Assume £ is a set of concepts. A finite

set {ffiTi : \ < i < n,o~i £ {/i, 1/}} of least and greatest

fixpoint terminologies of C is called complex fixpoint

terminology of C iff def{T\), def(Tn) are pairwise

disjoint, and T\, ..,Tn are not mutually dependent.

Such a complex fixpoint terminology T is said to be

syntactically monotone iff all least and greatest fix-

point terminologies of T are syntactically monotone.

Notably, the syntactic monotonicity is required for

each single fixpoint terminology of T rather than for

the union of all involved terminologies.

Not very surprisingly, an interpretation is defined to be

a model of a complex fixpoint terminology T iff it is a

model of each least and greatest fixpoint terminology

of T. The straightforward generalization of the notion

of a defined concept as well as semantic relations such

as subsumption and equivalence to deal with complex

fixpoint terminologies is left to the reader.

We have already seen that every syntactically mono

tone terminology of ACC does have both a least as well

as a greatest fixpoint model. The question arises, how

ever, whether this result also applies to an arbitrary

syntactically monotone complex fixpoint terminology

T = {ffiTi : 1 < t < n,ffi e of ACC. Accord

ing to the definition of complex fixpoint terminologies,
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the terminologies T\,...,Tn must not be mutually de

pendent, so that there is at least one terminology 7i

(1 < t < n) which does not involve any occurrence of

a concept name defined in any other terminology 7}

with j ^ i. Moreover, 7< is syntactically monotone

since so is T. According to Proposition 1, % does have

a least as well as a greatest fixpoint model. Induction

on n then proves that T has in fact a model as well.

Proposition 2. Each syntactically monotone complex

fixpoint terminology of ACC has a model.

4 The Terminological Logic ACCfi

So far, we dealt with least and greatest fixpoints on

the metalevel rather than on the concept level. In

what follows, we shall introduce an extension of ACC,

called ACCfi, which comprises explicit least as well as

greatest fixpoint operators. ACCfi additionally com

prises concepts of the form fiCN.T and vCN.T, where

T stands for an arbitrary syntactically monotone ter

minology of ACCfi, i.e., T may involve not only con

cepts of ACC, but also least and greatest fixpoint op

erators. The meaning of these concepts is given in

terms of the function induced by T and an undef(T)-

valuation Vu. If T is a terminology such that def(T)

is {CNi, CNn} and (AJ,.Z,V) is an interpretation

extending Vu, then (fiCNj.T)1 and {vCNj.T)1 repre

sent the jfth component of the least and the greatest

fixpoint of the function induced by T and Vu. How

ever, this is only the case if CNj is actually defined

in T; otherwise fiCNj.T is equivalent to L, whereas

vCNj.T is equivalent to T.

We consider this extension of ACC for various rea

sons. First of all, it is a rather natural extension to

cope with least and greatest fixpoints explicitly, and

therefore it provides a unifying framework for all three

kinds of semantics. Second, ACCfi will turn out to be

a notational variant of the so-called propositional fi-

calculus. This is of great benefit because the latter

is already well-understood in terms of its expressive

power and computational complexity. Last but not

least, a certain fragment of ACCfi will turn out to be a

suitable framework for analyzing the expressive power

and computational complexity of syntactically mono

tone complex fixpoint terminologies of ACC.

Definition 18. The concepts of AjCCfi are induc

tively defined as follows:

1. Every concept name, ± and T are a concepts of

ACCfi.

2. If C and D are concepts of ACCfi and RN is a

role name, then C n D, C U D, ->C, VftAT:C and

3RN.C are all concepts of ACCfi.

3. If CN is a concept name and T is some syntacti

cally monotone terminology of ACCfi, then both

fiCN.T and vCNST are concepts of ACCfi. Con

cepts of this form are called least and greatest

fixpoint operators respectively.

We next extent the notion of an interpretation

(A , . , V) to cope with least and greatest fixpoint

operators. We do so by additionally requiring that

(fiCN.T)1 is the intersection and (i/CN.T)2 is the

union of all CN^ where P ranges over the interpreta

tion functions of all models of T which are undef (T)-

compatible with 2. According to Proposition 1, this

amounts to requiring that (fiCNj .T)1 denotes the jth

component of the least fixpoint of the function / in

duced by T and Vu, provided that (A1,.1,)?) is an

interpretation extending the undef(T)-valuation Vu,

def(T) is {CWi,...,^}, and 1 < j < n. Similarly,

{yCNj .T)x denotes the jth component of the greatest

fixpoint of the function /.

In [12], we have shown that ACC is a notational variant

of the propositional multi-modal logic K. The main

observation is that the elements of the domain of an

interpretation can be thought of as worlds or states

rather than objects. Consequently, concept names can

be viewed as propositional variables denoting the set of

worlds in which they hold, and T, X, n, U and natu

rally correspond to the logical connectives true, false,

A, V and to ->. But then V/27V: and 3RN: become

RN-indexed modalities of necessity [RN] and of pos

sibility {RN) respectively. In a nutshell, this explains

why ACC is a notational variant of the propositional

multi-modal logic K. For details, the reader is referred

to [12]. The propositional fi-calculus extends K by

explicit least and greatest fixpoint operators to reason

about concurrent programs. The propositional version

of the /i-calculus has been proposed by Kozen [6], while

Vardi and Wolper [18] investigated the propositional

/i-calculus with multiple fixpoints. The fixpoint opera

tors of the latter directly correspond to those ofACCfi.

The only difference is that fiCNj.T and i/CNj.T

are written as fiCNj{CN\, ...,CN„):(Ci, ...,Cn) and as

uCNj(CNi CN„):(d ,...,C„), provided that T is of

the form {CNi = d : 1 < i < n).

Correspondence Theorem 1. ACCfi is a nota

tional variant of the propositional fi-calculus with mul

tiple fixpoints.

In view of of this correspondence, we assume hence

forth that all results shown for the propositional fi-

calculus and its variants are also shown for ACCfi and

the corresponding variants.

It is worth mentioning that the meaning of the con

cepts fiCN.T and i/CN.T is preserved by renaming

each concept name which is defined in T, so that those

concept names which are defined in T behave like

quantified variables in fiCN.T and in uCN.T, where

the notion of a variable is the very same as in classical

logic when viewing fiCN and uCN as (second-order)
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quantifiers. The following lemma, due to Kozen [6,

Proposition 5.7(i)], is devoted to this renaming.

Lemma 3. Assume T is an arbitrary terminology

such that CNi is defined in this terminology, but there

is no occurrence of the concept name Ai in T. Sup

pose, moreover, (nCNj.T)cNx/Ai and (uCNj .T)Cn,/a,

are obtained from fiCNj.T and from i/CNj.T by re

placing each occurrence of CNi with Ai. Then the fol

lowing equivalences hold, even when i and j are not

distinct:

\= pCNj.T = (nCNj.T)CNt/A,

|= vCNj.T = (vCNj.T^N./A,

In view of this Lemma, we henceforth assume that no

concept name is quantified twice.

The reader may have wondered why there is only an

indication of the least fixpoint operator in the name

'ACCp' although it extends ACC not only by least, but

also by greatest fixpoint operators. The reason for this

is that we can eliminate greatest fixpoint operators in

favor of least fixpoint operators and vice versa. For in

stance, the least fixpoint operator fiA.{A = CU3R.A}

is equivalent to the negated greatest fixpoint operator

->i/A.{A = -<(C U 3R:->A)}. It is important to realize

that the terminology {A = -*(C U3R:->A)} is syntac

tically monotone iff so is {A = C U 3R:A}. Park [9]

showed that this equivalence can be generalized as fol

lows: Suppose d is obtained from C, by replacing all

occurrences of concept names defined in T with their

negation. According to Theorem 2.3 of [9], the follow

ing equivalences then hold:

(= ^fiCN.T = uCN.{CNi = : {CNi = C.) € T}

(= -msCN.T = fiCN.{CNi = ^Ci : (CNi = C.) € T}

As ->Ci adds exactly two negations to the scope of

each occurrence of a concept name which is defined in

T, the terminology {CN{ = -.(?< : (CNi = d) € T)

is clearly syntactically monotone iff T is syntactically

monotone.

These equivalences are crucial to obtain the so-called

negation normal form. As usual, the negation nor

mal form of a concept is an equivalent concept involv

ing no negated compound concepts. In case of ACC,

it can be obtained by exploiting de Morgan's laws

as well as the equivalences \= -NR:C = 3R:->C and

|= -3R:C = Vfl:-iC In case of ACCfi, however, we

additionally have to exploit the dualities for least and

greatest fixpoint operators given immediately above.

Definition 19. The function nnf maps concepts of

ACCpi to concepts of ACCp. Applied to an arbitrary

concept, nnf yields the concept obtained from the orig

inal one by repeatedly applying the following substi

tution rules:

-i-iC

-■(C n D)

--(CUD)

-.(Vfl:C)

^(3R:C)

-./iC/V.T

-^vCN.T

C

->CU ->D

-.cn-iD

3R:^C

Vfl:--C

uCN.{CNi =

nCN.{CNi =

-C, : (CNi = d) e T}

: (CNi = d) € T}

As above, d denotes the concept obtained from

C by simultaneously replacing each occurrence of

CN\, ...,CNn with its negated form. We call nnf(T)

to be the negation normal form of T.

Lemma 4. Every concept ofACCn is equivalent to its

negation normal form.

In view of the fact that many /i-calculi considered in

the literature do not allow for mutual fixpoints, we

should clarify the actual role of multiple fixpoints.

By mutual fixpoints we mean least or greatest fix-

point operators applied to terminologies comprising

more than one concept introduction. It turns out that

we can eliminate mutual fixpoints in favor of nested

ones. Consider, for instance, the mutual fixpoint

vA\A = V#:B, B = VS:(A n B)}. This concept is in

fact equivalent to vA.{A = VR:vB.{B = VS:(AnB)}},

which obviously does not contain any mutual fixpoint.

The following lemmajust generalizes this observation.

Lemma 5. Assume T is a syntactically monotone ter

minology of ACCp which is of the form {CNi = d :

1 < i < n}. Assume, moreover, Cj and Cj are ob

tained from Cj by simultaneously replacing all occur

rences of every CNi (I ^ j) with fiCNi.{CNi = Ci} and

with vCNi.{CNi = C)} respectively. Then nCNj.T is

equivalent to fiCNj.{CNj = Cj} and i/CNj.T is equiv

alent to vCNj.{CNj =Cj}.

A proof of this lemma is given by, e.g., De Bakker [3,

Theorem 5.14.e]. Of course, a finite number of applica

tions of the last lemma eliminates all mutual fixpoints.

Remarkably, this works also for concepts of ACCfi~ as

this language restricts only the interaction of nested al

ternating least and greatest fixpoints operators which

are not used in this lemma.

Corollary 1. Every concept of ACCp is equivalent to

a concept of ACCfi which involves solely terminologies

which contain at most one concept introduction. The

corresponding statement holds for ACCfi~ as well.

Unfortunately, the size of equivalent concept is not

always bounded polynomially in the size of the original

concept.

As Proposition 1 suggests, there exists a close relation

ship between syntactically monotone least and great

est fixpoint terminologies on the one hand, and least
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and greatest fixpoint operators of ACCn on the other

hand. The least fixpoint terminology n{CN = C},

for instance, has exactly the same models as the con

cept introduction CN = piA.{A = Ccn/a}- As usual,

Ccn/a is obtained from C by replacing all occurrences

of CN with A. Note, however, that the concept names

which are defined in T behave like quantified vari

ables in pA.T and in vA.T in that they have local

meaning, whereas those defined in fixpoint terminolo

gies have global meaning. This is due to the fact that

according to Lemma 3 the meaning of the concepts

\iA.T and vA.T is preserved by renaming each con

cept name which is defined in T. In contrast to this,

renaming defined concepts does change the meaning

of least and greatest fixpoint terminologies. There

fore, for each concept introduction CNi = C, of the

least fixpoint terminology pT, a concept introduction

CNi = nAi.TcNi/A, is needed.

Propositions. Assume T is some syntactically

monotone terminology of ACC which is of the form

{CNi = d; : 1 < i < n} and which does not

contain any of the (pairwise distinct) concept names

Ai,...,An. Suppose, furthermore, Ta is obtained from

T by replacing each occurrence of CN\, ...,CNn with

Ai,...,An respectively. Then piT has the same models

as {CNi = pAi.TA ■ 1 < i < n} and vT has the same

models as {CNi = vA^.Ta : 1 < i < n}.

This proposition describes how to represent syntacti

cally monotone least and greatest fixpoint terminolo

gies of ACC by terminologies of ACC/i. It should

be remarked that we could have taken also fiCNi.T

and vCNi.T instead of /iA-T* and vAi.T& because

renaming defined concepts does not change the mean

ing of least and greatest fixpoint operators. However,

we have taken the other ones because they end up

with acyclic terminologies. Let us take a closer look

at these terminologies. Ta is clearly a terminology of

ACC since T is assumed to be a terminology of ACC.

This means neither piAi.TA nor vAi.TA involve any

nested fixpoint operators. In fact, we shall see that

we do not need the full power of ACCfi to represent

syntactically monotone fixpoint terminologies of ACC.

In particular, we do not need nested alternating least

and greatest fixpoints interacting via a defined con

cept, which are rather involved.

Definition 20. A concept C of ACCft is called re

stricted iff its negation normal form does not contain

any least fixpoint operator pCN.T (resp., greatest fix-

point operator vCN.T) which involves some greatest

(resp., least) fixpoint operator in which a concept de

fined in T occurs. We denote with AJLC\i~ the set of

all restricted concepts of ACCfi.

Consider, for instance, the concept nA.{A =

VR:vB.{B = A n V5:S}}. First of all, it is already in

negation normal form. Second, it comprises a great

est fixpoint operator, viz. uB.{B = A n V5:B},

which is nested in a least fixpoint operator of the form

/iA.T. As there is an occurrence of A in the great

est fixpoint operator i/B.{B = A n VS:fl}, the con

cept above is not restricted and is therefore no con

cept of ACCpT . Observe, however, that fiA.{A =

Vfl:/iS.{B = A n V5:5}} is restricted.

Representation Theorem 1. There is a function w

which maps an arbitrary syntactically monotone com

plex fixpoint terminology V ofACC to some acyclic ter

minology 7r(r) of ACCfi~ in such a way that T and

ir(T) have exactly the same models. Additionally, tr is

computable in polynomial time and the size of Tr(T) is

linearly bounded in the size ofT.

5 Expressive Power

In this section we shall investigate the expressive power

of fixpoint terminologies. In particular, we shall see

that the concepts definable by syntactically mono

tone complex fixpoint terminologies of ACC are ex

actly those concepts which are equivalent to concepts

of ACCn~ . We then give a strict lower bound of the

expressive power of ACC\i~ and of full ACCfi in terms

of ACC augmented by regular and w-regular role ex

pressions. Of course, before engaging into details, we

have to clarify what exactly is meant by expressive

power and definability.

Definition 21. Suppose C and C are two sets of con

cepts. Then C is at least as strong in expressive

power as £',£'< C for short, iff for each concept in

C there is at least one equivalent concept in C, and C

is strictly stronger in expressive power than C

iff C < C, but it is not the case that C < C. Further

more, a concept C is definable by a set of complex

fixpoint terminologies of C iff there is an element T

of the set and there is a concept name CN which is

defined in T such that T\=CN = C.

That is to say, C is at least as strong in expressive

power as C just in case that for each concept in C

there is a concept in C which has exactly the same

meaning, though the two concepts may differ in their

syntax. If there is additionally a concept in C which

is not equivalent to any concept of £', C is said to

be strictly stronger in expressive power than C . For

example, it can be shown that ACC augmented by

the reflexive-transitive closure RN* of a role name is

strictly stronger in expressive power than ACC. The

definition of definability of concepts takes into account

the fact that the definitional power of terminologies

consists in the concept names which they define. The

concept 3RN*:C, for instance, is definable by syntacti

cally monotone complex fixpoint terminologies of ACC

since p{A = C U 3RN.A} \= A = 3RN':C, provided

that A is a concept name not occurring in C.



518 K. Schild

Expressiveness Theorem 1. The concepts definable

by syntactically monotone complex fixpoint terminolo

gies of ACC are exactly those concepts equivalent to

concepts of ACCn~ .

This result is of great importance in that it justifies

to take ACC\x~ (rather than full ACCp) as a unifying

framework for the least and the greatest fixpoint se

mantics. The proof of the theorem is based on Propo

sition 3 which can be used to prove that every least

fixpoint operator pC/V,-.T of ACC\x~ can be replaced

with some fresh concept name Ai, at least if the least

fixpoint terminology [iTa is added where Ta is de

fined as in Proposition 3. Of course, the corresponding

statement holds for greatest fixpoint operators as well.

However, nested fixpoints interacting via defined con

cepts may cause problems. For instance, the nested

fixpoint in i*A.{A = V/£:/*£.{£ = AfNS:B}} cannot

be eliminated in the described way in that this would

involve two terminologies which are not mutually de

pendent. Such a concept must be replaced by the

equivalent concept fiA.{A = VR:B,B = A n V5:fl},

which contains no nested fixpoint any more. Note,

for restricted concepts there are always equivalent con

cepts of this kind. Equivalences of the latter kind are

also the basis for the next theorem; however, in this

case they have to be used the other way around.

Expressiveness Theorem 2. ACCfi involving solely

terminologies comprising at most one concept intro

duction is ai least as strong in expressive power as

ACCfi. This holds for ACCn~ as well.

We next compare both ACC(i~ and full ACCy. with

the regular and the w-regular extension ofACC in their

expressive power. For the regular extension of ACC

see [2] or [12]. It additionally comprises the reflexive-

transitive closure R* of a role, the composition R o S

and union R U S of two roles, the identity role e , as

well as the role R\C restricting the range of a role to a

concept. The u>-regular extension of ACC extends

its regular extension by the additional concept 3R",

which stipulates the existence of an infinite chain of

the role R.

It is worth mentioning that this language can some

times be used to clarify the actual meaning of fixpoint

terminologies. For instance, Streett [15, page 364]

mentioned the following equivalences:

(= fiA.{A = C n VR.A} = (Vft*:C)n-n3/^

|= uA.{A = Cu3R:A} = (3R':C)U 3R"

Of course, A has to be some concept name not ap

pearing in C. According to Proposition 3, both equiv

alences can be carried over directly to the correspond

ing fixpoint terminologies:

H{A = Cr\VR:A) (= A = (Vft* :C) n -.3/^

u{A = Cu3R:A) \= A = (3R':C) U 3R"

This indicates that some concepts of the w-regular ex

tension of ACC are definable by syntactically mono

tone complex fixpoint terminologies of ACC. The next

theorem together with Expressiveness Theorem 1 im

plies that they are in fact able to define all concepts of

the regular extension of ACC. They are even able to

define concepts which are not equivalent to any con

cept of the regular extension of ACC.

Expressiveness Theorem 3.

ACCfi~ is strictly stronger in expressive power than

the regular extension of ACC, while ACCp is strictly

stronger in expressive power than the u-regular exten

sion of ACC.

Proof. Consider the following equivalences, due to

Kozen [6], which presuppose that A is some concept

name not occurring in C:

1=

N

N

N

N

1=

VR:C

3R':C

3(RoS):C

3(RUS):C

3(R\C):D

3e:C

3R"

-,3R:->C

HA.{A = CU3R-.A)

3R-3S.C

(3R:C) U (3S:C)5

3R:(CnD)

C

vA\A = 3R:A}

These equivalences can be used directly to prove by in

duction on the structure of concepts of the w-regular

extension of ACC that ACCft is at least as strong in

expressive power as the w-regular extension of ACC.

As A does not occur in C, all but the last equivalence

yield restricted concepts in case that C and D are re

stricted. The last equivalence, however, may yield con

cepts which are not restricted. For instance, 3(RoS*)w

is equivalent to t/A.{A = 3R:nB.{B = A U 3S:B}},

which is obviously not restricted. This concerns, how

ever, solely the last of the above equivalences, so that

ACC\i~ is yet at least as strong in expressive power

as the regular extension of ACC. Now, according to

Kozen [6, Proposition 4.1], there is at least one concept

ofACCn~ which is not equivalent to any concept of the

regular extension of ACC, viz. vA\A = 3RN.A}. De

spite the fact that the latter concept is yet equivalent

to a concept of the w-regular extension of ACC, Niwin-

sky has shown that this does not apply to uA.{A =

3RNl:A n 3RNr-A} (see [15, Theorem 2.7]). □

6 Computational Complexity

In what follows we shall see that as far as syntacti

cally monotone terminologies of ACC are concerned

all three kinds of semantics do not differ essentially

in the computational complexity of the corresponding

subsumption relation. In each case subsumption turns

5If we were concerned with linear length-boundedness,

we could have taken the equivalent concept (iA.{A =

{3R:B) U (3S:B), B = C) instead.
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out to be complete for deterministic exponential time.

To be more accurate, we investigate the computational

complexity of the following three problems: For an ar

bitrary syntactically monotone terminology T of ACC

and for an arbitrary primitive concept introduction

CN C C of ACC decide whether (a) T |= CN C C,

(b) n7 \= CN C C, and (c) uT \= CN C C. It turns

out that all three problems are hard for determinis

tic exponential time, even if T is restricted to con

tain at most one concept introduction. All these lower

complexity bounds are obtained by utilizing a result,

due to Fischer and Ladner [4], proving that the set

of coherent concepts of the regular extension of ACC

is hard for deterministic exponential time. Inspection

of their proof immediately reveals that the syntactic

form of the concepts can be restricted considerably.

In fact, the set of all coherent concepts of the form

C r\VRN*:D such that both C and D are concepts of

ACC and RN is a role name is hard for deterministic

exponential time as well. We have shown this set to be

polynomial time (many-one) reducible to each of the

three problems mentioned above. The proof involves

the following reductions:

\=Cf\VRN*:D± L

iff AQDriVRN-.A \= A C -€

iff u{A = DnVRN-.A} (= A C nC

iff fi{A = -.£> U 3RN-.A} \= ->A C ->C

The last two reductions are immediate consequences of

the fact that the corresponding fixpoint terminologies

entail A = VRN*:D and A = 3RN*:^D respectively.

The first reduction, however, is more involved. Any

way, Fischer and Ladner's result holds even if C is

of the form CN n C", where CN is a concept name,

so that the axiom ->A C ~>C can be shown to be

equivalent to some primitive concept introduction, viz.

CN C A U -iC.

Complexity Theorem 1. The set of all {T,CN Q

C) such that T ranges over all syntactically monotone

terminologies ofACC and CN C. C ranges over all con

cept introductions of ACC with T |= CN C C is hard

for deterministic exponential time. This holds even if

T may contain at most one concept introduction. Cor

responding statements hold for syntactically least and

greatest fixpoint terminologies of ACC as well.

We have also shown that the entailment relation in

tegrating all three kinds of semantics is computable

in deterministic exponential time. By that we mean

the problem to decide whether A U r ^= C = D, for

arbitrary syntactically monotone complex fixpoint ter

minologies T of ACC and arbitrary finite sets Al){C =

D} of axioms of ACCyT . According to Proposition 3,

all fixpoint terminologies of T can be represented by

acyclic terminologies of ACCpT , so that we may as

sume T to be empty. Now, Vardi and Wolper [18]

showed the set of coherent concepts of ACCyT to be

computable in deterministic exponential time.6 In the

same paper Vardi and Wolper also showed that each

concept C of ACCu~ is coherent iff there is a tree-like

interpretation (A , V) such that the empty word is

a element of C . This ensures that any axiom C = D

can be internalized within ACCyT using the technique

introduced independently by Baader [2] and Schild

[12]. This means Vardi and Wolper's result can be

shown to hold also for subsumption with respect to

finite sets of axioms of ACCyT .

Complexity Theorem 2. The set of all (A U T, C =

D) such that T ranges over all syntactically monotone

complex fixpoint terminologies of ACC and A U {C =

D] ranges over all finite sets of axioms of ACCfi~

with A U T (= C = D is computable in deterministic

exponential time.

7 Conclusion

We investigated terminological cycles in the termino

logical standard logic ACC with the only restriction

that recursively defined concepts must occur in their

definition positively. This restriction, called syntac

tic monotonicity, ensures the existence of least and

greatest fixpoint models. It turned out that as far as

syntactically monotone terminologies of ACC are con

cerned the descriptive semantics as well as the least

and greatest fixpoint semantics do not differ in the

computational complexity of the corresponding sub-

sumption relation. In fact, in each case subsumption

is complete for deterministic exponential time. These

results significantly improve those of Baader [l] in the

sense that he investigated only syntactically monotone

terminologies in a very small sublanguage of ours. The

concept language he considered comprises neither con

cept disjunction U, concept negation ->, nor existential

quantification 3R: over a role.

In addition, we saw that in our setting not only the

greatest, but also the least fixpoint semantics is ca

pable of expressing the reflexive-transitive closure R*

of a role. While the former is able to express univer

sal quantification over R* , the latter can express ex

istential quantification over R*. There are, however,

also concepts which are in our setting definable with

respect to one of the fixpoint semantics, but which

are provably not expressible within ACC augmented

by regular role expressions. This contrasts a result of

Baader [l] who proved that in his restricted language

least and greatest fixpoint semantics can define solely

concepts of the regular extension of ACC [l].

6 Concerning the computational complexity of full

ACCft, the following is known: Streett and Emerson [16]

gave an elementary upper time bound for accepting the set

of coherent concepts of ACCit, while Safra [ll] proved that

this set is even computable in deterministic exponential

time, at least when no mutual fixpoints are involved.
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Our results clarify the ongoing discussion on the ade

quate semantics for terminological cycles. They show

that none of the three kinds of semantics is prefer

able in terms of computational complexity of the corre

sponding subsumption relation. Moreover, our results

show that neither the least nor the greatest fixpoint

semantics is preferable in terms of expressive power

and, actually, we do need both to express the reflexive-

transitive closure of roles.

Especially our results on the expressive power of least

and greatest fixpoint semantics are obtained by a di

rect correspondence to the so-called propositional fi-

calculus, which allows to express least and greatest fix-

points explicitly. It turned out that ACC augmented

by these fixpoint operators provides a unifying frame

work for all three kinds of semantics.

The pursued approach, however, is not restricted to

capture purely terminological reasoning only. Many

propositional modal logics have been extended suc

cessfully to deal with constructs corresponding to in

dividual concepts and the universal role, as they are

called in the context of concept languages [lO]. It is

not hard to see that asseriional axioms such as a:C

and (a,b):R can be expressed in such extensions in a

straightforward manner. An extension of exactly this

kind has already been considered for the propositional

//-calculus [5], so that the presented results can be ex

tended to deal with assertional axioms too.

Acknowledgements

1 would like to thank Franz Baader, Bernhard Nebel,

and Albrecht Schmiedel for several valuable comments

on earlier drafts of the paper.

References

[l] F. Baader. Terminological cycles in KL-ONE-

based knowledge represenation languages. In Pro

ceedings of ike 9ih National Conference of the

American Association for Artificial Intelligence,

pages 621-626, Boston, Mass., 1990.

[2] F. Baader. Augmenting concept languages by the

transitive closure: An alternative to terminolog-

cal cycles. In Proceedings of the 12th International

Joint Conference on Artificial Intelligence, pages

446-451, Sydney, Australia, 1991.

[3] J. de Bakker. Mathematical Theory of Program

Correctness. Prentice-Hall, 1980.

[4] M. J. Fischer and R. E. Ladner. Propositional

dynamic logic of regular programs. Journal of

Computer and System Science, 18:194-211, 1979.

[5] G. Gargov and S. Passy. A //-calculus based on

combinatory PDL. Manuscript, 1985.

[6] D. Kozen. Results on the propositional //-calculus.

Theoretical Computer Science, 27:333-354, 1983.

[7] B. Nebel. Reasoning and Revision in Hybrid Rep

resentation Systems. Lecture Notes in Computer

Science. Springer-Verlag, Berlin, FRG, 1990.

[8] B. Nebel. Terminological cycles: Semantics and

computational properties. In J. Sowa, editor, For

ma/ Aspects of Semantic Networks, pages 331—

361. Morgan Kaufmann, San Mateo, Cal., 1991.

[9] D. Park. Fixpoint induction and proofs of pro

gram properties. In B. Meltzer and D. Michie,

editors, Machine Intelligence, volume 5, pages 59-

78. Edinburgh University Press, Edinburgh, Scot

land, 1970.

[10] S. Passy and T. Tinchev. An essay in combina

tory dynamic logic. Information & Computation,

93(2):263-332, 1991.

[ll] S. Safra. On the complexity of w-automata. In

Proceedings of the 29th Annual Symposium on

Foundations of Computer Science, pages 319-327,

1988.

[12] K. Schild. A correspondence theory for termino

logical logics: Preliminary report. In Proceedings

of the 12th International Joint Conference on Ar

tificial Intelligence, pages 466-471, Sydney, Aus

tralia, 1991.

[13] K. Schild. Terminological cycles and the proposi

tional /i-calculus. DFKI Research Report RR-93-

18, German Research Center for Artificial Intelli

gence (DFKI), Saarbrucken, FRG, April 1993.

[14] M. Schmidt-SchauB and G. Smolka. Attributive

concept descriptions with complements. Artificial

Intelligence, 48(l):l-26, 1991.

[15] R. S. Streett. Fixpoints and program looping: Re

ductions from the propositional mu-calculus into

propositional dynamic logics of looping. In Pro

ceedings of the Workshop on Logics of Programs,

pages 359-372, Brooklyn, 1985.

[16] R. S. Streett and E. A. Emerson. An automata

theoretic decision procedure for the proposi

tional mu-calculus. Information & Compulation,

81:249-264, 1989.

[17] A. Tarski. A lattice-theoretical fixpoint theorem

and its applications. Pacific Journal of Mathe

matics, 5:285-309, 1955.

[18] M. Y. Vardi and P. Wolper. Automata theoretic

techniques for modal logics of programs (extended

abstract). In Proceedings of the 16th ACM Annual

Symposium on Theory of Computing, pages 446-

456, Washington, D.C., 1984.

[19] W. A. Woods and J. G. Schmolze. The KL-ONE

family. In F. Lehmann, editor, Semantic Networks

in Artificial Intelligence, pages 133-178. Perga-

mon Press, 1992.



521

Near-Optimal Plans, Tractability, and Reactivity

Bart Selman

AT&T Bell Laboratories

Murray Hill, NJ 07974

selman@research.att.com

Abstract

Many planning problems have recently been

shown to be inherently intractable. For ex

ample, finding the shortest plan in the blocks-

world domain is NP-hard, and so is planning

in even some of the most limited STRIPS-

style planning formalisms. We explore the

question as to what extent these negative re

sults can be attributed to the insistence on

finding plans of minimal length.

Using recent results form the theory of com

binatorial optimization, we show that for

domain-independent planning, one cannot ef

ficiently generate any reasonable approxima

tion of the optimal plan. Our result holds

for a very restricted form of STRIPS. So,

the negative complexity results for domain-

independent planning are not just a conse

quence of searching for the optimal plans, be

cause even finding reasonable approximations

is hard.

Next we consider domain-dependent plan

ning. For blocks-world planning one can gen

erate in polynomial time good approxima

tions of the minimal plan — within a fac

tor of two of optimal. We show, however,

that one cannot efficiently generate arbitrar

ily good approximations. This result places

a limit on the usefulness of certain anytime

approximation algorithms for generating bet

ter and better plans in the basic blocks-world

domain.

Finally, we consider further several exam

ples of tractable domain-dependent plan

ning. We show how they can be solved us

ing reactive style plans. Our analysis re

veals a surprisingly close connection between

tractable domain-dependent planning (opti

mal and near-optimal) and reactive style

planning.

1 INTRODUCTION

Recent complexity results formally establish the inher

ent intractability of many basic planning problems.

In particular, finding the shortest plan in the famil

iar blocks-world domain is NP-hard, and so is finding

minimal plans in STRIPS-style planning formalisms,

even with very restricted planning operators (Gupta

and Nau 1991; Chenoweth 1991; Bylander 1991; and

Erol et al. 1992). A further analysis of the basic

blocks-world planning domain shows, however, that

plans that are at most twice the length of the opti

mal plan can be generated efficiently. This suggests

that perhaps the negative complexity results are at

least partly due to the insistence on finding minimal

length plans. We explore this issue by studying the

complexity of finding plans that are not much longer

than the shortest possible ones. Our results are based

on recent developments in the theory of approximat

ing optimization problems (Arora et al. 1992; Johnson

1992).

We first examine the complexity of domain-

independent planning. Bylander (1991) studied a se

ries of syntactic restrictions on the planning operators

in STRIPS (Fikes and Nilsson 1971). Erol et al. (1992)

discuss how one can encode the blocks-world problem

using a slight extension of one of Bylander's most re

stricted classes. This class has the interesting property

that one can determine whether some plan exists in

polynomial time, but finding the shortest plan is NP-

complete. So, the natural question to ask is whether

one can efficiently compute reasonable approximations

of the optimal plan (e.g., within some constant factor,

as can be done in the basic blocks-world domain). Un

fortunately, we have a strong negative result in this

case: For domain-independent planning, there does

not exist a polynomial algorithm that can produce a

plan that is within any constant factor of the minimal

length plan. This result shows that the many nega

tive complexity results for domain-independent plan

ning formalisms are not just because one wants to find

the shortest possible plan: even reasonable approxi

mations of the optimal plan cannot be generated effi
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ciently.

Next we consider the complexity of finding near-

optimal plans in a domain-dependent setting. We first

discuss whether we can efficiently generate better and

better approximations of the optimal plan in the basic

blocks-world domain. More specifically, for any con

stant c > 1, does there exist a polynomial time algo

rithm that finds plans with length within a factor c

of optimal? We are able to show that, unfortunately,

such algorithms do not exist (provided P^NP). So, al

though we can get a reasonably good approximation

(within a factor of two) efficiently, there will be no way

to generate efficiently arbitrarily good approximations.

Note that such algorithms do exist for other optimiza

tion problems, such as the knapsack problem (Garey

and Johnson 1979).

In the basic blocks-world domain, one assumes that

each block has a unique name. In a somewhat more

general setting, one allows for several different blocks

to have the same name ("type" or "color"). Clearly,

finding the minimal length plan is also NP-hard in this

setting (Chenoweth 1991). What is surprising, how

ever, is that the two planning problems behave very

differently with respect to finding near-optimal plans:

While with unique names we can efficiently generate

plans within a factor two of optimal, we will show that

without the unique name guarantee, one cannot effi

ciently generate plans within any constant factor of op

timal. So, planning problems that look the same from

the standard worst-case complexity point of view, may

behave very differently when it comes to approxima

tion results. It may thus be useful to search for ap

propriate restrictions on domain-dependent planning

tasks that allow for efficient approximate planning,

even if finding the optimal plan is still intractable.

Our aim in the final part of this paper is to show

that in a domain-dependent setting there are still

many interesting tractable planning problems. We

also show that there is a close connection between

such tractable domain-dependent planning and reac

tive planning (Agre and Chapman 1987). For exam

ple, the algorithm that can generate a factor of two

approximation of the minimal blocks-world plan can

be cast in terms of a set of reactive planning rules. We

study this issue by considering the notion of universal

plans, which are one way of formalizing some of the

main intuitions behind reactive planning (Schoppers

1987).

There has been a lively debate on the pros and cons of

universal plans (Ginsberg 1989; Chapman 1989; and

Schoppers 1989). Ginsberg argues against such plans,

by suggesting that they will generally be much too

large to be feasible in practice. Using recent results for

non-uniform circuit complexity, we will show formally

that there are indeed no feasible universal plans for

certain specific blocks-world planning problems. On

the other hand, we also identify interesting cases where

short universal plans do exist. Those cases lie within

the scope of tractable classical planning. In fact, we

will see that tractable, classical planning implies the

existence of reasonable size universal plans.

2 DOMAIN-INDEPENDENT

PLANNING

Domain-independent planning formalisms provide the

user with a general framework for encoding planning

problems. STRIPS is the canonical example of such

a formalism (Fikes and Nilsson 1971). In STRIPS,

states are represented as a set of ground atomic facts,

and actions by operators that map states into states. A

STRIPS planner takes as input an initial state, a goal

state, and a set of operators. Its task is to determine

whether there exists some plan that leads from initial

state to goal state, and if so, to find the minimal length

plan.

Bylander (1991; 1992) and Erol et ol. (1992) provide

complexity results for propositional STRIPS planning.

In its full generality, such planning is easily shown to

be intractable. They therefore explore various syntac

tic restrictions on the operators in search of tractable

subclasses.

One of the most interesting restricted classes studied

by Bylander involves restricting the pre-condition of

each STRIPS operator to positive atoms only, and hav

ing at most one atom on either the delete or the add

list.1 Let's call this class STRIPS". Finding an opti

mal plan in STRIPS- is intractable. However, deter

mining whether some plan exists is still tractable. This

raises the question as to whether we can efficiently gen

erate plans of reasonable size. Unfortunately, as the

following theorem shows, one cannot efficiently gener

ate any reasonable approximations to the optimal plan

in this formalism.

Theorem 1 There does not exist a constant c such

that one can generate in polynomial time plans in

STRIPS' that are within a factor c of optimal (pro

vided P^NP).

Proof: Our proof is based on an approximation prtterving

reduction from HITTING SET. The HITTING SET prob

lem is denned as follows. Given a collection 5 of subsets of

a finite set U, find a minimum cardinality subset of U that

intersects every set in 5. Lund and Yannakakis (1993) show

that the HITTING SET problem cannot be approximated

efficiently within any constant factor (unless P=NP). We

show that if we could find STRIPS- plans within some con

stant factor c of optimal, we then could generate minimum

1 A STRIPS operator consists of a pre-condition, and an

add and delete list. In order for a operator to be applicable

in a certain state, the pre-condition has to be satisfied in

the state. The effect of the operator is modeled by adding

the atoms on the add list to the current state while deleting

those on the delete list.
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hitting sets within a factor 2c of optimal. Suppose we are

given an instance of the HITTING SET problem. Assume

that the elements of U are numbered from 1 to n, and and

the subsets in collection S are named «i, ft. Now

construct the following instance of a STRIPS- planning

problem. The operators are defined as follows. For each

element t of U, we introduce 2(fc + 1) rules: —►»!, ti—

in— and —Hi, -Ma, —vu, —>t. (The rule x—*y

(x—fy) denotes the operator with precondition x, and y on

the add list (delete list).) So, starting from the empty ini

tial state these rules allow us to "turn on" various elements

of U. Note that we use a series of k + 1 steps to turn on

an element of U instead of a single rule; such a long series

is necessary in order to preserve the relative distances be

tween solutions and near-solutions in our reduction. Also,

note that we have rules for turning things off again. Then,

for each set a in S, we introduce for each element » in set

a a rule »— Let aj, . . . , »»} be the initial state, and

the empty set be the goal state.

It is not difficult to verify that any minimal length plan

for this planning problem correspond to some minimum

hitting set and vice versa. Let Lopt be the length of the

minimal plan, and V^t the cardinality of the minimum

hitting set. We have Lopt = 2(|5| + l)V;pt + \S\ (1). In

general, from a plan of length L, we can obtain a hitting

set of size V with V < (L-|S|)/2(|S| + 1) (2). Assume

we can generate a plan with length L in polynomial time

such that L < c-Lopt for some constant c > 1. From (2), it

follows that we can obtain from this plan a hitting set with

cardinality V < (c • Lop, - |S|)/2(|S| + 1). By (1), we have

V < [e(2(|5| + 1)V.P, + \S\) - |S|]/2(|S| + 1). And thus,

V < cVop, + c|5|/2(|S| + 1), which gives V < 2cVopt. So,

we can obtain an approximation of the minimum hitting

set within a factor of 2c, contradicting the result by Lund

and Yannakakis. ■

Given the restricted form of the planning operators,

STRIPS- is clearly a quite limited formalism. Erol

et ol. are able to encode standard blocks-world plan

ning in this formalism, but only after extending it by

allowing compositions of pairs of operators. In this ex

tended class, one can still determine plan existence ef

ficiently, but of course our negative results also applies

here, i.e., one cannot efficiently generate a reasonable

approximation of the optimal plan.

Our approximation result strengthens Bylander's ob

servation that there do not appear to be reasonable

syntactic restrictions on STRIPS operators that would

allow for efficient planning. Our result shows that this

observation remains true even if one would only require

the planner to generate plans of reasonable size (com

pared to optimal). This situation should be contrasted

with that for basic blocks-world planning, where we

can easily generate approximations within a factor of

two, as we will see below. This suggests that in or

der to obtain efficient planning systems, one should

concentrate on domain-dependent planning, where one

can often identify special domain features that lead to

tractable planning.2 Recent work by Agre and Hor-

B

B

Initial State Goal State

Figure 1: An example blocks-world planning problem.

swill (1992) supports this view. They argue that the

ontology of the world is such that it facilitates efficient

domain-dependent planning.

3 DOMAIN-DEPENDENT

PLANNING

We now consider the complexity of near-optimal plan

ning in the standard blocks-world domain. We first

briefly review the recent complexity results by Gupta

and Nau (1991). Fig. 1 gives an example of a typical

blocks-world planning problem. The domain consists

of a collection of blocks placed in various stacks on a

table top. A robot arm can move blocks around, but

only one block at a time.

More formally, a planning problem P = (I,G) is de

fined by an initial state I and a goal state G. A

state is described by a series of atomic facts, such

as on(x,y) which denotes that block x is on block y;

clear (x) which denotes that there is nothing on top

of block x; and ontable(x) which says that block x

is on the table. For example, in Fig. 1, we have an

initial state 1= {on(C,A), ontable(A), clear(C),

clear(B), ontable(B)}. A move action by the robot

arm is given by move(x,y,z), for moving block x from

on top of block y onto block z. (The second and third

argument can also refer to the table T.) It is assumed

that before one can execute a move operation, the

block that is to be moved is clear (i.e., there is no

block on top of it); if the block is to be placed on top

of another block, the other block should be clear also.

There is always space on the table to place blocks. A

plan consists of a sequence of actions, to be carried out

by the robot arm, leading from the initial state to the

goal state. For example, the sequence move(C,A,T),

move ( B , T , C ) , and move ( A , T , B ) leads from the initial

state to the goal state as given in Fig. 1.

Chapman (1987) already argued a similar point, us

ing negative complexity results for quite general planning

systems. Our new results show that those negative results

were not simply due to the choice of an overly general plan

ning formalism: domain-independent planning is hard even

in very restricted formalisms and when allowing for approx

imate solutions. An interesting exception can be found in

the work by Backstrom and Klein (1991; Backstrom 1992;

Backstrom and Nebel 1993). They propose a different plan

ning formalism, and identify global restrictions on the set

of operators, which lead to a tractable subformalism — its

practical applicability is currently being studied.
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The blocks-world planning problem can now be stated

as follows: Given an initial state I and a goal state G

what is the shortest possible sequence of moves that

leads from I to G? Gupta and Nau (1991) show that

finding such a sequence is an intractable problem.

Theorem 2 (Gupta and Nau 1991) Given a blocks-

world planning problem (I,G), finding a minimal

length sequence of moves that leads from I to G is

NP-hard.

Can we relax the requirement that the plans should

be optimal and obtain tractability? The answer is yes.

Not only can we generate some plan in polynomial

time, we can even generate a plan that is of reasonable

size. More specifically, Gupta and Nau discuss a poly

nomial time algorithm that generates plans that are

at most twice as long as the shortest possible one. We

reformulate their approach into the following surpris

ingly simple strategy for obtaining such near-optimal

plans: repeatedly execute the following rules in ran

dom order until the goal state is reached. (To execute

a rule one finds a block that matches the if-part.)

1. If block is not in final position, not on

table and clear, then move it to table.

2. If block is on table, not in final position,

and final position is free, then move it to

final position.

A block is "in final position" iff the stack of blocks

below it is as specified by the goal state.3 Clearly,

this condition can be checked efficiently for each block.

Note that this set of planning rules has a "reactive

flavor," i.e., the rules simply suggest the next action

to take based on the current state.4 The fact that

the length K of the plan generated in this manner is

at most twice the length OPT of the optimal plan

follows from the observation that rule 1 only moves

blocks that will need to be moved in any valid plan,

and rule 2 will move each block directly into place.

One can obtain a shorter plan by merging a rule 1

move and a rule 2 move into one single move. If one

could merge all pairs of rule 1 and rule 2 moves, one

would get a plan of length K/2. In this situation, no

blocks are moved unnecessarily; it follows that there

does not exist a shorter plan. However, one might

sWe assume a completely specified goal state. Alterna

tively, one can add a condition to handle those blocks not

mentioned in the goal: If a block is not specified in the

goal state, it is in the final position iff there are no blocks

below it that are mentioned in the goal state and that are

not in their final positions, and it is not in place of another

block mentioned in the goal. I would like to thank Lynn

Stein for this observation.

4 One might be concerned that the rules implicitly refer

to the goal state. This is not an issue, because, as we will

see later on, in reactive planning the goal is (generally)

considered predefined. So, given a particular goal state,

one would generate rules with the goal compiled in.

not be able to merge all pairs of rule 1 and rule 2

moves, so K < 2- OPT. It follows that the NP-hardness

of the blocks-world planning problem, stems from the

problem of how to merge in an optimal manner the

various rule 1 and rule 2 ('via-the-table' moves) moves

into direct stack-to-stack moves.

The fact that we can generate plans that are at most a

factor of 2 of optimal, raises the question as to whether

we can do even better. The following theorem shows

that there exists a hard limit on how much better one

could possibly do.5

Theorem 3 There exists a constant c (I < c < 2)

such that there is no polynomial time algorithm that

generates plans with length of at most c- OPT (provided

PjzNP).

Proof: The proof is based on an L— reduction from MAX

IMUM SUBDAG. Papadimitriou and Yannakakis (1991)

introduce L—reductions to preserve the notion of closeness

between solutions and near-solutions in reductions between

optimization problems. (Standard polynomial time reduc

tions do not preserve closeness.)

The proof by Gupta and Nau (1992) of Theorem 2 is based

on a reduction from FEEDBACK ARC SET. We have to

modify their approach to obtain an L-reduction for pre

serving approximability. In our reduction, we use MAXI

MUM SUBDAG: Given a directed graph G = (V,E), find

an acyclic subgraph G' = (V, E'), with E' as large as pos

sible.

Consider an instances G = (V, E) of MAXIMUM SUB

DAG. Assume the vertices are numbered from 1 to n.

We will transform this into a planning problem. As

our initial state and goal state, we use modifications

of the states given by Gupta and Nau. In the initial

state, we have n stacks of blocks, one for each vertex.

Gupta and Nau define for vertex » a stack of 2n + 3

blocks (from top to bottom): [i,0,n],[i,0,n — 1],...,

[i,O,Q],[i,I,0], . . . ,[i,I,n],[i,I,n + 1]. In our initial state,

we remove the blocks that do not correspond to actual

edges, i.e., if edge (i,j) is not in E, then remove block

[t,0,j] and [j, I, »]. (We eliminate any unnecessary moves.

This is necessary to maintain approximability.) Blocks

with 0 or n+1 as the third element in their name should not

be removed. Our goal state is given by \E\ stacks each of

two blocks: for edge (x,y) in E we have the block [z,0,y]

on [y, I,x]\ the remaining blocks are placed on the table.

Now, given a plan leading from the initial state to the goal,

we can obtain an acyclic subdag of G, by eliminating all

edges that correspond to blocks that are moved via the ta

ble. Moreover, our reduction satisfies the constraints on

L—reductions: (1) we have that Lopt < aSoPT, where

Lopt is the length of the minimal plan, Sopt is the sise

(number of edges) of the minimum acyclic subdag, and a is

a constant; (2) a plan of length L corresponds to a acyclic

subdag of size S, where \S — 5opt| < /3|£ — Lopt| {fi i*

a constant). (Proving these properties is tedious but fairly

"Note that there are optimization problems, such as the

knapsack problem, where for each c > 1 there is a polytime

algorithm, which generates a solution within a factor c of

optimal.
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straightforward.)

Since MAXIMUM SUBDAG is a MAX SNP[ir] complete

problem (Yannakakis and Papadimitriou 1991), and our

reduction is an L—reduction, it follows that blocks-world

planning problem is a MAX SNP[tt] hard problem. This

hardness result combined with the recent results by Arora

et ol. (1992) implies that there does not exist a Polynomial

Time Approximation Scheme (PTAS) for the blocks-world

planning problem. (A PTAS is a family of polynomial time

algorithms, one for each e > 0, that each achieve an ap

proximation ratio of 1 + e.) The theorem follows. (We

already know that we can obtain a ratio of 2 efficiently.)

■

Theorem 3 places the blocks-world planning problems

among a class of optimization problems that have rela

tively simple approximation algorithms which generate

solutions within some constant factor of optimal (e.g.,

3/4 for maximum satisfiability), but where no algo

rithms are known that produce better ratios. More

over, even if one could achieve a better ratio, it is now

known that there exists some fixed ratio within which

one cannot efficiently approximate.6

As an example of a practical consequence of Theorem 3

consider an anytime planner that runs a series of ef

ficient better and better approximation algorithms to

obtain increasingly better plans until time runs out.

(We assume of course that the better the approxima

tion, the longer it takes. For example, getting within

a factor of five of optimal may take linear time in the

size of the planning problem, whereas getting within a

factor of three may take quadratic time.) Theorem 3

shows that there is a hard limit on how effective such

an approach can be: beyond a certain ratio there are

no efficient approximation algorithms, and one has to

fall back to an inherently inefficient algorithm for gen

erating the optimal solution.

Finally, let us now consider the slightly more gen

eral setting in which several blocks can have the same

name. Finding the optimal plan is again NP-hard

(Chenoweth 1991), but we have the following surpris

ing result.

Theorem 4 For blocks-world planning problems

where several blocks can have the same name, there

does not exist a constant c such that one can generate

in polynomial time plans that are within a factor c of

optimal (provided P^NP).

Because of space limitations, we moved the proof to

the appendix. (Note that the strategy for finding a

near-optimal solution in the basic blocks-world domain

6 It would of course be nice to know the absolute best

possible ratio for which one can still obtain approximations

efficiently, but the theory of approximation algorithms does

not yet provide such ratios, i.e., there is a gap between the

ratio achieved by the known best approximation algorithms

and the ratio for which one can prove that it cannot be

achieved by any efficient approximation method.

does not work here because now we do not know ex

actly which blocks from the initial state to move to

a goal position.) So, when it comes to finding rea

sonable size plans, we see a remarkable difference be

tween planning in the basic blocks-world domain and

in the somewhat more general setting, even though

these problems are equally hard from the perspective

of standard worst-case complexity. Considering ap

proximation results may thus prove useful in finding

restrictions on domain-dependent planning problems

that allow for approximately optimal planning, even if

optimal planning is still intractable.

4 TRACTABILITY: REACTIVE

PLANNING AND UNIVERSAL

PLANS

In this section, we explore further the possibilities for

tractable planning, both optimal and near-optimal.

Because of our strong negative results for domain-

independent planning (Theorem 1), we will concen

trate on domain-dependent planning. We saw how

basic blocks-world plans within a factor of two of op

timal can be generated using a strategy that can be

viewed as a form of reactive planning. Reactive plan

ning has been proposed as an alternative planning

paradigm, largely in response to negative complexity

results for traditional domain-independent planning

systems (Chapman 1987; Agre and Chapman 1987;

Georgeff and Lansky 1987). The underlying assump

tion in reactive planning is that an agent can achieve

its goals — at least to a large extent — by simply react

ing to its current environment, as opposed to planning

an elaborate sequence of actions. There are a num

ber of papers describing particular applications of such

planning, but little is known, in general, about the

class of planning problems that can be solved using it.

In this section, we show how complexity theoretic-tools

can be used to provide some insight into this issue. In

the process, we will uncover an interesting relation to

tractable, domain-dependent planning (both optimal

and near-optimal).

One impediment to a rigorous analysis is that there

does not exist a formal definition of what constitutes

reactive planning. We therefore restrict our attention

to the well-defined notion of universal plans, which

formally captures some of the main intuitions behind

reactive planning (Schoppers 1987). Ginsberg (1989)

gives the following definition.

Definition: A universal plan is an arbitrary function

from the set of possible situations S into the set of

primitive actions A.

The basic idea is that an agent works towards a gen

eral goal by simply looking up in some large table

what primitive action to take next based on its cur

rent situation, i.e., given universal plan u, when in
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situation s, take action u(<). Representing the univer

sal plan explicitly in a lookup table generally leads to

infeasibly large tables because of the large number of

possible states. More efficient representations can be

obtained by using decision trees (Schoppers 1987) or

Boolean circuits (Nilsson 1989; Rosenschein and Kae-

bling 1986). To keep our analysis as general as pos

sible, we will assume the latter. Since u(s) must be

efficiently computable, the Boolean circuit represent

ing u can be at most of polynomial size.7

Note that in contrast with classical planning, the agent

does not plan an explicit sequence of steps, but rather

decides after each step what to do next based on the

current situation.8 This makes the approach quite ro

bust with respect to unexpected changes in the envi

ronment. Another distinguishing feature of universal

plans is that the goal is part of the universal plan:

the planning task is "compiled" with a certain goal in

mind.

There has been much debate on the usefulness of

universal plans (Ginsberg 1989; Chapman 1989; and

Schoppers 1989). Ginsberg conjectured that such

plans would be infeasibly large for almost any interest

ing planning task. We reconsider this issue by studying

universal planning in the blocks-world setting. One of

the main differences from our previous description of

blocks-world planning is that we now have to take the

goal as fixed. Our universal plan will tell us "what

to do next" for each state. We will find that the fact

that our goal is fixed can make a significant difference

in the complexity of the task of computing what to do

next.

For a basic example, consider the goal state "all

blocks on the table." Repeatedly executing the

rule "If block is not on table and clear, then

move block to table," will establish this goal in

polynomial time, in the minimum number of steps.

Pippenger and Fischer (1979) have shown how to con

struct a small (i.e., polysize) Boolean circuit for each

polynomial time computable function. It follows that

there is a compact (polysize) universal plan for achiev

ing the goal of putting all blocks on the table. More

generally, we have:

Proposition 1 // there exists a polynomial time plan

ning algorithm that given as input an initial state I can

generate a plan for achieving a fixed goal G, then there

exists a polysize universal plan for achieving G.

This proposition follows by considering how the poly

size universal plan can be obtained from the polyno-

7Further restrictions such as logarithmic depth would

also be interesting to pursue, especially in exploring paral

lel complexity issues.

'it is a form of "one-step planning." One might argue

whether this should still be called "planning." Here, we

simply view universal plans as a way to solve planning

problems.

mial time planning algorithm. First, we modify the

planning algorithm to output, in polynomial time, only

the first step of the plan that leads from an initial state

to the (fixed) goal state. (Note that we end up with

an algorithm that takes as input an initial state. In

the reactive view, this becomes the current state.) Us

ing Pippenger and Fischer's result we can construct

from this modified algorithm a polynomial size circuit

giving the universal plan for the planning problem.

The approach of running a classical planner to gener

ate the next step may not appear to be very informa

tive from the perspective of reactive planning. How

ever, in determining the computational cost of finding

the next step, we can of course consider any algorithm

for obtaining the result, including a classical planner.

Let us consider another example of tractable domain-

dependent planning: near-optimal planning in the ba

sic blocks-world. Given any goal state, one can use the

strategy discussed in section 3 to obtain a near-optimal

plan (within a factor of two) starting from any initial

state. From Proposition 1, it follows that there is a

compact universal plan for each goal state. In this

case the plan will generate a near-optimal sequence of

moves.

We consider one more example of a feasible universal

plan. Assume that each block is assigned a unique

name and let the goal be to stack all blocks in a single,

alphabetically ordered stack. Consider the following

strategy. Search for the block that needs to be placed

next on the goal stack. If that block is clear, then move

it to the goal. Otherwise, move the blocks on top of it

to the table (one by one, starting with the block at the

top of the stack). This polynomial time strategy will

generate a minimal plan for this goal. So, again, from

Proposition 1, we know that there exists a compact

universal plan.

A similar strategy can be used to solve the 'spell fruit

cake problem' and, more general, the 'stack copying

problem,' as discussed in Ginsberg (1989) and Chap

man (1989). Interestingly, Ginsberg conjectured that

no feasible universal plan would exist for the fruitcake

problem, but Chapman showed this conjecture to be

false, by giving a universal plan for solving it. Chap

man's solution follows a strategy very similar to our

alphabetical stacking approach. Our analysis illus

trates that it should not come as a surprise that there

exists such a compact universal plan for the 'fruitcake'

problem. The reason is simple: the problem is a poly

nomial time planning task, and by Proposition 1, it

follows that there exists a compact universal plan.

"Chapman makes elaborate use of specialized visual

routines. Such routines determine various properties of

the scene, for example, finding a block with a certain la

bel. From a computational complexity point of view, the

key aspect of the routines is that they compute properties

of the scene efficiently (i.e., in polynomial time).
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This leads us to the issue of whether there are planning

problems for which no reasonable size universal plans

exist. One might think that given the intractability

of optimal blocks-world planning, it would follow im

mediately that there are no feasible universal plans

for this form of planning. However, the argument is

not as simple as that, because in the NP-completeness

proof for the blocks-world, both the initial state and

the goal state are taken to be inputs to the problem.

For universal plans we take the goal state as fixed,

which may very well reduce the complexity. Neverthe

less, we can still formally show that there does exist a

blocks-world planning task for which there is no com

pact universal plan that leads us to the goal in a mini

mal number of steps (unless NP C non-uniform P, i.e.,

the polynomial-time hierarchy collapses to the second

level, which is considered very unlikely (Boppana and

Sipser 1990)).

Theorem 5 Unless NP C non-uniform P, there ex

ists a blocks-world planning goal for which there is no

polynomial size universal plan for generating the min

imal sequence of moves leading to the goal.

See the appendix for the proof. We would like to stress

the generality of this negative results. We use non

uniform circuit complexity theory because the univer

sal plans are Boolean circuits, handcrafted to deal with

fixed size domains (e.g., domains with up to a certain

number of blocks). So, we can have different circuits

for different size input domains. Non-uniform circuits

are surprisingly powerful. For example, they can com

pute certain undecidable functions. Consider the func

tion that returns "1" on inputs of length n iff Turing

Machine number n halts on all inputs. For any n,

the circuit is simply fixed to return 1 or 0. As a con

sequence of the very powerful nature of non-uniform

circuits as computational devices, our negative result

extends to other known representations of universal

plans, such as, for example, finite state automata (even

if the automaton keeps state information around, such

information can be added to the Boolean circuit). To

get better understanding as to why the negative re

sult extends to reactive planners which can maintain

state information, let us briefly consider the main idea

behind the proof of Theorem 5.

In the proof, we show how to reduce an NP-complete

problem (FEEDBACK ARC SET) to a planning prob

lem with a fixed goal state. We do this by identi

fying a generic fixed goal state and encoding all the

the complexity of the FEEDBACK ARC SET problem

into the initial (the input) state of the planning prob

lem. If there would exist a (reactive) planning system

that could efficiently generate the optimal next step

towards the goal given any initial state, such a plan

ner could be used to solve efficiently the NP-complete

FEEDBACK ARC SET problem. So, in effect, we

have shown that the intractability of certain planning

tasks does not necessarily depend on a subtle inter

play between initial state and goal state; even for cer

tain fixed goal states the planning problem can be NP-

complete.

To summarize, Theorem 5 shows that there are con

crete blocks-world planning problems that do not have

reasonable size universal plans. However, as we dis

cussed earlier, there are many other goal states that

do allow for compact universal plans. This shows that

the reactive view of planning with the fixed goal state

can indeed lead to certain computational advantages.

We are dealing here with an interesting, general pro

gression: in domain-independent planning, the initial

state, goal state and operators are all inputs to the

planner; in domain-dependent planning systems, only

the initial state and the goal state is part of the input;

finally, in universal planning, only the current state is

part of the input. So, we have more and more restric

tive systems, thereby gaining computational efficiency.

5 CONCLUSIONS

We considered the computational complexity of find

ing plans that are of reasonable, but not necessarily

optimal, size. For domain-independent planning, we

showed that it is just as difficult to find plans within

any constant factor as it is to find optimal ones. This

result holds for a very restricted form of STRIPS. So,

even the most restricted forms of domain-independent

planning are too general to allow for efficient approx

imately optimal planning. This strong negative result

suggests that in order to obtain efficient (near-optimal)

planning systems, one will generally need to exploit

certain domain-specific properties.

In the basic blocks-world domain, one can efficiently

generate plans that are at most twice as long as opti

mal. We did show, however, that one cannot generate

arbitrarily good approximations efficiently. In other

words, there is a hard limit on how well one can ap

proximate the optimal plans efficiently. This places

a limit on the effectiveness of certain anytime proce

dures for generating better and better plans. We also

showed that a somewhat more general setting (several

blocks can have the same name), one again cannot

efficiently generate plans within any constant factor

of optimal. Thus, even when planning problems look

the same from a standard worst-case complexity point

of view, they may have very different approximation

properties. It therefore is useful to study restrictions

that allow for efficient approximate planning, even if

finding the optimal plan is still intractable.

Finally, we considered reactive style planning, and, in

particular, universal plans. We gave several examples

of blocks-world planning problems that have feasible

universal plans. We also showed some of the limita

tions of universal planning, by showing that there are

certain goals in the blocks-world domain that cannot

be achieved by any reasonably sized universal plan.
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Our analysis shows that tractable classical planning

and reactive style planning lead to a very similar set

of planning tasks. For future research, it would be

interesting to recast other forms of reactive planning

as studied by, for example, Brooks (1990), in terms

of classical domain-dependent planning. Such a refor

mulation may give us new insights into the class of

planning problems that can be solved by those sys

tems.
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Appendix

Proof of theorem 4

Proof: We use an approximation preserving reduction

from HITTING SET. See the proof of Theorem 1 for the

definition on the HITTING SET problem and its approx

imation properties. Given an instance of the HITTING
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SET problem, we will define a initial and a goal state such

that any plan within a constant factor of optimal would

give us a hitting set within a constant factor of optimal.

Lund and Yannakakis (1993) show that the latter cannot

be found polynomial time, so neither can the near-optimal

plan.

Let the HITTING SET instance consist of a collection of

subsets, ti, «j, . of a finite set U. Assume that the

elements of U are numbered 1 through n. The initial state

consists of an piles of blocks. At the bottom of each pile

is a block labeled The rest of each pile is constructed
as follows. Consider the jth pile. On top of the block

we place blocks labeled with the names of the subsets in

which j occurs. On top of those blocks, we place k blocks

with the label "0". As the goal state, we have k blocks,

labeled «t though s* on the table, each is clear (no block

on top). In order to achieve this goal, we will have to un-

stack at least some of the initial piles. Using a calculation

similar to the one used in the proof of Theorem 1, we can

show that generating a plan within a factor c of optimal,

would give us a hitting set within a factor of 2c of opti

mal. From the result by Yannakakis and Lund it follows

that one cannot generate a plan within a constant factor

of optimal in polynomial time because there does not exist

(unless P = NP) no polynomial algorithm for finding a

hitting set within a constant factor of optimal. ■

Proof of theorem 5

Proof: We consider the reduction by Gupta and Nau

(1992) from FEEDBACK ARC SET to blocks-world plan

ning. In this reduction, the goal state contains most of

the information about the feedback arcs set instance under

consideration. So, the goal state varies with each prob

lem instance, and cannot be taken as fixed. Fortunately,

in blocks-world planning, the initial state and goal-state

are interchangeable with a straightforward one-to-one cor

respondence between plans (simply reverse the sequence of

actions). The initial state in Gupta and Nau's reduction is

quite regular. From this state, we can derive a fixed goal

for our planning problem. More specifically, the goal G* is

defined as follows. Let N be the number of blocks. If AT is

equal to 2p2 + 3p for some integer p > 0, put the blocks in

p stacks of 2p + 3 blocks each (this state was also described

in the proof of theorem 3); otherwise, have all blocks on

the table. (We assume that each block has a unique label.)

Now, we can still reduce an instance (V, E) of the FEED

BACK ARC SET to an instance of the minimum blocks-

world planning problem with the fixed goal G*. Basically,

we encode all the information from the instance (V, E) in

the initial state /. We do this by using for / the goal state

as used by Gupta and Nau in their reduction. More specif

ically, for every edge (x,y) in E, the state / contains the

atom on([x,0,y] , [y,I,x]). For every other block b, we

have ontable(b). (We use the naming of the blocks as

defined by Gupta and Nau.) Given the reversability of the

blocks-world planning task, it follows that an optimal plan

in this setting corresponds to a minimum feedback arc set.

So far, we have in effect shown that optimal blocks-world

planning remains NP-complete even if we use the fixed goal

state G* and take the initial state I as only input.

for solving the optimal blocks-world planning problem with

fixed goal G* (unless NP C non-uniform P). See also Bop-

pana and Sipser (1990). And, therefore, there does not

exist a compact universal plan for this task. ■

Given this NP-completeness result it follows that there can

not exist a non-uniform family of polynomial size circuits
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Abstract

This paper describes a framework for speci

fying preferences in terms of conditional de

sires of the form "a is desirable if /?" , to be

interpreted as "a is preferred to ->a other

things being equal in any /? world". We

demonstrate how such preference sentences

may be interpreted as constraints on admis

sible preference rankings of worlds and how

they, together with normality defaults, allow

a reasoning agent to evaluate queries of the

form "would you prefer cr\ over o~i given <j>"

where o\ and o~i are action sequences. We

also prove that by extending the syntax to

allow for importance-rating of preference sen

tences, we obtain a language that is powerful

enough to represent all possible preferences

among worlds.

1 Introduction

This paper describes a framework for specifying plan

ning goals in terms of preference sentences of the form

"prefer a to -<a if 7" . Consider an agent deciding if she

should carry an umbrella, given that it is cloudy. Nat

urally, she will have to consider the prospect of getting

wet ->d (not dry), the possibility of rain r, that it is

cloudy c, and so on. Some of the beliefs and knowledge

that will influence her decision may be expressed in

conditional sentences such as: "if I have the umbrella

then I will be dry" , u —* d, "if it rains and I do not

have the umbrella then I will be wet" , r A-<u —► -<d and

"typically if it is cloudy, it will rain", c—*r. She may

also have preferences like "I prefer to be dry" , dy ->d

and "I prefer not to carry an umbrella", ->u >- u. From

the beliefs and preferences above, we should be able to

infer whether to carry an umbrella if she observes that

it is cloudy, assuming that keeping dry is more impor

tant to her than not carrying an umbrella.

The research reported in this paper concerns such de

cisions. Our aim is to eventually equip an intelligent

Beliefs

«i .
<Pi —> V>i

<Pn ► Vn

Preferences

 

{ '.

Query

(<t>,<ri >■ <r2)

Figure 1: Schematic of the proposed system

autonomous artificial agent with decision making ca

pabilities, based on two types of inputs: beliefs and

preferences. Beliefs, some of which may be defeasible,

will be specified by normality defaults like "if you run

across the freeway then you are likely to die", written

run —► die. Preferences may be encoded in conditional

sentences such as "if it is morning then I prefer coffee

to tea", written coffee >- tea | morning. Figure 1

shows a schematic of the program. Each normality

default (fii -A ip{ and preference sentence <*j y(i # | 7,-

will be quantified by an integer Si or e, which indicates

the degree of the corresponding belief or preference. A

larger degree implies a stronger belief or preference.

The program will also accept queries in the form of

{<f>,c\ >■ a?), which stands for "would you prefer <7i

over <T2 given <j>?" . The output of the program is the

degree e to which the preference a\ >- 01 holds in the

context <t>.

We take Bayesian decision theory and maximum ex

pected utility [von Neumann and Morgenstern, 1947,

Pearl, 1988, Keeney and Raiffa, 1976] as ideal norms

for decision making. The problems with the the

ory are that it requires complete specifications of a

probability distribution and a utility function and

that the specifications are numeric. The problems
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with the complete specification of numeric proba

bilities had been considered and partly resolved in

[Goldszmidt, 1992, Goldszmidt and Pearl, 1992]. The

approach is to move from numeric probabilities to

qualitative, order-of-magnitude abstractions and to

use conditional statements of the form <p ip as

a specification language that constrains qualitative

probabilities. These constraints translate to a unique

belief ranking *c(w) on worlds that permits the rea

soning agent to economically maintain and update a

set of deductively closed beliefs. Pearl in [Pearl, 1993]

addressed the problem of numeric utilities. Paralleling

the order-of-magnitude abstraction of probabilities, he

introduced an integer-valued utility ranking p(u>) on

worlds that, combined with the belief ranking /c(u>),

scores qualitative preferences of actions and their con

sequences. However, the requirement for the complete

specification of the utility ranking remains problem

atic.

Here we propose a specification language which ac

cepts conditional preferences of the form "if /? then a

is preferred to ->a" , a >- ->a | /?. A conditional prefer

ence of this form will also be referred to as a conditional

desire, written D(a|/?), which represents the sentence

"if /? then a is desirable" . The output is the evaluation

of a preference query of the form (</>,<T\ y 02) where <j>

is any general formula while o~\ and o~i may either be

formulas or action sequences. The intended meaning of

such query is "is o~\ preferred to o~i given <j>"? Our pro

gram is as follows. Each conditional desire £>(a|/?) is

given ceteris paribum (CP) semantics; "a is preferred

to ->a other things being equal in any /?-world". A

collection of such expressions imposes constraints over

admissible preference rankings ir(u>). From the set of

admissible rankings we select a subset of the most com

pact rankings t+(w), each reflecting maximal indiffer

ence. At the same time we use the normality defaults

to compute the set of believable worlds {w | /c(w) = 0}

that may result after the execution of o~i given <j>. One

way of computing the beliefs prevailing after an action

is through the use of causal networks, as described in

[Pearl, 1993]. To compare sets of believable worlds we

introduce a preference relation between sets of worlds,

called preferential dominance, that is derived from a

given preference ranking To confirm the pref

erence query {<t>,0\ >- 0*2), we compare the set of be

lievable worlds1 resulting from executing o~i given <f>

to those resulting from executing 02 given 4>, and test

if the former preferentially dominates the latter in all

the most compact preference rankings. A set of worlds

W preferentially dominates V if and only if:

'In general, "surprising worlds" should be considered

as well, in case they carry extremely positive or negative

utilities (e.g. getting hit by a car). But, to simplify the

exposition, we consider only believable worlds. A system

combining both likelihood and utility considerations, re

flecting a qualitative version of the expected utility crite

rion, is described in [Pearl, 1993].

1. W provides more and better possibilities,

2. W provides less possibilities but excludes poorer

possibilities or

3. W provides better alternative possibilities

when compared with V .

So far we have described the fiat version of our lan

guage, where a degree is not associated with each con

ditional desire sentence D(a\0). We will show that

the flat language is not sufficient for specifying all

preference rankings. In particular we exhibit a prefer

ence ranking that is not the most compact admissible

ranking with respect to any set of conditional desires.

Also, by not specifying the relative importance of con

ditional desires, the flat language does not allow us

to decide among preferences resulting from conflict

ing goals. To alleviate these problems we allow condi

tional desires to be quantified by a integer indicating

the degree or strength of the desire. We prove that this

quantified language is expressive enough to represent

all preference rankings.

In the next section, we describe the language and the

semantics for conditional desires. In section 3, we in

troduce preferential dominance between sets and show

how a preference query may be evaluated. Quantified

conditional desires are introduced in section 4 together

with the sufficiency theorem. Related work is com

pared in section 5 and we conclude with a summary of

the contributions of this paper.

2 Preference Specification

2.1 The Context

In this section we consider conditional desires of the

form D(a\0) where a and /? are well-formed formulas

obtained from a finite set of atomic propositions X =

{X\, Xi, . . . , Xn) with the usual truth functionals A, V

and -1. Consider the desire sentence "I prefer to be

dry", D(d). This sentence may mean that

1. "d is preferred to ->d regardless of other things",

or that

2. "d is preferred to -id other things being equal" or

3. some intermediate reading.

In this paper we take the ceteris paribum (CP) read

ing which is "d is preferred to ->d other things being

equal" . Similarly, the interpretation for a conditional

desire D{a\(3) is "a is preferred to ->a other things

being equal in any /?-world" .

The first interpretation is not very useful, as shown by

von Wright in [von Wright, 1963], in that it does not

allow for two or more unconditional preference state

ments to exist consistently together. For example, the

desire to be rich, D(r) and the desire to be healthy,
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D(h) will quickly run in to a conflict when considering

the worlds rh and rh. This is because the world rh is

preferred to rh by virtue of D(r) and rh is preferred to

rh by virtue of D(h). The CP interpretation becomes

reasonable in the light of this. Now we are going to

question the CP interpretation.

Our first task is to explicate the meaning of D(a\(i)

in terms of preference constraints on pairs of worlds.

Given the statement D{a), the CP interpretation im

poses constraints only between worlds that agree on

propositions that are not part of a. However to ex

plicate what it means to be "part of a" it is insuffi

cient to examine o syntactically, a semantic definition

is required. For example, if w = Xi A X2 A (A3

v — ~<Xi A —'X2 A (A3 Xi) and a = X\ we will con

clude that u y v is not sanctioned by CP, but if we

were to write alpha as X\ A (X? V ->X?) one might

conclude that the preference above holds, because Xi

appears to be part of a and every thing else seems

to be equal. To explicate this notion we say that a

wff a depends on a proposition X, if all wffs that are

logically equivalent to a contain the symbol Xi. The

set of propositions that a depends on is represented

by 5(a). This set is referred to as the suppori of a,

written support (a) in [Doyle et ai, 1991]. The set of

propositions that a does not depend on is represented

by 5(a) = X \ 5(a). To explicate the notion of "other

things being equal in any /?-world", we say that two

worlds agree on a proposition if they assign the same

truth value to the proposition. Two worlds agree on a

set of propositions if they agree on all the propositions

in the set. We say that u> and v are S-equivalent, writ

ten w ~s v if w and v agree on the set 5 C X. Given a

conditional desire D(a\0) and a j3-world, u>, the worlds

that have "other things being equal" in w are those

that are 5(a)-equivalent to u>. We call D(a\w) a spe

cific conditional desire if u is a wff of the form /\"

where x,- = Xi or ->X,. (As a convention we will use

the same symbol u/ to refer to the unique model of the

wffu;.)

Every specific conditional desire imposes constraints

on some set of worlds; we call that set the context.

Definition 1 (Context) Let D(a\ui) be a specific

conditional desire. The context of D(a\u)), C(a,u>)

is defined as

C(a,w) = {v I f~5(a)w}. (1)

We write C7(a,w) for {y \= 7 | v € C(a,w)} where 7

is a wff.

In the umbrella example the support of u V d is,

5(uV<f) = {u,d} and the context of the specific condi

tional desire D(uVd\udcr) is {udcr, udcr, udcr, udcr) ,

the set of worlds which agree with u> = udcr on all

propositions except for u and d. The constraints im

posed by D(u V d\udcr) are shown in figure 2, where

udcr udcr
 

udcr *■ udcr

Figure 2: Constraints imposed by D(u V d\udcr)

the existence of an arrow w —► v represents a prefer

ence constraint between w and v. The meaning of the

direction of the arrow will be explained later.

Going from specific conditional desires to conditional

desires, a conditional desire D(a\0) is interpreted as

a conjunction of specific conditional desires D(a\u)

over all models w of /?, A<^/} D(a\u). We note that

D{a\P) may impose constraints on worlds that do not

satisfy the condition /? which may sound paradoxical.

The reason being that each world fixes only 5(a), the

atomic propositions which are not in a; however not

all worlds that are constrained by D(a|/?) are models

of /?; v € C(a,u>) j> v \=- /?. This stands contrary

to [Doyle et ai, 1991] where conditional desires were

restricted to apply only to the models of 0. Consider

the sentence, "I desire the light to be ON if it is night

and the light is OFF", D(l\nA->l). Clearly such a sen

tence compares nijAi-worlds in which the light is ON

to those in which the light is OFF. The former does

not satisfy the condition /? = ->/. Such a reasonable

sentence would be deemed meaningless in a restricted

interpretation such as [Doyle et ai, 1991]. /? does not

act as a filter for selecting worlds to which the desired

constraints apply, instead it identifies worlds in which

the desires are satisfied.

2.2 Admissible Rankings

A preference ranking ir is an integer-valued function

on the set of worlds fi. The intended meaning of a

ranking is that the world w is no less preferred than

the world v if ir(u;) > ir(v). Given a non-empty set

of worlds, W, we write tt,(W) for min^gw jt(w) and

it*{W) for max^evv t(w). If W is empty then we adopt

the convention that k.(W) = 00 and ir*(W) = —00.

The constraints imposed by a specific conditional de

sire D{a\u) translates into constraints over admissible

preference rankings. The constraints are that every

a-world in the context C(a,w) has a higher rank (is

preferred) than any ->a-world in the same context.

Definition 2 (Admissibility of rankings) Let D

be a set of conditional desires. A preference rank

ing k is admissible with respect to a conditional de

sire D(a\/3) if for all w \= 0, v € Ca(a,u>) and

v' € C-,0(a,w) implies

*(") > *("')• (2)
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A preference ranking it is admissible with respect to

D if it is admissible with respect to all conditional de

sires in D.

If there exist a ranking that is admissible with respect

to a set of conditional desires, D then we say that D

is consistent. A trivial example of an inconsistent set

is {D(u), D(->u)}. Another example of an inconsistent

set is {D(a), D(->a|/?)}. The proof will be given later.

Figure 2 shows the three constraints imposed by the

conditional desire D(u V d\udcr). An arrow u —► v

represents the constraint jt(w) > n(u).

The principle of CP, though simple and reasonable, is

still insufficient for drawing some conclusions we would

normally draw from conditional desire sentences. Con

sider the sentence D(d) "I desire to remain dry" in the

original umbrella story. If this were truly the only de

sire we have, we should prefer every situation in which

we are dry to any in which we are wet. No other con

sideration can get into conflict with this ramification.

This conclusion is not sanctioned in the semantics con

sidered thus far. For example we would not be able to

deduce that the situation in which we are dry with the

umbrella is preferred to the situation in which we are

wet without the umbrella. The reason is that D(d)

does not impose any constraints between worlds that

do not agree on any of the other propositions u, c or

r. Although we do not want to deduce constraints

between u and ->u worlds from the sole expression of

the desirability of d, we would still want to be able

to deduce a preference for d-worlds over ->d-worlds by

default if it is consistent to do so. This discussion sug

gests that in normal discourse we enforce additional

constraints which are implicit in our reasoning. One

such constraint is the principle of maximal indiffer

ence.

2.3 The Principle of Maximal Indifference

In [Goldszmidt, 1992] a distinguished ranking, the k+

ranking, was selected from among the admissible belief

rankings. The «+ belief ranking assumes that every

situation is as normal as possible, reflecting the prin

ciple of maximal ignorance. In the case of preferences

the principle that we want to adopt is the principle of

maximal indifference. We want to assume that there is

no preference between two worlds unless compelled to

be so by preferences that are explicated by the reason

ing agent. From the set of admissible preference rank

ings we want to select a distinguished ranking which

best capture the essence of the principle of maximal

indifference. This ranking, the 7r+ preference ranking,

will minimize the difference in the preference ranks.

Definition 3 (The jt+ ranking) Let D be a set of

consistent set of conditional desires and lei II be the

set of admissible rankings relative to D. A n+ ranking

is an admissible ranking that is most compact, that

Table 1: Two most compact rankings

Worlds T2

abc m + 2 m + 2

abc m + 1 m+ 1

abc m + 1 m+ 1

abc m m

abc m + 3 m + 2

abc m + 2 m+ 1

abc m + 1 m

abc m m- 1

is

£ |*+(u0 - *+(«/)| < £ |t(u/)-t(„)| (3)

for all 7T € II.

The ir+ rankings reflects maximal indifference2 in the

reasoning agent. Consider the extreme case where the

set of desires D is empty. Without compactness, all

preference rankings are admissible and no conclusions

can be drawn. However with compactness we will se

lect the "unique" ranking that ranks all worlds the

same. In this way we make definite conclusions about

the reasoning agent's lack of preferences among worlds.

In the umbrella example, if we have the sole desire

D(d) then the ir+ rankings are

+ / \ — f m+l ifw^dand ...

* ' — 1 m otherwise. * '

where m is an integer. These preference rankings al

low us to conclude that all worlds that satisfy d are

preferred over all worlds that do not.

Although the ir+ ranking is unique in the above um

brella example it is not so in general. Consider the

set D = {D(a\c), D(b\c), D(a\^c), D(a A b\^c), D(aV

—>6|—>c)} . The first two conditional desires impose the

constraints

Tr(abc) > ir(abc) > ir(abc)

n(abc) > ir(abc) > ir(abc)

and the last three conditional desires dictate

ir(abc) > 7r(a6c) > n(abc) > ir(abc).

Table 1 shows two admissible preference rankings of

D. The sum of difference in ranks for both tti ad zi

is 68 and that is the minimum sum achievable subject

to the constraints. Therefore both ir\ ad ir-i are ir+

preference rankings of D.

2An alternative interpretation of maximal indifference

can be developed whereby the distance ir(w) — can

not be reduced without either violating admissibility or in

creasing the difference between some other pair of worlds.
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This is a simple and small example and the ir+ ranking

can be easily computed. In the general case the con

ditional desires introduce a set of linear constraints

between worlds of the form — ir(v) > 0. The

problem of finding the most compact preference rank

ing can be modeled as a nonlinear programming pro

gramming problem; minimizing

subject to linear constraints of the form

jt(w) - > 0.

There is no known efficient algorithm for solving the

general nonlinear programming problem. However it

is quite possible that this optimization problem is

tractable for a restricted sublanguage of conditional

preferences.

3 Evaluation of Preferences

3.1 The Role of Normality Defaults

So far we have paid no attention to normality de

faults and this might lead us to counterintuitive be

havior. Consider the preference query, "given that it

is cloudy and raining, would you prefer to have an um

brella", (cr, u >■ ->u)? If we have the sole desire D(d)

then we will certainly want to confirm the query de

spite the unlikely possibilities of remaining dry without

the umbrella or being wet with the umbrella. Unless

the knowledge base categorically excludes such scenar

ios as impossible, the semantics thus far will prevent

us from the commonsensical conclusion to carry an

umbrella. The purpose of normality defaults in the

knowledge base is to identify such scenarios as unlikely.

What we need is a system that on the one hand will

keep esoteric situations as possibilities (just in case

they become a reality) and on the other hand not let

them interfere with mundane decision making. To dis

regard the unlikely scenarios, we compute the "believ-

ability" or likelihood of the worlds after the execution

of actions, <r, (u and ->u in this example) given some

context, <f> (cr in this example) and focus only on the

worlds that are believable. An example of such a belief

model is described in [Pearl, 1993]3. We will assume

that the output of this model is a belief ranking k on

worlds. We will write /c(^;<r,) to represent the rank

ing that results after the executing <t, given context,

4>. k° (<f>; (Ti) will represent the set of believable worlds,

namely the set of worlds for which /c(<£;<r,) = 0.

3.2 From Preferences on Worlds to

Preferences on Sets

In a framework that tolerates imprecision and uncer

tainty, the consequence of the execution of an action

3In [Pearl, 1993] the computation of the post-action be

liefs requires the use of a causal model.

may not be a specific world but a set of believable

worlds. Thus to confirm a preference query we will

need to define a preference relation between sets of

worlds for example worlds in which we have an um

brella and worlds in which we do not have an umbrella.

The straightforward approach would be to say that a

set W (of believable worlds) is preferred over another

set V if every world in W is preferred over any world

in V . This criterion however is too restrictive. Con

sider the case where we have worlds u, v and w with

ranks 0, 1 and 2 respectively. Let W = {u, v, w} and

V = {u, v). In this example, the common possibilities

u and v ensure that there is at least a world (u) in

W that is not strictly preferred to a world (v) in V

and vice versa. Therefore we are unable to determine

any preference between the two sets because of the

common possibility. However W offers all the possi

bilities that are available in V and in addition provides

an additional possibility that is "better" than what is

currently available in V. Intuitively we ought to prefer

W to V.

Another consideration in determining the preferences

between sets of worlds is the likelihoods of the worlds.

This is the theme in Bayesian decision theory where

the expected utilities, the sum of the utilities weighted

by their corresponding probabilities, are compared and

the set with the largest expected utility is preferred.

Unfortunately the basic assumption of this paper was

that the numeric probabilities and utilities are not

available; what we have are order-of-magnitude ap

proximations of probabilities and utilities which are

expressed as normality defaults and conditional de

sires. Pearl in [Pearl, 1993] proposed an order of mag

nitude of abstraction of the maximum expected utility

criterion. There are two problems with the proposal.

An assumption in the proposal is that the scale of the

abstraction of preferences is the same as the scale of

the abstraction of beliefs. While this assumption could

conceivably be valid when the utility ranks are ex

plicitly specified, it is not justifiable when beliefs and

preferences are specified in terms of normality defaults

and conditional desires. The other problem is that the

conclusions of the system are not invariant under a lat

eral shift of worlds along the preference scale (a linear

translation of the utility ranking). The utility rank

ings, k and if + 1 may admit different conclusions in

the system. This is problematic in our framework be

cause lateral shifts of admissible preference rankings

are always admissible since conditional desires impose

only interval constraints among worlds. In this paper

we take into account the likelihoods of the worlds by

comparing worlds only when they have the same belief

ranks of 0. All worlds of the same degree are consid

ered to be equally believable.

In summary, when determining the preference between

two sets, we will assume that the worlds in both

sets are equally believable and will consider separately

three types of worlds characterizing the compared set:
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Table 2: Rankings in the umbrella example

W CV General W DV

□Dominating □Dominated

Figure 3: Interesting cases for W >-, V

the common possibilities, the additional possibilities

and the excluded possibilities. Let us consider when

we will prefer the set W over the set V (see figure 3)

by imagining that the set V represents the possibili

ties that are currently available to us and the set W

represents the set of new possibilities. Let us consider

the case when W C V. Since W excludes some pos

sibilities from V we have to compare these excluded

possibilities (in V \ W) with the new possibilities of

fered by W . If the excluded possibilities are ranked

lower than those that remain then W protects us from

those excluded possibilities and we should prefer W to

V. In the case when V C W, W provides more pos

sibilities. If these additional possibilities (in W \ V)

are ranked higher than the current possibilities, W

provides an opportunity for improvement over the sit

uation in V and again we should prefer W to V. In

the general case, if W and V have some possibilities in

common, then these common possibilities (in WnV)

can be disregarded from consideration. If the addi

tional possibilities (in W \ V) are ranked higher than

the excluded possibilities (in V\ W) then we will prefer

W io V . This motivates the definition of preferential

dominance, a preference criterion between sets that

depends on whether one set includes or overlaps the

other.

Definition 4 (Preferential Dominance) Let W

and V be two subsets of f2 and let w be a preference

ranking. We say that W ^-dominates V, written

W yw V, if and only ifW ±V and

1. x,(W) > ir*(V \ W) when W C V or

2. nt(W \V)> 7r*(V) when W D V or

3. *.{W \ V) > w'(V \ W) otherwise.

In figure 3, W ^-dominates V, (written W >-„ V),

if the worlds in the dominating set are preferred over

the worlds in the dominated set. Consider the example

where we have the worlds u, v and w with preference

ranks 0, 1 and 2 respectively. Let W = {u,w} and

V = {u, v}. In determining the preference between W

and V, the common possibility u is disregarded and

7r.(iy \ V) = 2 > n'(V \W)=l. Therefore W y, V.

Worlds Preference ranking Belief ranking

u *+(") «(w)

udcr m + 1 0

udcr m+ 1 >0

udcr m > 0

udcr m 0

udcr m+ 1 >0

udcr m+ 1 >0

udcr m >0

udcr m > 0

3.3 Preferential Entailment

Let us consider the preference query "would you prefer

o~\ over 02 given . In evaluating this query, we

condition our beliefs on the context <j> and compute

the rankings that result after executing <7j. To confirm

the preference query (<i>,(Ti >■ o^), we compare the set

of believable worlds resulting from executing o~\ given

<t> with those resulting from executing o~2 given <j>, and

test if the former preferentially dominates the latter in

all the most compact preference rankings.

Definition 5 (Preferential Entailment) Let D be

a set of conditional desires and k be some belief ranking

on Q. <j> preferentially entails o~\ >■ <r2 given (D, k),

written <j> (~ (<ri >- 0-2)1 if and only if

K°(<t>;<n)y*+ K°(^;<r2)

for all ir+ rankings of D.

Example

Let us reconsider the umbrella story where we need to

verify the preference query "would you prefer to have

the umbrella given that it is cloudy", (c;u >—>u)? We

have four atomic propositions, u - have umbrella, d -

dry, c - cloudy and r - rain. Let us assume that we

have the normality defaults, A = {u —<■ d, r A ->u —►

->d, c —♦ r} and one unconditional desire, D = {D(d)}.

For this example we will adopt the belief model in

[Goldszmidt, 1992, Pearl, 1993]. First we process the

defaults set A to get the resulting belief rankings k(u>).

Next, table 2 lists the possible worlds, given that it

is cloudy, and gives the belief ranking «(w) and the

ir+ preference ranking, where m is some fixed integer.

/c°(c; u) = {udcr} and has rank m+1 while «°(c; ->u) =

{udcr} with rank m. Therefore the preference query

(c; u >- ->u) is confirmed.

4 Quantified Conditional Desires

A typical reasoning agent may have many desires. She

may desire to be alive, D(a), desire to be dry, D(d) and

also desire not to carry an umbrella, D(->u). These
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Table 3: Preference Rankings, 7Ti and iti

Worlds, u> fi(w) tt2(w)

ah 2 2

ab 0 1

ab 1 1

ab 0 0

desires are not perceived as being equally important;

being alive is more important than being dry and being

dry is probably more important than not carrying an

umbrella. In the specification language described so

far there is no mechanism for indicating the varying

degrees of preference. Let us examine the importance

of having such degrees.

Suppose, in the umbrella example, that we have the

desire D\(-<u) in addition to the desire /^(d). These

desires are quantified by a number indicating the

strength of the preference. The strength of the de

sire to be dry is 2 which is stronger than the strength

of the desire not to have the umbrella. In this case

we will still expect the reasoning agent to confirm the

preference query (c; u >■ ->u) as before. However, in

the flat system where there is no consideration for the

strength of the preferences, the constraints imposed by

the two desires would yield

{m + 1 ifw^dA->u and

m — 1 if w ^ ->d A u and

m otherwise

as the most compact ranking. Now k°(c; u) has the

single world udcr while «°(c;->u) has the single world

udcr, both of rank m. This means that we are unable

to confirm the obvious fact that one should carry an

umbrella on a cloudy day, (c; u >- ->u).

The unquantified specification language is also not

expressive enough to express all possible preferences.

Consider the preference rankings, 7Ti and it2, shown in

table 3. For any set of conditional desires, ir? is admis

sible whenever it\ is admissible because the language

does not allow us to impose a constraint between ab

and 56. Furthermore tt2 is more compact than ic\ be

cause Y, - = 7 > E kaM - *2(y)\ = 6-

Therefore ic\ cannot be the ;r* ranking for any set

of conditional desires. This means that if it\ repre

sents our preferences among worlds, there is no way

we can express these preferences exactly in terms of

conditional desires alone.

To alleviate these weaknesses we extend the syntax of

the specification language by quantifying a conditional

desire with an integer e which indicates the strength

of the desire. A quantified conditional desire is a pref

erence expression of the form D((a\(3), where c is a

integer, read: "Given /?, a is preferred to ->a by e".

Definition 6 (Quantified Admissibility) Let D be

a set of quantified conditional desires. A preference

ranking n is said to be admissible with respect to a

quantified conditional desire Dt(a\j3) if for allu \= p,

v € Ca(a,u) and v' G C-,a(a,w) implies

*{v) > ir(u') + e. (5)

A preference ranking is admissible with respect to D

if it is admissible with respect to all desires in D.

An unquantified conditional desire is assumed to have

a default degree of e = 1.

Example with multiple desires

Let us reconsider the umbrella example assuming that

we have two desires Di(d) and Di(-iti). The degrees

of these desires indicate that the desire to remain dry

is more important by an order of magnitude than the

discomfort of carrying an umbrella. The most compact

preference ranking in this case is

m + 3 if w |= d A ->u and

m + 2 if w ^ d A u and

m + 1 if w (= ->d A ->u and

m otherwise

The believable worlds are k°(c;u) = {udcr} with rank

m + 2 and k°(c; -<u) = {udcr} with rank m+1. This

confirms the obvious conclusion (c; u y ->u) (with de

gree 1) which remain unsettled in the flat system.

Now we want to show that the quantified language

is powerful enough to express all possible preference

ranking.

Definition 7 (Conditional Desires of t) Given a

preference ranking it, the conditional desires en

tailed by ir is the set D* = {D(a\0) | jt is admissible

with respect to D(o|/?)}.

We note that if a preference ranking it is admissible

with respect to D\ and Di then ir is admissible with

respect to D\ UD2. This means that ir is admissible

with respect to D* and D* is the largest set that has

7r as an admissible preference ranking.

Theorem 1 (Uniqueness) Let w and ft be preference

rankings. If fi is admissible with respect to D* then

H = ir + k

for some constant integer k.

In other words two preference rankings entail the same

set of conditional desires if and only if one is a lateral

shift of the other.

Corollary 1 (Sufficiency of the Language) For

all preference rankings, ir, there exists a set of quan

tified conditional desires, II, such that if is the most

compact ranking admissible with respect to U. In fact

ir is unique up to a linear translation.
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If our preferences among worlds are represented by a

preference ranking, then the sufficiency corollary tells

us that our preferences may be completely specified by

a set of quantified conditional desires.

One significant point to note is that the proof of the

sufficiency corollary makes use of conditional desires

that have negative degrees. This is somewhat unfor

tunate as conditional desires with negative degrees are

not particularly intuitive. Another way of augmenting

the expressiveness of the specification language is to al

low for conditional preferences of the form a y 0 \ y,

"if 7 then o is preferred to 0" . This will not be con

sidered here.

Another problem with the ceteris paribum semantics is

that it does not handle specificity of conditional pref

erences very well. For example the conditional desires

{D{a\(3), D(->a\0')} is inconsistent whenever 0 D 01 ■

Theorem 2 (Specificity) Ifa, 0 and 0' are tuffs and

0 3 0' then {D(a\0), D(->a\0')} is inconsistent.

In normal discourse, we have no difficulty accommo

dating general expressions of preferences which are

subsequently qualified in more specific scenarios. For

example I desire to be alive, £>(a), yet I am willing to

die for some noble cause, D{-»a\c). In such a situation

D(->a\c), having a more specific condition, overrides

the former unconditional desire, D(a). Such other de

sirable behavior is sanctioned by a more recent inter

pretation of conditional desires which further weakens

the CP semantics [Tan and Pearl, 1994].

5 Comparison with Related Work

Verification of the assertability of conditional ought

statements of the form "you ought to do A if C

is considered in [Pearl, 1993]. The conditional ought

statement is interpreted as "if you observe, believe or

know C then the expected utility resulting from doing

A is much higher than that resulting from not doing

A". The treatment in [Pearl, 1993] assumed that a

complete specification of a utility ranking on worlds

is available and that the scale of the abstraction of

preferences is the same as the scale of the abstraction

of beliefs. Another problem is that the conclusions of

the system is not invariant under a lateral shift of the

utility ranking; for example utility rankings Ti and t2,

where ^(w) = + 1, may admit different conclu

sions; which endows special status to worlds toward

which one is indifferent.

Goal expressions were given preference semantics in

[Wellman and Doyle, 1991] while relative desires were

considered in [Doyle et ai, 1991]. These accounts are

similar to our semantics for unquantified unconditional

desires. However their treatment of conditional pref

erences (called restricted relative desires) of the form

"given 7, a is preferred over 0" is problematic. In

particular the semantics forces us to conclude that we

must be indifferent4 to the inevitable. This fatalistic

view shows itself in a theorem: "you must be indiffer

ent to q, given a". Thus if you discovered that your

car has been stolen then you must be indifferent to it.

While some may subscribe to such a fatalistic attitude,

our semantics here is more optimistic.

In [Boutilier, 1993], expressions of conditional prefer

ences of the form "l(a\0) - if 0 then ideally a" , are

given modal logic semantics in terms of a preference or

dering on possible worlds. I(a\0) is interpreted as "in

the most preferred worlds where 0 holds, a holds as

well". This interpretation places constraints only on

the most preferred /?-worlds, allowing only /?-worlds

that also satisfy a to have the same "rank" . This con

trasts with our ceteris paribum semantics which places

constraints between pairs of worlds. In discussing

the reasoning from preference expressions to actual

preferences (preference query in our paper) Boutilier

[Boutilier, 1993] suggests that the techniques in de

fault reasoning (for handling irrelevance in particular)

could be similarly applied to preferential reasoning.

For example he suggests that worlds could be assumed

to be as preferred or as ideal as possible which paral

lels the assumption made in computing the k+ belief

ranking [Goldszmidt, 1992], that worlds are as normal

as possible. While it is intuitive to assume that worlds

would gravitate towards normality because abnormal

ity is a monopolar scale, it is not at all clear that worlds

ought to be as preferred as possible since preference

is a bipolar scale. In our proposal there is no pref

erence for either end of the bipolar preference scale.

The ir+ rankings actually compacts the worlds away

from the extremes thus minimizing unjustified pref

erences. The difference can be seen in the example

shown in table 1. The compactness criterion selects

two distinguished compact preference rankings wi and

7T2- If worlds are assumed to be as preferred as possi

ble then 7Ti would be the sole distinguished preference

ranking. It remains to be seen if the / operator corre

sponds closely with the common linguistic use of the

word "ideally".

In [Pinkas and Loui, 1992] consequence relations are

classified according to their boldness (or cautiousness).

We may also employ a bolder (or more cautious) en

tailment principle which would correspond to a risk

seeking (or risk averse) disposition.

6 Conclusion

In this paper we describe a framework for specifying

preferences in terms of conditional desires of the form

"a is desirable if 0" , to be interpreted as "a is pre

ferred to ->a when all else is fixed in any 0 world" . We

demonstrate how such preference sentences may be in-

4 You are indifferent to a if you desire both a and ->a.
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terpreted as constraints on admissible preference rank

ings of worlds and how they, together with normality

defaults, allow a reasoning agent to evaluate queries of

the form "would you prefer o~i over tr^ given <f>" where

(T\ and <T2 could be either action sequences or observa

tional propositions. We also prove that by extending

the syntax to allow for importance-rating of prefer

ence sentences, we obtain a language that is power

ful enough to represent all possible preferences among

worlds. This work is an extension of [Pearl, 1993] and

[Doyle el al., 1991].

A Proofs

Lemma 1 (Common Contexts) v G C(a,u>) =>

C(a,a») = C(a,i/).

Lemma 2 (Extreme worlds) Let ir be a preference

ranking and let p. be admissible with respect to D* . For

all contexts C,

it(u) = max7r(j/) = max/i(i/)

and

it(u) = min *■(«/) => /i(w) — min

Proof: Let u> G C and X{ be X, if ui ^= Xi and -<Xi

otherwise. By lemma 1 we may assume that C =

C(a,u) for some wff a. Consider 0 = Ax,eS(a)Xi-

If tt(w) = max„€cJr(f) then Do(0\u) G D' . This

implies that ft(u) > for all v G C. Therefore

it(u) — maxvec Jt(j/) => fi(u) — maxv€c /*(")• If

7r(u>) = min„€c *(v ) then Dq{-i0\u) G D* . This im

plies that /i(w) < n(v) for all f G C. So tt(w) =

min„ec ) => /i(w) = min„€c \i{y )■ a

Corollary 2 (Extreme worlds) Let it be a prefer

ence ranking and let \i be admissible with respect to

D*.

it(w) = max 7r(//) => /i(w) = max/i(i/)

and

jt(w) = min?r(i/) => /i(w) = min/i(i/)

Given a preference ranking, we write w. for a world

that has the minimum rank and w* for a world that

has maximum rank.

Lemma 3 (Larger Admissible Differences) Let w

be a preference ranking and let fi be admissible with

respect to D* . For all w G n,

/i(w) - n(u.) > t(w) - it(u.).

Proof: We will prove by induction on m, the num

ber of variables u and w. disagree on. In the base

case, if m = 0 then w = u>.. Therefore the lemma

holds trivially. Let us assume that the lemma holds for

m = 0, . . . , k — 1. Without loss of generality, we may

assume that u and w. disagree on Y — {Xi, . . . , Xt}

and that u \= x,- for i = l,...,m. If it(u) = jt(w»)

then the theorem holds by corollary 2. Therefore we

may assume that ir(w) — it(u.) > 0. We consider the

context, C = C(A,J as<|u>).

If we can find a world u ~x\x, u> " (= sucn th*t

> *"(") then let d = DT(w)_,(v)(ii|w) G D" and

we also have d implies fi(u) — > it(w) — k(v).

Otherwise, let u be such that ir{u) = max„iec *("')

and d = Ar(w)-*(i>)(Ai r,|w) € D* . In this case, by

lemma 2, we also have d implies /i(w) — /i(i/) > t(w) —

ir{v). Now clearly, in both cases, v u. This im

plies, by the induction hypothesis, that /i(i/) — /i(w.) >

7r(i/) — it(u,). By adding the two inequalities, we get

the desired inequality /i(w) — /i(w.) > ir(u) — it(u,). □

Lemma 4 (Smaller Admissible Differences) Let

it be a preference ranking and let fi be admissible with

respect to D* . For all u> G fi,

fi(w) — < it(u) - it(u.).

Proof: For all worlds w, i?T(u,.)_»(u,)(->w) G This

implies /i(w) — (i(u),) < t(w) — it(w,). □

Theorem 1 (Uniqueness) Let it be a preference

ranking. If fi is admissible with respect to D* then

/i = T + k

for some constant integer it.

Proof: Lemmas 3 and 4 imply that /i = it + /i(w.) —

jt(w.). □

Corollary 1 (Sufficiency of the Language) For all

preference rankings, it, there exists a set of quantified

conditional desires, II, such that * is the most compact

ranking admissible with respect to II. In fact it is

unique up to a linear translation.

Proof: The proof follows when we set II to be D* . □

Theorem 2 (Specificity) If a, /? and (¥ are wfTs and

0 D $ then {D(a\0), D(-.a|^)} is inconsistent.

Proof: (By contradiction) Let us assume that

{D(a\0), D(->a\0')} is consistent. Let it be an ad

missible preference ranking, the world w be such that

w (= 0 (note that w \= f¥ as well since 0 D (¥)

and C = C(->a,w) = C(a,u). By D(a|/?) we have

C0 C-,0 and by D(->a\0') we have Co X, Co-

This is a contradiction. □
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Abstract

We define a new operation in description log

ics, the difference operation or subtraction oper

ation. This operation allows to remove from a

description as much as possible of the informa

tion contained in another description. We define

the operation independently of a specific descrip

tion logic. Then we consider its implementation

in several specific logics. Finally we describe

practical applications of the operation.

1 INTRODUCTION

Description Logics, also called Terminological Logics are

a popular formalism for knowledge representation and rea

soning. They allow the formation of terms denoting de

scriptions. A term describes a set of individuals by re

stricting their properties. Terms are formed using atomic

descriptions and a fixed set of term constructors. Usually,

the meaning of the terms is given by a denotational seman

tics. A typical example of a description logic is the concept

language of KK1S [Baader and Hollunder, 1992].

In addition to the constructors, a description logic usually

defines a number of basic operations on the terms. The

most important operation is the subsumption test which de

termines whether a description is more general than another

one. The conjunction operation returns a description con

taining the information of all argument terms. It usually

corresponds directly to the conjunction constructor. The

least common subsumer (lcs) operation, as it is defined by

Cohen et. al. [Cohen et al, 1992], returns the most spe

cific description containing information which is common

to all argument terms. If the logic includes the disjunction

constructor the lcs operation corresponds directly to this

constructor.

This paper introduces a new operation on descriptions, the

difference or subtraction operation. Informally, the dif

ference of two descriptions is a description containing all

information which is a part of one argument but not a part

of the other argument. Although many description log

ics support the construction of this kind of descriptions,

the difference operation has not yet been considered for

description logics in general. Exceptions are logics with

negation and disjunction, where the difference can be eas

ily denned by the logical complement. Another exception

is the BACK language [Peltason et al, 1989]. However, no

algorithm is given there.

A related approach is that of distinction measures and

commonality measures. These were already investi

gated for frame-based descriptions and were mainly used

to conduct the classification of descriptions into con

cepts [Tversky, 1988; Ben-Bassat and Zaidenberg, 1984;

Moneta et al. , 1 990]. However, a measure can only give the

size of the difference between two descriptions (usually in

the form of a number), not the difference itself.

In our case, the difference of two descriptions is a descrip

tion as well. Thus, it can be used in the same way in which

any other description is used in the system, e.g., for indexing

other information or as argument in subsequent operations.

A distinction measure can easily be defined with the help of

some information measure on descriptions, by applying this

measure to the difference of two descriptions. However, the

most interesting application of the description difference is

that of removing information from descriptions. For this

reason we also call the operation a subtraction operation.

We will consider the application of the difference operation

in more detail in Section 4, after investigating the opera

tion itself. In Section 2 we give a formal definition for

the difference operation. This definition is applicable to all

description logics. In Section 3 we consider the actual con

struction of the difference, depending on the constructors

present in several description logics. Section 5 summarizes

our results.

2 THE DIFFERENCE OPERATION IN

DESCRD7TION LOGICS

For our formal definition of the difference operation we

consider a wide range of description logics. For every

description logic we assume a denotational semantics 5.

Usually, there are three kinds of terms for descriptions.
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Concepts are descriptions of objects. The denotational se

mantics S maps every concept C to a domain subset S(C).

Roles are descriptions of relations between objects. Se-

mantically, a role R corresponds to a relation S(R) on the

domain. Finally, features are descriptions of functions be

tween objects. Semantically, a feature / corresponds to a

partial function S(f) on the domain. Description logics

differ mainly in what lands of terms they include and in the

constructors they allow for each kind.

We do not consider the definition of names for descriptions.

The corresponding constructors are often called "termino

logical axioms". Instead, we define the difference operation

as a purely structural operation on two given description

terms of the same kind without using any additional con

text. Unlike a distinction measure, the difference operation

returns a term of the description logic. However, the differ

ence is not itself a constructor. It does not add new terms

or "completes" the term language in any way. It simply

constructs a term using the constructors which are defined

in the chosen logic.

2.1 DEFINING THE DIFFERENCE OPERATION

Of course, the expressiveness and usefulness of the dif

ference operation thus depends on the respective descrip

tion logic. If the term constructors do not allow the ex

pression of subtle differences, the operation will construct

only rather coarse difference descriptions. Nevertheless,

we give a common formal definition of the difference oper

ation. The definition is independent of the actual descrip

tion logic. It uses only two properties of the logic: the

conjunction operation "n" and the subsumption test "□".

These are common to all description logics, at least for

concept terms. Semantically, concept conjunction corre

sponds to set intersection, and concept subsumption, on the

other hand, corresponds to the superset relation. Finally,

we use the relation "=" of semantical equivalence, defined

by Di EE D2 :o S(£>i) = 5(D2).

We now give the definition for the difference operation

and afterwards consider some properties which immedi

ately follow from the definition.

Definition 2.1 (Description difference)

Let £ be a description logic. Let n denote the conjunction

operation in C, let □ denote the subsumption relation in

C, and let = denote semantical equivalence in C. Let

A,B e C be two descriptions in the logic with A □ B.

Then the difference B — A of A and B is defined by

B-A:= max{C €£ : AHC= B).

We call the set {C E C : A n C = B) the difference

candidates and denote it by B © A.

We define the difference to be the set of most general de

scriptions in the set B Q A of difference candidates. Since

B e B Q A holds true for all A □ B, there is at least one

difference candidate in any case. If the set B Q A is finite

maximal elements exist and hence the set B - A is never

empty. If the number of difference candidates is infinite the

set B Q A may contain an infinite ascending sequence and

there may be no maximal element. However, although it is

possible to construct infinite ascending sequences in several

description logics, they usually cannot occur as difference

candidates for two finite descriptions A □ B. Hence we

will ignore this case and assume nonempty differences in

the rest of the paper.

If in a logic C, all descriptions in B - A are semantically

equivalent, the difference is semantically unique and can be

implemented as an operation on descriptions. In this case

we also write B - A = C for any member C of B - A.

Since the set B Q A is closed with respect to disjunction,

the difference is always semantically unique provided the

logic C includes the disjunction constructor and every set

of difference candidates contains only finitely many non-

equivalent members.

If in a logic C, B - A may contain descriptions which

are not semantically equivalent, the difference is not a true

operation on descriptions but only a relation. In many

practical applications any single maximal description from

the set is equally useful as a description of the difference.

This is due to the fact that every member of B - A covers in

some way the information difference between A and B. If

this is sufficient in the application, the difference operation

may be implemented as a nondeterministic operation on

descriptions. Otherwise the difference operation must be

implemented as a set-valued operation. We will address

this topic in more detail in the Sections 3 and 4.

Note that A3 B implies A and B to be of the same kind.

Since the conjunction is only defined for descriptions of the

same kind, the result C must be of this kind as well. Thus,

the difference of two concepts is a set of concepts, and that

of two features is a set of features.

A simple example of a logic C is the logic Co with only

atomic concepts and the conjunction constructor. The terms

of this logic are equivalent to atom sets, the conjunction

operation is the set union, subsumption is the subset relation,

and semantic equivalence is the set equality. It is easy to see

that in this logic the difference is semantically unique and a

member ofB — A is always given by the atom set difference

B \ A. The difference of A and B contains exactly those

atoms of B which are missing in A.

22 ADDITIONAL REMARKS

2.2.1 Semantics

The definition 2.1 can be motivated as follows. First, every

description C in the result contains enough information to

yield the information in B if added to A, i.e., it contains all

information from B which is missing in A. Second, C is

maximally general, i.e., it does not contain any additional

unnecessary information.
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□ 5(A)

M S(B)

S(B - A)

a) b)

Figure 1: Extreme Cases of the Difference Operation

S(x)

S(y)

i i 5(z)

Figure 2: Difference of Concept Atoms

Semantically, the description difference S(B-A) is amax

imal domain subset that contains every individual in S(B)

and no individual in 5(A) \ 5(B). Thus, there are two

extreme possibilities for S(B - A). It may be identical to

S(B) or it may be identical to 5(5) U (V \ 5(A)), where

V is the domain (see Figure 1). In most description logics,

the description difference lies somewhere in between these

extremes. Figure 2 depicts the situation in logic Co when A

is a single atom x and B is the conjunction of three atoms

x,y,z.

23.J. Roles and Features

Several logics restrict the constructors for roles and features

in such a way that a role or feature never subsumes a differ

ent one, e.g., the logic allows only atomic roles. In this case

our definition only yields the trivial case A - A := {A}

for roles and features. If, however, the logic allows non-

trivial conjunction and subsumption for roles or features the

definition yields nontrivial differences for them as well. Se

mantically, role conjunction and subsumption correspond to

the usual set intersection and superset of relations. Feature

subsumption corresponds to the "weaker defined" relation

of partial functions. Feature conjunction corresponds to

the restriction of two partial functions to that part of their

common domain where they have identical values.

Since the semantics of the difference for concepts, roles,

and features depends on the constructors used in a specific

logics, no definitive way of interaction among these three

cases can be given in general. Even in specific description

logics the interaction is only rather weak. As an exam

ple consider the constructor of value-restriction. The term

V(Ri - #2) : C is not equivalent to any term using a dif

ference of concepts. Only the relation (VRi : C) — (Vi?2 :

C) □ V(i2i - Ri) : C is valid. However, a similar situation

arises for other description operations, such as the conjunc

tion. If a role conjunction appears in a value-restriction

it cannot be replaced by concept conjunction. Only the

relation V(i?i n R2) : C □ (V5i : C) n (V#2 : C) is valid.

2.2.3 Difference and Lattice Complement

In some description logics, the terms ofthe same kind form

a lattice with respect to subsumption. Whenever this lattice

is a complementary lattice, our definition of the difference

B - A is identical to the definition of the singleton set

containing the complement of A relative to B and the top

element T, i.e., the unique element C with inf (C, A) = B

and 8up(C, A) = T. This situation is depicted in Figure 3.

An example of this case is the logic £0.

If the lattice is not complementary there may either be no

complement of A relative to B and T, or it may not be

unique. In the first case our definition of the difference

operation implies the use of best approximations to the

complement, since it uses the maximality condition in the

place of the condition sup ( C, A) = T. In the second case

our definition implies the use of all maximal complements.



Making the Difference: A Subtraction Operation for Description Logics 543

22A Difference of Uncomparable Descriptions

Our definition of difference requires that the second argu

ment subsumes the first one. Thus the difference is not

denned for arbitrary description pairs. In general, the dif

ference between two incomparable descriptions A and B

cannot be given in the form of a single description. A

possible solution for this case is to construct a common

subsuming description D of A and B, such as a least com

mon subsumer or a disjunction. Then the difference may be

given by the two single differences A - D and B - D. A

similar approach using two descriptions to define the differ

ence between arbitrary descriptions can be found in BACK

[Peltasone/a/., 1989J.

3 THE DIFFERENCE OPERATION IN

SPECIFIC DESCRIPTION LOGICS

We will now investigate the difference operation in more

detail in specific description logics. As usual, we charac

terize these logics by the set of constructors they allow for

descriptions. In Figure 3 we list all constructors we con

sider besides atomic descriptions. For every constructor its

semantics is specified. We use C, C, for denoting concepts,

R, Ri for denoting roles, and /, /, for denoting features.

The domain of the corresponding interpretation is denoted

by V. The set of images {y € V : (x,y) € S(R)} of

a domain element x under a role is denoted by S{R)(x).

Analogously S(f)(x) denotes the set of images of x under

a feature /. Since features corresponds to partial functions

S(f)(x) may either be a singleton or it may be empty.

We assume that every description logic uses at least the

concept conjunction constructor.

3.1 NEGATION

Whenever the negation constructor "->" is part of the logic

we can construct the term ->(A n ->B) for arbitrary given

terms A, B. Its semantics S(-<(A n -.5)) is (V \ S(A)) U

S(B). This is the extreme case depicted in Figure lb for

the difference B — A. Since it is semantically the maximal

possible description, it always meets the definition ofB —

T

 

A B-A

 

B

Figure 3: The Difference as Lattice Complement

A. Furthermore, it is unique up to semantical equivalence.

Thus in every logic with the negation constructor we have

B-A = ^(An -.5).

However, this case is not very useful in practice. Consider

the descriptions "red thing" and "big red car". Using nega

tion, the difference would be equivalent to "big red car or

not red" which is mainly a simple repetition of the origi

nal descriptions. It cannot be used to remove information

syntactically from the more specific one of the two descrip

tions, since it simply negates the information and hence still

contains it syntactically.

For this pragmatic reason, our definition of the difference

operation is not suitable in description logics with nega

tion, if we consider the applications described in Section 4.

However, the definition can easily be adapted by not using

the negation constructor for constructing the result. For

mally, this corresponds to the replacement of the semantic

equivalence relation "=" used in definition 2.1. Instead, the

coarser relation has to be used which results from "=" by

ignoring the semantics of "->".

3.2 STRUCTURAL DIFFERENCE

In the logic C0 the difference operation can be implemented

in a simple syntactical way by constructing the set differ

ence of subterms (atoms) in a conjunction. We will now

generalize this case and give a sufficient condition for log

ics where the difference operation is always semantically

unique and can be implemented in a similar way.

3.2.1 Reduced Clause Form

We can always write a description as a conjunction of

clauses. A clause is a description which may not be further

decomposed into a conjunction in a nontrivial way.

Definition 3.1 (Clause)

Let £ be a description logic. A clause in C is a description

A with the followingproperty:

A = BnA'=>B = TVB = A

Every conjunction Ai n . . . n An of clauses can be repre

sented by the clause set {Ai An). We call a clause set

reduced if it does not contain "unnecessary" clauses.

Definition 32 (Reduced Clause Form)

Let C be a description logic and let A = {Ai A„ } be

a set ofclauses in C. The clause set A is reduced if either

n = 1, or no clause subsumes the conjunction of the other

clauses:

Vl<i<n:Ai-$A\{Ai}

We call the set A a reduced clause form (RCF) of every

description B s Ai n . . . n An.
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Concepts:

S(Ci n . . .n cn) = 5(co n . . . n S(Cn)

5(C1U...UCn) = 5(Ci)U...U5(C„)

5(-C) = V\ 5(C)

S(T) = V,S(±) = {]

5(V/ :C) = {xGP: S(f)(x) C 5(C)}

5(Vii : C) = {x G 2? : S{R){x) C 5(C)}

5(3/ : C) = {* G V : 5(C) n 5(/)(x) ^ {}}

5(3fl :C)={i£P: 5(C) n S(R)(x) ^ {}}

5(< nR) = {xeV: \S(R)(x)\ < n]

5(> nR) = {x£V: \S(R)(x)\ > n}

S(/i lf2) = {xeV: 5(/0(x) = 5(/2)(z) ^ {}}

S{Ri lR2) = {xeV: SiR^x) = 5(fl2)(*)}}

Roles:

5(1) = {}

S(R\C) = {(x,y)eS(R):yeS(C)}

S(Ri o fl2) = {(x, y)£V2:3z£ S(Rr)(x) : y G S(R2)(z)}

Features:

5(±) = {}

5(/in/2) = 5(/!)n5(/2)

S(fi o /2) = {(x, y) G 2>2 : 3z G 5(/i)(«) : y G 5(/2)(z)}

(conjunction)

(disjunction)

(negation)

(top, bottom)

(value-restriction)

(value-restriction)

(exists-restriction)

(exists-restriction)

(atmost-restriction)

(atleast-restriction)

(agreement)

(role value map)

(bottom)

(role differentiation)

(role composition)

(bottom)

(conjunction)

(feature composition)

Figure 4: Usual Constructors in Description Logics and their Semantics

In a reduced clause set no clause can be omitted without

changing the semantics of the set, i.e., reduced clause sets

do not contain redundant clauses. In particular, no clause

may subsume another clause ormay be equivalent to another

clause. It is easy to see mat every description in a description

logic is equivalent to at least one reduced clause set. Hence,

every description has at least one RCF. However, RCFs are

usually not unique.

In the simplest case of two different RCFs for a description

A there is a one-to-one mapping of the clauses in one RCF

onto equivalent clauses in the other RCF. In this case we

call the two clause sets to be structure equivalent.

Definition 33 (Structure Equivalence)

Let A = {Ai,...,An} and B = {Bi,...,Bm} be re

duced clause sets in a description logic C. We say that A

and B are structure equivalent (denoted by A = B) iff

the following condition is satisfied:

n = m A

VI < t < n31 < j, k < n : A{ = Bj ABi=Ak

If in a description logic for every description all its RCFs

are structure equivalent, we say that RCFs are structurally

unique in that logic.

In many description logics the reduced clause form is a first

step for defining a canonical form of descriptions. In a

logic with structurally unique RCFs it is often possible to

make RCFs unique by eliminating certain kinds of clauses.

Typically, this is done by eliminating certain term construc

tors and by replacing all clauses which use a corresponding

outermost constructor by an equivalent clause using a dif

ferent outermost constructor. In this way a canonical form

is defined, e.g., in [Patel-Schneider, 1989].

33,3, An Implementation of the Difference Operation

In a description logic with structurally unique RCFs it is

relatively straightforward to calculate the difference opera

tion, as it is defined in Definition 2.1. The difference B — A

can be calculated by removing all clauses from an RCF for

B which are semantically equivalent to a clause in an RCF

for A. By "\=" we denote the set difference of clause sets

where clauses are compared with the help of the relation

"=". We call the operation B \= A the structural difference

operation.

Theorem 3.1

Let C be a description logic with structurally unique RCFs.

Let A, B G C be descriptions given by their RCFs with

A~2B. Then the difference B - A is semantically unique

and is given by the structural difference:

B-A = B\=A.

Proof:

Let B' := B\=A be the set ofclauses in B for which there

is no semantically equivalent clause in A . B' is a difference

candidate in B e A, since the union of the clause sets B'

and A is an RCF ofA n B' and it is structure equivalent to

B. Hence we have to prove that B' is maximal in B 6 A.

Let C G B - Abe a member of the difference B — A

such that C is in RCF. The conjunction A n C must be
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equivalent to B. We can construct a reduced clause set

B" = A n C by uniting the clause sets A and C and by

eliminating all redundant clauses from this union. Since

RCFs are structurally unique, B" is an RCF of A n C, and

B" must be structure equivalent to B. Accordingly, for

every clause in B' there must be an equivalent clause in

B" . Since no clause in B' has an equivalent clause in A, all

these clauses must have been in C. Since C is a maximal

member in BQA it may not contain any additional clauses

for which there is no equivalent clause in B' . Thus we have

C — B', i.e., B' is maximal in B 6 A and every maximal

element ofB Q A is structure equivalent to B'. □

Note that the implementation of the difference operation by

the structural difference directly depends on an implemen

tation of the semantic equivalence relation "=". In general,

the semantic equivalence in description logics can be in-

tractable or it can even be undecidable [Donini et al , 1991b;

Donini et al, 1991a; Schmidt-SchauB, 19891. If, on

the other hand, the subsumption in a description logic is

tractable or decidable, the same holds true for the struc

tural difference, respectively. Here, however, we do not

investigate the complexity of the difference operation any

further.

3.2.3 Structural Subsumption

Next we will show that the property of a "structural sub

sumption" is a sufficient condition for a description logic to

have structurally unique RCFs. This will provide us with a

number of examples of logics which have this property.

Whenever two descriptions A, B are given by their RCFs,

the subsumption A □ B may be tested by testing the clauses

of A separately:

{Alt...,An}n {Blt...,Bm}o

V\<i<n:Ai3{B1,...,Bm}

However, in general it is not possible to test the clauses of

B separately. A logic in which it is possible to determine

subsumption by testing the clauses of B separately is said

to have a structural subsumption.

Definition 3A (Structural Subsumption)

Let £ be a description logic. We say that the subsumption

relation in C is structural ifffor any clause A£ C and any

description B = Bx n . . . n Bm e C which is given by its

RCF the following is valid.

A~3 B <=> 31 < i < m : AU B{

Informally, in a logic with structural subsumption, the sub

sumption test can always be reduced to subsumption tests

of single clauses. The term "structural subsumption" has

been introduced informally by Patel-Schneider in [Patel-

Schneider, 1989]. A formal definition has been given in

[Cohen et al, 1992]. However, there it was defined in re

spect to a canonical form and it was formulated with the

help of outermost constructors. Our definition with the

help of RCFs is more general, since it does not require the

existence of a canonical form.

Logics with a structural subsumption have several inter

esting properties. In [Patel-Schneider, 1989] the structural

subsumption was an important basis for proving that calcu

lating the subsumption relation was tractable in that logic.

However, a structural subsumption does not necessary im

ply tractability. Either the tractability can be prevented by

the complexity ofthe clauses, or the canonization procedure

may exponentially increase the size of the descriptions.

In [Cohen et al, 1992] it was shown that the least common

subsumer operation can be calculated in an easy "structural"

way in a logic with structural subsumption. With the help

of the next theorem we get a similar result for the difference

operation. The theorem states that every description logic

with a structural subsumption has structurally unique RCFs.

Theorem 32

Let C be a description logic with a structural subsumption.

Let A and B be two reduced clause sets in C. Then the

following property holds true:

A = B => A~ B

Proof:

As usual, semantic equivalence can be expressed with the

help of two subsumption relations: A = B A~3 B /\

B □ A. The structuralness of the subsumption relation

implies that every clause in A subsumes a clause in B and

vice versa. Additionally, the fact that A and B are RCFs

implies that a clause B, always subsumes the same clause

Aj by which it is subsumed, and hence it is equivalent to

it. Otherwise we had Ak □ B< □ Aj , i.e., the clause set A

is not reduced since the clause Ak subsumes the clause Aj .

Analogously we can show that for every clause in A there

must be an equivalent clause in B. □

Cohen et. al. give several examples of description logics

with a structural subsumption. These are Krypton [Brach-

man et al, 1983], Kandor [Patel-Schneider, 1984], Meson

[Edelman and Owsnicki, 1986], Entity-Situation [Berga-

maschi et al, 1988], CLASSIC (without the SAME-AS

constructor) [Borgida et al, 1989], and the logic of [Patel-

Schneider, 1989].

We give another example of a description logic with struc

turally unique RCFs. We denote it by C\. The logic C\

allows atoms for concepts, roles, and features, togetherwith

the following constructors:

• n, U, T, J_, (3R : C), (3/ : C), (> nR) for concepts,

• JL, o, | for roles,

• -L, o for features.

Theorem 3J

Subsumption in the logic Ci is structural.

Proof:

We give only a shortened proof which uses several state
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ments of equivalence and non-decomposability of terms.

All these statements, however, can easily be proved with

the help of the semantics of the term constructors as it is

specified in Figure 3.

The case for roles and features is trivial, since C\ does not

include conjunction constructors for them.

For concepts, we can use the equivalences (3ft : C) =

(> lft|C) and (3/i o f2 ■ C) = (3/i : 3/2 : C) to

eliminate exists-restriction for roles and composition for

features. Additionally we can eliminate some cases of the

disjunction, of the exists-restriction for features and of the

atleast-restriction for roles with the help of the equivalences

CUT = T.CUl = C.31 : C = 3/ : 1 = i,

> nl = 1 and > Oft = T.

Next we characterize clauses among the remaining terms.

T is always a clause. In C\ there is no incoherent con

cept besides L, hence 1 is a clause. Since there is no

negation in C\ all atomic concepts are clauses. A disjunc

tion can be decomposed with the help of the equivalence

Ci U (C2 n C3) = (Ci U C2) n (Ci U C3) if one of its

arguments is a conjunction. No decomposition is possible

in the remaining cases of the arguments, hence C\ U C2 is

a clause if C\ and C2 are clauses. An exists-restriction of

an atomic feature can be decomposed with the help of the

equivalence 3/ : Cx n C2 = (3/ : d) n (3/ : C3) if the

concept argument is a conjunction. No decomposition is

possible in the remaining cases of the concept argument,

hence 3/ : C is a clause if / is an atom and C is a clause.

An atleast-restriction > nR cannot be decomposed.

For characterizing the subsumption relation between

atleast-restrictions we use the following form of roles.

Using the equivalences (fti o ft2)|C = fti o (R2\C),

(R\Ci)\C2 = R\(CiC]C2), and the associativity of the role

composition, every role which is not equivalent to J. can be

represented by a term of the form (fti|Ci) o . . . o (Rn\C„)

where the .ft, are role atoms and the C, are coherent con

cepts.

Let A be a concept clause and let ft = {fti , . . . , S„} be a

reduced clause set with A □ ft. We prove

(*) 31 < i < n : A □ ft,

by induction over the structure of A and ft.

If n = 1 we have nothing to prove. If any ft* is equivalent

to T or X the clause set ft must be a singleton for being

reduced, hence these cases are included. If A = T then A

subsumes every clause, in particular those in ft.

Let A = Ci U C2. Then A □ B o Ci □ B V C2 □ B.

By induction we get 31 < :', j < n : Ci □ Bt V Cj □ ft,

which implies (*) since A □ C\ A A □ C2.

Let t < n be an index such that ft, = ft' U ft" and let

ft := ft \ {Bt}. Then A □ ft «• A □ ({ft'} U ft) U

({ft"} n ft) A □ ({ft'} n ft) A A □ ({ft"} n ft). By

induction we get (4 □ ft' A A □ ft") V 36 € ft : A □ 6

which implies (*) since (.4 □ 5' A A □ ft") o A □ ft, .

In the remaining cases all clauses must be concept atoms,

exists-restrictions, or atleast-restrictions. Hence, every

clause is characterized by a distinct concept atom or feature

atom or by a sequence of distinct role atoms. Since in C\

there are no constructs for defining concepts, all atoms are

primitive and can be interpreted arbitrarily by the seman

tics. This implies A □ ft o A □ ft \ {fti} for every ft,

which is characterized by other atoms than A. Hence in the

remaining cases all clauses in ft are characterized by the

same atoms which characterize A.

Let A be a concept atom. Then ft may contain only this

atom and we have nothing to prove. Let A — 3/ : C. Then

ft, = 3/ : d for all clauses in ft, ft = 3/ : Ci n . . . n

Cn, and A □ ft & C □ Ci n ... n C„. By induction

we get 31 < j < n : C □ C< which implies (*). Let

A = (> p(fti|Ci) o . . . o (ftJCm)). Then ft,- = (>

Pi (Rii\Cn) o . . . o (ftim|C,-m)) for all clauses in 5. The

semantics implies that A ~3 B 31 < * < n : p <

Pi A Ci □ Cn A ... A Cm □ Cm which implies (*). □

Since in £i RCFs are structurally unique, the same holds

true for every sublogic of C\, such as Co. Hence the

difference operation in all sublogics of C\ can be im

plemented by the structural difference. In particular,

if the agreement constructor is omitted, "feature terms"

[Nebel and Smolka, 1990; Dorre and Rounds, 1992;

Carpenter, 1992] are a sublogic of C\.

In logics with structurally unique RCFs, the difference op

eration yields most detailed results when the terms can be

decomposed in a large number of clauses. For example,

in Ci it is crucial whether a description uses features or

roles. An exists-restriction 3/ : C\ n . . . n C„ for a

feature with concept atoms C, can be decomposed in the

clauses 3/ : C\ n . . . n 3/ : Cn. Consequently, the dif

ference (3/ : Co n . . . n cn) - (3/ : Ci n . . . n c„)

is equivalent to 3/ : Co. If the feature / is replaced

by a role ft, the term 3ft : C\ n . . . n Cn is already a

clause and cannot be decomposed. Hence the difference

(3ft : C0 n . . . n C„) - (3ft : Ci n . . . n C„) is equivalent

to the full first argument (3ft : Co n . . . n C„).

3J LOGICS WITH A NON-STRUCTURAL

DIFFERENCE

In this section we will investigate cases where the simple

structural difference is no solution for the description dif

ference ft - A. We will call this situation a non-structural

difference. We will show that non-structural differences

evolve whenever a description has RCFs which are not

structure equivalent. Thus, the property of having struc

turally unique RCFs is not only sufficient but also necessary

for implementing the difference operation by the structural

difference.

Theorem 3A

Let £ be a description logic. Let A £ C be a description

in RCF and let ft G C be another RCF of A with A =

ft A A % ft. Then there is a description C G C in RCF
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with

A-C±A\=C.

Proof:

Let x 6 B be a clause such that there is no equivalent

clause in A. Without loss of generality, a clause of this kind

must exist in the clause set B if A ^ B. Let C := {x}

be the singleton RCF which contains only this clause. We

have to show that there is no description in A - C which is

equivalent to A \= C.

Since x is not equivalent to any member of A, A \= {x} is

identical with A. On the other hand, A - {z} = B - {x},

since A = B. Let B* := B \ {x}. Since (C n ft') =

({x} U S') = B, B' is a difference candidate in B Q C.

Since the set B - C contains all maximal elements ofB6C

there must be a description B" in B - C which subsumes

the clause sets'. This clause set strictly subsumes B. Since

A — C = B - C the description 5" must be a member of

A - C as well. Together we have B" □ 5' □ B = A =

A \= C. Hence A \= C is always strictly subsumed by

a member B" in A - C. Since .A - C only contains the

maximal elements of A Q C, A \= C cannot be a member

of A-C. □

Structurally non-unique RCFs may additionally give rise

to non-unique differences. Consider again the two RCFs

A and B in Theorem 3.4. There must be a clause y € A

such that there is no equivalent clause in B. Otherwise,

the clause x would be redundant. Let A' := A \ {y}

and let C := {x, y). Then both A1 and B' are difference

candidates in AQ C. Whenever A' and B' have no common

subsumer inAQC there must be at least two non-equivalent

descriptions in A — C, one of them subsuming A' and the

other one subsuming B' .

We will now investigate three concrete cases in which struc

turally non-unique RCFs appear in description logics. The

cases are characterized by using certain constructors from

the list given in Figure 3 or combinations thereof. Since the

cases cover all constructors in the list which are not used in

the logic Ci, we thus demonstrate that the constructor set

used by Ci is a maximal set supporting structurally unique

RCFs. Any other constructor from the list will introduce

structurally non-unique RCFs if it is added to Ci .

33.1 Decompositions of _L.

One source of structurally non-unique RCFs are nontrivial

decompositions of J., i.e., incoherent conjunctions of co

herent clauses. Whenever there are clauses A ^ X and

B £ X with A n B = X, then X is not a clause. In this

case there are typically other pairs of coherent clauses A',

B' with A' n B' = X which are otherwise unrelated with

A and B, i.e., {^4, B} ^ {A1, B'}. As a consequence there

are RCFs for 1 which are not structure equivalent.

The simplest way of decomposing X is that using negation.

For every coherent clause A which is not equivalent to T

the description ->A is coherent as well, and the conjunction

of both is equivalent to L. However, we already treated

the specific situation in description logics with negation in

Section 3.1. Without using negation, the constructors in

Figure 3 provide two possibilities of a nontrivial decom

position of -L: combining 3 and V and combining < and

>.

For features the following equivalence is valid:

(V/:±n3/:T) = ±

Hence X is not a clause in logics which allow both exists-

restrictions and value-restrictions for features. If / is a

feature atom, the left side of the equivalence is an RCF for

1. If there are arbitrary many feature atoms, X has arbitrary

many structurally non-equivalent RCFs.

Using this property we can construct differences which are

non-structural, and, if the logic does not include disjunction,

non-unique. The following case gives an example. Let

/i , h » h be distinct feature atoms.

(3/3 : T □ V/3 : X) - (3/i : T n 3/2 : T)

= {V/i:X,V/2:X}

For roles the following equivalence is valid:

(> (n + l)R) n (< nR) = X

If .ft is a role atom, the left side is an RCF for X. Note

that this equivalence includes cases of exists-restriction and

value-restriction for roles, since the following equivalences

are valid: (3ft : T) = (> 1R) and (Vft : X) = (< Oft).

Analogous to the case for features we can construct the

following situation for a non-structural difference in a logic

without disjunction. Let fti , ft2, ft3 be distinct role atoms

and let n,m,p > 0.

(>(p+i)ft3)n(<pft3)

-(> (n + l)ftO n (> (m + l)ft2)

= {(< nfti),(<mft2)}

An informal example of this situation is the difference be

tween "person with at least tree children and at least five

friends" and "person with and without a hobby" (or some

other incoherent description). This difference is either "per

son with at most two children" or "person with at most four

friends".

Altogether these examples show that none of the construc

tors (V/ : C), (Vft : C), and (< nft) can be added to the

logic Ci without the appearance of structurally non-unique

RCFs.

Note, however, that the situations described so far can

easily be detected, since they always involve a difference

B — A where B is an incoherent description equivalent to

X. Hence an algorithm which computes the structural dif

ference can easily be extended to handle these cases as well

by testing the coherence of the first argument.
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If the first argument of B — A is incoherent the result of

the difference operation is the set of all maximally general

descriptions which are incoherent in conjunction with A.

It depends on the application whether it is interested in an

arbitrary description from this set or whether it needs all

these descriptions. Accordingly, the difference operation

can either be implemented as a nondeterministic operation

or as a set-valued operation.

The remaining two cases of structurally non-unique RCFs

do not involve incoherent descriptions.

332 Roles with a Fixed Number of Images

The first case arises from roles with a fixed number of

images, if combined with value-restriction. The following

equivalence is valid:

(< n(R\C)) n (> nR) n (W? : C)

= (< nR) n (> n(R\C))

If R and C are atoms, both sides are RCFs. Informally,

both sides describe all domain elements which have exactly

n ii-images, and all A-images have the property C. If we

set n = 1 we have the special case of a functional role. A

corresponding example of a non-structural difference is the

following.

(< nR) n (> nR\C) - (< nR\C) n (> nR)

= {iR : C)

An informal example is the difference between "person with

at most two children and at least two sons" and "person with

at most two sons and at least two children" which is given

by "person where all children are sons".

3.3.3 Feature Agreement and Role Value Map

The second case arises from the use of feature agreement

or role value map. The following equivalence is valid for

roles or features:

{RFX i RF2) n (RF2 I RF3)

= (RFi | RF2) n (RFi I RF3)

If either all the RFi are feature atoms, or all the RFt are

role atoms, both sides are RCFs. This equivalence is due to

the transitivity of feature agreement and role value map. If

the logic does not include disjunction we get the following

example of a non-unique and non-structural difference. Let

fi . /2, h be feature atoms.

(/i i h) n (h I h) - (/, | h)

= {(/il/a),(/al/a)}

As an informal example, consider the descriptions "man

who's father is his boss and his best friend" and "man

who's father is his best friend". The difference can be

either described by "man who's father is his boss" or by

"man who's best friend is his boss". It is evident that these

descriptions have different semantics.

Note that feature agreement can be reduced to feature

conjunction and exists-restriction using the equivalence

/i [ /j = 3(fi n f2) : T. Thus, when adding feature

conjunction to C\, the difference operation becomes non

structural. In particular, we can conclude that the difference

in the usual feature term languages is non-structural. If the

feature term language does not allow to express disjunction

the difference operation is even non-unique.

Altogether these examples show that none of the construc

tors (/i | f2), (Ri I i?2),and(/in/2)canbeaddedtothe

logic Ci without the appearance of structurally non-unique

RCFs.

We suppose that the three cases presented here are the only

sources of structurally non-unique RCFs which occur in de

scription logics using the constructors given in Figure 3. If

this is true it wouldbe possible to implement the difference

operation in all these logics based on an implementation

of the structural difference by detecting these cases and

handling them separately. In a similar way it should be pos

sible to implement the difference operation in logics using

additional constructors. This is an area for future work.

4 APPLICATIONS

There are two general kinds ofapplications of the difference

operation. It can be used for removing specific information

from a description and it can be used for description de

composition. In the second case a given description D is

decomposed by determining a subsuming description D\

and then calculating the difference D — D\. This either

yields a single description D2 which can be further decom

posed in the same way, or it yields a set of descriptions

which are components of D. Since each single description

in the set fully covers the difference any of them may be

selected as second component D2. Hence, for description

decomposition the nondeterministic version of the differ

ence operation is appropriate. The specific way of the

decomposition mainly depends on how the description D\

is selected.

As an example consider a description such as "big red car"

and a subsuming description such as "red thing". The differ

ence operation determines the rest "big car" which remains

after subtracting the information in the subsuming descrip

tion. This rest may be further decomposed into "big thing"

and "car". Hence we have decomposed the given descrip

tion into three single descriptions each of which covers a

single aspect of the original description.

Description decomposition has several practical applica

tions. In systems which teach or explain concepts, such

as in intelligent help systems or in intelligent tutoring sys

tems, it can be used as follows. If the system has to explain

a certain concept it may try and decompose it into compo

nents which are explained separately. In current tutoring
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systems no general method for concept decomposition ex

ists. If a complex concept is to be explained by a system,

the knowledge engineer has to decompose it manually.

On the other hand, if a tutoring system inquires the learner,

concept composition can be applied for determining errors

in the answer given by the learner and for explaining and

correcting these errors. Consider the situation in which the

learner is asked by the system to explain a concept. The

system compares the description given by the learner with

the correct description in its knowledge base. If both de

scriptions are equivalent, the learner knows the concept. If

the learner's description subsumes the correct description

the learner does not know all aspects of the concept. If the

learner's description is subsumed by the correct description

the learner has a concept in mind which is too specific.

In both cases the system may construct the difference of

both descriptions. Then the learner can be corrected by ex

plaining the kind of the error and explaining the difference.

If the learner's description is incomparable with the cor

rect description the system may construct the least common

subsumer (lcs) of both and the two differences between

the lcs and the descriptions. It may then use these three

descriptions for explaining the learner's error.

As an example consider the concept "interprocess com

munication", defined by the description "communication

between processes". If the user defines the concept by

"communication between processes by message passing",

the system constructs the difference "something done by

message passing". It may then tell the user that interpro

cess communication does not necessarily imply message

passing.

The use of the difference operation for removing infor

mation from descriptions has several applications too. If

descriptions are used in automatic reasoning it can be use

ful to remove unnecessary information from a description

before it is involved in a complex reasoning step. A simple

example is the subsumption test itself. Suppose it has to

be determined whether a given description B subsumes a

description D. If there is a description A □ B of which it

is known that A subsumes D, we can subtract A from B

and perform the subsumption test for B - A instead of B.

Again, the nondeterministic version of the difference oper

ation is appropriate, since the subsumption test will yield

the same result for all members of B - A.

Another practical application of removing unnecessary in

formation appears as a form of user modeling . If the system

is informed about the user's knowledge, it may tailor its an

swers by omitting those parts of the information the user

already knows. The difference operation can be used for

subtracting the redundant information from descriptions be

fore they are displayed to the user. In this case it may be

interesting to calculate the full set of all alternative descrip

tions by the difference operation. Then the system may

select among them with the help of additional conditions.

Finally, description logics can be used as query lan

guages for retrieving sets of individualsmatching a descrip

tion from knowledge bases [Lenzerini and Schaerf, 1991;

Schaerf, 19931. Since the result of the difference operation

is a description or a set of descriptions, the same mecha

nisms can be used for retrieving sets ofindividuals matching

the difference between two descriptions.

5 CONCLUSION

In the paper we defined a difference operation for descrip

tions. The difference of a description and a more specific

description is a description containing at least the infor

mation which "makes the difference" between the two de

scriptions. It can be used to decompose descriptions or to

subtract a given information from a description.

The definition was based on conjunction and subsumption

alone, and was thus independent from the actual descrip

tion logic. It was applicable to concepts as well as to

roles and features. We then characterized description log

ics where the calculation of the difference can be reduced

to calculating a reduced clause form and testing clauses for

equivalence.

Finally we presented typical cases where the difference can

not be calculated in this way and cases where the difference

operation does not yield a unique result. However, since

any result meets the definition of the difference, the opera

tion is still useful if it is implemented by returning one of

the possible results.

The difference operation will be implemented in the HJ.CS.

system, which is currently under development at our in

stitute. The HIC£ description logic [Teege, 1994] is a

generalization of feature term logics. It includes feature

agreement but no disjunction, hence the difference opera

tion is non-unique and it will be implemented as a nondeter

ministic operation. The system uses a graph representation

for description terms and calculates the difference on these

graphs.

Additional work remains to be done for logics which are

more expressive. Two interesting points are the complexity

of the difference operation and algorithms for computing

the description difference. A good starting point for a dif

ference algorithm is the structural difference which works

in logics with structurally unique RCFs. By identifying

the sources of structurally non-unique RCFs and handling

these cases separately it should be possible to implement the

difference operation in more expressive description logics.

I would like to thank Uwe Borghoff for useful comments on

an early version of this paper and to thank two anonymous

referees for pointing out interesting improvements. I also

would like to thank Alex Borgida for an email discussion

about earlier concepts of the difference operation.
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Abstract

We present procedures to compile any propo

sitional clausal database E into a logically

equivalent "compiled" database E* such that .

for any clause C, E \= C if and only if there

is a unit refutation of E* U ->C. It follows

that once the compilation process is complete

any query about the logical consequences of

E can be correctly answered in time linear in

the sum of the sizes of E* and the query. The

compiled database E* is for all but one of de

procedures a subset, of the set P/(E) of prime

implicates of E, but E* can be exponentially

smaller than P/(E).

Of independent interest, we prove the equiv

alence of unit-refutability with two restric

tions of resolution, and provide a new suffi

cient condition for unit refutation complete

ness, thus identifying a new class of tractable

theories, one which is of interest to abduc

tion problems as well. Finally, we apply t he-

results to the design of a complete LTMS.

1 INTRODUCTION

The problem of propositional entailment is central to

AI, and various approaches have been devised to cir

cumvent its intractability. In this paper, we will be

interested in what, we may call equivalence preserv

ing logical compilation. By this we mean a process

of mapping a propositional database or theory1 into

another logically equivalent database, so that query

answering with respect, to the resulting database is

tractable. We speak of "compilation," because of the

resulting speed up in query answering, and because

computation of the mapping is intended to be an of

fline process, since propositional entailment is co-NP-

complete. We speak of "logical" compilation because

'The terms "theory" and "database" will be used

interchangeably.

the target is another logical theory, rather than, say,

some special data structures. Finally, the compilation

is "equivalence preserving" because source and target

are logically equivalent.

Equivalence preserving logical compilation is only one

of the possible ways of circumventing the intractability

of propositional entailment. Most approaches to this

problem typically involve one or more of the following

dimensions:

• expressiveness restrictions that make the problem

of inference tractable (e.g. Horn theories, termi

nological logics);

• tractable but incomplete inference procedures

(e.g. restriction to unit resolution);

• approximation schemes that allow efficient pro

cessing of some subset of the possible queries (e.g.

[('adoli and Schaerf, 1991], the "vivid" knowledge

bases of [Levesque, 1986], and the Horn approxi

mations of [Selman and Kautz, 1991]);

• off-line preprocessing of the database, so that

query answering becomes tractable after the com

pilation phase has been completed (e.g. compu

tation of prime implicates [Reiter and de Kleer,

1987], off-line query answering [Tennenholtz and

Moses. 1993], and again Horn approximations).

Each of t hese dimensions involves some kind of sacri

fice, but equivalence preserving logical compilation is

the only one that trades off only preprocessing time,

but neither expressiveness, soundness, or complete

ness. As long as compilation time is reasonable for

ollline computation (which it will not always be), the

attractiveness of this approach as a way to speed up

online response time is clear, as the cost of compilation

can be amortized over many queries to the database.

With an all-important caveat: Whereas query answer

ing may lie tractable with respect to the compiled

database, if the compilation process produces an ex

ponential growth in the database then all potential ef

ficiency gains achieved through tractability are wiped

out. This is the problem faced by the best known ap
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proach to equivalence preserving logical compilation,

namely, the computation of the set P/(E) of prime im

plicates of the database E [Reiter and de Kleer, 1987;

de Kleer, 1992]. This computation can be seen as an

equivalence preserving logical compilation, since for

any non-tautologous clause C, E entails C iff there

exists C € P/(E) such that C C C, which can be

checked in time polynomial in the size of PI (E). How

ever, not only is the compilation process very costly,

P/(E) may easily be exponentially larger in size than

E; in this case, query answering is tractable with re

spect to P/(E), but still exponential in the size of E.

In this paper we present a novel approach to equiv

alence preserving logical compilation. Analysis of

the compilation procedures, furthermore, allows us to

identify a new class of theories for which query answer

ing is tractable. We begin by identifying some restric

tions of resolution that are refutationally equivalent to

unit resolution, a well known tractable but incomplete

restriction of resolution. These restrictions, together

with what can be seen as an exhaustive exploration

of the search space of resolution derivations from the

database E, can be used to identify clauses that need

to be added to E in order to ensure that unit resolution

can answer all queries correctly. In this way, we map

E into an equivalent database E* with the property

that, for any clause C, E C iff there is a unit refu

tation of E* U ->C. After the compilation is complete,

therefore, any query whether E ^= C can be answered

in time linear in the size of E* U ->C.

As said, the compilation process involves an exhaus

tive search of the space of possible resolution deriva

tions. We find it convenient to use a resolution-based

prime implicate (PI) algorithm as the basis of this

search. Because any non-tautologous clause entailed

by E must be subsumed by a prime implicate of E. PI

algorithms perform all resolutions "of interest," which

makes them a suitable tool for exploring the resolution

search space. As an additional benefit of this choice,

the compiled database E* is a subset of the set P/(E)

of prime implicates of E. This guarantees that E' is

no larger than P/(E); as we will see, the former can

in fact be exponentially smaller than the latter, and

even can beat Horn approximations by an exponential

factor.

This is then our way of addressing the main obsta

cle to tractable query answering through compilation.

Though we have no guarantee that E* will not be,

under any of the proposed procedures, exponentially

larger than E, we know at least that the procedures

will consistently be no worse than PI compilation, and

that they can yield much better results.

The structure of this paper is as follows. In the next

section, we introduce two restrictions of resolution,

and establish their relation with unit resolution. In

section 3 we present a number of compilation proce

dures based on these results. Section 4 looks at the

sources of unit refutation incompleteness in order to

assess the effect of ordering strategies on these compi

lation procedures, and presents a new sufficient con

dition for unit refutation completeness which allows

us to identify new classes of tractable theories, and

which has implications on the tractability of certain

abduction problems. In section 5 we show the com

piled databases can be used as the basis of a complete

LTMS (logical truth maintenance system) that uses

only unit propagation. Section 6 presents some exper

imental results, providing evidence for the substantial

space savings achievable with our compilation proce

dures.

2 NO-MERGE RESOLUTION AND

ITS RELATION TO UNIT

RESOLUTION

In this section, we introduce two restricted versions

of resolution and prove their (refutation) equivalence

with unit resolution. The first restriction can be seen

as a dual of P.B. Andrews' "resolution with merging"

[Andrews. 1968], from which we take much of the ter

minology; the second one is again some sort of dual of

a restriction of resolution found e.g. in [Reiter, 1971].

Note that these restrictions are introduced only as a

way to analyze resolution deductions; they are not in

tended for actual use.

We assume some propositional language C obtained by

closing off a set of symbols V under the usual boolean

connectives. We write E |= C to denote that C is

a propositional consequence of E. For p € V, p is a

(positive) literal and ->p is a (negative) literal; p and

-<p are said to be complementary literals. A clause

is a set. of literals, representings their disjunction; we

will switch between set and disjunctive notation when

ever convenient. The empty clause is denoted with

the special symbol J., which is not satisfied by any in

terpretation. A unit clause is a singleton clause. A

tautologous clause is a clause containing complemen

tary literals. A clause C\ (strictly) subsumes a clause

Ct iff C\ is a (proper) subset of Ci. Given a clause

C = {/i, . . .,/*}, we denote with ->C the set of unit

clauses • • ■ , {"•/*}}• A clausal database is a set

of clauses, representing the conjunction of the clauses.

We will only consider clausal databases in this paper.

Definition 1 A clause C is said to be obtained by

resolution from two clauses C\ and Ci iff there ex

ists a literal I € Ci such that ~>l € Ci and C =

(Ci \ {/}) U (C2 \ {->/})• C is said to be the resolvent

of C\ and Ci, with I and ->/ being the literals resolved

upon. Furthermore:

• If either C\ or Ci are unit clauses, C is said to

be obtained from C\ and Ci by unit resolution.

. If the set M = (Ci\{/})n(Cj\W}) w not empty,
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then C is obtained by merge resolution from, and

is a merge resolvent of Ci and C2, with M being

the set of merge literals of C.

• ///' is a literal in Ci\{l) then the occtirrenct of I'

in C is an immediate descendant of its occurre nce

in C\, and the latter is an immediate ancestor of

the former; and similarly ivtth Ci replaced by Co.

Definition 2 A resolution deduction of a clavst C

from a set of clauses E is a sequence C\ C* of

clauses such that C* = C, and each C% either is in E.

or is a resolvent of clauses preceding C,. Furthermore:

• A unit resolution deduction is a resolution deduc

tion in which every resolvent has been obtained hi/

unit resolution.

• A weak no-merge (wnm) resolution deduction is

a resolution deduction in which no resolvent is u

merge resolvent.

For the next definition, let descendant be the reflex

ive and transitive closure (wrt. a given resolution de

duction) of the relation "immediate descendant" intro

duced in definition 1.

Definition 3 A no-merge (nm) resolut ion deduct ion

of a clause C from a set of clauses E is a resolution

deduction ofC from E in which no merge resolrent has

any descendants of its merge literals resolved upon.

Thus, wnm-resolution rules out merge*, while 1111 1 -

resolution allows merges as long as no merge literal

(or more exactly, no descendant of a merge literal) is

resolved upon later in the deduction. Note that unit

resolution involves no merges, and is thus a special case

of both types of no-merge resolut ion. We write E (-,. C

(respectively, E Vwnm C, E r-„„, C, E h„ (') 10 indi

cate that there is a resolution deduction of clause C

from the set of clauses E (respectively, a wnm, 11111. or

unit resolution deduction of C from E).

The following theorem is the key to the compilation

procedures presented later:

Theorem 1 Lei E be a set of clauses. (' a clausi.

The following two statements are equivalent:

1. E \-nm D for some D C C.

2. SU-CM

Note that every wnm-deduction is also an iim-

deduction, and thus the (1 => 2) direction of this the

orem, the crucial one for compilation, applies to wnm

resolution as well. The fact that the other direction

also holds suggests that resolution upon descendants

of merge literals is a key source of the incompleteness

of unit resolution. To put it in a different way. suppose

E |= C. Then we know that there exists a resolution

deduction of some D C C from E [Lee, 1993]; theo

rem 1 tells us that in this case, if E U ->C is not unit

refutable, then every such resolution deduction must

involve at least one resolution upon a descendant of a

merge literal.

We end this section with the concepts of refutation

and refutation completeness.

Definition 4 A unit (nm, wnm) resolution refutation

of a set of clauses E ts a unit (nm, wnm) deduction of

_L from E. If this is the case, E is said to be unit (nm,

wnm) refutable.

Definition 5 A set of clauses E is unit (nm, wnm)

refutation complete iff for any clause C: E |= C iff

E U ->C is unit (nm, wnm) refutable.

Checking whether EU->C is unit refutable can be done

in time linear in the size of E U ~>C. Thus, unit refuta

tion completeness ensures tractable query answering.

Note:

Corollary 2 A set of clauses E is wnm-refutable iff

it is nm-refutable iff it is unit refutable. Similarly, the

notions of unit, wnm, and nm refutation completeness

art tquivalent.

In [Henschen and Wos, 1974] it is shown that a min

imally unsatisfiahle set of clauses E is unit refutable

iff E is in the class "renamable Horn," i.e. it can be

converted into a Horn database by an uniform renam

ing of symbols. The class of unit refutation complete

databases is however much more general than the class

renamable Horn, and involves, unlike the latter, no

loss of expressive power. This follows from the fact

that every theory can be converted into an equivalent

unit refutation complete theory, but not into an equiv

alent renamable Horn theory. The connection between

both classes is as follows: a unit refutation complete

database has the property that if E \= C then there

exists a minimally unsattsfiable subset Ec of E U ->C

such that Ec is renamable Horn. The minimality re

quirement, however, is crucial; furthermore, if D is

some other clause entailed by E, for all we know the

renaming functions associated with the sets Ec and

Eo may well be incompatible.

3 COMPILATION

3.1 PROCEDURES

The goal of the compilation procedures we are about

to propose is to map the database E into a logically

equivalent, unit refutation complete database E*. In

order to do this, as anticipated, we exhaustively ex

plore the space of resolution derivations from E, using

some resolution-based prime implicate algorithm. The

key idea is to add to E only those clauses obtained by
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this procedure in violation of the wnm or nm restric

tions. We thus ensure wnm or nm refutation complete

ness, and therefore unit refutation completeness.

3.1.1 Compilation based on weak no merge

resolution

Recall that a non-tautologous clause C is an implicate

of a set of clauses E iff E [= C, and it is a prune

implicate of E iff no other implicate of E strictly sub

sumes it. We denote the set of prime implicates of

E by P/(E). Our first compilation procedure ensures

that every prime implicate can be derived by wnm-

resolution, and is independent of the prime implicate

(PI) algorithm used. We call it FPIo because the

database it returns is a "filtered" set of prime impli

cates.

Procedure FP/0(E)

1. Initialize variables FPI and PI to the set of

clauses E.

2. Compute a new implicate C of E using some

resolution-based PI algorithm. If no new impli

cate is generated, then return FPI. If C ' is sub

sumed by some clause in PI. t hen repeat I his step,

ignoring C.

3. Delete from PI and from FPI any clause sub

sumed by C and add C to PI .

4. If C is a merge resolvent, or a clause in FPI was

subsumed by C, then add C to FPI .

5. Go back to step 2.

Theorem 3 FP/q(E) is unit refilial ion complfU and

logically equivalent to E.

In particular, therefore, for any clause C. E |= (' ill'

m0(E)A-ch„i.

3.1.2 Compilation based on no merge

resolution

The next compilation procedure, FPI] , is based on

nm-resolution, and it is guaranteed to produce a

database no larger than the one returned by FPIo

when the same PI algorithm is used. While FPIo

keeps all merge resolvents, FPI\ tries to use the fact

that using merges does not destroy the unit refutabil-

ity of E U ->C, as long as no merge literal is resolved

upon. One way to use this fact would be to record

the ancestry of every merge literal generated by the

PI algorithm, storing the merge resolvent only if some

descendant of its merge literals is resolved upon. The

overhead produced by this approach can be significant,

however. A much simpler solution exploits the order

ing of symbols used by Tison's PI algorithm [Tison.

1967]. Briefly, Tison's method initializes PI to E. and

iterates over the set of propositional symbols V. in

some fixed order. For each p 6 V, it computes all (non-

tautologous) resolvents that can be obtained from two

clauses in PI by resolving them on p; each new resol

vent C, if not subsumed by some other clause in PI, is

added to PI aftei deleting every clause in PI subsumed

by C. The key observation is that once a given sym

bol has been processed, it will never again be resolved

upon. Our next compilation procedure uses this infor

mation to prune merges when all merge literals have

already been processed by Tison's method.

Procedure FPJ,(E) As FPJ0(E), with the follow

ing changes:

• The PI algorithm of line 2 is Tison's method, with

some fixed ordering of all symbols.

• Line 4 should read: If C is a merge resolvent and

some merge literal in C is later in the ordering

than the symbol currently being resolved upon,

or if some clause in FPI was subsumed by C,

then add C to FPI.

Theorem 4 FP/i(E) is unit refutation complete and

logically equivalent to E.

To obtain a rough idea of how much can FPI\ save

over FPI0 in database growth, consider the case in

which every merge resolvent generated by Tison's

method contains exactly one merge literal. Assuming

merge literals have, on average, about an equal chance

of being earlier or later in the ordering than the sym

bol being resolved upon, FPI\ would store only about

half the merge clauses stored by FPIo, thus halving

database growth a.s well.2 Note that the same argu

ment gives us a rough estimate of minimum savings

with respect to P7(E), an estimate that is confirmed

by our experiments so far.

Example 1 Let E = {{p, q, s), {p, ->q, r}, {-.p, q, t},

{-i/<. ->(/. »}. {-if, v, w}, {->v, x}}. Table 1 gives the

results of using Tison's method with the ordering

p. </. /■. s, t. u, c, w, x. The middle columns contain non-

subsumed resolvents obtained by resolving on the left

most symbol in the row, with merge literals indicated

on the rightmost column (brackets and commas in

clauses are omitted). The sets F/(E), FP/0(E) and

FP/i(E) can be obtained by unioning together the

corresponding columns. P/(E) adds fourteen clauses,

FP/0(E) four, and FP/i(E) only two.

More generally, it is easily seen that the set of filtered

prime implicates (under either procedure) is a sub

set of the prime implicates. The compiled database is

therefore in either case no larger than P/(E). In fact,

it can be exponentially smaller:

' FPIo is nevertheless analytically interesting, because

of its relative independence from the PI algorithm used,

and lor reasons given in section 5.
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Table 1: Prime Implicates, Example 1

Symbol Prime implicates FPIo FPh Merge literals

V
E

P
qst, -iqru '/*'• """/''» 9,-"?

1 prs, ->/>/</, rslu ;>rs, ->p/M P. ~'P

t -<pqrw, qsvw, -<puvu\ rsuvu

V -itwx, -ipqwx. qsu x. ~<puu .r. rsiitrx

Example 2 Let E = {{pi,?}} {pi.??1}

{?*,«*} {p*. «r).bP» -Pt}}- PHS) has

(m + 1)* + mil; prime implicates [Kean and Tsiknis.

1990]. Using results from section 4, it is easily shown

that FP/0(E) = FP/,(S) = E. In section 6 we also

present some experimental results for some k-clause

databases shown in [Chandra and Markowsky. 1978]

to have at least %\-k/3l prime implicates.

FPIi can produce exponential savings even with re

spect to the "Horn approximation" compilation pro

cedure of [Selman and Kautz, 1991], which does not

preserve logical equivalence.

Example 3 Let E„ = {{~'Pi.-,P2 ~'Pn-s}.

{-•9i,Pi,*},{-,92,P2,«} , {-,qn,Pn,s}}- In [Kautz

and Selman, 1992] it is shown that the LUB Horn ap

proximation of E„ contains 2" clauses. Using results

from section 4 one can show that FP/i(E„ ) = E„ . lor

some easily found orderings of symbols.

This comparison applies only to the LUB; the size of

the Horn GLB approximation is guaranteed to be lin

ear in the size of the original database. Note however

that it is only the LUB that allows us to derive con

sequences of the database; the GLB, in contrast, only

allows us to reject non-consequences. Thus, it is com

parison with the LUB that is most relevant.

3.1.3 Avoiding resolutions between Horn

clauses

There is however an important insight in the Gener-

ate.LUB algorithm of [Selman and Kautz, 1991] that

can be useful for our purposes. The Horn LUB is

equivalent to the set of Horn prime implicates, so one

could compute it by using a prime implicate algorithm.

Selman and Kautz observed, however, that any res

olution tree with a Horn clause at the root can be

transformed into a tree where all resolutions between

two Horn clauses are at the bottom, an observation

that allowed them to avoid all resolutions between two

Horn clauses. The algorithm that generates the LUB

is in essence the so-called "consensus method" for gen

erating prime implicates modified to incorporate this

restriction.3

The LUB algorithm can however be improved by ban

ning resolutions between two non-Horn clauses as well

Can this observation be incorporated into our proce

dures? The answer is a qualified yes. Adding the resol

vent of two Horn clauses to a Horn database E clearly

cannot improve the ability of unit resolution to answer

queries by indirect proof, but this is no longer true if

E contains at least one non-Horn clause. Indeed, it

can be shown that FPI\ cannot guarantee unit refu

tation completeness if the restriction against resolv

ing two Horn clauses is incorporated in the procedure

in an straightforward way. There may be other more

sophisticated ways of incorporating it into no merge

compilation procedures, but the question is open at

this point . Nevertheless, the following procedure, di

rectly based on the Generate.LUB algorithm of [Sel

man and Kautz, 1991], shows that the restriction can

be incorporated at least for procedures based on wnm-

resolution.

Procedure FP/2(E)

H := Horn clauses of E; FPIH := H\

S :— non-Horn clauses of E; FPIn := N\

loop

try to choose B€Hl)N,C€.N with resolvent A

s.t . .4 is not subsumed by any D G H U N;

If no such choice is possible then exit loop;

If .4 is Horn

then delete from H, N, FPIh, and FPIn any clauses

subsumed by A and set H := H U {A};

If .4 is a merge clause,

or some D £ FPIh U FPIs was subsumed by A

then FPIH ■= FPIH U {A};

end if

else delete from N and FPIn any clauses

subsumed by A and set N := N U {A}

If .4 is a merge clause,

or some D 6 FPIh was subsumed by A

then FPIN := FPIN U {A};

end if

end if

end loop

return FPI//U FPIjv.

Theorem 5 FP/o(E) is unit refutation complete and

logically equivalent to E.

Banning resolutions between Horn clauses has two

huge potential advantages. First, it may result in much

[Kautz. 1994].
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fewer resolvents being generated, so the compilation

can be much faster. Second, and equally importantly,

resolvents that are not generated could well be vie rgt

resolvents, which would have been stored without, this

restriction.

The procedure has a number of drawbacks, though.

First, it is based on wnm resolution instead of nm res

olution, something which may wipe out the space ad

vantages of not resolving Horn clauses, in particular

given that the algorithm does compute all non-Horn

prime implicates. Second, the underlying prime impli

cate algorithm behind the procedure is, as mentioned,

the consensus method, that is, in essence a brute force

algorithm that performs a huge number of redundant

derivations; this makes the procedure quite inefficient,

and redundant derivations may result in more merges

being added to the compiled database. In fact, de

procedure is not even guaranteed to be more spare or

time efficient than the underlying brute force prime

implicate algorithm.4

While the advantages may well be weightier than the

disadvantages, specially for databases most, of whose

clauses are Horn, it would still be desirable to be able

to incorporate the restriction against resolving Horn

clauses into more efficient prime implicate algorithms,

and even better (but less likely), to be able to base tin-

compilation on nm rather than wnm resolution.

3.1.4 Compilation based on linear resolution

There is another important family of prime implicate

algorithms, namely, those based on some variant of lin

ear resolution. The reader is referred to [('hang and

Lee, 1973] for a general description of linear resolution,

and to [inoue, 1991; Minicozzi and Reiter, 197*-'] for a

discussion of the completeness of various variants of

linear resolution for prime implicate computation (or

consequence-finding, as it used to be called). As men

tioned, FPIq is independent of the prime implieaie

algorithm used, so a linear resolution prime implicate

algorithm could be used for this purpose. There are

other ways in which linear resolution can be interest-

ing for compilation. First, a compilation procedure

can be devised by storing "side clauses" of the de

duction that are not input clauses. By adding such

clauses to the database any linear deduct ion becomes

an input deduction, which allows us to achieve unit

refutation completeness. This can be combined with

restrictions on merges. Furthermore, the stack based

* For example, by not resolving two Horn clauses -i/iV-v/

and ->pVg, we fail to derive the unit clause ->/> (though

it may perhaps be derived later): but adding this clause

could greatly cut the search space and thus improve effi

ciency. Furthermore, if the database consists of only these

two clauses, the algorithm would leave it untouched, rather

than replace it by the smaller database consisting of the

single unit clause ->p. (Which shows, incidentally, that

FPhi^) can be a strict, superset of the prime implicates.)

discipline of linear resolution, combined with the way

that information about literals resolved upon is kept

around in ordered linear resolutions, may allow for an

easy recognit ion of when descendants of merge literals

are resolved upon. Finally, [inoue, 1991] provides pro

cedures that allow us to focus on certain "interesting"

implicates. The idea of using these procedures in or

der to focus the compilation process will be discussed

in the extended version of this paper.

3.2 INCREMENTAL COMPILATION

Given the cost of compilation, one may wonder about

the utility of these procedures in situations in which

the database is often subject to change. Small changes

in the database, in particular, should not require the

recompilation of t he dat abase from the scratch. In gen-

eral. compilation procedures based on wnm resolution

are fully incremental, since the question of whether

a clause is a merge is independent of the order in

which resolutions are performed. Thus, any incremen

tal prime implicate algorithm can be used in FPIq to

make compilation incremental; similarly, FPI2 is eas

ily seen to be incremental. The question is more com

plicated in the case of compilation procedures based on

nm-resolution, since whether a merge literal will later

be resolved upon obviously depends on which clauses

are later added.

3.3 COMPILATION AS CONVERGENT,

ANYTIME APPROXIMATION

All the compilation procedures we have described are

"anytime.'' The database can be queried before com

pletion of compilation. As time passes, the number of

queries that can be answered successfully by unit indi

rect proof increases, and after execution is completed

every query can be answered by unit resolution. This

suggests that there is a sense in which the compilation

process can be seen as a form of anytime "approxima-

tion." with the crucial property that the approxima

tion courages towards the correct result.

To make this idea precise, let FP/((E) be the set of

clauses stored in the variable FPI at time t by any

given compilation procedure, let C/(E,<) = {C | E |=

C and FP/,(E)U-<C r-ul} be the set of (clausal) con

sequences of E derivable by (indirect proof) unit reso

lution at time /, and let C7(E) be the set of all clausal

consequences of E. Clearly, C/(E,<) C C7(E) for any

/. ("/(E./) monotonically grows with time, and even

tually converges towards C7(E). Thus, C7(E,<) can be

seen as an anytime, convergent approximation "from

below" to C/(E). At time <, before completion of the

algorithm, we know that if C € C7(E,<) then E |= C,

but we cannot reach any conclusion from the fact that

C (1 C7(E,i); in particular, we cannot conclude that

E |£ ('. Thus, C7(E,<) plays the same role as, for ex

ample, the Horn upper bounds defined in [Selman and
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Kautz, 1991], with the crucial difference that when

the algorithm is completed at time te, C/(E, tf ) equals

C7(E), the clausal closure under logical consequence

of E; i.e. for any clause C, E \= C if and only if

C € C/(E,te). In contrast, the set of clauses derivable

by unit resolution from Horn upper and lower bounds

does not converge towards this logical closure for any

E that is not expressible (possibly after removal of re

dundant clauses and renaming) as a Horn theory.

There is no analogous in our compilation procedures

to Horn lower bounds; this suggest using Horn lower

bounds (or some other approximation "from above")

in order to rule out a positive answer to certain queries

before the compilation is completed. After completion

of the compilation procedure, on the other hand, the

question of whether keeping the Horn bounds is worth

while reduces to the question of whether the fully coin-

piled database is deemed too large, and furthermore,

the Horn bounds are substantially smaller than tin-

compiled database (so as to justify the loss of com

pleteness). As shown in example 3 this is by no means

always the case. Nevertheless, approximation schemes

are useful as a fallback approach when the compila

tion procedures of this paper do not yield satisfactory

results.

In principle, the interest of this "convergent approxi

mation" view of compilation is that it has the potential

to greatly decrea.se the inconvenience of using off-line

computation: since compilation can take forever, it is

clearly desirable to be able to process queries before

completion. Carried to the extreme, one could think

of compilation as a process of increasing t he efficiency

and quality of query answering over the life cycle of

the database. A more realistic view is. we believe,

that compilation that takes "too" long is also likely to

be too space demanding.

4 TIED CHAINS, MERGES, AND

ORDERING STRATEGIES

We suggested in section 2 that resolutions upon de

scendants of merge literals are a crucial source of in

completeness of unit resolution for indirect proof pur

poses. In this section, we carry the analysis further by

asking about the propert ies of the dat abase from which

such resolutions can arise. Our immediate motivation

for this analysis is to improve the compilation proce

dures based on nm resolution, since, as the following

example shows, FPI\ is very sensible to the chosen or

dering of symbols. As we will see, a by-product of the

analysis is the identification of a new class of tradable

theories.

Example 4 Let E be as in example 2. except that

every clause contains an additional literal r Every

resolvent will now be a merge resolvent. If ;• is earlier

in the ordering than every p,, then FP/j(E) = YJ. but

if it is later than every p, then FP/i(E) = P/(E).

One simple solution is to observe that r is a "pure

literal" in E, i.e. its complementary literal ->r never

occurs in E. Because pure literals will never be re

solved upon, they can be put first in the ordering for

the purposes of the FPI\ procedure.5 What other or

dering strategies are available to reduce the number of

merges stored by FPI\? A promising concept is that

of a "tied chain," introduced in [Esghi, 1993].

Definition 6 A tied chain in a set of clauses E is

a sequence of triples (xi.Ci.j/i), ... ,{xn,Cn,yn) such

that:

• For 1 < »' < n: d € E, Xj,yt- G C,-, and x< ^

• For I </<;?: t/; and (the link literals of

tht chain) arc complementary literals;

• .!•] = //„. called the tied literal of the chain.

For example, E = {p V q V r, ->r V s, ->s V p} contains

a tied chain with p as tied literal and r and s as link

symbols. In [Esghi, 1993] it is shown that the absence

of tied chains is a sufficient condition for unit refuta

tion completeness. This result can be rederived (and,

in a sense, explained) using the concept of merges, as

an <-asy consequence of the next lemmaand theorem 1.

Lemma 6 Suppose there is a resolution deduction D

of a me rge resolvent C from a set of clauses E. Then E

contains, for each merge literal I of C, a tied chain 7/

with I as its tied literal. Furthermore, each link literal

in // has a descendant in D which is resolved upon.

If there are no tied chains, therefore, there are no

merges, so FP/X(S) = FP/0(E) = E, and thus E

must be unit refutation complete. More significantly

for our purposes, we can use the ordering restrictions

imposed on resolution by Tison's method in combi

nation with t he second part of the theorem to obtain

a much weaker sufficient condition for unit refutation

completeness, and, possibly, to reduce the number of

merges stored by FPI\. In what follows, we let <

be some total ordering of the propositional symbols,

which we extend to an ordering over literals in the

obvious way. We adopt the convention that Tison's

method resolves upon "smaller" symbols earlier than

upon "larger" symbols.

Definition 7 .4 tied chain T in E with tied literal I is

free a rt < i ff I < I' for some link literal I' of T

Definition 8 A literal I is a free literal wrt < iff every

tied chain wilh I as tied literal ts free wrt <. A symbol

'Note also that placing pure literals first in the ordering

also ensures that F PI\ will store exactly as many merges

as if we had recorded the ancestry of merge literals as sug-

gested before introducing FPI\.
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p £V is a free symbol wrt < iff both p and -<p art free

literals wrt <.

The idea behind these definitions is as follows. Since

all literals in a chain have to be resolved upon in order

to obtain a merge resolvent, if / is a free literal wrt <

then FPI\, using < as ordering, will generate a merge

resolvent C with / as merge literal only when / has

already been processed by Tison's method. Hence. /

will never be resolved upon after C is generated, and

thus if C contains no other merge literal then it will

not be stored by FPI\. More generally:

Lemma 7 Let < be any total ordering of the sym

bols in E, and let F be the set of free literals wrt <.

FP/i(E) will not store any merge clause whosf set M

of merge literals is such thai M C F.

Note that this lemma is compatible with the require

ment that pure symbols (the symbols of pure literals)

are placed as a prefix of the ordering, as this ensures

that they are free symbols. Note also that the lemma

has as an immediate consequence a new. much more

general sufficient condition for unit refutation com

pleteness:

Theorem 8 Suppose there exists an ordering < of IIn

symbols in a set of clauses E such that every tied chain

(and thus every symbol) in E is free wrt <. TIkii E is

unit refutation complete.

This theorem also has consequences in abduction.

[Esghi, 1993] showed that certain class of abduction

problems (involving acyclic Horn theories) is tractable

whenever certain extended theory is unit refutation

complete. Thus, we are now able to verify member

ship into this tractable class for a much wider class

of problems. Furthermore, we can compile abduction

problems based on acyclic Horn t heories so as to make

them tractable.

The question whether an ordering with the proper

ties required by this corollary exists can be seen as

a constraint satisfaction problem (CSP). Namely, a

tied chain having the symbol /) or ->p as tied literal,

and having p\, . . . ,pt as link symbols, will he free w rt

any total ordering satisfying the (k + l)-ary constraint

(P < Pi) V . . . V (p < pi). Each tied chain generates

one such constraint, and thus the set of tied chains of

E defines a CSP with the property that , if it has a so

lution, then E is unit refutation complete —every tied

chain will be free with respect, to the total ordering

determined by this solution.

An equivalent, graph-theoretic view of this CSP is as

follows. Let C be any set containing at least one dis

junct from each constraint generated from some tied

chain of E. Let. (7t-(E) be the directed graph whose

nodes are the symbols of the language, with a directed

edge from node p to node q iff (/> < 7) 6 C. If f>V(E)

is acyclic for some choice C of disjuncts, then E is

unit refutation complete (and a topological sort of the

nodes of Gc will provide the required ordering).

As these formulations suggest, the problem of verify

ing whet her the condition of theorem 8 holds is likely

to be intractable in general. It is however possible

to identify classes of theories for which the condition

can be verified in polynomial time. One such class is

presented next.

Definition 9 The tied chain graph Gt(E) of a set

of clauses E is the directed graph whose nodes are all

literals whose symbol occurs in E, and such that there

is an edge from I to I' iff {l,->l'} C C for some clause

re e.

It can be shown that E contains a tied chain with

tied literal / iff there is a path in Gr(E) from / to

-1/ [Esghi. 1993], in which case the link literals can

be directly read off the path. The following theorem

uses theorem 8 to identify a class of unit refutation

complete theories, a class which includes in particular

the theories of example 3. Clearly, membership in this

class can be determined in polynomial time.

Theorem 9 //GV(E) is acyclic then E is unit refu

tation complete.*'

Our main goal is not however to identify tractable

classes of theories, but to make theories tractable

through compilation. Coming back to the constraint

satisfaction perspective, it is important to note that

the CSP defined by the tied chains of E (that we

can read off G'r(E)) will often be overconstrained, and

have no solution. For our purposes it would suffice to

find an ordering < that makes FP/i(E) "sufficiently"

small when computed using <. This is true even when

a solution exists, as it may be too costly to find it. In

either case, we enter the realm of constraint relaxation

techniques, in which the goal is to minimize constraint

violations.

Is there any guarantee that such an approach will re

duce the size of FP/i(E)? In order to measure the

effects of ordering strategies in a general way, it is

useful to think of them in terms of re-ordering steps,

steps that modify an initial ordering by changing the

position of a single symbol. Under this perspective,

moving a pure symbol from its initial position to the

front of the ordering is safe, in the sense that it can

only reduce, but never increase, the number of merges

stored by FPIi, in comparison with those that would

be stored under the initial ordering. The reason is that

the space of resolutions explored by Tison's method is

unaffected by the position of pure literals. Another

reordering strategy that, can be proved to be safe is a

' Note on the other hand that Gr(E) can contain cycles

even if D contains no tied chains.
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simple form of dynamic reordering: as soon as a unit

clause is derived, its symbol should be placed immedi

ately after the current symbol being processed in the

ordering, performing all unit resolutions immediately.

This shortens some clauses and deletes others, which

will generally reduce the number of stored merges; and

it can be shown that it will not add any merge that

would not have been added anyway with the original

ordering.

We believe most other reordering strategies are likely

to be unsafe, due to the somewhat unpredictable ef

fects of reordering in Tison's method. Consider the

simple strategy of moving a symbol p, such that nei

ther p nor ->p are the tied literal of some chain, to the

end of the ordering. Any tied chain free under the ini

tial ordering will still be free after this single reorder

ing operation, and others may become free as a result.

Yet it can be shown that this can actually increase the

number of merges stored by FP/\(E). Thus, whereas

the investigation of ordering strategies that decrease

the size of FP/i(E) is important, the status of these

strategies is most likely to be purely heuristic, to he

validated mostly by experimental rather than analyt

ical means.

5 A COMPLETE LTMS

As mentioned in section 3.2, it would be desirable tor

small changes in the database not to require the re-

compilation of the database from the scratch. In this

section, we will focus on a particularly simple, but also

very common, form of database change. Wry often, a

database can be partitioned into a highly stable and a

highly changing set of clauses. For example, the first

set of clauses may capture the behavior of a device

with arbitrary inputs, while the second set. typically

consisting of unit clauses, represents various assump

tions about the inputs of this device.

For this purpose, a logical truth maintenance system

(LTMS) is often used [McAllester, 1990]. The task of

a LTMS is, given a set of clauses E, to produce a label

ing Ls f°r all the symbols in the language. : V —

{true, false, unknown}, when E is consistent, and to

detect a contradiction otherwise. For consistent E. the

labeling is sound with respect to E iff E (= p whenever

is(p) = true, and E ^= ->p whenever L^(p) = faint:

and it is complete' iff Lv(p) = true whenever E (= p,

and Ls(p) = false whenever E ^ -*p. The method

used by an LTMS, variously called "unit propagation"

or "boolean constraint propagation" (BC'P), is logi

cally equivalent, to unit resolution, differing from it

mostly in that resolvents are never explicitly gener

ated. In particular, if E is consistent, Lr(p) - trut iff

E r-u p, and Ls(p) = false iff E r-u ->p. Furthermore.

BCP signals a contradiction iff E hu±.

7Note that our terminology differs from that of [de

Kleer, 1990].

For the purposes of an LTMS, it is often useful to

partition the database into a set of "assumption lit

erals" A, treated as unit clauses, and a set of clauses

E. An LTMS supports very efficient addition and re

traction of assumptions, which makes it an ideal tool

for managing database changes restricted to these two

operations. But because BCP is equivalent to unit res

olution, an LTMS will in general produce sound but in

complete labelings. This deficiency can easily be fixed

by using the procedures developed in this paper.

Lemma 10 // E is unit refutation complete and A

is a set of unit clauses then E U A is unit refutation

complete.

Theorem 11 BCP(FP70(E) U A) produces a sound

and complete labeling with respect to E U A whenever

1h( latter is consistent, and signals a contradiction oth

erwise.

This theorem unfortunately does not hold for

FP/i(E). We can use instead the following "indirect

boolean constraint propagation" procedure:

Procedure IBCP{~£l)A)

1. Hun BCP on ELM.

2. While there exists an unprocessed symbol p such

that L(p) = unknown, do:

• If EU.4u{p} K.-L then set L(p) = false and

propagate the new label with BCP.

• Otherwise, if E U A U {-<p} hu± then set

L(p) = true and propagate the new label

with BCP.

• If neither test succeeds, mark p as processed.

The idea behind this procedure is very simple: if BCP

on the initial input fails to produce a true or false

label for a given symbol, IBCP tries to produce such a

label by indirect proof, using standard LTMS mecha

nisms for addition and retraction of assumptions (BCP

to add the negation of the desired conclusion to the

set of assumptions, and roughly the reverse process to

later retract it). Needless to say, one may want to

attempt the indirect proof only for certain literals of

interest. Note that when both tests for a given sym

bol p fail, BCP can ignore clauses with p or ->p in the

future, a.s those clauses cannot be the source of new

labels.

Theorem 12 // E is unit refutation complete then

I B( ' P{HL) A) produces a sound and complete labeling

with respect to EU.4 whenever the latter is consistent,

and signals a contradiction otherwise.

This theorem is interesting because we know how to

obtain unit refutation complete databases. If we do

not know whether E satisfies the conditions of the the

orem, we can replace it by FP/i(E), and the condition
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will be automatically satisfied. Note that IBCP runs

in time polynomial in the size of its input , as any sym

bol is considered only once.

IBCP is compatible with an efficient implementation

of assumption retraction. It suffices to keep track,

for any symbol p whose label was derived by indirect

proof, of the assumptions used in the derivation of t he

label. If one such assumption is retracted, we must at

tempt to rederive the label for p; if this fails, we treat

the literal corresponding to the label for p (e.g. -<p

if the label is false) as an additional assumption to

retract.

6 EXPERIMENTAL RESULTS

We implemented the procedures FPIo and FPl\ by

adapting the code from [Forbus and de Kleer. 1993].

and tested them on several databases drawn from qual-

itative physics and diagnosis, most of which are either

provided with this code or are variants of databases

provided with it. We have not tested FPL> yet. hut

plan to do so in the future. The table below in

cludes results for the largest databases tested among

these, and for C&M21 and C&M24. the databases

from [Chandra and Markowsky, 1978] mentioned in

example 2, for k=21 and k=24. Given the impor

tance of the ordering, we experimented with a num

ber of ordering heuristics, involving criteria such as

frequency of symbol occurrence, estimated number of

tied chains associated to each symbol, a greedy ap

proach to maximizing the number of satisfied order

ing constraints, and various combinations thereof. We

have not reached any firm conclusion on the effects of

the various heuristics, which often vary widely with

the problem, and thus we can only present prelimi

nary experimental results. In spite of our very limited

understanding of how to obtain good orderings. the

results clearly show that our procedures ran result in

huge savings in the growth of the database by compar

ison with compilation into the set of prime implicates.

Table 2 gives the size |E| of the initial database, the

number PI of prime implicates, and the sizes FPlu

and FPI\ of the corresponding compiled databases for

the ordering which gave the smallest FPI\(^,) in each

case. The rightmost columns, Growth and Sarin;/*.

respectively measure the growth of FPI\ with respect

to E {FP1\ divided by |H|), and the reduction in

growth with respect to prime implicate compilation.

{PI - \T,\)/(FPIi - |S|). For example, in the Adder

database, PI grows almost 40 times as much as FPl\ .

Though other results are not as impressive, they still

produce significant savings. In all examples tested,

furthermore, the absolute growth of FP1\ is at most

around an order of magnitude, which will often be a

quite reasonable price to pay in exchange for tradable

query answering.8 Of course, a much more compre-

8The Adder database is the same tested in [de Kleer.

Table 2: Experimental Results

 

Problt in PI FPIo FPIi G S

3 pipes 82 2360 1741 545 6.6 4.9

4 pipes 110 6208 1328 12.1 5.0

Regulator 106 2814 2 1 25 829 7.8 3.7

Adder 50 9700 2342 294 5.9 39.5

C&M21 21 2685 498 192 9.1 15.6

C&M24 24 7179 618 258 10.7 30.6

hensive experimental evaluation would be needed to

see whether this order of growth can be reasonably

expected in interesting cases.

7 DISCUSSION

In this paper, we have introduced a new approach

to equivalence preserving logical compilation, which

makes query answering tractable with respect to the

compiled database. We also have analytically and ex

perimentally demonstrated that the approach can lead

to substantial space savings with respect to the compi

lation of the database into its prime implicates. Given

the central role of propositional entailment in AI, it

is easy to see that these results can have wide appli

cation. We have discussed in some detail one such

application, a complete LTMS, and briefly mentioned

the increased ability to recognize tractable abduction

problems derivable from some of our results.

We have not yet addressed the question of worst case

growth in the size of the database as a result of com

pilation. Using almost identical arguments to those

of [Kautz and Selman, 1992], it is easily shown that

a polynomial worst, case bound on growth would im

ply XP C non-uniform P, something which is consid

ered very unlikely, and that would imply the collapse

of the polynomial hierarchy to Ej. (The notion of

"non-uniform P" arises from work in circuit complex

ity [Boppana and Sipser, 1990].)

There are many questions that remain to be answered.

The effect of ordering strategies needs to be examined

more closely, both analytically and experimentally. In

cremental compilation, and the ability to focus compi

lation on certain interesting clauses (such as the "char

acteristic clauses" of [inoue, 1991] are also topics for

further research. Finally, an important question is the

extent to which these results can be lifted to predicate

calculus.

1992]: the divergence in the number of prime implicates

arises from a Lisp reader related error in the encoding of

the database in [de Kleer, 1992]. Note that many of the

databases tested in [de Kleer, 1992] are those of example 2,

which we now know need not be compiled.
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Abstract

A capability for translating between repre

sentation languages is critical for effective

knowledge base reuse. We describe a trans

lation technology for knowledge representa

tion languages based on the use of an t'n-

terlingua for communicating knowledge. The

interlingua-based translation process can be

thought of as consisting of three major steps:

(1) translation from the source language into

a subset of the interlingua, (2) translation

between subsets of the interlingua, and (3)

translation from a subset of the interlingua

into the target language. The first transla

tion step into the interlingua can typically be

specified in the form of a grammar that de

scribes how each top-level form in the source

language translates into the interlingua. We

observe that in cases where the source lan

guage does not have a declarative semantics,

such a grammar is also a specification of a

declarative semantics for the language. We

describe the conditions under which such a

grammar is reversible so that the grammar

can also be used to translate out of the inter

lingua. In particular, we formally describe

the translation process into and out of an

interlingua, present a method for determin

ing whether a given grammar in fact specifies

how to construct a translation for every top-

level form in a given source language; and

present a method for determining whether a

given grammar is reversible so that it can be

used to translate both into and out of an in

terlingua.

1 Introduction

Acquiring and representing knowledge is the key to

building large and powerful AI systems. Unfortu

nately, knowledge base construction is difficult and

Richard E. Fikes

Knowledge Systems Laboratory

Stanford University

701 Welch Rd., Bldg. C

Stanford, CA 94304

f ikesOksl. stanford.edu

time consuming. The development of most systems

requires a new knowledge base to be constructed from

scratch. As a result, most systems remain small to

medium in size. The cost of this duplication of effort

has been high and will become prohibitive as attempts

are made to build larger systems. A promising ap

proach to removing this barrier to the building of large

scale AI systems is to develop techniques for encoding

knowledge in a reusable form so that large portions of

a knowledge base for a given application can be assem

bled from knowledge repositories and other systems.

For encoded knowledge to be incorporated into a sys

tem's knowledge base or interchanged among interop-

erating systems, the knowledge must either be rep

resented in the receiving system's representation lan

guage or be translatable in some practical way into

that language. Since an important means of achiev

ing efficiency in application systems is to use special

ized representation languages that directly support the

knowledge processing requirements of the application,

we cannot expect a standard knowledge representa

tion language to emerge that would be used generally

in application systems. Thus, we are confronted with

a heterogeneous language problem whose solution re

quires a capability for translating encoded knowledge

among specialized representation languages.

We are addressing the heterogeneous language prob

lem by developing a translation technology for knowl

edge representation languages based on the use of an

interlingua for communicating knowledge among sys

tems. Given such an interlingua, a sending system

would translate knowledge from its application-specific

representation into the interlingua for communica

tion purposes and a receiving system would translate

knowledge from the interlingua into its application-

specific representation before use. In addition, the

interlingua could be the language in which libraries

would provide reusable knowledge bases. An interlin

gua eases the translation problem in that to commu

nicate knowledge to and from N languages without an

interlingua, one must write (N — l)2 translators into

and out of the languages. With an interlingua, one
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need only write 2N translators into and out of the

interlingua.

We consider in this paper the problem of translating

declarative knowledge among representation languages

using an interlingua with the following properties:

• A formally defined declarative semantics;

• Sufficient expressive power to represent any the

ory that is representable in the languages for

which translators are to be built.

In practice, one cannot expect any given interlin

gua to have sufficient expressive power to support

usable representations of any theory that is repre

sentable in any language. However, an interlingua

with the expressive power of first-order logic, such

as the Knowledge Interchange Format (kif) being

developed in the ARPA Knowledge Sharing Effort

[Genesereth & Fikes 92], can provide that support for

a broad spectrum of theories and languages. For our

purposes in this paper, we will assume an interlingua

and a set of languages for which the properties listed

above hold.

The interlingua-based translation process can be

thought of as consisting of three major steps:

• Translation from the source language into a subset

of the interlingua;

• Translation between subsets of the interlingua;

and

• Translation from a subset of the interlingua into

the target language.

Since the interlingua is assumed to be at least as ex

pressive as the source language, the first translation

step into the interlingua can typically be specified in

the form of a grammar that describes how each top-

level form (e.g., sentence, definition, rule) in the source

language translates into the interlingua. In this paper

we specify the conditions under which such a gram

mar is reversible so that the grammar can also be used

to translate out of the interlingua. If one has such a

reversible grammar for the target language, then step

2 involves translating from the subset of the interlin

gua produced by the source language grammar to the

subset of the interlingua that is translated (i.e., recog

nized) by the reverse of the target language grammar.

For any given top-level form F, in the source subset,

translation step 2 involves determining a top-level form

Ft in the target subset such that F, is logically equiva

lent to Ft. Thus, formally, step 2 requires hypothesiz

ing an equivalent form in the target subset and then

proving the equivalence.

Step 2 of the translation process is the difficult one for

most languages. However, steps 1 and 3 are far from

trivial. In this paper, we present formal languages and

methods that are adequate for doing steps 1 and 3. In

particular, we:

• Formally describe the translation process into and

out of an interlingua;

• Present a method for determining whether a given

grammar in fact specifies how to construct a

translation for every top level form in a given

source language; and

• Present a method for determining whether a given

grammar is reversible so that it can be used to

translate both into and out of an interlingua.

These languages and methods have been incorporated

into a "translator shell" system that provides facili

ties for specifying interlingua-based translation using

KIF as the interlingua. The system has been used

to build translators for multiple representation lan

guages and those translators have successfully trans

lated non-trivial knowledge bases. The examples in

this paper are taken from two of these grammars:

a CLASSIC [Borgida, et al 89] to KIF grammar and a

LOOM [MacGregor 91] to kif grammar. The CLASSIC

to KIF grammar is used in a bi-directional translator

[Fikes, et al 91], and the loom to kif grammar is used

in a bi-directional translator currently under develop

ment.

2 Interlingua-Based Translations and

Semantics

We consider here equivalence preserving translations

[Buvac and Fikes 93] in which the translation of an ax-

iomatization of a logical theory is an axiomatization of

an equivalent logical theory. To make such a require

ment on translators meaningful, a declarative seman

tics including logical entailment needs to be formally

specified for both the source and target languages. We

are assuming such a declarative semantics for the inter

lingua. In cases where a language does not have such a

declarative semantics, specifying a translation of that

language into the interlingua provides a declarative se

mantics for the language. Thus, another advantage of

using an interlingua is that it offers a relatively easy

way to specify a semantics for new representation lan

guages. This use of an interlingua for specifying the

semantics of representation languages may turn out to

be at least as important as its role in facilitating trans

lation among representation languages. This method

of semantics specification is based on the following def

inition:

Definition 2.1 (interlingua-based semantics)

Let L be a language, Li be an interlingua lan

guage with a formally defined declarative semantics,

TRANSl^i be a binary relation between top-level

forms of L and top-level forms of Li , and BTl be a set

of top-level forms in L, . The pair (TRANSl,l„ BTL)
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is called an Li-based semantics for L when for every

set Tl of top-level forms in L, there is a set Tl- of

top-level forms in Li such that

V*i € TL3s2 E TLi TRANSl,l.{si,s2)

Vs2 <E TL,3Sl € TL TRANSLiL,(8Us2)

and the theory of Tl, UBTl is equivalent to the theory

represented by Tl-

Hence, TRANSL,Li specifies translations of top-level

forms in L to top-level forms in Li. Roughly speak

ing, BTl is the set of axioms that are included in the

semantics of L expressed in L, . For example, a device

modeling language might have a vocabulary of mea

sures (e.g., inch, foot) and include in its semantics the

axioms that relate those measures.

If (TRANSl,l„BTl) is being used to define the se

mantics of L, then "the theory represented by Tl" is

equivalent to "the theory of TLi U BTl" by definition.

If L has an independently defined semantics, then the

equivalence of the two theories is a requirement on the

definition of TRANSlm-

TRANS is defined as a relation rather than a function

because we allow there to be more than one transla

tion of a top-level form in L so long as it does not mat

ter which translation is picked. Thus, TRANS can be

viewed as a function into equivalence classes of inter-

lingua top-level forms. Note also that TRANS defines

what it means for two sentences in L to be equivalent,

namely that their translations are equivalent sentences

in Li.

An additional advantage of the interlingua-based ap

proach to semantics is that if such a semantics is given

in a machine executable form, it can be used to au

tomatically translate a new language into the interlin-

gua. Hence, with a single effort, one can give both

a semantics for a new language and a procedure for

translating it into the interlingua.

In this paper, we describe a language translation

methodology in which one specifies the semantics of

a new representation language using a special kind

of definite clause grammar [Pereira & Warren 80] that

we call a definite clause translation grammar (DCTG).

This grammar can be used to translate top-level forms

in the new language into an interlingua. A DCTG is

a set of Horn clauses that has a distinguished binary

predicate symbol TRANS such that if si is a top-level

form in the new language and s2 is a top-level form in

the interlingua, TRANS(s\ , s2) follows from the gram

mar just in case s2 is a translation of s\. Our method

ology is related to that reported in [Strzalkowski 91] in

which the notion of reversible definite clause grammars

is informally developed for use in the context of pro

ducing generators from parsers for natural languages.

3 Definite Clause Translation

Grammars

We now discuss the role of DCTGs in the language

translation task. Given an interlingua-based seman

tics for a language L\ that is written as a DCTG,

we show how to check whether or not it can be used

to translate sets of top-level forms in L\ into the in

terlingua. Perhaps, by itself, this is not particularly

significant since one normally writes a DCTG so that

it has this property. However, we show how to use the

same techniques to check a much more obscure prop

erty, whether or not a DCTG can be used to translate

in the other direction, i.e., to translate sets of top-

level forms from a subset of the interlingua into sets

of top-level forms in L\ . Such a "reverse" translator

defines a subset of the interlingua that can be directly

translated into a specialized language.

The formalism that follows is generalized to two arbi

trary languages, rather than requiring one of the lan

guages to be an interlingua, since all of our results

apply to this more general case. We begin by defining

what it means for a DCTG to be a translator. Several

preliminary notions are required. The first is the no

tion of a set of first-order Horn clauses implementing

a relation.

Definition 3.1 (implements) Let hp be the reflex

ive, transitive closure of the PROLOG inference rela

tion; i.e., T hp (J just in case there is an SLD refutation

of {-><£} UT [Loyd 87]. A set of first-order Horn clauses

G is said to implement a relation R if

Van, . ..,xn{R(x i , . . . , xn)o[G\-p R{xi,...,xn)]}

Definition 3.2 (verifier) Let (TRANSLl,L3, BTLl)

be an L2-haseo\ semantics for L\. A set of Horn clauses

G is said to be an L\ ,L2-verifier when G implements

TRANSL,M- The Predicate symbol TRANSLl,L3 is

called the goal symbol of G.

A set of Horn clauses G can implement a relation R in

such a way that G can be used only to check whether

R is true of some tuple of constants. We distinguish

sets of Horn clauses for which this is the case from

sets which implement R in such a manner as to en

able R to be used like a function; i.e., given values for

some of the arguments of R, the Horn clauses can be

used to derive the remaining arguments. We call such

implementations constructive.

Definition 3.3 (constructively implements) Let

R be an n-ary relation symbol and G be a set of Horn

clauses that implements R. G is said to constructively

implement R in arguments t'i , . . . , tm , where 1 < ij <

n, for all j = 1, . . . , m, if

Vii,...,xn{[G r-p R(xi,...,xn)] ^

[G hp 3x,-, , ximR(xu . . . , in)]}
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and the terms x,,, . . . , x,m are extractable from the

above existence proof.

Hence, if G constructively implements R in some sub

set of its arguments . . . , »m, whenever G can be used

to verify that R is true of some n-tuple (xi, . . . , x„),

then given the values for all the Xj,» ^ »i,-,»mi

G can also be used to derive the other values in the

n-tuple x,-, , . . . , X{m . This notion is similar to "in"

and "out" arguments as reported in [Strzalkowski 90] .

Note that, it is possible for m = 0 or m = n. In other

words, it is possible for the implementations of some

relations to construct all of their arguments or none of

them.

If G constructively implements an n-ary predicate R

in arguments i'i , . . . , im , we write

G:ilI({l,...1n>-{ii,...,tm})-*{ii1...Iim}]

For example, if G constructively implements a 3-ary

predicate R such that given values for R's first and

second argument, G can be used to construct values

for R's third argument, we write G : 2} -»■ {3}],

or just G : #[1,2 -> 3].

When an n-ary predicate R occurs positively in a Horn

clause C, we will say that the clause C (rather than

a set of clauses) constructively implements R if for all

n-tuples of terms (<i , . . . , t„) for which there is a refu

tation proof of R(ti, . . . ,<„) in which C occurs, it is the

case that given just the terms i,m , there exists

a refutation proof in which C occurs that constructs

the terms tim+1 ,...,<<„. We will use the same notation

for constructive implementation by a single clause C

as we do for constructive implementation by a set of

clauses, namely C : R[ii, . . . , im -► im+i ,...,!„].

If, in addition to being a verifier, a set of Horn clauses

G can be used to construct sentences in Li that are the

translations of sentences in L\ , G is called a translator.

Definition 3.4 (translator) A set of Horn clauses G

that is an L\, LVverifier is called a translator from Li

to L>2 when G's goal symbol TRANSlul3 is construc

tive in its second argument, i.e., G : TRANSl, —>

2]-

3.1 Showing that a set of Horn clauses is a

translator

Given a set of Horn clauses G with goal symbol

TRANS, we show how to prove that G is a translator.

The proof involves showing that G has the property

G : TRANS[l 2], which is done by showing that

each clause C in G in which TRANS occurs positively

has the property C : TRANS[l ->■ 2]. This, in turn,

requires showing that the predicate symbols in each

of those clauses construct values for certain of their

arguments.

The results in this section give a method of check

ing whether a DCTG can be used as a transla

tor. The technique has been used successfully on

DCTGs for classic to kif, loom to kif, and ex

press [Spiby, et al ?] to KIF. We have found that the

technique is very effective not only for showing that a

DCTG can be used as a translator, but also for iden

tifying where the problems are in a DCTG that is not

a translator.

The key notion used in the technique, which we now

define, is called a constructive chain.

Definition 3.5 (definition) Let G be a set of Horn

clauses that implements the predicate P. The set of

clauses in G in which P occurs positively is called the

definition of P.

Definition 3.6 (constructive chain) Let G be a set

of Horn clauses, C be a clause in G of the following

form:

(<- (P ei e2 ...)

(Qi eii2 ...) ...(Qn e„,i e„i2 ...)),

and {x\ , . . . , xr} be a subset of the variables occurring

in C. We say that C contains a constructive chain

ending in its head from {zi, . . . , xr} to every variable

x,-,i = l,...,r that occurs in the head. Moreover,

if y is a variable occurring in term c,j (i.e., in the

jth argument of the ith literal of the tail of C), we

say that C contains a constructive chain ending in

i from {xi,...,xr} to y when G : Qi[k\, . . . ,km -»

. . . , j] and for each variable z occurring in expressions

eik1' - 'eikm either there is a constructive chain

ending in the head of C from {xi, . . . , xr} to z or there

is some 1 < / < t such that there is a constructive chain

ending in / from {xi, . . .,xr} to z.

The definition of a constructive chain from a given set

of variables {*i xP} to a given variable y occur

ring in a clause is recursive. The base case for the

recursion is when y occurs in the head of the clause.

The recursive case is when y occurs in the jth argu

ment of the ith literal of the tail of the clause. In that

case, the grammar G must constructively implement

argument j of the predicate in the ith literal given ar

guments k\, . . . , km, and there must be a constructive

chain from {xi, . . . , xr} to every variable occurring in

arguments k\ km .

Example: Constructive chain.

Consider the following clause from the grammar

Gcl.kif:

(<- (TRANScl.kif

(cl-def ine-concept ?Con-name ?Expr)

(defrelation ?Con-Name (?C1-Var) := ?New))

(var ?CL-Var)
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(relation-symbol ?Con-Name)

(newexpr ?Expr ?New ?C1-Var))

Suppose that var constructs an instantiation for its ar

gument (i.e., Gcl.kif : var[—► i]), relation-symbol

is not constructive (i.e., GCl,kif : relation-symbol

[l -»]), and grammar GCl,kif constructively im

plements the second and third arguments of

newexpr given the first argument (i.e., GCl,kif :

newexpr[l —> 2, 3]). Then, there is a constructive

chain ending in 3 (i.e., ending in the third literal in the

tail) from {?Con-name, ?Expr} to ?New because there

is a constructive chain to ?Expr ending in the head of

the clause and newexpr has the property [1 —► 2, 3].

More generally, in order to prove that the above clause

has the property TRANSCl,kif[1 —► 2], we must show

that there is a constructive chain from the variables

occurring in the first argument of TRANSCl,kif (i.e.,

{?Con-name, ?Expr}) to each variable occurring in

the second argument of TRANSCl,kif, (ie., ?Con-Name,

?C1-Var, and ?New). There is a trivial chain to

?Con-Name, there is a chain ending in 1 to ?CL-Var,

and we have just shown that there is a chain to ?New.

For purposes of exposition, if there is a constructive

chain in the head of a clause from {ii, . . . , xr} to a

variable y or a constructive chain in some i < n from

{xi, . . . , xr} to y, then we say that there is a construc

tive chain in the clause from {x\, . . . , xr) to y, i.e., we

drop the reference to where the chain ends.

We now state and prove the main results of the paper.

The following theorem and corollary tell us that we

can prove a predicate is constructive in some subset

of its arguments by showing that there are construc

tive chains to certain of the variables occurring in each

clause in the predicate's definition.

Theorem 3.1 Let G implement P, the definition of

P contain the clause

C = (<- (P ei «2 ••••*)

Oh el,l el,2 ■••)•• -(On enl en2..)),

G implement each of the Q± in C, and {xi,...,xr}

be the variables occurring in the expressions e^

eim> 1 ^ *'« < = *lf-i'm- If there is a con

structive chain from {xi,...,xr} ending in the left

most occurrence of every variable in the tail of C

and there is a constructive chain to every variable

occurring in e^ 9* , then C : P[ii , . . . , im —►

m+1 k

im+i----»ik]-

Proof: Let (ti,...,tk) be a k-tuple of values such

that G t-p P(t\ , . . . , tk) and without loss of generality,

suppose that P : [1, . . . , m -*m + 1, . . . , n]. We show

that, given an SLD refutation of {->P(ti, . . .,tk)} U

G in which ->P(ti, ...,<*) is resolved with C, we can

construct a refutation of

{-iP(*i, • . .,tm,ym+i, . . .,y„)} UG

, where the variables ym+\,---,yn are bound to

*m+i> • • ■ , <r» , respectively, in the refutation.

First, suppose the refutation is of length 1. Then C

has an empty tail and, by assumption, there must be

a constructive chain ending in the head to each of the

variables occurring in • ■ , e^i i.e., the variables

occurring in em+i, . . . ,6^ must be a subset of those

occurring in e^ , . . . , em- Hence, since the e^, ,«■

must unify with t\ tm, the single step refutation

of

{-/>(*!,... ,<m,ym+1,...,yfc)}UG

results in bindings for all of the variables occurring in

em+l> •••> ek> so *,na*1 each of the ym+i, . . . , y* is bound

to im+i , . . . , tk respectively.

Now, we suppose there is a refutation of

{->P(<i,...,<*)}U<7

of length greater than one and show how to construct

a refutation of

{->P(<i, . . .,tm,ym+i, ■ ■ - .y*)} uG

resulting in each of ym+\ yu being bound to

im+ii The first step in the refutation being

constructed is to resolve -<P(ti, . . . , tm, ym+i . • • • , yk)

with C. As in the one step case above, the t\,...,tm

must unify with ei,...,e«, resulting in a unifier <r

containing bindings for each of the variables in those

expressions.

Now suppose that in the refutation of

{-P(ii,...,t*)}UG,

the step that eliminates the ith literal in the tail of

C yields a unifier o~\ such that e^ i«Ti = f,,,...,

ej r<Ti = tir, and suppose that has the property

—> ji+it •• ■»>]• Suppose further that we

have constructed a refutation of

K(ii,..,(m,!fc.+i, -,y*)}uG

up to the point where the next step is to elimi

nate the ith literal in the tail of C. Since the left

most occurrence of every variable in the tail of C is

constructive, the refutation to this step must have

yielded a unifier er2 m which the variables occur

ring in •i1jj> • • . , •i.j ^ are a" bound. Suppose that

e^ j ^(72 = <,,,..., e^J. ""2 = U, ■ Since there is a refu

tation of {->P{ti, . . .,tfc)}UG, it must be the case that

C '"p Qi('«i i • ■ • i '«r)> a11^ since has the property

—► ji+i i • • • , jr], it must be the case that

G hp 3z/+i,...,zrQi(<il,...,<i,zi+i,...,zr) and that

the terms <j+i,...,<r are constructed in that proof.

Hence, the resolution step that eliminates the ith lit

eral will produce a unifier as such that ei ^°"3 =

*•'>«+>>• ••-ei,jr<T3 = *'>
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Hence given a refutation of {->P(<i, . . .,<*)} U G, it is

possible to construct a refutation of

{->P(<i ,...,tm, ym+i , . . . , »*)} U G

in which every variable is bound to the value it has

in the refutation of {->P(/i, . . . ,/fc)} UG Since there is

a constructive chain in C to every variable occurring

in the expressions em+i, . . . , ex, and we can construct

values for these variables that are the same as those

occurring in a refutation of {-<P(t\, . . . ,tk)} UG, it

must be the case that the refutation produces a unifier

tr such that em+i<r = <m+1 , . . . , e^<r = Therefore,

it must be the case that j/m+i — ^m+i > • • • > !/n — tk- ^

It is interesting to note that for most "reasonable

grammars," the converse of this theorem is also true.

That is, if for a clause C, C : P[i\, . . . ,im —►

tm+i, . . . , in], there are constructive chains from the

variables in arguments t'i , . . . , im of the head to the

left most occurrence of every variable in the tail of

C and to the variables in the arguments im+i , . . . , t„

of the head. However, it is possible to write "weird"

grammars for which this is not the case. For example,

if a predicate has extra arguments that it ignores, then

the converse of the theorem will not hold.

Corollary 3.1 Let G implement P. If C

P[h , • ■ , *'m -> im+i ,.-.,in] for all C in P 's defini

tion, then G : P[ii , . . . , im ->■ im+i ,...,»'„]•

Proof: Consider an n-tuple (fi, . . . ,t„) such that G hp

P(<i, . . . ,tn). P(<i, . . . ,t„) must be established by an

SLD refutation involving one or more clauses in the

definition of P. Since every such clause has the prop

erty [t'i im —> im+i . • • • , «n]i there must also be a

refutation of P(<tl ,...,<,„, y,m+1 , . . . , y,J yielding a

unifier a such that y,m+1 a = <im+1 , . . . , yina = <,„ . □

Here again, for most reasonable grammars the con

verse of this corollary is true. In the proof of theo

rem 3.1, we used the fact that if G \-p P(<i, . . . ,tn)

and G : P[»i,...,tm —> tm+i . ..,»„], then there ex

ists a proof from G that constructs Um+l , . . -,tin from

*in • • •>'»!»• A. question that arises is whether or not

this is the first proof that PROLOG finds. Because

we assume in the definition of interlingua-based se

mantics that all translations of a given sentence are

equivalent, if G hp TRANSLuL3Qi,h) and a proof

of G r-p 3xTRANSLltLi{h, x) produces a sentence 1'2,

then it must be the case that 1'2 is equivalent to l2-

Hence, the first sentence constructed in the proof of

G hp 3xTRANSlul3(Ii,z) can be used whether or

not it is l2.

Example: Proving that a predicate is constructive.

To show that a given DCTG is a translator, we must

show that its goal symbol has the property [1 —► 2].

The method of proving Theorem 3.1 can be used di

rectly to show that a DCTG has that property or to

identify the clauses in a grammar that must be mod

ified in order to obtain that property (and therefore

to produce a translator from a verifier that is not a

translator). For example, as with all the grammars we

have developed, we have verified that our classic to

KIF grammar is indeed a translator. This was done

by showing that its goal symbol TRANSCl,kif has the

property [1 —► 2]. To accomplish this, we showed that

the predicate newexpr, which occurs in the definition

of TRANScl.kif, has the property [1 -> 2,3]. Below is

the definition of newexpr from the grammar.

(<- (newexpr host-thing (host-thing ?C1-Var)

?C1-Var)

(var ?C1-Var))

(<- (newexpr (and ?Expri ?Expr2)

(and ?Newl ?New2)

?C1-Var)

(newexpr ?Expri ?Newl ?C1-Var)

(newexpr ?Expr2 ?New2 ?C1-Var))

(<- (newexpr (and ?Exprl ?Expr2 . ?Rest)

(and ?Newl . ?RNEW)

?C1-Var)

(newexpr ?Exprl ?Newl ?C1-Var)

(newexpr (and ?Expr2 . ?C1-Rest)

(and . ?RNEW)

?C1-Var))

(<- (newexpr (all ?Role-Name ?Expr)

(=> (?Role-Name ?C1-Var ?New-Var)

?New)

?C1-Var)

(var ?C1-Var) (relation-symbol ?Role-Name)

(newexpr ?Expr ?New ?New-Var))

To show that newexpr has the property [1 —> 2,3],

we must show that it has this property in each of the

above clauses. To do this, we must show two things:

that there are constructive chains from the variables

occurring in the first argument of the clause's head to

the left most occurrence of every variable that occurs

in the tail, and that there are constructive chains from

the variables in the first argument to the variables in

the other arguments.

As before, assume that GCl,kif : var[—> l] and that

Gcl.kif : relation-symbol[i —>]. The proof is done

for the first clause as follows. There are no variables

in the first argument in the head, so we must show that

there is a constructive chain from {} to the left most

occurrence of ?C1-Var in the clause. This is straight

forward because var [—¥ 1] .

The property [1 —¥ 2,3] is more difficult to establish

in the subsequent clauses of newexpr's definition be

cause they define newexpr recursively. An inductive

argument is required to show the property in these

clauses. The basis step in the inductive argument re

quires showing that the predicate has the property in
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each clause in which it is not defined in terms of it

self. For example, we must show (as we have) that

newexpr is [1 —¥ 2, 3] in the first clause above. In each

clause in which a predicate is defined recursively, we

assume that the predicate has the property in each

of its occurrences in the tail of the clause and show

that, under this assumption, the predicate has the

property in the clause. For example, we assume in

the second clause above that newexpr has the prop

erty [1 —¥ 2,3] in both of its occurrences in the tail,

and we must show that there are constructive chains

from {?Exprl , ?Expr2} to the left most occurrences

of ?Newi, ?New2, and ?C1-Var. There is a constructive

chain from {?Exprl , ?Expr2} to ?C1-Var ending in 1,

a constructive chain from {?Exprl , ?Expr2} to ?Newl

ending in 1, and a constructive chain from {?Exprl,

?Expr2} to ?New2 ending in 2. Therefore, newexpr has

the property [1 -> 2,3] in this clause.

A property of —► that is often useful when proving

that predicates are constructive is that if a predicate

is constructive in some subset of its arguments then it

is constructive in any smaller subset of its arguments.

For example, the predicate member has the property

[2 -»■ 1]. Therefore, it is also [2, 1 ->].

Lemma 3.1 Let G be a set of horn clauses and P be

an n-ary predicate symbol such that

G:P[{ii,...,im}-+{ }],m < n

. Then,

G:P[{ii,...,im,i}-¥({ }-{*})]

for every i g {im + 1 in}-

Proof: Suppose that G hp P(ti, ■ ■ - ,t„) and, without

loss of generality, that G : P[l, . . . ,m —¥ m+ 1, . . . ,n].

Then,

G Hp 3zm+i,...,xnP(ti,...,tm,xm+i,...,z„), and

the terms <m+i ,...,<„ are extractable from the

proof; i.e., there exists a refutation of G U

{->P(ti,. . . ,tm, xm+i, . . . , i„)} that yields a most gen

eral unifier <r such that xm+ia = tm+ii ■ • ■ > xn<r = tn-

We must show that for any of the variables x,-,

where m + 1 < t < n, that there is a

refutation of the new goal that results from re

placing Xi with U in ->P(<i, . . . , tm, xm+i, . . . , i„).

So, we arbitrarily choose xn, replace it with t„,

and show that there exists a refutation of G U

{->P(<i,... ,tm,;rm+i,... ,*„_!,*„). This is done by

showing how to transform the refutation of G U

{->P{t\, . . . , tm, xm+i, . . . , x„)} into the desired refu

tation.

The refutation of G U {->P(ii, . . . ,tm, xm+i, ...,i„)}

is a finite sequence

90 = -,P{Xl,...,tm,Xm+l,...,Xn)

9k = □

of goals, a sequence Ci,. . . ,c* of variants of clauses of

G, and a sequence 0"\, . . . , <r* of most general unifiers

such that each </,+i is derived by resolving <7i<7"i+i with

Ci+iffi+i. Note that, by assumption, xn<Tk = tn-

Now, consider the unifier fft» whose only substitution

is t„ for xn ■ We transform the above refutation by re

placing each it, with o"i(T{n. Since each of the new uni

fiers is a specialization of the original, each resolution

step must still be correct. Furthermore, CfcfTt. = cr*,

so the final bindings for all of the x, remain the same.

But now we can replace x„ in go with tn with

out effecting the first step of the refutation, and

so this new refutation is a refutation of G U

. . . , tm, xm+i , . . . , x„_i, <„)} that yields a uni

fier at, such that xm+i<r* = tm+i, . . . , x„_i<Tfc = <„_i.

□

We have found this result to be useful in proving pred

icates constructive because it allows us to "short cir

cuit" some required steps. Often we show that some

predicate is constructive in some subset of its argu

ments and then later need to show that it is construc

tive in a smaller subset. Using this lemma, the needed

result is immediate.

4 Reversible Definite Clause

Translation Grammars

Now, we are in a position to specify when a DCTG

can be used not only to translate from L\ to Li, but

also from Li to L\ , a property we term reverst6/e in

place.

Definition 4.1 (reversible in place) Let G be a

translator from L\ to Lj. If G can also be used as

a translator from a subset of L^ to L\, we call G re

versible in place.

Lemma 4.1 Let G be a translator from L\ to L^. If

G's goal symbol TRANSluLi has the property [2 —¥ 1],

then G is reversible in place.

This result is obvious since given a value S2 for

TRANSl^Li's second argument, for any value sj that

the DCTG constructs for its first argument, it must

be the case that TRANSLi,lAsu^)-

Translators that are reversible in place have some use

ful properties that follow from our assumptions about

an interlingua-based semantics, as follows. Given

languages L\ and Li, a DCTG with goal predicate

TRANSl^Li, and equivalence relations =i and =2 on

top-level forms in L\ and Li respectively:
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Vxxyix2y2

[TRANSLllLa[xi,yi) A TRANSLltL,{x2,y2)/\

xi =1 x2 => 2/1 =2 yi]

Vxiyii2y2

[TRANSLlM{xuyi) A TRANSLlM(x2,y2)A

*1 ^1 *2 =► 1/1 ^2 Ifc]

These properties imply that any sentence «i in L\ can

be translated to a sentence «2 in L2, and s2 can be

translated back into a sentence in L\ that is equivalent

to *i. Hence, TRANSlx,l? can be used as its own

inverse with respect to the equivalence classes =i and

=2-

5 Showing that a Translator is

Reversible

In our methodology, the developer of a specialized rep

resentation language who wishes to build a translator

from his or her language to an interlingua, first writes

a DCTG G that is an interlingua-based semantics for

the language. The developer then shows that G's goal

symbol is [1-^2], yielding a translator from the spe

cialized language to the interlingua. The developer

then shows that G's goal symbol is [2-^1], yielding a

reverse translator to be used as a first approximation

of a translator from the interlingua to the specialized

language.

Example: A DCTG that is a translator and reversible

in place.

We have shown that our CLASSIC to KIF translator

is reversible in place by showing TRANSCl,kif[2 —> 1].

Doing that requires showing that newexpr has the

property [2 —> 1,3], which is done using an inductive

argument structurally identical to the argument that

newexpr has the property [1 2].

Example: A DCTG that is a translator, but not re

versible in place.

Another DCTG that we have worked on is a KlF-based

semantics for loom. We have shown that this DCTG

is a translator. However, it is not reversible in place.

One difficulty can be illustrated by the following clause

from the DCTG:

(<- (TRANSloom,KIF

(defconcept ?name ?keyl . ?rest) ?new)

(member : is ?rest)

(translate-condef

(defconcept ?name ?keyi . ?rest) ?new))

The predicate translate-condef has the properties

[1 -¥ 2] and [2 —► 1] in the grammar. The predi

cate member has the property [2 —► 1], although in

its normal use, it is [1,2 —>]. TRANSLOom,kif has the

property [1 —► 2] because there is a constructive chain

ending in 2 from {?name , ?key 1 , ?rest} to ?new and

the left most occurrence of every variable in the tail of

the clause is constructive. However, TRANSLoom,kif is

not [2 —> 1] because, while there is a constructive chain

from {?new} to each of the variables ?name, ?keyl, and

?rest, the left most occurrence of ?rest in the tail is

not constructive. As a result, if one attempts to use

this DCTG in reverse, it does not halt.

The purpose of the member literal in the above clause is

to speed the translation from LOOM to KIF by perform

ing a quick check on the form of ?rest to determine if

translate-condef is the right way to translate it. Re

moving the member literal does not effect correctness

when translating from LOOM to kif and, in addition,

TRANSLOom,kif becomes [2 —> 1] in the clause. Hence,

this example clause can be made reversible in place

simply by removing the member literal.

When a DCTG is reversible in place, the sense of the

variables in the head of the clauses that define the

goal symbol must be reversible, from input to output

and vice versa. When translating in one direction, the

input variables are in the first argument and the con

structed variables are in the second argument. When

translating in the other direction, the input variables

are in the second argument and the constructed vari

ables are in the first.

This phenomenon of reversing the sense of variables

"trickles down" to other predicates in a grammar that

is reversible in place. The sense of some nonempty

subset of the variables in these "supporting" predi

cates must be reversible. For example, in order for

TRANScl.kif to have both the properties [1 2] and

[2 -> 1], newexpr must have the properties [1 —► 2,3]

and [2 —> 3, 1]; i.e., the sense of the variables in argu

ments 1 and 2 must be reversible.

The above property, along with the linearity of SLD

resolution, implies that a DCTG can be reversible in

place only if every constructive chain has a length no

greater than 1. To see this, consider newexpr and

suppose the constructive chain from the variables in

argument 1 to some variable in argument 2 is of length

greater than 1. Then, when the sense of the variables

in these arguments is reversed, the direction of the

chain is reversed, i.e., it is right-to-left instead of left-

to-right.

Hence, there are some grammars that would be re

versible if it were not for the linearity of SLD resolu

tion. Given such a grammar, it is straightforward to

produce another grammar that performs the reverse

translations. To obtain the reverse grammar from the

original, the order of the literals in constructive chains

is reversed.

A reversed constructive chain is defined exactly as is

constructive chain, except that the direction in which

the chain is constructed through the tail is from right

to left. We use the notation C : P[»i, . . . ,im <
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»m+i i • • • , in], 1 < H < n, t = 1, . . . , n, when P is the

predicate symbol of the head of C and there is a re

versed constructive chain from every variable occur

ring in arguments t'i , . . . , :m of the head to the right

most occurrence of every variable in the tail and to

every variable occurring in arguments im+i, ■ ■ ■ , in of

the head.

Definition 5.1 (simply reversible) A DCTG G

that is a translator from languages L\ to Li is sim

ply reversible if G : TRANSLl,L3\? *~ 1].

6 Ongoing Work

Our ongoing work falls into three categories: extend

ing our results on reversible grammars, translation be

tween subsets of the interlingua, and applications.

The results in this paper apply to DCTGs that are

context free. Such grammars require a knowledge base

in a specialized representation to be a set of indepen

dent top-level forms. Unfortunately, knowledge bases

in many representation languages contain context sen

sitivities where the presence of one top-level form af

fects the meaning of other top-level forms. To circum

vent this limitation, our work on grammars is currently

focused on extending our results to context sensitive

grammars.

Because of the expressive power of first-order horn

logic, it is not difficult to write DCTGs that are con

text sensitive. However, techniques must be developed

for writing context sensitive DCTGs that are provably

constructive and reversible. The approach we are pur

suing is to allow the input argument of the goal symbol

in a DCTG to be a set of top-level forms rather than

a single form. Then, a grammar can specify a trans

lation for a set of sentences that is different from the

translation of the individual sentences.

It appears that our techniques for proving that a

DCTG is constructive and reversible extend in a

straightforward manner to grammars of this new form.

However, there is at least one unresolved issue. The

interpretation is unclear when a grammar contains a

rule for translating a set of sentences and also contains

rules for translating subsets of that set. In some cases,

the interpretation should be that the translations of

supersets should always supersede the translations of

subsets. Unfortunately, this is not always the case,

and further research is required to develop a complete

understanding and formal analysis of this situation.

Thus far, our work on translation between subsets of

the interlingua has been focused on building systems.

For example, we have built a system that translates

between LOOM and CLASSIC. When translating from

loom to CLASSIC, the steps are: (1) a grammar is

used to translate from LOOM into a subset of KIF, (2)

this subset of KIF is translated into another subset of

KIF, and (3) this latter subset translates via a KIF to

classic grammar into classic Examples from both

of these grammars have appeared in this paper. The

fact that these grammars are reversible plays a key role

in this system's ability to also translate from CLASSIC

to LOOM.

Translation between the "loom recognizable" sub

set of KIF and the "classic recognizable" subset of

KIF requires determining, for any given top-level form

Floom in the LOOM subset, a top-level form Fcl

in the classic subset such that Floom is logically

equivalent to Fcl- We have developed a number of

heuristic techniques for finding such equivalent forms.

These are rewriting techniques that often involve the

introduction of new nonlogical symbols (many of these

techniques are enhancements to those discussed in

[Van Baalen92]). We are in the process of perform

ing a formal analysis of these techniques.

Our work on applications falls into two categories.

First, we continue to construct grammars for addi

tional knowledge representation languages and to con

struct systems that translate these languages into

and out of KIF. Second, we are working on apply

ing our translation techniques to translating between

databases in different database languages. It appears

that our techniques apply to this problem as well.

7 Summary

We have described a methodology for translating

knowledge representation languages based on the use

of an interlingua for communicating knowledge. The

interlingua-based translation process can be thought

of as consisting of three major steps: (1) translation

from the source language into a subset of the inter

lingua, (2) translation between subsets of the inter

lingua, and (3) translation from a subset of the in

terlingua into the target language. The methodology

advocates that the first translation step into the inter

lingua be specified by a grammar consisting of a set

of Horn clauses (called a Definite Clause Translation

Grammar) that constructively implements a transla

tion predicate relating top-level forms in a source lan

guage to their translations in an interlingua. We ob

served that in cases where the source language does

not have a declarative semantics, specifying a trans

lation of that language into the interlingua provides a

declarative semantics for the language. Thus, another

advantage of using an interlingua is that it offers a

relatively easy way to specify a semantics for new rep

resentation languages.

We specified and proved the correctness of a set of con

ditions under which such a DCTG is reversible so that

the grammar can also be used to translate out of the

interlingua. The proof provides a method that can be

used directly to show that a DCTG is constructive and

reversible or to identify the clauses in a grammar that
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must be modified in order to obtain those properties.

Given these techniques, a developer of a specialized

representation language that desires to build a trans

lator from the specialized language to an interlingua

first writes a DCTG G that is an interlingua-based se

mantics for the language. The developer then uses the

methods we have provided to show that G constructs

a translation in the interlingua for any top-level form

in the specialized language and therefore that G is a

translator from the specialized language to the inter

lingua. The developer then again uses the methods we

have provided to show that G also is a translator out of

the interlingua in that it constructs a top-level form in

the specialized language as a translation for any top-

level form in the subset of the interlingua that could

be produced by G when it is being used as a translator

from the specialized language. Such a reverse transla

tor provides a first approximation of a translator from

the interlingua to the specialized language.

These languages and methods have been incorporated

into a "translator shell" system that provides facili

ties for specifying interlingua-based translators using

KIF as the interlingua. The system has been used to

build translators for multiple representation languages

and those translators have successfully translated non-

trivial knowledge bases.

Our ongoing work falls into three categories: extending

our results on reversible grammars to context sensitive

grammars, translation between subsets of the interlin

gua, and the development of grammars for additional

representation languages as well as for database lan

guages.
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Abstract

Constraint networks are a simple represen

tation and reasoning framework with diverse

applications. In this paper, we present a new

property called constraint tightness that can

be used for characterizing the difficulty of

problems formulated as constraint networks.

Specifically, we show that when the con

straints are tight they may require less pre

processing in order to guarantee a backtrack-

free solution. This suggests, for example,

that many instances of crossword puzzles are

relatively easy while scheduling problems in

volving resource constraints are quite hard.

Formally, we present a relationship between

the tightness or restrictiveness of the con

straints, and the level of local consistency

sufficient to ensure global consistency, thus

ensuring backtrack-freeness. Two definitions

of local consistency are employed. The tradi

tional variable-based notion leads to a con

dition involving the tightness of the con

straints, the level of local consistency, and

the arity of the constraints, while a new

definition of relational consistency leads to

a condition expressed in terms of tightness

and local-consistency level, alone. New al

gorithms for enforcing relational consistency

are introduced and analyzed.

1 Introduction

Constraint networks are a simple representation and

reasoning framework. A problem is represented as a

set of variables, a domain of values for each variable,

and a set of constraints between the variables, and

the reasoning task is to find an instantiation of the

variables that satisfies the constraints. In spite of the

simplicity of the framework, many interesting prob

lems can be formulated as constraint networks, includ

ing graph coloring [Montanari, 1974], scene labeling

[Waltz, 1975], natural language parsing [Maruyama,

1990], and temporal reasoning [Allen, 1983; Dechter et

al, 1991; Meiri, 1991; van Beek, 1992].

Constraint networks are often solved using a back

tracking algorithm. However, backtracking algorithms

are susceptible to "thrashing:" discovering over and

over again the same reason for reaching a dead end in

the search for a solution. To ameliorate this thrash

ing behavior, algorithms for preprocessing a constraint

network by removing local inconsistencies have been

proposed and studied (e.g., [Dechter and Meiri, 1989;

Mackworth, 1977; Montanari, 1974]). Sometimes a

certain level of local consistency is enough to guaran

tee that the network is globally consistent. A network

is globally consistent if any solution for a subnetwork

can always be extended to a solution for the entire

network. Hence, if a network is globally consistent, a

solution can be found in a backtrack-free manner.

In this paper, we present a relationship between the

tightness or restrictiveness of the constraints, the ar

ity of the constraints, and the level of local consistency

sufficient to ensure global consistency. Specifically, in

any constraint network where the constraints have ar

ity r or less and the constraints have tightness of m

or less, if the network is strongly ((m + l)(r — 1)4- 1)-

consistent, then the network is globally consistent. In

formally, a network is strongly fc-consistent if any con

sistent instantiation of any it — 1 or fewer variables can

be extended consistently to any additional variable.

Also informally, given an r-ary constraint and an in

stantiation of r — 1 of the variables that participate in

the constraint, the parameter m is an upper bound on

the number of instantiations of the rth variable that

satisfy the constraint.

We also present a new definition of local consistency

called relational m- consistency. The virtue of this def

inition is that, firstly, it allows expressing the relation

ship between tightness and local consistency in a way

that avoids an explicit reference to the arity of the

constraints. Secondly, it is operational, thus general

izing the concept of the composition operation defined

for binary constraints, and can be incorporated natu
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rally in algorithms for enforcing desired levels of rela

tional consistency. Thirdly, it unifies known operators

such as resolution in theorem proving, joins in rela

tional databases, and variable elimination for solving

equations and inequalities. Finally, it allows identi

fying those formalisms for which consistency can be

decided by enforcing pairwise consistency, like propo-

sitional databases and linear equalities and inequali

ties, from general databases requiring higher levels of

local consistency.

The results we present are particularly useful in ap

plications where a knowledge base will be queried

over and over and we desire that queries be answered

quickly. In such applications the preprocessing time to

enforce local consistency is of less importance. What

is of importance is knowing what level of local con

sistency will guarantee that queries can be answered

quickly.

2 Background

We begin with some needed definitions and describe

related work.

Definition 1 (binary constraint network; Mon-

tanari [1974]) A binary constraint network consists

of a set X of n variables {x\,X2, . . . ,xn}, a domain

Di of possible values for each variable, and a set of

binary constraints between variables. A binary con

straint or relation, Rij, between variables zj and Xj,

is any subset of the product of their domains (i.e.,

Rij C Di x Dj). An instantiation of the variables in

X is an n-tuple (Xi,Xi,...,Xn), representing an as

signment of Xi G Di to Xi. A consistent instantiation

of a network is an instantiation of the variables such

that the constraints between variables are satisfied. A

consistent instantiation is also called a solution.

Mackworth [1977] defines three properties of networks

that characterize local consistency of networks: node,

arc, and path consistency. Freuder [1978] generalizes

this to fc-consistency.

Definition 2 (^-consistency; Freuder [1978])

A network is ifc-consistent if and only if given any in

stantiation of any k — 1 variables satisfying all the di

rect relations among those variables, there exists an

instantiation of any kth variable such that the k val

ues taken together satisfy all the relations among the

k variables. A network is strongly k-consistent if and

only if ii is j-consistent for all j < k.

Node, arc, and path consistency correspond to strong

ly one-, two-, and three-consistent, respectively. A

strongly n-consistent network is called globally con

sistent. Globally consistent networks have the prop

erty that any consistent instantiation of a subset of

the variables can be extended to a consistent instantia

tion of all the variables without backtracking [Dechter,

1992b].

Following Montanari [1974], a binary relation Rij be

tween variables x, and Xj is represented as a (0,1)-

matrix with |D,| rows and \Dj \ columns by imposing

an ordering on the domains of the variables. A zero

entry at row a, column 6 means that the pair consist

ing of the ath element of D, and the 6th element of Dj

is not permitted; a one entry means the pair is permit

ted. A concept central to this paper is the tightness of

constraints.

Definition 3 (m-tight)

A binary constraint is m-tight if every row and every

column of the (0,l)-matrix that defines the constraint

has at most m ones, where 0 < m < \D\ — 1. Rows

and columns with exactly \D\ ones are ignored in de

termining m. A binary constraint network is m-tight

if all its binary constraints are m-tight.

Example 1. We illustrate some of the definitions us

ing a variant of n-queens proposed by Nadel [1989]

called confused n-queens. The problem is to find all

ways to place n-queens on an n x n chess board, one

queen per column, so that each pair of queens does

attack each other. One possible constraint network

formulation of the problem is as follows: there is a

variable for each column of the chess board, xi,..., xn;

the domains of the variables are the possible row posi

tions, Di = {1, . . . , n}; and the binary constraints are

that two queens should attack each other. The (0,1)-

matrix representation of the constraints between two

variables z, and Xj is given by,

f 1 if a = 6 V \a-b\ = |» - j\

,,a \ 0 otherwise,

for a,b = l,...,n. For example, consider the con

straint J?i2 between x\ and *j: #12,34 = 1> which

states that putting a queen in column 1, row 3 and a

queen in column 2, row 4 is allowed by the constraint

since the queens attack each other.

Q

Q Q

Q

(a) (b)

Figure 1: (a) not 3-consistent; (b) not 4-consistent

It can be seen that the networks for the confused n-

queens problem are 2-consistent since, given that we

have placed a single queen on the board, we can always

place a second queen such that the queens attack each



574 P. van Beek and R. Dechter

other. However, the networks are not 3-consistent. For

example, for the confused 4-queens problem shown in

Fig. la, there is no way to place a queen in the last

column that is consistent with the previously placed

queens. Similarly the networks are not 4-consistent

(see Fig. lb). Finally, every row and every column of

the (0,l)-matrices that define the constraints has at

most 3 ones. Hence, the networks are 3-tight.

2.1 Related work

Much work has been done on identifying relationships

between properties of constraint networks and the level

of local consistency sufficient to ensure global consis

tency. This work falls into two classes: identifying

topological properties of the underlying graph of the

network and identifying properties of the constraints.

Here we review only the literature for constraint net

works with finite domains.

For work that falls into the class of identifying topo

logical properties, Freuder [1982; 1985] identifies a re

lationship between the width of a constraint graph and

the level of local consistency needed to ensure a solu

tion can be found without backtracking. As a special

case, if the constraint graph is a tree, arc consistency

is sufficient to ensure a solution can be found with

out backtracking. Dechter and Pearl [1988] provide an

adaptive scheme where the level of local consistency is

adjusted on a node-by-node basis. Dechter and Pearl

[1989] generalize the results on trees to hyper-trees

which are called acyclic databases in the database com

munity [Beeri et a/., 1983].

For work that falls into the class of identifying proper

ties of the constraints (the class into which the present

work falls), Montanari [1974] shows that path consis

tency is sufficient to guarantee that a binary network is

globally consistent if the relations are monotone. Van

Beek and Dechter [1994] show that path consistency

is sufficient if the relations are row convex. Dechter

[1992b] identifies a relationship between the size of the

domains of the variables, the arity of the constraints,

and the level of local consistency sufficient to ensure

the network is globally consistent. She proves the fol

lowing result.

Theorem 1 (Dechter [l992b]) Any \D\-valued r-

ary constraint network that is strongly (|D|(r— 1) + 1)-

consistent is globally consistent. In particular, any

\D\-valued binary constraint network that is strongly

(\D\ + l)-consistent is globally consistent.

For some networks, Dechter's theorem is tight in that

the level of local consistency specified by the theorem

is really required (graph coloring problems formulated

as constraint networks are an example). For other net

works, Dechter's theorem overestimates. Our results

should be viewed as an improvement on Dechter's the

orem. In particular, our main theorem, by taking into

account the tightness of the constraints, always spec

ifies a level of strong consistency that is less than or

equal to the level of strong consistency required by

Dechter's theorem.

3 Binary constraint networks

In this section we restrict our attention to binary con

straint networks and present a relationship between

the tightness of the constraints and the level of local

consistency sufficient to ensure a network is globally

consistent. The results are generalized to constraint

networks with constraints of arbitrary arity in the next

section.

The following lemma is needed in the proof of the

main result for constraint networks with binary con

straints and in a later proof of the result generalized

to constraint networks with constraints of arbitrary

arity. The lemma is really about the "tightness" of

constraints and the sufficiency of a certain level of con

sistency. We state the lemma in more colloquial terms

to make the proof more understandable.

Lemma 1 Suppose there are fan clubs that like to

meet and talk about famous people, and the following

conditions.

1. There are n fan clubs and d famous people.

2. Each fan club meets and talks about at most m,

m < d, famous people.

S. For every set of m -f 1 or fewer fan clubs, there

exists at least one famous person that every club

in the set talks about.

Then, there must exist at least one famous person that

every fan club talks about.

Proof. The proof is by contradiction and uses a proof

technique discovered by Dechter for Theorem 1. As

sume to the contrary that no such famous person ex

ists. Then, for each famous person, /,-, there must

exist at least one fan club that does not talk about /, .

Let ct- denote one of the fan clubs that does not talk

about /,-. By construction, the set c = {ci,C2, . . ..c^}

is a set of fan clubs for which there does not exist a

famous person that every club in the set talks about

(every candidate /, is ruled out since c< does not talk

about /,). For every possible value of m, this leads to

a contradiction.

Case 1 (m = d - 1): The contradiction is immediate

as c = {ci, Cj, . . . , Cd} is a set of fan clubs of size m+ 1

for which there does not exist a famous person that

every club in the set talks about. This contradicts

condition (3).

Case 2 (m = d — 2): The nominal size of the set

c = {ci.Cj, . . . , Ci} is m + 2. We claim, however, that
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there is a repetition in c and that the true size of the

set is m + 1. Assume to the contrary that c< ^ Cj for

i ^ j. Recall c,- is a club that does not talk about /,-,

1 = 1, . . .,d and consider {ci, C2, . . . , Cd-i}- This is a

set of m + 1 fan clubs so by condition (3) there must

exist an ft that every club in the set talks about. The

only possibility is fa. Now consider {ci, . . . , c<j_j, Cd).

Again, this is a set of m+ 1 fan clubs so there must exist

an that every club in the set talks about. This time

the only possibility is /<j_ i . Continuing in this manner,

we can show that fan club c\ must talk about exactly

m + 1 famous people. This contradicts condition (2).

Therefore, it must be the case that c, = Cj for some t ^

j. Thus, the set c is of size m + 1 and this contradicts

condition (3).

Case 3 (m = d - 3), . . . , Case d-1 (m = 1): The re

maining cases are similar. In each case we argue that

i) there are repetitions in the set c = {ci,Cj, . . .,04},

ii) the true size of the set c is m + 1, and (iii) a con

tradiction is derived by appealing to condition (3).

Thus, there exists at least one famous person that ev

ery fan club talks about. □

We now state the theorem for binary constraint net

works.

Theorem 2 If a binary constraint network, R, is m-

tight, and if the network is strongly (m+ 2)-consisteni,

then the network is globally consistent.

Proof. We show that any network with < m ones in

every row that is strongly (m + 2)-consistent is (m +

2 + ^-consistent for any i > 1. Suppose that variables

xi, . . .,«em+i+,- can be consistently instantiated with

values X\, . . . ,Xm+i+,-. To show that the network is

(m + 2 + ^-consistent, we must show that there exists

at least one instantiation, Xm+2+i, of variable xm+2+j

such that

(Xj , Xm+2+i) € Rjim+2+i j = 1 m + 1 + «

is satisfied. Let Vj be the (0,1)-vector given by row Xj

of the (0,l)-matrix i2;,m+2+i, j = 1, . . . , m+ 1 + i (see

Figure 2 for an illustration; the Vj are shown boxed).

The one entries in the Vj are the allowed instantiations

of xm+2+i, given the instantiations X\, . . . , Xm+i+i.

That there exists a consistent instantiation of xm+2+t

follows from Lemma 1 where (i) X\, . . . , Xm+i+l- are

the fan clubs, (ii) l,...,d, the domain elements of

zm+2+i, are the famous people, (iii) the one entries

in the v; 's are the famous people that fan club Xj

talks about, and (iv) condition (3) of Lemma 1 follows

from the assumption of strong (m + 2) consistency.

Therefore, from Lemma 1 it follows that there exists

at least one instantiation of zm+2+i that satisfies all

the constraints simultaneously. Hence, the network is

(m + 2 + inconsistent. O

Theorem 2 always specifies a level of strong consistency

 

Zm+2+i

Figure 2: Instantiating zm+2+<

that is less than or equal to the level of strong con

sistency required by Dechter's theorem (Theorem 1).

The level of required consistency is equal only when

m = \D\ — 1 and is less when m < \D\ — 1. As

well, the theorem can sometimes be usefully applied

if |D| > n — 1, whereas Dechter's theorem cannot.

As the following example illustrates, both r, the ar-

ity of the constraints, and m can change if the level of

consistency required by the theorem is not present and

must be enforced. The parameter r can only increase;

m can decrease, as shown below, but also increase.

The parameter m will increase if all of the following

hold: (i) there previously was no constraint between

a set of variables, (ii) enforcing a certain level of con

sistency results in a new constraint being recorded be

tween those variables and, (iii) the new constraint has

a larger m value than the previous constraints.

Example 2. Consider again the confused n-queens

problem introduced in Example 1. The problem is

worth considering, as Nadel [1989] uses confused n-

queens in an empirical comparison of backtracking al

gorithms for solving constraint networks. Thus it is

important to analyze the difficulty of the problems to

set the empirical results in context. As well, the prob

lem is interesting in that it provides an example where

Theorem 2 can be applied but Dechter's theorem can

not (since \D\ > n — 1). Independently of n, each row

of the constraints has < 3 ones. Hence, the networks

are 3-tight and the theorem guarantees that if the net

work for the confused n-queens problem is strongly

5-consistent, the network is globally consistent.

First, suppose that n is even and we attempt to either

verify or achieve this level of strong consistency by

applying successively stronger local consistency algo

rithms. Kondrak [1993] has shown that the following

analysis holds for all n, n even.

1. Applying an arc consistency algorithm results in

no changes as the network is already arc consis

tent.

(
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2. Applying a path consistency algorithm does

tighten the constraints between the variables.

Once the network is made path consistent, each

row has < 2 ones. Now the theorem guaran

tees that if the constraint network is strongly 4-

consistent, the network is globally consistent.

3. Applying a 4-consistency algorithm results in no

changes as the network is already 4-consistent.

Thus, the network is strongly 4-consistent and

therefore also globally consistent.

Second, suppose that n is odd. This time, after ap

plying path consistency, the networks are still 3-tight

and it can be verified that the networks are not 4-

consistent. Enforcing 4-consistency would require non-

binary constraints, hence Theorem 2 no longer applies.

We take this example up again in the next section

where the results are generalized to non-binary con

straints. There we show that recording 3-ary con

straints is sufficient.

Recall that Nadel [1989] uses confused n-queens prob

lems to empirically compare backtracking algorithms

for finding all solutions to constraint networks. Nadel

states that these problems provide a "non-trivial test-

bed" [1989, p. 190]. We believe the above analysis indi

cates that these problems are quite easy and that any

empirical results on these problems should be inter

preted in this light. Easy problems potentially make

even naive algorithms for solving constraint networks

look promising. To avoid this potential pitfall, back

tracking algorithms should be tested on problems that

range from easy to hard. In general, hard problems are

those that require a high level of local consistency to

ensure global consistency. Note also that these prob

lems are trivially satisfiable.

Example 3. The graph ib-colorability problem can be

viewed as a problem on constraint networks: there is

a variable for each node in the graph; the domains of

the variables are the possible colors, D = {1

and the binary constraints are that two adjacent nodes

must be assigned different colors. Graph ib-colorability

provides examples of networks where both Theorems 1

and 2 give the same bound on the sufficient level of lo

cal consistency (since \D\ = k and m = \D\ — 1). Fur

ther, as Dechter [1992b] shows, the bound is tight. For

example, consider coloring a complete graph on five

nodes with four colors. The network is 3-tight and

strongly 4-consistent, but not strongly 5-consistent

and not globally consistent. Hence, when m = \D\ — 1,

the level of local consistency specified by Theorem 2 is

as strong as possible and cannot be lowered.

We can also construct examples to show that Theo

rem 2 is as strong as possible for all m < \D\ — 1.

This can be done by "embedding" graph coloring con

straints into the constraints for the new network. For

example, consider the network where the domains are

D = {!,..., 5} and the constraints between all vari

ables is given by,

1 0 0 0 1

0 0 110

0 10 10

0 110 0

1 0 0 0 1

The inner 3x3 matrix is the 3-coloring constraint.

The network is 2-tight and strongly 3-consistent, but

not strongly 4-consistent and not globally consistent.

4 R-ary constraint networks

In this section we generalize the results of the previous

section to networks with constraints of arbitrary arity.

We will define m-tightness of r-ary relations, namely

relations having r variables. We use the following no

tations and definitions.

Definition 4 (Relations)

Given a set of variables X = {zi,...,xn}, each as

sociated with a domain of discrete valves D\,...,Dn,

respectively, a relation (or, alternatively, a constraintJ

p over X is any subset

pCDi X Di X • • • X Dn •

Given a relation p on a set X of variables and a subset

Y C X, we denote by Y = y or by y an instantiation

of the variables in Y , called a subtuple and by o~Y=9(p)

the selection of those tuples in p that agree with Y = y.

We denote by Ily(p) the projection of relation p on the

subset Y. Namely, a tuple over Y appears in Ily(p)

if and only if it can be extended to a full tuple in p.

IfY is not a subset of p's variables the projection is

over the subset of variables that appear both in Y and

in X. The operator M is the join operator in relational

databases.

Definition 5 (Constraint networks)

A constraint network R over a set X of variables

{x\,X2 *n}( is a set of relations Ri,...,Rt, each

defined on a subset of variables Si,..., St respectively.

A relation in R specified over Y C X is also denoted

Ry- The set of subsets S = {5i,...,5t} on which

constraints are specified is called the scheme of R. The

network R represents its set of all consistent solutions

over X, denoted p(R) or p(X), namely,

p(R) = {x = (Xi,...,Xn)\ V5,- € 5, R5i(x) 6 Ri}.

For non-binary networks the notion of consistency of a

subtuple can be defined in several ways. We will use the

following definition. A subtuple over V is consistent if

it satisfies all the constraints defined over Y including

all R's constraints obtained by projection over V .

Definition 6 (Consistency of a subtuple)

A subtuple Y = y is consistent relative to R iff, for all

S- € S

nSiny(y) enw(fl<).
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p(Y) is the set of all consistent instantiations of the

variables in Y . One can view p(Y) as the set of all

solutions of the subnetwork defined by Y.

Informally, an r-ary relation is m-tight if every tuple

of r — 1 values can be extended in at most m ways.

Definition 7 An r-ary relation is m-tight if and only

if all of its binary projections (projections on pairs of

variables) are m-tight.

Example 4. We illustrate some of the definitions us

ing the following network, R, over the set of variables,

{xi,xi, 13,14}. The relations are given by,

RSl = {(1,4,2), (2,4,1), (3,1,4), (4,1,3)},

RS,= {(1,4,2), (2,1,3), (2,1,4), (2,3,1),

(3,2,4), (3,4,1), (3,4,2), (4,1,3)},

where Si = {x1.x2.z3} and 52 = {xi, 13,2:4}. The

set of all solutions of the network is given by,

p(R) = {(2,4,1,3), (2,4,1,4), (3,1,4,1), (3,1,4,2)}.

Let Y = {11,13} be a subset of the variables and let

the subtuple y = (2, 1) be an instantiation of the vari

ables in Y. Then, <ry=y(J?sa) = {(2,1,3), (2,1,4)} and,

M*s,) = {(1,2), (2,1), (3,4), (4,3) }. It can be veri

fied that the subtuple y = (2, 1) is consistent relative

to R and that the subtuple y = (1, 2) is not consistent

relative to R (since Us3nY(y) & Rs2nY(Rs3))- Finally,

the network is 3-tight since projecting the relation Rs3

onto {zi , Z4} results in a binary relation that is 3-tight,

and this is the maximum of all the binary projections.

We now state the general theorem.

Theorem 3 // an r-ary network, R, is m-tight, and if

the network is strongly ((m+ l)(r — 1) + l)-consistent,

then the network is globally consistent.

Proof. Let k = (m+ l)(r - 1) + 1. We show that any

network with relations that are m-tight that is strongly

Jfc-consistent is (k + ^-consistent for any i > 1.

Let X' = (Xi , X3, . . . , Xk+i-i) be a consistent in

stantiation of k + t — 1 variables1 and let xt+i be

an arbitrary new variable. We will show that there

exists an instantiation Xk+i of Xk+i such that the

extended tuple (X\, X?, ■ ■ ■ , Xk+i-i, Xt+i) is consis

tent. This means that any relation Ry € R involv

ing variable xjt+j, and a non-empty subset of variables

from . . . ,xt+,_i} should be satisfied. Let X'y

be the partial tuple of X' that is restricted to the

set V over which Ry is defined. We call this tuple

a constraint-tuple. Since all the constraints and their

'Note that according to the definition of consistency

this means that X' satisfies all the constraints defined on

its own subset of variables as well as those obtained by

projection.

projections are m-tight, constraint Ry will allow X'y

to be extended by at most m values of Xk+i- Each such

constraint-tuple, X'y can be regarded as a fan club,

with its allowed values in xj+j relative to Ry as the

discussed famous people. Therefore, condition (2) of

Lemma 1 is satisfied. Also, condition (3) of Lemma 1

is satisfied, since the length of each constraint-tuple is

r— 1 or less, the requirement of strong (m+l)(r— 1)+1-

consistency, ensures that any set of up to (m + 1)

constraint-tuples (overlapping or not), has a consistent

extension in Xi+,-. Therefore, from Lemma 1 it follows

that there is a common value of Xk+i that satisfies all

the constraints simultaneously. □

Example 5. Consider again the confused n-queens

problem discussed in Example 2. There we saw that,

after enforcing path consistency, the networks are 3-

tight, for n odd. Enforcing 4-consistency requires

3-ary constraints. Adding the necessary 3-ary con

straints does not change the value of m; the networks

are still 3-tight. Hence, by Theorem 3, if the net

works are strongly 9-consistent, the networks are glob

ally consistent. Kondrak [1993] has shown that record

ing 3-ary constraints is sufficient to guarantee the net

works are strongly 9-consistent for all n, n odd. Hence,

independently of n, the networks are globally consis

tent once strong 4-consistency is enforced.

Example 6. Constraint networks have proven fruitful

in representing and reasoning about temporal informa

tion. We use an example from Allen's [1983] frame

work for reasoning about temporal relations between

intervals or events to illustrate the application of The

orem 3. Allen identifies thirteen basic relations that

can hold between two intervals. In order to represent

indefinite information, the relation between two inter

vals is allowed to be a disjunction of the basic relations.

For example, the relation {b,bi} between events A and

D in Figure 3 represents the disjunction, (A before D)

V (A after D). Allen provides a transitivity table for

propagating the temporal information.

Allen's framework can be formulated as a constraint

network with finite domains as follows: there is a vari

able for each pair of intervals, the domains of the vari

ables are the possible basic relations, and there are

ternary constraints defined by the transitivity table.

For example, consider the temporal information given

by,

A {oi,m}B A {b,o} C< A {b,bi} D,

B {b,d} Ci B {bi,o} D< D< {b,oi} C<

for » = 1, . . . , (n — 2)/2. Formulating this temporal in

formation as a constraint network with finite domains,

we can show that enforcing strong 4-consistency is suf

ficient to ensure the network is globally consistent, for

all n > 4. Below we show the analysis for the simple

case of n = 4. The general case is similar, just no-

tationally more complicated. Figure 3 shows the six
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Figure 3: Example temporal network

variables and their associated domains for our exam

ple. The ternary constraints for our example are given

by,

#124 = {(oi,b,b), (oi,o,b), (m,b,b), (m,o,d)},

#135 = {(oi.bi.bi), (m.bi.bi), (m,b,o)},

#236 = j(b,b,b), (b,b,oi), (b,bi,b), (o,b,oi), (o,bi,b)},

#456 = {(b.bi.b), (b,o,b), (d,bi,b), (d,o,oi)}.

It can be shown that the network is 1-tight. Therefore,

by Theorem 3, if the network is strongly 5-consistent,

then the network is globally consistent. Suppose

that we attempt to either verify or achieve this level

of strong consistency. The network is strongly 3-

consistent, but not 4-consistent. For example, (b,b,oi)

is a consistent instantiation of (22, 23, xe), since it sat

isfies the constraint i?236 as well as all the constraints

obtained by projection. However, there is no way to

extend the instantiation to 24: (i) 24 «— b is inconsis

tent by the constraint R46 obtained by projecting A456

on {24, xe}, and (ii) 24 «— d is inconsistent by the con

straint i?24 obtained by projecting #124 on {22,24}.

The modified constraint #236 is given by,

#236 = {(b,b,b), (b,bi,b), (o,b,oi), (o,bi,b)}.

As well, some 3-ary constraints between previously un

constrained triples of variables need to be introduced.

For example, (oi,o,oi) is a consistent instantiation of

(11,221*6), since it satisfies all the constraints ob

tained by projection. However, there is no way to

extend the instantiation to 23: (i) X3 «— b is incon

sistent by the constraint R\3 obtained by projecting

#135 on {21,23}, and (ii) 23 <— bi is inconsistent by

the constraint #235- Once the following 3-ary relations

are added, the network is strongly 4-consistent:

#126 = {(oi,b,b), (oi,o,b), (m,b,b), (m,o,b), (m,o,oi)},

#234 = {(b,b,b), (b,bi,b), (o,b,d), (o,bi,b), (o,bi,d)},

#256 = {(b,bi,b), (b,o,b), (o,bi,b), (o,o,oi)},

#346 = {(b.b.b), (b,d,oi), (bi.b.b), (bi,d,b)}.

It can now be verified that the network is also strongly

5-consistent. Therefore, by Theorem 3, the network

is globally consistent. The network is also minimal.

A network of r-ary relations is minimal if each tuple

in the relations participates in at least one consistent

instantiation of the network. These two properties,

global consistency and minimality, ensure that we can

efficiently answer some important classes of temporal

queries.

4.1 Relational local consistency

In [van Beek and Dechter, 1994] we extended the no

tion of path-consistency to non-binary relations, and

used it to specify an alternative condition under which

row-convex non-binary networks of relations are glob

ally consistent. This definition, since it considers the

relations rather than the variables as the primitive en

tities, does not mention the arity of the constraint ex

plicitly. We now extend this definition even further

and show how it can be used to alternatively describe

Theorem 3.

Definition 8 (Relational m-consistency)

Let R be a network of relations over a set of variables

X, let #5,, . . . , #5m_, be m — 1, m > 3, relations :n

R, where 5, C X. We say that #s, , • • -,#sm_i art

relational m-consistent relative to variable 2 iff any

consistent instantiation of the variables in A, where

A = (JI^i* Si~{x)> has an extension to 2 that satisfies

Rsl , ■ • ■ , #s„_i simultaneously. Namely, if and only if

p(A) C nA(M--» RSl).

(Recall that p(A) is the set of all consistent instan

tiations of the variables in A). A set of relations

Rst , ■ ■ ■ , #sm_i are relational m-consistent iff they

are relational m-consistent relative to each variable in

Hi^i1 A network of relations is said to be relational

m-consistent iff every set ofm—l relations is relational

m-consistent. Relational S-consistency is also called

relational path- consistency. A network is strongly re

lational m-consistent if it is relational i-consistent for

every i < m.

Note that we do not need to define relational 2-

consistency since our definition of consistency of a

subtuple, which takes into account all the networks'

projections, guarantees that any notion of relational

2-consistency is redundant.

Example 7. Consider the following network of re

lations. The domains of the variables are all D =

{0, 1,2} and the relations are given by,

(1) R/ry, = {0000,1000,0100,0010,0001},

(2) R/„ = {011,122,021}.

The constraints are not relational path-consistent. For

example, the instantiation / = 0, 2 = l,y = 0 satis

fies all the constraints, (namely all the projections of
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(1) and (2) on {/, x,y) and {/} respectively), but it

cannot be consistently extended to a legal value of z.

If we add the constraint (3)R/ty = {000}, the first

two constraints will become relational path-consistent

relative to z since constraint (3) will disallow the par

tial assignments / = 0,x = l,y = 0. Constraints

(1) and (2) are relational path-consistent relative to /

since any consistent instantiation of x, y, z will have to

satisfy the two constraints Rxyt = {000, 100,010,001}

and Rt = {1,2} obtained by projecting constraints

(1) and (2) over x,y, z, respectively. Remember that

consistency of a subtuple needs to obey all the pro

jected constraints. Once these constraints are obeyed

there is an extension to / = 0 that satisfies (1) and (2)

simultaneously.

We now show that strong relational (m + 2)-con-

sistency is sufficient to ensure globally consistency

when the relations are m-tight.

Theorem 4 Let R be a network of relations that is

strongly relational (m + 2)-consisient. If the relations

are m-tight, then the network is globally consistent.

Proof. Assume that the network is relational (m+2)-

consistent. Let X' — {X\, X2, ■ ■ • , Xi-i) be a consis

tent instantiation of i— 1 variables, i > m+ 2. We will

show that for any x< , there exists an instantiation A, of

Xi such that the extended tuple (Aj , Xi, . . . , Xi-i, Xi)

is consistent. This means that any relevant relation

Ry € Rot any of its projections, that are defined over

x, should be satisfied by such an extension. Since all

constraints and all their projections are m-tight, all

the values of X{ that together with X'y are allowed by

Ry do not exceed m. Also, strong relational (m + 2)-

consistency implies that any subset of m + 1 or fewer

constraints can be consistently extended by a:,-. Con

sequently, due to Lemma 1 there is a value A'i such

that the tuple (A'i, Xj, . . . , A,_i, Xi) satisfies all the

constraints simultaneously. □

When all the constraints are binary, relational in

consistency is identical (up to minor preprocessing)

to variable-based m-consistency. Otherwise the con

ditions are different. In general, the definition of re

lational m-consistency is similar but not identical to

that of m-consistency over the dual representation of

the problem in which the constraints are the variables,

their allowed tuples are their respective domains and

two such constraint-variables are constrained if they

have variables in common. The virtue in this new ex

plicit definition (relative to the one based on the dual

graph) is that it is simpler to work with, it uses known

notations from relational databases, and it immedi

ately translates to consistency enforcing algorithms.

Relational m-consistency can be enforced on a net

work that does not possess this level of consistency.

Below we present algorithm RCm, a brute-force algo

rithm for enforcing strong relational m-consistency on

a network R. The algorithm seems to enforce rela

tional m-consistency only (joining every set of m — 1

relations), however due to our convention of testing

all projections when verifying consistency, strong in

consistency results as well.

RCm(R)

1 . repeat

2. Q^R

3. for every m — 1 relations Rsx , . . . , Rsm-i € Q

and every x 6 flT^i 1 Si

4. do A- \JT=V Si - {*}

5. RA^RAn RSi)

6. until Q = R

Note that Ry stands for the current unique constraint

specified over a subset of variables Y . If no constraint

exists, then Ry is the universal relation over Y. The

algorithm takes any m — 1 relations that may or may

not be relational m-consistent and enforces relational

m-consistency by tightening the relation among the

appropriate subsets of variables. We call the operation

in Step 5 of the algorithm extended m- composition,

since it generalizes the composition operation defined

on binary relations. Algorithm RCm computes the

closure of R with respect to extended m-composition.

We can conclude that:

Theorem 5 For any network, R, whose closure under

extended i-composition, for i = 3, . . . , m, it an (m—2)-

tight network, m > 3, algorithm RCm computes an

equivalent globally consistent network.

Proof. Follows immediately from Theorem 4 and

from the fact that RCm generates a strong relational

m-consistent network. □.

While enforcing variable-based m-consistency can be

done in polynomial time, it is unlikely that relational

m-consistency can be achieved tractably, since, as we

will shortly see, even for m = 3 it solves the NP-

complete problem of prepositional satisfiability. A

more direct argument suggesting an increase in time

and space complexity is the fact that the algorithm

may need to record relations of arbitrary arity and

also that the constraints' tightness may increase.

Example 8. Bi-valued relations are 1-tight and closed

under extended 3-composition. Thus, by Theorem 5,

bi-valued networks can be solved by algorithm RC3. In

particular, the satisfiability of prepositional CNFs can

be decided by RC3. Here the extended composition

operation (Step 5 of algorithm RCm) takes the form

of pair-wise resolution [Dechter and Rish, 1994]. A

different derivation of the same result is already given

by [Dechter, 1992b; van Beek and Dechter, 1994].
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As with variable-based local-consistency, we can im

prove the efficiency of enforcing relational consistency

by enforcing it only along a certain direction. Be

low we present algorithm Directional Relational in

consistency (DRCm) that enforces strong relational

m-consistency on a network #, relative to a given or

dering, d, of the variables Xi,Xj, . . .,xn. We denote

as DRCm(R,d), a network that is strongly relational

m-consistent relative to an ordering d.

DRCm(R, d)

1. Initialize: generate an ordered partition of the con

straints, bucketi, bucketn, where bucketi contains

all the constraints whose highest variable is x,-.

2. for t «— n downto 1

3. do for every set of m — 1 relations Rsx,

#sm_i in bucketi (if bucketi contains fewer

than m — 1 relations, then take all the rela

tions in the bucket).

4. do ^-ur^1

5. RA^RAn n^vi'i1 #s.)

6. Add Ra to its appropriate bucket.

While the algorithm is incomplete for deciding consis

tency in general, it is complete for (m — 2)-tight rela

tions that are closed under extended m-composition.

In fact, it is sufficient to require directional (m — 2)-

tightness relative to the ordering used. Namely, requir

ing that if x, appears before Xj in the ordering then

any value of x,- will be (m — 2)-tight relative to Xj but

not vice-versa. For example, functional relations are

always 1-tight from input to outputs but not for any

ordering.

Definition 9 (directionally m-tight)

A binary constraint, Rij, is directionally m-tight

with respect to an ordering of the variables, d =

(xi,...,xn), if Xi appears before Xj in the ordering

and every row of the (0,l)-matrix that defines the con

straint has at most m ones. An r-ary relation is di

rectionally m-tight with respect to an ordering of the

variables if and only if all of its binary projections are

directionally m-tight with respect to the ordering.

The following theorems will be stated without proofs.

Their correctness can be verified using similar theo

rems on directional consistency algorithms reported

earlier [Dechter and Pearl, 1989].

Theorem 6 (Completeness)

If a network DRCm(R,d) is directionally (m — 2)-tighi

relative to d, then DRCm(R,d) is backtrack-free along

d.

Like similar algorithms for imposing directional consis

tency, DRCm s worst-case complexity can be bounded

as a function of the topological structure of the prob

lem via parameters like the induced width of the graph

[Dechter and Pearl, 1988].

A network of constraints R can be associated with a

constraint graph, where each node is a variable and

two variables that appear in one constraint are con

nected. A general graph can be embedded in a clique-

tree namely, in a graph whose cliques form a tree-

structure. The induced width, W*, of such an em

bedding is its maximal clique size and the induced

width W* of an arbitrary graph is the minimum in

duced width over all its tree-embeddings. For more

details see [Dechter and Pearl, 1989]. The complexity

of DRCm can be bounded as a function of the W* of

its constraint graph.

Theorem 7 (Complexity) Given a network of re

lations R, the complexity of algorithm DRCm along

ordering d is 0(exp(mW* (d))) where W*(d) is the in

duced width of the constraint graph of R along d.

Example 9. Crossword puzzles have been used in

experimentally evaluating backtracking algorithms for

solving constraint networks [Ginsberg et ai, 1990]. We

use an example puzzle (taken from [Dechter, 1992a])

to illustrate algorithm DRCm (see Figure 4).

 

Figure 4: A crossword puzzle

We can formulate this problem as a constraint problem

as follows, each possible slot holding a character will be

a variable, and the possible words are relations over the

variables. Therefore, we have X\, . . . , X13 variables as

marked in the figure. Their domains are the alphabet

letters and the constraints are the following relations:

#1,2,3,4,5 = {(H,0,S,E,S), (L,A,S,E,R), (S,H,E,E,T),

(S,N,A,I,L), (S,T,E,E,R)}

#3,6,9,12 = {(H,I,K,E), (A.R.O.N), (K,E,E,T),

(E,A,R,N), (S,A,M,E)}

#8,9,10,11 = #3,6,9,12

#5,7,11 = {(R,U,N), (S,U,N), (L.E.T), (Y,E,S),

(E,A,T), (T,E,N)}

#10,13 = {(N,0), (B,E), (U,S), (I,T)}

#12,13 = #10,13
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We see that constraints #10,13 and #12,13 are 1-tight,

however all the rest have higher tightness. For ex

ample, the tightness of #5,7,11 is 3 due to words like

RUN, SUN, and TEN. Constraint #1,2,3,4,5 is also 3-

tight since its binary projection on {xi,xs} contains

the three pairs {(S,L), (S,T), (S,R)}. For the order

ing d = x5,x4, however, the constraint is only

2-tight. The tightness of all constraints does not go be

yond 3. According to Theorem 6, enforcing relational

5-consistency, if not increasing the tightness, will gen

erate a globally consistent network relative to the or

dering used.

Applying DRC5 to this problem using the ordering

d = X13, ii2, xn, xio, xg, x5, x3 (we disregard the rest

of the letters since they appear in just one word), gives

the following: Initially the bucket for X3 contains two

relations #3,9,12 and #3,5 (resulting from projecting

away x6 from #3,6,9,12 and xi,x2,x4 from #1,2,3,4,5,

respectively). Processing variable X3 adds the relation

#5,9,12 to the bucket of variable X5 that is processed

next. The relation is:

#5,9,12 = 115,9, 12(#3,9, 12 M #3,5)

= {(S,M,E), (R,M,E), (T,R,N),

(R,R,N), (L.O.N)}.

Next, processing of X5 adds the relation #9,11,12 to the

bucket of variable x9. The relation is:

#9,11,12 = n9,n,l2(#5,9,12 1x1 #5,11)

= {(M,N,E), (R,N,R), (0,T,N), (R,N,N)}.

Next, processing x9 adds the relation #10,11,12 to the

bucket of variable xio- The relation is:

#10,11,12 = II10, 11, 12(#9, 10,11 •*> #9,11,12)

= {(0,N,R)}.

Next, processing xio adds #11,12,13 to the bucket of

variable x\\. The relation is:

#11,12,13 = nn,i2,13(#10,ll,12 1x1 #10,13)

= {}•

Namely, resulting in an empty relation. At this point

the algorithm stops and determines that the problem

is inconsistent.

It turns out, however, that cross-word puzzles have

a special property that makes them solvable by rela

tional 3-consistency only.

Lemma 2 When processing a crossword problem by

DRCm for any m, the resulting buckets contain at

most two constraints.

Proof: Let us annotate each variable in a constraint

by a -(- if it appears in a horizontal word and by a

— if it appears in a vertical word. Clearly, in the

initial specification each variable appears in at most

two constraints and each annotated variable appears

in just one constraint (with that annotation). We show

that this property is maintained throughout the algo

rithm's performance. The argument can be proved by

induction on the processed buckets. Assume that after

processing buckets x„, x< all the constraints appear

ing in the union of all bucketi-i to bucket 1 satisfy that

each annotated variable appears in at most one con

straint. When processing 6ucfcet<_i, since it contains

only two constraints (otherwise it will contain multi

ple annotations of variable x»_i), it generates a single

new constraint. Assume that the constraint is added

to the bucket of Xj .

Clearly, if Xj is annotated positively in the added con

straint, bucketj cannot contain already a constraint

with a positive annotation of xj. Otherwise, it means

that before processing bucket i — 1, there were two

constraints with positive annotation of xj , one in the

bucket of x,_i and one in the bucket of xj , which con

tradicts the induction hypothesis. Therefore, the rest

of the buckets still obey the claimed property. □

Consequently, applying DRC3 to a cross-word puzzle

along any ordering enforces global consistency along

that ordering.

Theorem 8 Given a cross-word puzzle of size n, and

for any ordering d, algorithms DRC3 enforces direc

tional global-consistency along d.

Note, that it does not mean that cross-word puzzles

are tractable. The size of the constraints in the bucket

may be exponential. Nevertheless, if the size of the

constraints is bounded somehow—by the width, for

example—the problem becomes tractable.

5 Conclusions

In this paper, we have identified a sufficient condition

based on the tightness of the constraints, the arity of

the constraints, and the level of local consistency, that

guarantees that a solution can be found in a backtrack-

free manner. The results will be useful in applica

tions where a knowledge base will be queried over and

over and the preprocessing costs can be amortized over

many queries. As well, we believe our results may

have significant explanatory value. In recent compu

tational experiments we discovered that the parame

ter m, which measures the tightness of the constraints,

is a good predictor of the amount of time needed by

backtracking algorithms to solve particular constraint

networks. A goal in our work is to discover parame

ters of constraint networks that will allow us to predict

how a backtracking algorithm will perform on a given

problem.
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Abstract

We propose a new logic in which knowledge is

fully introspective and implies truth, although

truth need not imply epistemic possibility. The

logic is interpreted in a natural class of partial

models. Then we examine the notions of hon

esty and minimal knowledge in this logic: Which

so-called honest <p can be 'all that is known' and

what is the state of the agent that only knows

ip? Redefining stable sets enables us to provide

suitable syntactic and semantic criteria for hon

esty. The rough syntactic definition of honesty is

the existence of a minimal stable expansion, so

the problem resides in the ordering relation un

derlying minimality. We discuss three different

proposals for this ordering, together with their

semantic counterparts, and show their effects on

the induced notions of honesty. We then show

that each of the three obtained kinds of honesty

allows for its own disjunction property. Previ

ous accounts of honesty and minimizing knowl

edge, most of them based on the modal system

S5 and classical possible world semantics, were

only partly successful. We conclude that our fi

nal proposal, which uses the effects of the weak

ened logic and its partial semantics as well as the

strengthened notion of honesty, improves upon

this: it captures the right intuitions and produces

satisfactory results.

1 INTRODUCTION

We argue that honesty in knowledge representation calls for

a partial approach, for reasons of adequacy and efficiency.

Let us first (re)introduce the central concepts, honesty and

partiality.

Honesty is the quality of a proposition which can be said to

be only known, i.e. knowing that fact and its consequences,

but not knowing more than that. For example, you may

only know that Pat will come tomorrow, without knowing

anything at all about, say, Sue. Also, you may only know

that either Pat or Sue will come tomorrow, which implies

you do not know which one of the two will come. These

are examples of honest knowledge. By contrast, you cannot

honestly say you only know (that you know) whether Pat

will come, for then you would either know that Pat will

come or know that she won't come, both options being

logically stronger than what is supposed to be known.

Partiality is the idea of not giving a truth value to every

proposition: in a given situation the truth of a formula

may be undefined, for example due to lack of information.

Such undefinedness may even occur for classical tautolo

gies, such as the well-known 'law of excluded middle' (ter-

tium non datur) tp V ->ip, which is therefore not valid in the

partial semantics we advocate.

Partiality and honesty may seem totally unrelated themes,

but in fact we argue that they are closely related. Let us rein-

spect the case in which you only know that Pat will come

tomorrow. This, we claim, does not involve any knowledge

about Sue or some other part of the universe. For example,

it does not even imply that you know the possibility that

Sue will come too: you may not be acquainted with her, or

just not consider her possible arrival. In a straightforward

total semantics ignorance leads to wide knowledge ofpossi

bilities, which, however, contradicts the initial idea of only

knowing some honest formula. The proliferation problem

simply does not occur in our partial semantics, since facts

unrelated to some honest formula can be left undefined.

This, in a nutshell, is our prime motivation for 'going par

tial' : it provides a more adequate and natural account of

minimizing one's knowledge (i.e. describing what you only

know ). But there is more to it. One of the other advantages

of partial semantics is its efficiency, which is reflected in

the much smaller size of the characterizing models. Clas

sical possible world semantics leads to a combinatorial ex

plosion: the less one knows, the bigger the model. For

example, honest knowledge of p and complete ignorance

of n other prepositional variables leads to 2n worlds in a

model that represents what one only knows. This may be

contrasted to a partial model for only knowing p that uses

but one or two worlds. Moreover, addition of information

may lead to growth of the partial model, unlike the elimi
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nation usual in possible worlds models — again the partial

approach seems more natural and intuitive.

Partial semantics also allows for a greater flexibility with

respect to the epistemic background logic. For the case

study presented in this paper this is revealed in adopting the

veridicality principle of knowledge dtp tp ('if you know

something, it must be true'), without being forced to accept

its contrapositive tp Otp ('if something is true, you must

consider it possible'). Moreover, knowledge will be fully

introspective: both positive introspection and negative in

trospection as well as their contrapositives are properties our

logic embraces. In all, the logic resembles a weak variant

of the classical system S5, although its epistemic properties

are stronger than so-called weak S5 (which has □tp =>■ Otp,

Dtp =>■ no<p and Oip =► OOtp but not Dtp ip). Apart

from fitting our intuitions about (strong) knowledge, this

logic enables us to simplify the partial models needed, es

sentially omitting most of the relational structure.

Apart from the fact that our partial semantics both allows for

a greater flexibility of the underlying epistemic background

logic, and elegantly solves the proliferation problem, let us

try and indicate how we think our approach to honesty im

proves upon 'classical' treatments. A first difference deals

with the logical omniscience of a — possibly totally igno

rant — agent, and is related to the proliferation problem.

In the classical approach of Halpern and Moses (1985) for

instance, the formula T ('always true') is perfectly honest,

doing justice to the fact that it makes sense to claim that one

'knows nothing' . We agree with the designation of T being

honest, but we depart from Halpern and Moses ( 1 985) when

determining the consequences of such an observation. To

make our point clear, let us write, for any honest formula tp

and epistemic formula ip,

for 'the agent knows tp, if he claims to only know tp'.

Then, in the framework of Halpern & Moses (1985) one

obtains T (~ ip when ip is an S5-tautology, implying that the

agent who claims to only know T, also knows that he is fully

introspective (T(~ D\ -f T|~ ->Dx -> □_,Ox).

and one also obtains that possibly the Queen of Holland is

on strike (T }~ Os). However, we prefer the ignorant agent

who only knows T, to really let him know no more than

that; in our set-up, we have T |~ ip iff i> is a tautology.

Fortunately, there are relatively few tautologies in partial

logic: all of them contain T.

More generally, we agree with the analysis of Halpern &

Moses (1985) that objective (propositional) formulas should

be rendered honest, but we depart from Halpern & Moses

when it comes to the J~ -consequences of such formulas.

Generalizing the situation we gave above, one may say that

our |~ gives a serious account of relevance : if <p and ip

have no proposition symbol in common, and do not contain

T, then tp\f> ip. Thus, e.g. p \fi (q V -vj).

Moving up in the hierarchy from objective formulas to epis

temic statements, our classification of honest formulas is

starting to diverge from the classical analysis. We agree

with that analysis that disjunctive epistemic assertions of

ten are problematic with regard to honesty. The argument

runs like this: the formula tp = Dp V Oq is dishonest; only

knowing <p implies not knowing any stronger formula, in

particular, one obtains not knowing p (->Op) and not know

ing q (-iOq), but the latter two conclusions are easily seen

to be inconsistent with tp.

However, where the framework of Halpern & Moses

(1985) does indeed label the disjunctive epistemic formula

(□p V Oq) dishonest, we think their set-up still yields some

counterintuitive results. For instance, their definitions are

such that the disjunctive epistemic formula ip = (OpVOg)

is still honest! But here, we think a similar argument as for

(Dp V Oq) can be given to account for ip's dishonesty: if

you only know that you either consider p to be possible, or

q (to be possible), then you must know which of the two.

Here is a good point to emphasize that in our framework,

compared to those based on classical logic, it would even

be worse to consider ip honest, because our interpretation

of Ox is a rather strong one: it means that the agent has

decided to assign 'true' to the formula x in one °f his

epistemic alternatives (rather than expressing that it is not

the case that he knows ->x)- This also supports our p \f> Oq:

if the agent only knows p, he has no reason yet to assign

the value 'true' to q in one of his epistemic alternatives.

The reader may compare this to the situation in which we

have an even weaker premiss: (p V q) |~ Oql This seems

intuitively correct: if the agent only knows p V q then he

must consider at least some state to be possible in which he

assigned 'true' to q. (By comparing the latter two assertions

about f~ in our system, the reader of course recognizes the

non-monotonic flavour of this consequence relation.)

What about disjunctions of objective formulas with epis

temic ones? Quite surprisingly, although we think one's

intuitions should not be too far apart from those explained

above, the analysis made in systems based on classi

cal logic yields different outcomes. To wit, Schwarz

and Truszczyriski (1992) propose a treatment in which

tp = (->Op —► q) is considered honest, in contrast with

Halpern and Moses. At this point, we agree with the lat

ter approach: only knowing <p implies not knowing p, and

thus, by tp, knowing q, which is stronger than (p itself. Our

accounts thus judges tp dishonest.

Before starting off, we make one more preliminary remark

here. Clearly, determining whether tp is honest, and, if so,

what exactly are its ^ -consequences involves 'minimiz

ing' one's knowledge. In the formal language, this is tied

up with minimizing sets of formulas, and semantically, with

somehow minimizing our models — we argued above that

the latter is a typical offspring of 'going partial*. However,

speaking mathematically, we misuse the word 'minimal' 1

in many places: where this predicate usually means 'noth-

'We thank one of the referees for making our small entangle

ment with these terms — which is the least we were aiming for—

minimal.
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ing is smaller', we rather use it to denote 'smaller than

everything else'. The alternative 'least' would be mislead

ing since it wrongly suggests that we would have unique

minima — this is not the case since most of the underlying

orders are pre-orders, not partial orders.

The rest of the paper is organized as follows. In the next

section we introduce the epistemic logic, presenting its lan

guage, semantics and inference system, and state its com

pleteness. Then, in section 3, we study ways to minimize

knowledge for this logic, discussing different notions of

honesty, both from a deductive (minimal stable sets) and

from a model-theoretical perspective (minimal models). We

round off by providing a syntactic perspective on honesty

(disjunction properties). Proofs are often omitted: they are

found in van der Hoek, Jaspars and Thijsse (1993).

2 THE LOGIC

In this section we introduce a partial modal logic L of which

we will investigate the notions of stability, honesty and

several disjunction properties in subsequent sections. We

present our logic following a common pattern: we first give

its language and a partial semantics, and then we provide a

deductive system for L. Finally we mention a completeness

result connecting them.

2.1 LANGUAGE AND SEMANTICS

Definition 2.1 Let V be a non-empty finite set of propo-

sitional variables. The language £ is the smallest superset

of V such that

ip,ip G £ =>■ -«p, {ip A V), -L, Oifi 6 £.

Co is the subset of £ of all formulas which do not contain

□-operators. For any r C £, we write To for r n Co and

r for {tp G C | (f & T}. Moreover, for any T C £ and

any © € {->, □, O}, we define ©r = {©7 | 7 G T} and

©-r = {7 1 ©7 g r}.

Here, the intended meaning of ± is 'always false', and that

of Dip is V is known'. We write T for -ij., ip V tp for

->(-><p A ->V) and Otp for ->□-><£.

Definition 2.2 Let T and E be sets offormulas of C . Then :

• rc0s«r0cE0

• rcDEo err c cte

• r c0 e o o~r c o-E

Let II be some subset of p(£), the powerset of £. For any

★ G {0, □, O}, we say that T G II is C,-minima/ in II if

r C, S for all E G II, and similarly for C-minimality in

n.

The mathematical structure for the interpretation of £ is

that of a Kripke model with partial worlds. Here, instead

of considering arbitrary partial Kripke models2, we restrict

attention to what we call 'balloon models' , which are some

what reminiscent of the standard KD45-Kripke models.

Definition 2.3 A partial valuation V is a partial function

which assigns truth-values to a given set of prepositional

variables V. The collection of all partial valuations is

denoted by VAL. V G VAL is said to be an extension of

V G VALifV(p) = V'(p) for all p such that V(p) G {0, 1}.

We abbreviate the extension relation by V C V.

Definition 2.4 A balloon model is a triple M = (W, g, V)

with W a non-empty finite set of worlds, called the balloon,

g the root or generator of the model, and V a global valu

ation function such that V : W U {g} -¥ VAL. We require

that M satisfies the root condition:

V(w) C V(g) for some w eW.

We also write Mg for such a model: note that any w G W

and V :W -¥ VAL give rise to a model Mw = (W, w, V).

The truth and falsity of a formula ip G £ in a balloon

model M = (W,g, V), written as M ^ tp and M ^ ip,

respectively, are defined by induction

M ^ 1

M =| 1

M |=p V(g)(P) = i(peV)

M=|p V(g)(p) = 0(peV)

M ^= -«p M=\tp

M -«p O Afftp

M ^= ip A ip O M \= ip and M \= <p

M ^ ip f\ip M =j ip or M =^ V

M\=Uip Mw \= ip for all w G W

M=) U<p <* Mw =j ip for some w G W

A balloon model for epistemic formulas may be conceived

as just a collection of epistemic alternatives for an agent

relative to some 'real world' g: for each alternative, the

agent has decided to make some propositional atoms true,

and some others false (and leave yet others undefined). At

the propositional level, our definitions induce a so-called

strong Kleene semantics (the reader may consult Langholm

(1988) for a thorough introduction into partial semantics for

the propositional and first-order language). Furthermore,

the truth and falsity conditions yield the intended effect for

O-formulas: we have M \= Oip Mw \= ip for some

w G W. In particular, our partial semantics makes (□</? V

->Oip), and hence {O-np V Otp) invalid. This reflects the

idea that, in our opinion, Otp should express some positive

evidence about ip, notjust lack of knowledge of ->ip. Finally,

the root condition expresses that the agent has at least one

alternative that can be extended to the real world. This

effects veridicality, as is guaranteed by lemma 2.6. The

first model in figure 1 shows that the dual of veridicality is

not valid: M ^ r, but M ^ Or.

2For a general approach, see Thijsse (1992) or Jaspars & Thi

jsse (1993).
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Lemma 2.5 (Prepositional Persistence)

Let M = (W, g, V) and M' = (W, g', V) be two balloon

models. Then.forallw e Wu{g} and all w' € W'u{g'}:

V(w) C V'(w') W e £0 : (M„, |= tt => M'w, (= tt)

Lemma 2.6 (Internal Persistence)

For every balloon model M = (W, g, V) and all worlds

w,w' tWU {g} :

V(w) C V(w') O Vv> 6 £ : (AfM (= <p => (= <p)

Example 2.7 Figure 1 denotes two typical balloon mod

els. We call a world in which no atom is true or false an

empty world; note that M' has such a world. Moreover

note that M f= Dp A Oq, M ^ 0->q and M fc£

For M', we have M' f= OT, but at the same time

M' £ □(->? V p), M' ^ D(-.p V p).

c

P>9

M

Pi 9

9"

3

Figure 1: two balloon models M and M'

For any M = {W, g, V) we define the theory Th(M) of

M as £ £ | M (= the knowledge k(M) in M

as {<p G £ | M |= Dip} and the possibilities ■k(M) as

tt(M) = {<£ € £ I M \= <V}. Let T and A be sets of

formulas; M |= T means T C Th(M) and the consequence

relation T (= A is defined by: M (= T AnTfc(M) / 0

for all M, i.e. all balloon models which verify all members

of r also verify at least one element of A.

2.2 DEDUCTIONS IN L

We now formally define the deductive machinery of our

logic. The sequent T h A should be understood as: 'the

disjunction of the members of A follows from the conjunc

tion of the formulas in P. Instead of T U {ip} and T U A

we write T, <p and T, A respectively.

Definition 2.8 To start with, we distinguish the following

structural rules:

• TnA^0=>rhA START

ri-A ac a' rcr

r i- a'

Thy, A T.yhA'

r,r h a, A'

MON

CUT

If we add to those structural rules the following preposi

tional rules, we obtain the partial propositional logic rL+.3

'Without the rule for _L. Cf. Urquhart (1986) and Thijsse

(1992) for natural deduction type systems.

Those propositional rules explain how the logical connec

tives are introduced on the left (L-TRUE) and right hand side

(R-TRUE) of the 'h', respectively; possibly accompanied

with a negation sign (L-FALSE or R-FALSE).

ri--«_L,A R-FALSE J.

L-FALSE -i

-p ft A L-TRUE-.

r.yh A

r, -.->¥> i- a

Thy, A

r F -.-.(/J, a

r^tM-A

R-FALSE -i

L-TRUE A

r/r-^.A.A' R"TRUEA

r>^(^A^h-A,A' L"FALSEA

r i- -up, ->y>, a
R-FALSE A

r i- -.(<p a v),a

Finally, we add to rL+ the following epistemic rules:

r,bVA L-rauBD

r h ip, -^a

□r h □v>,-.da

r,-.y; h -.A

□r, ->□</? h -.OA

R-TRUE □

L-FALSE □

rr-cy.A

r,ayi-A

r, -.□-.□<,? h a 30

r h -iDy?,A

• r h CHCty, A 5d

The rule L-TRUE _L (r, J. h A) is derivable in L. On the

other hand, the rule R-TRUE ->

r^i-A

rh^,A

is not derivable: adding R-TRUE -> to rL+ would even yield a

sequent system for classical propositional logic ! (cf. Thijsse

(1992)).

Definition 2.9 The rules above are called L-rules. A

sequence A C £ is said to be L-derivable from another

sequence T C £, T I~l A, if T I- A can be derived by a

finite number of applications of the rules above. We usually

drop the subscript 'L' in the sequel. Then, two formulas
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tp, Tp £ £ are said to be equivalent, tp Hh Tp, if tp h V and

V> I- <£.

Lemma 2.10 (Soundness)

Foralir,AC£: r I- A => T (= A.

Let us pause for a moment and reflect on our basic logic.

Claims below that some sequents are not derivable, are now

easily verified semantically, as is justified by lemma 2.10.

• The first thing to note about the logic is that it is indeed

partial, which is mirrorred by the fact that we do not

have the law ofexcluded middle:

In fact, as is shown in Thijsse (1992), there is not any

theorem of L in the {X, T}-free language.

• Moreover, we do not have contraposition:

• Although L lacks contraposition and does not have any

{_L, T}-free theorems, there are the following prepo

sitional equivalences:

De Morgan:

-*(tp A Tp) HI—<ip V ->V

-~>(<p V Tp) -II—up A -*Tp

Double negation: ->-vp HI- tp

Distribution:

f A (ip V x) HI" (<p A i>) V (tp A X)

<P V (ip A x) Ht" (<p V Tp) A (tp V x)

Associativity:

tp A (ip A x) (V A Tp) A x

v v (v v x) hi- (v v Tp) V x

Idempotence:

tp A tp -\\- tp

tpV tp -\\- tp

Commutativity:

tp A Tp -\\- Tp A tp

tp V Tp Hh ^ V tp

Absorption:

tp W (tp A ip) -\\- tp

tp A (tp V tp) Hh

• For the defined symbols one can easily prove derived

rules such as the rules for V below, or reformulate rules

such as R-TRUE □ (by means of double negation, CUT,

and the definition of O).

T,tp\-A T',iphA'

~ T,r,tpV iph A,A'

_ r\-tp,j>,A

r F tp v ip, a

_ rhy,A

□r r-Cty, OA

L-TRUE V

• L has the following distribution property:

Dtp A Dip Hh D(tp A ip)

• For the epistemic part, we have the following:

Positive introspection:

Dtp I- DDtp QOtp h Otp

Negative introspection:

-i Dip h OOiyS h Dtp

Veridicality: Dtp \- tp tp\f Otp\

Note that, although we do have veridicality of knowl

edge ('known facts are true') we got rid of its con-

trapositive ('true facts are considered to be possible').

In the sequel, we will denote a property like positive

introspection by '□ □□' or 'OO =>■ O'.

To see the system L at work, we will provide a proof of

a lemma that is crucial for proving that nestings of opera

tors are in fact superfluous. The modal depth md(ip) of a

formula tp is defined straightforwardly, being 0 for ± and

prepositional atoms, md(-np) = md(tp); md(tp A ip) =

max(md(tp),md(ip)); md(Otp) = 1 + md(tp).

Proposition 2.11 (reduction properties)

1. D(Da V ip) Hh Da V Dip

2. 0(Da A tp) Hh Da A OTp

Proof: We only prove the first equivalence.

0-)

1. □a h Da START

2. ip h ip START

3. Da V Tp h Oa, V L-TRUE V (1,2)

4. □(□a V ip) \- ODa,Dip R-TRUE □ (3)

5. ODa h Da on => □

6. □(□aVVO I- da,^ CUT (4,5)

7. □(□aVV) r- DaVD^ R-TRUE V (6)

(H)

1. V> h Da,Tp START

2. Tp\-DaVTp R-TRUE V (1)

3. DTp h □(□aV^) R-TRUE □ (2)

4. □a 1- Da, V> START

5. □a h Oa V Tp R-TRUE V (4)

6. □□a h □(□aV^i) R-TRUE □ (5)

7. Da h ODa □ =*•□□

8. □a 1- 0(00 V ^») CUT (6,7)

9. DaVD^h □(□a V V) L-TRUE V (3,8)

R-TRUE V

R-TRUE □ Theorem 2.12 Every tp e C is equivalent with a formula

tp' with md(tp') < 1.
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We refer to van der Hoek, Japars and Thijsse (1993) for the

full proof that L is complete for the class ofballoon models.

By definition 2.4 our models arefinite; as a consequence, not

all consistent sets would be satisfiable, if we had not chosen

V to be finite. Our completeness proof uses a Henkin-

type construction of a canonical balloon model, based on

consistent sets of formulas.

However, instead of working with maximally consistent

sets, we build such a model out of consistent, disjunction-

saturated, deductively closed theories.

Definition 2.13 Let E C C. Then:

• E is consistent iff E \f tp A -ttp for all tp.

• E is a (deductively closed) theory iff

E h tp => tp e E for all tp.

• E is disjunction-saturated iff

E h tp V ip ^ E h tp or E h ip for all tp and i>.

• E C £ is saturated iff for every A:

E(-A=»EnA#0.

It can be shown that saturated sets are precisely the con

sistent, disjunction-saturated theories. Now, we have the

apparatus to define canonical models for L. Whereas in

classical modal logic the canonical worlds are maximally

consistent sets, in partial logic this role is taken over by

saturated sets.

Definition 2.14 (Canonical Model)

Let T be a saturated set. We define the canonical model for

ras Mr = (Wr,r,V), where

• Wr = {E | E is saturated and a~T CSC OT}

• For all E € Wr U {r} and p € V:

= { I if p4h

Then we can prove what are essentially the counterparts

of the Lindenbaum lemma and the truth lemma for partial

logic.

Lemma 2.15 (Separation Lemma)

If E \f A then there exists a saturated set T such that E C T

and A n T = 0.

Lemma 2.16

• The canonical model Mr is a balloon model.

• For all formulas ip G C, and all saturated sets T and

each canonical model Mr'

Mr t= <P <P £ r Air =| <p ->tp € T

Combining the results of Lemmas 2.10, 2.15 and 2.16, we

obtain a completeness result for L with respect to balloon

models.4

Theorem 2.17 For all E and A, E h A «• E (= A

3 HONESTY

This section concerns both the 'syntactic' and 'semantic'

view on honesty and minimal knowledge. The idea is to

minimize the knowledge expressed by, say, tp, i.e. to char

acterize what a rational agent knows when he or she only

knows ip (together with its logical consequences). If such

minimization is possible, <p is called 'honest' by Halpern

& Moses (1985). Though it may seem, prima facie, that

such characterization is always possible (by taking, say, the

deductive closure of Clip), this need not be the case. For

example, the formula tp = Opv D->p does not express min

imal knowledge (and is, hence, dishonest): only knowing

tp implies not knowing more than that, in particular, not

knowing p and not knowing ->p. However, the latter two

conclusions, combined with <p, lead to an inconsistency.

The main issue we want to address is the problem of decid

ing which formulas can be rendered honest. Using minimal

stable sets we will in fact present several notions of hon

esty and illustrate them by means of a number of examples.

Most of the technical justification for the examples, in par

ticular when the formula is honest, is provided after we have

given semantic characterizations of the various notions of

honesty in terms of minimal models. We also supply in

ferential tests (disjunction properties) which are convenient

for demonstrating that a formula is dishonest.

3.1 STABLE SETS AND HONESTY

We start out by investigating the deductive view on honesty.

Which criteria does the set Cav consisting of consequences

of Oip have to meet for tp to be honest? The crucial notion

here is that of a stable set.5 Although stability can be de

fined in many ways, the notion itself is stable, since various

definitions turn out to be equivalent.

Thinking of Cqv = {rp \ Dip h ip} as the 'epistemic state'

of a rational agent knowing only tp, it is clear that a stable set

at least has to be a consistent theory (Cf. definition 2.13).

In addition, we want a stable set to have the property that

the ignorance of non-consequences is compatible with the

knowledge of consequences. In Moore (1985) and Jaspars

(1991) this leads to the following requirements for a stable

set: (recall that 5 = {tp € C \ tp # S})

• S is a theory

• DSu-iOSis consistent

4 For a general procedure to prove completeness in this sequen

tial style, see Jaspars (1994).

'See Stalnaker, Moore (1985) and Halpern & Moses (1985) for

S5 stability. Jaspars (1991) defines stability for arbitrary normal

systems. Our text definition is from Thijsse (1992).
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Though correct for normal systems, the latter requirement is

too strong for the partial logic we advocate. Recall that our

logic does not have any {T, -L}-free theorems. Yet we want

to allow 5 = Cot to be stable, characterizing the epistemic

state of an agent knowing nothing. However, S is unstable

by the second requirement: since OT \f (p V ->p), we have

(p V ->p) G S, and therefore {□"!", ->D(p V ->p)} would

be consistent, which it is not. So we propose replacing

the requirement above by the more general condition that

knowledge of non-consequences does not follow from the

initial knowledge.

Definition 3.1 A theory S is stable iff OS \f OS

This definition can be recast in a format which is closer to

Stalnaker's original formulation.

Proposition 3.2 5 is a stable set of formulas iff

1 . 5 is a theory

2. if <p G S then Oip G S (positive introspection)

3. if dtp V Oip £ S then tp G 5 or ip G S (modal

saturation)6

4. ip & S for some <p (consistency)

Proof: This is rather straightforward. To illustrate this we

prove consistency, assuming S is stable. Suppose (4) does

not hold, then 5 = £, hence OS = 0. Yet by the rules

START and L-TRUE □, O.L h ± and so by monotonicity

OS h JL. The derived rule L-TRUE _L shows_1 h 0 and thus

by CUT CDS h 0. In total this yields OS h OS, contradicting

stability. ■

Although the characterization of stability given by proposi

tion 3.2 is useful, sometimes another concise requirement

is more convenient. Since saturated sets are the possible

worlds in the canonical model, the proposition essentially

means that a stable set consists of all and only formulas

known in some world.

Proposition 3.3

5 is stable iff S = 0~T for some saturated set T.

Proof: (=>) Let 5 be stable, then OS \f OS. By our

separation lemma there is_ a saturated set T such that (i)

OS C T and (ii) T n OS = 0. Then ip 6 5 => (by i)

Otp e r =>• ip G D~r and ip & S Oip £ OS => (by ii)

Oip $ T =► ip 0 D~r. Hence 5 = err. (<i=) Suppose

S = O'T for some saturated set T, and also that OSJ- OS.

Since D5 C T, and using l-mon we have T h DS. T is

saturated, and hence there is some ip & S with T h D^.

But then, since T is deductively closed, we have □V' G T

and hence ^ G S, a contradiction. ■

Having characterized stability in different ways, we are

ready for a formal account of honesty. Writing ST{<p)

6For consistent theories S modal saturation is equivalent to

s i- Dr =>• s n r ^ 0 for all r c £.

for {S C £ | <p G S & S is stable }, minimization of

knowledge <p involves finding a minimal element in ST(tp),

the set of stable expansions of <p. If there is a stable set

which is minimum, according to some order on sets of

formulas, the knowledge is honest. What is this ordering

relation? In the paradigm case of the (total) system S5,

different stable sets are incomparable, so set inclusion does

not work. This is not the case for the present (partial)

system, basically because the notorious Stalnaker condition

(p & S -<0(p G 5 does not hold for stable sets in partial

logic. The invalidity of the latter condition implies that in

L a stable set is not determined by its propositional content

(the purely propositional formulas in it), although a stable

set is determined by its formulas of degree 1 (i.e. of modal

depth less than or equal to 1 , or equivalently, without nested

boxes). This might suggest set inclusion as the ordering

relation of the stable sets, and a notion of honesty induced

by C: basically existence of a smallest stable expansion.

Definition 3.4 ip is called naively honest iff there is a

C-minimal element in ST(f).

Example 3.5 The formulas p, p A q, Op, 0(p A q), Op

and 0(p A q) are naively honest.

In order to prove the correctness of these examples, we

would like to dispose of other conditions for establishing

naive honesty. To this purpose reinspectCo^,. Observe that

• Cav is a theory, since I- is transitive for single formu

las;

• Caif, is contained in every stable set containing ip: by

proposition 3.2(2) if tp G some stable S, then 0<p G 5,

so, by proposition 3.2(1) 5 contains all the conse

quences of Oip, i.e. Ca<p C 5.

As an easy result, we now present a necessary and sufficient

condition for a stable set to be C-minimal.

Theorem 3.6

A set S is C-minimal in ST(tp) iff 5 = Cqv is stable.

Proof: (=>) Suppose S is C-minimal for ip. By definition

ip G S, and, by the remark above, Cov C 5. Now suppose

that S 2 Cav, then we have a ip with ip G S and Oip \f ip.

The separation lemma then provides a saturated set T for

which Oip G T, ip & T. Since Oip h ip and T is a theory,

we also have Oip £ T. By proposition 3.3, D_r is a stable

set containing ip, contradicting the C-minimality of 5.

(•<=) If Cn? is a stable set, then, by the remarks above, it

must be C-minimal. ■

The theorem above immediately provides a necessary and

sufficient condition for naive honesty.

Corollary 3.7 tp is naively honest iff Cuv is stable.

Proof: Let Cov be stable. By L-TRUE □, <p G Cov. By

theorem 3.6, Cav is also C-minimal for ip, implying that <p

is naively honest. The other direction is obvious. ■
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Intuition says that objective (i.e. propositional, without

boxes) formulas should be rendered honest, for it seems

to be perfectly sensible to claim to only know some objec

tive information. This is why naive honesty is too strong

and too naive:

Observation 3.8

The objective formula (p V q) is not naively honest.

Proof: Suppose that S would be C-minimal in ST(p V

q), then (p V q) G S, and, by proposition 3.2(2), also

□(p V q) e S. Since (by R-TRUE and O □<>)), we have

□(pVg) h OpVDOq, we use proposition3.2(3)to conclude

that either p G 5 or Oq G 5 (*). Now, let Si = {Dp} and

E2 = {□?}■ Using completeness, we immediately see

that Ei \f OOq and E2 \f Op. The separation lemma

then guarantees the existence of saturated sets Ti , r2 for

which Ei C Ti{i = l,2),DOg g Ti and Dp £ T2. By

proposition 3.3 we find two stable sets Si = D~Ti,(i =

1,2), Si G ST(p V q), for which Oq & Si and p g 52.

Since Sis C-minimal in ST{pVq) we find p & S, Oq g" S,

contradicting (*). ■

Therefore, though the set inclusion ordering of stable sets is

(non-trivially) possible, it produces incorrect results as far

as honesty is concerned. Now one alternative is to replace

ordinary set inclusion by the relation of epistemic inclusion

CD. This, however, will not produce any new results, due

to the following observation.

Observation 3.9

For all stable sets I\ A: T CD A T C A.

Somewhat surprisingly, since its propositional content does

not determine the stable set, minimality of propositional

content of a stable expansion produces a more adequate

notion of honesty.

Definition 3.10 f is weakly honest iff there is a Co-

minimal element in ST(<p)

This is in fact the same definition of honesty that was pro

posed by Halpern & Moses (1985). However, in L one can

generally derive less conclusions from the minimal descrip

tion of a weakly honest formula than in the S5 case. For

example, Op is honest for S5, and also weakly honest for

L, but 'knowing only Op' entails different conclusions in

both set-ups. Also notice that all naively honest formulas

are weakly honest.

Example 3.11 The disjunction (p V q) is weakly honest:

more generally, for each consistent objective formula 7r,

7r itself, Dn and On are weakly honest. Other examples

of weakly honest formulas are (Dp A Oq), and disjunctions

such as (DpV-'Dp) and (pV->dp). The formula (OpVOg)

is not weakly honest, nor are (Dp V ->p), or (dp V q). (This

will be proved in section 3.3.)

Notice that a propositionally smallest stable expansion for

some formula need not be unique: 5 n C0 does not deter

mine 5. For example with p V q, S may or may not contain

O(pAg).

Proving weak honesty may be facilitated somewhat by a

characterization similar to theorem 3.6: a stable expansion

of Oif is Cg-minimal if all its propositional elements are

consequences of

Theorem 3.12 A set S is C0-minimal in ST((p) iff

5 G ST(<p) and S0 = (CDv,)0 = {fi G C0 \ U<p h p. }.

We have already explained why (Dp V Oq) should not be

rendered honest: although it makes perfect sense for an

agent to claim that he knows that he either knows p or q, it

is absurd for an agent to claim that all he knows is that he

either knows p or q, because it would imply that he does not

know p (dp being stronger than (Op V Oq)), nor q. As we

noticed in the introduction, a similar analysis can be made

for the agent who is supposed to only know (Op V Oq):

this formula should not be honest either. This is why the

current notion of honesty is too weak:

Observation 3.13

The formula (Op V Oq) is weakly honest.

Proof: It is easily seen that Op V Oq \f O£0. By the

separation lemma, there is a saturated set V for which Op V

Oq G T, and T n DC0 = 0. By proposition 3.3, n~r is a

stable set, which moreover contains Op V Oq (the latter is

true by Op V Oq h D(Op V Oq)). Since a~T D £0 = 0,

□_r is obviously a C0-minimal set for Op V Oq. ■

Analyzing the reason for this observation, we note that for

weak honesty, we did minimize the objective formulas in

the stable set for <p, but not the possibilities contained in it.

In fact, Co-minimality is insufficiently restrictive: among

the C0-minimal stable sets, we want to single out those

containing the smallest number of epistemic possibilities.

This is achieved in our last notion of honesty:

Definition 3.14 A formula ip is called strongly honest iff

there is a C0-minimal element in

{S C C | S is C0 -minimal in ST(tp)}.

Such an 5 is called strongly minimal for ip.

Example 3.15 (Op V Oq) is not strongly honest. As

with weak honesty, for each objective formula n G Co, the

formulas 7r and 07r are strongly honest, but now, 0(p V q)

is not strongly honest.7

Can we give other sufficient and necessary conditions for

strong honesty? To give this characterization we need one

more definition. For a formula i> we define its diamond

remainder as

= {OM 6 O(£0) I V<p h a(C^)0, On }.

In words, Rav contains the O-formulas with a propositional

argument that are derivable from Clip, in disjunction with

7Cf. section 3.2 for a proof.
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those CD-formulas of which the argument is prepositional

and not a consequence of d<p.

Theorem 3.16 A set 5 is strongly minimal for tp iff

S0 = (Ccv)o, 5 n OC0 = and 5 € ST(<p).

3.2 MINIMAL MODELS

Proposition 3.3 ties up the notion of stable set with a major

semantic notion: recall that in the canonical model saturated

sets correspond to partial worlds. The following corollary

of proposition 3.3 relates stability directly to the knowledge

in a balloon model.

Corollary 3.17

S is stable iff 5 = k(M) for some balloon model M.

To decide whether some formula is honest, we considered

stable sets that were minimal in some sense. Combined

with corollary 3. 17 the following orders on models emerge.

Definition 3.18 For any two models M = (W, g, V) and

M' = {W',g',V) we define:

• (Smyth order)

M CD M' O Vw' eW'BweW: V(w) C V'(w')

• (Hoare order)

M Co M' o Vw G W 3w' G W : V(w) C V'(w')

• (Egli-Milner order)

MCM'«MCDM'tMC0M'

• For any ^ e { CD, C0, C }, we say that a model Af

is X-minimal for tpifipE k(M) and for all Af' with

tp G k(M') it holds that M < Af'. We then say that

tp has a X-minimal model.

The above orders are familiar from domain theory; see

e.g. Stoy (1977). The orders do not specify anything

about the root g of a model Af = (W,g, V). Recall that

Th(M) = { <p G C | Af (= v> }, that «(M) = □-Tfc(Af)

and 7r(M) = 0~Th(M). A second step towards linking

the semantic and the syntactic approach to minimal knowl

edge is to compare the relations C„ and C*. This is how

C, and C* are related:

Theorem 3.19 Consider two models M = {W, g, V) and

M' = (W',g',V'}. Then:

• M Co Af' Th(M) n aC0 Ca Th(M') o

k{M) C0 /c(Af')

• Af C0 Af' T/i(M) n OC0 Co 77i(Af')

tt(M) Co tt(M')

• Af C Af' o k{M) C k(M')

• MCtfii V(g) C V'(ff') 77i(Af) C Th(M')

Proof: We only prove the first item in extenso; the second

is proven similarly, whereas the third can be deduced from

the others, using the degree 1 normal forms from the proof

of theorem 2. 12 for the first equivalence.

So, suppose that Af Ca M' and let n be some prepositional

formula for which Af |= D/i, i.e. for all w G W : Mw |=

fi. Choose any v' G W. Since Af CD Af' there is a

v G W such that V(v) C V'(w'), and so, since /x G Co

we use prepositional persistence (lemma 2.5) to conclude

M'v, |= fi. Since t;' was arbitrary, we have M' \= d/i.

The opposite direction is proven using contraposition: if

Af £□ M', then there is some w' G W such that for all

w G W: V(w) % V'(w'). So, for each w e W there is a

literal G U -*V such that M„ |= aB and M^,, j£ aw.

Now if a = Vtugw a«» obviously a G £o and Mw |= q

for all w G W, so Af (= Do, yet Af^,, £ a, so Af' £ Ca.

Therefore k(M) n £0 2 t(Af'), i.e. /c(Af ) g0 «(Af'). ■

It is not hard to see that the restrictions on £0 in the theorem

are necessary. In the case of CD for instance, let Af' =

{W',g',V') such that V'(w')(p) = 0 for all w' G W.

Consider Af = {W, g, V) with W = W U {x} for some

x $ W, V(x){p) = 1 and V[uf) = V'(w') for all w' G

W. Although M CD A/', we have Af (= OOp, but at the

same time M' ^ OOp.

Switching to the semantic view may help to provide proofs

for simple facts about stable sets and their ordering rela

tions. In its turn the following result is needed to prove

theorem 3.16:

Corollary 3.20 Let 5 and S' be two stable sets such that

□~S C0 0~S' and 0~S C0 0~S'. Then S C S'.

Proof: Let M and AT be such that 5 = k(M),S' =

k(M'). Applying the first two items of theorem 3.19, we

obtain Af CD Af' and M C0 Af, hence Af C M' and

thus, by the last item of the same theorem, 5C51. ■

Now we can characterize our different notions of honesty

in semantic terms.

Theorem 3.21

(p is naively honest iff Dip has a C-minimal model.

Proof: Using corollary 3.17 and theorem 3.19, the argu

ment is straightforward:

<fi is naively honest

(def. naive honesty)

3S G ST{fp) VS' G ST(tp) :SCS'

(cor. 3.17)

3M : ifi G k(M) &VM'(<p G k(M') => k(M) C ac(M'))

«• (def. /c,thm3.19)

3Af : Af (= Dip & VAf'(Af' (= => Af C Af')

O (def. 3.18)

3Af which is C-minimal for Cy
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Example 3.5 (continued) Figure 2 gives C-minimal mod

els for (p A q), 0(p A q) and d(p A q), respectively. Let

us prove that M' is C-minimal for 0(p A q): suppose N is

an arbitrary model for 0(p A g). Since M' has an empty

world, we immediately obtain M' CQ N; moreover, since

N (= 0(p A q), there must be some world u in N verify

ing both p and q, and this world obviously extends the two

balloon worlds of M', so M' C0 jV. *

CJC

p,q

M M'

p. 9

M"

9 9' g"

Figure 2: Three C-minimal models

P,9

Theorem 3.22

ifi is weakly honest iff Otp has a CQ-minimal model.

Proof: Again a direct argument is possible:

tp is weakly honest

O (def. weak honesty)

35 G STM VS' G ST(y>) : 5 C0 S

O (cor. 3.17)

3M : <p G k(M)&VM'(vj G k(M')

o (def. /c, thm3.19)

3M : M ^ Dip & VM'(M' ^ D¥> =>

(def. 3.18)

3M which is CD-minimal for Oip

Definition 3.23 A model M is called strongly minimal

for ip iff M is C<>-minimal in the set

{M' | M' is CD -minimal for y> }.

Note that strongly minimal models for y> are by definition

Co-minimal for <p. Also note, however, that a strongly

minimal model need not be Co-minimal.

Theorem 3.24

if is strongly honest iff has a strongly minimal model.

Proof: Similar to theorems 3.21 and 3.22, though more

laborious. ■

Example 3.15 (continued) We argue that (Op V Oq) is

not strongly honest: consider the two models M and M'

of figure 4. Both models verify □(Op V Oq) and contain

an empty balloon world, hence both are C0-minimal for

□(Op V Oq). But then we also see that there can be no

model N for D(Op V Oq) for which both N C<> M and

JV C0 M1: such a model N has to contain at least a p- or

a (/-world, if it has a p-world then go M', if it has a

g-world, then N go M.

* «(M) C0 k{M'))

M CD M')

c

M

3 c 3

Figure 4: Two CD-minimal models for (Op V Oq)

The last example shows that the model-theoretical approach

may also be a convenient tool for proving dishonesty. The

following subsection contain tests that are particularly use

ful for this goal.

Example 3.11 (continued)

The models M and M' of figure 3 are CD-minimal for

□(pVg) and DpV -'Op, respectively. To see the latter, note

first that M' is a model for ->dp, and hence for Op V ->Op.

Moreover, M' Cn N for any N, due to the empty world

in M'\ thus M' is CQ-minimal amongst the models for

0(Op V -<Op). Connecting strong honesty with a semantic

c

M

J c

-ip

M'

3

9 r 9'

Figure 3: Two CQ-minimal models

notion requires one more definition.

3.3 DISJUNCTION PROPERTIES

One might want to have an even more direct condition pro

viding honesty, without interference of the notion of sta

bility. Here, we will provide several syntactic, or perhaps

rather deductive characterizations for honesty.8 Inspecting

the properties of saturated and stable sets, one good can

didate for this is the disjunction property, defined below.

In fact, this property is already mentioned by Hughes &

Cresswell (1984), albeit that there it is a property of log

ical systems, rather than of formulas. In partial logic the

property should be slightly reformulated, and adapted to the

different notions of honesty.

Definition 3.25 Let </> G C. The following conditions

determine when ip has the disjunction property (DP), the

propositional disjunction property (PDP) or the preposi

tional disjunction diamond property (PDDP), respectively.

8 In fact, it is highly questionable whether a fully syntactic (i.e.

morphological) criterion for minimal knowledge exists.
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DP VE C C : Dip h QE => 3a € E : Dip h a

PDP VII C £0 : d<p h Oil 3tt € II : Dip h tt

pddp vnc£0: aip h a(c^)0, on

3tt G n : D(^h 0(^)0, Ott

Note that all disjunction properties imply consistency: take

II, E = 0 for the arguments II, E in the rules of the defini

tion above. But we can show a much stronger result:

Theorem 3.26

<p has the DP ip is naively honest

ip has the PDP o ip is weakly honest

ip has the pddp <=> ip is strongly honest

Proof: We only demonstrate the easiest equivalence, i.e.

the first. First, let if be naively honest. This means it has a

C-minimal stable set S. Now suppose Dip I- DE, then S h

□E. By proposition 3.2(3), we know SnE ^ 0. According

to theorem 3.6 5 = Cav, so there is a consequence of dtp

in E, i.e., for some a £ H, Dip h a. In short, <p has the

disjunction property.

For the other direction, suppose that <p satisfies DP. In order

to apply the separation lemma, we take E = {Dip} and

A = UCa<p- In order to show that Dip \f DCa<p, suppose

to the contrary that Dip h DCo?- The disjunction property

DP implies that for some rf> € Ca^, Dip h ^, i.e. ip € Co?,

a contradiction. Thus, by the separation lemma, there is a

saturated set I\ with Dip € T and F U DC^ = 0. This

implies that

{Dip} CTC DCDlfiDDC(*)

Now, take 5 = D~T. By proposition 3.3, S is stable.

Moreover, (*) above guarantees that S = Co?- To see

'D', note that ip € S and apply the remark that we made

about theorem 3.6 saying that Ca<p is contained in every

stable set containing ip. For 'C', consider any a € 5. Then

Da € T. If Da £ DC0(p, then, by (*), Da e which is

impossible. So dcr G DCo^, and hence <r £ Cnv,. But if

5 is stable and equal to Cov, we have stability of Cav and

may use corollary 3.7 to conclude that ip is naively honest.

■

Since the disjunction properties are purely inferential and

strictly related to the possibly honest formula under inspec

tion, and neither involves extension to a stable set that is

minimal in some sense, or minimization in a class of mod

els, they provide a very convenient tool for testing honesty.

Disjunction properties are particularly useful for proving

that some formula is dishonest, as is illustrated below.

Example 3.11 (continued)

Using the PDP we can easily conclude that (Dp V Dq) is not

weakly honest: D(Dp V Dq) I- Op V Dq, so D(Dp V Dq) h

□{p, q}, yet D(Dp V Dq) \f p and D(Dp vDq)\fq (where

non-derivability is shown by providing a counter-model, as

usual). That (Op V ->p) and (Dp v q) are not weakly hon

est can be shown by taking II = {p, ->p} and II = {p, q},

respectively, thus contradicting the PDP.

By means of theorem 3.21 some of the earlier proofs can

now be simplified. For example, observation 3.8 now has a

very easy proof:

□(pVg) h □pVDOg,yeta(pVg) l/pandD(pVg) \f Oq,

and thus DP shows that p V q is not naively honest.

4 CONCLUSION

We have described a new epistemic logic with the remark

able feature that on the one hand knowledge implies truth,

yet on the other hand truth does not imply epistemic possi

bility, thus avoiding at least one type of logical omniscience.

The logic can be shown to be sound and complete for so-

called balloon models with a partial interpretation.

This logic is then used as a vehicle to study minimization

of knowledge. We have introduced different notions of

honesty, each of which can be equivalently described in a

number of ways. We summarize our notions of honesty and

their various characterizations in the following list.

• ip is naively honest iff

there is a C-minimal stable expansion of ip iff

the set of consequences of Dip is stable iff

ip has the disjunction property iff

Dip has a C-minimal model.

• ip is weakly honest iff

there is a C0-minimal stable expansion of ip iff

ip has a stable expansion of which the propositional

(i.e. objective) elements are consequences of Dip iff

ip has the propositional disjunction property iff

Dip has a CD-minimal model.

• ip is strongly honest iff

there is a Co-minimum (called strongly minimal for

ip) in the set of C0-minimal stable expansions of <p iff

ip has a stable expansion S of which the propositional

elements are consequences of Dtp and for all objec

tive formulas 7r,7r': Ott e S # Dip implies Oit in

disjunction with the formulas Dn' which are not con

sequences of Dip iff

ip has the propositional diamond disjunction property

iff

Dip has a model which is C0-minimal with respect to

its CD-minimal models.

Whereas the stable expansion criteria makes a comparison

to 'classical' definitions of honesty9 possible, the disjunc

tion properties provide viable tests for honesty, and the

model-theoretical treatment shows one of the main advan

tages of our partial semantics: the minimal models are

really quite small.

9We prefer our formulation of stable expansion to the much

less perspicuous fixed-point definitions that are still common in

much work on honesty and autoepistemic logic.
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Comparing the different notions above, we arrive at a hier

archy of honesty, since we can easily prove

tp is naively honest ip is strongly honest =>■

ip is weakly honest.

As we have illustrated on a number of examples, naive

honesty is too strong (i.e. it yields too many dishonest for

mulas), whereas weak honesty is indeed too weak— strong

honesty is the preferable option. By means of honesty we

can also define the semantics of the operator 'Agent only

knows'.10

Evidently, we can define a non-monotonic preferential en

tailment relation |~ by:

<p |~ V & V 'S strongly honest and for all strongly minimal

stable expansions 5 of ip : ip € S

This relation intuitively means that, if ip is only known, then

V> is also known. Then, due to the partial background logic,

we find no entailment of irrelevant possibilities, e.g.:

v\f- oq-

Notice that though many non-monotonic entailments that

were valid for the classical system S5 do not qualify for our

partial system L, such entailment still differs from (partial)

consequence and derivability: we have, for example

(P V q) \f Op & (p V q) |~ Op

A systematic study of the properties of (~ will be the

subject of future research.
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Abstract

A semantical theory of belief revision in syn

chronous multi-agent systems is presented.

The theory assumes that the world is static,

and that the belief revision methods used

by the agents are common knowledge. It is

shown that the theory has as a special case

the revision of knowledge in a broadcast vari

ant of Fagin and Vardi's communicating sci

entists model, in which knowledge is denned

in terms of an equivalence relation on runs

in a distributed system. Next, the theory

is applied to give a semantic reconstruction

of a default logic theory of speech acts pro

posed by Perrault. This reconstruction char

acterizes the way the speech act transforms

an only knowing representation of the agent's

belief states. The results are shown to differ

from those obtained by Perrault. In particu

lar, it is argued that a sincere assertion does

not necessarily lead to mutual belief of the

proposition asserted, even when the hearer

does not initially have any beliefs about this

proposition.

1 INTRODUCTION

The question of how an agent should maintain its

epistemic state has long been a subject of inter

est in the areas of artificial intelligence, databases

and philosophy, and the literature on this topic is

extensive. In particular, there has been a consid

erable amount of work on the semantics of single

agent belief revision [Gardenfors, 1986; Katsuno and

Mendelzon, 1991]. In multiple agent situations, be

lief revision is more complex, since an agent must

revise not just its own beliefs about the world, but

also its beliefs about other agents' beliefs about the

world. Moreover, an agent must also revise its be

liefs about other agents' beliefs about its own be

liefs, and so on. We may call this iterated process

mutual belief revision. The extant theories treating

the dynamics of belief in multiple agent environments

are primarily syntactical [Appelt and Konolige, 1988;

Cohen and Levesque, 1990; Isozaki and Shoham, 1992;

Morgenstern, 1990; Perrault, 1990; Thomason, 1990].

In this paper we develop a semantic theory of mutual

belief revision.

Among the domains of application of such a theory is

a strand in natural language pragmatics that seeks to

characterize the meaning of a speech act by describing

the effect it has on the mental states of the partici

pants of the conversation [Allen and Perrault, 1980;

Cohen and Levesque, 1990; Cohen and Perrault, 1979;

Perrault, 1990]. Another potential application is the

semantics of agent/knowledge oriented programming

languages [Fagin et at., 1994; Moses and Kislev, 1993;

Shoham, 1993], which include as primitive constructs

modal operators for knowledge and belief.

One can study the dynamics of belief under a variety

of assumptions about the nature of agents and their

environment. We work in this paper with a very spe

cific set of assumptions. Prototypical of the situations

to which our theory is intended to apply are face to

face communication, mutual observation of a set of

circumstances, and broadcast in synchronous systems

with guaranteed message delivery. Thus, we assume

agents revise their beliefs synchronously, in response

to an event whose occurrence is common knowledge.

Each agent is assumed to employ an individual belief

revision method, which is common knowledge to the

other agents.

In addition, we assume that the world is static - it is

only the beliefs of the agents that change. In the ter

minology of [Katsuno and Mendelzon, 1991], we deal

with the revision of belief, occasioned when additional

information is obtained, or some existing beliefs are

are found to be false. This is opposed to the notion of

update, applicable when a change of belief is required

because of a change in the state of the world.1

lFor an investigation of update in multi-agent environ

ments see [Meyden, 1994].
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The theory we develop represents mutual belief revi

sion as an operator on certain sets of Kripke structures

that are canonical for the multi-agent version of the

perfect introspection logic K45. However, because our

theory is semantical it applies also to logics stronger

than K45, such as KD45 and S5. The mutual belief re

vision process is factored into two stages. In the first

stage, agents revise their individual beliefs, ignoring

the fact that other agents are also revising their be

liefs. In the second stage, the other agents are taken

into account. The main concern of the paper is with

the relationship between the individual belief revision

methods and the agents' mutual belief revision.

The model of individual belief revision used in this

paper is very general, and does not satisfy the postu

lates for rational belief revision recommended by [Al-

chourron ei ai, 1985], commonly referred to as the

AGM postulates. This is in part because our focus is

on the issue of mutuality rather than rationality, and

we prefer to cast the theory at the most general possi

ble level. However, we would also argue that the AGM

postulates, and others like them, are too restrictive.

Indeed, we present an example of interest in mutual

belief revision (derived in essence from work of Per-

rault) in which the AGM postulates are not satisfied

by the revision method of the individual agents. Nev

ertheless, one could restrict our theory by adding the

AGM postulates as constraints on the agents' individ

ual belief revision methods. One of the merits of our

theory is that it allows for the incorporation of such

assumptions in a very natural way.

In Section 3 capture the above assumptions on agents

and their environment by formalizing the relationship

between mutual belief revision and individual belief

revision. We show that for each assignment of agents'

individual belief revision methods there is a unique

mutual belief revision operator satisfying this formal

ization. The remainder of the paper is devoted to jus

tifying this theory by studying its consequences in two

special cases.

First, we consider knowledge, a special case of be

lief. The dynamics of knowledge are better under

stood than those of belief: there exists an indepen

dently motivated account of the revision of knowledge,

arising directly from the semantics of knowledge in

distributed systems [Halpern and Moses, 1990]. We

consider a particular distributed system, the scien

tists in conference model, which satisfies the assump

tions above. This system is a modification of the

communicating scientists model of [Fagin et ai, 1994;

Fagin and Vardi, 1986], which was based on message

passing. We show that when our theory of mutual

belief revision is applied to the states of knowledge

arising in the scientists in conference system, the re

sults are identical to those implied by the semantics of

knowledge. We take this to be strong evidence for the

reasonableness of our approach.

As a second application, we consider the implications

of the theory for an account of speech acts proposed by

Perrault. Perrault's work was syntactical, being cast

in terms of an extension of default logic [Reiter, 1980].

In order to give a semantic reconstruction, we use the

notion of only knowing [Levesque, 1990] to represent

the agents' initial state of knowledge. We then study

the prediction of our theory for the state of knowl

edge after an assertion. The results turn out to differ

from those obtained by Perrault. In particular, our

theory entails that a sincere assertion does not neces

sarily lead to mutual belief of the proposition asserted,

even when the hearer does not initially have any be

liefs about this proposition. However, a weaker propo

sition does become mutual knowledge, and we argue

that this is an appropriate result, that again supports

the reasonableness of our theory.

The structure of the paper is as follows. The prelimi

nary Section 2 introduces a particular class of canoni

cal Kripke structures for K45„. Section 3 describes our

theory of mutual belief revision. Section 4 shows that

the theory correctly describes the revision of knowl

edge in the scientists in conference model. In Section 5

we apply the theory to model Perrault's default logic

theory of speech acts. Section 6 concludes.

2 PRELIMINARIES

We work with a propositional modal language C„ gen

erated over the set of propositional constants The

language contains a modal operator B, for each agent

t = 1 . . . n, representing the belief of agent i. The set

of formulae is the smallest set containing $ such that

if ip and are formulae then -«p, <p A rl> and Bi<p are

formulae. A formula is said to be i-objective if it is a

boolean combination of atomic formulae and formulae

of the form Bjtp where j ^ i.

The class of semantic structures used to interpret this

language will be the K45n structures, defined as fol

lows. A propositional assignment is a function a : $ -*

{0, 1}. A valuation on a set X is a function V map

ping each element of X to a propositional assignment

A K45n structure is a tuple M = (W, Ri, . . ., Rn, V)

where W is a set of worlds, the Ri are binary re

lations on W, and V is a valuation on W. The

relations Ri are required to be transitive and es-

clidean [Chellas, 1980]. An alternate way to under

stand these conditions is as follows. Given a world w

and agent t , define the possibilities of i at w to be the

set poss^w) = {v e W | wRiv}. Then Ri is transi

tive and euclidean just when for all worlds w and all

v G possi(w), we have poss^v) = posSi(w). In particu

lar, note that this means that Ri restricted to possum)

is an equivalence relation.

A K45„ situation is a pair (M, w) where M is a K45n

structure and w is a world of M . Satisfaction of formu

lae of £„ in situations is denoted by a binary relation
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symbol '^=', and defined along the usual lines:

(M, w) ^= p if V(w)(p) = 1, where p€

(Af, w) \= ip /\ xl> \i (M, w)^= <p and (M, w) |=

(M, id) |= ->^> if not (M, w) \= <p,

(M, tt>) |= Bi<p if (Af, u;') \= ip for all u/ € W such

that wRiw' .

Intuitively, a situation describes a particular state of

the world, the agents' beliefs about the world, their

beliefs about each others beliefs, etc. It is well-known

that requiring the relations iZ, to be transitive and

euclidean results in the validity of the formulae Bnp —►

BiBitp and -<Biip —* Bi~>Bi<p, known respectively as

the positive and negative introspection rules.

We will, in the next section, seek to represent mu

tual belief revision by means of an operator mapping

situations to situations. Since the set of worlds of a

Kripke structure may have arbitrarily large cardinal

ity, the class of all situations does not form a set, which

means that a function from all situations to situations

cannot be formulated within set theory. To get around

this problem, and to enable explicit description of the

revision operators, we will use certain canonical struc

tures. These will be infinite tree-like structures, in

which the degree of branching is bounded.

It is convenient to represent these structures using a

generalization of the notion of tree domain. Let L

be a set of labels, equipped with a valuation V. De

fine an (L, resequence of length m to be a sequence

of the form foil h »2fo • »m'm where m > 0, the /;

are labels in L, the ij are agents in {l...n} and

ij ^ ij+i for each j = 1 . . .m — 1. A set T of (L, re

sequences is said to be closed under prefixes if when

ever foii/ii'2/2 • • • »n/m G T we have lohl^h ■ ■ ■ »'tfo €

T for all ifc < m. An (L, n)-labelled tree is a possi

bly infinite set T of (L, r»)-sequences that is closed un

der prefixes and contains a unique (L, n)-sequence of

length 0, i.e. a label fo in L. In this case we define

root(T) = fo. We write T(L,n) for the set of (L,n)-

labelled trees on L. When L and n are clear from the

context we will refer simply to "labelled trees".

We call the elements of a labelled tree T the vertices of

T. If v is a vertex of T and the sequence2 w — v • il is

also a vertex of T, where i € {1 . . . n} and I E L, then

we say that w is an i-successor of v. An (L, n)-labelled

tree T has an obvious interpretation as a tree with

edges labelled by elements of {1 ... n} , vertices labelled

by elements of L. We define the labelling function lab

from n-sequences to L by /a((foii/it2fo • • -imfo>) = fo>-

Note that no two distinct i-successors of any vertex

have the same label. Thus, the cardinality of branch

ing is bounded by the cardinality of the set L. Ad

ditionally, note that the requirement that ij ^ iJ+i

The operator '•' denotes concatenation of sequences.

 

flQi

Figure 1: A labelled tree

in the definition of (L, n)-sequences implies that an i-

successor of any vertex can have no i-successors itself,

though it may have ./'-successors for j ^ i. The reason

for this will become apparent below.

A labelled tree in which the root has no i-successors

will be called an i-objective tree. We write 7i(L, n)

for the set of i-objective (L, n)-labelled trees. An

(L, n)-labelled forest is a set F of (L, n)-labelled trees

such that when T and T' are distinct trees in F we

have root(T) ^ root(T'). We say that the forest F

is i-objective if every tree in F is i-objective, and

write Ti(L, n) for the set of i-objective (L, n)-labelled

forests.

If T is a labelled tree and t; is a vertex of T with

lab(v) = fo then we define the subtree of T rooted at

v, denoted by T t v> to be the tree containing the

sequences foii/ii'2/2 • • im'm such that T contains the

sequence t; • iihi^h ■ ■ im'm- An i-child of a vertex v

in a labelled tree T is a labelled tree T | w where w is

an i-successor of v. We write childi(T) for the set of

all i-children of the root of T. Note that childi(T) is

an i-objective forest for all trees T.

Example 2.1: Suppose L = {a,b,c}. Then

T = {a, ala, ala2b, ala2c, alb, al62c, al62cla}

is an (L, 2)-labelled tree, depicted in Figure 1.

Here the solid edges represent the tree structure -

the meaning of the broken edges will be explained

below. If v = ala then T | v = {a, a2b, a2c}.

Note that T is a 2-objective tree. The set of 1-

children of T is the 1-objective forest childi(T) =

{{a, a2b, a2c), {b, 62c, 62cla}}.

An (L, n)-labelled tree T may be regarded as a K45„

structure M{T) = (W, Ru . . . , Rn, VM ). The worlds
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W of this structure are just the vertices of T, and the

valuation Vm is given by Vm(v) = V(lab(v)), where

v is a vertex of T and V is the valuation on L. The

accessibility relations Ri are not the t-successor rela

tions, however, but the larger relations given by vRiv'

if and only if v' is an t-successor of v or there exists a

vertex w G T such that v and v' are both i-successors

of 10. Note that because no t-successor of a vertex

has an t-successor, these relations are transitive and

euclidean, so M(T) is indeed a K45„ structure.

By adding to M(T) the world represented by root

of the tree T, we also obtain a K45n situa

tion (M(T), root(T)). We write T (= <p when

(M(T), root(T)) ^= ip. Note that under this interpre

tation of T the i-objective forest childi(T) constitutes

a set of situations representing agent i's state of belief.

Example 2.2: Consider the tree of example 2.1.

The broken edges in Figure 1 represent the addi

tional tuples added to the tree edges to construct

the relations Ri. If $ contains a single propo

sition p and the valuation V on L is given by

V(a)(p) = V(b)(p) = 0 and V(c)(p) = 1, then

T (= Bi-.BiB2p.

Conversely, the class of all labelled trees is able

to represent all K45n situations by a construction

similar to a well known 'unravelling' construction

[Bull and Segerberg, 1984]. Suppose we are given

a structure M — (W,Ri,...,Rn,V) and a world

w of M. Let the set L of labels be the set W

of worlds of M, equipped with the valuation V of

M. Take T{M,w) to be the (L, relabelled tree

containing a vertex wiiu^v? . . .imum for every se

quence of worlds tii ... um and every sequence of in

dices t'i . . . sm without consecutive repetitions such

that wRi^iRi^ . . . Rinum.

This construction is unlike the standard one in that it

deals with multi-agent structures, but the main differ

ence is the condition that there be no consecutive rep

etitions of agent indices. Intuitively, the reason for this

is that, because we are dealing with K45„ structures,

allowing agent repetitions yields trees with a great deal

of redundancy, satisfying certain constraints related to

the positive and negative introspection conditions. We

could formulate our work in this paper in terms of such

trees, but find it more convenient to eliminate the need

to deal explicitly with the additional constraints by

factoring out the redundant parts of the tree. The fol

lowing result shows that, with respect to the language

£„, the tree T(M,w) expresses the same information

as the situation (M,w).

Proposition 2.3: If <p G Cn then (M, w) |= ip iff

T{M,w)\=<p.

This result shows that labelled trees are canonical in

that they are able to represent all situations. In some

respects the labelled trees form too large a class of

structures, however. Suppose the tree T* is obtained

from the tree T by replacing the label / at the root by

another label /' associated with the same assignment,

i.e. for which V(l) = V(l'). Since the vertex labelling

is opaque to the language Cn, these trees satisfy the

same formulae, and intuitively represent the same in

formation about the state of the world and the beliefs

of the agents. Further, suppose that T\ and 7j are

trees identical except in that the 1-children of 7\ are

T and T', whereas T{ has only the 1-child T. Then the

trees 7\ and T[ again satisfy the same formulae: intu

itively, the fact that the situation corresponding to T

is a possibility for agent 1 is redundantly represented

in the tree 7\.

A general notion that captures this sort of invariance

is the following. We say that two trees T,T* G T(L,n)

are congruent, and write T = T', if there exists a bi

nary relation R on T x V such that rooi(T)Rroot{T)

and for all vertices u £ T and v G T", and all agents

t = 1 . . .n,

1. if uRv then V{lab(u)) = V(lab(v)), and

2. if uRv and u' is an t-successor of u in T then there

exists an t-successor v' of v in T' such that u'Rv1,

and

3. if uRv and v' is an t-successor of v in T* then there

exists an t-successor u' of u in T such that u'Rtf.

If the relation R is additionally a one-to-one correspon

dence, then we say that the trees T,T" are isomorphic.

We say that two forests F and F' are congruent if for

all trees T£F there exists a tree V G F' with T*T,

and vice versa.

Example 2.4: Suppose that the valuation V 00

the set L of Example 2.1 satisfies V(b) = V(c).

Then the tree

T = {a, ala, ala26, ale, alc26, alc261o}

is congruent to the tree T of Example 2.1 by

means of the relation R consisting of the tuples

(<*. a)

(ala, ala) (al6, ale)

(ala26, ala26) (al62c, alc26)

(ala2c, ala26) (al62cla, alc261a).

Conditions 1-3 of the definition of congruence general

ize the notion of a zig-zag connection [Benthem, 1984]

between Kripke structures to the multi-agent case, and

are also related to the bisimulations [Hennessy and

Milner, 1985] used in the theory of concurrency. The

first part of the following proposition, which is similar

to known results for these related notions, may be in

terpreted as stating that congruent trees represent the

same state of mutual belief.
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Proposition 2.5:

1. If T £ V then for all formulae ip G Cn we

have T \= <p iff T (= y>.

2. IfTST then child^T) £ cAiW.(T') for

each agent t.

We will take the point of view in what follows that

congruent trees should be revised in a similar fashion.

3 A Theory of Mutual Belief Revision

We now present our theory of mutual belief revision.

Our approach will be indirect. Instead of explicitly

describing the operator representing the mutual belief

revision process, we begin by stating a number of con

straints on this operator. We then derive the operator

from these constraints, by showing that they have an

essentially unique solution.

Prototypical of the sort of situation we wish to model

is an utterance made in a face-to-face conversation,

where all agents hear the utterance, each observes that

the others are in a position to hear the utterance, and

each observes the others making this observation. In

formally, in such situations agents simultaneously re

vise their beliefs, and the fact that belief revision is

taking place is common knowledge. The cause of belief

revision need not be an utterance, but could be any oc

currence that provides the agents with some informa

tion about the world, such as switching on the lights,

observing the outcome of an experiment, or even the

failure of some event to occur. Nor do the agents need

to be in a face-to-face position: they could, for ex

ample, be processes in a distributed system with syn-

chrononous broadcast as the communication medium.

Thus, we will not go into any detailed description of

the event causing belief revision. What will be impor

tant is that each agent has a specific way of revising

its beliefs when this event occurs. Intuitively, this in

dividual revision method is determined by the infor

mational content that the event has for the agent. It

represents how the actuating event causes the agent

revise its beliefs about the situation in which the event

occurred. The objective of the present section is to

describe how these individual revision methods deter

mine the agents' mutual belief revision.

We now set out to formalize these ideas, stating along

the way a number of the assumptions implicit in the

formalization. These assumptions are meant to moti

vate the theory only - they are not intended to entail

the formalization.

Assumption I. Agents have perfect introspec

tion, but may be inconsistent.

This assumption may be made precise by taking the

logic of agents to be K45„. We showed in the pre

vious section that labelled trees are a canonical class

of K45n structures. Accordingly, we suppose that the

class of situations of interest is represented by the set

T = T(L, n) of labelled trees, where we fix the set L

of labels, its associated valuation V, and the number

of agents n. The use of K45n semantic structures does

not prevent the theory being applicable in situations

where a stronger logic is appropriate as a model of the

agents' reasoning powers. All that is required for such

an application is to restrict attention to the appropri

ate subset of trees. We will present an application in

the next section based on the logic S5„ , which models

knowledge rather than belief.

Assumption II. The agents revise their beliefs

synchronously, in response to an event e whose

occurrence is common knowledge.

If the agents are in an initial state of belief at time

to, then the assumption of synchronicity means that

the belief revision process is complete by some time

<i > to, and this fact is common knowledge. In partic

ular, all agents know at time t\ that the others have

completed revising their beliefs.

Let g : T —► T be an operator on T that represents

the relationship between the agents' initial and final

states of belief. This operator is specific to the event e

under consideration: the mutual belief revision caused

by different actuating events will be represented by

different operators. Suppose that the initial situation,

before occurrence of the event, is represented by a la

belled tree T 6 T, which describes the facts about the

world at time to, as well as the agents' mutual beliefs

about these facts at time <o- Then the tree g{T) repre

sents the situation resulting at time t\ when the agents

mutually revise their beliefs because of the occurrence

of event e. That is, g(T) represents the facts about the

world at time ti, and the agents' mutual beliefs about

these facts at time t\. Thus, in each case the belief

operators S, are to be interpreted as referring to the

current time.

Assumption III. The world is static - it is only

the beliefs of the agents that change.

Of course, if an event has occurred then something

has changed, but we assume that the truth value of

the objective propositions of interest to the agents

remains invariant during the belief revision episode.

Since these objective propositions are represented by

the root of a labelled tree, we may capture part of this

assumption by requiring that

V(root(g(T))) = V(root(T)) (1)

for each tree T e T.

Next, let us consider the individual belief revision

method of the agents. The intuitive interpretation of
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these methods is that they capture the agents' revi

sion of belief about time to- Upon observing the event

f each agent asks itself "given what I believe about

time to, what should have been true at that time for it

to be possible (or likely) for c to have occurred." This

leads the agent to a new set of beliefs about time to-

Since we represent a situation as a labelled tree in

T(L,n), agent t's epistemic state is represented by

means of an i-objective forest in Ti(L, n). Thus, the

method used by agent i to revise its beliefs may be rep

resented by a function pi : Ti{L,n) —> !Fi(L, n) which

maps a state of belief to a new state of belief. Like

the mutual belief revision operator g, these individual

revision functions are specific to the event e under con

sideration: different actuating events will lead agents

to revise their beliefs in different ways.

If the forest F represents the agent i's initial beliefs

about time to, then the forest Pi(F) represents the

agent's beliefs about time to after the actuating event

has occurred. In particular, in the situation T agent t's

beliefs are represented by the forest childi(T). Thus,

if the initial situation is T then agent t's revised state

of belief about the initial situation is represented by

the forest pi(childi(T)).

However, this forest does not represent agent i's state

of belief in the final situation. Since the occurrence of

the event c is common knowledge, the agent is aware

that other agents are also revising their beliefs. While

an agent, after performing individual belief revision,

will believe its beliefs about other agents' beliefs at

time to to be accurate,3 it knows that the other agents'

beliefs will have changed by time t\. What it seeks is

an accurate state of belief not about time to, but about

time t\. How should an agent take other agents' belief

revision into account? Clearly, if it does not know how

the actuating event will be interpreted by other agents,

there is little an agent can say about the other agents'

beliefs in the final situation. We therefore make the

following (strong) assumption.

Assumption IV. Each agent's revision method

is common knowledge.

We now make an intuitive leap in the justification of

our theory of mutual belief revision: we claim that if

assumptions I-IV are common knowledge then not just

the individual belief revision functions, but also the

mutual belief revision process itself is known to each

agent. The results below will provide some support

for this step in the justification, but this argument is,

admittedly, circular. As remarked above, our theory

consists in the formal definitions, not in the informal

assumptions.

Since we have represented the mutual belief revision

process by the operator g, the assumption that an

'Note that the formula —» <p) is valid in K45„

structures.

agent knows that g is the mutual belief revision op

erator being applied means that it knows for each sit

uation T" that if T' were the initial situation, then

g(T') would be the final situation. Since agent t, after

individual belief revision, considers each situation T1

in pi(childi(T)) to be a possibility for the situation ob

taining at time to, it should consider g(T') a possibility

for the situation obtaining at time t\. This suggests

the following condition on the function g:

childi(g(T)) = {g(X) | r € ft(dUM,(T))} (2)

for all trees T G T. Intuitively, equation (2) states

that the mutual belief revision process operates in two

steps: first the agents revise their beliefs about time

to, then they propagate the resulting state of belief to

apply to time ti, by reasoning about how other agents

are modifying their beliefs.

If g is an operator satisfying equations (1) and (2) for

all trees T 6 T and all agents i, then we say that g

is compatible with the revision functions p\ . . .pn. In

addition to compatibility, we add some further con

straints arising from the slack in our semantic struc

tures. As we argued in Section 2, it is possible for

distinct trees to represent what is intuitively the same

situation, and for distinct forests to represent what

is intuitively the same state of belief. The remedy

proposed was the notion of congruence. This mo

tivates the following definitions. Say that the revi

sion function pi is proper if F\ 2 F? implies that

Pi(Fi) 5: pi{Fi) for all t-objective forests F\,Fi- Sim

ilarly, say that the operator g is proper if T\ 25 T2

implies g(Tx) 55 g(T2) for all trees Ti,T2. We add to

the compatibility condition the requirement that both

the revision functions and the operator g be proper.

Do there exist any operators satisfying all these con

ditions? Note that together with equation (1), equa

tion (2) yields a complete description of the tree g(T),

since a tree is determined by its root and its children.

Of course, this description is circular, since the chil

dren are described in terms of the operator g itself. It

is therefore tempting to view equations (1) and (2) as a

recursive definition of g. Unfortunately, the standard

fixpoint semantics for recursion yields an unsatisfac

tory answer in this case, because labelled trees are not

in general finite, so the recursion never bottoms out

and g remains undefined on infinite trees.

However, these intuitions do lead us to a solution.

Given the revision functions pi,...,pn, define the op

erator g — g[pi , . . . , pn] on T as follows. For each

tree T G T let g(T) be the set of (L, n)-sequences

'oMi*2 • • *m'm such that there exists a sequence of

trees T0Ti ,...Tm with T0 = T and

1. 7} € pi^childi^Tj-i)) for j = 1 . ..m, and

2. lj = root(Tj ) for j = 0 . . .m.

It is clear from the definition that g(T) is closed un

der prefixes, and contains a unique (L, n)-sequence of



Mutual Belief Revision (Preliminary Report) 601

length zero. Thus g(T) is an (L, n)-labelled tree, and g

is a mapping from T to T. The following result shows

that g is a candidate for the mutual belief revision

operator.

Theorem 3.1: Let pi : Fi(L,n) -> ^.(L.n)

be a proper revision function for each agent i.

Then g[pi, . ■ -,pn] is proper, and compatible with

Pl-Pn-

Because of this result, we will call g[pi, ■ ■ ■ ,pn] the

canonical operator compatible with pi,...,p„. In gen

eral, this operator is not the only one compatible with

the revision functions - others can be constructed by

systematically relabelling the vertices of the values

g(T), or by identifying isomorphic subtrees. However,

these are essentially the only dimensions of flexibility:

as the following result shows, there is a unique solution

up to congruence.

Theorem 3.2: If g\ and gi are two operators on

T compatible with p\ . . .p„ then gi(T) 2 g2(T)

for all T € T.

Our claim about mutual belief revision, then, is that

the mutual belief revision operator g applied when an

event occurs should be the canonical operator compat

ible with the functions p, used by the agents to revise

their beliefs about the situation in which the event

occurred.

Is this a reasonable account of mutual belief revision?

Theorem 3.1 and Theorem 3.2 show that, up to con

gruence, the canonical operator is the only operator

compatible with the revision functions. Thus, our the

ory is reasonable to the extent that it is reasonable to

require that mutual belief revision be compatible with

individual belief revision. We have informally argued

for such a requirement by motivating it from Assump

tions I-IV. However, we have not provided a rigorous

proof that compatibility is entailed by these assump

tions. It may be possible to close this gap by means

of a more detailed formalization of the assumptions,

but we will not pursue this course here. Instead, in

the remainder of the paper we will seek to garner some

further support for our claims by presenting two appli

cations of the theory. We will argue that it yields the

appropriate answers in both cases. These applications

will also serve to illustrate the theory and should help

to clarify the intended interpretation of the individual

belief revision functions.

4 Scientists in Conference

As a first application of our theory we consider its

consequences when the operators fl, are interpreted

to refer not to belief, but to the stronger notion of

knowledge. There is an independently motivated the

ory of the dynamics of knowledge in distributed sys

tems [Halpern and Moses, 1990J. This theory gives

a very natural semantics to knowledge operators, and

has the benefit that it is not necessary to give a sep

arate account of the revision of knowledge. Instead,

such an account follows directly from the semantics.

In this section we introduce a particular distributed

system, and show that states of knowledge in this sys

tem are revised in a way corresponding precisely to

the theory of the previous section. This gives strong

support to the claim that our theory is a reasonable

one.

The system we consider is an example of the notion of

knowledge based protocol [Halpern and Fagin, 1989],

in which actions taken depend on the state of knowl

edge of the agents. In particular, it is a variant of the

communicating scientists model of [Fagin et al, 1994;

Fagin and Vardi, 1986]. In this model a group of scien

tists, each member of which has made an initial obser

vation of the world, communicate by sending messages

in a synchronous system. The world remains static

during the communication. We will adapt model this

by changing the communication medium from message

passing to synchronous broadcast, since this better fits

the intended applications of our theory. Accordingly,

we refer to our variant of the communicating scientists

as the scientists in conference model.

We suppose that there are n scientists, and that $ is a

set of atomic propositions, representing objective facts

about the world. A state of the world will be an as

signment a on $. An initial state s will be a tuple

(a, Si,..., Sn) where a is an assignment and, for each

scientist i, Si is a set of assignments, intended to repre

sent the set of world states consistent with scientist »'s

observation. We assume that the observations are ac

curate, so we require that a 6 5< for each » = 1 . . . n.

We also suppose that the scientists have a complete

and correct theory of their instruments, so that they

know what observations are possible in each state of

the world. Semantically, we take / to be a set of initial

states, such that an initial state s = (a, Si Sn) is

in J just when the observations 5, are in accordance

with the theory, given that the state of the world is

described by the assignment or.

Given the set /, we construct the K45„ Kripke struc

ture SC„(7) = (W, Ri, . . . , Rn, V) representing n sci

entists in conference with initial observations described

by /. The worlds, also called runs, of this structure

will be certain sequences of the form sa, where s is an

initial state and a is a sequence of tuples of the form

(», <p), in which i is an scientist and <p is a formula in

£„• Intuitively, in such a run s describes the objective

facts about the state of the world and the scientists'

observations of this state, and a represents a sequence

of assertions made by the scientists during the confer

ence. The world is assumed to be static, so the truth

value of the atomic propositions at s • a is determined
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by the assignment in s. Formally, we define the valu

ation V by letting V(s • <r) be the assignment a of the

initial state s.

For each scientist i, let the equivalence relation R° on

initial states be given by

(a, Si s„)/3V,s/1,...,s;)

if and only if 5,- = SJ. Intuitively, if he makes the

same observation in two initial states, the scientist

cannot, without obtaining further information, distin

guish these states. This relation may be extended to

the equivalence relation Ri on the runs of SCn(-0 by

letting (s <r)Ri(t ■ r) just when sR°t and <r = r. Intu

itively, this definition reflects the fact that the scientist

is able to observe (and recall) all the assertions made

during the conference.

This completes the description of SCn(7), except that

we have not yet described which sequences are in

cluded in the set of runs W. Not every sequence of

assertions will yield a valid run. We require that the

scientists be honest: they should assert <p only if they

know ip to be true. More precisely, if s o~ is a run then

s • a • (i, <p) is a run if and only if SC„(/), s • a (= B,y>.

This leads to what at first appears to be a circularity

in the definition of SC„(J): in order to determine a

scientist's knowledge we need to know the set of runs,

which in turn depends on the scientists' knowledge.

This sort of circularity is characteristic of the notion

of knowledge based protocol, and it has a standard

resolution. Intuitively, before any communication has

taken place the scientists' states of knowledge are de

termined by their observations. These states of knowl

edge then determine what assertions are possible in the

first round, and this in turn determines the scientists'

state of knowledge after the first round. More gener

ally, the scientists' state of knowledge after k rounds

of communication determines what assertions are pos

sible in the next round, and this in turn determines

the scientists' knowledge after round k + 1.

To make these intuitions precise, we define the runs

W of SCn(/) inductively using a sequence of Mb of

Kripke structures. The structure M* will represent

the fragment of SC„(/) consisting of the runs of length

k. The valuation V and accessibility relations Ri of

these structures are defined exactly as for SCn(/)- The

structure Mo has as its set of worlds Wq the set / of

initial states. Given the structure Mi, we then define

the structure Mt+i by taking its set of worlds Wk+i to

contain just those sequences s ■ a ■ (», <p) such that s • a

is a world of M* , and M* , s ■ a [= Bi<p. This completes

the description of the structures Mt .

The definition of the structure SC„(/) is now com

pleted by taking its runs to consist of the worlds s • a

contained in Wt for some ifc > 0. Because the Ri

are defined to be equivalence relations, the structure

SCn(7) is in fact an S5„ structure [Halpern and Moses,

1992], so the modal operator B, may be interpreted as

referring to the knowledge of scientist i.

Example 4.1: Mathematician P knows the prod

uct NlxN2oitwo numbers N 1 , N2 in the range 2

to 100; mathematicians knows the sum N1 + N2.

They have the following conversation:

S: I don't know what the numbers are, but I

know that you don't know either.

P: Now I know the numbers!

S: Aha! Now I also know them!.

We leave it to the reader to verify that this well

known example [Gardner, 1979] can be formalized

as a run in a certain model of the form SC2(/)-

Using the unravelling construction of Proposition 2.3,

we may associate with any run s ■ a of SCn(/) a tree

T(SCn{I), s ■ cr) over the set of labels consisting of all

runs of SCn(/). However, a consideration of the na

ture of the accessibility relations in SC„(/) shows that

this set of labels may be simplified. It is readily seen

from the definition of the relations R, that if t ■ r la

bels a vertex of the tree T(SCn(/),« ■ c) then r = (T,

hence all but the initial state t is redundant. This

means that the tree associated with a given run may

be represented using the set of labels consisting of the

initial states / only. Given a run w = s ■ a, define

rep(w) to be the (/, n)-labelled tree consisting of the

(/, resequences so«i«i ••■*m«m such that

(s0 • <r)»'l(«l ■»)-.. «m(*m • <r)

is in T(SC„(7),s • o~). Clearly rep(w) is an (^re

labelled tree. The considerations above then yield the

following result.

Lemma 4.2: For all runs w of SC„(/), the tree

rep(tu) is isomorphic to the tree T(SCn(/), u>)-

This result justifies the use of the tree rep(w) to rep

resent the situation (SC„(7), w). We now establish

that the theory of belief revision of the previous sec

tion can express in a natural way the knowledge revi

sion of scientists in SC„(/)- We represent situations

as trees in T(I,n). Consequently, a state of belief

for scientist i corresponds to a forest in !Fi(I, n), and

we require for each scientist a belief revision function

«:*«(/, n)-/i(/,n).

Suppose we wish to represent the belief revision pro

cess when scientist S, the speaker, asserts the formula

Recall that the intended interpretation of

the belief revision functions is that they capture the

agents' revision of belief about the initial situation.

What information does a scientist gain about the sit

uation corresponding to s • a when the speaker asserts

in this situation the formula ip? One way to charac

terize this information is as being that the run s ■ a
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may be extended by the assertion (5, <p). But this is

possible just when SC„(/),s • a [= Bs<p. Intuitively,

the information gained is that the speaker knows <p.

Thus, when i £ S, we define = {T G F \ T \=

Bs<p} for all i-objective forests F. Intuitively, this

simply adds to scientist t's knowledge about the initial

situation the fact that the speaker knows <p. We could

define the revision function similarly for the speaker,

but note that when the speaker asserts ip, he already

knows that he knows ip. Hence when i = S, we put

fit(F) = F for all F G n). It follows from Propo

sition 2.5(1) that these revision functions are proper.

Our theory of mutual belief revision now states that

the mutual belief revision process is represented by

9 = 9[pi> ■ ■ ■ >Pn], the canonical operator on T(I,n)

compatible with p\ , . . . , pn . Thus, if the initial situ

ation, corresponding to the run w, is represented by

the tree rep(w), our theory predicts that after mutual

belief revision actuated by the assertion of <p by S, the

scientists' epistemic state is represented by g(rep(w)).

How does this compare with the revision of knowl

edge obtained directly from the structure SCn(I) itself,

which predicts the state rep(w-(is,<p))'? The following

result shows these predictions to be identical. ,

Theorem 4.3: If w is a run of SCn(J) such

that SC„(I),w ^= Bs<p, then rep(w • (S,y>)) =

g{rep(w)).

Thus, the theory of mutual belief revision of the previ

ous section accurately describes the mutual knowledge

revision process of the scientists in conference. More

over, note that the choice of revision functions needed

to obtain this result is very natural. We take this to

be strong evidence that our theory is an appropriate

model for more the general problem of revision of mu

tual belief.

5 Speech Act Semantics

Speech acts [Austin, 1962] are linguistic actions such

as assertions, requests and promises, having an ex

plicit propositional content. One strand in the the

ory of speech acts, [Allen and Perrault, 1980; Co

hen and Perrault, 1979; Cohen and Levesque, 1985;

Cohen and Levesque, 1990; Perrault, 1990], seeks to

characterize the semantics of a speech act by describ

ing the effect it has on the mental states of the par

ticipants of the conversation. In this section we apply

our theory of mutual belief revision to give a semantic

reconstruction of one such theory, that of [Perrault,

1990], for the simplest type of speech act, assertions.

Perrault observes that the beliefs of the participants

after an utterance depend in a complicated way on

their beliefs before the utterance. For example, if the

speaker sincerely asserts a proposition p and the hearer

has no beliefs that would lead him4 to doubt this as

sertion, then the hearer should come to believe p also.

However, if the speaker lied, or was mistaken, in ut

tering p, and the hearer knew that p was false when

the utterance was made, the hearer does not come to

believe p, although he may come to believe that the

speaker believes p. Even this latter conclusion does

not hold in the situation where it is mutually believed

that p is false, and the speaker utters p ironically.

The difficulties pointed out by Perrault may be char

acterized by saying that in describing how a speech

act changes states of belief one faces a (particularly

severe) form of the qualification problem. Even in sim

pler domains not involving epistemic states it is often

difficult to give a complete set of necessary and suffi

cient conditions for an action to bring about a given

state of affairs. The solution advocated by Perrault

is one that has also been proposed as an approach to

the qualification problem in other contexts: the use of

nonmonotonic logic.

In particular, Perrault uses a modal extension of Re-

iter's [Reiter, 1980] default logic. The most important

operators in this extension5 are the time-stamped be

lief operators BXit, referring to the belief of agent x

at time t. Each of these operators is assumed to sat

isfy the axioms and inference rules of the logic KD45

[Chellas, 1980]. Furthermore, these operators satisfy

the two axioms

I- BXtt <p D Bx t+iBXit ip Memory

h BXit+\Bx t <p D BXit+i <p Persistence

whose combined effect is that agents maintain their

objective and positive beliefs. There is also a con

struct Dox t(p), which represents that agent x utters

the proposition p at time t, and an action of observa

tion.

Perrault assumes two basic default rules. One of these

is the declarative rule6 DoXtt(p) Bx tp, which au

thorizes the conclusion, if it is consistent to do so,

that the speaker believes the proposition she utters.

Secondly, there is the belief transfer rule BXitBy t <p =>

BXtt <p, which allows an agent to adopt another agent's

beliefs. In order to make the applicability of these two

default rules common knowledge, there is also a closure

condition, stating that for all agents x and all times t,

if <p => xp >s a default rule, then so is Bx t ip => BXi% \p.

Note that in this system we obtain the following chain

of logical and default inferences:

Bh,iDos,o(p) => BHlBs,oP

D Bh,iBs,iP

=> BH,iP

4We will use the masculine pronoun for the hearer and

the feminine pronoun for the speaker.

'We confine our discussion to the simplest version of the

theory: a more elaborate variant also includes operators for

intention.

*The notation p q denotes the normal default rule

P ■ ill-
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That is, if the hearer believes the speaker to have ut

tered p then he will first adopt the belief that the

speaker believes p, provided this is consistent. If, hav

ing done so, it is consistent with his beliefs that p, he

will also come to believe p himself.

Perrault works out a number of examples in his the

ory: sincere assertion, lie, unsuccessful lie, and irony.

Here we study the consequences of our theory of mu

tual belief revision for the first of these examples, the

sincere assertion.7 To do so, we must formulate his

assumptions in our framework.

We defer for the moment the question of the appropri

ate set of trees, and begin with a specification of the

revision functions applied when the speaker S asserts

p. For the hearer H we define ph(F) to be

T G F | T (= p A Bsp) if this set ^ 0, else

T G F | T \= Bsp) if this set ^ 0, and

F otherwise.

for all /^-objective forests F . Intuitively, this revision

function captures the two-step operation of the de

faults noted above. Observe that in each case ph{F)

is a subforest of the forest F. This reflects the effect

of the persistence and memory axioms.

Perrault's default rules are symmetrical with respect

to the speaker and hearer, which suggests that we

define an identical revision function for the speaker.

However, this aspect of Perrault's theory has been crit

icised by Appelt and Konolige [Appelt and Konolige,

1988]. They point out that this symmetry implies that

if the speaker originally does not believe p, then she

will become convinced that p is true merely because

she asserted it! Since this is counter-intuitive (albeit

not unheard of), we assume instead that the speaker's

beliefs are not changed by making an utterance, and

put ps(F) = F for all S-objective forests F. There

is a close correspondence between these revision func

tions and those we used for the scientists in conference,

and indeed our work in this section in the present sec

tion may be shown to generalize that of the previous

section.

As the next step in formulating Perrault's examples

in our model, we need to choose a tree to represent

the initial situation. It is not immediately clear what

this tree should be, because there is a difference in kind

between Perrault's theory and ours. Perrault views his

defaults as being applied by an external observer who

is reasoning about the beliefs of the participants of the

conversation, rather than being applied by the agents

themselves. Thus, the formulae in his logic represent

the observer's knowledge of the beliefs of the agents.

This knowledge, he allows, may be incomplete. But if

it is the case that the observer does not know whether

an agent x believes ip, what justifies his application of

TThe results for the others, to be presented in the final

version of this paper, are similar.

the rule Bx tBy :t f => Bx<% ip, which surely is meant to

reflect a default inference performed by agent x when

ip is consistent with the latter's beliefs.

One plausible construal of Perrault's approach that

would make the observer's application of this rule valid

is to interpret the observer as implicitly applying some

additional defaults: if he does not know that an agent

believes <p, then he assumes that the agent does not

believe <p. In other words, the observer presumes he

has complete knowledge of the agent's beliefs. This

suggests an only knowing formulation [Levesque, 1990]

of the initial states of belief of the agents. A num

ber of accounts of only knowing in a multiple agent

setting have recently been developed [Halpern, 1993;

Lakemeyer, 1993]. The account we sketch here is

closely related to these works: we will elaborate on

this in the full paper.

Say that a function /:£„—► {0, 1} is a satisfiable tntth

assignment on Cn if there exists a K45„ structure M

with a world w such that for all formulae <p G C„ we

have f(tp) = 1 if and only if M, w ^= ip. Take the set of

labels L to be the set consisting of all satisfiable truth

assignments on Cn, with the associated valuation V

defined by V(f)(p) = /(p). We will work with the

set of labelled trees T(L, n). If / is a satisfiable truth

assignment, we define the tree r(/) to consist of all

n-sequences /o»i/i • ■ - imfm such that f0=f and for

all j = 1 . . .m and all (p G £„, if fj-^Bi^) = 1 then

fj(ip) = 1. The i-objectification r,(/) of r{f) is defined

to be the the tree obtained from r(/) by removing all

n-sequences with ij = ».

Proposition 5.1: For all / G L, and all ip G Cn

satisfying f(ip) = 1, we have r(f) ^ <p.

Suppose we are given a tuple (ri,...,r„) such that

I\ is a set of i-objective formulae for each » = 1 . . .n.

Let fo be an arbitrary label. We now define the onij

believing tree T(ri,...,rn) to be the tree consisting

of the n-sequences foi a for which there exists a label

/ G L such that a is an n-sequence in ry(/) and f(<p) -

1 for all <p G T, . This tree is intended to represent a

situation in which all that agent i believes is I\, for

each i = 1 . . .n. Notice that the i-children of the root

are precisely the trees r,(/), where f(ip) = 1 for all

ip G Ti . Our claim that this tree models only believing

is supported by the following:

Proposition 5.2: Let <p be an »-objective for

mula. Then T(TU . . . , Tn) (= B,y> if and only if y

is a K45„ logical consequence of T, .

We are now ready to consider the revision of belief in

a sincere assertion Specialize to n = 2, for agent 1 (the

speaker) write S and for agent 2 (the hearer) write H.

In the case of a sincere assertion of proposition p, Per

rault begins with the theory containing only the for-

{

{
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mula Bs,o p, together with some formulae representing

that S utters p and that the agents are observing each

other, so that the fact of utterance becomes common

knowledge. Accordingly, we take our initial situation

to be the tree To = T({p), 0), in which the speaker be

lieves only p, and the hearer believes only the vacuous

proposition trite. Letting g be the canonical operator

compatible with the belief revision functions ph,Ps

defined above, our theory predicts the tree g(To) as

the situation after the speech act.

What do the agents believe in this situation? Perrault

argues that there exists a default extension of the orig

inal theory that is generated by the original formulae

together with the infinite set of formulae

Bs.iP, Bh,\P, Bs,iBh,iP, Bh,\Bs,\P, ■ ■ ■

He conjectures that this is the only default extension

of the theory, and hence an appropriate description of

the agent's beliefs after the utterance. That is, ac

cording to Perrault, after the utterance it is mutually

believed that p. Does the same hold in the tree g(To)

obtained from our theory? It does not: in fact, even

the formula BsBhP does not hold in this tree! The

reason for this, intuitively, is that the speaker consid

ers it possible that the hearer takes her to be lying,

in which case mutual belief is not established by the

utterance. More precisely, since all that the speaker

believes in To is p, she considers possible a situation

T' in which Bn(->p A ->flsp) holds. In this situation

the hearer will not be persuaded to change his beliefs:

pH (childH(T')) = childH(T'). Furthermore, V has

an //-child T" in which p is false. Thus g(T") is an

//-child of g(T'), and since g preserves the valuation

at the root we see that g(T') does not satisfy B»p-

Because g(T') is an 5-child of g(To), we obtain that

the latter does not satisfy BsBhP-

If mutual belief of p is not established by the utter

ance, then what state of belief does our theory predict

instead? In order to characterize this state of belief,

let %l> be the formula

BH{p A Bsp) V BH A Bsp) V BH^Bsp

Note the correspondence between the disjuncts of this

formula and the three cases of the hearer's revision

function. Write M(H, ip) for the infinite set of formu

lae

BHrp, BHBsrl>, BHBSBH^,...

which intuitively corresponds to the hearer believing

that t{> is mutually believed. Note that these formulae

are S-objective. Similarly, write M(S, rj)) for the cor

responding set of //-objective formulae in which the

leading modality is Bs ■ Then following result charac

terizes the belief state reached after the speech act.

Theorem 5.3:

g(T0) T( {p} U M(H, </>) , {p, BsP) U M(S, V>) )

That is, in g(To), all that the speaker believes is p and

that tp is mutually believed, and all that the hearer

believes is p, that the speaker believes p, and that

rp is mutually believed. In particular, it follows from

this that after the assertion the formula ip is mutually

believed8.

Perault's theory predicts that p is mutually believed

after a sincere assertion; our theory predicts that it

is not. Which is right? We will not offer any answer

to this question. Perrault's formalization is itself only

a rough approximation to reality, and in modelling it

in our framework we made a number of assumptions

and modifications. It would be interesting to inves

tigate alternative choices of revision function and ini

tial state to determine precisely under what conditions

the proposition asserted does come to be mutually be

lieved. However, we would argue that given the as

sumptions we have made in the present section, it is

very reasonable that the formula ip should become mu

tual belief, and that this supports the appropriateness

of our account of mutual belief revision.

6 Conclusion

What we hope to have achieved in this paper is the

introduction of a semantic framework and to have

demonstrated by means of the examples that it is wor

thy of further study. Much remains to be done. It

would be interesting if the circularity in our justifica

tion of the framework could be removed. Additionally,

we would like to have a general formalism in which the

revision functions can be defined, and construct for

this formalism a calculus that generalizes Theorem 5.3.

Such a calculus would facilitate the determination of

under what conditions mutual belief is a consequence

of a speech act. One could also study the consequences

of assuming that the agents' individual belief revision

functions satisfy AGM-like postulates. An interesting

question would then be to determine how the postu

lates are reflected in the mutual belief revision process.

Due to space limitations we defer to the full version

of the paper a discussion of the related literature, on

syntactic accounts of multi-agent belief revision, and

on semantic accounts of the revision of knowledge
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Abstract

In this paper we describe REVISE, an extended

logic programming system for revising knowl

edge bases. REVISE is based on logic program

ming with explicit negation, plus a two-valued

assumption revision to face contradiction , en

compasses the notion of preference levels. Its

reliance on logic programming allows efficient

computation and declarativity, whilst its use of

explicit negation, revision and preference levels

enables modeling of a variety ofproblems includ

ing default reasoning, belief revision and model-

based reasoning. It has been implemented as a

Prolog-meta interpreter and tested on a spate of

examples, namely the representation ofdiagnosis

strategies in modelbased reasoning systems.

1 INTRODUCTION

While a lot of research has been done in the area of non

monotonic reasoning during the last decade, relatively few

systems have been built which actually reason nonmono-

tonically. This paper describes the semantics and core al

gorithm of REVISE, a system based on an extended logic

programming framework. It is powerful enough to express

a wide variety of problems including various nonmono

tonic reasoning and belief revision strategies and more

application oriented knowledge such as diagnostic strate

gies in modelbased reasoning systems ([de Kleer, 1991,

Friedrich and Nejdl, 1992, Lackinger and Nejdl, 1993,

Dressier and Bottcher, 1992]).

We start, in Section 2, by reviewing the well founded se

mantics with explicit negation and two valued contradiction

removal [Pereira et ai, 1993b], which supplies the basic

semantics for REVISE. We then introduce in Section 3 the

concept of preference levels amongst sets of assumptions

and discuss how it integrates into the basic semantics. Sec

tion 4 gives examples ofapplication ofREVISE for describ

ing diagnostic strategies in modelbased reasoning systems.

Section 5 describes the core algorithm of REVISE, which

is an extension of Reiter's algorithm, in [Reiter, 1987],

for computing diagnoses in modelbased reasoning systems,

corrected in [Greiner et ai, 1989]. Finally, Section 6 con

tains comparisons with related work and conclusions.

2 REVIEW OF THE LOGIC

PROGRAMMING BASIS

In this section we review WFSX, the Well Founded Seman

tics of logic programs with explicit negation and its para-

consistent version. We focus the presentation on the latter.

Basically, WFSX follows from WFS [Gelder et ai, 1991]

plus one basic "coherence" requirement relating the two

negations: ->L entails ~L for any literal L. We also present

its two-valued contradiction removal version [Pereira et

ai, 1993b]. For details refer to [Pereira and Alferes, 1992,

Alferes, 1993].

Given a first order language Lang, an extended logic pro

gram (ELP) is a set of rules and integrity rules of the form

H 4- Bi £„,~C, ~Cm (m > 0,n > 0)

where H,B\,... , B„,C\,. . . ,Cm are objective literals,

and in integrity rules H is _L (contradiction). An objec

tive literal is either an atom A or its explicit negation ->A,

where -i-iA = A. ~L is called a default or negative literal.

Literals are either objective or default ones. The default

complement of objective literal L is ~ L , and of default

literal ~L is L. A rule stands for all its ground instances

wrt Lang. A set of literals S is non-contradictory iff there

is no L € S such that ~L € 5. For every pair of objective

literals {L, ->L} in Lang we implicitly assume the integrity

rule -L ♦— L, ->L.

In order to revise possible contradictions we need first to

identify those contradictory sets implied by a program under

the paraconsistent WFSX. The main idea here is to compute

all consequences of the program, even those leading to

contradiction, as well as those arising from contradiction.

The following example provides an intuitive preview of

what we mean to capture:
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Example 1 Consider program P :

a *— ~b (i) d «— ~a (Hi)

-<a «— ~c (ii) e *— ~-ia (iv)

/. ~i> and ~c //oW since there are no rulesfor either b or

c

2. ->a and a holdfrom 1 and rules (i) and (ii)

3. ~a and ~-ia holdfrom 2 and the coherence principle

relating the two negations

4. d and e holdfrom 3 and rules (Hi) and (iv)

5. ~d and ~c holdfrom 2 and rules (Hi) and (iv), as they

are the only rulesfor d and e.

6. and ~->e holdfrom 4 and the coherenceprinciple.

The whole set of literal consequences is then:

~c, ->a, a, ~a, ~—m, d, e, ~d, ~e, ~—>d, ~~<e}.

For the purpose of defining WFSX and its paraconsistent

extension we begin by defining paraconsistent interpreta

tion.

Definition 2.1 A p-interpretation I is anysetTU ~F, such

that if-iL 6 T then L € F (coherence).

The definition of WFSX (in [Pereira and Alferes, 1992]) is

based on a modulo transformation and a monotonic oper

ator. On first reading the reader may now skip to defini

tion 2.5.

Without loss of generality, and for the sake of technical

simplicity, we consider that programs are always in their

canonical form, i.e. for each rule of the program and any

objective literal, if L is in the body then also belongs

to the body of that rule1 .

Definition 2.2 Let P be an canonical extended logic pro

gram and let I be a p-interpretation. By a jp pro

gram we mean any program obtainedfrom P byfirst non-

deterministically applying the operations until they are no

longer applicable:

• Remove all rules containing a default literal L =~A

such that A 6 I;

• Removefrom rules their default literals L =~A such

that ~A £ I;

and by next replacing all remaining default literals by

proposition u.

'When the coherence principle is adopted, the truth value of

L coincides with that of (L, Taking programs in canoni

cal form simplifies the techniques since we don't need to concern

ourselves with objective literals in bodies in the modulo transfor

mation, but only with default literals, just as for non-extended

programs. The proof that generality is not lost can be found in

[Alferes, 1993].

Programs jp are by definition non-negative, and thus

always has a unique Fitting-least 3-valued model,

least(jp), obtainable via a generalization of the van

Emden-Kowalski least model operator *F [Przymusinska

and Przymusinski, 1990]. In order to obtain all conse

quences of the program, even those leading to contradic

tions, as well as those arising from contradictions, we con

sider the consequences of all such possible jp programs.

Definition 2.3 Let QI = QTU ~QF be a set of literals.

We define Cohp(QI) as the p-interpretation Tl) ~F such

that T = QTandF = QFU{^L\Le T}.

Definition 2.4 Let P be an canonical extended logic pro

gram, I a p-interpretation, and let P\,. . . , P,, . . . be all the

permissible results of jp. Then:

QVp(/) = {JCohPileastiPi))

i

Definition 2.5 The paraconsistent WFSX of an extended

logic program P, denoted by WFSXP(P), is the least

fixpoint of applied to P. If some literal L belongs to

WFSXP(P) we write P (=p L.

Indeed, it can be shown that <t>p is monotonic, and therefore

for every program it always has a least fixpoint, which can

be obtained by iterating C>p starting from the empty set. It

also can be shown that for a non-contradictory program P

the paraconsistent WFSX coincides with WFSX.

Definition 2.6 A program P is contradictory iffP ^=p J_.

To remove contradiction the first issue is defining which

default literals ~A without rules, and so true by Closed

World Assumption (CWA), may be revised to false, i.e. by

adding A.

Example 2 Consider P = {a «—~&;_L «— a}. ~6 is

true by CWA on b. Hence, by the second rule, we have a

contradiction. We argue the CWA may not be held ofatom

b as it leads to contradiction.

Contradiction removal is achieved by adding to the original

program P the complements of revisable literals:

Definition 2.7 (Revisables) LetUp be the set ofall default

literals ~A with no rulesfor A in an ELP P. The revisable

literals of P are a subset of Tip. A subset S of ~Tlp is a

set ofpositive assumptions.

Definition 2.8 (Revision of a program) A set of positive

assumptions AofP is a revision ofP iff (P U A) \fcp 1

Example 3 Consider the wobbly wheel problem:

wobbly.wheel <— flat.tyre

wobbly.wheel «— broken-spokes

flat.tyre «— punctured-tube

flat.tyre *— leaky.valve

± <— ^wobbly.wheel
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Using as revisables the literals ~ brokenjspokes, ~

puncturedJube, and ~ leaky.valve, there are 7 possi

ble revisions, corresponding to the non-empty subsets of

{puncturedJube, brokenjspokes, leaky.valve).

Without loss of generality, as recognized in [Kakas and

Mancarella, 1991], we can restrict ourselves to consider as

revisables default literals for which there are no rules in the

program; objective literals can always be made to depend

on a default literal by adding a new rule or new literals in

existing rules:

First, consider the case where a given literal is to be as

sumed true. For instance, in a diagnosis setting it may be

wished to assume all components are ok unless it originates

a contradiction. This is simply done, by introducing the rule

ok(X) *—~ab(X). Because ~ab(X) is true then ok(X)

also is. If ~ab(X) is revised ok(X) becomes false, i.e.

ok(X) is revised from true to false.

Suppose now it is desirable to consider revisable an objec

tive literal, say L, for which there are rules in the program.

Let {L «- Body\\... ;L *- Body„) be the rules in the

definition of L. To make this literal "revisable" replace the

rules for L by {L *- Bodyi,~rev.fahe(L, 1);. . . ,L «—

Bodyn,~rev-false(L,n);L «— revJrue(L)}, with ~

rev.false(L, i) and ~revJrue(L) being revisables. If L

was initially false or undefined then to make it true it is

enough to revise ~revJrue(L). If L was true or undefined

then to make it false it is sufficient to revise to false the

literals ~rev.false(L,i) in the bodies for L that are true

or undefined.

In order to define the revision algorithm we'll need the

concept of contradiction support. This notion will link the

semantics' procedural and declarative aspects.

Definition 2.9 (Support set of a literal) Support sets of

any literal L € WFSXP(P) of an ELP P, denoted by

SS(L), and are obtained asfollows:

1. If L is a positive literal, then for each rule L <—

B\, . . . , Bn in P such that P \=p BU...,B„, each

SS(L) is formed by the union of {L} with some

SS[Bi)for each B{.

2.IfL is a default literal ~A:

(a) Ifno rules existfor A in P then SS(L) =

(b) If rules for A exist in P then choose from each

rule with non-empty body a single literal whose

complement belongs to WFSXP(P). For each

such multiple choice there are several SS(~A),

eachformed by the union of with a 55 of

the complement ofevery chosen literal.

(c) If P \=p ->A then there exist, additionally, sup

port sets 55 of~A equal to each SS(^A).

We are particularly interested in the supports of J_, where

the causes of contradiction can be found. The supports of

_L in example 1 are {~i>} and {~c}. In examples 2 and 3

we have the single SS{±) = {~fc} and 55(1) = {~

puncturedJube, ~ brokenjspokes,~ leaky.valve}, re

spectively.

3 PREFERENCE LANGUAGE AND

SEMANTICS

We have shown how to express nonmonotonic reasoning

patterns using extended logic programming such as default

reasoning and inheritance in [Pereira et ai, 1993a]. Ad

ditionally, we have discussed the relationship of our con

tradiction removal semantics to modelbased diagnosis and

debugging in [Pereira et ai, 1993b, Pereira et ai, 1993c,

Pereira et ai, 1993d]. However, while in these works we

could easily express certain preference criteria (similar to

those used in default reasoning) in our framework, other

preference relations (as discussed for example in [Nejdl,

1991b, Nejdl and Banagl, 1992]) could not easily be repre

sented.

To illustrate this, let us use an example from [Dressier and

Bottcher, 1992]. We want to encode that we prefer a di

agnosis including mode,(C) to one including mode;+i(C),

where C is a component of the system to be diagnosed.

The coding in default logic is a set of default rules of

the form ->modei A ... A -imode, : mode,+i/morfcl+i,

which can easily be translated into a logic program using

WFSX semantics by including rules of the form 6, (C) «—

ab\ (C), abi-i(C), ~a6,(C), where the 6; stand for the

behaviour predicted by mode,, and aft,- stands for the as

sumption that mode, has lead to a contradiction.

However, if we want to encode the slightly general

ized preference relation, that prefers a diagnosis including

mode,(Cl) to one including mode,+i(C2) for any CI and

C2, this is no longer possible without enumerating all pos

sible combinations of modes and components, which is not

feasible in practice. Because of their declarative nature,

logic programming and default logic give us a mechanism

for prefering to include in an extension one fact over an

other (what we call local preferences), but not a mechanism

for expressing global preferences stating we should only

generate extensions including a certain fact after finding

that no extensions including another fact exist, i.e. to attain

sequencing of solutions.

To express global preferences, i.e. preferences over the

order of revisions, we use a labeled directed acyclic and/or

graph defined by rules of the form:

Levelo <IC Level] A Levels A ... A Level„ (n > 1) (1)

Leveli nodes in the graph are preference level identifiers.

To each preference level node is associated a set of re

visables denoted by H(Leveli). The meaning of a set of

preference rules like (1) for some Level0 is "I'm willing

to consider the Levelo revisions as "good" solutions (i.e

the revisions of the original program using as revisables
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TZ(Levelo)) only if for some rule body its levels have been

considered and there are no revisions at any of those lev

els." The root of the preference graph is the node denoted

by bottom, the bottom preference level. Thus, bottom

cannot appear in the heads of preference rules. Addition

ally, there cannot exist a level identifier in the graph without

an edge entering the node. This guarantees all the nodes

are accessible from bottom.

The revisions of the bottom preference level are (transi

tively) preferred to all other ones. Formally:

Definition 3.1 (Preferred Revisions) Let P be an ELP,

and n a preference graph containing a preference level

Lev. The revision R is preferred wit n iff R is a minimal

revision ofP (in the sense of set inclusion), using revisables

H(Lev), and there is an and-tree T embedded in n, with

root Lev, such that all leaves of T are bottom and no other

preference levels in T have revisions.

Example 4 Consider thefollowing program P:

have-fun *— go(theater) watch.tv *— tv.movie

have.fun <— watch.tv watch-tv <— tv^show

have-fun *— go(cinema) _L *— ~have.fun

-igo(theater) *— soid.out(theater)

->go(cinema) *— soldjout(cinema)

P is contradictory because ~have.fun is true. Its minimal

revisions are {go(theater)}, {go(cinema)} , {tvjmovie}

and {tvshow} expressing havefun ifI go to the theater or

to the cinema, or stay at home watching a movie or tv show.

If the next preference graph with associated revisables is

added:

1 < bottom 2 <C bottom 3 <£ 1 A 2

TZ(botU)m)={~go(theater)} lZ(2)={~tv.movie}

TZ(l) ={~go(cinema)} 1Z(i)={~tvshow}

then there is a unique preferred revision, namely

{go( theater ) } . Assume now the theater tickets soldout. We

represent this situation by adding to the original program

thefact 8oldjout(theater). Now thepreferred revisions are

{go(cinema)} and {tvjnovie}. If the cinema tickets are

also sold out the preferred revision will be {tv.movie}.

I'll only stay at home watching the TV show if the cinema

and theater tickets are sold out and there is no TV movie.

If there is no TV show then I cannot remove contradiction,

and cannot have fun. This constraint can be relaxed by

replacing the integrity rule by J. +-~have.fun,~ sleep

and adding an additional preference level with revisables

{~s/eep} on top of3. With this new encoding the preferred

revision {sleep} is produced.

Similarity, coming back to our example on preferences

in a diagnosis system, we can encode the preference re

lation preferring diagnoses including a certain mode to

ones not including it, by defining a linear order of lev

els where level i includes the set {ab\ (-),... ai>;(-)} as

revisable literals in addition to the set of rules &,(C) «—

a6i(C),...,a6,_l(C),~o6,(C).

This simple but quite general representation can capture

the preference orderings among revisions described in

the literature: minimal cardinality, most probable, mini

mal sets, circumscription, etc. Any of these preference

orderings can be "compiled" to our framework. Fur

thermore, we can represent any preference based rea

soning or revision strategy, starting from preferences

which are just binary relations to preference relations,

which are transitive, modular and/or linear ([Nejdl, 1991b,

Kraus et al„ 1990]). Preferred revisions specified declar-

atively by preference level statements can be computed as

follows:

Algorithm 3.1 (Preferred Revisions)

Input: An extended logic program P and a preference

graph n.

Output: The set of preferred revisions PrefRev.

Explored = {}; ToExpl = {bottom};

PrefRev = {}; ContrLevels = {};

repeat

Let lev € ToExpl; Explored = Explored U {lev};

ToExpl = ToExpl - {lev};

LevelRev = MinRevisions(P,1Z(lev));

if LevelRev ^ {} then

PrefRev = PrefRev U LevelRev

else ContrLevels = ContrLevelsU {lev}

Applicable = {/0 I 'o < h A . . . A /„ € n and

'li • • • 5'n € ContrLevels}

ToExpl = ToExpl U (Applicable — Explored)

until ToExpl = {}

Algorithm 3. 1 assumes the existence of a "magic" subrou

tine that given the program and the revisables returns the

minimal revisions.

The computation of preferred revisions evaluates the pref

erence rules in a bottom-up fashion, starting from the

bottom level, activating the head of preference rule when

all the levels in the body were unsuccessfully tried. At each

new activated level the revision algorithm is called. If there

are revisions then they are preferred ones, but further ones

can be obtained. If there are no revisions, we have to check

if new preference rules are applicable, bygenerating new

active levels. This process is iterated till all active levels

are exhausted.

4 EXAMPLES OF APPLICATION

We've tested REVISE on several examples, including the

important problem of representing diagnostic strategies in

a modelbased reasoning system. Below are two examples.

4.1 Two Inverter Circuit

In this example we present two extended diagnosis cases

which illustrate the use of the preference graph to capture
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diagnosis strategies. Consider the simple two inverter cir

cuit in figure 1.

— [8^>°— —

Figure 1 : Two Inverter Circuit

The normal and abnormal behaviour of the inverter gate is

modelled by the rules below. We assume that our inverter

gates have two known modes of erroneous comportment,

either the output is always "0" (mode "stuck at 0") or is

always "1" (mode "stuck at 1"). The fault mode "unknown"

describes unknown faults, with no predicted behaviour. The

last argument, T, is a time-stamp that permits the modelling

of distinct observations in time. It is also implicit that an

abnormality is permanent.

inv(G,1, 1,T) «- ~a6(G),node(J,0,T)

inv(G,I,0,T) *- ~a6(G),node(/, 1,T)

mw(G,-,0,) «- a6(G),«-af-0(G)

inw(G,-,l,) «- ab'G),sjat.\(G)

s-at.O(G) «- fault.modelG,sG)

sjatA{G) <- fault.mode{G,al)

unknown(G) <— fault.mode(G, unknown)

The connections among components and nodes are de

scribed by:

node(b,B,T) «- inv(gl,a,B,T)

node\c,C,T) «- inv(g2,b,C,T)

The first integrity rule below ensures that the fault modes are

exclusive, i.e. to an abnormal gate at most one fault mode

can be assigned. The second one enforces the assignment

of at least one fault mode to anomalous components. The

last integrity rule expresses the fact that to each node only

one value can be predicted or observed at a given time.

1 «- fault.mode(G,Sl),fault.mode{G,S2),S\ £ 52

1 <- ab(G),

~faultjmode(G, sO),

~fault-mode(G,s\),

~fault-mode(G, unknown)

1 «- node(X, V 1 , T), node(X, V2,T),Vl? V2

Now we show how the preference graph can be used to

implement distinct reasoning modes. The basic idea is to

focus reasoning by concentrating on probable failures first

(simple views, high abstraction level, etc. . . ), to avoid rea

soning in too large a detail. In this example, we'll prefer

single faults to multiple faults (i.e. more than one compo

nent is abnormal), fault mode "stuck at 0" to "stuck at 1"

and the latter to the "unknown" fault mode. One possible

combination of these two preferences is expressed using the

following integrity rules and preference graph. This graph

and its associated revisables are depicted in figure 2.

X «— fault.mode(^ si), ~sOJmpossible

J. «— fault.mode(^ unknown), ~s0.impossible

J. *— /au/t_mode(_, unknown), ~sl.impossible

± *- fault.mode(Gl,.),fault.mode(G2,.)

G2 ^ Gl,~single-fault.impossible

1 < bottom 2 < bottom

3< 1 4< 1 A2

5<3A4

 

-«bU

-fault_mode(_,_)

Figure 2: Reasoning Modes Preference Graph

In the bottom level only ~ ab(.) and ~ fault_mode(^ _)

are revisables. Because neither of ~ sOJmpossible,

~s\Jmpossible and ~single-faultJmpossible are re

visables, the integrity rules enforce single "stuck at 0" faults.

Level 1 and level 3 correspond to single "stuck at 1" faults

and single "unknown faults." Level 2 express possible mul

tiple "stuck at 0" faults. Level 4 captures multiple "stuck

at 0" or "stuck at 1" faults. Finally, all kind of faults, single

or multiple, are dealt with in level 5.

We could migrate the knowledge embedded in the last four

previous integrity rules to the preference graph. This prefer

ence graph is more elaborate (but probably more intuitive)

as shown in figure 3. The dashed boxes correspond to

the levels of the previous preference graph and are labeled

accordingly. This demonstrates how the meta-knowledge

represented in the preference graph could move to the pro

gram, with a substancial reduction of the preference rela

tion. If instead of 2 components we had 100, the extended

graph we will have about 304 nodes and the smaller one is

identical to the one offigure 2. The general conditions ofthe

preference graph that allow this transference of information

are the subject of further investigation.
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fm(gMO) fm(g2,s0)
 

bottom |

bottom

Figure 3: Extended Preference Graph

Suppose that in the first experiment made the input is 0 and

the values at nodes b and c are also 0 (see figure 4). These

observations are modelled by the facts:

node(a, 0,<0) node{b,0,tO) node(c,0,tO)

 

Figure 4: First Experiment

This program is contradictory with the following single

preferred revision obtained at level 2:

{afc(<7l), ab(g2), fault.mode(gl,sO),

faultjmode(g2, sO), single.faultJmpossible)

The facts {node(a, 0,(1), node(b, 1, (1), node(c, 0,(1)}

describe the results of a second experiment made in the

circuit. The above two experiments together generate, at

level 5, the revisions below. Notice that the second one

is at first sight non intuitive. We formulated the problem

employing the consistency-based approach to diagnosis,

therefore it is consistent with the observations to have both

gates abnormal with "unknown" faults.

{ sQJmpossible, slJmpossible,

single.faultJmpossible,

ab(g\ ), fault.mode(gl, unknown),

ab(g2), fault.mode(g2,s0) }

{ sQJmpossible, slJmpossible,

single.faultJmpossible,

ab(gl), fault.mode(g\, unknown),

ab(g2), fault.mode(g2, unknown) }

4.2 MULTIPLE MODELS AND HIERARCHY

In the rest of this section we will consider a small abstract

device. We will focus on the use of different abstraction

and diagnosis strategies and leave out the actual details of

the models.

This device is built from chips and wires and has a certain

behaviour. If it does not show that behaviour, then we

consider one of its parts abnormal.

% concept: structural hierarchy,

% axiom: some part is defect, iff one its subparts is defect,

% strategy: decompose the system into its subcomponents

->a(device) «— ~a(chips), ~a(wires)

behaviour(device) «— ~a(device)

% first observation

% contradiction found at highest level

-•behaviour(device)

In our case, either the chips can be faulty or the wires can be

faulty. To check that, we use a functional model if available

(in the case of the chips) or a physical model. As we will

see later, our specified preference order leads us to suspect

the chips first.

% concept: functional/physical hierarchy.

% a contradiction is found, if the functional model leads to

% contradiction. If this is the case, check the physical models

% of the suspected component (these axioms come later)

-<a(chips) «— ~a(funciionalChipModel)

assuinp(ChipModel) «— a(FunctionalChipModel)

% no functional model for wires,

% directly start with the physical model

-ia(wires) «— ~a(physicalWireModel)

When testing the chips, we use the functional hierarchy and

get three function blocks fc 1 , fc2 and fc3.

% enumeration of possible abnormal

% components (functional decomposition)

->a(j undionalChipModel) «— ~a/(/cl),~a/(/c2),

~a/(/c3)
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The functions of these blocks and their interdependencies

are described in an arbitrary way, below we show a very

simple sequential relationship.

% behaviour of single components in one model view

% simple kind of sequential propagation, model valid

% only if we just use chip model (no faulty wires)

fb(fcl) *— ~af(fc\),assump(ChipModel)

Wc2)-~a/(/e2),/6(/cl)1

assump(ChipModel)

/6(/c3)«-~a/(/c3),/6(/c2),

assump(ChipModel)

behavi€ntr(device) <— fb(fc3),assump(ChipModet)

We really find out, that the functional block fcl malfunc

tions. Now we have to check, which physical components

compose that functional block and which one of them is

faulty. As functional block fcl consists of two physical

components cl and c4, these two are our suspects after the

first two observations.

% second observation, restricts the found diagnoses to fcl

% concept: multiple models.

% When a fault is found using the functional model, check the

% physical chip models, prefer physical chip model 1 over

% physical chip model 2.

type(c 1 ,chip)type(c2,chip)

type(c3,chip)type(c4,chip)

The functional decomposition need not be the same as the

physical composition, functional component cl consists of

physical components cl and c4), physical model 2 (ap2)

corresponds to the unknown failure mode, we prefer phys

ical mode 1, if it resolves the contradiction.

->a/(/cl) «— ~ap(cl), ~ap2(cl), ~ap(c4), ~ap2(c4)

-ia/(/c2) ♦— ~ap(c2),~ap2(c2)

->a/(/c3) <— ~ap(c3),~ap2(c3)

On the level ofphysical components we have descriptions of

behavioural models, in our case models of the correct mode

and two fault modes. We further have the assumption, that

there is no other unknown fault mode.

% behavioue single components in the physical model 1

p6(cl) «— ~ap(cl), ~ap2(cl), assump(ChipModel)

pb(c2) *— ~ap(c2),~ap2{c2),assump(ChipModel)

p6(c3) «— ~ap(c3),~ap2(c3),assump(ChipModel)

pfc(c4) <— ~ap(c4),~ap2(c4),assump(ChipModel)

% exclusive failure modes for chips in physical model 1

-ap(C) <- ~/l(C),~/2(C),iype(C,c/iip)

% behaviour of components with fault mode 1

% behaviour of components with fault mode 2

faulib2(C) «- /2(C)

Now, we have two more observations, which tell us, that

cl is not functioning according to its fault mode 1 and c4 is

not either. So, as we prefer fault mode 1 to fault mode 2 (as

specified later in the preference ordering) the effect of the

third observation is to focus on c4 in fault mode 1 , while

the effect of the fourth observation is to reconsider both c4

and cl in fault mode 2.

% third observation

->faultb\(c\)

% fourth observation

->faultb\(c4)

Finally, with a last observation, we restrict our suspect list

again to c4 in fault mode 2. Finally, observation 6 leads us

to consider unknown faults.

% fifth observation

->faultb2(cl)

% sixth observation

-yfaultb2(cA)

For the wires, we just have a physical model:

% types

type(wl, wire)

type(w2, wire)

-<a(physicalWireModel) *— ~ap(wl),~ap(w2)

pb(w\) <— ~ap(w 1 )

pb(w2) «— ~ap(u>2)

Finally, we specify a specific diagnosis strategy by using the

preference order of revisables. The preference graph below

starts to tes the most abstract hierarchy level (bottom).

If something is wrong, then go to the next hierarchy level

(chips and wires) on this level, first consider chip faults with

fault mode 1 first (level 1). Otherwise try single fault with

fault mode 2 (level 2). If this doesn't explain the behaviour

try a double fault with fault mode 1 or a single unknown

fault (3,4). Otherwise suspect faulty wires (level 5). If this

does not work then everything is possible in the last level

(6).

1 «: bottom 2 < 1

3<C2 4«2

5<3A4 5<6

faultbl{C) *- /1(C) The sequence of revisions and the revisable levels are listed

below:
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Level

"Hott

1

2

3

4

5

6

Revisions

{a(device)}

{a(device), a(chips), afc(_), a/(_),

ap(_), /l(-), a(functionalChipModel)}

{a(device), a(chips), ab(.), a/(_),

ap(-), /2(_), a(functionalChipModel)}

{a(device), a(chips), o6(_), a/(_),

ap(_), ap2(_), a(functionalChipModel)}

{a(device), a(chips), ai>(_),

a(functionalChipModel), af(.),

notsingle,fault, ap(_),

{a(device), a(«;ires), a6(.)), a/(.),

ap(-), a(physicalWireModel)}

{a(device), a(chips),

a(functionalChipModel),ab(.)),

af(.),ap(.),aP2(.),fl(.),f2(.),

a(wires), a(physical\VireAIodel)}

Table 1 : Levels and Revisables

Observation 1 , Revisions at level 1 :

{a(chips), a(device), a(functionalChipModel),

o/(/cl),ap(c4),/l(c4)}

{a(chips), a(device), a(functionalChipModel),

a/(/cl),op(cl),/l(cl)}

{a(chips), a(device), a(functionalChipModel),

a/(/c2),ap(c2),/l(c2)}

{a(chips), a(device), a(functionalChipModel),

a/(/c3),ap(c3),/l(c3)}

Observation 2, Revisions at level 1 :

{a(chips), a(device), a(functionalChipModel),

o/(/cl),op(c4),/l(c4)}

{o(c/itps), a(devtce), a(functionalChipModel),

a/(/cl),ap(cl),/l(cl)}

Observation 3, Revisions at level 1 :

{a(chips), a(device), a(functionalChipModel),

o/(/cl),op(c4),/l(c4)}

Observation 4, Revisions at level 2:

{a(cftips), a(device), a(functionalChipModel),

o/(/cl),ap(o4),/2(o4)}

{a(cA»ps), a(device), a(functionalChipModel),

af(fcl),ap(cl),f2(c\)}

Observation 5, Revisions at level 2:

{a(chips), a(device), a(functionalChipModel),

a/(/cl),op(c4),/2(o4)}

Observation 6, Revisions at level 3:

{a(chips), a(device), a(functionalChipModel),

af(fcl),ap2(cl)}

{a(chips), a(device), a(functionalChipModel),

af{fc\),ap2{cA))

5 REVISION ALGORITHM

The main motivation for this algorithm is that at distinct

preference levels the set of revisables may differ, but it is

necessary to reuse work as much as possible, or otherwise

the preferred revisions algorithm will be prohibitively in

efficient. We do so by presenting an extension to Reiter's

algorithm [Reiter, 1987], corrected in [Greiner etal, 1989],

that fully complies with this goal. The preference revision

process can be built upon this algorithm simply by calling

it with the current set of revisables, as shown in section 3.

This permits the reuse of the previous computations that

matter to the current set of revisables. The algorithm han

dles arbitrary sets of assumptions, handles different sets of

revisables at different levels, and provides a general caching

mechanism for the computation of minimal "hitting sets"

obtained at previous levels.

The main data structure is a DAG constructed from a

set C of conflict sets (all the inconsistencies) and a non-

contradictory initial context Cx which expresses what are

the initial truth values of the revisables. An inconsistency

is a support of contradiction. In our setting, these conflict

sets are the intersection of a support set of J. with the set of

revisables and their negations. Thus, a conflict set contains

only literals that were already revised and literals that can

be revised, which jointly lend support ot contradiction.

Remark that the next algorithm is described independently

of the initial context and of the type ofrevisable literals (they

may be true positive literals that are allowed to become false

through revision).

A generalized-hitting-set directed-acyclic-graph (GHS-

DAG) is a DAG where nodes are labeled with sets of con

flict sets. Edges are labeled with negations of revisables. In

the basic algorithm (without pruning) the need for labeling

nodes with sets of conflict sets is not evident. For clarity

we'll describe the basic algorithm assuming that there is

only one conflict set in the label. After introducing pruning

we'll slightly revise the basic algorithm to cope with the

more general case.

In the following, Dmv, is used to build the level specific

GHS-DAG using the conflict sets stored in the GHS-DAG

D (used as the global cache). While computing the level

specific DAG the global cache is updated accordingly. This

latter GHS-DAG will be fed into the next iteration of al

gorithm 3.1 to minimize computation effort in less pre

ferred levels. The minimal, level specific, revisions for a

given set of revisables are obtained from DMW. Conflict

sets are returned by a theorem prover; as in [Reiter, 1987,

Greiner et ai, 1989] the algorithm tries to minimize the

number of calls to the theorem prover.

The set of all revisables is a non-contradictory set of literals

denoted by 1Z. Intuitively, if a literal L (resp. ~L) belongs

to TZ then we allow L to change its truth-value to false

(resp. to true). A conflict set CS is a subset of 7£. A

conflict set contains literals that cannot be simultaneously

true (similar to the definition of NOGOOD [McDermott.
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1991]). A context is a subset of 111) ~7i.

The reader is urged to recourse to figure 5 when read

ing the basic algorithm below, where the initial context

is { o, 6, c, d} and Rev = {~a, ~6, ~c, The set of

inconsistencies, C, contains the sets appearing in the figure.

We assume, for simplicity, that the global GHS-DAG is

empty and therefore in every step D and DKW are equal.

The nodes are numbered by order of creation.

(-a.-b.-c) ,

(a.-b.-<l) , <b.-..-c) 3 V

l\ l\

0 b • c

1 \ \ \
(«,.-*) (a,b,-c) («J>.-c)7 (b,c.-a)

I I I I
b c c a

I \ \ *

i

X13

Figure 5: Basic Algorithm

Otherwise mi remains unlabeled and a clone arc

is created in D.

3. Return the resulting GHS-DAGs, D„ew and D.

If the node is not labeled in step 2b then it was unexplored.

The algorithm attempts to find a conflict set compatible

with the current context. If there is no conflict then a

revision is found (possibly not minimal) and it is marked

with y/. If a conflict set is found then it is intersected with

the current revisables. If the intersection is empty a non-

revisable contradiction was found. Otherwise, the node

must be expanded in order to restore consistency. This is

accomplished by complementing a single revisable literal

in the conflict set. This process is iterated till there are no

more nodes to expand.

An access to the set of inconsistencies in step 2b can be

regarded has a request to the theorem prover to compute

another conflict set. Also, notice in the end Dmv will

be contained in D. All the revisions wrt the specified set

of revisables can be obtained from Dnew We now define

pruning enhancements to D„ew such that, in the end, the

minimal revisions can be obtained from this new DAG.

The result of the application of the next optimizations to the

problem described in figure 5 is shown in figure 6. Node

5 is obtained by application of pruning step 3a. Node 6 is

reused by node 3 and nodes 7 and 8 were closed by node 4.

0. Let C be a set of conflict sets and Cx context. The first

time this algorithm is called GHS-DAG D is empty.

1. Let Rev C TZ be a set of revisables, D a GHS-DAG

and £>„ew an empty GHS-DAG. If D is not empty then

insert a clone of its root node in Otherwise, insert

in Dnew an unlabeled node and a clone node in D.

2. Process the nodes in Dnew in breadth-first order. Let

n be a node. The set H(n) contains the revisions of

literals in the path from the root to the node and M(n)

is the context at node n. To process node n :

(a) Define H(n) to be the set of edge labels on the

path in D„ew from the root down to node n (empty

if n is the root). Let M(n) = [Cx H(n)\ U

H(n).

(b) If n is not labeled then if for all X € C, X %

M(n) then label n and its clone with the special

symbol y/. Otherwise, label the node with one

arbitrary X such that X C M(n). Copy the label

to its clone in D.

If n is already labeled denote its label by X.

If X D Rev = { } then mark the node in Dxv as

closed.

(c) If n is labeled by a set X € C, then for each /, 6

X D Rev, generate a new outgoing arc labeled by

~/,- leading to a new node rrn. If an arc already

exists in D, from a clone of n and label ~ U

to some node r,, then copy the label of r, to

m, in D„eW. Node r, becomes the clone of m*.

(-t.-b.-c) t

a b SN^c

(a.-b) (b.-a.-c) 3 V

\ / \

b
 

Figure 6: Pruning Enhancements

1. Reusing nodes: this algorithm will not always generate

a new node m, as a descendant of node n in step 2c:

(a) If there is a node n' in D^w such that H(n') =

H{n) U {/}, then let the /-arc under n point to

this existing node n', and reflect this in its clone

in D. Thus, these nodes will have more than one

parent.

(b) Otherwise generate m, as described in the basic

algorithm.
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2. Closing: If there is a node m in Dnew labeled with y/

and H(m) C H(n), then close node n and its clone

in£>.

3. Pruning: Let A" be the label of node n in step 2b, and

m be another node in Dm labeled with conflict set Y.

Attempt to prune Dmv/ and D as follows:

(a) Pruning : If X fl Rev C Y l~l Rev and

X fl H(n) C #(m), then relabel m with A". For

any ~/,- in (V - X) n i?ev the /,—arc under m is

no longer allowed. The node connected by this

arc and all of its descendants are removed, except

for those nodes with another ancestor which is

not being removed. This step may eliminate the

node currently being processed.

(b) Pruning D : Let n' and m' be the clones of n and

m m D, respectively.

i. UXr\TZ C YMl and Xr\H(n') C H(m'),

for some Y in m'. Apply the procedure in 3a)

to D, talcing into account that more than one

set may label the node: remove all the Ys

that verify the condition, insert X in the label

and retain /-edges and descendant nodes such

that ~/ belongs to some of the remaining sets.

Notice this procedure was already applied to

^new

ii. If the condition in 3a) was verified by n and

m then insert in the label of m' the set X.

The reuse and closing of nodes avoids redundant computa

tions of conflict sets. The closing rule also ensures that in

the end the nodes labeled with ^ are the minimal revisions.

The pruning strategy is based on subset tests, as in Reiter's

original algorithm, but extended to take into account the

contexts and revisables. The principle is simply that given

two conflict sets one contained in the other, the bigger one

can be discarded when computing minimal revisions. The

algorithm handles the case when a conflict set is a subset of

another wrt the revisables, but not if the revisables are not

considered. Also notice that condition 3(b)ii is redundant

if step 3(b)i was applied.

The need to consider nodes labeled by several conflict sets

is justified by the pruning step 3(b)ii: the set X is minimal

wrt the current set of revisables. We store this set in the

global cache D for later use by the algorithm. To reap

the most benefit from this improvement it is necessary to

change step 2b) by introducing the following test:

"If n is labeled by conflict sets, i.e. it was pre

viously computed, then intersect these sets with

Rev. Select from the obtained sets a minimal one

such that the number of nodes below this node,

wrt Rev, is maximum. Relabel n with this set."

set condition); second it directs the search to the sub-DAG

with less nodes remaining to be explored, reusing maxi

mally work done before.

It can be shown that if the number of conflict sets is finite,

and they themselves are finite, then this algorithm computes

the minimal revisions and stops. It is known this problem is

NP-Hard: an exponential number of minimal revisions can

be generated. Under the previous conditions algorithm 3.1

is sound and complete, if it has a finite number ofpreference

rules (wrtdef. 3.1).

The computation of the preferred revisions of example in

section 4. 1 is portrayed in figure 7, with the obvious abre-

viations for the literals appearing. The whole example has

25 minimal inconsistencies, i.e. minimal support sets of JL.

The computations done at each level are bounded by the la

beled bold lines. The dashed line represents the bound ofthe

level specific GHS-DAG at levels bottom, 2 and 4. These

leves all nodes are closed, i.e. there are no revisions. Notice

that pruning steps 3a) and 3(b)ii were applied between the

node initially labeled with {~ab(g2)} and the nodes labeled

with {~fm(gl,uk),~sOi} and {fm(gl,uk),~8li}.

l-ab(gl)|

I

ab(gl)

f

(ab(gl),~fm(gl,sO),-fm(gl,sl),~fm(gl,uk)|

Iab(g1),fm(gl,s0)| I (ab(gl),fm(gl,sl)|

X l-ab(g2)| X

{fm(gl,uk),-$Oi)

bottom. 2. 4 {fm(gl,uk),-sll|

«b(g2)

I

Iab(g2),-fm(g2,s0),-fm(g2,sl),-fm(g2,uk)|

bottom, 2 fm<g2,uk) fm<g2,sl)

1.3

|fm(gl,uk), \ I

fm(g2,uk),-sfl) \|fm(gl,uk),-sOi|

 

|ab(g2),fm(g2,sl)|

X

jOI

*

(fm(gl,uk),fm(g2,s0),-sfi)

sfl

1

{fm(gl,uk),-sli|

ill

Figure 7: Preferred Revisions Computation

The heuristic in the modified step is to use a minimal set wrt

to the current set of revisables having the most of search

space explored. This has two main advantages: first, the

new algorithm can ignore redundant branches (the minimal

As the reader may notice, the higher the level is in the

preference graph the deeper is the GHS-DAG generated.

This corresponds to what is desired: preferred revisons

should be obtained with less theorem proving costs.
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The efficiency of the algorithm is highly dependent on the

order in which conflict sets are generated. It is possible to

devise very nasty examples having n + 1 conflict sets with a

single revision of cardinality 1 , where the above algorithm

has to explore and generate an exponential GHS-DAG.

One possible solution to this problem is to guarantee that the

theorem prover only returns minimal sets ofinconsistencies.

This can be done by an intelligent search strategy used by

the theorem prover. This topic will be the subject ofa future

paper.

6 COMPARISONS AND CONCLUSIONS

We start by concentrating on diagnosis strategies, only re

cently approached in [Struss, 1989, Dressier and Bottcher,

1992, Bttttcher and Dressier, 1994], where they discuss the

necessity of including diagnostic strategies in a modelbased

reasoning system such as when to use structural refinement,

behavioural refinement, how to switch to different models,

and when to use which simplifying assumptions. [Dressier

and Bottcher, 1992] also gives an encoding of these prefer

ences on top of an NM-ATMS, using both default rules of

the form discussed earlier for local preferences and meta-

level rules for explicitly specifying global preference during

the revision process.

The disadvantage of the implementation discussed in

[Dressier and Bottcher, 1992] and its extended version is

that the specification of these preferences is too closely in

tertwined with their implementation (NM-ATMS plus belief

revision system on top) and that different preferences must

be specified with distinct formalisms. Default logic allows a

rather declarative preferences specification, while the meta

rules of [Dressier and Bottcher, 1992] for specifying global

preferences have a too procedural flavour.

In contrast, REVISE builds upon a standard logic pro

gramming framework extended with the explicit spec

ification of an arbitrary (customizable) preference rela

tion (including standard properties ([Kraus et ai, 1990,

Nejdl, 1991b]) as needed). Expression of preferences is as

declarative as expressing diagnosis models, uses basically

the same, formalism and is quite easy to employ according

to our experience.

In our diagnosis applications, although our implementation

still has some efficiency problems due to being implemented

as a meta-interpreter in Prolog (a problem which can be

solved without big conceptual difficulties), we are very

satisfied with the expressiveness of REVISE and how easy

it is to express in it a range of important diagnosis strategies.

We are currently investigating how to extend our formalism

for using an order on sets of diagnoses/sets of worlds/sets

of sets of assumption sets, instead of the current order on

diagnoses/worlds (or assumption sets). Without this greater

expressive power we are not able to spell out strategies de

pending on some property out of the whole set of diagnoses

(two or three of such strategies are discussed in a belief

revision framework in [Bottcher and Dressier, 1994]).

Revising a knowledge base has been the main topic for be

lief revision systems and it is quite interesting to compare

REVISE to a system like IMMORTAL [Chou and Winslett,

1991]. IMMORTAL starts from a consistent knowledge

base (not required by our algorithm) and then allows up

dating it. These updates can lead to inconsistencies and

therefore to revisions of the knowledge base. In contrast

to our approach, all inconsistencies are computed statically

before any update is done, which for larger examples is not

feasible, in our opinion. Also, due to their depth-first con

struction of hitting sets, they generate non-minimal ones,

which have to be thrown away later. (This could be changed

by employing a breadth-first strategy.)

Priority levels in IMMORTAL are a special kind of our

preference levels, where all levels contain disjoint literals

and the levels are modular, both of which properties can be

relaxed in REVISE (and have to be in some of our exam

ples). Accordingly, IMMORTAL does not need anything

like our DAG global data structure for caching results be

tween levels.

Additionally, IMMORTAL computes all conflict sets and

then removes non-updateable literals, in general leading to

duplicates; therefore, in our approach, we have less conflict

sets and so a faster hitting sets procedure (and less theorem

prover costs).

Comparing our work to database updates and inconsistency

repairing in knowledge bases, we note that most of this

work takes some kind of implicit or explicit abductive ap

proach to database updates, and inconsistency repairs are

often handled as a special case of database update from the

violated contraints (such as in [Wtlthrich, 1993]). If more

than one constraint is violated this leads to a depth-first

approach to revising inconsistencies which does not guar

antee minimal changes. Moreover, we do not know of any

other work using general preference levels. All work which

uses some kind of priority levels at all uses disjoint priority

levels similar to the IMMORTAL system.

Compared to other approaches, which are based on specific

systems and specific extensions of these systems such as

[Dressier and Bottcher, 1992], REVISE has big advantages

in the declarativity, and is built upon on a sound formal

logic framework.

We therefore believe the REVISE system is an appropriate

tool for coding a large range of problems involving revi

sion ofknowledge bases and preference relations over them.

REVISE is based on sound logic programming semantics,

described in this paper, and includes some interesting imple

mentation concepts exploiting relationships between belief

revision and diagnosis already discussed in very prelim

inary form in [Nejdl, 1991a]. While REVISE is still a

prototype, we are currently working on further improving

its efficiency, and are confident the basic implementation

structure of the current system provides an easily extensible

backbone for efficient declarative knowledge base revision

systems.
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Abstract

Within the AGM paradigm revision and con

traction operators are constrained by a set

of rationality postulates. The logical prop

erties of a set of knowledge are not strong

enough to uniquely determine a revision or

contraction operation, therefore constructions

for these operators rely on some form of un

derlying preference relation, such as a systems

of spheres, or an epistemic entrenchment or

dering. The problem of iterated revision is de

termining how the underlying preference re

lation should change in response to the ac

ceptance or contraction of information. We

call this process a transmutation. Generalizing

Spohn's approach we define a transmutation of

a well-ordered system of spheres using ordinal

conditional functions. Similarly, we define the

transmutation of a well-ordered epistemic en

trenchment using ordinal epistemic entrench

ment functions. We provide several conditions

which capture the relationship between an or

dinal conditional function and an ordinal epis

temic entrenchment function, and their cor

responding transmutations. These conditions

allow an ordinal epistemic entrenchment func

tion to be explicitly constructed from an or

dinal conditional function, and vice versa, in

such a way that the epistemic state and its

dynamic properties are preserved.

1 INTRODUCTION

The AGM paradigm is a formal approach to theory

change. The logical properties of a theory are not

strong enough to uniquely determine a contraction,

or revision operation, therefore the constructions for

these operators rely on some form of underlying

preference relation, such as a system of spheres [6],

a nice preorder on models [11], or an epistemic

entrenchment ordering [4]. Theory change operators

based on such preference relations require the relation

to be predetermined or given at the outset. Although

this provides desirable theoretical freedom, it leads

to difficulties in designing computer-based knowledge

revision systems. In order to accommodate a

subsequent theory change such a system would require

guidance in determining a subsequent preference

relation. Revision and contraction operators result

in a theory or set of knowledge and not a modified

preference ordering. Hence, the problem of iterated

revision is determining how the underlying preference

relation should change in response to the acceptance or

contraction of information. According to Schlecta [15]

". . . iterated revision ... is a very common phenomenon

for cognitive systems". We refer to the process of

changing the underlying preference relation, and hence

the knowledge system as a transmutation.

We make use of ordinal conditional functions [18],

such functions can be thought of as well-ordered

system of spheres, with possibly empty partitions.

A conditionalization [18, 2] is a specific constructive

method for modifying ordinal conditional functions

in such a way as to accommodate a revision (or a

contraction), and results in another ordinal conditional

function. We address the problem of iterated

revision by generalizing Spohn's conditionalization,

in particular we define transmutations to be any

modification of an ordinal conditional function, such

* Knowledge Systems Group. Department or Computer Science,

University or Sydney, NSW '2006, Australia.



620 M.-A. Williams

that it satisfies the revision and contraction postulates,

and results in another ordinal conditional function.

We show that conditionalization is a transmutation.

We introduce an ordinal epistemic entrenchment func

tion. We define transmutations for these structures,

and provide perspicuous conditions which capture

the relationship between ordinal conditional functions,

and ordinal epistemic entrenchment functions, such

that the same knowledge set, and transmutations are

obtained.

We briefly describe the AGM paradigm in Section 2.

Spohn's approach is outlined and generalized in Sec

tions 3, in particular ordinal conditional functions, to

gether with their contraction, revision, and transmuta

tion are described. In Section 4, we introduce ordinal

epistemic entrenchment functions, and their contrac

tion, revision, and transmutation. In Section 5 we

provide conditions which capture the relationship be

tween ordinal conditional functions and ordinal epis

temic entrenchment functions, so that contractions,

revisions, and certain transmutations are equivalent.

These conditions provide explicit translations which

allow an ordinal conditional function and an ordinal

epistemic function to be constructed from one another

in such a way that a knowledge system and its dynamic

properties are preserved. Related work is described in

Section 6, and a summary of our results is given in

Section 7. Examples and proofs can be found in [22].

2 THE AGM PARADIGM

We begin with some technical preliminaries. Let L

denote a countable language which contains a complete

set of Boolean connectives. We will denote formulae

in L by lower case Greek letters. We assume L

is governed by a logic that is identified with its

consequence relation K The relation h is assumed to

satisfy the following conditions [2]:

(a) If a is a truth-functional tautology, then I- a.

(b) If a h (3 and h a, then h /? (modus ponens).

(c) h is consistent, that is, \f±, where _L denotes

the inconsistent theory.

(d) h satisfies the deduction theorem.

(e) h is compact.

The set of all logical consequences of a set T C L,

that is {a : Th a}, is denoted by Cn(T). The set

of tautologies, {a : h a}, is denoted by T, and those

formulae not in T are refered to as nontautological.

A theory of L is any subset of L, closed under K A

consistent theory of L is any theory of L that does

not contain both a and ->a, for any formula a of

L. A complete theory of L is any theory of L such

that for any formula a of L, the theory contains a

or ->Q. A theory is finite if the consequence relation

h partitions its elements into a finite number of

equivalence classes. The dual atoms for a finite theory

T are those nontautological elements a G T such that

for all 0 € Cn({a}), either h 0 or (- a = 0 [12]. We

define L"" to be the set of consistent nontautological

formulae in L.

We introduce the following notation: K\. is the set of

all theories of L, and 0£ is the set of all consistent

complete theories of L. If a is a formula of L, define

[a] to be the set of all consistent complete theories of

L containing a. If a is inconsistent, then [a] = 0, and

if h o, then [a] = 0£.

In the AGM paradigm knowledge sets [4] are taken to

be theories, and informational changes are therefore

regarded as transformations on theories. There are

three principal types of AGM transformations; expan

sion, contraction and revision. These transformations

allow us to model changes of information based on the

principle of minimal change. Expansion is the simplest

change, it models the incorporation of a formula. More

formally, the expansion of a theory T with respect to a

formula a, denoted as T+, is defined to be the logical

closure of T and a, that is T+ = Cn(TU {a}).

A contraction of T with respect to a, T~ , involves the

removal of a set of formulae from T so that a is no

longer implied. Formally, a well-behaved contraction

operator ~ is any function from ICj, x L to K-i, mapping

(T, a) to T~ which satisfies the postulates (~1) -

(~9), below. We define a very well-behaved contraction

operator to be a well-behaved contraction operator

that satisfies the postulate (~10), below.

(~ 1) For any a G L and any T G £L , T~ G /CL

(-2) T- C T

("3) If a $T then T~ = T

(-4) If \f a then a g T~

(-5) TC(T~)i

(~6) If h a = p then T~ = T~

(-7) r-nr^cT-^

(-8) Ifa£ro-A/J then T-A/3 C T"

(~9) For every nonempty set T of nontautological

formulae, there exists a formula a G T such that

» £ raA/j for every € r.

(~10) For every nonempty set T of nontautological

formulae, there exists a formula a G T such that

P i toaP for evefy P € r.

A revision attempts to transform a theory as "little as

possible" in order to incorporate a formula. Formally,

a well-behaved revision operator * is any function from
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ACl x L to /Cl, mapping (T, o) to T£ which satisfies

the postulates (*1) - (*9), below. We define a very well-

behaved revision operator * to be well-behaved revision

operator that satisfies the postulate (*10), below.

(*1) For any a € L and any T € /CLl T* € £L

(*2) a G T*

(•3) T*a C T+

(*4) If --a ^ T then T+ C 7^

(*5) T' =1 if and only if I- ->a

(*6) If h a = /? then T* = T'p

(*7) 7^A/J C (T')+

(•8) If ^^7^ then (^J+C^

(*9) For every nonempty set T of nontautological

formulae, there exists a formula a € T such that

a £ T:aW^ for every ^T.

(*10) For every nonempty set T of nontautological

formulae, there exists a formula a 6 T such that

/? 0 T:aV^ for every /? € T.

The class of well-behaved revision operators was

identified by Peppas [10] and shown to be a proper

subclass of the class of revision operators satisfying

(*1) - (*8). We note that (*9) is not identical with

the well-behaved postulate in [10], however the same

family of revision operators is obtained.

In the next section we review Spohn's ordinal

conditional functions [18] and describe definitions from

[18] and Gardenfors [2].

3 ORDINAL CONDITIONAL

FUNCTIONS

Spohn [18] represents a knowledge system as an ordinal

conditional function which is defined over possible

worlds. We represent possible worlds by consistent

complete theories, in [22] we give an analogous analysis

based on models as the underlying representation. An

ordinal conditional function [18] defines a ranking of

its domain which provides a 'response schema for all

possible consistent information' [18]. More formally,

we have the following definition [18,2].

Definition: An ordinal conditional function, OCF, is a

function C from 0/,, the set of all consistent complete

theories, into the class of ordinals such that there

is some element of Ql assigned the smallest ordinal

0. We denote the family of all ordinal conditional

functions by C. If C has a finite range, then we say C

is finite.

Intuitively C € C represents not only a well-ordering,

but a plausibility grading of possible worlds [2] or a

grading of disbelief [18], the worlds that are assigned

the smallest ordinal are the most plausible.

Definition: The ordinal assigned to a nonempty set of

consistent complete theories A C by an OCF is the

smallest ordinal assigned to the elements of A. That

is, for C € C we have; C(A) = min({C(A') : K G A}).

Definition: We define the knowledge set represented

by C € C to be ks(C) = f\{K G 6L : C(K) = 0}.

It is not hard to see that, the knowledge set

represented by C £ C, ks(C), is always a consistent

theory.

Definition: Given a C € C, for any nontautological

formula a, we say or is accepted with firmness C([-ia]),

and call C([->a]) the degree of acceptance of a. A

formula a is accepted if and only if a € ks(C). If a

and 0 are both accepted then a is more firmly accepted

than P if and only if either C([--o]) > C([--/?]), or h a

and \f p. More generally, for nontautological formulae

a and f) not necessarily in ks(C), a is more plausible

than /? if and only if either C([-.a]) > C([->/J]), or

C(m > C([a]) [2].

The tautologies can be thought of as being assigned

to an ordinal greater than all ordinals in the range

of C (since L, and consequently the range of C,

is countable such an ordinal exists). In [19] Spohn

introduces a natural conditional function in which

consistent complete theories are assigned a natural

number rather than an ordinal, and C(0) = u, hence

the degree of acceptance of the tautologies is w.

3.1 DYNAMICS OF ORDINAL CONDITIONAL

FUNCTIONS

Revision and contraction operators take knowledge

sets to knowledge sets. In this section we will see that

transmutations take knowledge systems to knowledge

systems, where a knowledge system is composed of a

knowledge set together with a preference relation.

The relationship between Spohn's conditionalization

and the AGM paradigm is identified and discussed

by Gardenfors in [2], and it is this relationship that

underpins and motivates our approach.

We begin our discussion with a representation result

for revision. Theorem 1, below, provides a condition

which characterizes a well-behaved and a very well-

behaved revision operator, using an OCF and a finite

OCF, respectively. Theorems 1 and 2 are based on the

work of Grove [6] and Peppas [10].

Theorem 1 : Let T be a consistent theory of L.

For every well-behaved (very well-behaved) revision

operator * for T, there exists a (finite) C € C such

that ks(C) = T, and the condition below, henceforth
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referred to as (C*), is true for every a£L. Conversely,

for every (finite) C G C there exists a well-behaved

(very well-behaved) revision operator ' for ks(C) such

that the (C*) condition is true for every a G L.

(f\{K €[a]: C(tf) = C([a])} ifj/^a

(ks(c)); = I

\- _L otherwise

Similarly, Theorem 2, below, provides a condition

which captures a well-behaved and a very well-behaved

contraction operator using an OCF and a finite OCF,

respectively.

Theorem 2: Let T be a consistent theory of L. For

every well-behaved (very well-behaved) contraction

operator ~ for T, there exists a (finite) C G C

such that ks(C) = T, and and the condition below,

henceforth referred to as (C~), is true for every a G L.

Conversely, for every (finite) C G C there exists a well-

behaved (very well-behaved) contraction operator

for ks(C) such that the (C~) condition is true for every

q G L.

(ks(C)); = f\{K G 0L : either C(K) = 0

or K G ha] with C(/C) = C([-a])}

For contraction and revision the informational input

is a formula a. We now define a transmutation of

OCF's where the informational input is composed of

an ordered pair, (A,»), that is, a nonempty set of

consistent complete theories (worlds) A and a degree

of acceptance f. The interpretation [2] of this is that

A is the information to be accepted by the knowledge

system, and « is the degree of acceptance with which

this information is incorporated into the transmuted

knowledge system. Note, for A C ©£, we define A to

be the complement of A, that is A = ©l\A.

Definition:

We define a transmutation schema for OCF's, *, to be

an operator from C x {28l\{0, 0l}} xOtoC, where

O is an ordinal, such that (C, A, i) t-* C*(A, i) which

satisfies:

(i) C'(A, •)(£) = •, and

(ii) lu(C'(A,f)) =

€A: C(tf) = C(A)} if t > 0

' C\{K G 6L : either C(K) = 0,

or K G A with C(K) = C(A)} otherwise.

We say C*(A, i) is a (A, i)-transmutation of C. The

definition excludes a transmutation with respect to

an empty set of worlds, hence a contradiction is not

acceptable information.

It is not hard to see that, for t > 0 and a

nontautological consistent formula o, an ([a],f)-

transmutation of C is an OCF in which the 'smallest'

worlds in [a] are mapped to zero and the 'smallest'

world in [->a] is mapped to i. Hence the knowledge

set represented by the transmuted knowledge system

is equivalent to the revised knowledge set (ks(C))* ,

via (C*). Similarly, in view of Theorem 2, we have

that, a contraction of (ks(C))~ can be modeled by an

([o], 0)-transmutation of C, where the 'smallest' [->a]

worlds are assigned zero, and hence [a] is no longer

accepted, in other words, [a] is 'neutralized' [18].

Rumelhart and Norman [14] distinguish three modes of

learning; accretion, tuning, and restructuring. Accre

tion involves the expansion of episodic memory with

out changing semantic memory, and tuning involves

revision of semantic memory in order to accommodate

new information. Restructuring involves major reor

ganization of semantic memory. According to Sowa

[17, p331] restructuring takes place when a knowledge

system attains new insight, and a 'revolution' takes

place that repackages old information. In the follow

ing definition we define a restructuring of an OCF, as

a reorganization of accepted information.

Definition: Let C be an OCF, and let A be a

nonempty, proper subset of Qj, such that C(A) > 0.

If f is a nonzero ordinal, then we refer to a (A,i)-

transmutation of C as a restructuring.

A restructuring is discussed by both Spohn [18] and

Gardenfors [2]. In our terminology whenever a (A,i)-

transmutation of C is a restructuring, iff > C(A) > 0,

then the knowledge system has additional reason for

accepting A, and its firmness is increased, that is,

strengthened. On the other hand, if C(A) > f > 0,

then the knowledge system has reduced reason for

accepting A, and its firmness is decreased, that is,

weakened .

The imposing problem for iterated revision is; how are

the worlds ordered after a revision, or a contraction.

Spohn [18] considers that it might be that after

information A is accepted, all possible worlds in A are

less disbelieved than worlds in A. The result of such

a transmutation would be that the knowledge system

has overwhelming confidence in A, however knowledge

systems must also be capable of accepting information

with less confidence.

Spohn [18] has argued that conditionalization, defined

below, is a desirable transmutation, for instance it is

reversible (that is, there is an inverse conditionaliza

tion) and commutative. Intuitively, conditionalization
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means that becoming informed about A, a proper and

nonempty subset of 9l , does not change the grading of

disbelief restricted to either A or A, rather the worlds

in A and A are shifted in relation to one another [2],

and this Spohn argues is reasonable, since becoming

informed only about A should not change C restricted

to A, or C restricted to A. The construction in Theo

rem 3 is based on left-sided subtraction of ordinals that

is, for i < j; —i + j is the uniquely determined ordinal

k such that i + k = j.

Theorem 3: For A C 8i, A 6, and i an ordinal,

C*(A,t), defined below, is a (A, i)-transmutation of

C. We refer to this transmutation as the (A, i)-

conditionalization of C.

(-C(A) + C(#) ifK

-C(A) + C(K) + i othe

G A

otherwise

The (A, i)-conditionalization of C is the combination

of C restricted to A left unaltered, and C restricted

to A shifted up i grades [18].

A property enjoyed by conditionalization is that any

transmutation of C, where the underlying language

is finitary, can be achieved by a finite sequence of

conditionalizations. This is seen by observing, that

for a K G 6L such that C(K) > 0, C'({K}, i) assigns

the consistent complete theory K the ordinal i and

assigns C(K') to each of the worlds K' G {K}.

We now explore another transmutation, an adjust

ment, in which only the least disbelieved worlds con

taining the information the knowledge system is ac

cepting are reassigned zero. Intuitively, an adjustment

is a transmutation which is commanded by the prin

ciple of minimal change, that is, an OCF is changed

or disturbed 'as little as necessary' so as to accept the

information with the desired degree of acceptance. In

other words, as much structure of the OCF persists

after the adjustment as possible.

Theorem 4: For A C 6l, A ^ 0, and i an

ordinal, C*(A, i), where * is denned below, is a (A, i)-

transmutation of C. We refer to this transmutation as

the (A, t)-adjustment of C.

C-(A) if i = 0

C'(A.i) = { (C-(A))*(A,i) if 0 < i < C(A)

( Cx(A,t) otherwise

where

C*(A,.•)(*) =

If K € A and

C(K) = C(A)

C(K) otherwise

( 0 if K G A and

C(K) = C(A)

C(K) if either K G A and

C(K) ? C(A),

or K G A and C{K) > i

I. i otherwise

Essentially, C~(A) models the contraction of A, and

is used for (A, i)-transmutations where A is accepted,

and C(A) > «, that is, a restructuring where A's

firmness is decreased.

We are not advocating that adjustment is a more desir

able transmutation than conditionalization, however

in [21] we have shown that it lends itself to theory

base transmutations. It can also be shown that in a

finitary language, we can find a sequence of adjust

ments which will result in an arbitrary transmutation.

For instance, an adjustment can be used to reassign

all but one consistent complete theory, say K\ G Ql

where C({Ki}) = 0 to the largest desired ordinal, say

k, by C*({Ki), k). Then grade by grade the remainder

{A'i} can be assigned the desired ordinal, for instance

(C'pO.^^lidU^},;) assigns Kx to 0, K2 to

k, and Qi\{Ki U A2} to j- Continuing in this way,

((C ({ K, }, *))• ({ Kx UK2 }, j))' ({ Kx UK2 UKz) , i) as

signs K\ to 0, Ki to it, Kz to j, and eL\{Ki\JK2UK3}

to i. This process can be continued until all Ki G Ol

are assigned their desired ordinal.

As noted earlier any transmutation where the under

lying language is finitary can be achieved by a finite

sequence of conditionalizations, therefore a sequence

of conditionalizations can be used to effect an adjust

ment, and conversely.

One view of the difference between conditionalization

and adjustment is that in order to accomodate

the desired informational change, conditionalization

preserves the relative gradings of C restricted to A

and A, whilst adjustment minimizes changes to the

absolute gradings C as a whole. Adjustments are

discussed further in Section 6.
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4 ORDINAL EPISTEMIC

ENTRENCHMENT FUNCTIONS

Intuitively, an ordinal epistemic entrenchment func

tion maps the formulae in a language to the ordinals,

the higher the ordinal assigned the more firmly it is

held. Throughout the remainder of this paper it will

be understood that O is an ordinal chosen to be suf

ficiently large for the purpose of the discussion. We

now formally define an ordinal epistemic entrenchment

function.

Definition: An ordinal epistemic entrenchment func

tion, OEF, is a function E from the formulae in L into

the class of ordinals such that the following conditions

are satisfied.

(OEF1) For all a, 0 G L, if a h p, then E(o) < E(/3).

(OEF2) For all o, /? G L, E(a) < E(a A p) or

E(/?) < E(aA/?).

(OEF3) h a if and only if E(a) = O.

(OEF4) If a is inconsistent, then E(a) = 0.

Intuitively, E represents an epistemic entrenchment

[2,4] grading of formulae; the higher the ordinal

assigned to a formula the more entrenched that

formula is. Whenever the codomain of E is w (c.f.

Spohn's natural conditional functions [19]), then we

can, and will, take E(a) = w for all h a. If E has a

finite range, then we say E is finite.

Definition:

We denote the family of all ordinal epistemic

entrenchment functions to be £. The knowledge set

represented by E G £ is ks(E) = {oGL: E(a) > 0}.

Definition: Given an E G £, for any formula a we

say a is accepted with firmness E(a), and call E(a)

the degree of acceptance of a. A formula a is accepted

if and only if a G ks(E). If a and /? are both accepted,

then a is more firmly accepted than 0 if and only if

E(a) > E(/?). More generally, for formulae a and /?

not necessarily in ks(E), a is more plausible than /? if

and only if either E(a) > E(/?), or E(--/?) > E(->a).

A knowledge set, ks(E), is the set of accepted formulae

and is always consistent. Gardenfors and Makinson [4]

have shown that for a finitary language an epistemic

entrenchment ordering is determined by its dual

atoms. Similarly, we can describe an OEF for a finite

language by assigning an ordinal to each dual atom.

The ordinal assigned to all other formulae in L is then

uniquely determined by (OEF1) - (OEF4).

4.1 DYNAMICS OF ORDINAL EPISTEMIC

ENTRENCHMENT FUNCTIONS

In this section we discuss the dynamics of ordinal epis

temic entrenchment functions, in particular we discuss

their revisions, contractions, and transmutations.

In Theorems 5 and 6 we establish several conditions

which characterize well-behaved and very well-behaved

revision and contraction operators, using OEF's and

finite OEF's, respectively. These results are based on

the work of Gardenfors and Makinson in [4].

Theorem 5: Let T be a consistent theory of L.

For every well-behaved (very well-behaved) revision

operator * for T, there exists an (finite) E G £, such

that ks(E) = T and the condition below, henceforth

referred to as (E*), is true for every a G L. Conversely,

for every (finite) E G € there exists a well-behaved

(very well-behaved) revision operator * for ks(E) such

that the (E*) condition is true for every a G L.

f{/?GL: E(-.a) < E(ia V /?)} ifl/^a

(ks(E)); = I

\ J. otherwise

Theorem 6: Let T be a consistent theory of L. For

every well-behaved (very well-behaved) contraction

operator ~ for T, there exists an (finite) E G £

such that ks(E) = T, and the condition below,

henceforth referred to as (E~), is true for every a G L.

Conversely, for every (finite) E G £ there exists a well-

behaved (very well-behaved) contraction operator

for ks(E) such that the (E~) condition is true for every

a G L.

{{/? G ks(E) : E(a) < E(a V /?)} if \f a

ks(E) otherwise

The conditions (E*), and (E~) determine a new

knowledge set when a formula a is incorporated or

removed, however these conditions do not determine

another OEF, upon which a subsequent revision, or

contraction could be specified. According to Rott

[12] it is not theories that have to be revised but

epistemic entrenchment orderings. The definition

below describes a transmutation of an OEF into

another OEF, such that a nontautological consistent

formula a is accepted with degree i.

Definition: We define a transmutation schema for

OEF's, *, to be an operator from £ x L*" x O to

£, where L** is the set of consistent nontautological

formulae in L, and i < O, such that (E, a,i) *-*

E*(a, i) satisfies:

(i) E*(a, i)(a) = i, and
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(ii) ks(E*(a,,)) =

{0 € L : E(-*a) < E(->a V 0)} if i > 0

<

{0 e ks(E) : E(q) < E(a V /?)} otherwise

We say E*(o, »') is an (a, »')-transmutation of E. A

transmutation is not defined with respect to tautolog

ical, or inconsistent formulae. An OEF is incapable of

representing an inconsistent knowledge set, therefore

we should not expect a transmutation of a knowledge

system to accept inconsistent information.

Intuitively, for a nontautological consistent formula

o, a transmutation E*(a,i), is an OEF where

ks(E*(a,«)) represents a 'minimal change' of the

knowledge set represented by E, that is ks(E), and

a is assigned the degree of acceptance i.

In the following definition we define a restructuring of

an OEF, as a reorganization of accepted information.

Definition: Let a e L""1, and let E be an OEF, where

or is accepted, that is, E(a) > 0. If i is an ordinal such

that 0 < i < O, then we refer to a (a, i)-transmutation

of E as a restructuring.

Theorems 7 and 8, below, establish that condition-

alization and adjustment of OEF's, respectively, are

transmutations.

Theorem 7: Let L be a finitary language, let E €

£ , let i be an ordinal such that i < O, and let

a € L*". Then E*(a, i) denned below, is an (a,i)-

transmutation of E. We refer to this transmutation as

the (or, i)-conditionalization of E.

f -E(-na) + E(0) if

&(a,i)(0) = {

{ -E(a) + E(/?) + i ot

a A -.0 ha

otherwise,

where 0 £ L is a dual atom.

Theorem 8: Let E € £, let t be an ordinal such that

i < O, and let a G L'". Then E*(a,t), where * is

defined below, is an (a, t)-transmutation of E. We

refer to this transmutation as the (a, i)-adjustment of

E-(o) if i = 0

(E-(a))x(a,t) ifO<»<E(a)

Ex (a, i) otherwise

 

E-(a)(/?)=r

E(/J)

0

E(/3)

if E(a) = E(a V /?)

otherwise

if E(-.a) = E(--a V 0)

if E(->a) < E(-.a V 0)

and E(/?) > i

if E(->a) < E(->a V 0)

and

E(0) < i < E(-io V 0)

E(->a V 0) otherwise

Both conditionalizations and adjustments are trans

mutations of OEF's, however unlike a conditionaliza-

tion, an adjustment does not refer to the dual atoms in

the theory and is therefore more general in that it can

be used on arbitrary languages rather than just finitary

ones. Moreover, adjustments have been shown [21] to

be very easily adapted to theory base transmutations

based on ensconcements [20].

We note however, for a finitary language, as in the case

of an OCF, an individual dual atom can be assigned

a firmness, say t, without changing the firmness of

any other dual atom using both conditionalization

and adjustment. Therefore it can be shown that any

transmutation of an OEF in a finitary language, can

be achieved by a finite sequence of conditionalizations

or adjustments.

Intuitively, an (a, i)-adjustment of E is a transmuta

tion that minimizes the changes to E so that a for

mula o is accepted with firmness ». Computationally,

the process of adjustment is straightforward [20], and

whenever the change is not maxichoice [1,2] less ex

plicit information is required than is the case for con

ditionalization.

Adjustments E*(a,i) possess an interesting property

in that, all the accepted formulae of E which are

held more firmly than max({i, E(->or), E(or)}) are

retained and not reassigned a different ordinal during

the transmutation *. This behaviour is intuitively

appealing, since we would not expect a transmutation

which affects weakly held information such as a goldfish

is blocking the main pump, to change the degree of

acceptance of more firmly held information, such as

if main pump is blocked, then the temperature will rise.
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In general the knowledge system will lose granularity

during an adjustment, in the sense that the only way

to increase granularity is to assign a an ordinal to

which no other formula is assigned, and not merge any

existing grades. The granularity can be increased at

most by one grade in this manner.

In contradistinction, during a conditionalization the

granularity of the knowledge system can be increased

substantially, more precisely the number of grades

could be doubled.

A shortcoming of adjustments is that all formulae /?

such that E(/?) < i, are assigned E(->a V P) after

an (a, i)-adjustment, which may not be desirable. If

formulae are being accepted and contracted on the

fringe, that is when i is close to zero, then this is not

likely to be a significant problem. Perhaps adjustment

could be used to accept and contract information

until it becomes necessary for the knowledge system

to reorganize its knowledge, that is undergo a

restructuring, in which case a more sophisticated

mechanism might be required. In the finitary case a

series of conditionalizations and/or adjustments could

be applied.

In the next section we formalize the relationship

between OCF's and OEF's such that their adjustments

and conditionalizations are equivalent.

5 TRANSLATIONS

In this section we give explicit conditions which

capture the relationship between an OCF, and an OEF

such that they represent the same knowledge set, and

possess the same dynamic behaviour with respect to

contraction, revision, and transmutation. In order

to establish relationships between OCF's and OEF's

we define what we mean by their similarity in the

definition below.

Definition:

We say E G £ and C G C are similiar whenever the

following condition is satisfied for all nontautological

formulae a,/? € L.

E(a) < E(/?) if and only if C([-.a]) < C(h/?]).

Intuitively, E and C are similar if and only if for all

nontautological formulae a,/?, it is the case that a is

at least as firmly accepted as (3 with respect to both

E and C.

The following theorem follows from the work of Grove

[6] and Gardenfors [2] , in particular, it is based on

the relationship between an epistemic entrenchment

ordering and a system of spheres. It says that, if

the ordinal functions C and E are similar, then their

transmuted knowledge sets are equivalent.

Theorem 9 : Let a G LM and let i be an ordinal such

that i < O. Let * be a transmutation schema for

OCF's. Let * be a transmutation schema for OEF's.

For E € £ and C G C, ks(E*(a, i)) = ks(C*([o], i)) for

all i < O if and only if C and E are similar.

The definition below describes when an OCF and an

OEF are equivalent.

Definition: We define C € C and E G £ to be

equivalent if and only if they satisfy the following

condition for all nontautological formulae a.

(EC) E(a) = C([-**]).

Intuitively, E and C are equivalent if and only if all

nontautological formulae possesses precisely the same

degree of acceptance with respect to both E and

C. Clearly, if C and E are equivalent then they

are similar. Hence we obtain the following corollary,

which says that, if the ordinal functions C and E are

equivalent, then their transmuted knowledge sets are

equivalent.

Corollary 10: Let a € L*" and let i be an ordinal

such that t < O. Let * be a transmutation schema

for OCF's. Let * be a transmutation schema for

OEF's. If (EC) holds for E G £ and C G C, then

ks(E*(a,0) = ks(C'([a],0).

The definition below describes when transmutations

for an OCF and an OEF are equivalent.

Definition: Given a transmutation schema * on

OCF's, and a transmutation schema * on OEF's, we

define C € C and E G £ to be equivalent with respect

to * and * if and only if they satisfy the following

condition for all nontautological, consistent formulae

a and /?, and all ordinals i < O.

(E*C) E*(a, ,)(/?) = C-([a],0(H?l).

Intuitively, an OEF, E, and an OCF, C, are

equivalent with respect to * and * if and only if all

nontautological formulae possess exactly the same

degree of acceptance in the ordinal functions, E*(a,i)

and C*([q],i), after every possible transmutation.

In the following theorems we show if E and C are

equivalent then both their conditionalizations and

their adjustments are equivalent, that is, (EC) implies

(E*C*), and conversely.

Theorem 11 : Let L be a finitary language. Let CgC,

and E G £■ Given a conditionalization * on OCF's,

and a conditionalization * on OEF's, (EC) holds for
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C and E if and only if (E*C*) holds for E*(o,i) and

C*([o],i), for all nontautological consistent formulae

a, and all ordinals i < O.

Theorem 12: Let C G C, and E € £■ Given

an adjustment * on OCF's, and an adjustment * on

OEF's, (EC) holds for C and E if and only if (E*C*)

holds for E*(a, i) and C*([a], t), for all nontautological

consistent formulae a, and all ordinals i < O.

6 RELATED WORK

Various approaches to the iterated revision problem

other than Spohn's have been explored, we briefly

compare and contrast some of them. Schlechta

[15] describes a preference relation on L, from which

an epistemic entrenchment can be derived for each

knowledge set, he also provides a means of naturally

constructing this preference relation from a probability

distribution. Hansson [8], using what he calls

superselectors, develops a more general account of the

AGM paradigm. A superselector can be construed to

be a function that assigns a selection function [1,2], to

sets of formulae or theory bases. Rott uses a generalized

epistemic entrenchment [13], from which a family of

revision and contraction operators can be derived, one

for every theory in the language.

These approaches, with the exception of Hansson 's,

associate a preference relation with a theory which

means that the dynamical behaviour of a given theory

is fixed. Therefore an informational restructure is

not naturally supported. The fundamental reason

for this is that in contrast to Spohn's approach, a

formula is the only informational input, consequently

the resulting knowledge set is constructed regardless

of the evidential strength of the informational input.

Other forms of informational input have been used, in

particular, Spohn [18] has described the conditional-

ization of an OCF by another OCF which embodies

the new evidence, and Nayak [9] describes a mecha

nism for incorporating an epistemic entrenchment or

dering representing new evidence, into another epis

temic entrenchment ordering.

Spohn [18] has observed that OCF's are related to

degrees of potential surprize [16], and in view of the

translation conditions described in Section 5 so too

are OEF's. According to Shackle [16, p80] surprize,

is a function from a field of propositions into a closed

interval [0, 1] such that for all propositions A, * 6 2®L

the following are satisfied:

• surprize(0) = 1.

• either surprize(A) = 0, or surprize(A) = 0.

• surprize(AU*) = min({surprize(A),8urprize(¥)}).

The maximal degree of potential surprize is 1. The

major difference with OCF's for instance is that there

is no need for a maximal degree of firmness, but recall

that Spohn later used a natural conditional function

whose maximal degree of firmness is w. Spohn notes

that Shackle does not present a transmutation schema

for potential surprize. However it is not hard to see

that the transmutations of OCF's could be used for

such a purpose.

Transmutations have been used [24] to support

Spohn's notion of 'reason for', which can be specified

[18, 3] by:

a is a reason for 0 if and only if raising the

epistemic rank of a would raise the epistemic rank

of 0.

Clearly, this condition can be expressed using the

degree of acceptance, such a notion of 'reason for'

will be dependent on the particular transmutation

employed. In [24] Williams et al. have provided

a simple condition which captures 'reason for' when

adjustments are used as the underlying transmutation.

Furthermore, they use adjustments to determine

the relative plausibility of alternative explanations,

based on the principle that one would expect a best

explanation to be one that increases the degree of

acceptance of the expanandum at least as much as

any other explanation.

Transmutations for theory bases based on ensconce-

ments [20] have been investigated by Williams in [21].

In particular, a partial OEF is used to specify a theory

base and its associated preference relation. A partial

OEF can be used to implicitly capture an OEF, on

which theory transmutations could be used. Alterna

tively, one can specify transmutations for them using

only the explicit information they represent. Both of

these approaches are used in [21]. It turns out that ad

justments are straightforward transmutations for the

ory bases. In addition, Williams [23] recasts Spohn's

'reason for' in a theory base setting by using adjust

ments of partial OEF's.

7 DISCUSSION

We have explored transmutations of knowledge sys

tems, by considering not only how the knowledge set

is revised, but how the underlying preference structure

for the knowledge system is revised, or more precisely

transmuted.

We have provided representation results for well-

behaved and very well-behaved theory change oper

ators. In particular, transmuted knowledge sets of

OCF's, and OEF's, characterize well-behaved con
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traction, and well-behaved revision within the AGM

paradigm. Furthermore, transmutations of finite

OCF's, and finite OEF's, characterize very well-

behaved contraction, and very well-behaved revision

operators. For a finitary language all OCF's and

OEF's will be finite and consequently the transmu

tations representing revision and contraction will be

very well-behaved.

We have provided explicit and perspicuous conditions

which capture the relationship between OCF's, and

OEF's. These conditions can be used to construct

each of these structures from the other, such that

the knowledge set and its dynamical properties are

preserved.

We have also provided an explicit condition which

relates the transmutations on OCF's, and OEF's, and

moreover we showed that both conditionalizations and

adjustments satisfy this condition.

Since any transmutation of a knowledge system in a

finitary language can be achieved by a sequence of con

ditionalizations or adjustments of OCF's, or OEF's,

they provide a powerful mechanism for supporting the

computer-based implementation of a knowledge sys

tem transmutation. With judicious modularization

of suitable applications parallel processing could be

adopted, since the reassignment of ordinals for each

consistent complete theory (or dual atom) is deter

mined by its compatibility with the new informa

tion, and is completely independent of the compati

bility with other consistent complete theories (or dual

atoms).

We would expect that for a given application, domain

constraints could be used to identify consistent

complete theories representing possible world states

which are so inconceivable as to always be assigned

very remote grades or 'large' ordinals.

If the underlying preference structure of a knowledge

system is an OCF then model checking [6] can be

used to implement transmutations. Alternatively, if

the underlying preference structure is an OEF, then

theorem proving techniques can be used to support

the implementation.
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Abstract

Advances in Machine Learning and in non-linear planning systems in Artificial Intelligence have pro

ceeded somewhat independently of Knowledge Representation issues. In essence, both fields borrow

from KR the very essentials (e.g. typed FOL, or simple inheritance methods), and then proceed to

address other important issues. However, the increasing sophistication of integrated architectures such

as SOAR. PRODIGY and THEO at CMU (that combine problem solving, planning and learning)

place new demands on their KR infrastructures. These demands include reasoning about strategic

knowledge as well as factual knowledge, supporting representational shifts in domain knowledge, and

metareasoning about the system's own reasoning and learning processes. The presentation will focus

on the PRODIGY architecture and its needs and implications for KR, especially when these may be in

divergence with the primary active topics in modern KR research.
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INTRODUCTION

The last 15 years have witnessed a noticeable research

effort towards a rational theory of exception-tolerant

reasoning. However this research appears very much

scattered, partially due to a clash between scientific

backgrounds. While probability theory has recently

blossomed in this area with the emergence of Bayesian

nets, the role of logic and symbolic representations will

seemingly continue to be prominent. Besides, the

monopoly of probability theory as a tool for modelling

uncertainty has been challenged by alternative approaches

such as belief functions and possibility theory among

others. Current efforts seem to be directed towards the

specification of a knowledge representation framework

that combines the at first glance incompatible merits of

classical logic and Bayesian probability. This paper tries

to provide a perspective view of uncertainty models in the

scope of exception-tolerant plausible reasoning by

stressing some important ideas and problems that have

been laid bare, independently of the chosen approach.

1 PLAUSIBLE EXCEPTION-

TOLERANT INFERENCE

The problem considered in this paper is at the core of the

knowledge-based systems enterprise, namely how to

handle the presence of (possibly hidden) exceptions in the

rule-base of an expert system. The kind of plausible

reasoning that is involved here can be summarized as

follows: how to automatically derive plausible

conclusions about an incompletely described situation, on

the basis of generic knowledge describing what is the

normal course of things. For instance, in a medical expert

system, generic knowledge encodes what the physician

knows about the relationships between symptoms and

diseases, and the situation at hand is a given patient on

which some test results are available, and plausible

inference is supposed to perform a diagnosis task. More

generally, this kind of problem can be cast in the setting

of taxonomic reasoning, where generic knowledge describe

the links between classes and subclasses, and some factual

evidence provides an incomplete description of an instance

to be classified. The particularity of the problem is that

the generic knowledge encoded as a set of rules is pervaded

with uncertainty due to the presence of exceptions.

Solving this problem in a satisfactory way presupposes

that three requirements be met

i) The necessity of a clear distinction between factual

evidence and generic knowledge. This distinction is

fundamental and has been explicitly acknowledged in the

expert systems literature at the implementation level

(facts versus rules). The generic rules encode a background

knowledge that is used to jump to conclusions that the

only consideration of the available factual evidence would

not allow. Clearly, accounting for the arrival of a new

piece of evidence does not produce the same effect as the

arrival of a new rule or the mofication of a rule. The

arrival of a new piece of evidence does not affect the

generic knowledge, but modifies the reference class of the

case under study. On the contrary the introduction of a

new rule causes a revision of the generic knowledge.

ii) The need for representing partial ignorance in an

unbiased way. There are three extreme epistemic attitudes

with regard to a proposition p: on the basis of current

evidence and background knowledge one can be sure that p

is true, sure that p is false, or the truth-value of p can be

unknown. The third situation corresponds to partial

ignorance, and its representation should not depend on the

count of situations in which p is true, since this count

can depend on how these situations are described, i.e., is

language-dependent

iii) The inference at work cannot be monotonic. A

plausible reasoning system is expected not to be cautious,

namely to go beyond the conclusions strictly entailed by

the incomplete evidence. This is done by assuming that

the particular situation under study is as normal as

possible, so that it is possible to jump to adventurous,

but plausible conclusions. The price paid by this kind of

deductive efficiency is that such conclusions may be

canceled upon the arrival of new evidence, when the latter

tells us that the current situation is not so normal. This is

in obvious contradiction with the monotonicity property



Non-Standard Theories of Uncertainty in Knowledge Representation and Reasoning 635

of classical logic that forbids conclusions to be retracted

when new axioms come in.

The solutions proposed by the expert systems literature

were either based on the propagation of certainty

coefficients (like in MYCIN and PROSPECTOR), or

based on an explicit handling of the reasons for

uncertainty at the control level. However these solutions

were partially ad hoc, and exception handling in rule-based

systems has motivated further, better founded streams of

work, namely Bayesian networks and nonmonotonic

reasoning. While the first of these approaches could be

safely developed due to the strong probabilistic tradition,

the second line of research proved to be more adventurous,

but eventually fruitful. In the following, limitations of

classical logic and those of Bayesian nets are laid bare; but

it turns out that many lessons from the Bayesian net

literature are worth being learned, in order to solve the

exception-tolerant inference problem while remaining in

the tradition of logic.

2 LIMITATIONS OF CLASSICAL

LOGIC

The problems of exception handling in classical logic are

well-known (e.g.. Lea Sombe\ 1990). We face a dilemma

due to the fact that generic knowledge expresses rules with

a hidden context, while everything must be explicitly

encoded in classical logic. If exceptions are not explicitly

encoded, encountering exceptions leads to inconsistencies

(like when encountering a penguin, given that penguins

typically do not fly, birds typically fly and penguins are

birds). If exceptions are explicitly encoded, then the rules

will no longer be triggered in the face of incomplete

information. If Tweety is only known to be a bird, we

cannot conclude on its flying capabilities using the rule

that says that birds that are not penguins fly. Besides, the

list of exceptions is typically an ever open one, and

adding an exception comes down to a non-trivial

modification of a knowledge base.

Considering the three requirements of Section 1, classical

logic only satisfies the second one. Indeed, if we stick to

propositional logic there is no difference between factual

evidence and generic knowledge. Both will be

propositional formulas. If we use first order logic, factual

evidence will be encoded as grounded formulas, and

generic knowledge will be encoded as universally

quantified formulas, that, by definition, rule out the

possibility of exceptions. As for existentially quantified

formulas, their expressive power looks inadequate to

describe the normal course of things. So the first

requirement is not met. The second requirement, namely

modelling partial ignorance is basically fulfilled. If K is a

set of formulas (encoding factual evidence and generic

knowledge), a conclusion p is certainly true in the context

of K if and only if K i- p. p is certainly false if K i .p.

When neither K i- p nor K i .p hold, the truth of p is

unknown, and this is precisely the definition of total

ignorance about p. We can define partial ignorance as the

epistemic state described by a set of formulas K such that

neither K h- p nor K i— ->p hold, for some p. This

phenomenon occurs each time K is not complete, i.e., has

more than one model. The third requirement, i.e.,

nonmonotonic inference, is clearly not met since

Kh p implies Vq, K u {q} t- p. (1)

Monotonicity is strongly similar to conditional

independence in probability theory. Namely let A, B, C

be events that represent the set of models of K, q and p

respectively. Conditional independence of C with respect

to B in the context A means

P(CIA n B) = P(CIA). (2)

Clearly (1) is a particular case of (2) when P(CIA n B) =

P(CIA) = 1, interpreting K t- p as P(CIA) = 1. The fact

that classical logic is monotonic can be interpreted as

systematic conditional independence. When the inference

symbol no longer means deduction in the usual sense, but

plausible inference that can be viewed as high probability

inference, the validity of (1) looks dubious. Note that in

classical logic the only available notion of independence

is logical independence. In classical logic, independence is

not a supplementary information which can be expressed.

An important remark is that the problem of exception-

handling in classical logic is closely related to two other

problems, namely inconsistency management and belief

revision (Gflrdenfors, 1988). Indeed encountering

exceptions lead to inconsistencies, and getting rid of this

inconsistency means revising the set of formulas.

Makinson and Gardenfors (1991) have pointed out that

belief revision and nonmonotonic reasoning were two

sides of the same coin. Indeed the claim that p is a

plausible conclusion of K in the context where q is true

comes down to accepting that q lies in the deductively

closed belief set which is the revision of K by input p.

This equivalence is important, especially at the

computational level. However it is conceptually limited

because in this approach, K is encoded in propositional

logic, i.e., there is no clear distinction between factual

evidence and generic knowledge.

3 LIMITATIONS OF BAYESIAN

NETWORKS

Classical logic represents beliefs by means of a set K of

formulas that implicitly point out a subset of possible

states of the world (the set of models of K) one of which

is the actual one. Bayesian nets encode belief in a

weighted acyclic graph that represents a single probability

distribution on the set of states of the world. We shall

consider only Bayesian nets that carry binary variables.

Bayesian networks are the most popular and most widely

implemented model of reasoning under uncertainty. From

a computational point of view, Bayesian networks are

nice because they are a good example of an approach

where efficient local propagation algorithms succeed in

properly handling complex probabilistic knowledge in a
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rigorous way. In some sense they make certainty factor-

based expert systems obsolete. The problem with

Bayesian networks is neither in their mathematical nor

their algorithmic sides. The main difficulty is to grasp

which kind of reasoning task they can address.

In the theory of Bayesian nets, as presented by Pearl

(1988) it is not always obvious whether probabilities are

subjective or objective ones. Bayesian nets look like a

very powerful tool for an efficient encoding of any

complex multivariate probability distribution, starting

from statistical data. The problem is then how to extract

the simplest acyclic graph that lays bare as many

independence relationships as possible. The strength of

the approach relies on the fact that any probability

distribution can be encoded as an (acyclic) Bayesian net. In

other words, you do not need to be a subjective Bayesian

probabilist to enjoy Bayesian nets.

Now if you adopt a subjectivist Bayesian point of view, it

does not look very convincing nor feasible to directly

assess a complex joint probability distribution. Then the

Bayesian network methodology basically runs as follows:

first draw an acyclic directed graph where links express

direct causation, and picture dependencies; assess

conditional probabilities on the links, and a priori

probabilities on the roots of the graph; these data uniquely

determine a probability distribution underlying the graph,

using appropriate conventions for the graphical

representation of independence. Objections to this

approach are as follows:

1) The results of the approach heavily rely on the

independence assumptions encoded in the topology of the

graph as well as the numerical values put in the network.

These values must be precise numbers which in practice,

and when no statistical knowledge is available, may be

out of reach (for instance Prob(other symptom I other

disease) when exhaustive lists of observable symptoms

and diseases are not available). Invariably there is some a

priori probability to be supplied. It is not clear that

experts are always capable of supplying all the numbers.

2) The network building method never produces

inconsistencies. The "expert" is asked exactly the amount

of data required for ensuring the unicity of the underlying

distribution. Hence this distribution depends upon the set

of questions you ask.

3) The assumption of an acyclic network, if innocuous

with statistical data, becomes very questionable with a

subjectively defined Bayesian net. One of the often found

justification is that arrows in the graph express causation.

However a generic rule such as "most students are young"

does not mean that the youth of individuals is caused by

their being registered as student. It is not clear how to

encode the set of two generic rules {"most student are

young", "few young people are student"} under the form

of an acyclic graph.

The first objection can be tackled by using sensitivity

analysis techniques and more generally by admitting that

knowledge can be represented by a set of conditional

probability bounds that constrain a set of admissible

probability distributions. For instance we know that

P(BIA) e [0.7,0.8], or that "most A's are B", where the

linguistic quantifier "most" is modelled by an interval

restricting the possible values of the proportion IA n Bl /

IAI (where 1 1 denotes cardinality). However it goes against

the Bayesian credo that a unique probability is necessary

and sufficient to encode subjective beliefs. Some Bayesian

proposals that handle the lack of knowledge about

probabilities come down to introducing higher-order

probabilities or extra variables. These proposals basically

make the picture even more complex. It is not clear that

people can quantify their uncertainty about probabilities

they ignore. As for the use of extra variables, it looks

very efficient for the purpose of learning from cases.

However, in this paper we take commonsense knowledge

for granted and do not consider the learning problem.

The second objection is a significant problem. When

representing knowledge in logic, inconsistency is almost

unavoidable at the acquisition level and tools for detection

of such inconsistencies must be used in order to improve

the available pieces of information. Inconsistency

handling is apparently ignored by the Bayesian network

approach. This question is clearly related to the acyclicity

assumption: If the network has cycles, then the risk for an

inconsistent assignment of probabilities is high.

It is clear that classical logic possesses none of the above

drawbacks. Now as it turns out, Bayesian nets do fulfil

the two requirements of plausible reasoning that classical

logic violates. First, the distinction between generic

knowledge and factual evidence is carefully made by the

Bayesians. Generic knowledge is encoded by probabilities,

and especially conditional probabilities. Factual evidence

is modelled like in prepositional logic by allocating

values to some variables. Plausible inference is made by

focusing the generic knowledge on the factual evidence E,

and this is achieved by conditioning, i.e., computing

P(CIE) for events C of interest. Note that finding the

most plausible values of (binary) variables in the

network, in the presence of evidence £ is often called

"revision" by some authors. The term "revision" looks

more convincing when modifying the network itself.

The nonmonotonicity requirement is also met by the

Bayesian approach. Namely, it is possible to have a high

value for P(CIA) (hence C is a plausible conclusion when

only A is know) and a very low value for P(CIA n B)

when B is learned. Interestingly, the Bayesian network

topology is tailored to encode the cases when

nonmonotonicity phenomena do not occur, i.e., when

P(CIB) = P(CIB n A) holds.

Bayesian probability fails on requirement (ii) of plausible

reasoning, i.e., contrary to classical logic, it cannot

encode incomplete knowledge. This is due to the

assumption that a Bayesian network encodes a single

probability distribution. Let K be a propositional

knowledge base on a finite language L and Q be the set of

interpretations of the language. Let M(K) be the set of
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models of K and assume that M(K) contains three

interpretations. Then let U(K) = {p I neither K i- p nor

K i .p hold}, U(K) is the set of unknown propositions

in the face of K. All these propositions are equally

unknown in the sense that there is no reason to consider

one to be more plausible than another. Assume you are a

subjective Bayesian, and that you allocate probabilities

aj, a2, 83 such that aj + a2 + 83 = 1 to each model of K.

The fact that a unique probability distribution cannot

model partial ignorance is made precise by the following

statement: there is no probability assignment (aj, a2, a3)

to M(K) that ensures that for all p e U(K) and q € U(K),

P(p) = P(q). i-e., some equally unknown propositions

must have distinct probability values.

In fact the most commonly found reason why Bayesians

insist on unique probability distributions is because of the

betting behavior interpretation of subjective probability.

Clearly this approach models a decision problem, and

betting rates depend on your degrees of belief about what

is the actual world. However, partial ignorance differs

from uncertainty about how to bet, as argued in Dubois et

al. (1993). One may have a lot of knowledge about a (fair)

die, and still be uncertain about the result of the next

outcome. Uncertainty about how to act does not imply

total ignorance. And if degrees of belief govern betting

rates, it is not clear that the correspondence between them

is one to one. Plausible reasoning is about entertaining

beliefs, not about decision-making, and degrees of belief

can be construed as distinct from betting rates. Especially

when revising plausible conclusions upon facing new

pieces of evidence, it is not clear that we should revise the

prior betting rates (through Bayesian conditioning).

On the whole it is clear that the deficiencies of classical

logic and Bayesian networks with respect to the plausible

reasoning endeavor are not the same. In fact they are

strikingly complementary. The ambition of knowledge

representation and reasoning on plausible inference is to

lay bare a logic that preserves the advantages of Bayesian

nets and classical logic. Especially, there are several

useful lessons to be remembered from the field of

Bayesian nets, if classical logic is to be suitably

augmented to capture the intuitive properties of exception-

tolerant inference.

4 LESSONS FROM BAYESIAN

NETWORKS

Despite their limitations regarding the representation of

incomplete knowledge, the Bayesian network approach

has significantly modified the notion of a knowledge base.

As pointed out by Pearl (1988), an uncertain "if...

then..." rule cannot be regarded as a "production rule" in

the sense of expert systems, because the meaning of

sentences such as "if x is A then plausibly y is B" is not

"if A is in the factual base then B should be added to it",

but rather "if all I know about x is A, then tentatively

conclude that y is B". Hence the whole of the factual

evidence should be taken into account simultaneously, in

order to derive plausible conclusions.

Another lesson from the Bayesian approach is that

material implication should not be used without caution

to model the logical part of an uncertain rule. Material

implications forget about the directedness of rules, as

intended by the person that provides them, and they imbed

monotonicity. The meaning of uncertain "if... then..."

rules is more in accordance with conditional probability.

A conditional probability is directed in the sense that

P(plq) differs from P(-iql-.p), and in particular it differs

from P(->q v p) except for very special cases. The

Bayesian way of using the rule base A is to infer from it a

rule whose antecedent exactly matches the contents of the

factual base E, under the form of a conditional probability

P(CIE). However, what can be done if we want to keep

the idea of a directed conditional and drop the probability?

One appealing answer is the use of a conditional object,

denoted plq, which is a three-valued entity. If co is an

interpretation of the language, then to satisfies plq if and

only if co t= p a q (co is an example of plq); co falsifies

plq if and only if co 1= ->p a q (co is an exception to plq);

otherwise plq does not apply to co. This case corresponds

to a third truth-value.

This notion, originally proposed by De Finetti (1936,

1937), has been rediscovered several times in the literature

(see Goodman el al., 1991; Dubois and Prade, 1994),

including Adams (1975), and Calabrese (1987). plq can be

viewed as a set of propositions rather than a single one,

namely {r I p a q l= r t= ->q v p) , and the probability of a

conditional event plq is indeed a conditional probability

P(plq) since the latter can be expressed in terms of

P(p a q) and P(-iq v p) only. Conditional objects are not

at the same level as formulas of propositional calculus

but are constructed on top of them. Defining a body of

generic knowledge A as a set of conditional objects A,

while the body of evidence E is a set of propositional

formulas, the first requirement of plausible reasoning as

per Section 1 is potentially met. Dropping the need for

assigning precise probabilities opens the door to the

fulfilment of requirement (ii).

A last lesson from Bayesian network is that a knowledge

base is not just a bunch of unordered well-formed

formulas. For a Bayesian, a knowledge base is a directed

graphical structure, which is useful to reveal conditional

independence properties that are implicit in the

knowledge. Graphical representations of knowledge base

also pervade the literature of taxonomic reasoning,

without reference to independence. However a set of

exception-tolerant rules A once represented as a graph,

will significantly differ from a Bayesian net In a Bayesian

net, nodes are (logical or n-ary) variables while a graph

built from A will contain nodes representing literals.

Moreover nothing forbids cycles in the graph while cycles

are prohibited by Bayesian representations. The problem

is then to become capable of "reading" independence

assertions from a structured set of rules. This question
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may become an important issue in the future.

5 GRADED REPRESENTATIONS OF

INCOMPLETE KNOWLEDGE

One obvious limitation of classical logic when

representing partial ignorance is its crudeness. In the front

of partial information represented by a set of propositions

K, the language can be partitioned in three sets: the

propositions that are certainly true, that form the set C(K)

of consequences of K, the set F(K) of propositions that

are certainly false and the remainder whose truth or falsity

is not known, say U(K). Very naturally, one may wish to

refine this classification by distinguishing in U(K)

propositions that are more certainly true (or false) than

others. The introduction of certainty factors in expert

systems tried to achieve this purpose, and more generally

all quantified theories of uncertainty. One reason why

Bayesian probability theory was not the only candidate

pertains to its failure to represent partial ignorance. For

instance the MYCIN certainty factors were deliberately

tailored to express the difference between a non-certainly

true proposition and a certainly false one. However many

calculi of uncertainty in expert systems were requested to

be compositional. In this section we indicate why

compositionality is impossible. Then we review various

theories of uncertainty and discuss their relevance in the

problem of exception-tolerant knowledge-based systems.

5.1 THE COMPOSITIONALITY PROBLEM

One of the main simplicity of classical logic lies in its

compositionality property, i.e., the truth-value of a

formula is always a function of the truth-value of the

atomic propositions it involves. Many people have

assumed that this property could carry over to degrees of

uncertainty. Compositional quantified extensions of

Boolean logic are called multiple-valued logics (Rescher,

1969). They have been developed in the early thirties,

especially by Lukasiewicz. Hence the temptation to found

uncertainty calculi on multiple-valued logics. Quite at the

same period, fuzzy set theory (Zadeh, 1965) was construed

as the set-theoretic counterpart of multiple-valued logics.

Hence the often found claims that fuzzy logic is an

approach to handle uncertainty in knowledge-based

systems. This state of facts also caused the rejection of

fuzzy set theory by people realizing the impossibility of

compositionality of uncertainty coefficients in the

presence of a Boolean logic. For instance, Elkan (1993)

concluded that fuzzy logic collapses on two-valued logic.

This apparent state of confusion is basically due to the

lack of acknowledged distinction between a degree of truth

and a degree of uncertainty. One should realize that the

idea of intermediary truth completely differs from the idea

of not knowing if a proposition (in the classical sense) is

true or false, a crucial distinction whose importance has

been pointed out as early as 1936 by De Finetti. Mixing

up these two situations comes down to claim that an

unseen bottle which is either empty or full is actually half

full. The understanding of propositions as 2-valued

entities is a matter of convention, and leads to the

Boolean algebra structure. Modifying this convention

makes sense but affects the meaning of the word

"proposition": introducing intermediary truth-values

means that we use a language with entities that differ

completely from what is usually understood by the term

"proposition". This is what fuzzy logic, a logic of gradual

properties, does. As a consequence the structure of

Boolean algebra is lost. Especially what are usually

considered as tautologies may no longer be so. Collapse

results such as Elkan's are due to the impossible quest for

compatibility of a Boolean algebra structure and

intermediary truth-values that would remain

compositional.

On the contrary degrees of uncertainty are not intermediary

truth-values, they correspond to an epistemic attitude

expressing that some individual does not know if a

proposition (in the usual sense) is true or false. To quote

De Finetti (1936): "This attitude does not correspond to a

third truth-value distinct from yes or no, but to the doubt

about yes or no". Hence the third modality expressing

ignorance should not enter as a third truth-value, but

should be put on top of the two values "true" and "false".

Especially all tautologies of classical logic should be

kept. For instance even if p and ->p are unknown, p v ->p

is still ever true as is p <-» p a p, and p a -ip is still ever

false. This simple requirement breaks down the

compositionality hypothesis, when uncertainty levels are

more than 2 (see Dubois and Prade, 1988b). But it does

not harm fuzzy logic where p v -.p, p <-» p a p are never

simultaneously acknowledged as being tautologies.

Uncertainty calculi can remain partially compositional.

For instance probabilities are compositional with respect

to negation only. Possibility measures (Zadeh, 1978) are

compositional with respect to union, as are Spohn

(1988)'s disbelief functions. But Shafer's belief functions

are not compositional at all.

5.2 BELIEF FUNCTIONS ON UNCERTAIN

RULES

The ad hocery of compositional uncertainty calculi in the

expert systems literature has been overcome by the

development of Bayesian nets. However the lack of

capability of the latter in representing partial ignorance

has prompted some researchers to model uncertain

knowledge bases in the setting of a more flexible

uncertainty calculus, namely belief functions (Shenoy and

Shafer, 1990). The idea is to use the hypergraph

machinery underlying the local propagation of

probabilities as done by Lauritzen and Spiegelhalter

(1988), and extend it to belief functions.

A belief function on a set Q is defined by a family $r of

non-empty subsets of ft called focal elements to which

positive numbers called masses {m;, Aj e IF} are

attached. The sum of the masses is one. m; is interpreted

as the probability that the available information is
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correctly described by Aj. In logical terms the pair (9-jn)

defined on a set ft of interpretations of a language comes

down to a random prepositional knowledge base K such

that Aj = M(Kj) and m; = P(K is semantically equivalent

to Kj). The belief degree Bel(A) of a proposition p such

that A = M(p) is defined by

Bel(A) = Ii:A.cA m; = li:Kf_p n^

hence Bel(A) can be viewed as the probability of

provability of p (Pearl, 1988).

In the belief function approach to knowledge bases each

piece of knowledge is represented as a belief function

relating some variables, and is viewed as an hyperedge of

the hypergraph formed by all pieces of knowledge. A

global belief function is constructed using Dempster rule

of combination. This combination rule is also the one

used to absorb new evidence. Question-answering is

achieved by projecting the global belief function over the

range of the variables of interest. When the hypergraph is

an hypertree, uncertainty propagation and combination can

be done locally. The generic machinery that is put at work

in the hypergraph approach is capable of encompassing

Bayesian networks and classical constraint propagation

techniques (when the masses mj take on value 0 or 1).

Yet, this approach is not well adapted to exception-

tolerant plausible reasoning for several reasons

1) This approach fails to distinguish between factual

evidence and generic knowledge. Indeed belief functions

are construed as a theory of evidence, not as a theory of

generic knowledge, and Dempster rule of combination is

good at pooling independent pieces of uncertain evidence.

Especially the hypergraph is supposed to encode both

uncertain rules and (possibly uncertain) evidence. All

pieces of information receive a uniform treatment, as in

classical logic;

2) The question of how to encode an exception-prone

rule in the setting of belief function has been little

considered by the advocates of the hypergraph methods.

Especially an uncertain rule is often encoded by putting

some mass a on a material implication ->y v <p and the

remainder 1 - a on the tautology (e.g., Smets, 1988). If

such pieces of information are combined with Dempster

rule, the obtained results are often counter-intuitive

because the assumption of independence between the rules

in a knowledge base is seldom satisfied (Dubois and

Prade, 1994a).

For instance consider the penguin example where b = bird,

f = fly, p = penguin, and the following belief functions

for the rules in A

b -» f: mjC-ib vf) = o; ml(T) = 1 - a (T: tautology)

p -» b: n^-^p v b) = 1

p —> -if: m3(-ip v -.f) = a; m3(T) = 1 - a.

Let the evidence E be another belief function saying that

Tweety is a penguin, i.e., m4(p) = 1. Then it can be

checked that combining these pieces of information using

Dempster rule leads to the counter-intuitive result that

Bel(f) = Bel(-,f) = (a(l - a) / (1 - a2)), which is a

variant of the inconsistency result one would get in pure

classical logic (letting a = 1). And indeed the presence of

the normalization factor 1 - ct2 indicates that the bodies

of evidence {mj, nfy 1113, m4} are partially inconsistent

5.3 UPPER AND LOWER PROBABILITIES

Another approach to relaxing the Bayesian framework is

to admit that the available knowledge does not necessarily

determine a single probability distribution. We keep the

idea that an uncertain rule is modeled by a conditional

probability but its exact value may be ill-known.

A collection of pieces of information of this kind leads to

consider a knowledge base A as a set of statements of the

form PCBjIA;) e [Oj,B|], that form an interval-valued

network. We are interested in computing the tightest

bounds on the value of some other conditional probability

of interest, without using systematic independence

assumptions as in Bayesian networks. A missing arrow in

such a network corresponds to a quantifier or a conditional

probability which is completely unknown (then

represented by the interval [0,1]). All probabilities that we

handle are (bounds of) conditional probabilities; no prior

probability information is required in order to start the

inference process in this approach. Such networks do not

obey the same conventions as Bayesian nets. In the latter

the network is the result of a data compression procedure

that accounts for a joint probability distribution. In the

present approach the data consists of incomplete statistics

under the form of interval-valued conditional probabilities,

and a network is only a display of the raw data expressing

local constraints on an unknown joint probability

distribution. This approach leaves room for inconsistent

specifications (which can be detected by constraint

propagation), and thus addresses the other objections to

Bayesian networks. In particular cycles are allowed.

The non-Bayesian view of a probabilistic knowledge base

is thus a collection of general statements regarding a

population X of objects; these statements express

possibly in unspecific terms the proportions of objects in

various subclasses of X, that belong to other subclasses.

This knowledge base allows for answering queries about a

given object, given a subclass E to which evidence

assigns it (also called its "reference class" by Kyburg

(1974)). To make an inference we just apply to this object

the properties of this subclass, implicitly assuming that it

is a typical element of it. That is, we compute a new rule

"if E then C" and optimal bounds on P(CIE), for a class C

of interest If more information becomes available for this

object, we just change its reference class accordingly. The

computation of optimal bounds can be done by linear

programming techniques (Amarger et al., 1991). But local

techniques have been studied as well (ThOne et al., 1992;

Dubois et al., 1993). The latter are interesting because

more efficient and capable of handling inpependence

assumptions more easily, if needed. However they are
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sometimes suboptimal.

This probabilistic model also maintains the difference

between querying a knowledge base and revising it, what

we call focusing and revision respectively. The querying

problem is to ask for P(CIE) on the basis of a case

belonging to class E for which we want to know its

probability of belonging to C. Revision means adding a

new piece of knowledge to the database, for instance the

value of a new conditional probability that has become

known. A particular case is when we learn that E is true

for the whole concerned population. That means we add

the constraint P(E) = 1 to the database. Note that the

bounds on P(C) given that P(E) = 1 usually differ from

the bounds on P(CIE) computed from the original

database. Hence focusing differs from revision. However

when the probability distribution underlying the database

is uniquely determined (as in the case of Bayesian nets),

the two operations yield the same result: a point-valued

P(CIE) provided by Bayes rule. Clearly Bayes rule serves

two purposes, and this is sometimes a source of

confusion. When the assumption of a unique available

probability distribution is dropped, the two tasks

(focusing and revision) lead to different types of

conditioning rules.

The representation of ignorance with upper and lower

probabilities is unbiased. Namely, it is possible to obtain

that the truth of a conclusion C is unknown, in the

presence of evidence E, if all that can be obtained from the

knowledge base is that P(CIE) e [0,1].

Moreover the behavior of a set of conditional probabilities

is nonmonotonic. Indeed, considering again the example

of Section 5.2, the set A = {P(flb) > a, P(-.flp) > a,

P(blp) = 1}, is not at all inconsistent for a * 1. However

the inferential power of this probabilistic approach is low

because it does not allow for systematic subclass

inheritance. For instance, if the available evidence is [bj]

where r stands for red, it is not possible to conclude from

A anything about flying, i.e., P(flb a r) e [0,1]. Here

classical logic is doing better since [b, r, ->b v f, -.f v -ip,

->p v b} i- f. To do so, a conditional independence

assumption is needed for irrelevant properties. Again we

face a case where the merits of classical logic and

probability are complementary.

Belief functions are special cases of lower probabilities.

Yet the approach of Section 5.2 is not a special case of

the above approach to exception-tolerant rules. First, the

rule of combination used in Section 5.2 is not

idempotent. If you use b -» f twice (i.e., mj twice), it

affects the resulting global belief function. This is not the

case here, i.e., putting P(flb) £ a twice is innocuous.

Another difference is that material implication is used in

5.2 for rule representation. To do the same here means

using P(-ib v f) > a instead of P(flb) > a, as in Nilsson

(1986)'s probabilistic logic. This would not be

satisfactory. For instance, considering the knowledge base

[P(-.b v 0 ^ a, P(-.p v b) = 1, P(-,p v -,f) > X], it is

easy to see that if Tweety is a penguin

- answering queries by computing conditional

probabilities leads to P(—iflp) e [0,1] only

- adding P(p) = 1 to the knowledge base leads to a

contradiction as soon as a + X > 1 (which is the

regular situation since birds fly and penguins don't).

5.4 ORDINAL AND SEMI-QUANTITATIVE

APPROACHES TO UNCERTAINTY

Apart from full-fledged numerical methods based on

additive properties, and purely symbolic representations of

uncertainty, it is natural to consider ordinal methods as

well. Incomplete probabilistic databases can be questioned

as to their capability to model all kinds of commonsense

knowledge. In many instances it is not possible to

quantify the amount of exceptions to a default rule. We

know that "birds usually fly", but not the proportion of

flying birds. One may be tempted to change interval-

valued probabilities into fuzzy probabilities (Zadeh,

1985), but that makes sense for a refined sensitivity

analysis only. One may also try to devise a purely

symbolic approach to probabilistic inference using

linguistic probability terms referring to partially

unspecified probability intervals, the inferred linguistic

probabilities being linguistic approximations of the

intervals obtained through numerical constraint

propagation (Dubois et al., 1993). Experience shows that

it results in weakening the inferential power of the

reasoning system compared to the numerical setting.

Moreover reasoning with linguistic probabilities does not

solve the irrelevant property problem and results in more

ambiguous responses than in the numerical case.

Instead of quantifying uncertainty, one might prefer to

compare propositions in terms of their relative certainty.

Namely consider a relation > defined on a language, such

that p £ q means that one is at least as confident in the

truth of p as in the truth of q. Most quantitative

approaches to uncertainty have comparative counterparts

(see Dubois and Prade, 1993 for a review). It is clear that

the relation > should be reflexive, transitive and complete,

so that the language can be partitioned into classes of

propositions of equal strength, these classes being totally

ordered. Certainty should go along with logical

consequence in the sense that p \- q => q > p. The oldest

kind of such comparative uncertainty relations was

introduced by De Finetti (among others), namely the

comparative probability, that satisfies the additivity

axiom

p a (q v r) = 1 => (q > r <=> p v q £ p v r). (A)

This axiom has been further on generalized by Savage to

the comparison of acts under the name "sure thing

principle", and is at the root of subjective expected utility

theory. Unfortunately in the finite case this property does

not characterize only orderings induced by probability

measures (Fine, 1973). Comparative probabilities are not

simple to use because, on finite sets, the ordering among

propositions cannot be recovered from the knowledge of

its restriction to interpretations. The situation is much
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simpler if we tum the additivity axiom into the following

one (Dubois, 1986)

q2rnr=>pvq>Tjpvr. <JD

This is obtained by dropping the disjointness condition

and relaxing the equivalence in the additivity axiom. The

obtained uncertainty relations are actually called

comparative possibility relations by Lewis (1973). They

can be represented equivalently by a function n from the

language to a (finite) totally ordered set S with top 1 and

bottom 0, such that

n(pvq) = max(ri(p),n(q)).

These functions are called possibility measures by Zadeh

(1978) when S is the unit interval, q £pj r means that q is

at least as consistent as r with the current knowledge.

Dually, when -j £rj -iq, q is said to be at least as certain

as r, which is denoted >q. Comparative certainty relations

satisfy an axiom dual to (IT), namely

q>cr=>pAq>£pAr. (N)

q >q r (strict preference) means that in the presence of

inconsistency, if dropping either q or r does restore

consistency, one would rather drop r. Axiom (N) can be

derived from Gardenfors (1988) postulates of belief

revision (see Dubois and Prade, 1991), and is satisfied by

Gardenfors (1988)'s epistemic entrenchment. If c denotes

an order reversing map on S, IT(p) is the degree of

possibility, then certainty orderings can be equivalently

represented by functions N with range S, such that N(p) =

c(ri(-ip)) which expresses that p is all the more certain as

->p is impossible, just like in modal logics. N(p) is called

degree of necessity of p.

A possibility (or a certainty) ordering on a finite set can

be characterized by a complete preordering of the set ft of

interpretations, encoded by an assignment tc(co) g S to

each interpretation co. 7t is called a possibility

distribution, and encodes a preference relation describing

the respective levels of plausibility of co as being the

actual world. re(co) = 0 means that co is impossible, while

7t(co) ■ 1 means that to is a most plausible world (say a

most normal one). Then we have

Il(p) = max{n(co), co i= p}

N(p) = min{c(7t(co)), CO l= ->p}.

This kind of uncertainty measure can be viewed as

completely symbolic (S is a totally ordered set) or

numerical (S is the unit interval). When numerical, N(p)

is a special kind of belief function, called consonant belief

functions (Shafer, 1976), where focal elements are nested.

Spohn (1988) has considered a very similar kind of

uncertainty functions k such that k(p v q) = min(k(p)Jc(q))

where k(p) is a non-negative integer. k(p) = n is viewed as

expressing that the probability of p is of the form en

where e is a very small number. If has been pointed out

that the set function Tl^ such that lTic(p) = ar ^ for a >

1 is a possibility measure, valued on a subset of [0,1].

6 POSSIBILISTIC LOGIC

Possibility theory enables classical logic to be extended to

layered sets of formulas, where layers express certainty

levels. This is possibilistic logic (Dubois et al., 1991).

The encoding of the layers is simply achieved by

assigning to each formula q> of K an element a e S,

which expresses a constraint of the form N(p) £ a.

Inference in possibilistic logic can be achieved by means

of the following extension of the resolution principle

(<p,a), (\|/,p) t- (Res(9,v), min(a.P)) (R)

where Res(<p,\|/) is the resolvent of the two clauses cp and

\|/. For instance if cp = -.p v q and y = p v r, then

Res(cp,\y) = q v r. The use of this rule presupposes that a

knowledge base K be put under clausal form, which turns

out to be always possible. In order to prove (cp,P) from K,

denoted K t- (cp,P), one can proceed as follows:

1) add(-iCp.l) to K (or the clauses corresponding to -.cp);

let K' = Ku {(-.cp.l));

2) try to derive the contradiction 1 from K' using (R)

with a sufficient level a of certainty, i.e., K' h- (1,P)

with P £ a. Then, it can be proved that N(cp) £ p.

A knowledge base K is said to be totally consistent if it is

not true that K i- (±,oc) for a > 0, by successive

applications of (R). More generally, Inc(K) = sup (a, K i-

(i,a)} is called the degree of inconsistency of K.

The main advantage of graded inconsistency is to avoid

the main drawback of classical logic inference whereby the

presence of contradiction trivializes the inference notion

(anything follows from an inconsistent knowledge base).

Indeed non-trivial deductions can be performed from an

inconsistent possibilistic knowledge base. A formula cp is

called a non-trivial deduction from K, denoted K \-n cp, if

and only if

K i- (cp.ct) with a > Inc(K)

K i-n cp means that, in order to derive cp, only a

consistent subpart of K has been used, namely one

containing formulas of certainty higher than the

inconsistency degree. The consequence relationship i-^

does not obey the usual postulates of consequence

relationships, especially it is not transitive; it is reflexive

up to the contradiction and it is not monotonic. For

instance if we consider the Tweety example, let K =

{(-.b v f, a), (-.p v -,f, p), (-,p v b, p)} with p > a. Then

K u {b} t-n f while K u {b,p} t-n ->f.

In order to figure out why this is so, one must turn to the

semantics of possibilistic logic, and realize that the

ordering over formulas in K induces an ordering over

interpretations. The latter can be obtained by first

representing each uncertain assertion (cpi.cij) in K by

means of a possibility distribution Jtj over the set of

interpretations, defined as

tc^co) = 1 if CO 1= <p;

= 1 - aj if co i= -.cp;.
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That is, 1 - cq is interpreted as the degree of possibility

that <pj is false. The ordering over M(K) is then defined by

7t£ such that

«K = mini=ln Jtj.

The construction of from K obeys the principle of

minimal specificity, namely each interpretation is

assigned the highest possibility degree so as not to violate

any constraint of the form N(q>j) > ctj. The possibility

distribution jc^ defines the fuzzy set of models of K. The

maximal possibility degree sup n turns out to be equal to

1 - Inc(K). The semantic entailment is then defined

following Zadeh. Namely if rc(<p,a) 's tnc possibility

distribution deriving from (q>,a), K i= (q>,a) means <

n(<p,a.y Possibilistic logic is sound and complete in the

sense that K N (q>,a) if and only if K i- (<p,a) (see

Dubois et al., 1991).

The non-trivial inference i-^ can be expressed

semantically as follows: K t=n 9 if and only if all

preferred interpretations of K (in the sense of ji^) are

models of 9. This is clearly a kind of preferential

inference which Shoham (1988) has proved to be at work

in many non-monotonic logics. The absence of monotony

of inference t=n should not be surprizing.

7 PROPERTIES OF EXCEPTION-

TOLERANT INFERENCE

Possibilistic logic obeys requirements (ii) and (iii) of

exception-tolerant reasoning. It models ignorance in an

unbiased way: if p is ignored, N(p) = N(-.p) = 0 and the

proposition p is simply omitted. Moreover inference is

indeed nonmonotonic. However possibilistic logic as such

does not allow for a clear separation of generic knowledge

from factual evidence as clear from the treatment of the

Tweety example in Section 6. Especially, modelling

"birds fly" as (-.b v f, a) is not justified, since the nice

treatment of the example entirely relies on the proper

choice of the weight a; a must be less than 3 in (-ip v

-if, P). Otherwise the expected inference will not take

place. The question is then: where do the weights come

from? The answer is: from a proper modeling of the

generic knowledge.

One way out of this difficulty is to consider a generic rule

as a constraint on the result of a plausible inference

between two facts. This is the path followed by Lehmann

and colleagues (Kraus et al., 1990; Lehmann and Magidor,

1992). Their idea is that the rule b —> f constrains the pair

(b,f) to belong to a consequence relationship denoted ^,

i.e., b ^ f. The problem is then to prescribe what the

properties of this consequence relationship should be.

They take the form of the following postulates:

Left logical equivalence:

from p o p' = T and p t~ q deduce p' ^ q (LLE)

Right weakening:

from q 1= q' and p ^ q deduce p ^ q' (RW)

Reflexivity: p ^ p

Left OR:

from p K' r and q K» r deduce pvqKr (LOR)

Cautious monotony:

from p *~ q and p r deduce p a q r (CM)

Weak transitivity:

from p a q f~ r and p q deduce p I" r (cut)

The three last rules already appear in Gabbay (1985).

Kraus, Lehmann and Magidor (1990) call "preferential" a

non-monotonic consequence relation t~ satisfying the

above postulates and name P the corresponding logic.

They prove that the following rules of inference can be

derived from the above set of postulates

from p h» q and p ^ r deduce p *~ q a r (Right AND)

from p a q K r deduce p ^ q -* r (S)

It is interesting to check the relevance of the above

inference rales for plausible reasoning. CM restricts the

use of monotonicity to when q is plausibly inferred from

p already, i.e., property q is not exceptional for models of

p. And the cut rule restricts transitivity to when models of

p are normal models of q with respect to property r. LLE

is only a consistency condition with respect to classical

logic. The rules RAND and RW ensure that the set of

plausible consequences of p is deductively closed.

Property (S) looks like one half of the classical deduction

theorem pAqi— r<=>pi-q-> r. Kraus et al. (1990)

define a syntactic deduction operation, denoted 1— in the

following, acting from a set A of conditional assertions of

the form pj ^ qj. Namely, A h- p K' q if and only if p h» q

can be derived from A using p ^ p as an axiom schema

and the inference rules LLE, RW, LOR, CM and cut of

logic P. CONSp(A) is the set of conditional assertions

deduced from A in P.

Kraus et al. (1990) have proposed a semantics for p K* q

that is based on a two level structure involving a set X of

states, a mapping f from X to the set £2 of interpretations

of the language and a preference relation among states

which is symmetric and transitive. A state x satisfies p iff

f(x) *= p. Then p q means that all the preferred states

satisfying p satisfy q. Another semantics of p ^ q is that

P(qlp) £ 1 - e, i.e., the conditional probability P(qlp)

should be very close to 1. This type of conditional has

been studied by Adams (1975) and revived by Pearl

(1988). Probabilistic inference with infinitesimal lower

probabilities does satisfy the rules of system P, hence

showing the consistency of the above logical approach

with the one of Section 5.3, based on upper and lower

probabilities. In these proceedings, Dubois and Prade

(1994b) give a simpler semantics of conditional assertions

based on the three-valued conditional events of De Finetti.

Lastly Farifias del Cerro et al. (1992) have proposed

another semantics of conditional assertions based on

possibility theory, whereby p ^ q is viewed as a

constraint restricting a set of possibility distributions on
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fit that verify the condition IT(q a p) >jj 0(—>q a p). It

means that in the framework where p is true, q is more

plausible than -.q. It also means that all the most

plausible worlds satisfying p satisfy q, i.e., p t=jj q in the

sense of possibilistic logic. Then the problem of proving

<p K' y under the form Il(<p a y) > W(—<y a <j>) from a set

of constraints of the form ri(p; a qj) > n(pj a -iC[j)

satisfies all the properties of system P. This semantics

can be interpreted in terms of a qualitative notion of

conditioning in possibility theory, namely N(qlp) > 0

where N(qlp) = 1 - Il(->qlp) and Fl(qlp) is the greatest

solution of the Bayesian-like equation

n(pAq) = min(n(qlp),n(p)).

The above approach, whatever the chosen semantics,

satisfies all three requirements that an exception-tolerant

logic should satisfy. Exception-handling is imbedded in

the inference process. Instead of enriching the factual base

by triggering the rules in order to derive conclusions, new

rules are produced from the knowledge base until one rule

is produced that fits the evidence as a whole. Namely if E

contains the available (propositional) evidence and A the

generic knowledge under the form of conditional

assertions, then C is a plausible conclusion from (E,A) if

and only if E C can be derived from A.

8 POSSIBILISTIC ENCODING OF

RATIONAL INFERENCE

The above logic of conditional assertions is very cautious.

Like the approach based on upper and lower conditional

probability, it does not solve the problem of irrelevant

properties. For instance, if A = {b f, p I if, p K b} it

does not follow that red birds fly, i.e., b a r V- f. This is a

by-product of the lack of monotony property; the cautious

monotony property is too weak because in the example,

we do not have that b ^ r. This difficulty has been solved

by Lehmann by making the inference more monotonic.

Namely, even if we do not have that b r, we do not

have that b I f either; this should enable us to jump to

the conclusion that b a r f~ f, and that b a —s f as well,

i.e., the redness of the bird is irrelevant to its flying. The

idea is then to augment the preferential closure Consp(A)

by other conditional assertions, and construct the so-called

Rational Closure of A, ConsR(A) which satisfies the

following property called rational monotony

if p f~ q, -i(p I—ir) then p a r q. (RM)

Unfortunately Consp(A) cannot be defined using (RM) as

an inference rule like others. There are several supersets of

Consp(A) that are closed under (RM), and the intersection

of two rational closures is generally not rational

(Lehmann and Magidor, 1992). It can be proved (Lehmann

and Magidor, 1992; Gardenfors and Makinson, 1992;

Benferhat et al., 1992) that any rational closure

corresponds to a unique complete partial ordering of

interpretations. In terms of possibilistic logic, the result

reads: for any rational consequence relationship there

exists a possibility distribution jc on the set of

interpretations such that ^ coincides with i—n; conversely

h-jj is rational. The problem is then to find the "best"

ordering of interpretations that defines a rational closure of

Consp(A). This problem has been solved by Lehmann and

Magidor (1992), and Pearl (1990). The idea is to find the

ranking of interpretations that agrees with A, where each

interpretation is as normal as possible. This construction

can be entirely reinterpreted in the setting of possibility

theory. Namely let PI(A) be the set of possibility

distribution n such that V pj qj in A, l"I(Pj a q^) >

ri(Pi a -*jj). A possibility distributions tc is said to be

less specific than k' if and only if rc < n'. Clearly each

interpretation is at least as normal in the sense of tc' than

in the sense of tc. The ordering that determines the

rational closure is defined by the least specific possibility

distribution Jt* in PI(A).

Equivalently as proposed by Pearl (1990) rational

inference can be captured through an ordering of the

conditional knowledge base A. This ordering is based on a

concept of toleration of a default rule by a conditional

knowledge base. If p q is a conditional assertion, let

-ip v q be its material implication counterpart. Let K be

the set of material implication counterparts of the

conditional assertions in A. A rule p q is tolerated by A,

if and only if p a q is consistent with K. In order to get a

flavor of the reason for this definition consider again the

penguin example. The examples to the rule —.flp are

exceptions to the two other rules fib, blp, i.e., —iflp is not

tolerated by them. Contrastedly, fib is tolerated by the

others since this rule has examples that are not exceptions

to the others (consider non-penguins). Hence using rule

fib does not cause any conflict in A. But applying the

other rules does conflict with fib. Hence non-tolerated

rules should be given priority over tolerated ones. An

algorithm for priority ranking of objects has been

proposed by Pearl (1990). It can be described as follows.

If A = {q; pj, i = l,n), then partition A into A0 u

A] u... u \ where Aq has the lowest priority and Ak

has the highest one. Aq is made of conditional objects

p i~ q tolerated by A, i.e., such that p a q is consistent

with {—ipj v q^ i = l,n}. Aj is made of the conditional

objects tolerated by A - Aq, etc. This ordering respects the

priority to the most specific rules (Poole, 1985).

The obtained ordering is exactly the same as the one

derived by changing each conditional assertion p; K» qj in

A into its material counterpart —ipj v qj and attaching to it

the weight N*(-ipj v q^ computed using tc*. Let K* be

the possibilistic knowledge base thus constructed from A.

It can be proved that p ^ q belongs to the rational closure

of A if and only if K* u {p} i— TC q. Hence plausible

conclusions derived from evidence p and generic

knowledge A can be computed via possibilistic logic

proof methods of Section 6. Particularly the complexity

of system P and rational inference is the same as
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prepositional logic inference (e.g., polynomial for Horn

clause-like conditional assertions).

This approach partially solves the problem of irrelevant

properties. In the Tweety example the possibilistic

knowledge base obtained by the ranking procedure is the

one of Section 6, and it holds that [bj] u K* \-n f.

Unfortunately the rational closure sail has problems when

a class is exceptional for a superclass with respect to

some attribute. Then the least specific ranking does not

allow to conclude anything about whether this class is

normal with respect to other attributes. For instance, if

we add b h» 2 (birds have legs) to the knowledge base of

the Tweety example, then p (~ 2 is not in the rational

closure of A u {b 2). This problem has been solved in

various ways by several authors: Geffher (1990) defines a

partial ordering that comes down to checking for maximal

consistent subbases of K* u E. Goldszmidt et al. (1990)

exploit the infinitesimal probability setting and apply

maximal entropy methods to characterize another ranking

of worlds. More recently Benferhat et al. (1993) and

Lehmann (1993) have suggested an approach based on a

lexicographic ordering whereby each interpretation should

satisfy as little conditional assertions as possible. All

these methods solve the problem of blocking of property

inheritance in the Tweety example, but their motivations

are unclear, and counter-examples where these techniques

give counterintuitive results can be found. Moreover, all

of them are syntax-dependent, and their complexity is

higher than the rational closure.

CONCLUSION

Numerical and symbolic approaches to uncertainty should

not be considered as competing models. It is more

interesting to display their deep coherence rather than to

argue in favor of one against the other. The notion of

conditional assertions, or equivalently of conditional event

captures the basic features of plausible reasoning, in

accordance with non-monotonic logics and also with

probability theory and possibility theory as well.

Possibilistic logic, that can encode ordered sets of default

rules, can be viewed as a logic of accepted beliefs, in full

agreement with a calculus of extreme probabilities. It is a

natural framework for encoding Lehmann's rational

closure.

An important issue that has received little attention so far

is the notion of independence. Namely it is worth

investigating to what extent the probabilistic definition of

independence has counterparts in other uncertainty models.

The limitations of conditional event logic for dealing with

property inheritance is directly linked to this question.

The RM axiom expresses a default independence

assumption, but is not productive enough to address all

the difficulties. Note that in probability theory,

independence assumptions are always made explicit, while

in logic distinct propositional symbols are implicitly

independent The language of logic encodes dependencies,

but there is no independence symbol. Some insights in

qualitative independence can be found in Pearl (1988);

these results could be usefully related to the conditional

event logic. The next promising step in exception-tolerant

reasoning seems to search for a new concept of

independence that is less permissive than logical

independence, but more flexible than probabilistic

independence, in the context of ordinal uncertainty

approaches like possibility theory. Our suggestion is that

rational monotonicity should be augmented by conditional

independence assertions whose statement is dictated by the

structure of the knowledge base A. This is the last lesson

from Bayesian nets to be taken advantage of. Preliminary

steps along that line can be found in Goldszmidt and Pearl

(1992) , Fonck (1993), and Benferhat et al. (1994).
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Beyond Ignorance-Based Systems
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Abstract

The field of artificial intelligence has a long tradition of exploiting the potential of limited domains.

While this is beneficial as a way to get started and has utility for applications of limited scope, these

approaches will not scale to systems with more open-ended domains of knowledge. Many " knowledge-

based" systems actually derive their success as much from ignorance as from the knowledge that they

contain. That is, they succeed because they don't know any better. Too great a reliance on a closed-

world assumption and default reasoning in a limited domain can result in a system that is fundamentally

limited and cannot be extended beyond its initial domain.

If the field of knowledge-based systems is to move beyond this stage, we need to develop knowledge

representation and reasoning technology that is more robust in the face of domain extensions. Non

monotonic reasoning becomes a liability if the fundamental abilities of a system can be destroyed by

the addition of knowledge from a new domain. This talk will discuss some of the challenges that we

must meet to develop systems that can handle diverse ranges of knowledge.
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Systems vs. Theory vs. . . . : KR&R Research Methodologies
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Sweden

Abstract

This panel will explore the issues regarding what research methodologies are appropriate for KR&R

research and hopefully expand our awareness of how methodological issues affect and influence the

usefulness and relevance of a research effort. It can be argued that it is meaningless to build research

systems until one has a clear theory one is attempting to implement. It can equally well be argued that

formal theory development without a grounding in application requirements is futile. Just as we do not

want systems that grind to a halt while they consider all the alternatives for action, so we don't want

research that sinks into the mire of formalism for its own sake.

What is the correct balance between theory and application? Is there a particular order in which

the various methodological approaches of informal theory development, formal theory development,

system building, implementation of applications, empirical experimentation and validation, etc. should

be applied? Are all equally relevant? Is building of applications really research? If so what qualities are

necessary in order for application development to be legitimate research? When is system building an

important research activity? What qualities qualify or disqualify application development as a research

activity? What research methodologies are currently most needed in KR&R research?

The panel members will attempt to address these and related questions from the viewpoint of both

varying areas of KR research, and various methodological styles.
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Exploiting Natural Language

for Knowledge Representation and Reasoning

Len Schubert, Moderator

Department of Computer Science

University of Rochester

Rochester, NY 14627-0226

USA

Abstract

As the title suggests, the panel will address such

questions as, "What syntactic/semantic (or other) re

sources does NL potentially offer that could be prof

itably exploited for knowledge representation and rea

soning? What are the prospective benefits? How can

they be realized? What's the down side?". The in

tention is that some sense of the state of the art, dif

ficulties, tradeoffs, and the most promising directions

for further work should emerge from the presentations

and discussion.

Some specific resources suggested in advance as possi

ble topics for discussion are:

• generalized quantifiers

• predicate and sentence nominalization

• predicate and sentence modification

• probabilistic qualification

• collections, substances, kinds, properties

• events, situations, times, locations, actions, plans

• aspectual classes (Aktionsarten)

• more generally, commonsense ontologies

• donkey anaphora and generics

• "natural" forms of inference

• language (especially narratives) as a guide to

"warranted nonmonotonic inference"

• feature logics (aimed at NL syntax) as general

KRs

• indexicality, context

• vagueness as a useful feature

• ambiguity as a useful feature

• theory of communication, knowledge, collabora

tion

One can consider the potential benefits of such re

sources collectively or one by one. Let us imagine that

we have a formalized representation that is natural-

language-like, incorporating many of the above fea

tures. One potential benefit would be the improved

opportunity for "knowledge bootstrapping" via natu

ral language, since the necessary transformations in

going from NL input to the internal representation

would then be minimal. Moreover, since we tend to

have good intuitions about what follows from what

(either deductively or defeasibly) when considering ex

amples formulated in natural language, a language-like

representation might facilitate the formulation of ef

fective deductive and nondeductive inference mecha

nisms. Another significant benefit might be the com-

prehensibility of a representation parasitic on language,

from the perspective of users of the KR who need to

peruse, extend, and debug sizable knowledge bases.

Against such an across-the-board strategy one might

argue that it would make inference intractable or at

least "gappy" in unforseeable ways. Even unquantified

predicate logic is intractable in a worst-case sense (if P

^ NP). Keeping in mind that the goals of AI are per

formance goals (or, goals of explicating human perfor

mance), we must ensure that our KR's lend themselves

to fast, reliable inference. So we should move away

from general language-like expressiveness towards col

lections of tractable, specialized sublanguages.

There are replies to this objection, but one can also re

main agnostic about the across-the-board strategy and

consider benefits obtainable by exploiting some of the

above resources. Knowledge bootstrapping, formula

tion of inference rules, and knowledge base browsing

may become significantly easier even with some seem

ingly minor, "cosmetic" changes to a representation,

bringing it superficially closer to NL without increase

in expressive power.

The expectation is that some panelists will be able

to point to specific gains already obtained or even

tually expected from language-inspired approaches to

various representational issues: NL-like quantification

might promote readability and effective inference; or

dinary ways of talking about properties, propositions,
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actions, and plans (often involving phrasings that reify

or nominalize these) might provide the key to a work

able analysis of attitudes and actions; ontological cat

egories derived from language (including collections,

substances, time, space, events, and specific "natu

ral taxonomies" ) should facilitate the encoding of at

least the "commonsense core" of many applications;

the form taken by generics in NL might suggest ways

of formalizing defeasible generalizations; indexicality

in NL (e.g., as exemplified by words like 'now', 'here',

or T) might suggest effective ways of "situated reason

ing" , for instance by a planner; the ways in which lan

guage allows for vagueness and ambiguity might sug

gest ways of dealing effectively with imprecise or un-

derspecified information; the conventions underlying

cooperative dialogs might suggest formal protocols for

arriving at mutual knowledge; the feature logics that

have evolved for describing the syntactic structure of

natural languages show signs of being apt for world-

description as well; and so on.

No doubt there are caveats and unresolved difficulties.

Language may perhaps mislead, where the devices it

employs are peculiar to its communicative function

and its one-dimensional acoustic form; and it may not

lead to any one place, judging from the variety of theo

ries that have been proposed for many of the linguistic

phenomena mentioned above. But it is surely an in

valuable source of representational ideas that should

be heeded by the KR&R community.
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