
This is a reproduction of a library book that was digitized  
by Google as part of an ongoing effort to preserve the  
information in books and make it universally accessible.

http://books.google.com

https://books.google.com/books?id=TPPWAAAAMAAJ




 



 

V

RA^V
,>

 





/■"■

<viv u-
4

 

- ^ V

• > "-■«».j^^ ^-^

 







Proceedings of the First International Conference on

Principles of Knowledge

Representation and Reasoning



THE MORGAN KAUFMANN

Series in Representation and Reasoning

Series editor, Ronald J. Brachman (AT&T Bell Laboratories)

BOOKS

Ronald J. Brachman and Hector J. Levesque, editors

Readings in Knowledge Representation (1985)

Ernest Davis

Representations of Commonsense Knowledge (1989)

Matthew L. Ginsberg, editor

Readings in Nonmonotonic Reasoning (1987)

Judea Pearl

Probabilistic Reasoning in Intelligent Systems:

Networks of Plausible Inference (1988)

David E. Wilkins

Practical Planning:

Extending the Classical AI Planning Paradigm

PROCEEDINGS

Proceedings of the First International Conference on

Knowledge Representation and Reasoning

edited by Ronald J. Brachman, Hector J. Levesque, and Raymond Reiter (1989)

The Frame Problem in Artificial Intelligence:

Proceedings of the 1987 Conference

edited by Frank M. Brown (1987)

Reasoning about Actions and Plans: Proceedings of the 1986 Workshop

edited by Michael P. Georgeff and Amy L. Lansky (1987)

Theoretical Aspects of Reasoning about Knowledge:

Proceedings of the 1986 Conference

edited by Joseph P. Halpem (1986)

Proceedings of the Second Conference on

Theoretical Aspects of Reasoning about Knowledge

edited by Moshe Y. Vardi (1988)



Proceedings of the First International Conference on

Principles of Knowledge

Representation and Reasoning

Edited by

Ronald J. Brachman

(AT&T Bell Laboratories)

Hector J. Levesque

Raymond Reiter

(University of Toronto)

MORGAN KAUFMANN PUBLISHERS, INC

SAN MATEO, CALIFORNIA



mi
Editor Bruce M. Spatz

Coordinating Editor Beverly Kennon-Kelley

Production Manager Shirley Jowell

Production Assistant Elizabeth Myhr

Cover Designer Pat Lemmon

KR'89 Logo Design Kathryn Pinter

Compositor Kennon-Kelley Graphic Design

Library of Congress Cataloging-in-Publication Data

International Conference on Principles of Knowledge Representation and Reasoning

(1st : 1989 : Toronto, Ont.)

Proceedings of the First International Conference on Principles of

Representation and Reasoning / edited by Ronald J. Brachman, Hector

J. Levesque & Raymond Reiter.

p. cm.

ISBN 1-55860-032-9

1. Reasoning—Congresses. 2. Representation (Philosophy)-

Congresses. I. Brachman, Ronald J., 1949- II. Levesque,

Hector J., 1951- . III. Reiter, Raymond. IV. Title.

BC1 77.157 1989

160-dcl9 89-2412

CIP

ISBN 0-55860-032-9

MORGAN KAUFMANN PUBLISHERS, INC.

2929 Campus Drive

San Mateo, CA 94403

© 1989 by Morgan Kaufmann Publishers, Inc.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form

or by any means — electronic, mechanical, recording, or otherwise — without prior permission of the

publisher.

93 92 91 90 89 5 4 3 2 1



iii

Acknowledgements

KR'89 would not have been possible without the extensive efforts of a great number of dedicated

people.

First, and most important, is our outstanding program committee, who were asked to contribute

extraordinary effort in reviewing and comparing an inordinate number of papers, and who did a

first-rate job:

James Allen Geoff Hinton

University of Rochester University of Toronto

Giuseppe Attardi David Kirsh

DELPHI SpA, Italy MIT

Woody Bledsoe Robert Kowalski

University of Texas Imperial College of Science and

Alan Bundy

Technology, London

Edinburgh University Vladimir Lifschitz

Eugene Charniak

Stanford University

Brown University Alan Mackworth

Veronica Dahl

University of British Columbia

Simon Fraser University Drew McDermott

Johan de Kleer

Yale University

Xerox Palo Alto Research Center Tom Mitchell

David Etherington

Carnegie Mellon University

AT&T Bell Laboratories Robert Moore

Koichi Furukawa

SRI International

ICOT, Tokyo Judea Pearl

Herve Gallaire

UCLA

ECRC, Munich Stan Rosenschein

Michael Genesereth

Teleos Research

Stanford University Stuart Shapiro

Michael Georgeff

SUNY at Buffalo

The Australian Artificial Intelligence Yoav Shoham

Institute Stanford University

Pat Hayes William Woods

Xerox Palo Alto Research Center ON Technology Inc.

A special acknowledgement is also due to David Etherington, David Kirsh, and Yoav Shoham for

organizing and moderating our three symposia. Each spent a great deal of time and effort in



IV

creating the idea for his symposium, contacting the participants and cajoling them into appearing,

and in bringing the event together.

We would also like to thank a number of reviewers who assisted the program committee in their

efforts to evaluate close to 300 papers:

Jun Arima

K. R. Apt

Bruce W. Ballard

Alex Borgida

R. S. Boyer

Mukesh Dalai

Jim Delgrande

Jim des Rivieres

Michael A. Gray

Russ Greiner

Robert F. Hadley

Angela Kennedy Hickman

Larry M. Hines

Michael N. Huhns

Katsumi Inoue

Mitsuru Ishizuka

Matt Kaufmann

Henry Kautz

Kaname Kobayashi

Shigenoba Kobayashi

Gerhard Lakemeyer

Hitoshi Matsubara

Raymond Mooney

Shinichi Morishita

Yasuo Nagai

Steve Nowlan

Joe Nunes

Peter Patel-Schneider

Don Perlis

Charles Petrie

Tony Plato

Dave Plummer

Anand S. Rao

Chiaki Sakama

Kiyokazu Sakane

Ken Satoh

Bart Selman

Hirokazu Taki

Manuela Veloso

Jay Weber

David E. Wilkins

There are a number of other people without whose help we would never have gotten the

conference off of the ground. First, and most especially, our gratitude goes to Helen Surridge, for

acting as a conference secretary. Helen received and organized all of the submissions to the

conference, handled endless phone calls, and generally kept us afloat. We could not have done it

without her help. Also, great thanks goes to Wendy Walker, our conference organizer, and also to

Carol Plathan and Marina Haloulos. Kathryn Finter designed the KR logo. Peter Patel-Schneider

provided the LaTeX macros for the conference papers, and helped immeasurably with other

organizational matters. The support of Morgan Kaufmann in the production of these Proceedings

was also a crucial ingredient. Thanks go to Mike Morgan, and especially Shirley Jowell for

handling the production. Finally (but by no means least) we could not have survived without the

patience and support of Gwen Brachman and Pat Levesque.

We would also like to acknowledge the generous support of the organizations that sponsored

KR'89: The Canadian Society for Computational Studies of Intelligence (CSCSI — our primary

sponsor), The American Association for Artificial Intelligence (AAAI), The International Joint

Conferences on Artificial Intelligence (IJCAI), The Canadian Institute for Advanced Research

(CIAR), and the Information Technology Research Centre of Ontario. We thank also AISB and

ACM SIGART for their cooperation.



Preface

The idea of explicit representations of knowledge, manipulated by general-purpose inference

algorithms, dates back at least to the philosopher Leibniz, who envisioned a calculus of propo

sitions that would exceed in its scope and power the differential calculus he had developed. But

only very recently has it been possible to design automated systems that perform tasks in part by

reasoning in this long-imagined way over a body of represented knowledge. And despite the

success of many such systems, the enormous potential for true generality, flexibility, and

adaptability is still very far from being realized. Thus, in addition to actually building

"knowledge-based systems" of various kinds, a growing number of researchers have become

interested in understanding precisely the nature and limitations of these systems.

KR'89 is the first express attempt at bringing together researchers interested in the principles of

knowledge representation and reasoning that govern knowledge-based systems. Although the

general AI conferences will continue to provide an important venue, it was our belief that this

research area had become large, enough to warrant an independent meeting where the highest

quality technical work that was sometimes too specialized for a general AI audience could be

presented and discussed. Moreover, to encourage informal interactions that are sometimes diffi

cult in large crowds, we also wanted to limit the size of the conference to that of the general AI

conferences of a decade ago. And, by limiting the size of the program, we could avoid the

problems engendered by too many parallel sessions, and could provide lengthy and detailed

papers in our Proceedings. These Proceedings represent the written record of this ambitious

undertaking.

The response to the KR'89 call for papers was very encouraging, but daunting: we received over

275 submissions, from 27 countries. Each submission was carefully read by at least two members

of our program committee. We were pleased to see a remarkable amount of consensus in the

reviews. But because of our size constraints, the final selection of papers had to be very competi

tive. Some papers ended up being excluded not because there was anything specifically wrong

with them, but simply because there were too many other submissions that appeared to be better.

In the end, we managed to limit the program to the 49 outstanding papers contained in this

volume. These papers represent, in our opinion, the very best work being done in the area of

knowledge representation and reasoning.

While each of the papers to be presented here in Toronto should be excellent, we thought it

worthwhile to go one step further and award a prize for the best paper. However, because it was

important to review the final papers for this award, we are unable to include the name of the

winner in the Proceedings itself. The winner will be announced at the conference.

As you glance through the conference schedule, you will notice an extra attraction beyond the

accepted papers. For this initial conference, we thought it would be interesting and worthwhile to

include some non-paper presentations. Thanks to the outstanding efforts of David Etherington,

David Kirsh, and Yoav Shoham, we have three mini-symposia to augment our program in the
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afternoons. In each case, important and interesting speakers have been invited to present their

views on some of the key topics of knowledge representation and reasoning: reasoning about

time, nonmonotonic reasoning, and the viability of the entire "knowledge-based" enterprise. We

trust that you will enjoy these provocative presentations, and the extensive discussion that has

been planned. We are also fortunate to have included here some written material from our invited

speakers and discussants.

Finally, while we are hesitant to suggest this (everyone knows what happens to those who

suggest something like this), our hope is that KR'89 will be only the first of a series of biennial

conferences that highlight outstanding work on the principles of knowledge representation and

reasoning. The ultimate success of this and any future KR conferences depends on you, the people

who contribute the papers, attend the conference, and read the proceedings. We thank you for

your participation, and hope you find the efforts of the organizers and program committee

rewarding. KR'91 will depend on your response and contributions.

Ron Brachman Hector Levesque Ray Reiter

Program Co-chair Program Co-chair Conference Chair
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Abstract

A temporal logic is presented for reasoning

about propositions whose truth values might

change as a function of time. The temporal

propositions consist of formulae in a sorted

first-order logic, with each atomic predicate

taking some set of temporal arguments which

denote time points, as well as a set of non-

temporal arguments. The temporal argu

ments serve to specify the predicate's depen

dence on time. By partitioning the terms

of the language into two sorts, temporal and

non-temporal, time is given a special syntac

tic and semantic status in the logic without

having to resort to reification. The bene

fits of this logic are that it has a clear se

mantics and a proof-theory which is easily

implemented with standard automated theo

rem provers. Unlike the first-order logic pre

sented by Shoham, propositions can be ex

pressed and interpreted with respect to any

number of temporal arguments, not just with

respect to a pair of time points (an interval).

We demonstrate the advantages of this flex

ibility. In addition, nothing is lost by this

added flexibility and more standard and use

able syntax. To prove this assertion we show

that the logic completely subsumes the tem

poral logic developed by Shoham.

1 Introduction

Many problems in artificial intelligence require reason

ing about events or states of the world that have tem-

*This work was supported by a grant from the Faculty

of Mathematics, University of Waterloo.

*This work was supported in part by the Air Force Sys

tems Command, Rome Air Development Center, Griffiss

Air Force Base, New York 13441-5700, and the Air Force

Office of Scientific Research, Boiling AFB, DC 20332 under

Contract Number F30602-85-C-OO08 which supports the

Northeast Artificial Intelligence Consortium (NAIC).

*This work was supported by NSF research grant DCR-

8351665.

poral extent. Standard first-order logics have proven

useful for reasoning about static propositions and their

consequences, but have not been readily adaptable to

the greater demands of temporal reasoning. For in

stance, "block A is on block B" can be represented as

ON(A,B), but "block A is on block B from 7 to 12" is

less obviously represented. One approach is to add to

the predicates additional arguments denoting the tem

poral interval to which the assertion should be associ

ated: ON(7, 12, A, B). This approach has received lit

tle past research attention, being typically abandoned

in favor of reified logics [Allen, 1984, Lifschitz, 1987,

Shoham, 1987] containing truth predicates relating

atemporal propositions (e.g., ON(a,b)) to temporal

points or intervals (e.g., TRUE[7, 12,ON(A,B)]). In

contrast to the recent trends, we demonstrate a logic

obtained by including the additional temporal ar

guments, showing that this preserves the first-order

structure of the propositions, has a clear semantics,

and a standard proof-theory which, with few augmen

tations, is easily implemented on the current genera

tion of automated theorem provers.1 In addition, our

logic makes no ontological commitment toward inter

preting the temporal objects as either points or inter

vals, leaving this choice instead to the axiom writer.

These advantages are obtained by keeping the logic

within a classical first-order framework. We present

first the syntax and semantics of our logic, then de

scribe the temporal logic of Shoham, a logic recently

presented to deal with problems of preserving the first-

order structure of temporally scoped propositions, and

finally present a theorem demonstrating the subsump-

*Our logic can be viewed as being in the same spirit

as Green's original work on logic based planning [Green,

1969]. Green used additional state arguments in his pred

icates, adding the states as extra individuals to the ob

ject language. The reified logics on the other hand take

the approach of separating the language of states from the

language which describes the domain. In order to express

the dependence of the domain statements on the current

state the formulae of the domain language are reified, i.e.,

added as extra individuals to the state language. View

ing the time arguments as being state arguments gives the

parallel between Green's approach and ours.
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tion of Shoham's logic by ours.

2 A Non-Reified Temporal Logic

In the logic that we present, piopositions are asso

ciated with time objects by including temporal ar

guments to the functions and predicates. For ex

ample, one can represent the assertion "the Pres

ident of the USA in 1962 died in 1963" as

DIED(1963)PRESIDENT(1962,USA)). Temporal objects

are distinguished from non-temporal objects by parti

tioning both the universe of discourse and the sym

bols of the language used to denote the universe. One

can thus specify, for each function and predicate sym

bol, some number, n, of temporal arguments and some

number, m, of non-temporal arguments, and for each

function symbol, whether it evaluates to a temporal or

non-temporal object.

2.1 Syntax

Our logic, which we will refer to as "BTK," is a stan

dard many-sorted logic having two disjoint sorts, for

temporal and non-temporal objects. It is therefore an

element of Wang's 2-sorted logical system T% [Wang,

1952]. We briefly review the syntax of a two-sorted

logic.

The variables, V, are of two different sorts, V^, and

Vu, and for every pair of natural numbers n and m

there is a set of (n, m)-ary function symbols, F(n,m),

and a non-empty set of (n, m)-ary predicate symbols,

p(n,m)_ por both function and predicate symbols the

first n arguments are temporal while the last m are

non-temporal. We take the constants, C, to be 0-ary

function symbols. The sort of a function is determined

by the sort that the function returns. Hence, the con

stants are sorted as well.

Terms and wffs are defined in the standard fashion,

with the only restriction being that arguments of the

correct sort must be given for each function and pred

icate. We will use "t" to denote temporal terms, and

"c" to denote non-temporal terms, both possibly with

subscripts. The sort of a term is determined by the

sort of its outermost symbol. In addition, we will call

predicates that take only temporal arguments temporal

■predicates, and predicates that take only non-temporal

arguments non-temporal predicates.

A set of inference rules is provided by Wang, which

includes universal generalization and modus ponens.

For our present purposes we need not include them

here, but they can be found in [Wang, 1952]. A BTK

language along with the inference rules and proper ax

ioms is a BTK system.

2.2 Semantics

A model is defined to be the tuple M = ((T,U),o-).

T and U are non-empty universes, and a is an inter

pretation function that maps each (n, m)-ary temporal

function to an (n, m)-ary function from T* x Um to T,

each (n, m)-ary non-temporal function to an (n, m)-

ary function from T" X Um to U, and each (n,m)-

ary predicate to an (n,m)-ary predicate on Tn x Um.

Meaning is assigned to the formulae under the stan

dard interpretation of the truth-functional connectives

and quantifiers, except that each quantified variable

ranges only over the appropriate universe. We denote

the interpretation of \p under a by rp".

3 Relativization, Proof Theory and

Automated Deduction in BTK

Rather than using a 2-sorted logic for BTK, we could

instead have used a standard (one-sorted) logic. Thus,

for every BTK system we could have a corresponding

BTK' system, where there is only a single universe,

and thus only a single sort for the variables and func

tions. In addition, the one-place predicates Temporal

and Non- Temporal are part of every BTK' language.

The BTK' system is then defined analogously to that

of BTK, with the addition of the following theorems:

1. 3x, y. Temporal(x) A Non- Temporally)

2. Vi. Temporal(x) © Non- Temporal(x),

where © is exclusive-or. A statement <j> in BTK can be

"relativized" to a statement <p' in BTK', by substitut

ing simultaneously in <p, for each expression of the form

Vz.a, where x is a temporal variable, an expression of

the form

Vx. Temporal(x) —* a,

and for each expression of the form Vz.a, where z is a

non-temporal variable, an expression of the form

Vz.Non- Temporal (z) —» a2.

We then get the following result trivially from Wang,

(attributed to Herbrand [Herbrand, 1930]):

A statement of any system BTK is prov

able in BTK if and only if its relativization

in the corresponding system BTK' is provable

in BTK'.

Therefore, since BTK' is a standard first-order system

any first-order proof theory can be trivially used as a

proof theory for BTK: one only has to relativize every

statement of a given BTK system and do deduction

in the first order BTK'. In addition, by relativizing

a BTK system in this fashion, one can automate de

duction by using standard automated theorem proving

techniques.

It should be noted, however, that one need not

relativize the logic in order to obtain either a proof

theory or an automated theorem prover for a sorted

logic. This is because both are provided by Walther

[Walther, 1987], for a sorted clause form logic, based

2 We are taking existcntially quantified variables as de

fined from universally quantified variables
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upon resolution and paramodulation. In fact, Walther

gives some strong arguments to indicate that reason

ing directly with the sorted logic would be far more

efficient. It is a trivial exercise to cast BTK as a vari

ant of Walther 's clause form sorted logic and to use

his automated reasoner.

Halpern and Shoham [Halpern and Shoham, 1986]

have demonstrated that for modal temporal logics the

complexity of reasoning is highly dependent on the

nature of the temporal domain. A similar situation

holds for BTK.

It is well known that the set of valid formulae for

first-order structures is recursively enumerable, and

many different complete proof theories exist (e.g., the

different ones given in [Barwise, 1977]3). However,

these results presuppose the ability to completely ax-

iomatize the properties of the functions and relations

defined over the domain. This may not be possible if

one requires the domain to have some special struc

ture. For example, if one requires that the tempo

ral domain T be the set of integers, then it is well

known that there are no complete axiomatizations of

the properties and functions of the integers. In other

words, if one places no restrictions on the set of le

gal BTK models, in particular, if one places no re

quirements on the structure of the temporal domain,

then complete proof theories can be provided for BTK,

by the above relativization result and the existence of

complete proof theories for first-order logic, or by the

use of complete proof theories for sorted first-order

logic, like Walther's. On the other hand if one re

stricts the set of legal BTK models to be models where

the temporal domain T has some special structure one

cannot necessarily guarantee a complete proof theory:

even the relativized first-order BTK' will not have a

complete proof theory.

Although temporal structures like the integers can

not be axiomatized, there are many other temporal

structures that can be. These include temporal do

mains that are linearly ordered (i.e., we require a lin

ear order, but no other structure), models of Peano

arithmetic (i.e., we allow non-standard models of the

integers), and totally ordered fields. This last is par

ticularly useful. The reals are an instance of a totally

ordered field. Hence, if we choose such a temporal

structure we will be able to axiomatize its behavior

and be assured that all deductions carried out with

this axiomatization will be sound with respect to the

reals. Furthermore, it is well known that every to

tally ordered field has a subfield which is isomorphic

to the rationals. This means that we can include in our

language temporal constants representing any rational

time point. When one considers the fact that our com

puters can only represent rationals (and only a finite

'These proof theories give mechanical procedures for

generating all valid formulae, thus showing that the set of

all valid formulae is recursively enumerable.

set of rationals at that), it should be clear that one

can capture a great deal of useful reasoning about ra

tional time points axiomatically. Another interesting

type of temporal domain which has a complete axiom

atization occurs when the primitive temporal objects

are intervals [Ladkin, 1987]. This choice is perfectly

compatible with our definition of BTK.

If the temporal domain, T, of BTK is defined to

be any one of these temporal structures, or any other

structure for which we have a complete axiomatization,

a complete proof theory can be easily generated. One

just adds the axiomatization of the temporal domain

to the axiomatization of first-order logic. The first-

order rules of inference will provide a complete proof

theory when they operate on the union of the temporal

and first-order axioms. This can be done in either the

sorted context or, via relativization of the temporal

axioms, in the unsorted context.

An argument made by Shoham [Shoham, 1987] is

that a non-reified logic such as BTK is insufficient for

some of the demands of temporal reasoning:

This option is not acceptable from our

standpoint, although there is nothing tech

nically wrong with it. The problem is that

if time is represented as an argument (or

several arguments) to predicates, there is

nothing general you can say about the tem

poral aspect of assertions. For example,

you cannot say that "effects cannot precede

their causes"; at most you can say that

about specific causes and effects. Indeed,

this first option accords no special status

to time—neither conceptual nor notational—

which goes against the very spirit of our en

terprise.

We deal with these objections by showing that BTK

subsumes the logic developed by Shoham (to be re

ferred to as "STL"). Given this result, it is the case

that STL can represent the sentence "effects cannot

precede their causes" only if BTK can. Thus, STL is

no more expressive than a logic obtained by adding

additional time arguments to the predicates. In addi

tion, time is given a special status in BTK by using a

sorted logic that distinguishes temporal objects from

all other objects, both semantically (conceptual), and

syntactically (notational).

4 Shoham's Logic

In this section we briefly describe STL and discuss the

main differences between it and our temporal logic.

Shoham's logic is presented in [Shoham, 1987].

STL is sorted in much the same way as BTK. There

are a set of temporal constants and variables as well

as non-temporal constants and variables. However the

treatment of function and relation symbols is differ

ent. STL has temporal functions, but these functions
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can only take temporal arguments—they aie a spe

cial case of BTK temporal functions, i.e., temporal

functions with m = 0. Furthermore, STL allows no

temporal relations except for the predefined ones '<'

and '='. Non-temporal functions and relations are also

treated differently. Syntactically they do not take any

temporal arguments, although semantically they are

always evaluated with respect to a pair of time points

(an interval).

The atomic formulae of STL are of two types—

formulae formed from the two temporal relations =

and <, e.g., t\ — ti or t\ < ti, where t\, ti are

both temporal terms,4 and formulae formed via the

"TRUE" construct. Using Shoham's definition,

If ta and tb are temporal terms, C\,...,cm

are non-temporal terms, and R is a m-ary

relation symbol, then

TKUE(ta,tb,R(c1 cm))

is an atomic formula.

For example, the sentence "block A is on block B be

tween 7 and 12" would be expressed in STL as

TRUE(7,12,ON(A,B)).

"TRUE" is not a relation in STL, nor is it a modal

operator; rather, it is a reifying context. It asserts that

the proposition R(c\, . . . , cm) is true over the interval

specified by ta and tb- The time points ta and U, do

not appear as direct arguments to the relation symbol

R, nor to any functions which may appear in the Cj's,

but they affect the semantic interpretation of these

symbols.

The rest of the formulae of STL are built up in

the standard manner, by closing off under negation,

conjunction and universal quantification. As in BTK,

quantification can occur over the time points or over

the ordinary individuals, dependent on the sort of vari

able used.

Semantically STL has, like BTK, a universe of tem

poral objects and a universe of individuals. Unlike

BTK, STL requires that the temporal objects be time

■points. It forces the denotation of < to be a connected5

partial ordering over the time objects, and requires

that all of the atomic formulae include two temporal

arguments (denoting the starting and ending points

of the temporal interval over which the proposition

holds). The interpretation function maps the tempo

ral function symbols to functions over the universe of

time points. The mapping of the non-temporal func

tion and relation symbols is, however, determined not

4Terms in STL are formed in the standard manner, i.e.,

constants and variables, or functions applied to the proper

number of terms. Note, however, that in STL there are

no mixed functions, i.e., functions of temporal and non-

temporal terms.

4 Connected means that either a < b or 6 < a (or both)

for every temporal object a and b.

only by the symbol itself but also by the two time

points which occur in the "TRUE" construct.6 In par

ticular, there is a mapping from non-temporal function

symbols and a pair of time points to functions over

the universe of individuals. Similarly, there is a map

ping from non-temporal relation symbols and a pair

of time points to relations over the individuals. Each

non-temporal function symbol denotes many different

functions over the non-temporal individuals. The par

ticular function that it denotes is determined by the

time points in its "TRUE" context, and likewise for

non-temporal relation symbols.7 Once the particular

non-temporal function or relation is identified by the

time points the rest of the interpretation proceeds in

a standard manner. A fuller description of Shoham's

logic is provided in the Appendix.

4.1 Comparison of Shoham's Temporal Logic

to BTK

There are several implications of Shoham's approach.

One is that every non-temporal function and relation

is always dependent on exactly two time points. Thus,

for example, there is no way of specifying that a func

tion is dependent on only one time point,

LOCATION(SPACE-SHUTTLE, ti),

or that a relation is "eternal," i.e., not dependent on

time,

BLOCK(A).

Since the time dependency is specified semantically the

syntax is completely rigid on this matter. Every non-

temporal function and relation is always dependent

on exactly two time points. In BTK, there is neither a

syntactic commitment to the number of temporal ob

jects that any function or predicate may depend on,

nor is there any commitment to interpreting the tem

poral objects as either intervals or points. It is our

position that these choices should not be constrained

by the logic, but should be left to the axiom writer to

decide.

An additional problem with STL is that there is no

simple way of referring to one temporally referenced

object within the context of another temporal inter

val, such as the example "the President of 1962 died

in 1963." This is because Shoham requires all non-

temporal terms to be evaluated with respect to the

same temporal terms, i.e., those specified in the TRUE

context. To express such a statement in Shoham's

logic one has to resort to the more cumbersome use

of equality and implication:

Vx[TRUE(1962, 1963,PRESIDENT(USA) = x)

— TRUE(1963, 1964,DIED(i))]

'This is the only place that a non-temporal relation or

function can appear.

7 In this sense, the non-temporal functions can be viewed

as fluents [McCarthy and Hayes, 1969].
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This can be compaied with the expression of this

statement in BTK given in section 2. It can also be

noted that equality is required to express this asser

tion in Shoham's logic, and it is well known that au

tomated reasoning with equality is very difficult [Wos,

1988]. We will have more to say about reasoning with

Shoham's logic below.

A further problem is that Shoham does not allow for

temporal predicates, except for the predefined ones <

and =.8 Thus one would have to extend his formal

ism to, for instance, embed the MEETS predicate and

axioms of [Hayes and Allen, 1987] within STL.

A major difficulty with Shoham's approach is that,

since he has chosen to move away from standard (or

sorted) first order syntax, first order proof theory,

which is purely syntactic, no longer applies. Hence,

Shoham's reined logic9 requires a new proof theory.

This means that one cannot justify the use of Shoham 's

logic for reasoning about temporal propositions. There

is no reasoning procedure specified that provides any

formal guarantees of soundness or completeness.

It may not be very difficult to provide a proof theory

for Shoham's logic, but this in itself would not suffice

to provide a useful tool for reasoning. One would also

have to develop expertise in automating such a proof

theory. This may not be an easy task since, as indi

cated above, there are some examples which force the

use of equality which is known to be difficult to auto

mate. The fact that our temporal logic has a standard

syntax means that we can take advantage of 20 years

of research in automated reasoning.

Our temporal logic is a simple sorted first order

logic. It is simple because the sorts do not intersect.

Proof theories for sorted first order logics already ex

ist, and are applicable as is to our logic. In addi

tion, considerable work has been done on automating

such proof theories, [Walther, 1987]. Furthermore, if

one chooses to interpret our logic as non-sorted, then

standard FOL proof theory applies, as do automated

theorem provers for first order logic.

One would hope that there are compensations in us

ing STL in exchange for abandoning standard proof

theory. This is, however, not the case. The next

section will show that nothing is lost in moving from

Shoham's temporal logic to the logic proposed in this

paper. It shows that STL is subsumed by our logic in

the precise sense that any STL model can be trans

formed to a BTK model in such a way that there is a

one to one correspondence between the sentences sat-

*What we mean here is that the semantic model

Shoham defines does not allow for "user defined" tempo

ral relations. He does allow an arbitrary set of temporal

functions.

8It is perhaps more accurate to refer to Shoham's logic

as being intentional [Dowty tt a/., 198l] rather than reified.

Shoham does, however, refer to his logic as being a "new

reified temporal logic" [Shoham, 1987, Page 103].

isfied by the STL model and the sentences satisfied by

the BTK model. These results also show that there

is one way of doing reasoning in STL: translate it into

BTK.

5 Subsumption of Shoham's Logic

We show that Shoham's logic (STL) is subsumed by

the logic proposed in this paper (BTK) by defining two

transformations, a syntactic transformation, 7r,y„, and

a semantic transformation, ir,em.10 ir,yn maps sen

tences of STL to sentences of BTK, while ir,em maps

models of STL to models of BTK. Using these two

transformations we will show that any STL model can

be transformed into a BTK model in such a way that

the set of sentences satisfied by the BTK model11 in

cludes the transformed set of STL sentences satisfied

by the STL model. In other words, any set of STL

sentences can be rewritten as a set of BTK sentences

without eliminating any models which satisfy those

sentences.

The syntactic transformation is based on a simple

idea. In Shoham's logic all predicate symbols and

non-temporal function symbols are interpreted with

respect to the two time terms which appear as the first

two arguments of the "TRUE" construct. In trans

forming STL to BTK we take these two time terms

and add them as explicit temporal arguments to the

predicate symbol, and similarly we add them as extra

arguments to the non-temporal functions. Temporal

functions are unaffected by the transformation, and

none of the symbols are altered—they are just rear

ranged.

The only technical point is that non-temporal terms

can be built up from nested application of non-

temporal functions. In this case it is necessary to

propagate the two temporal arguments recursively to

all embedded function terms. For example, the non-

temporal term f(g(h(c))) in STL, where /, g, and h

are non-temporal functions and c is a non-temporal

constant, must be converted to a term of the form

/(*ii*2i °(*ii*2>'l(*iitJic)))i where t\ and t2 are the

propagated temporal terms. Here each of the func

tions /, g, and h has been converted to functions with

two extra temporal arguments.

The following examples should give a good idea of

the nature of the syntactic transformation. The STL

expressions

1. TRUE(ti, t2, COLOUR(HOUSEl 7, RED)).

2. TRUE(t3, t4, gender(president(usa), MALE)).

10Ladkin [Ladkin, 1988] uses a similar approach to map

Allen's interval calculus [Allen, 1983] to the language of

rational numbers. In doing this he is able to give decision

procedures for the interval calculus.

11 A model, M, satisfies a sentence, a, written M ^ a,

if a" = T, i.e., if a is true under the interpretation of the

model, er.
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3. TRUE[«lf ft(h), P(h(g(B)))}.

will be transformed to the BTK expressions:

1. COLOUR(ti,t2, HOUSE 17, RED).

2. GENDER(t3, U, PRESIDENT^, t4, USA), MALE).

3. P[h, ft(ti), h(tlt ft(tr), gih, hih), B))].

The semantic transformation is similar. In STL each

non-temporal function or relation symbol actually de

notes a set of different functions or relations over the

non-temporal individuals. The time points in the

"TRUE" context determine which element of the set

is picked out for this particular instance. In convert

ing from an STL model to a BTK model we gather up

all of the different functions associated with each func

tion symbol and construct a single function which has

two extra temporal arguments. The new BTK func

tion has the property that when it is evaluated at a

fixed pair of time points it is the same function as the

function denoted by the STL symbol when that sym

bol is interpreted with respect to those time points.

The non-temporal relations are transformed in a sim

ilar manner.

These transforms are defined formally in the ap

pendix, where we prove the following theorem.

Theorem 1 Given an STL sentence a and an STL

model M then

M^=a iff n.em(M) |= n,yn(a).

Proof The proof is straight forward, but requires the

development of a fair amount of notation. See the

appendix for details. ■

This theorem is a formal specification of the manner

in which STL is subsumed by BTK, and it has an

interesting corollary regarding proof theories.

Corollary 2 A sound proof theory in BTK can be

used to produce sound inferences in STL.

Proof The proof is extremely simple, given theorem

1. However, to avoid distraction it is given in the ap

pendix. ■

It is natural to ask a similar question about com

pleteness. That is, can a complete proof theory in

BTK produce a complete set of inferences in STL.

Here, however, the answer is no. If we have that

a |= f) in STL, then we know from theorem 1 that

x,yn(a) entails tf,yn{P) in every BTK model which

is of the form *,em{Ms), for some STL model, Ms-

However these are not the only BTK models, and it is

quite possible that in some BTK model which is not a

transformed STL model ir,yn(a) is true while ir,yn(P)

is false. Hence in BTK n,yn (a) h if,yn(P) would not

be sound, even though a f= p in STL. Another way

of stating this is that there may be a BTK sentence 6

which is not expressible in STL, and which is consis

tent with x,yn(a) and inconsistent with 7ray„(/?).

6 Translating Shoham's Ontology to

BTK

One of the benefits of Shoham's logic is that it does

not require the axiom writer to use a fixed ontology of

temporally scoped propositions, as, for example, Allen

does [Allen, 1984] with his introduction of properties,

events, and processes. Rather, Shoham's logic allows

the axiom writer to build her own ontology axiomati-

cally.

We argue that Shoham's ontology extends naturally

to our logic by virtue of the demonstrated translation,

and that, in fact, our ontology is richer, since our logic

allows intervals to be the primitive temporal objects

rather than being defined by the two endpoints, as in

STL. An example showing the translation of the on

tology axioms should suffice to demonstrate our claim.

Shoham defines a proposition type x (where propo

sition types are simply relation symbols with the req

uisite arguments) to be downward hereditary "if when

ever it holds over an interval it holds over all of its

subintervals." Shoham's axiom schema for this is

V*l,t2it3|t4-

[h <t3<ti<t2At1^t4At3^t2

ATRUE(«i, t2, x)] -* TRUE(t3, t4, x).

for all x's of the appropriate type. This translates

in BTK to the following schema, for each (n, m)-ary

predicate of the appropriate type:

Vti,t2,t3,U.

[«1 < *3 < U < t2 A ti ^ t4 A t3 ^ t2

Ap(*i, *2, ci, . . . , cm)] —► p(t3, tit ci, . . . , cm).

In addition, the predicate "<" must be defined ax-

iomatically in BTK, since it is not implicitly defined

as it is in STL.12 In BTK, however, one is not forced

to use time points so one might alternatively define

downward hereditary for a system in which intervals

are taken as the interpretation of time objects, as in:

Vilti2.puring(i2,ii) A p(ilt a cro)

-* P(*3|Cl Cm),

where it is assumed that During has been defined ax-

iomatically.

This same style of translation, then, can be used

for any of the other elements of Shoham's ontology:

upward-hereditary, point-downward-hereditary, liquid,

gestalt, etc.

7 Conclusion

A temporal logic has been presented for reasoning

about propositions whose truth values might change

as a function of time. The temporal propositions con

sist of formulae in a sorted first-order logic with each

12 This is because an ordering relation does not make

sense for certain temporal structures, e.g., intervals.
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atomic predicate taking some set of temporal argu

ments which denote time objects, as well as a set of

non-temporal arguments. The temporal arguments

serve to specify the proposition's dependence on time.

By partitioning the terms of the language into two

sorts, temporal and non-temporal, time is given a spe

cial syntactic and semantic status in the logic without

having to resort to reification. The benefits of this

logic are that it has a clear semantics and a proof-

theory which is easily implemented with standard au

tomated theorem provers. Unlike the first-order logic

presented by Shoham, propositions can be expressed

and interpreted with respect to any number of tempo

ral arguments, not just with respect to a pair of time

objects (an interval). In addition, the axiom writer is

free to consider the time objects as either points or

intervals. By proving that the logic completely sub

sumes Shoham's, we have demonstrated that nothing

is lost by this added flexibility and more standard and

useable syntax.
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A Transformation of STL to BTK

Definition 3 The syntactic transform, ir,yn, which

maps STL sentences to BTK sentences, is defined re

cursively as follows. It depends on a syntactic trans

formation of the non-temporal terms which is defined

next.

1- w,|/„(ta<i«>) •-* ta<h, and ir,yn(ta=tb) i-> ta=tb

(i.e., temporal terms and formulae are left intact).

2. *.„„ (TRUE(t„, tb, p(clt .... cn))) i-»

Pita, *6, H&i^l) *&UI(«»))

3. x,vn{-<oi) h-» -ur,„n(o)

4. lT.yn(ct A P) l-f n,yn(a) A *-,yn(/9)

5. irtyn(Vx(a)) >—► Vx(x,yn(a)), where x can be a

variable of either sort.

Definition 4 The syntactic transform, ir,yn , which

maps non-temporal terms of STL to terms of BTK is

defined as follows.

1. If c is a non-temporal constant or variable of STL

then

*»yn (c) I-* C.

2. «8!tf',(/(ei,...,e«))H»

/(t*,«y,«&JiW---.«W,1(«n))

The symbols of the corresponding BTK and STL lan

guages are identical, but as is seen from the definition

of T«yn, non-temporal functions and predicates have

two extra temporal arguments.

Next we define the semantic transformation ir,em,

but in order to do this we first need to provide more

detail about the models of STL.

A model of STL is defined to be the tuple

M = faw, <, W, TFN, FN, RL, m}

Where:

1 . TW is a universe of time points,

2. < is an ordering relation on TW,

3. W is a universe of individuals,

4. TFN is a set of temporal functions, TWn i-» TW,

5. FN is a set of non-temporal functions, Wn *-* W,

6. RL is a set of non-temporal relations in Wn,

7. M is the tuple of interpretation functions

(Mi, M2, M3, M4, M5), where:

(a) Mi is a mapping from the time constants to

TW,

(b) Mo is a mapping from the non-temporal con

stants to W,

(c) M3 is a mapping from the temporal functions

to TFN,

(d) Af4 is a mapping from TW x TW x / •-► FN,

where / is the set of non-temporal function

symbols,

(e) Ms is a mapping from TW x TW xth RL,

where r is the set of non-temporal relation

symbols.

In the following we denote temporal terms by t, (for

various subscripts t) and non-temporal terms by c,-

(note, terms are syntactic entities). We use hatted t

(usually with subscripts) to denote time points. These

are semantic entities which are members of TW, the

universe of time points. In addition, we use hatted c or

a (again usually with subscripts) to denote individuals

from the semantic domain W.

The meaning of an expression rp, M(rp), is defined

as follows:

1. If 0 is a temporal variable, then M(rj>) = VAt(i/>)

where VAt is a variable assignment function over

TW.

2. If ^ is a temporal constant, then M(tp) = M1(V').

3. If x/f is a temporal term of the form f(t\, ..., tn),

then

M(4) = M3(f)(M(t1),...,M(tn)).

4. If t/> is a non-temporal term, then meaning is as

signed to V with respect to two time points as

follows:

(a) If ^ is a non-temporal constant, then for all

time points tj, t2,

M{t\,t2,1>) = M2(if>).
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(b) If V" is a non-temporal variable, then for all

time points ti, t2,

where VAW is a variable assignment function

over W.

(c) If ip is a non-temporal function term of the

form /(ci,...,cn), then for all time points

M{t\,t2,t/>) =

M4{t\, tif f)[M{t\, t2, a) M(iu h, cn)].

And finally, a wff <f> is satisfied under interpretation M

and variable assignment VA, (written At \=VA ^) as

follows:

1. M\=VAt1 = t2 iff M{t{) - M(t2).

2. M f= VA ti < t2 iff M(ti) < M(t2).

3. M^^TRUE^i.tj.p^x c„))iff

(M[M{h), M(h), ex], . . . , M[M(fc), Af(t3), cn])

6A/8[A/(*i),A/(ta),p].

Truth is assigned to non-atomic formulae in the stan

dard fashion. Note that predicates are interpreted

with respect to two time points, just as were the non-

temporal functions.

We now define the semantic transformation of an

STL model.

Definition 5 The semantic transformation of At,

f«em(At), is a BTK model constructed as follows.

1. T — TW', the universe of time points is the same.

2. U = W, the universe of individuals is the same.

3. If / is a temporal function symbol of STL, then

r = M3(f).

4. If / is an n-ary non-temporal function symbol of

STL, then the following set of n-f 3 ordered tuples

is the interpretation of / under n,em(M):

r = {(ti,t2,c1,...,cn,a)\

t\, t2 e TW and {M4(t\, t2, f))(clt ...,cn) = a}.

Note that this set does in fact define a function.

Given any tuple (ti,t2,ci,...,cn), A/4 maps /,

tii and t2 to a unique function over Wn (= Un).

Hence, the c",'s will then map to a unique element

o of W (= U).

5. If P is a predicate symbol of STL, then

a) if P is <, then P" =;<, i.e., the semantic

ordering relation on TW;

b) if P is =, then P" = {(i,i)\t € T);

c) if P is an n-ary non-temporal predicate sym

bol of STL then the following set of n -I- 2-

ary tuples is the interpretation of P under

*«em(A{):

P" = {(tut2,cl cn)\

t\, t2 € TW and («!,..., cn) € M*(t\, t2, P).}

6. To complete the definition of a, we choose an arbi

trary mapping of the temporal variables to T and

an arbitrary mapping of the non-temporal vari

ables to U. Finally, we maintain the STK deno

tations of all constants, i.e., t" — Mi(t) for all

time constant symbols t, and c" — M2(c) for all

non-temporal constant symbols c.

Now we can prove the main technical result.

Theorem 1 Given an STL sentence a and an STL

model At then

M^=ct iff ff.em(At) |= xtvn(a).

Proof The cases where a is of the form t\ = t2 or

*i < tj are trivial. The non-trivial case is a of the

form

TRUE(tl,ta,p(ei,...,cll)).

We need only consider this case where all of the terms

are ground, i.e., variable free, since the formulae of

STL and BTK are built up in an identical manner and

the universes over which the quantified variables can

range are identical, (a is a sentence so all variables are

quantified.) ir,yn(a) is of the form

P(ti,ta,*&t,]('i) •SfcffoO)-

*iem(A() will be a model for this sentence iff

(«r. '». *?„» i]w «fe?J(«»r> e p",

where a is the interpretation function of 7r,em(At). By

definition, At is a model of a iff

(M[M(h), M(t2), ej M[M{h), M(t2), c„]>

eMs[M{t{),M(t2),p\.

Clearly from the construction of ir,em(M) all temporal

terms are given the same denotation in BTK as in STL,

i.e., t" = M(t) for all temporal terms t. We also claim

that all non-temporal terms, in a given TRUE context,

are given the same denotation in BTK as in STL. If

the term is a constant this follows directly from the

definition of jr,em, i.e., c" = M2(c). If the term is

of the form f(ci cn) and is within the temporal

context determined by temporal terms t\ and t2, then

if we take (cj)ff = M(M(t{),M(t2),Ci) for all t by

induction, then

T.l/n[/(ci,...,C„)],r

= [f(h,t2, nfe^CeO, .... tftf'Hcn)))*

= r((hr,(t2r,^t'\c1r, ....^(^r)

= [M4(Af(tl), M(t2), f))[M(M(tl), M(t2), Cl), ...,

M(M(h),M{t2),cn))

= M(f(Cl cn)).
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Hence all of the terms aie given an identical denota

tion. But using the definition of p° we have that

(*1 i*2 i *»V» ' (cl) iff

(M(t\), Mih), M[M(h), M(t3), Cl], . . . ,

M[M{tl),M(t2),e^)ep' iff

(M[M(h), M{tt), ci], .... M[A/(t1), (t2), c„])

Q.E.D. ■

Corollary 2 .4 sound proof theory in BTK can be

used to produce sound inferences in STL.

Proof Let a and ft be sentences of STL. We claim

that if %,yn(a) h 7r,yrl(/?) is a sound deduction in

BTK, then a \= ft in STL. That is, if the syntactic

transformation of a can be used to deduce (soundly)

the syntactic transformation of ft then a entails ft in

STL.13

If 7r,yn(a) h ir,yn{ft) then, by the assumption of

soundness, for all BTK models, M' , we have that

M' (= T.Vn(a) implies that M' \= ir»yn{ft)- Thus, this

also holds for all models which have the special form

T«em(.Ms) for all STL models Ms- Hence, by theo

rem 1 we have that for all STL models Ms, Ms \= ct

implies Ms (= ft- In other words a |= ft in STL. ■
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Abstract

Most of the solutions proposed to the Yale

shooting problem have either introduced new

nonmonotonic reasoning methods (generally

involving temporal priorities) or completely

reformulated the domain axioms to represent

causality explicitly. This paper presents a

new solution based on the idea that since

the abnormality predicate takes a situational

argument, it is important for the meanings

of the situations to be held constant across

the various models being compared. This is

accomplished by a simple change in circum

scription policy: when Ab is circumscribed,

Result (rather than Holds) is allowed to

vary. In addition, we need an axiom en

suring that every consistent situation is in

cluded in the domain of discourse. Ordinary

circumscription will then produce the intu

itively correct answer. Beyond its concep

tual simplicity, the solution proposed here

has additional advantages over the previous

approaches. Unlike the approach that uses

temporal priorities, it can support reasoning

backward in time as well as forward. And un

like the causal approach, it can handle rami

fications in a natural manner.

1 Introduction

The formalization of reasoning about change has prov

en to be a surprisingly difficult problem. Standard

logics are inadequate for this task because of difficul

ties such as the frame problem [McCarthy and Hayes,

1969]; nonmonotonic reasoning seems to be necessary.

Unfortunately, as demonstrated by the Yale shooting

problem of Hanks and McDermott [1987], the straight

forward use of standard nonmonotonic logics (such as

circumscription) for reasoning about action leads to

counter-intuitive results.

There have been a large number of solutions pro

posed to the shooting problem [Gelfond, 1988, Haugh,

1987, Kautz, 1986, Lifschitz, 1987a, Lifschitz, 1987b,

Morris, 1988, Pearl, 1988, Shoham, 1988, and others],

but none of them are completely satisfactory. Some of

these solutions cannot handle examples that require

reasoning backward in time. And others require that

the domain axioms be written in a rather restrictive

format. This paper presents a new approach to the

shooting problem that avoids these difficulties.

In the next section, we describe the shooting prob

lem. Section 3 surveys some of the previous solutions

and their limitations. Section 4 presents our solution,

albeit in a slightly simplified form; this solution is re

fined in Section 5. In Section 6, we consider some ad

ditional temporal reasoning scenarios in order to com

pare the various approaches to the Yale shooting prob

lem. Concluding remarks are contained in Section 7.

2 The shooting problem

The Yale shooting problem arises regardless of which

temporal formalism is used; we will use the situation

calculus [McCarthy and Hayes, 1969]. A situation is

the state of the world at a particular time. Given an

action a and a situation s, Result(a,s) denotes the

new situation after action o is performed in situation

5. A truth-valued fluent (the only kind of fluent that

will concern us) is a property that may or may not

hold in a given situation. If p is a fluent and s is a

situation, then Holds(p, s) means that the fluent p is

true in situation 5.

With these conventions, one might use standard

first-order logic to formalize the effects of various ac

tions, but there are some well-known problems with

this monotonic approach. The frame problem [Mc

Carthy and Hayes, 1969], to which this paper will

be limited, is that we would need to write down a

great many axioms specifying those properties that are

unchanged by each action. And yet, intuitively, all of

these frame axioms seem redundant; we would like to

specify just the positive effects of an action, and then

somehow say that nothing else changes. Part of the

motivation behind the development of nonmonotonic

reasoning was to formalize this notion, and thus to

solve the frame problem; we will use circumscription

[McCarthy, 1980, McCarthy, 1986]. If A is a formula,

P is a predicate, and Z is a tuple of predicates and
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functions, then the circumscription of P in A with Z

varied is written as Circum(«4, P, Z) [Lifschitz, 1985].

This formula selects those models of A in which the

extension of the predicate P is minimal (in the set in

clusion sense). Besides P, only those predicates and

functions in Z are allowed to vary during this mini

mization process.

Consider the standard default frame axiom:1

^Ab(p,a,s) =>

(Holds(p, Result(a, s)) = Holds(p, s)). (1)

This says that the value of a fluent persists from one

situation to the next unless something is abnormal.

The original intention was to circumscribe Ab with

Holds varied. (We will refer to this as the standard

circumscription policy.) It was hoped that this min

imization of abnormality would ensure that a fluent

would persist unless a specific axiom forced this fluent

to change.

Unfortunately, this approach does not work. In a se

quence of events, often one can eliminate an expected

abnormality at one time by introducing a totally gratu

itous abnormality at another time. In this case, there

will be multiple minimal models only one of which will

correspond to our intuitions.

The standard example, of course, is the Yale shoot

ing problem [Hanks and McDermott, 1987]. 2 In this

problem, which we are simplifying slightly from the

Hanks and McDermott version, there are two fluents,

Loaded and Alive, and two actions, Wait and Shoot.

The story is that if the gun is shot while it is loaded, a

person (named Fred) dies. There are no axioms about

Wait, so the general-purpose frame axiom should en

sure that it does not change anything. In the original

situation, the gun is loaded, and Fred is alive. If the

actions Wait and then Shoot are performed in succes

sion, what happens? Let ySV be the conjunction of

the default frame axiom (1) with the following domain

axioms:

Holds(Loaded, s) =>

^Holds(Alive, Result(Shoot, s)), (2)

Holds(Loaded,SO), (3)

Holds{Alive, SO). (4)

What does

CiTcum(ySV;Ab; Holds)

have to say about the truth value of

Holds(Alive, Result{Shoot, Result{Wait, SO)))?

'Lower case letters represent variables. Unbound vari

ables are implicitly universally quantified.

2 A similar scenario, involving the qualification problem

rather than the frame problem, was discovered indepen

dently by Lifschitz and reported by McCarthy [1986].

We might guess that the waiting has no effect, and

thus the shooting kills Fred, but circumscription is

not so cooperative. Another possibility according to

circumscription is that the gun mysteriously becomes

unloaded while waiting, and Fred survives. This sec

ond model contains an abnormality during the waiting

that was not present in the first model, but there is no

longer an abnormality during the shooting. (Since the

gun is unloaded, Fred does not change from Alive to

not Alive.) So both models are minimal, and the for

malization must be altered in some way to rule out the

anomalous model.3

3 Previous approaches

There have been a large number of solutions proposed

to the shooting problem. This section discusses the

two most popular groups of solutions.

3.1 Chronological minimization

One idea, proposed in various forms by Kautz [1986],

Lifschitz [1987b], and Shoham [1988], is chronological

minimization (the term is due to Shoham). This pro

posal claims that we should reason forward in time;

that is, apply the default assumptions in temporal or

der. So in the shooting scenario, we should first con

clude that the waiting action is not abnormal. Then,

since the gun would remain loaded, we would conclude

that Fred dies. Each of the above authors successfully

constructs a nonmonotonic logic that captures this no

tion of chronological minimality. Kautz, for example,

uses a modified version of circumscription in which ab

normalities at earlier times are minimized at a higher

priority than those at later times.

While this approach does in fact give the intuitively

correct answer to the Yale shooting problem, it is nev

ertheless highly problematic. Its applicability seems

to be limited to what Hanks and McDermott call tem

poral projection problems, or in other words, problems

in which given the initial conditions, we are asked to

predict what will be the case at a later time. One can

also consider temporal explanation problems [Hanks

and McDermott, 1987], i.e., problems requiring rea

soning backward in time. For problems of this sort,

chronological minimization generally does not work

very well. (See the example in Section 6.1.) For this

reason, chronological minimization is not a completely

satisfactory solution.

3.2 Causal minimization

Another approach, developed by Haugh [1987] and by

Lifschitz [1987a], is that of causal minimization. This

method represents causality explicitly by stating that

a fluent changes its value if and only if a successful

3The current formalization admits a third possibility:

Fred might die during the waiting phase. Our solution will

rule out this model also.
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action causes it to do so. The intuition here is that

there is a crucial difference between the abnormality

of a gun becoming unloaded while waiting, and the

abnormality of Fred dying when shot with a loaded

gun: there is a cause for the second while the first is

totally arbitrary. We will discuss the system of [Lifs-

chitz, 1987a]. There, the effects of actions are repre

sented with a predicate Causes(a,p, v) that indicates

that if the action a is successful, then the fluent p

takes on the value v. (The success or failure of an

action is determined by a Precond predicate that we

will not discuss.) With this formalism, one specifies

all the known causal rules (for the current example,

Causes(Shoot, Alive, False)), and then circumscribes

Causes with Holds varied. Since Causes does not

take a situational argument, there obviously cannot

be a conflict in minimizing it in different situations.

Therefore, the shooting problem cannot arise.

The main drawback of this proposal is that it does

not allow us to write our domain axioms in unre

stricted situation calculus. Instead, we must use the

Causes predicate. This is a severe restriction on our

expressive power because there is simply no way to

use the Causes predicate to express ramifications, do

main constraints, or general context-dependent effects.

(See Section 6.2 for a discussion of this issue.) In light

of this difficulty, it would be useful to solve the Yale

shooting problem in the original formalism.

4 The solution

Our approach to the Yale shooting problem consists of

two innovations. First of all, when we circumscribe Ab,

instead of letting the Holds predicate vary, we will let

the Result function vary. That is, we will not think

of Result(Wait, SO) as being a fixed situation, with

circumscription being used to determine which fluents

hold in this situation. Instead, we will assume that

for each combination of fluents, there is some possible

situation in which these fluents hold. Circumscription

will then be used to determine which of these situa

tions might be the result of waiting in SO. Second, in

order for this idea to succeed, we must already have

every consistent situation in the domain of discourse;

an axiom will be added to accomplish this.

To see why this approach makes sense, let us resist

the temptation of appealing to causality or temporal

priorities, and instead think about the problem in its

own terms. Why is it that we prefer the model in

which Fred dies to the one in which waiting unloads

the gun? After all, if by making the world behave more

abnormally in SO, we could make it behave less abnor

mally somewhere else, this would seem to be a fair

trade. The problem is that if waiting unloads the gun,

the resultant situation is a different situation than it

would have been, so it is not the case that the world

behaves more normally somewhere else. In our pre

ferred model, the abnormality was that Alive changed

to not Alive when Shoot was performed in a situation

in which the gun was loaded. In the anomalous model,

the world does not behave more normally in this situ

ation; this situation just never comes about! But the

usual circumscription policy, with Holds varied and

Result fixed, completely misses this subtlety. It views

the Result(Wait, S0)'s in the two models as the same

situation, even though different fluents hold in them.

From this perspective, the shooting problem arises

from the failure to index abnormality correctly; by

varying Result instead of Holds, we can correct this

problem. First, some details need to be discussed.

We will use a many-sorted language with ob

ject variables of the following sorts: for situations

(s,si,S2, .. .), for actions (a,a\,a2, • . .), for primi

tive fluents4 (p, Pi,P2> ■ • •)> and f°r times (t,ti,t2, . . .).

Times are integers, and the function Time(s):t maps

a situation to its time.5 We have the primitive-fluent

constants, Alive and Loaded, the situation constant,

SO, and the action constants, Wait and Shoot. Fi

nally, we have the predicate constant Holds(p,s) and

the function constant Result(a, s) :s. Axioms (l)-(4)

should be interpreted relative to these declarations.

Actions always increment the time:

Time(Result(a, s)) = Time(s) + 1. (5)

We also need a uniqueness of names axiom:

Wait ^ Shoot. (6)

Now, for the important part. Suppose that for every

point in time, and for every possible combination of

fluents, there is some situation at this time in which

these fluents hold. We will discuss how to achieve this

in general in the next section, but for the Yale shooting

problem we add the following existence of situations

axiom:

3s (Time(s) = t A Holds(Alive, s)

A Holds(Loaded, s))

A 3s (Time{s) = t A Holds(Alive,s)

A -*H olds(Loaded, s))

A 3s (Time(s) = t A -^Holds(Alive,s)

A Holds(Loaded, s))

A 3s (Time(s) = (A -<Holds( Alive, s)

A-iHolds(Loaded, s)).
(?)

4 Section 5 will make use of generalized fluents; these

are built up from the primitive fluents by using And and

Not. Primitive fluents are simply those that do not contain

logical connectives.

5 We are using this syntax to keep explicit the special

role of time; we could just as easily make time an ordinary

fluent. Actually, the only reason time is used in this paper

is to rule out "circular" models, in which a sequence of

actions performed in one situation leads back to that same

situation.
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Not( Loaded)

Not(Alive)

 

Not(Loaded)

Alive

 

Loaded

Alive

Loaded

Not(Alive)

 

Figure 1: A minimal model of the Yale shooting problem

Let A be the conjunction of Axioms (l)-(7), and

circumscribe Ab in A with Result varied:

B = CiTcum(A; Ab; Result).

Figures 1 and 2 are pictorial representations of models

of A. Time flows horizontally, and each circle repre

sents the set of situations at a given time in which

the fluents to its left either hold or do not hold as in

dicated. Axiom (7) ensures that each circle contains

at least one situation. The W arrows show the re

sult of performing the Wait action, and the S arrows

show the result of performing the Shoot action. Di

agonal arrows represent actions that change at least

one fluent, and hence are associated with at least one

abnormality.

Since the S arrows from situations in which Loaded

and Alive hold lead to situations in which Alive does

not hold, these arrows must be diagonal. In the model

of Figure 1, these are the only abnormalities, and

therefore this is a minimal model of A and hence a

model of B. Figure 1 represents the expected model

of the shooting problem. Figure 2, on the other hand,

represents an unexpected model: one in which wait

ing in SO unloads the gun. Note, however, that this

added abnormality does not reduce the abnormality

anywhere else. This model is strictly inferior to the

previous one, and so it is not a model of B. Therefore,

our technique solves the Yale shooting problem.

Proposition 1 B is consistent.

Proof. A model of B corresponding to Figure 1 can

be defined in a straightforward manner. □

Proposition 2 (Fred dies) B (=

->H olds (Alive, Result(Shoot, Result(Wait, SO)))

Proof. Consider a model of A where waiting in SO

unloads the gun; i.e., a model that satisfies

^Holds[Loaded, Result(Wait, SO))

A Ab(Loaded, Wait, SO).

By (7), we can vary Result to keep the gun loaded,

and thus eliminate this abnormality without intro

ducing any new abnormalities. (Axiom (6) ensures

that Result can be varied in this limited way with

out changing its effect for actions other than Wait.)

Therefore, in all minimal models of A the gun remains

loaded, and Fred dies. □

5 Existence of situations

In the last section, we violated the spirit of the non

monotonic enterprise by adding an existence of situa

tions axiom (7) that explicitly enumerated all possible

situations. For more complicated problems, this ax

iom would be a bit unwieldy. In this section, we show

how to write this axiom in a more general way.

We add a new sort to the language: general

ized fluents (which are a supersort of primitive flu

ents), with the variables /, /i, fi, . . .; and the functions

And(f,f):f and Not(f):f to build up these fluents

starting with primitive fluents. We will also alter the

declaration Holds(p, s) to Holds(f, s) so the first ar

gument can be any generalized fluent. We have:

Hold8(And{h,f7)ys) =

Holds(fus)AHolds{f2,s), (8)
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Figure 2: A nonminimal model of the Yale shooting problem

Holds{Not(f), s) = -,Holds(f, s), (9)

And{fuf2)*p, (10)

Not(f)?p. (11)

Axioms (8) and (9) are straightforward. Axioms (10)

and (11) indicate that compound fluents do not belong

to the subdomain of primitive fluents. Since the frame

axiom only applies to primitive fluents, this rules out

minimal models in which compound fluents persist at

the expense of primitive ones.

For our existence of situations axiom, we would like

to introduce a function Sit(t, f) : s that maps a time

and a fluent into some situation at that time in which

the fluent holds:

Time{Sit(t, /)) = t A Holds(f,Sit(t,f)).

This would guarantee that for each time, there is some

situation such that And(Alive, Loaded) holds, and one

such that And(Alive, Not(Loaded)) holds and so on.

But this would also mean that even inconsistent fluents

like And(Alive, Not(Alive)) would be true in some sit

uation; this contradicts (8) and (9). More generally,

any domain constraint will render certain fluent com

binations inconsistent. So instead, the existence of sit

uations axiom will be written as a default rule:

■>Absit(t, f)
(Time(Sit(t, /)) =t

AHolds(f,Sit(t,f))) (12)

with Absit circumscribed.

In order for the circumscription of Absit to have

its intended effect, some uniqueness of names axioms

will be necessary. We will use an abbreviation from

[Lifschitz, 1987a]: UNA[/i, . . . ,/B], where /i,...,/„

are (possibly 0-ary) functions, stands for the axioms:

fi{xi,...,xk) # fj{yi,---,yi)

for i < j where fi has arity k and /y has arity I, and

fi(xlt ...,xk) = fi(yi, . . . , yk) =>

(*i = Vi A . . . A as* = yk)

for fi of arity k > 0. These axioms ensure that

fi ■ ■• ,fn are injections with disjoint ranges. We state

that uniqueness of names applies to actions, fluents,

and our special Sit function:

UNA[Waii., Shoot], (13)

UNA[Alive, Loaded, And, Not], (14)

UNA[Sit]. (15)

(Axiom (13) is equivalent to Axiom (6).)

Let C be the conjunction of Axioms (l)-(5) and (8)-

(15). In addition to circumscribing Ab as before, we

now circumscribe Absit with Holds, Time, Result,

and Ab allowed to vary:

V = Circum(C; Absit; Holds, Time, Result, Ab)

A Circum(C; Ab; Result).

Proposition 3 V is consistent.

Proposition 4 (Fred dies again) V j=

-^Holds(Alive, Result(Shoot, Result{Wait, SO)))
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The above approach for ensuring the existence of

situations only works correctly for propositional flu

ents. If we had some fluent Interesting(x), for in

stance, where x could range over integers, (12) would

ensure the existence of a situation in which

And(Interesting (0), Interesting(l))

held, but with only finite conjunctions, it would not

ensure the existence of a situation in which all inte

gers were interesting. To do this, we would have to

reify quantified formulas. Alternatively, we could use

something like the following second-order existence of

situations axiom:

■nAbsU2(t, h) => Time(Sit2{t, h)) = t

A (Holds(p, Sit2(t, h)) = h(p))

where h is a predicate variable.

6 Examples

In order to compare the different approaches to the

Yale shooting problem, this section will discuss three

additional temporal reasoning problems. Section 6.1

contains an example that requires reasoning backward

in time. Section 6.2 discusses the issue of ramifica

tions. And finally, Section 6.3 deals with changes that

happen unexpectedly.

6.1 The murder mystery

Consider the following temporal explanation problem,

which we will call the murder mystery. In this story,

Fred is alive in the initial situation, and after the ac

tions Shoot and then Wait are performed in succession

(the opposite of the Yale shooting order), he is dead:

Holds(Loaded, s) =>

^Holds(Alive, Result(Shoot, s)),

Holds(Alive, SO),

S2 = Result(Wait, Result(Shoot, SO)),

-^Holds{Alive,S2).

The detective expert system is faced with the task

of determining when Fred died, and whether or not

the gun was originally loaded. If we used the obvious

monotonic frame axioms, we would be able to conclude

that the gun was originally loaded, and that Fred died

during the shooting. Unfortunately, the standard cir

cumscription policy is unable to reach this same con

clusion. It has no preference for when Fred died, and

even if it were told that Fred died during the shooting,

it still would not conclude that the gun was originally

loaded. Surely, assuming that the gun was loaded is

the only way to explain the

Ab(Alive, Shoot, SO)

that would be entailed by Fred being shot to death,

but circumscription is in the business of minimizing

abnormalities — not explaining them.

Chronological minimization only makes the situa

tion worse. It tries to delay abnormalities as long

as possible, so it avoids any abnormality during the

shooting phase, by postponing Fred's death to the

waiting phase. It therefore concludes that the gun

must have been unloaded!0

Causal minimization yields the intuitive answer

since it is only by assuming that the gun was orig

inally loaded that it can explain the death without

introducing an additional causal rule.

Our method also gives the right answer. The mini

mal model is the same one pictured in Figure 1, with

52 being reached by starting in SO and following the

S arrow and then the W arrow. There is a fine point,

however. In addition to Result, the situation con

stants SO and S2 also must be allowed to vary during

the circumscription. In general with our approach, all

situation constants and functions must be allowed to

vary. This did not matter for the Yale shooting prob

lem since in that problem, the situation SO was fully

specified.

6.2 Ramifications

Often, it is impractical to list explicitly all the con

sequences of an action. Rather, some of these con

sequences will be ramifications; that is, they will be

implied by domain constraints [Ginsberg and Smith,

1988]. One of the main advantages of our method over

causal minimization is that ours can handle ramifica

tions, while causal minimization cannot.

A simple example of this limitation of causal minimi

zation can be obtained from Hanks and McDermott's

original version of the Yale shooting problem in which

the gun was unloaded in the initial situation, and a

Load action was performed before the waiting.7 Us

ing the notation from [Lifschitz, 1987a], we have the

following causal specifications:

Causes(Load, Loaded, True),

Causes(Shoot, Alive, False).

Suppose that we added the fluent Dead and a domain

constraint relating Dead and Alive:

Holds(Dead,s) = -^Holds (Alive, s). (16)

It would be nice if by minimizing Causes we could

conclude that not only does shooting make Fred not

alive; it also makes him dead:

Causes(Shoot, Dead, True). (17)

6 Actually, even the standard circumscription policy says

that the gun must be originally unloaded. Regardless of

whether Fred dies during the shooting or the waiting, mak

ing the gun unloaded will keep Fred alive in other "pos

sible" action sequences starting with Result(Wait, SO).

This, however, is just an artifact of the situation calculus.

7The example is from Matthew Ginsberg, personal com

munication.
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Figure 3: Two minimal models of the stolen car problem

Unfortunately, there is another causally minimal mod

el in which Load kills Fred. In this model, there is no

situation in which the gun is loaded while Fred is alive;

therefore, (17) does not have to be added.

There have been some attempts at resolving this dif

ficulty while remaining within the causal minimization

framework, but so far none seem adequate. [Lifschitz,

1987a], for example, requires that fluents be divided

into two groups, primitive and nonprimitive, with the

causal laws and the frame axiom limited in applica

tion to the primitive fluents, and with the values of

the nonprimitive fluents determined by their defini

tions in terms of the primitive fluents. So, in the above

example, Dead would be a nonprimitive fluent.8 The

problem with this is that the fluents that change as the

result of domain constraints need not be definitional in

nature like Dead. Suppose two objects are connected

in some manner. Moving either one of them will cause

the other to move as well, so each object position will

have to be primitive for some actions and nonprimi

tive for other actions. Furthermore, if the connection

between the two objects is subsequently broken, then

both positions will become primitive fluents. In short,

the primitiveness of a fluent is dependent on both the

situation and the action, and to correctly formalize

8 In this paper, we also use primitive and nonprimitive

fluents, but for a somewhat different purpose. As discussed

in the next paragraph, we have no difficulty in letting both

Alive and Dead be primitive fluents.

this notion it seems that all the ramifications would

have to be precomputed — a potentially intractable

task [Ginsberg and Smith, 1988].

The approach advocated in this paper handles ram

ifications correctly. Domain constraints determine

which situations can exist in the model; in the above

example, there are only four types of situations that

can exist at any time point: Loaded can be true or

false, Alive can be true or false, and Dead must have

the opposite value of Alive. The causal laws, like (2)

further constrain the resultant situation of an action.

So if the gun is loaded, and Fred is alive, then (2) will

demand that Fred must be not alive after being shot,

and the domain constraint (16) will ensure that Fred

is dead in this resulting situation. Finally, the mini

mization of abnormality will keep the gun loaded since

we have not axiomatized the notion of running out of

bullets. The strange behavior of the causal approach

cannot occur here, because we require all possible sit

uations to exist in the model.

6.3 The stolen car problem

We consider one final example, Kautz's stolen car

problem [Kautz, 1986]. In the initial situation, your

car is not stolen. After you wait two times, it is stolen:

->Holds(Stolen, SO),

52 = Result(Wait, Result(Wait, SO)),

Holds(Stolen,S2).



Baker

Stolen

Not(Alive)

Not(Stolen)

Not(Alive)

Not(Stolen)

Alive

 

 

Stolen

Alive

Figure 4: A peculiar minimal model of the modified stolen car problem

Was the car stolen during the first waiting phase or

the second?

This problem differs in character from those dis

cussed previously: if we formalized this using the

monotonic frame axioms, we would have a contradic

tory theory. Nevertheless, the problem seems simple

enough; the car could have been stolen during either

of the two waiting phases, and there is no reason to

prefer one over the other. And indeed, the standard

circumscription policy will yield models correspond

ing to both of these alternatives. But as pointed out

in [Kautz, 1986], chronological minimization will claim

that the car must have been stolen during the second

waiting action. This is clearly unreasonable.

The basic causality-based formalism cannot deal

correctly with this problem either. Since it only allows

changes that are caused, it must assume that waiting

causes the car to be stolen. So not only is the car

stolen in the first waiting phase, it will always be stolen

whenever you wait. Several authors have augmented

the causal formalism to better address problems of this

sort. Lifschitz and Rabinov [1988], for example, al

low "miracles," i.e., changes that cannot be explained.

When their new predicate Miracle is minimized at a

lower priority than Causes, they are able to conclude

that a miracle occurred during either the first wait

ing action or during the second. Another approach,

proposed by Morgenstern and Stein [1988], explains

unexpected changes by assuming that additional ac

tions (selected from a list of known action types) have

been performed, possibly in parallel with the actions

that we know about. So in this case, if they had an

appropriate causal rule for the action Steal, Morgen

stern and Stein would be able to conclude that a Steal

action had been performed during one of the waiting

phases.

Finally, the solution proposed in this paper also runs

into some difficulties with the stolen car problem. It

does correctly handle the simple version. Figure 3

shows that, as desired, both possibilities (the car be

ing stolen during either the first or the second waiting

phase) are minimal models. Unfortunately, if we have

another fluent, say Alive, such that

Holds( Alive, SO),

besides the two expected minimal models, there will be

an additional one (shown in Figure 4) that satisfies:

Ab{Alive, Wait, SO)

A Ab(Stolen, Wait, Result(Wait, SO)).

Not only is the car stolen during the second waiting

action, poor Fred dies during the first waiting action!

In this model, waiting steals the car in a situation in

which Fred is dead; this abnormality is different from

the car being stolen while Fred is still alive.

Some words of explanation are in order. First of all,

this third model may be warranted in some cases. If

Fred were the security guard, then it is plausible that

the thief killed him before stealing the car. Of course,

for two arbitrary fluents, it is a bit silly to posit an

'This was pointed out by Matthew Ginsberg.
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abnormality of one fluent — not to get rid of an ab

normality of the second fluent — but merely to change

this abnormality into another abnormality that is "al

most the same." But since circumscription's definition

of a minimal model is based on set inclusion, circum

scription does not recognize the concept of "almost the

same."

Secondly, the Ab facts may be thought of as highly

specific causal rules. Thus, for example,

Ab( Alive, Wait, SO)

might be interpreted as saying that Wait causes the

value of Alive to change if it is performed in a partic

ular situation — one that is at time 1 in which Fred

is alive and the car is not stolen. So in order to ex

plain unexpected changes, our approach, rather than

assuming the occurrence of additional actions (as in

[Morgenstern and Stein, 1988]) or miracles (as in [Lif-

schitz and Rabinov, 1988]), instead extends the causal

theory in a minimal (and admittedly peculiar) fashion.

This is obviously not the right thing to do. There is no

reason, however, why the improvements to causal min

imization cannot also be integrated with the current

approach.

7 Conclusion

This paper has presented a new approach to nonmono

tonic temporal reasoning. The approach correctly for

malizes problems requiring reasoning both forward and

backward in time, and it allows for some of an ac

tion's effects to be specified indirectly using domain

constraints.

It should be noted that, in a certain sense, our so

lution works for the same reason that causal mini

mization does. Causal minimization is not tempted

to unload the gun because it is minimizing the extent

of the Causes predicate rather than actual changes

in the world; unloading the gun would prevent the

Causes (Shoot, Alive, False) fact from being used, but

it would not eliminate the fact itself. Similarly, our

solution minimizes even those abnormality facts asso

ciated with situations that do not really happen. But

since we stick with the standard axioms (rather than

introducing a special Causes predicate), our approach

appears to be the more robust of the two: for us, even

those abnormalities that arise as ramifications will not

be eliminated by the assumption of gratuitous changes.

There are several possible directions for future work.

One project would be to extend this approach to han

dle more expressive models of time, of action, and of

causality. Another question is how to augment the for

malism with default rules concerning the typical values

of fluents; we might, for instance, wish to assume that

guns are loaded by default. But if we add defaults

of this kind carelessly, the Yale shooting problem is

likely to reappear. Lastly and most importantly, there

is the issue of implementation. It would be interest

ing if there were a formulation of this paper's theory

that, when given to an "off the shelf" circumscriptive

theorem prover, would lead to chains of reasoning that

were both intuitive and efficient. There has been some

preliminary work on these topics, but much more re

mains to be done.
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Abstract

The central claim of the paper concerns AI

systems that attempt to represent proposi-

tional attitudes in realistic situations, and

particularly in situations portrayed in natural

language discourse. The claim is that the

system, in order to achieve a coherent, useful

view of a situation, must often ascribe, to

outer agents, views of inner agents' atti

tudes that are based on rich explications in

terms of commonsense metaphorical views

of mind. This elevates the emasculated

metaphors based on notions of world, situa

tion, container, and so on that underlie pro-

positional attitude representation proposals

to the status of explicitly-used, rich meta

phors. A system can adopt different patterns

of commonsense inference about attitudes by

choosing different metaphors. The current

stage of development of a detailed represen

tation scheme based on the claim is

described. The scheme allows different

metaphors to be used for the explication of

attitudes at different levels in a nested-

attitude situation.

1 Introduction

I argue for a major shift in the way in which beliefs and

other propositional attitudes are represented and reasoned

about. The shift is not predominantly at the level of the

syntactic nature of the logic or other representational

framework used. Rather, it is at the higher level of the

content of the representational structures, and involves

"explicating" attitudes in accordance with the common-

sense models or theories that people actually seem to use

for thinking and talking about attitude states. Moreover,

commonsense theories of propositional attitudes are

largely metaphorical, so that the shift is towards a tight

integration of the study of attitudes with the study of

metaphor (as a cognitive phenomenon rather than a

superficially linguistic one).

The research reported here begins to grapple seri

ously with propositional attitudes as they arise in realistic

natural language communication and in realistic com

monsense reasoning, and integrates the study of proposi

tional attitudes more closely with various other areas,

notably the following: recent work in linguistics on com

monsense views of propositional attitudes and other

abstract matters [e.g. Johnson, 1987, Lakoff, 1987,

Sweetser, 1987, Sweetser, forthcoming, Talmy 1988];

plausible, commonsense reasoning more generally; and

discourse coherence theory. In particular, the research is

related to the work of Fass [1987], Hobbs [1983a,b,

1985] and Carbonell [1982] on discourse coherence,

metaphor and their relationship. See also [Johnson, 1987:

pp.5ff, 37]. In this context, my explication of proposi

tional attitude states in commonsense/mciaphorical terms

is a special case of what Hobbs [1985] calls "elabora

tion".

The shift of approach put forward by this paper

concerns an aspect of nested attitudes that is not com

monly addressed. Consider the sentence, "Bob hopes

that Mike realizes that Jim's wife is clever". The typical

theoretical concern with this sentence would be the

variety of ways in which the phrase "Jim's wife" could

contribute to the meaning of the whole. I focus, on the

other hand, on Mike's stale of realization itself. I claim

that we need to pay serious attention to the question of

what commonsense view of that state Bob is likely to

be entertaining. I will argue below that, in an example

like the one just given, Mike's hoped-for state of realiza

tion is quite likely to need explication (elaboration,

decomposion) in the terms of some commonsense and

probably metaphorical view of mind that the surround

ing discourse suggests is being used by Bob in his view

of Mike. This need arises from a need to establish

coherence between the interpretation of the sentence and

that of surrounding sentences.

It would be wrong to conclude, however, that the

research concerns propositional attitudes only in so far as

they are reported in natural language utterances. On the

contrary, I claim that people think about attitudes in

terms of a variety of commonsense and largely meta

phorical models, and that the models that arc implicit or

explicit in discourse are a reflection of them. Thus, the

approach concerns propositional attitude representation in

general. However, it is convenient in an exposition to

discuss examples in the context of natural language pro

cessing.

It is possible that there arc non-metaphorical, yet

commonsensical, ways of explicating mental states. One
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such may be an explication of a particular belief in terms

of a disposition to act in a certain way. My approach is

intended to encompass such possibilities, but for brevity

1 talk below as if commonsensical explications are all

metaphorical, as I do think the metaphorical ones are in

the majority.

2 Metaphors of Mind

It is typical for people to think commonsensically of

minds by means of metaphors, many of which are fairly

standard. Such prevalent, commonsense, metaphorical

views of mind have received some close attention [e.g.:

Johnson, 1987, Lakoff & Johnson, 1980, Katz et al.,

1988, Larsen, 1987, Rcddy, 1979, Sweetser, 1987,

Swcetser, forthcoming, Tomlinson 1986]. Some meta

phors for mind arc closely related to (if not identical to)

common metaphors for arguments and reasoning

processes — consider for instance the ARGUMENT-

AS-WAR, ARGUMENT-AS-BUILDING, and

ARGUMENT-AS-JOURNEY metaphors analysed in

detail in Johnson [1987] and Lakoff & Johnson [1980].

Metaphorical relationships between understanding and

seeing have been studied [e.g. Johnson, 1987: p.108,

Swcetser, forthcoming]. The metaphors used are also

linked to common(scnse) metaphors for language, partic

ularly the famous CONDUIT metaphor for communica

tion [Reddy, 1979] and bodily-force-bascd metaphors for

moral action, alcthic modalities (necessity, possibility),

and reasoning processes [Johnson, 1987: p. 16, 48ff,

Swcetser, forthcoming, Talmy, 1988]. A consideration

of perfectly mundane discourse readily reveals that peo

ple think of minds as BATTLEGROUNDS, CON

TAINERS, MINES (as in gold-mine), SOCIETIES,

LANDSCAPES, WORLDS, MACHINES, COMPUT

ERS, and many other things. Consider for instance the

following fragments, with annotations about the meta

phors used:

She has it firmly fixed in her mind that John is

evil. [MIND-AS-CONTAINER]

It gradually became clear to him that she loved

him. His vision had been obscured by resentment.

[UNDERSTANDING-AS-SEEING]

Her wishful thinking battled with the frightening

truth for some time. [MIND-AS-

BATTLEGROUND]

These sentences rely on systematic metaphors that are

appealed to by uttcrer and underslander alike. I take the

MIND-AS-BATTLEGROUND metaphor as my prime

example, even though Sweetser [1987] gives primacy to

other metaphors. None of my claims rest on any special

quality of that metaphor.

We can even claim that people think of minds only

in such metaphorical terms — that they do not have

access to an objective, metaphor-independent, common-

sense theory of mind for which the metaphors merely

supply a colorful way of talking or thinking. In short,

the metaphors are constitutive of people's views of mind.

(See, e.g., [Black, 1954/5, Johnson, 1987: incl.

p.xii,5,112, Richards, 1936] for constitutive metaphors in

general.) A fortiori, the metaphors are creative, in the

sense of supplying (possibly misleading) information that

would not otherwise be available. The creative aspect

goes beyond the mere establishment of an analogy

between some structure in the metaphor vehicle and

some independently-known structure in the metaphor

tenor [e.g. Black, 1954/5, Hobbs, 1983a,b, Johnson,

1987: p.69].

Actually, I rely only on a slightly weaker claim

than constitutivity, namely that people's patterns of infer

ence, about minds or whatever else, are frequently

governed by metaphors [e.g.: Carbonell, 1982, Johnson,

1987: esp. circa p.112, Lakoff, 1987, Lakoff & Johnson,

1980]. My approach nevertheless allows for the possi

bility that people sometimes think about minds in a

metaphor-free way.

3 The Benefits of Metaphorical Explication

3.1 Discourse Coherence

Consider the following discourse fragment:

(1) Professor Jenny Zorn hopes that Xavier will come to

realize that his theory is faulty.

(2) But she's afraid that the idea of its being faulty is

battling against his habit of wishful thinking.

How could an AI natural language understanding system

give this fragment a coherent interpretation? Before

answering this question, we should attend to a scope

ambiguity in the second sentence. That sentence could

be taken to mean that Jenny Zorn is herself thinking in

terms of of the metaphor of an idea battling with a habit

(the inner-scope reading of the metaphor). Alternatively,

we could assume merely that the speaker is using the

metaphor to describe Xavier's hoped-for mental state

(the outer-scope reading). Without wishing to deny the

possible importance of the latter reading, I hold that the

former is very likely in practice to be the more appropri

ate one, and that therefore we must be seriously con

cerned with treating it properly.

I claim, then, that the system can best give a

coherent interpretation to sentence (1) and sentence (2)

(assuming inner scope) by giving the "coming to real

ize" notion in the first sentence a metaphorical explica

tion (elaboration, expansion) in terms of the MIND-AS-

BATTLEGROUND metaphor appealed to in the second

sentence. That is, the system should give sentence (1) an

interpretation similar to what it would have given, say,

the following sentence in the same context:

(3) Zorn hopes that the idea of Xavier's theory being

faulty will gain dominance in the battleground of

his mind.
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This is the most straightforward way for the system to

respect the plausible, inner-scope interpretation of (2)

that Zorn is actually thinking about Xavier by means of

the MIND-AS-BATTLEGROUND metaphor. And it is

the most straightforward way for the system to be in a

position to draw the full plausible implications of the

discourse.

One such implication is that Zorn thinks, despite

her hope, that there is a very good chance that Xavier

will not come to realize that his theory is faulty, and,

further, that the reason for that possible failure is

Xavier's wishful thinking. The connotation of "X is bat

tling against Y", taken in a literal sense, is that it is

quite likely, or at least very possible, that X will lose.

This connotation, i.e. plausible conclusion, carries over

to metaphorical battles as well. In the present example,

the possibility of X losing (i.e. the idea of the theory

being faulty losing) is reinforced by the phrase "But

she's afraid that", which could itself be taken suggesting

the possibility that there is something working against

Zorn's hope. Of course, there are alternative possibilities

suggested by that phrase. Consider that the second sen

tence could have been

But she's afraid that if he does he might

have a nervous breakdown.

In this case the contrast underlying the "But" is that the

hoped-for event may have an undesirable consequence,

rather than that the hope may be unrealistic, as in our

actual example. This observation shows that the phrase

"But she's afraid that" is not enough by itself to lead

the system to high confidence in the hypothesis that Zorn

thinks that Xavier may well not come to realize his

theory is faulty. It is the content of the rest of sentence

(2) that firmly supports that hypothesis.

But how does the system use that content to sup

port the hypothesis? It can only do so if it appeals to a

metaphorical correspondence under which the process of

the idea X winning (or losing) the battle corresponds to

the process of Xavier coming (respectively, failing to

come) to realize X. Furthermore, a perception of the

correspondence should be attributed to Zorn, since Zorn

is meant to be thinking about Xavier in the terms of the

metaphor, and it is her views and inferences that are the

subject of the system's inferences. In sum: what Zorn

hopes for is viewed by Zorn herself as being metaphori

cally expressible (in a mental sense) as the idea X win

ning the battle. But this is just to say that we can con

clude (at least very plausibly) that Zorn hopes that, in

metaphorical terms, the idea will win the battle, as

hypothetical sentence (3) says. (Note that in none of this

do we assume that Zorn fails to realize that she is

indulging in metaphorical thought.) One might claim

that it is in principle possible for Zorn to have the hope

expressed by (1) and to be thinking about Xavier in

terms of the metaphor without making the necessary con

nection to the notion of the idea X winning the battle; we

can grant this but still hold that normally the system

should presume that she does make the connection.

This argument leaves open the possibility that the

system should not only maintain an internal expression

£3 paraphrasable as (3), but should also maintain an

internal expression £1 that expresses (1) without appeal

to any metaphor; indeed, this seems a very natural

suggestion, since Ex would be what the system would

produce anyway on encountering (1) and before

encountering (2). In that case, £3 would be best viewed

as merely a plausible inference from £1( rather than as

actually being, as I claim, the rendering of (1) that the

system should eventually choose. Further, one might

raise the following larger question at this point:

"Even granting that context sometimes man

dates the production of expressions like £3

as an inference from sentences like (1),

surely in most cases it does not (i.e. no

metaphor is suggested): so why not use, in

most cases, existing representational tools,

which do not make metaphorical ascriptions?

Why bother to develop a representational

scheme based on the metaphorical-

explication claim, since it pertains only to an

unusual effect the study of which can be

postponed?"

My response both to this question and to the idea that

even in the presence of £3 there should be a separate,

non-metaphorical expression £ j is mainly as follows.

In cases where no metaphor is (so far) suggested

by context, the proposed representational scheme's

rendering of a sentence like (1) is based on giving both

the inner and outer attitude an explication in terms of a

certain default metaphor. The explication is such that

the representational expressions yielded arc much like

those used in certain existing approaches. The default

metaphor is a simple "AGENTS-WORLD" metaphor,

which can be seen as a sort of MENTAL-SPACE meta

phor, in the Fauconnier [1985] sense of mental space.

As a result, the default representational constructs are

akin to, and not appreciably more complex than, those

used in existing approaches based on partitions, environ

ments, or mental spaces [see particularly: Dinsmore,

1988, Fauconnier, 1985, Wilks & Ballim, 1987, Wilks &

Bien, 1983]. This can be seen from the expressions to

be presented in Section 5. So, on encountering (1) the

system produces an interpretation based on the default

metaphor, instead of a non-metaphorical interpretation

£j. In a case where a non-default metaphor is sug

gested, as by sentence (2), the system suppresses any

default-metaphor interpretation, and instead adopts one,

like £3, based on the suggested metaphor. Although it

might sometimes be possible to keep the default-

metaphor interpretation active, as well as the non-default

one, this is not generally desirable because different

mental metaphors can lead to different patterns of infer
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ence, as argued below.

Therefore, the system takes an approach that is

based throughout on metaphorical views of mental states.

The point is that not only does this remain faithful to the

way people actually view mental states, but there is noth

ing lost by doing it since the representations based on the

default metaphor are no more elaborate than the expres

sions in existing non-metaphorical schemes founded on

notions of space, environment or partition. The approach

docs add something not present in those schemes,

though: an explicit commitment to the idea that the

represented agents themselves have views that are based

on the world metaphor.

This response to the question is, I hold, sufficient

by itself, but we can also make a second observation,

which calls into question an unspoken assumption both

in the question displayed above and in the idea of main

taining a non-metaphorical E\ as well as the metaphori

cal £3. That assumption is that there exists an adequate

representational approach in which to couch non-

metaphorical renderings (such as £j) of nested attitude

situations in the first place. I claim that this assumption

may be false, but I postpone the issue until Section 4.

Another possible objection we must address is the

contention that sentence (2) should be given a a literal-

ized interpretation, that is, one that that substitutes a

literal description of the situation metaphorically

described as a battle. This may seem to many readers a

more natural thing to do than to adopt a "metaphoriza-

tion" of sentence (1). However, we must always

remember that the interpretation of (1) and (2) must be

such as to allow plausible reasoning about what Zorn

would (plausibly) infer from her thoughts about Xavier.

And this involves reasoning about what Zorn herself

would conclude from her metaphorical thought that the

idea X is battling the habit of wishful thinking. (Recall

that we are assuming an inner-scope interpretation of the

metaphor in (2).) Under the literal ization-of-(2) proposal,

we would have to ensure that the litcralization was such

that the inferences it supports emulate the inferences

Zorn would be likely to make based on her metaphorical

thought I contend that this would be an extremely

difficult thing to do, because Zorn might make use of

many different aspects of the battleground domain as a

basis for her inferences. (The fact that her inferences

might themselves be implausible as a result of being

based on an ill-advised application of the metaphor is

beside the point.) A literalization of (2) would somehow

have to encompass many possible ramifications of the

metaphor, not just the bare idea that Xavicr's habit of

wishful thinking is tending to stop Mike's coming to

realize that his theory is faulty. In any case, if an ade

quate literalization were available, it would seem point

less and perverse to use it as opposed to conducting

inference at the level Zom is taken to be thinking, i.e. at

the level of the metaphor.

There is a further consideration supporting the

claim that the system should conduct its inference about

Zorn's thoughts about Xavier at the level of the meta

phor, and not move to a literal explication. This con

sideration is that the major conclusions that Zorn (sup

posedly) comes to may themselves be at the level of the

metaphor, and may be difficult to translate into literal

terms. It is natural for a human reader to infer (or at

least to accept) on the basis of (1) and (2) that, in Zorn's

view, even if Xavier does come to realize that his theory

is faulty, the realization is in danger of being destroyed

later by the continued onslaughts of his habit of wishful

thinking. If the system is later presented with the fol

lowing input:

(4) Zorn thinks that even if he does come to realize that

his theory is faulty, he'll have to work hard to keep

it in mind,

the system does not to have to argue very far from its

internal rendering of (3), and a similarly explicated ver

sion of the realizing in (4), to the conclusion that the

likely reason for the need for the hard work is the

wishful-thinking habit. (An interesting issue that I do

not address here is the required mapping between the

active MIND-AS-BATTLEGROUND metaphor and the

MIND-AS-CONTAINER metaphor brought in by (4).)

Indeed, we see that on the basis of (3) and (4) the system

could easily derive the plausible conclusion that Zorn

thinks that, during the period between the achievement of

the realization and the forgetting, the idea that the theory

is faulty has been continuously trying to defend itself

from attacks by the wishful thinking habit. But this con

clusion is one which it would be inefficient or difficult

(if not impossible) to express in terms other than of the

battleground metaphor (or some other metaphor). It

therefore makes sense for the system to conduct its rea

soning as far as possible within the terms of that meta

phor.

3.2 Sensitivity of Inference to Choice of Metaphor

In the last subsection we discussed the benefit of giving

a metaphorical explication to a propositional attitude,

such as the realizing in (1). A converse issue arises in

examples where what is given is already a metaphorical

explication of a mental state, as in

(5) Zorn believes that Jane has it firmly fixed in her

mind that John is evil.

Assume, again, an inner-scope reading, now with respect

to the MIND-AS-CONTAINER metaphor being used to

describe Jane's mental state. One might suggest that,

even if the system kept around a representation of Zorn

as thinking about Jane in terms of this metaphor, the

system should use for its main inferencing an (ostensi

bly) literal paraphrase of the content of the sentence,

much as if it had said:
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(6) Zorn believes that Jane believes with high confidence

that John is evil.

I do not deny that there may be good reasons for adopt

ing such a paraphrase. However, I also claim that a

MIND-AS-CONTAINER-based internal rendering of (5)

is likely to be more useful inferentially. It allows the

system to infer, much more easily/securely than (6) does,

that, in Zom's view, Jane could only be made to lose her

belief that John is evil with considerable difficulty, and

with a lot of resistance from Jane (or from objects in her

mind other than the idea that John is evil). This is

because the phrase "firmly fixed" makes the clear

suggestion that the idea is fixed to something: cither the

container itself, or other ideas, or both. One might

respond to this by claiming that (6) should be corrected

to say "with high internal justification level" rather than

(or as well as) "with high confidence", to capture the

idea of the belief being connected to other things. The

trouble with such a suggestion is that for every plausible

conclusion that one might come to on the basis of the

metaphorical idea of "firmly-fixed", one would have to

include in (6) a means of capturing it. For instance, it is

reasonable to suggest that the system could plausibly

conclude from (5) that, in Zorn's view, Jane is rather

obstinate: this is because the notion of something being

"firmly fixed" naturally, by a process of association,

leads one to imagine actions that might dislodge the

fixed thing. Any such attempts have (in Zom's view)

failed. The amended version of (6), in not having

corresponding dynamic connotations emanating from the

commonsense physical world, is as it stands less reason

ably claimed to lead to the plausible conclusion that Jane

is obstinate. In sum, the metaphorically-explicated inter

nal representation corresponding to (5) is an economical

and efficient basis for plausible inferences about what it

is that Zorn is likely to conclude about Jane, on the

basis, remember, of Zorn's use of the MIND-AS-

CONTAINER metaphor. Had (5) used a different meta

phor, the system would have needed to reason differently

about Zorn's reasoning about Jane.

All this is said with the understanding that there

are simple types of inference about attitudes that do not

require or benefit from metaphorical explication. For

instance, if we arc told that John gets angry whenever- he

thinks about musicians, we can infer from the informa

tion that he is thinking about musicians direct to the con

clusion that he is going to get angry.

There has been much discussion, in philosophy

and AI, on what sorts of inference a scheme for

propositional-attitude representation/reasoning should

force, sanction, or prohibit. In fact, this is the strongest

unifying thread running through the altitude-

representation field. It is the issue underlying the prob

lems of referential opacity and logical omniscience, and

most works on prepositional attitudes (as an issue in

their own right) preferentially address these rather spe

cialized topics. The proposer of a scheme usually makes

specific decisions on what inferences to force, sanction

or prohibit, and is usually then taken to task by proposers

of other schemes. The forcings, sanctions, and prohibi

tions proposed are very much dependent on the style of

representation that the proposer finds appealing (e.g.

modal-logic, quotational-logic, neo-Fregean, semantic

network), and the appeal depends on what metaphor of

mind the proposer finds most useful or congenial.

My own stance is that there is no single right

answer to the question of what inferences should be

sanctioned, etc., because we have available to us no sin

gle correct characterization of mental states (and even if

we did it wouldn't be much use because it wouldn't be

used by agents holding altitudes about other agents' atti

tudes), and this is because all we have is bunch of possi

bly conflicting metaphors for mental states. Therefore, a

system that reasons about attitudes will tend to come to

different plausible conclusions depending on what types

of metaphorical explication it is led to adopt at the time.

To give a simple example of the effect I envisage here,

consider the sentence

(7) Mike believes that Jane is tall and that all tall people

are clever.

It is standard practice to wonder whether a person or A I

system can conclude from this that Mike believes that

Jane is clever. The first point to make is that the issue is

one of merely plausible inference, whereas most discus

sions are cast only in terms of sound inference, using ihc

technical, strict notion of "sound". That aside, the

important observation is that the answer to the question

posed a moment ago is dependent on which metaphor the

system hypothesizes the speaker to be using. (The

speaker in this example is playing a role comparable to

that of Zorn in previous examples.) Suppose, for

instance, the system assumes an AGENTS-WORLD

metaphor, and adopts an internal representation para-

phrasablc as

(7a) In Mike's world, Jane is tall and all tall people are

clever.

The simpler ways of using the world metaphor within

plausible reasoning would lead to the conclusion that in

Mike's world Jane is clever — that is, to back-

paraphrase, the conclusion that Mike believes that Jane is

clever. But suppose now the system uses the MIND-

AS-CONTAINER metaphor. To paraphrase, the system

has the information:

(7b) Mike's mind contains the idea of Jane being tall

and the idea of all tall people being clever.

Since we are accustomed to thinking, under the banner of

the MIND-AS-CONTAINER metaphor, of ideas being in

perhaps widely separated parts of the container, possibly

even in "compartments" between which travel is

difficult or infrequent, the system must allow the reason

ably strong possibility that Mike has not brought the two
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ideas referred to in (7b) together in such a way as to

facilitate an inference on his part to Jane being clever.

This does not of itself mean that the system shouldn't

tentatively conclude that Mike does believe that Jane is

clever, but it does mean that later evidence contrary to

this conclusion can (or should) be used not only to

repeal the conclusion, but also to infer that the two ideas

are in fact in mutually distant/inaccessible parts of

Mike's mind/container. This inference could later be

deployed to good effect in the system's reasoning about

Mike.

In contrast, in the case in which the system is

using the AGENT'S-WORLD metaphor, if it learns con

trary to expectation that Mike does not believe that Jane

is clever, then, since that conclusion is inescapable under

the simple way of deploying that metaphor, the system

should either adopt a more sophisticated way of using

the metaphor or should abandon it in favor of another

one. From this we see that metaphor-based reasoning

about propositional attitudes may not only involve

defeasibility of inference within a metaphor, but also

dcfeasibility of the choice of metaphor in the first place.

33 Benefits: Further Discussion

The discourse example (1,2) and the example sentence

(5) show that metaphorical explications of attitudes are

needed by an AI system as a basis for perceiving the

coherence of discourse and for making plausible infer

ences from discourse. We also saw, using example (7),

that the ability to choose a particular metaphorical expli

cation from a range of possible explications allows a sys

tem to engage in different patterns of inference about

attitudes, in a way guided by the prevailing context This

approach relieves us of the need to commit ourselves to

any particular regime of inference forcing, sanctioning

and prohibiting. It also elevates the metaphors that have

been appealed to by proposers of attitude

representation/reasoning schemes, but that are only fee

bly elaborated in those schemes, to the status of expli

citly available representational/reasoning frameworks,

endowed with whatever degree of commonsensically-

motivated richness is desired.

The considerations supporting the claims are

clearest when what is explicitly at issue, in a piece of

discourse, is an outer agent's (e.g. Zorn's) view of an

inner agent's (e.g. Xavier's and Jane's) attitudes. For

instance, we discussed (1), (2) and (5) on the assumption

of an inner-scope reading of the metaphors of interest,

that is, on the assumption that Zorn herself is thinking in

terms of the metaphors. However, the considerations

also arise if an AI system is presented with sentence (7),

since the attitudes of the speaker of the sentence may

well have to be taken into account, and any mental meta

phors underlying the speaker's view of Mike are impor

tant determinants of the patterns of inference the system

can plausibly engage in. But going back now to (1), (2)

and (5), we realize that the attitudes of and metaphors

used by the speakers arc important here too. This not

only affects the way the system should interpret Zom's

own attitudes (wheareas previously we discussed only

the inner attitudes, those of Xavier and Jane in Zom's

view); it also reveals that even on an outer-scope reading

of the metaphors in (2) and (5) the perception of

discourse coherence will need to rest on those metaphors,

though in a way differing in detail from the inner-scope

case.

4 Avoiding Implausible Ascriptions

In Section 3.1, I advertised a claim that the assumption

that there is an existing representational tool that is ade

quate for the representation of nested attitudes may be

false. I do not go so far as to argue that the assumption

is definitely false, or that, even if it is false at present it

will continue to be false, but I do want to mention that

many existing schemes suffer from an "implausible

ascription" problem. That is, the schemes in question

tend strongly to lead to implausible ascriptions of cxpli-

cational views of inner altitudes to outer attitude holders.

The ascriptions are therefore in contrast to the plausible,

metaphor-based ascriptions I base my approach on. I

give here only a brief sketch of the problem, because it

has been discussed at length elsewhere [Barnden, 1986a,

1987a,b, 1989].

A basic example of the problem arises with typical

ways of using quotational logic to represent altitudes.

(Analogous problems face situation-based schemes and

concept-based schemes.) A quotational-logic approach

tends to lead to ihe ascription, to an outer altitude holder

Z, of a view in which an inner agent being in a certain

arcane, highly theory-laden relationship to a formula

belonging to the logic itself. For instance, in the case of

sentence (1), the scheme is likely to have the effect of

ascribing to Zorn a view of Xavier as being in a rela

tionship of this sort to a logic formula expressing the

idea that his theory is faulty. Unless Zorn is a proposi

tional attitude researcher it is highly unlikely that she

would have such a view of Xavier. What has happened

is that the system's own explicatory view of the posses

sion of an attitude as being a matter of a relationship to

a logic formula has been implausibly ascribed to real

people Z when they are taken to represent the possession

of an attitude by some agent. Now, it is in fact possible

to use the quotational logic, and probably the situation-

based and concept-based styles as well, in such a way

that no ascription at all of particular ways of explicating

attitudes are made to outer agents Z in nested attitude

situations [Barnden, 1987a,b]. However, this total

avoidance of explicational ascriptions introduces an

undesirable degree of representational complexity, such

as pervasive, intricate uses of lambda-abstraction or other

abstractional tools.
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Certain other important approaches, including typi

cal modal logic approaches and the SNePS semantic net

work approach [Shapiro & Rapaport, 1986], only suffer

at most from weak forms of the implausible-ascription

problem [Barnden, 1986a, 1987b]. However, modal

logic approaches suffer from various problems, some

well-known [see e.g. Barnden 1987b, Pedis 1988]; and I

have argued elsewhere [Barnden 1986b] that the SNePS

system suffers from having no fully general facility for

making statements about intensions themselves, despite

the fact that intensions are what the nodes represent.

While these observations by no means prove that

adequate non-metaphorical representations of nested atti

tudes cannot be derived, they do show that the task of

designing such representations may be much more

difficult than is generally realized.

5 Representation Scheme

5.1 Default Representational Approach

The system being developed is called ATT-META. In

the absence of any particular contextual cues, ATT-

META gives an inner or outer altitude an explication

based on an "AGENT'S-WORLD" metaphor. Thus, in

the case of the example sentences (1) and (2) above,

ATT-META would give a simple, default AGENTS-

WORLD explication to Xavier's hoped-for realization,

only to replace it by a BATTLEGROUND explication

when the second sentence is processed. Much of the fol

lowing description shows the default representations that

would be used for non-nested attitude situations, in

which the only attitude is a fortiori outermost.

Under the basic AGENTS-WORLD metaphor

used by default, ATT-META regards an agent's beliefs

as defining a "world", which is the agent's version of

what ATT-META takes to be the real world. In other

words, it is the world as viewed by the agent. Further,

ATT-META ascribes, by default, its own world-based

way of viewing of agents to the agents themselves. So,

the system assumes that, in the world of an agent Z, any

agent X has a world; and, continuing the recursion, any

agents in X's world as seen by Z themselves have

worlds. The world that X has according to Z may of

course differ from X's world according to ATT-META.

We need to postulate not only agents' believed

worlds, but also their hoped-for worlds, desired worlds,

and so on for other types of attitudes; but in the follow

ing we discuss only the believed worlds.

Although an agent's world may differ in detail

from ATT-META's world (i.e. the "real" world), it is

the same sort of thing as the latter. It can contain people

and other sorts of object, and ordinary sorts of predicate

and function apply to those objects. The world idea we

are appealing to is therefore akin to the intuitive notion

of world in possible-world approaches, but we are not

using the notion of possible worlds. An agent Z has, in

ATT-META's or any other agent's view, just one world

— we do not bring in the notion of the set of possible

worlds that are consistent with Z's beliefs, which is the

standard move in a possible-worlds approach.

A given object can be in more than one world.

We simply take this possibility as an unanalyzed

presumption of the metaphor we are using. For instance,

the real Jane (an entity in ATT-META's world) can also

appear in Z's world (according to ATT-META). An

entity might only belong to a non-real world, allowing a

simple account of fictional entities adequate to the less

bizarre ways in which such entities might be reasoned

about, although we do not elaborate on this important

issue here. Notice the convenience here of taking a

metaphor-based view: we are not obliged to ensure that it

makes any sort of deep, objective sense to say that an

entity can belong to more than one world (an especially

striking statement if the entity is fictional). All that we

require is that the metaphor involving this assumption is

useful in usefully-many practical situations, and is con

sonant with the way people usefully-often think.

Because of differences in belief, Jane can play a different

role, have a different physical appearance, have a dif

ferent name, etc. in Z's world from what she plays and

has in ATT-META's world. If the differences are radi

cal enough we might well ask in what sense we can say

she is in both worlds. The answer is simply that the

metaphor begins to break down if the differences arc too

radical — if the system notices this, it should adopt

another metaphor or a more sophisticated version of the

AGENTS-WORLD metaphor. On the latter option, it

could switch to allowing "counterpart" relationships

between entities in different worlds, cither instead of or

as well as allowing an entity to be in several worlds.

Counterpart relationships appear in Fauconnicr's [1985]

"mental spaces" approach (some of his spaces being

like our worlds), and in a number of possible world

approaches. In the present paper we do not consider

counterpart relationships further, but they are included in

the preliminary representational proposal of Barnden

[1988b, 1989].

One way in which the level of sophistication of

the metaphor matters is in allowing more distinctions to

be made between interpretations of statements about alti

tudes. The simple version of the AGENT'S-WORLD

metaphor assumed in most of what follows is rather res

trictive in the distinctions it allows, but I claim that it is

therefore adequate as a default approach to many of the

simpler cases encountered in realistic contexts.

An interesting complication we must note is that

it seems that talk about people's worlds rests on regard

ing the worlds metaphorically as containers. In a sense

we have a WORLD-AS-CONTAINER metaphor sitting

on top of, or as part of, the AGENT'S-WORLD meta

phor. This does not in fact cause extra complexity in the

default representational expressions below, but it leads to
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a possible conceptual confusion, because we have the

notion of containers being applied in a different way in

the MIND-AS-CONTAINER metaphor. Under the

latter, a container (i.e., a mind) contains beliefs them

selves, which are proposition-like ideas (and may be

complexes built out of description-like ideas or other

proposition-like ideas); whereas under the WORLD-AS-

CONTAINER sub-metaphor the container (an agent's

world) contains things which the agent's beliefs are

about (according to that agent) — the beliefs themselves

are propositions that hold for those things and are not

themselves assumed to be entities in the world. As a

special case, of course, the things in the world of agent Z

can themselves be ideas. This is because, for instance, Z

might adopt a MIND-AS-CONTAINER view of X

(replacing the AGENTS-WORLD view of X that

ATT-META ascribes to Z by default). We will deal

with this possibility below.

The following description of the default represen

tation is based on showing by example how the scheme

would cope with various standard issues of representa

tion, such as distinguishing between dc-dicto and de-re

readings and dealing with quantification. The examples

are entirely cast in terms of belief, but the extension to

other types of prepositional attitude is straightforward.

We first consider the representation of the informa

tion that could be paraphrased in English as

(8) Mike believes that Jane is clever.

We explicate this as a matter of "Jane being clever in

Mike's world". ATT-META's standard representation

of (8) is

(8a) clever(Jane; W(Mike; sW)).

In all cases the term following a semicolon relativizes a

function or predicate application to a specific world (the

one denoted by the term). The constant symbol sW

denotes the system's world. To simply represent the

hypothesis that Jane is clever ATT-META would use

the formula clever(Jane; sW). The term W(Mike; sW)

denotes the world as Mike sees it, according to ATT-

META. We will use the abbreviation MsW for this term

in what follows. The term W(Mike; W(Bob; sW),

abbreviated to MBsW, denotes the world as Mike sees it,

according to Bob (according to ATT-META). For most

predicates or functions R, an application R(t; w) is taken

to imply that the entity denoted by t is in the world

denoted by w. Some special predicates and functions do

not have this implication.

There is a predicate symbol in that allows explicit

statements about which worlds entities belong to, and it

is used below. This is the same predicate as would be

used for physical containment, so that we are using the

WORLD-AS-CONTAINER metaphor to project physical

predicates directly onto worlds.

Formula (8a) is a sort of de-re interpretation of (8),

in that Mike's belief is taken to be about an entity in

ATT-META's world (given that Jane denotes something

in that world), and the role that the entity plays in

Mike's world is not constrained by (8a) itself. There is

no restriction on substitution of the Jane term in (8a),

using equality among terms. Assume that ATT-META

supposes that equal(Jane, wife-of(Pete; sW)). (It does

not currently index equality predicates to worlds.) Then

it can conclude from (8a) that

(8b) clever(wife-of(Pete; sW); MsW).

But this does not convey that

(9) Mike believes that Pete's wife is clever,

understood de-dicto with respect to "Pete's wife" —

that is, understood as implying that Mike is thinking of

someone through the wife-of relationship to Pete.

Rather, (8b) conveys the very same belief state of Mike

as the one (8a) does. Formula (8b) is actually a de-re

interpretation of (9), that is, taking (9) to mean that Mike

believes of Pete's wife that she is clever, with no impli

cation that Mike is thinking of her as Pete's wife.

We should beware that talking about ways in

which Mike might be thinking about Jane, Pete and so

on is to slip into a different mental metaphor: namely, a

metaphor that involves people's beliefs as being com

posed partly out of "ideas" that may (or may not)

succeed in "referring" to things. Formulae (8a) and

(8b) should not strictly speaking be discussed in terms of

metaphors other than the AGENTS-WORLD metaphor.

Under the latter metaphor, we simply postulate a world

(Mike's), containing the very same entity Jane that the

system knows about through the terms Jane and wife-

of(Pete), and in which that entity is clever.

The de-dicto interpretation of (9) is

(9a) clever(wife-of(Pete; MsW); MsW).

This differs from (8b) only in rclativizing the wife rela

tionship to Mike's world. Note that there is again no

restriction on substitution, so that if ATT-META sup

poses that equal(wife-of(Pete; MsW), Jane), then it fol

lows that (8a) holds. From (8a) it could follow by a

further substitution that (8b) holds, as well as (9a). (It is

only when (8b) is in isolation that it is construed as

emoodying a de-re reading of (9).) Something else that

might follow from (9a), through the formula

equal(wife-of(Pete; MsW), mother-of(Sally; MsW)), is

(9b) clever(mother-of(Sally; MsW); MsW).

That is, the default approach leads to the conclusion that

Mike believes that Sally's mother is clever, given that (i)



Belief, Metaphorically Speaking 29

Mike believes that Pete's wife is clever and that (ii)

Mike believes that Pete's wife is Sally's mother (all

these belief statements being interpreted de-dicto). This

is an instance of the fact that the default representational

approach forces a form of "logical omniscience" on

agents (i.e. they are held to believe all deductive conse

quences of their beliefs).

Formula (8a) is the standard representation of (8).

It is a de-re interpretation, which leaves the question of

what a de-dicto interpretation would be. It is not clear

from the literature in what sense a proper name can be

given a de-dicto interpretation. But there is an alterna

tive, natural interpretation, sometimes called the

"metalinguistic" one, under which (8) is rendered as

(8c) clever(person-called('Jane'; MsW); MsW).

This is also a de-dicto interpretation for "Mike believes

that the person called 'Jane' is clever".

Turning now to the question of quantification, con

sider

(10) Mike believes that something is burning.

The de-dicto interpretation of this, with respect to the

quantification, is to convey that in Mike's world there is

something or other that is burning (but Mike may not

know anything about it other than that it is burning).

The interpretation is:

(10a) (Bx)burning(x; MsW).

Note that this implies that whatever is burning in Mike's

world is, of course, in Mike's world, but it does not

imply that it is in the real world. The weak de-re

interpretation of (10), under which there is something

specific in the real world that is burning in Mike's

world, but under which there is no commitment as to

what role the object plays in Mike's world, is:

(10b) (3x)burning(x; MsW) and in(x, sW; sW).

A stronger type of de-re reading results from assuming

that the object does have some definite role to play in

Mike's world, such as being Jane's house (although the

role is not assumed to be known to ATT-META). We

can get this effect by adding the conjunct plays-

specific-role-in(x, MsW; sW) to (10b). Such a conjunct

could also be added to strengthen the weak dc-re reading

(8b) of (9). Some researchers demand that a de-re read

ing be strong to the extent of involving the assumption

that the object is in some sense directly or vividly known

to the agent (Mike). We could get this effect with an

extra conjunct like vivid-to(x, Mike, MsW; sW).

A less often discussed type of reading of (10) that

is in some sense a compromise between de-re and de-

dicto takes the burning thing to play a specific though

unknown-to-the-system role in Mike's world, and does

not assume that the thing is also in the real world. This

interpretation can be constructed by adding plays-

specific-role-in(x, MsW; sW) to the de-dicto interpreta

tion (10a).

We turn now to various interpretations of the atti

tude statement

(11) Bob believes that Mike believes that Pete's wife is

clever.

The trouble with this is that there is, so to speak, a de-

dicto/de-re choice of interpretation of "Pete's wife" at

each attitude level. To keep things simple, we consider

here only a choice between de-dicto and weak dc-rc, and

take the straightforward, de-re approach to proper names

that is exemplified by the Jane in (8a). What we can

call the "de-dicto x de-dicto" reading is as follows,

where the term MBsW is an abbreviation for the term

W(Mike; W(Bob; sW)), which denotes Mike's world

according to Bob.

(11a) clever(wife-of(Pete; MBsW); MBsW).

That is, in Mike's world according to Bob, the wife-in-

Mikc's-world-according-to-Bob of Pete is clever.

The "de-dicto x de-re" reading is as follows,

where BsW is an abbreviation for W(Bob; sW).

(1 lb) clever(wife-of(Pete; BsW); MBsW).

The difference from (11a) is that Bob is now taken to

believe that the person in his own world who is Pete's

wife is believed by Mike to be clever, there being no

assumption on Bob's part that the person he takes to be

believed by Mike to be clever plays the role of Pete's

wife in Mike's world (according to Bob). Notice that by

putting ATT-META in Bob's shoes — by which I

mean: replacing MBsW by MsW and BsW by sW in

(11a) and (lib) — we get, respectively, the de-dicto and

de-re interpretations (9a) and (8b) of (9).

Continuing with our combinatorial mini-explosion

of readings, the "de-re x dc-rc" reading is:

(lie) clever(wife-of(Pete; sW); MBsW).

That is, the person who is Pete's wife in ATT-META's

world is believed by Bob to be believed by Mike to be

clever; there is no specification of roles that the entity

plays in Bob's world or in Mike's world according to

Bob.
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The most difficult reading to handle and to explain

is the "de-re x de-dicto" one. Under this interpretation,

ATT-META takes Bob to believe that there is someone

(in Bob's world) whom Mike believes to be clever,

where the someone is specified by Bob to play, in

Mike's world, a specific role (such as being Sally's

mother) that the person also plays in Bob's world;

where, however, ATT-META does not know what that

role is, and only knows that the someone is Pete's wife

in the real world. The closest I have come so far to a

satisfactory formulation of this in the default representa

tional approach is:

(lid) clever(wife-of(Pete; sW); MBsW) and

plays-some-same-role-in

(wife-of(Pete; sW), BsW, MBsW; sW).

The special conjunct here specifics that the person

known to ATT-META as Pete's wife plays, according to

ATT-META, some role in world MBsW that is the same

as the role played in world BsW. A better treatment of

such readings may require reifying roles to make them

become entities in worlds, and to allow a role to be in

several worlds and/or to allow counterpart relationships

among roles in different worlds [Fauconnier, 1985].

5.2 A MIND-AS-CONTAINER Representation

Here I briefly explain how ATT-META would represent

single-level altitudes on the basis of a MIND-AS-

CONTAINER metaphor. (A MIND-AS-

BATTLEGROUND representation would be similar, but

would allow representation of battle relationships among

the ideas, etc. A minor complication is that the MDND-

AS-BATTLEGROUND metaphor is really a metaphor

about the contents of a mind that is already subject to a

MIND-AS-CONTAINER view.) The MIND-AS-

CONTAINER representations are akin to those used in a

number of representational approaches that have been

proposed (mainly, intensional logics and neo-Frcgean

schemes). The following formula would be used to

represent the piece of information (9) under a de-dicto

interpretation:

(9c) in(i(clever(wife-of(Pete))), mind-of(Mike)).

The i is an operator used to form terms that denote

ideas. The i term in (9c) denotes the idea which could

be paraphrased in English by the sentence "the wife of

Pete is clever". The operator sets up an intensional

scope, which means among other things that substitution

of equals for equals within the scope changes the denota

tion of the term.

Notice that we are using some of the same predi

cate and function symbols as were used above, but are

dropping the world-relativization term. This reflects a

deliberate departure from ordinary logic. We allow dif

ferent applications of a predicate or function symbol to

have different numbers of arguments, and in general we

allow a keyword-based form of argument specification so

as to avoid ambiguities. We could instead have insisted

upon using different predicate/function symbols, but this

would have made the total approach unnecessarily com

plex.

Note also that the in symbol in (9c) still denotes

physical containment. This reflects the fact that both

minds and worlds are metaphorized as containers.

To cope with readings of (9) where we have no

full specification of the way Mike is thinking of the

clever person — as in most types of de-re reading — we

use a variant of the i operator as in the formula:

(9d) (3i)in(i,(clever(l:i)), mind-of(VIike))

and an-idea-of(i, wife-of(Pete)).

This is the weak de-re interpretation of (9). For any

given hypothetical assignment of an idea I as a denota

tion to the variable i, the ii term here denotes the idea

obtained by taking the idea C of "somebody-or-other is

clever" and plugging I into C to replace the

"somebody-or-other" idea. (This is only well-defined if

I is a term-like idea as opposed to a proposition-like

idea.) This rough account could be fleshed out in a for

mal semantics in terms of a suitable ontology of struc

tured ideas. Using the i operators it is straightforward to

reformulate, in MIND-AS-CONTAINER terms, the vari

ous AGENT'S-WORLD-based readings of examples (8)

to (11) above.

5J Mixed Representation

What is of most interest for us here is the use of one

metaphor to explicate the attitude at one level in a

nested-attitude situation, and another metaphor to expli

cate the attitude at another level. For instance, context

might suggest that the inner attitude in (11) should be

given a MIND-AS-CONTAINER explication, although

there is nothing to indicate that the outer one should not

be given the simple AGENTS-WORLD explication.

We need to augment the representation in the previous

sub-section by adding world-denoting terms to the in,

mind-of and i applications. Then, for a de-dicto x de-

dicto reading of (1 1) we get:

(lie) in(i(clever(wife-of(Pete)); BsW),

mind-of(Mike; BsW); BsW).

We do not world-relativize things inside the i term's first

argument, since that term denotes an idea in Bob's

world: and Bob is not now being taken to have a world-

based view of agents. What (lie) says is that the idea-

in-Bob's-world of Pete's wife being clever is, from the
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point of view of Bob's world, in Mike's mind. A de-

dicto x de-re interpretation of (11) is:

(llf) (3i)in(t!(clever(l:i)5 BsW),

mind-of(Mike; BsW); BsW)

and an-idea-of(i, wife-of(Pete; BsW); BsW).

A de-re x de-re interpretation is obtained from this sim

ply by replacing the BsW term in the wife-of application

by sW. A de-re x de-re interpretation is obtained from

(110 by replacing the an-idea-of conjunct by the con

junct

is-a-descriptional-idea-for

(i, wife-of(Pete; sW), BsW; sW).

This states that the idea i serves to describe, in the con

text of Bob's world, Pete's-wife-in-the-system's-world.

It is also possible to construct mixed representa

tions where the inner one is based on the AGENT'S-

WORLD metaphor and the outer one is based on the

MIND-AS-CONTAINER metaphor. These are omitted

for the sake of brevity.

6 Concluding Remarks

I propose that attitudes be explicated in terms of com-

monsense, and largely metaphorical, views of mind that

are held by people and that are prevalently expressed in

natural language discourse about attitudes. A formal

representation scheme is being developed that allows

these explications to be expressed. The system has

available to it a variety of possible explications for atti

tudes, and the choice amongst them is, in the natural

language processing case, guided by considerations of

discourse coherence. In the absence of contextual cues

suggesting a particular explication, a default explication

based on a simple AGENT'S-WORLD metaphor is

used. In the representation of a nested attitude situation,

different metaphors can be used for explicating the atti

tudes at different levels.

The representational expressions arising from the

default, AGENT'S-WORLD explications look much like

the expressions in some existing attitude representation

schemes based on notions of space, environment or parti

tion. Therefore, not much extra complexity is being

caused in straightforward cases by our wholesale applica

tion of the idea that attitudes be commonsensically expli

cated. However, our use of AGENT'S-WORLD

representations does constitute a departure from exist

ing space-based schemes, as it involves an explicit com

mitment to taking the represented agents themselves to

be using the world metaphor.

The approach allows a more realistic and powerful

attack on propositional attitudes. Part of the power

results from removing the obligation on us to ensure that

any single way of representing attitudes is capable of

providing the right sanctions and prohibitions of various

types of inference (such as inference by term substitu

tion). Rather, different patterns of inference are viewed

as being tied to different metaphors. For instance, a

disadvantage of the AGENT'S-WORLD representations

is that they force a type of logical omniscience. In

many realistic cases this may not cause problems; how

ever, if the resulting inferences prove in context to be

incorrect, a more sophisticated form of the metaphor, or

a different metaphor, must be used. For instance, the

MIND as CONTAINER or as BATTLEGROUND meta

phors, which have very little power to force particular

types of inference about an agent's beliefs, could be

adopted.

The proposed approach makes rich contact with

recent work in linguistics and philosophy on common-

sense views of mind, such as [Lakoff, 1987, Johnson,

1987, Sweetser, forthcoming]. It emphasizes the strong

dependence of a proper treatment of propositional atti

tudes on plausible as opposed to definite reasoning

[Bamden, 1988a]. It supports the idea that attitude verbs

and the like in natural language are highly polysemous,

vague terms. Naturally, major issues remain to be

attacked in detail. The formal representation needs to be

extended to metaphors other than AGENT'S-WORLD,

MIND-AS-CONTAINER and MIND-AS-

BATTLEGROUND. Some systematic way of using dif

ferent metaphors at different levels should be developed.

The approach should be seen as a special case of two

more general issues [Barnden, 1988a,b]: of metaphors (in

general) in attitude contexts (consider "Mike believes

that Jane is a snake"); and of vague/polysemous terms

(in general) in attitude contexts (consider "The Admiral

believes that his ship is threatened"). Finally, the ques

tion of how particular metaphors are selected and ela

borated according to context is a major area of research.
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Abstract

We combine ideas from relation-based data

management with class hierarchies to obtain

Hierarchical Knowledge Bases, which have

greater expressive power while maintaining

the benefits of predictable and efficient in

formation processing. We then consider the

problem of reasoning with certain limited

forms of disjunctive information. We show

that hierarchical knowledge bases can be used

for efficient approximate reasoning with such

information.

The significant features of our approach in

clude a well-conditioned trade between effi

ciency and accuracy, with a sound and com

plete limit case, and approximations guided

by the structure of the domain theory. Be

cause of the structure imposed on the knowl

edge base, it is possible to characterize the

potential error in any approximation.

1 Introduction

It is fashionable to view a knowledge base (KB) as

an integral utility invoked by a problem-solving pro

gram. To be useful in tasks such as robot guidance,

such a KB subsystem must perform efficiently, and do

so predictably. Systems that process sensory input,

or "computer individuals" with extended "lifetimes"

[Nilsson, 1983], must store and retrieve vast quantities

of data. For such systems to respond in real time, the

performance of their KBs must not degrade noticeably

as new information is acquired.

Ideally, a KB would perform like a relational

database—simple queries and updates would be done

in time sub-linear in the size of the KB; even more

complex queries should take no more than polynomial

time. Unfortunately, relational databases are noto

riously lacking in expressive power: there are many

situations, usually involving partial information and

rules, that they cannot describe. Logic-based KBs do

not suffer from these defects, but unfortunately are

generally undecidable, or at least intractable.

Several approaches to this problem have been con

sidered:

• Heuristics: Although they can provide significant

performance gains, heuristics tend to be domain

dependent, and not to perform predictably.

• Restricted KB interaction languages: These

restrict the language of KB interactions to

frequently-occurring, or particularly useful, sub

languages, in the hope of gaining efficiency. Horn

theories are a successful example of this approach.

Unfortunately, as we shall describe, disjunctive in

formation has not yielded to this technique.

• Approximate reasoning: For example, Imielin-

ski [imielinski, 1986, Imielinski, 1987], Plaisted

[Plaisted, 1981], and others have considered rea

soning in a more abstract language. A differ

ent approach, suggested by Hector Levesque, that

we have pursued with Ron Brachman, Henry

Kautz, and Bart Selman, has focused on trans

forming incomplete information into a vivid form,

where complex reasoning is avoided through vari

ous techniques such as defaults/preferences, arbi

trary choices, etc [Etherington et al, 1989].

In this paper we apply a combination of these

techniques. Limited languages: We take the ubiq

uity of class hierarchies in AI knowledge representa

tion schemes, and the success of relational database

systems, as license to define Hierarchical Knowledge

Bases (HKBs), which combine the best features of

each. We identify subclasses of naturally-occurring

disjunctive sentences (which we call "uniform disjunc

tions"), and show how HKBs can be used to implicitly

represent and reason with such disjunctions. Approx

imation: We show that by carefully tailoring the hi

erarchies in HKBs, we get approximate, but provably-

efficient, reasoning with certain disjunctive sentences.

Heuristics: We argue that the hierarchies and disjunc

tions that are likely to occur in practice will lead to

reasonable and useful approximations.

The plan of the paper is as follows: Section 2

describes some of the underlying formal reasons for

the efficacy of relation-based and taxonomic knowl

edge representation schemes. We then present data
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structures and algorithms for HKBs that combine

these features effectively. Thereafter, we examine

two useful families of disjunctive sentences: uniform-

argument clauses where all disjuncts share the same

argument(s) (e.g., Dog(fuzzy) V Cat(fuzzy)), and

uniform-predicate clauses where all disjuncts share

the same predicate and all but one argument (e.g.,

Visit(ron, toronto) V Visit(ron, montreal)). We con

sider these kinds of sentences more typical of common-

sense reasoning than more varied disjunctions (e.g.,

Doctor(joe) VCat(fuzzy)).

In each case we proceed as follows:

• show, using results from complexity theory, that

it is impossible to obtain the desired performance

even within these limited subclasses of formulae;

• show that reasoning with such sets of clauses, or

formulae that are equivalent to them, can be sim

ulated by HKBs with appropriate, but very large,

hierarchies;1

• show how the process of updating and query

ing the KB can use a (possibly much smaller)

sufchierarchy to provide approximate reasoning,

where the amount of vagueness (or even error)

varies depending on the queries.

2 Hierarchical Knowledge Bases

(HKBs)

2.1 Motivation

Our approach to efficient reasoning elaborates a

straightforward marriage of inheritance hierarchies

and relational databases (RDBs), combining some of

the best of both.

Relational databases have a number of advantages,

including their close and clean relationship to logic,

their uncontroversial theory of destructive updates,

and the existence of efficient data structures (for ex

ample, AVL trees, which give logarithmic-time inser

tion and search operations for atomic facts). From the

logical point of view [Reiter, 1984], the advantages of

RDBs are the result of decisions to:

• limit the language of assertions (updates) to pos

itive atomic formulae;

• represent negative information only implicitly,

(and thus save a great deal of space) by making

the Closed-World Assumption (CWA), which as

serts that a fact is false unless explicitly asserted;

• adopt the unique-name and domain-closure as

sumptions (UNA and DCA), which assert that the

domain of discourse includes precisely the individ

uals explicitly mentioned in the KB, to avoid the

need to reason about the identity of objects.

Unfortunately, the exclusion of incomplete informa

tion makes RDBs poorly-suited to many applications,

where vague, missing, or disjunctive information oc

curs. Efforts to extend database technology to allow

even limited forms of incomplete information (such as

null values [Codd, 1979]) have been fraught with diffi

culty and have—thus far—failed to achieve the desired

performance [imielinski, 1988].

Inheritance hierarchies provide representational ca

pabilities somewhat orthogonal to those provided by

RDBs. They can be used to express and enforce in

clusion constraints, such as All P's are Q's, allowing

the inference of facts from others. They also allow

for some types of incomplete information: for exam

ple, if P's and Pi's are Q's, it is possible to tell the

network Q(a) without committing to the truth values

of either P(a) or R(a). If we limit ourselves to hier

archies without "inheritance cancellation", reasoning

with hierarchies can also be fast [Agrawal ei al, 1989J.

Because strict inheritance reasoning can be done

quickly, some researchers have been led to create "hy

brid" reasoning systems, in which a separate inher

itance reasoner augments a more general problem-

solver, to exploit the tractability of subproblems that

involve only inheritance reasoning [Brachman et al

1985]. A complimentary approach, which we pursue

here, is to use semantic network representation struc

tures in concert with database technology to obtain

efficiency and expressive power currently available in

neither.

2.2 Definition of HKBs

The class hierarchy is a directed, acyclic, graph over

the predicates of the language.2 A node may have

more than one parent, but there is no notion of inheri

tance cancellation. The presence of a link from node P

to parent node Q expresses, as usual, the logical impli

cation Vi. P(x) D Q(x). For now, we assume that all

non-primitive classes (i.e., non-leaf predicates) in the

hierarchy are equivalent to the union of the classes they

subsume (e.g., Mammal is exhausted by its subcon-

cepts, Dog, Cat, etc.). This comprises a form of inien-

sional closure, corresponding to Clark's [1978] "Pred

icate Completion". Logically, this amounts to the as

sumption that non-primitive predicates are equivalent

to the disjunction of their immediate children.

The remaining closure assumptions are extensional,

and are made at query-evaluation time. We continue

to make the DCA and UNA, but are forced to adopt

a more careful version of the closed-world assumption,

Minker's [1982] "generalized closed-world assumption"

(GCWA), to avoid inconsistencies. The GCWA sup

ports inferring the negation of a ground literal pro

vided it is false in all minimal models of the knowl

edge base. This amounts to assuming the KB has

1 Of course, the complexity results continue to hold, so

this transformation, in itself, is not much use.

We use unary predicates for brevity, but the argu

ments may be viewed as vectors.
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complete information except where it explicitly con

tains incomplete information. Thus, if Mammal is

specified to have subclasses Dog and Cat, then having

been told Dog(joe), the KB will conclude ->Cat(joe);

on the other hand, knowing only Mammal(Joe), the

KB can conclude neither -iCat(joe) nor -iDog(joe).

We view a KB system as defined completely in

terms of its behavior at its TELL and ASK interfaces

[Levesque, 1984]:

TELL : Ltell xKB^KB

ASK : LASk * KB -» {Yes, No, Unknown}

We take Ltell and Laski the languages of expres

sions in which the KB accepts assertions and queries,

respectively, to be subsets of function-free FOL. An

HKB is then specified to behave as a first-order theory

(consisting of the axioms implied by the taxonomy,

and the formulae told to the KB), augmented by the

DCA, UNA, and GCWA. A question should be an

swered "Yes" if it is entailed by the above, "No" if its

negation is entailed, and "Unknown" otherwise.

Ltell and Lask can be varied to create a range of

update and query problems, with an attendant range

of complexities. Since the GCWA provides a form of

negation, we restrict ourselves here to languages with

out negation: these suffice to provide a wide range of

reasoning complexities, and are practically useful (c.f.,

Prolog).

The following sections consider data structures and

algorithms for updating and querying HKBs in a man

ner similar to relational databases.

2.3 Data Structures and Algorithms

There are two main data structures. The first rep

resents the hierarchical relationship between the class

names.3 The second structure is an RDB containing a

unary relation for eacli node in the class hierarchy and

a binary relation for each primitive predicate.4 The

first relation lists individuals explicitly asserted to be

long to the class associated with the node. The sec

ond relation maps individuals to an associated counter

(UNKNOWN-counter), used to keep track of the am

biguity in the original information. Intuitively, this

counter will be non-zero for an individual, 6, in the

primitive relation, P, if and only if ASK(KB, P(b)) is

neither "Yes" nor "No" for the current KB.

Consider now the simplest case, that of TELLing

the KB only ground atomic facts. In this case, the

algorithm records facts as low as possible in the hi

erarchy. This ensures that more specific information

takes precedence over vaguer information, in accord

with the GCWA. In particular, the TELL algorithm

treats a fact, P(a), as follows. If P, or any node in

To aid efficiency, each node maintains pointers to the

leaves it dominates.

4 Remember that, while for simplicity of exposition we

deal only with unary predicates, additional columns would

cause no special problems.

the subgraph below P, is marked true for a, the TELL

is redundant, since it is already implied by the KB,

and is ignored. Otherwise, if P is subsumed by (i.e.,

below) any node(s) marked true for a, the TELL re

fines previous knowledge: Unmark each such node for

a, and decrement a's UNKNOWN-counter for each leaf

node below any such node. Finally mark P true for

a, and increment the UNKNOWN-counter for a for each

leaf below P.

Querying the KB is slightly more complicated than

querying RDBs and inheritance networks, due to the

possible presence of incomplete information. Affirma

tive answers to queries are entailed by the KB asser

tions; negative answers follow from the CWA in cases

where the KB has no information; but the system must

be prepared to answer "unknown" when the available

information is incomplete. A query may be answered

unknown if it is not known to be true and it is ei

ther entailed by another query whose answer is "un

known", or it is an alternative in a disjunction that

is either true or itself unknown.

The UNKNOWN-counter flags set at leaves during

TELL make it unnecessary to look both up and down

in the hierarchy before returning an answer. To an

swer an atomic query, P(a), the system queries the

unary relations associated with P and its descendants,

breadth first, to see if a is in any of their extensions.

If so, the answer is Yes. If not, the system inspects

the associated binary relation at each leaf below P for

a positive UNKNOWN-counter for a. If one is found, it

returns Unknown. Otherwise, No is returned.

For example, given the hierarchy in figure l,5 as

serting Rodent(stanley) will result in Rodent, Mam

mal and Pet being answered yes for Stanley; Mouse,

Gerbil, and Hamster being unknown, and everything

else being answered no. The subsequent assertion that

Stanley was a Hamster, which refines the previous as

sertion, would make the answer to Mouse and Gerbil

no, and to Hamster yes.

More general queries could be handled according to

the standard truth-functional decomposition used in

relational databases: reducing the query to the truth

value of component atomic formulae. This approach is

however incomplete: If we are asked Pi (a) V...VP„(a),

and there is a node Q in the hierarchy that subsumes

exactly nodes Pi, ..., P„ then the answer should be the

same as that for querying Q(a), rather than combining

the truth values of independently querying each Pi(a).

If no node in the hierarchy corresponds to the queried

disjunction, the proper way to answer it is to consider

all the maximal nodes in the hierarchy that correspond

to parts of the query (i.e., are subsumed by the query),

query them, and then return the disjunction of the

results.

* The structure of the hierarchies presented throughout

should not be construed as an ontological commitment to

the world-view they imply!
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Figure 1: A simple pet-shop world view

Thus, using figure l's hierarchy, the correct an

swer to Mouse(Stan)VGerbil(Stan)VHamster(Stan)

should be obtained by querying Rodent(Stan), while

the best answer available to Turtle(sid)V Snake(sid)V

Fish(sid) is the disjunction of the answers to

Reptile(sid) and Fish(sid).

Non-clausal ground queries can be handled by con

verting them to conjunctive normal form (CNF) and

then querying each clause separately. Universal and

existential queries are answered by eliminating the

quantifiers through the use of the DCA, which guar

antees a finite number of substitutions in the absence

of function symbols.

The following theorem summarizes the complexity

and correctness properties of the above algorithms.

Theorem

Suppose there are n nodes in the hierarchy, and

Ltell is restricted to atomic facts, at most m of which

have been told to the KB.

• The above algorithms are sound and complete

with respect to the specification in the case where

Lask consists of the function- and negation-free

subset of FOL.

• If Ltell and Lask consist of ground atomic for

mulae, worst-case update and query complexity

are 0(n * logm).

• For Lask — uniform clauses, query complexity

is 0(k * logfc * n * logm) where k is the length

of the query. (Note that n could be exponential

in k. since there are exponentially-many uniform

disjunctions as a function of the number primitive

predicates.)

• For Lask = arbitrary ground formulae, the con

version of the query to CNF may increase the

length of the query, hence it processing cost, ex

ponentially.

• For Lask = arbitrary formulae, universal and ex

istential quantifiers may increase the complexity

by 0(dk), where d is the size of the domain, and

it is the length of the query. ■

The TELL and ASK algorithms given above extend

RDBs in two ways. They provide a mechanism for

enforcing "inclusion" constraints (e.g., Vx. P(x) D

Q(x)), and they allow the possibility that certain

queries may be answered Unknown, even in the pres

ence of closed- world assumptions. Obviously, the com

plexity of question-answering also somewhat exceeds

that for RDBs; for atomic facts this difference is de

pendent entirely on the size of the hierarchy. As we

shall see, though, our algorithm does as well as could

be expected, given the inherent computational com

plexity associated with the increased expressiveness.

In the following sections, we consider using this frame

work to extend the expressiveness of the system still

further—in particular, we expand the TELL language.

3 Unique-Argument Uniform Clauses

3.1 The General Theory

The previous section considered the problem of

querying, using variously restricted languages, an

HKB that has been told only ground atomic facts.

This section considers TELL'mg the KB certain uni

form disjunctions—specifically, quantifier-free ground

clauses of the form {P\(a) V ... V P„(a)).

Before proposing ways to deal with such clauses us

ing HKBs, it is worth considering the intrinsic com

plexity of the problem—how well could any algorithm
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deal with this issue? The following results from com

plexity theory are relevant.

An upper bound: We know that if Lask — Ltell =

unique-argument uniform clauses, answers can be ob

tained in time linear in the total size of the formulae

told a KB: it suffices to check whether the query clause

subsumes (has as atoms all the atoms of) one of the

clauses told the KB. In the worst case, this approach

may require looking through all the clauses told the

KB, and hence falls short of the desired guarantee of

sub-linear response time. In fact, we cannot do better

using some other clever technique:

A lower bound: Results from monotone circuit com

plexity show that if Ltell uses p predicate symbols,

then the circuit, and hence Turing complexity of an

swering even atomic questions is exponential in p [Pip-

pinger, 1978, Pippinger & Fischer, 1979]. (Note: there

are exponentially-many uniform clauses in p predicate

symbols and one constant; so describing a circuit may

require telling the KB very many clauses!) Hence

there can be no correct query-processing algorithm for

atomic queries that is sub-linear in the number of facts

told the KB.

Another lower bound: If we extend the query lan

guage, Lask-i to include positive ground formulae with

both conjunction and disjunction, the complexity of

answering queries is co-NP-hard in both the size of the

query and the size of the KB. (This result is proved by

reduction from the unsatisfiability of 3-CNF.)

Essentially, these results indicate that telling the KB

uniform disjunctions makes even the task of answer

ing simple atomic queries more difficult, and makes

the task of answering negation-free ground queries in

tractable. We remark that these results are indepen

dent of the decision to make some sort of closed-world

assumption.

Given these general complexity results, we cannot

hope to do better by encoding the facts in hierarchical

KBs (or any other representation). Such an encoding,

however, suggests a notion of approximation that is

not so readily visible in the ordinary logical notation.

3.2 Encoding Clauses in Hierarchies

One can represent uniform clauses over a set of prim

itive predicate symbols, Pi, ..., P,„ by creating a HKB

with a node for every clause obtainable from this set—

the complete lattice of subsets. A clause, P(a)V Q(a),

told to the HKB is transformed into P-or-Q(a) and

represented directly by the HKB. Clausal queries are

similarly transformed, and the question-answering al

gorithm of section 2.2 is invoked. More complex

quantifier-free queries are first put into clausal form,

then answered clause by clause.

Theorem

The above procedure yields sound and complete an

swers with respect to the specification. The complex

ity of answering various queries is at the bounds given

in section 3.1. ■

3.3 Approximation Using HKBs

The above shows that HKBs—used as a "theorem

proving" mechanism for uniform clauses—perform as

well as we currently can expect. It would be easy

to dismiss the previous section, if the story ended

there. An elaborate representation scheme is pre

sented, based on an unrealistic notion of a complete

lattice of predicates, that restricts the logical form

of information that can be represented, all in aid of

achieving an algorithm with no particular complexity

improvements! Fortunately, the story does not end

there.

Far from the exponential size of the complete hierar

chies discussed above, AI representation schemes more

commonly have sparse hierarchies whose size grows

only linearly in the number of primitive predicates

available to the system. The connections between

predicates in such hierarchies are much less profligate,

motivated by domain analysis, and generally reflect

ing observed connections assumed to be useful to the

reasoning system. By relaxing the requirement for a

complete hierarchy, tending instead toward the sparse

hierarchies familiar in AI, significant tractability gains

become possible.

For example, given the primitive predicates in fig

ure 1 (Turtle, Snake, Cat, Ferret, Dog, Mouse, Ger-

bil, Hamster, Goldfish, and Guppy), instead of having

classes for all possible subsets of them (1023 classes),

we might have just the 9 additional classes shown in

the figure (e.g., Rodent (= Mouse V Gerbil V Mole)).

3.3.1 Approximating Uniform Disjunctions

A uniform disjunction, Pi (a) V ... V Pn{a) can be

approximated in a sparse hierarchy as follows. Find

the lowest node(s), P, in the hierarchy that dominates

all the P{ and assert P(a). If this node is equivalent

to the given disjunction, the representation is com

plete. If not, only an approximation can be repre

sented. This leads to loss of information, but notice

that this loss is motivated by the terminology of the

domain—forgetting is not just arbitrary.

Since our HKB algorithms for answering positive

clause queries run in time polynomial in the size of

the hierarchy, we can get a much more reasonable re

sponse time. If the hierarchy has g(p) classes, where

g is a polynomial in the number of primitive predi

cates, p, the response time for an atomic query will

be 0(g(p) * logm), where m is the number of facts

told the KB. This is particularly good if g(p) = O(p),

which is not uncommon in AI KBs, especially since it

is likely that hi ^> g(p) in any realistic KB.

These improvements are obtained at the cost of a

certain loss of fidelity: there may (will) be facts that

the KB is told but is unable to recall precisely. Facts
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Figure 2: A hierarchy of colours

may become blurred with related facts, due to the lack

of a concept precisely right for representing a given da

tum. Some consolation (and intuitive justification) for

this loss of information comes from the fact that peo

ple exhibit similar relatedness effects [Johnson-Laird,

1982], and that information is lost proportionally to

its "naturalness": very natural disjunctions will have

nearby representations and little, if any, information

loss; unnatural disjunctions will be stored only at the

cost of significant degradation.

For example, imagine a hierarchy containing those

in figures 1 and 2, in which the only common an

cestor of Colour and Pet is the universal class

Thing. In this simple pet-shop world, Goldfish(joe)V

Guppy(joe) can be perfectly represented as Fish(joe),

and Gerbil(stan) V Hamster(stan) can be quite nat

urally approximated as Rodent(stan). On the other

hand, Orange(sid) V Ferret(sid) is so bizarre that it

amounts to Thing(sid).

It seems reasonable to assume that, if the hierarchy

is well-designed, "natural" disjunctions—those that

commonly occur in commonsense reasoning—will have

corresponding (or at least relatively-nearby) concepts

in the hierarchy, while "unnatural" disjunctions should

be only distantly connected. Since the amount of in

formation lost in representing a disjunction is propor

tional to the distance between the disjuncts and their

subsuming concept, this has the pleasing effect that

the accuracy sacrificed to achieve the necessary effi

ciency for commonsense reasoning has much less im

pact on commonsense knowledge than on more esoteric

facts.

Thus it appears to be possible to obtain signif

icant performance improvements at the expense of

sacrificing some ability to remember esoteric facts.

The reason for the speed-up is simply that when

told exponentially-many facts the IIKB may remem

ber many fewer of them! The significance of the earlier

complexity bounds is that such a speed-up can not be

accomplished without forgetting.

3.3.2 Approximating Negation-Free

Formulae

The above approximation works when the facts told

the KB are uniform-argument positive clauses. There

are, however, other classes of negation-free formulae

that may occur in practice that can still be repre

sented or approximated. For example, a negation-

free formula involving a single constant symbol can

always be converted into CNF, and then each clause

can be represented separately. For example, a child

choosing a pet to be named Stanley might nar

row the decision to Brown(stan) A IIamster(stan) V

Tan(stan) A Gerbil(stan), which can be represented

in CNF as Brown(stan) V Tan(stan), Brown(stan) V

Gerbil(stan), Hamster(stan) V Tan(stan), and

Hamster(stan) V Gerbil(stan). Given the hierarchies

of figures 1 and 2, we might remember Drab(stan) A

Rodent(stan).

Although the final representation is brief, the pro

cess of arriving at it may still be lengthy. The re

sults on monotone circuit complexity mentioned ear

lier show that conversion to CNF will exponentially

lengthen some formulae (as was evident in the above

example.)

Fortunately, it is possible to derive the representable

information much more efficiently by avoiding the in

termediate full CNF form and working incrementally.

The following algorithm and theorem show how the

hierarchy can contribute to efficiency at this stage.

Given a formula in disjunctive normal form (DNF),

conversion to CNF proceeds by repeatedly distribut

ing the elements of each original conjunct over t lie dis

juncts being built up. However, as each new disjunct

is added in the construction of a conjunct, the result

ing partial disjunction is collapsed to its lowest super-

node(s) in the hierarchy. Whenever such a collapsed

disjunction corresponds to a super-node of a conjunct
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already constructed, it is abandoned. If there are only

polynomially many predicates in the hierarchy (as a

function of the number of primitive ones), then the re

sults always collapse sufficiently to yield a polynomial-

time conversion algorithm.6

To illustrate the algorithm, reconsider the for

mula Brown(stan) A Hamster(stan) V Tan(stan) A

Gerbil(stan), which has the CNF expansion given

above. This would be converted as follows (we elide

the argument, stan): Brown V Tan becomes Drab;

Brown V Gerbil meet at Thing, which is discarded;

similarly for Hamster V Tan; while Hamster V Gerbil

becomes Rodent. Notice that the resulting atoms,

Rodent and Drab coincide with the result of TELL'mg

the system the full CNF. This is not accidental, as the

following theorem shows.

Theorem

Both the approximate and correct (explosive) con

versions to CNF, followed by TELL'mg the resultant

clauses, result in exactly the same KB, assuming the

clauses in the CNF are uniform. ■

3.3.3 Approximating Questions and Answers

The previous two sections showed how facts told to

the KB can be approximated, thus significantly de

creasing the size of the KB stored, and thereby im

proving the complexity of query processing. Approx

imation can also be applied to the query itself, and

in the query processing phase to yield additional im

provements.

It is also possible to gain speed by returning answers

that only approximate what the KB knows. Both

"upper-bound" (unsound but complete) and "lower-

bound" (incomplete but sound) answers can be given,

allowing the system to bracket the correct answer

and estimate its error, as suggested in [Lipski, 1979,

Imielinski, 1987]. Upper-bound answers to clausal

queries are obtained by querying the predicates corre

sponding to the lowest nodes that subsume the query,

which can be done in 0(n * logm) time. For ex

ample, using the hierarchy of Figure 1, the query

Fish-eater(Fred)VRodent-eater(Fred) can be approx

imated by the query Carnivore(Fred). This may suf

fice for many situations, even though it may be an

swered Yes if Fred is a dog. Since the HKB is aware

that an approximation is being presented, answers can

be appropriately conditioned (e.g., "Well, he is a car

nivore.").

Similarly lower-bound answers to disjunctive (not

necessarily clausal) queries can be obtained by query

ing each disjunct in turn, resulting in an 0(k*n*\ogm)

time query. Such answers amount to ignoring ways

that an affirmative answer might be implicit in the

8 It is straightforward to extend the algorithm to non-

DNF ground formulae; all that is needed is to recursively

apply it to DNF-subformulae, starting from the inside out.

knowledge base. For example, if told Green(sid) and

Reptile(sid), a lower bound answer to Green(sid) A

Snake(sid) V Green(sid) A Turtle(sid) would be ob

tained by looking at the individual possibilities. The

result would be Unknown (Yes A Unknown V Yes

A Unknown), even though the correct answer could

be obtained by querying Reptile(sid) A Green(sid).

Such approximate answers are frequently valuable.

For example, in determining whether a prospective

pet poses any threat to the menagerie, it may suf

fice simply to check whether it is a carnivore, rather

than checking Rodent-Eater, ...—despite the fact that

this will unjustly besmirch the dogs' reputation. Con

versely, to see if you can satisfy a request for a goldfish

and a turtle, or a guppy and a snake, or a guppy and

a turtle, or a snake and a goldfish, it might be enough

to check each possibility-—possibly resulting in the an

swer "unknown"—rather than figuring out that the

customer would actually be happy with any fish and

any reptile!

Earlier, we discussed a strategy for answering non-

clausal queries by expanding them to full clausal form,

possibly causing an exponential increase in the size of

the query, and then answering each clause separately.

We can, however, apply the approximate conversion to

clausal form to query-answering.

Theorem

Approximate conversion used with ASK returns the

same "upper-bound" answers returned by conversion

to CNF and querying the predicates subsuming the

individual clauses. ■

To summarize: by using the approximation, we lose

the ability to distinguish between certain given facts,

and between certain questions. However, we gain de

sired speed, and well-motivated forgetting and errors.

This approach amounts to the decision that the

HKB subsystem will avoid potentially expensive de

ductions, even at the cost of giving up its ability to

always be right. Recall, however, that the general ar

chitecture into which the subsystem we are propos

ing is envisioned as fitting is one of a problem-solver

that uses the HKB for efficient retrieval and reason

ing. It is expected that the problem-solver will have

other means at its disposal for dealing with "unnatu

ral" and other non-uniform disjunctions. The HKB is

able to detect when it is given data outside its area of

expertise; this can be used to condition the problem-

solver's confidence in answers the HKB may produce

should it be pushed to work in those areas despite its

limitations.

4 Single-Predicate Uniform Clauses

The previous section dealt with the approximation of

uniform clauses of the form Dog(a) V ...Cat(a). Here,

we wish to consider a "dual" of these sentences: those
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where a single predicate is disjoined over different in

dividuals (e.g., V' nhealihy(sali)\/ V'nhealthy(pepper),

Bought(alex, aToyoia) V Bought(alex, aChrysler),

Bought{alex, aHonda)V Bought(david, aHonda), )

Such sentences appear to be especially useful in de

scribing simple uncertainties or alternative partici

pants in activities and plans.

4.1 The General Theory

As before, there are complexity results that provide

lower bounds on how efficiently any KB could answer

queries, when told facts of the form P(a) V ... V P{z),7

if we insist on correct query processing.

Theorem

Given a theory consisting of single-predicate uni

form clauses

• if the language of queries is similarly restricted,

then queries can be processed in time linear in

the total size of the query plus the theory. (Again,

query processing is not affected by assuming the

GCWA.)

• determining if the answer is "yes" to single-

predicate queries of the form P{a\) A P(6i)V

P(a2) A P(b2) V ... is co-NP-hard in both the size

of the query and the size of the KB. ■

Thus, the situation is at least as bad as in the case of

uniform-argument clauses.

4.2 Encoding Clauses in the Hierarchy

Once again we can encode the problem of reasoning

with such clausal theories as querying certain HKBs.

The construction of the appropriate hierarchy is based

on the observation that a clause of the form P(a)VP(b)

can be converted to the dual form (a)(P) V (b)(P). In

this dual form, we have primitive predicates of the

form (c) (corresponding to original constants, c), and

constants of the form Q (corresponding to original

unary predicates, Q). The intended interpretation is

for (c)(Q) to hold in the dual theory iff Q(c) holds in

the original domain. Consider now providing a dual

hierarchy corresponding to the complete lattice of all

the subsets of original constants; (a,b)(x) would be

interpreted as (a)(x) V (b)(x). We can use this dual

hierarchy to obtain an exact encoding of the infor

mation in uniform-predicate clauses. For example,

Unhealthy(salt) V Unhealthy(pepper) is represented

as (salt, pepper)(U nhealihy). We can similarly obtain

dual forms of those quantifier-free queries that are uni

form in single predicates.

It is not hard to convert the algorithms in Section

2 to answer clausal queries for this modified represen

tation. The process once again is sound and complete

for clausal queries with complexity polynomial in the

number of type classes.

Existential queries present special problems. For

example, 3x. P(x) would, unfortunately, become

3(x). (x)(P), which is not first-order. Such queries

must, therefore, first be converted into quantifier-free

formulae, using the assumption that the theory and

domain are finite.

4.3 Approximation Using HKBs

We are again in the position of using HKBs as the

orem provers for a certain class of formulae. Again,

we can increase efficiency (though lose accuracy) by

significantly reducing the size of the hierarchy, which

can be exponential in the number of constants of the

original theory. Since approximation will occur if some

subsets of individuals are not represented in the dual

hierarchy, which subsets should be preserved?

To help explain this, we change our notation (and

at the same time avoid creating the dual hierarchy) by

making Unhealthy[(salt, pepper)] synonymous with

(salt,pepper)(Unhealthy). We assume that the origi

nal (non-dual) hierarchy has unary predicates describ

ing the types of objects, as is common in AI. We can

approximate dual predicates such as (a, b, c) by a class

that contains them as instances. Picking the lowest

such class(es) would obviously be best.

For example, Unhealthy[(salt, pepper)] (recall that

this stands for Unhealthy(salt)V Unhealthy(pepper))

might be approximated as Unhcalthy[CommonSpice],

if the class CommonSpice had salt and pepper as in

stances, effectively asserting that some CommonSpice

is Unhealthy. Similarly, Bought(alex,car32) V

Bought(alex, carb\) would be represented by asserting

Bought[alex, AmcricanCar], if car32 and car54 were

instances of the class AmericanCar. Note that the

accuracy of approximations might change over time,

in this case, if the extensions of the type predicates

change.

Alternatively, we can consider (for the first time

in this paper) the addition of new classes to the

hierarchy—a not uncommon operation in AI [Brach-

man et al, 1985]. For example, we might wish to de

fine new classes that characterize the set of objects,

{a,6,c}, over which the disjunction occurs, in terms

of their properties—a problem that has been exten

sively studied in Machine Learning. The creation of

such classes allows the (momentarily) precise repre

sentation of the disjunction, but runs the risk, in the

long term, of increasing the number of concepts in the

hierarchy (and therefore decreasing efficiency)."

7 In this case, the unary predicate notation also stands

for predicates with all arguments but one identical.

The type hierarchy may not provide sufficiently-

restrictive classes for some useful disjunctions. We are

investigating a secondary approximation mechanism that

may alleviate this problem without undue complexity, re

lated to Imielinski's [1987] ideas of restricted unification.
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As before, we may lose exact information about the

individuals involved in the assertion, and retain gen

eralizations. These generalizations, as the example

above illustrates, are quite reasonable. Once again,

we gain in efficiency: for example, queries of the form

P(ai) A P(6i)V P(a2) A P(b2) V ..., which previously

required exponentially-many operations in the num

ber of uniform clauses asserted, can be answered by

i) approximating that query in clausal form, and ii)

answering the resulting query. Each step takes poly

nomial time in the length of the query and number of

classes in the hierarchy.

5 Summary and Related Work

Semantic networks and terminologic logics are well-

known examples of hierarchically organized KBs in Ar

tificial Intelligence [Brachman et al, 1985]. The chief

novelty of our use of HKBs is the proper treatment of

the GCWA, and consideration of non-atomic updates

and queries.

The approximation process, whereby some asser

tions are inexactly represented to increase efficiency of

reasoning, has been studied by Imielinski [1986, 1987]

and Plaisted [l98l], among others. In particular,

Imielinski [1987] creates equivalence classes of individ

uals (something like grouping them into classes), and

then considers an abstracted KB where these equiva

lence classes are the new individuals. This resembles

our treatment of single-predicate uniform clauses, ex

cept that we do not insist that classes be mutually ex

clusive, and in fact allow a hierarchy of classes in order

to obtain the best approximation. Our approach also

differs from Imielinski's by efficiently treating a signif

icantly broader class of queries, and by examining a

continuum of approximations from the trivial (but re

quiring only a simple database lookup) to the perfect

(but with no performance improvement), with an at

tendant notion of graceful degradation of performance.

Imielinski also provides a framework for studying

the error introduced by such approximations—the set

of queries answered differently with and without ap

proximation. We plan to investigate this error in our

case, but note that it is possible for the HKB to bound

the error for any particular query, based on the way

the query interfaces with the hierarchy.

Concerning unique-argument uniform clauses, our

approximation can be viewed as a case of telling infor

mation to a KB that has a different vocabulary—the

higher-level classes of the hierarchy. This general view

of approximation has also been considered by Plaisted

and by Imielinski. To our knowledge, however, they

have not considered the problem of mapping general

queries into this abstracted framework—our approxi

mation to Lask — general positive ground clauses—

nor exploited special relationships between the predi

cates of the internal language (note that the original

predicates remain part of the internal language in our

case!).

We see the chief contribution of our work as the com

bination of two ideas: i) The provision of algorithms

that are provably correct and complete when the hi

erarchy is a complete subset lattice (which means it

is exponentially large), and ii) The property of the

algorithms that pruning this hierarchy (more or less

severely), improves performance (less or more dramat

ically), but induces a (lesser or greater) degradation in

the accuracy of the KB—providing a wide spectrum of

possible approximations and performance. Although

the representation language is rich enough to admit

unacceptable worst-case complexity, we have outlined

techniques that retain acceptable performance at the

cost of some degradation in the soundness and/or com

pleteness of the representation and/or query answer

ing.

Unlike some other approaches to achieving tractable

reasoning with worst-case intractable formalisms (c.f.

[Frisch, 1988]), our approach has the advantage that

its departures from sound and complete reasoning are

motivated by relationships in the knowledge base. The

structure of the system's knowledge plays a significant

role in determining the system's performance in assim

ilating new knowledge and in reasoning about what it

knows. In particular, the more closely-related a con

cept available to hang new facts on, or to start retrieval

from, the better the system's performance.

Just as significantly, approximation is not imposed

arbitrarily, but according to the natural class hierarchy

of application domains. Such hierarchies have been a

staple component of almost every knowledge represen

tation scheme in AI and Cognitive Science, and are

independently motivated and necessary.

6 Open Problems and Future Work

As mentioned earlier, the results described here are

part of a larger investigation of efficient knowledge

representation. In that context, there are many open

questions related to integrating HKBs into a more

general reasoning system. These are largely common

to any hybrid reasoning system involving incomplete

components, and we do not go into them here. There

are, however, also several open questions about HKBs,

which we touch on below.

Negation: We have provided no mechanism for

telling explicit negative facts to the HKB. While we

believe that the negation provided by the GCWA will

be sufficient for many commonsense problems, we are

exploring adding some facility for explicit negation.

Since adding full negation can dramatically increase

the complexity of reasoning, however, we must be care

ful to avoid falling off a "computational cliff." It may

be possible, however, to extend Ltell to include con

junctions of negative, ground, atomic facts without

sacrificing efficiency. Such conjunctions would fur

ther specify existing knowledge, provided the hierarchy
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supplied a concept corresponding to the refinement.

Similarly, there appears to be no problem with al

lowing atomic negative queries. It is not clear how

to deal with more complex negative queries, how

ever, since the GCVVA, which we model in our query-

answering, is not complete with respect to its minimal

model semantics for more complex negative queries

[Shepherdson, 1988].

Non-Uniform Clauses: We have shown how to

handle shared-predicate and shared-argument uniform

clauses in HKBs. There is an obvious question of

whether these techniques can be combined to repre

sent clauses of the form Pa V Qb. While we see no

reason why this should not be possible, we have not

yet worked out the details. Nor have we convinced

ourselves that the intuitive motivation for this work,

based on "natural" disjunctions, applies equally to dis

junctions of this form.

Assumptions About Hierarchies: The assump

tion of the exhaustiveness of the hierarchy (accord

ing to which each non-primitive class is defined to be

equivalent to the disjunction of its subclasses) figures

prominently in our representation and reasoning mech

anisms. Technically, it is a relatively simple trick to

add an additional "dummy" subclass (which is not vis

ible to the user) to any class that we do not wish to

consider exhausted by its children.

The GCWA induces another assumption about

the hierarchy: that classes that share no common

sublcasses/instances are distinct. This assumption

cannot be totally discarded without abandoning the

GCWA, although it might be possible to relax it for

particular classes. Since we have no compelling exam

ples where it is desirable to avoid assuming the dis-

jointness of two classes without forming a concept for

the class consisting of their intersection, we have not

explored this possibility.

Updates: We have not begun to address the obvi

ously important question of how changes to the con

cept hierarchy interact with the approximated knowl

edge of the HKB. This is particularly important in the

case of single-predicate uniform clauses, since learn

ing of new members of a type may weaken previous

approximations.
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Abstract

The problem of abduction is to find the

best explanation of a set of data or obser

vations. In this paper we focus on one type

of abduction in which the best explanation is

the most plausible conjunction of hypothe

ses that explains all the data. We then

present several computational complexity re

sults demonstrating that very restrictive con

ditions must be satisfied for this type of ab

duction to be tractable (solvable in polyno

mial time). Determining the plausibility and

explanatory coverage of hypotheses must be

tractable, there cannot be many incompati

bility relationships or cancellation effects be

tween individual hypotheses, and plausibil

ity comparison between composite hypothe

ses must be logically weak.

1 Introduction

The problem of abduction is to find the best expla

nation of a set of data or observations. Diagnosis has

been characterized as an abduction problem [Charniak

and McDermott, 1985, de Kleer and Williams, 1987,

Josephson et al., 1987, Pearl, 1987, Pople, 1973, Reg-

giaet al., 1983, Reiter, 1987]. For example, in medical

diagnosis, the signs and symptoms of the patient and

additional data gathered during the diagnostic process

should be explained by the final diagnosis.

In a previous paper [Allemang et al., 1987], we

demonstrated that certain classes of abduction prob

lems are computationally tractable, while other classes

of abduction problems are intractable (NP-hard). Be

low we review these results, clarify the assumptions

underlying them, and present new results which con

cern canceling symptoms and plausibility comparison.

These results are relevant to all the diagnosis algo-

"This work has been supported by the National Library of

Medicine under grant LM-04298, the National Science Founda

tion through a graduate fellowship, and the Defense Advanced

Research Projects Agency, RADC contract F30602-85-C-0010.

rithms cited above.

Our methodology is to formally characterize abduc

tion as a problem of finding the most plausible compos

ite hypothesis (a conjunction of individual hypotheses)

that explains all the data. Then we consider several

classes of problems of this type, the classes being differ

entiated by the way hypotheses interact. We demon

strate that the time complexity of each class is polyno

mial (tractable) or NP-hard (intractable). Outlines of

proofs are in the appendix as well as the NP-complete

formulations of the problems.

Our results show that this type of abduction faces

several obstacles. Incompatibility relationships or can

cellation interactions between hypotheses makes ab

duction intractable. Our previous result pointing out a

tractable class of abduction problems assumes a weak

heuristic for comparing the plausibility of composite

hypotheses. This assumption is crucial because nor

mative plausibility comparison also makes abduction

intractable.

We are driven to two conclusions. (1) Forget about

a general algorithm for optimal abduction; perhaps

a more naturalistic or satisficing conceptualization of

the abduction problem should be adopted instead. (2)

Hope that certain domain-dependent characteristics

permit tractable abduction; in particular, abduction

is tractable if composite hypotheses are guaranteed to

be small or if strong domain knowledge can rule out

most individual hypotheses.

2 Notation, Definitions, and Assump

tions

Before reviewing our results it will be useful to have

the following notational conventions and definitions.

These definitions substantially extend and refine those

in our previous paper.

dx will stand for a datum, e.g., a symptom. DT will

stand for a set of data. hr. will stand for a individual

hypothesis, e.g., a hypothesized disease. H r will stand

for a composite hypothesis, e.g., an hypothesized set

of diseases.
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An abduction problem is a tuple {D„, Hnu,e,pl),

where D„ is the observed data to be explained, Hau is

the set of all individual hypotheses, e is a map from

subsets of Hail to subsets of D„ (e(H) is the data that

H, if true, explains), and pi is a map from subsets

of Hau to a set of plausibility values. That is, e(H)

measures the explanatory coverage of H, and pl(H)

measures the plausibility of H . For the purpose of this

definition and the results below, it does not matter

whether pl(H) is a probability, a measure of belief,

a fuzzy value, a degree of fit, or a symbolic likeli

hood. The only requirements are that the values of

pi are partially ordered and that Hi C H} implies

pl(Hi) > pl(Hj).

H is complete if e(H) = £>„. That is, H explains all

the data to be accounted for.

H is parsimonious if JHi C H{e(H) C e(Hi)). That

is, no proper subset of H explains the same data as H

does.

H is a best explanation if:

complete(H) A parsimonious(ff) A

JHi C Hau (complete(//i) A parsimonious(tfi) A

pl(Hi) > pl(H))

In other words, no other complete and parsimonious

composite hypothesis has a higher plausibility than

H. It is just "o best" because pi might not im

pose a total ordering over composite hypotheses (e.g.,

because of probability intervals or qualitative likeli

hoods). Consequently, several composite hypotheses

might satisfy these conditions. Most abduction algo

rithms attempt to satisfy this property (given suitable

assumptions about e and pi). Some algorithms search

for all complete and parsimonious composite hypothe

ses [de Kleer and Williams, 1987, Reiter, 1987]. This

definition formalizes the notion of best explanation in

Josephson et al. [1987].

We assume the existence and tractability of the fol

lowing processes:

• a process that can perform the function e;

• a process that can perform the "inverse" of e for a

datum, i.e., determine what individual hypotheses

can contribute to the explanation of a datum (for

convenience, we refer to this function as e_1) ;

and

• a process that can perform the function pi for indi

vidual hypotheses (but see Pearl [1987] concerning

the tractability of this process).

Clearly, the tractability of these processes is central

to abduction, since it is difficult to find plausible hy

potheses explaining the data if it is difficult to compute

e, e_1, and pi.

The key factors, then, that we consider in the com

plexity of finding a best explanation are properties of

+• superior
 

*- poor

Figure 1: Example of an Abduction Problem

abduction problems that allow or prevent tractable

computation given that e, e_1, and pi can be com

puted "easily." That is, given a particular class of

abduction problems, how much of the space of com

posite hypotheses must be searched to find a best ex

planation? As demonstrated below, intractability is

the usual result in classes of problems that involve sig

nificant interaction between individual hypotheses af

fecting the results of e and pi for composite hypotheses.

We should note that these definitions and assump

tions oversimplify several aspects of abduction. For

example, we define composite hypotheses as conjunc

tions of individual hypotheses. In reality, the relation

ships between the parts of an abductive answer can be

much more complex, both logically and causally. An

other example is that nothing is presumed about how e

and pi are computed or how they are related. Despite

these simplifications, we believe that our analysis pro

vides powerful insights concerning the computational

complexity of abduction.

We shall use the following example to facilitate our

discussion:

H„u = {/»1)^2i'»3i'*4i^5}

D„ = {di,d2,d3, d*}

e(hi) = {di} pl(h-i) = superior

e(h2) = {^1,^2} pl{hi) — excellent

e(h3) = {d2,d3} pl(h3) = good

e(/i4) = {d2,di} pl(hi) = fair

c(^5) = {^3.^4} plihs) = poor

Figure 1 is a pictorial representation of the example.

The values of pi should simply be interpreted as indi

cating relative order of plausibility. Assuming no in

teractions between hypotheses, {h2, h3, /15} would be a

complete explanation, but not parsimonious since h3 is

superfluous. {h2,h3} would be a parsimonious expla

nation, but not complete since it doesn't explain di.

{hi,h3,h^} or {h2,hs} could be considered best ex

planations, depending on how plausibilities combine.

Using these definitions and assumptions, we first dis

cuss how properties of e affect the tractability of find

ing best explanations, and then consider properties of

pi.
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3 Complexity of Completeness and

Parsimony

We consider several different classes of problems and

state the complexity of finding a complete explanation

and finding a parsimonious subset of a composite hy

pothesis.

3.1 Independent Problems

The simplest problems assume that an individual hy

pothesis explains a specific set of data regardless of

what other individual hypotheses are being consid

ered. INTERNIST-I [Miller et al., 1982] and Reggia's

set covering algorithm [Reggia et al., 1983] are two

systems that make this assumption. The use of con

flict sets [de Kleer and Williams, 1987, Reiter, 1987]

also appears to make this assumption.1

Formally, an abduction problem is independent if:

Vff C Hall (e(H) = (J e(h))

That is, a composite hypothesis explains a datum

if and only if some component explains the datum.

Assuming independence, the complete and parsimo

nious explanations in our example (refer to Figure 1)

are {hi, h3, /i4}, {hi, h3, h5}, {hi, h4, h5}, {h2, h3, /i4},

and {/12, /15}.

In Allemang et al. [1987], we showed that: For the

class of independent problems, finding a composite hy

pothesis that is complete is tractable.2 The algorithm

that we presented in that paper performs this function

using 0(d(h + dlogd)) steps (any call to e or e_1 is

counted as one step), where d is the size of D„ and h

is the size of Hau.

Also, we showed that: For the class of independent

problems, finding a parsimonious subset of a composite

hypothesis is tractable. In particular, once a complete

composite hypothesis has been found, finding a sub

set which is parsimonious is tractable. Our algorithm

performs this function in O(hdlogd) steps.

3.2 Monotonic Problems

A more general kind of problem is when composite

hypotheses can explain additional data that are not

explained by any of its components. This sort of in

teraction can occur if two individual hypotheses have

an additive interaction. For example, each of the two

hypotheses can explain a small value of some measure

ment, but together can explain a larger measurement.

Formally, an abduction problem is monotonic if:

VHuHj C HM {e{Hi)Ue{Hj) C e(HxUH,))

That is, a composite hypothesis does not "lose" any

data explained by any of its proper subsets and might

explain additional data. An independent abduction

problem is monotonic, but a monotonic abduction

problem is not necessarily independent. If, in our ex

ample, {/12, h3} also explained d4, then {A2 , h3} would

also be a complete and parsimonious explanation and

{h2, h3, /14} would not be.

Our previous paper showed that our algorithms for

independent problems also work for monotonic prob

lems with no change in complexity. Thus: For the

class of monotonic problems, finding a complete and

parsimonious composite hypothesis is tractable.

3.3 Incompatibility Problems

Implicit in the formal model so far is the assumption

that any collection of individual hypotheses is possi

ble. However, most domains have restrictions that in

validate this assumption. For example, an electrical

switch cannot simultaneously be closed and open.

Formally, an incompatibility abduction problem is a

tuple (D0, Hail, e, pi, I), where D,„ Hall, e, and pi are

the same as before and / is a set of two-element sub

sets of Halt, indicating pairs of hypotheses that are

incompatible with each other.3 For an incompatibility

problem:

Vff C H^i (3P eI{PCH)-* e(H) = 0)

By this formal trick, a composite hypothesis con

taining incompatible hypotheses explains nothing,

preventing such a composite from being complete

(except for trivial cases) or a best explanation.

We describe an incompatibility problem as indepen

dent if composite hypotheses with no incompati

bilities satisfy the independence formula. If / =

{{hi, h2}, {h2, h3}, {h3, /i4}, {hi, /i5}} in our example,

then only {hi, h3, /15} and {h2, h^} would be complete

and parsimonious.

Our previous paper showed: For the class of inde

pendent incompatibility problems, finding a complete

composite hypothesis with no incompatibilities is NP-

hard. However, the same parsimony algorithm for in

dependent and monotonic problems can be applied to

incompatibility problems. Once a composite hypoth

esis without any incompatibilities is found, no diffi

culties with incompatibilities will arise by removing

individual hypotheses. Thus, For the class of indepen

dent incompatibility problems, finding a parsimonious

'Each conflict set corresponds to a datum to be explained,

and the elements of the conflict set are the hypotheses that can

independently explain the datum.

2To be precise, we should say that it is tractable to determine

whether a complete composite hypothesis exists and that, if one

does exist, finding it is also tractable.

3 Incompatible pairs are the most natural case, e.g., one hy

pothesis of the pair is the negation of the other. Incompatible

triplets (any two of the three, but not all three) and so on are

conceivable, but allowing these possibilities in the formal defi

nition do not affect the complexity results.
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Table 1: Computational Complexity of Obtaining Completeness and Parsimony

class of problems condition to achieve

completeness parsimony best explanation

independent P P
?

monotonic P P ?

incompatibility NP P NP

cancellation NP NP NP

P = known polynomial algorithm NP = NP-hard

subset of a composite hypothesis is tractable. Never

theless, because of the complexity of obtaining com

pleteness, it follows that: For the class of independent

incompatibility problems, finding a best explanation is

NP-hard.

3.4 Cancellation Problems

To be an independent or monotonic abduction prob

lem, one hypotheses cannot "cancel" a datum that an

other hypothesis would otherwise explain. However,

cancellation can occur when one hypothesis can have

a subtractive effect on another. This is common in

medicine, e.g., in the domain of acid-base disorders one

disease might explain an increased blood pH, and an

other might explain a decreased pH, but together the

result might be a normal pH [Patil et al., 1982]. Some

of our new results concern problems of this class.

Formally, we define a cancellation abduction prob

lem as a tuple (D„, Haii,e,pl, f,g). f is a map from

Hnii to subsets of D„ indicating what data each hy

pothesis "explains." g is another map from Hau to

subsets of Du indicating what data each hypothesis

"cancels." d £ e(H) iff the number of hypotheses in H

that explain d outnumber the hypotheses that cancel

d. That is:

dee(H) <-

\{h: h € H A d € f{h)}\ > \{h: h G H A d 6 g(h)}\

In our example, if we let / = e for individual hy

potheses and if g{hi) = {^3}, g(h,2) = {^4)1 and

g(h3) = gih^) = g[h5) = 0, then the only complete

and parsimonious explanations would be {h\, /13, /15}

and {/12, hi, h$}.

Admittedly, this is a oversimplified model of cancel

lation effects. Nevertheless: For the class of cancella

tion problems, finding a complete composite hypothesis

is NP-hard. Also, it turns out that: For the class of

cancellation problems, finding a parsimonious subset

of a composite hypothesis is NP-hard. Clearly then:

For the class of cancellation problems, finding a best

explanation is NP-hard.

Table 1 summarizes the results of this section.

4 Complexity of Plausibility

To apply the definition of best explanation, the plau

sibilities of composite hypotheses need to be compa

rable. We consider three plausibility criteria based on

comparing the plausibilities of the components of the

composite hypotheses. Our new results are the formal

ization of the criteria and all but one of the complexity

results. Our previous paper did not consider two of the

criteria and implicitly assumed the appropriateness of

the other one (the one called best-for-some).

The first criterion is a qualitative version of norma

tive plausibility comparison; the other two criteria are

heuristic. None of the criteria are sensitive to whether

composite hypotheses are causally coherent. Never

theless, they help to delimit what classes of abduction

problems are tractable.

4.1 The Best-small Plausibility Criterion

Everything else being equal, smaller composite hy

potheses are preferable to larger ones, and more plau

sible individual hypotheses are preferable to less plau

sible ones. Thus, in the absence of other information,

it seems reasonable to compare the plausibility of com

posite hypotheses based on their sizes and the relative

plausibilities of their components. When a conflict oc

curs, e.g., one composite hypothesis is smaller, but has

less plausible components, no ordering can be imposed.

Formally, the best-small plausibility criterion is de

fined as4:

Pl(H)>pl(H>) ~

3m: # — #'(mis 1-1 A

VfcGff (pl(h) > pl{m{h))) A

(Iff I = \H'\ ->

3/i G H (pl(h) > pl{m(h)))))

To be more plausible according to best-small, the com

ponents of H need to be matched to the components

''This and the following definitions of plausibility criteria im

plicitly assume that abduction problems are independent and

that plausibilities of individual hypotheses are totally ordered.

More general definitions have been constructed, but are much

less understandable.
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of H' so that the components of H are at least as plau

sible as their matches in H'. If H and H' are the same

size, then in addition some component in H must be

more plausible than its match in H'. In our example,

{hi, /13, /14} and {/i2,/is} would be the best explana

tions (assuming that the problem is independent).

We have demonstrated that: For the class of inde

pendent problems using the best-small criterion, find

ing a best explanation is NP-hard.

It is possible to reduce from the best-small crite

rion to any normative probability theory in which

more plausible or fewer individual hypotheses can in

crease probability, which of course includes Bayesian,

Dempster-Shafer, and fuzzy logic theory. Hence: For

the class of independent problems using probability the

ory, finding a best explanation is NP-hard. That is, an

algorithm for finding a best explanation for indepen

dent problems using probability theory can be applied

to finding a best explanation for independent prob

lems using the best-small criterion. For example, if we

let the probabilities of individual hypotheses be inde

pendent from each other, then a best explanation for

the probability problem would be a best explanation

for the best-small problem. Thus, if the best-small

problem is intractable (NP-hard), then so is the prob

ability problem. Note that this is true even if there

are assumptions that make calculating probabilities

tractable.

4.2 The Best-for-all Plausibility Criterion

Because normative comparison (i.e., the best-small cri

terion) is intractable, it is appropriate to consider

heuristic criteria. One of the characteristics of the

best-small criterion is that it does not depend on which

individual hypotheses explain which data. A heuristic

alternative is to compare composite hypotheses based

on how well each datum is explained. If one com

posite hypothesis has a more plausible explanation of

a datum than some other composite hypothesis, we

shall say that the datum discriminates in favor of the

first composite hypothesis. Before defining the second

plausibility criterion based on this idea, we first define

when an individual hypothesis contributes to explain

ing a datum in the context of a composite hypothesis

and when a datum discriminates between composite

hypotheses.

h contributes to explaining d within H (contri

butes^, d, H)) iff:

he H Ade e(h) A

v/ii e H{dee{h,) Pi(h) > pi(hi))

That is, h is the most plausible hypothesis in H that

explains d.

d discriminates in favor of H over H' (discrimi

nates^, H, H')) if:

3/i € H, h' £ H' (contributes(/i, d, H) A

contributes(/i',d, H') A

pl(h) > pl(h'))

That is, H's explanation of d is more plausible than

H"s explanation of d.

The second plausibility criterion, best-for-all, pre

fers composite hypotheses in which every datum is

explained by as plausible an individual hypothesis as

possible. Formally:

pl(H)>Pl(H') ~

3d £ D„ (discriminates^, H, H')) A

Jd € D„ (discriminates^, H' , H))

That is, some datum discriminates in favor of H , and

no datum discriminates in favor of H'. In our example,

{hi, /13, /14} and {/12, /13, /14} would be best explana

tions using best-for-all. As the example demonstrates,

best explanations using the best-small criterion are not

a subset of those using the best-for-all criterion (and

vice versa).

Even though this is a heuristic, we have shown that:

For the class of independent problems using the best-

for-all criterion, finding a best explanation is NP-hard.

4.3 The Best-for-some Plausibility Criterion

The intractability of the best-for-all criterion is partly

due to the fact that any datum and any individual hy

pothesis that contributes to that datum can be used

for making a discrimination. In contrast, the third

plausibility criterion requires that a discrimination be

based on all the data that an individual hypothesis

contributes to. Before defining the criterion, we first

need a predicate that defines this version of discrimi

nation.

D set-discriminates in favor of H over H' (set-

discriminates^, H, H')) if:

D/0A

3/i' G H' (Vd e D.t{d€D~

contributes(/i',d, H')) A

Vd e D (3/i € H (contributes^, d, H) A

pl(h) > pl(h'))))

Informally, H has a more plausible explanation for ev

ery datum explained by some h' in H'.

The third plausibility criterion, best-for-some, pre

fers composite hypotheses in which every component

is the most plausible for some datum. Formally:

pl(H)>pl(H') -

3D C D„ (set-discriminates(I>, H, H')) A

JD C D„ (set-discriminates(D, H', H))

Informally, every datum explained by some h' in H'

is more plausibly explained by H, and every h in H
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Table 2: Computational Complexity of Finding a Best Explanation

property of e property of pi

best-for-some best-for-all best-small

independent P NP NP

monotonic P NP NP

incompatibility NP NP NP

cancellation NP NP NP

P = known polynomial algorithm NP = NP-hard

explains some datum as plausibly as H' does. In

our example, {hi, /13, /14} and {/12, /13, /14} would be

again be best explanations. Best-for-some best ex

planations are not a subset of best-for-all best ex

planations, though. If instead p/(/i2) = good, then

{/12, /13, A.4} would still be a best explanation using

best-for-some because /12 explains d.2 as plausibly as

any other hypothesis, but not using best-for-all be

cause d.2 no longer discriminates in its favor. Best-

for-all is not a subset of best-for-some, either. If in

our example e(/i3) = {di,d2>^3}i then {/i3,/i.}} would

be the only best explanation using best-for-some, but

{h\, hi, /i5} and {h2,h$} would also be best explana

tions using best-for-all.

Our previous paper [Allemang et al., 1987], implic

itly assuming this criterion, showed that: For the

classes of independent and monotonic abduction prob

lems using the best-for-some plausibility criterion,

finding a best explanation is tractable. The algorithm

presented in Allemang et al. [1987] performed this

problem in 0(hm(h 4- mlogm))

Table 2 summarizes our results.

Unfortunately, even assuming that the plausibilities

of individual hypotheses are all different and totally

ordered, generating alternative best explanations is in

tractable in the following cases:

• For the class of monotonic problems, given a set

of complete and parsimonious explanations, it is

NP-hard to find an additional complete and par

simonious explanation.

• For the class of independent problems using the

best-small plausibility criterion, given a set of best

explanations, it is NP-hard to find an additional

best explanation.

• For the class of independent problems using the

best-for-all plausibility criterion, given a set of

best explanations, it is NP-hard to find an addi

tional best explanation.

We suspect that it is intractable to enumerate best-

for-some best explanations, but we have not yet been

able to demonstrate it.

4.4 Enumeration of Best Explanations

It is interesting to note that finding a best explana

tion using best-small or best-for-all is tractable if the

plausibilities of individual hypotheses are all different

from each other and if the plausibilities are totally or

dered. Thus, part of the complexity comes from hav

ing to choose between different individual hypotheses

that have similar plausibilities and whose explanations

overlap. This still creates a problem for probability

theories using real numbers because errors in proba

bility values will make small differences insignificant.

There is an additional problem to consider even if a

best explanation can be found—that of finding alter

native best explanations or determining that no more

exist. Finding alternatives is usually an important

part of abduction because of the need to know whether

there is only one good explanation, or if there are sev

eral, the need to perform tests that will discriminate

between the alternatives.

5 Discussion

These results seem rather depressing for abductive rea

soning. We believe that few domains (i.e., classes

of problems) satisfy the independent or monotonic

property. Probability theory appears to guarantee in

tractability for abduction. However, there are several

mitigating factors.

One factor is that incompatibility relationships and

cancellation effects might be sufficiently sparse so that

it is not expensive to search for complete and parsi

monious composite hypotheses. However, plausibility

requirements might still result in intractability.

Another factor might be that in practice compos

ite hypotheses are usually small. However, our results

suggest that considerable search will in general be re

quired. If h is the number of individual hypotheses

and / is the limit on the size of composite hypotheses,

then 0(hl) composite hypotheses are possible, which

becomes formidable if h is large and / > 1.



50 Bylander, Allemang, Tanner and Josephson

A third factor is that in a specific domain, there

might be sufficient knowledge to rule out a large num

ber of individual hypotheses or, more generally, to as

sign high plausibility values to the "right" individual

hypotheses. For example, if rule-out knowledge can

reduce the number of individual hypotheses from h

to log/i, then the problem is tractable.5 It is impor

tant to note that this factor does not simply call for

"more knowledge," but knowledge of the right type,

in this case, -rule-out knowledge. Additional knowl

edge per se does not reduce complexity. For example,

more knowledge about incompatibilities or cancella

tions makes abduction harder.

One expert system that takes advantage of many

of these factors is RED, which performs red-

blood cell antibody identification [Smith et al., 1985,

Allemang et al., 1987]. RED's problem solving only

attempts to satisfy best-for-some, general classes of

hypotheses are ruled out whenever possible, plausi

bility values are assigned to hypotheses by evaluating

the evidence efficiently, and the search for a best ex

planation takes this information into account as well

as information about which data are more impor

tant to explain [Josephson et al., 1987]. INTERNIST-

I [Miller et al., 1982] has many of these same prop

erties, except that it does not perform any explicit

rule-out and assumes that problems are independent.

Virtually all knowledge-based systems that do diag

nosis perform evidence evaluation, but few perform an

efficient search for composite hypotheses that are com

plete, parsimonious, and "best." We are not saying

that RED has a tractable algorithm for an intractable

class of problems, but that RED takes advantage of

many factors that may allow for tractable problem

solving in specific domains.

If there are no tractable algorithms for a class of ab

duction problems, then there is no choice but do ab

duction heuristically (unless one is willing to wait for

a long time). One must accept the best explanation

that can be found with the computational resources

available. We believe this will lead to the adoption of

a more naturalistic or satisficing conceptualization of

abduction, such as that of Josephson and Goel [1988].

Unfortunately, the result is that some data might not

be explained, incompatibilities might exist, and there

might be more plausible and parsimonious explana

tions. Perhaps one mark of intelligence is being able

to act despite the lack of optimal solutions.

Our results show that abduction, characterized as

finding the most plausible composite hypothesis that

explains all the data, is generally an intractable prob-

5 This is not the same as the "rule-out" performed in the

diagnosis algorithms of de Kleer & Williams [1987] and Reiter

[1987]. Determining that an individual hypothesis is insufficient

to explain all the observations, i.e., that it's not a member of

every conflict set, does not prevent the individual hypothesis

from being in composite hypotheses.

lem. Thus, it is futile to hope for a general tractable

algorithm that produces optimal answers for diagnosis

and other abduction problems. To solve an abduc

tion problem efficiently, the problem must have cer

tain factors that make the problem tractable, and the

problem solving strategy must take advantage of those

factors. Elucidating such factors and strategies cannot

be wholly a search for the right epistemology, but must

take computational complexity into account.

A Outlines of Proofs

In this appendix, we list the complexity results dis

cussed in the paper and outline a proof for each of

them. We assume that the functions e, e_1, and pi

are tractable (see Section 2). The reader is forewarned

that many of the reduction proofs do not provide much

insight on the intuitive reasons underlying the com

plexity results. The proofs are only intended to be

mathematically correct, not intuitively helpful.

Theorem 1 For the class of independent problems, it

is tractable to determine whether a complete composite

hypothesis exists and to construct it if one does exist.

Simply check if e(Haii) = D„. If so, Hau is a complete

composite hypothesis. If not, no complete composite

hypothesis exists.

Theorem 2 For the class of independent problems,

finding a parsimonious subset of a composite hypothe

sis is tractable.

The following algorithm solves this problem in O(hd)

steps where d is the size of D„ and h is the size of Hnu

and each call to e, e_1, and pi is counted as one step.

Testing for set equality can be performed in linear time

using bit vectors.

H is the composite hypothesis to be parsimonized.

W stands for the working composite hypothesis.

W «- H

For each h € H

tfe(W\{h}) = e(W) then

W <- W\{h}

Return W

Suppose that the result of this algorithm was a non-

parsimonious composite hypothesis H. Then, because

the problem is independent, there is some h £ H such

that e(H\{h}) = e(H). However, the algorithm would

have removed h from H (or any superset of H) in

just this case, which is a contradiction. Thus, for the

class of independent problems, the algorithm produces

parsimonious hypotheses.

Theorem 3 For the class of monotonic problems, it

is tractable to determine whether a complete composite
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hypothesis exists, to construct it if one does exists, and

to find a parsimonious subset.

The algorithms for the previous two theorems also ap

ply to this theorem. The crucial reason underlying the

tractability of monotonic problems is that H C H' im

plies e(H) C e(H'). Thus, in monotonic problems, no

composite hypothesis can explain more than Haii, and

parsimony can be performed by iterating over individ

ual hypotheses. Without monotonicity, such guaran

tees cannot be made.

Theorem 4 For the class of independent incompati

bility problems, it is NP-complete to determine whether

there is a complete composite hypothesis.

We prove the NP-completeness of this problem by re

ducing from 3SAT [Garey and Johnson, 1979]: given a

statement in propositional calculus in disjunctive nor

mal form, in which each term has at most three fac

tors, find an assignment of variables that makes the

statement true.

Let 5 be a statement in propositional calculus in

3SAT form. Let {ui, u2, . . ., uTn} be the variables

used in 5. Let n be the number of terms in S.

An equivalent independent incompatibility problem

IP — (D„, Hau, e, pi, I) can be constructed by:

D0

Hall

I

{di,d2, ...,dn}

{hi, h[, h2, h'2, . . ., hm, h'„t}

{dj-. u< is a factor in the jth term}

{dy. -iUi is a factor in the jth term}

{{hi, h[}, {h2, ti2}, . . .,{hrll, h'rn}}

If H is a complete explanation for IP, then S is satis

fied by the following assignment.

H
true

false

if/4 € H

otherwise

Below, we reduce satisfaction of completeness in in

compatibility problems to a number of problems. For

convenience, we shall assume that the incompatibility

problems have the same form as IP: the problem is in

dependent except for incompatibilities, each h e Hau

is an element of some P € /, and the incompatibilities

are disjoint, i.e., the intersection of any two elements

of / is 0. We refer to this kind of problem as 3SAT

incompatibility problems.

Theorem 5 For the class of independent incompat

ibility problems, finding a parsimonious subset of a

composite hypothesis is tractable.

If a composite hypotheses contains no incompatible

pairs, then the problem can be reduced to obtain

ing parsimony for an independent problem, which is

tractable by Theorem 2. If a composite hypotheses

contains an incompatible pair, then by definition it ex

plains nothing and 0 is the parsimonious subset (0 is

the smallest composite hypotheses that explains noth

ing)-

Theorem 6 For the class of cancellation problems, it

is NP-complete to determine whether there is a com

plete composite hypothesis.

This can be shown by reduction from 3SAT incom

patibility problems. Let IP = (D„, H„u,e,pl, I) be

a 3SAT incompatibility problem. An equivalent can

cellation problem CP = (D'0, H'M, e\ pi', f, g') can be

constructed by:

D,'°

H'all

f'(h)

9'(h)

DuLl{dP: Pel}

Ha„U{h',h"}

-{

e(h) if he Hau

{dp: Pel} if he {h', h"}

{dp: 3P e i(h e p)} if he Hatl

0 if h e {h', h"}

Cancellation interactions are created so that each in

compatible pair in IP effectively become incompatible

in CP. Thus, CP has a complete explanation iff IP

has a complete explanation. In particular, if H is a

complete explanation for CP, then HC\Hau is a com

plete explanation for IP.

Theorem 7 For the class of cancellation problems, it

is NP-complete to determine whether there is a more

parsimonious subset of a composite hypothesis.

This can be shown by reduction from 3SAT incom

patibility problems. Let IP = (D„,Haii,e,pl,I)

be a 3SAT incompatibility problem, and let CP =

(D'(>, Hall,e',pl', f',g'} be a cancellation problem con

structed from IP as follows:

D'

f'W

g'(h) =

HaU.j{h',h",h-,h"}

D„\j{dp: Pel}

U{dh:heH'aU\{h-,h-}}

e(h)Udh if he Hall

{dp: Pel} if he{h',h"}

D„U{dP: Pel} lfh = h'

{da-.heH'^Mh^h-}}

\fh = h"

{dp: 3P e I{h e P)} IfheHau

{dh:heH'nll\{h-,h-}} if h = h"

0 if he {h',h",h"}

This construction is similar to the previous one ex

cept that additional data and hypotheses are included

so that H'nu is a complete explanation. However, any
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other complete explanation (which must be more par

simonious than H'all) cannot include h' and must sat

isfy cancellation interactions equivalent to IP's incom

patibilities. In particular, if H is a complete explana

tion for CP, then HC\Haii is a complete explanation

for IP.

Theorem 8 For the class of independent problems us

ing the best-small plausibility criterion, given a com

plete and parsimonious explanation, it is NP-complete

to determine whether a better complete and parsimo

nious explanation exists.

This can be shown by reduction from 3SAT incom

patibility problems. Let IP = (D,„ Hnu,e,pl, I)

be a 3SAT incompatibility problem, and let IP' =

{D'0, H'all,e',pl') be an independent problem con

structed from IP as follows:

Let /i be a function from / to Haii, such that VP G

/(/i(P) G P), i.e., fi chooses one hypothesis from

each pair in /. Let H\ be the set of hypotheses that f\

chooses, i.e, H\ = U/>g/{/i(P)}. Now define IP' as:

D'" z- D„u{dr: P G /}

H',lll -'- HnUU{h'}

'(h) -.
J e(h)u{dP: h£P}

' \ D„\e(Hi)

if h G HaU

i(h=h'

pl'(h) = good v/ig#;„

Now HiU{/i'} is a complete and parsimonious expla

nation of size n+1, where n = |/|. Because all the hy

potheses have the same plausibility, any better expla

nation using the best-small plausibility criterion must

be of size n or less. However, one hypothesis out of

each pair in / (a total of n hypotheses) is needed to

explain {dp: P G /}. Hence, to get a better complete

and parsimonious explanation, h' must be excluded

and only one hypothesis out of each pair in / can be

accepted. Thus, any better complete and parsimo

nious explanation for IP' using best-small must also

be a complete explanation for IP.

Theorem 9 Finding a best explanation for the class

of independent problems using probability theory is

NP-hard.

The best explanation for this problem would be the

most probable composite hypothesis explaining all the

data. This can be reduced from the best-small prob

lem by assigning probabilities consistent with the plau

sibility ratings and letting the probabilities of the indi

vidual hypotheses be conditionally independent from

each other. The best explanation for this probability

problem is also a best explanation under the best-small

plausibility criterion.

Theorem 10 For the class of independent problems

using the best-for-all criterion, given a complete and

parsimonious explanation, it is NP-complete to deter

mine whether a belter complete and parsimonious ex

planation exists.

This can be reduced from 3SAT incompatibility prob

lems. Let IP = (D„, Hau, e, pi, I) be a 3SAT incom

patibility problem, and let IP' = (D'ot H'all,e',pl') be

an independent problem constructed from IP as fol

lows:

Again let /i be a function from / to Haii, such that

/i chooses one hypothesis from each pair in /. Let

/2 be a function from / to Hau, such that /2 chooses

other hypothesis from each pair in /. Now define IP'

as:

K

e'(h)

pl'(h)

HaiiU{hp: P G />U{/i'}

D0U{d'p,d'P:PeI}

e(h)U{d'r: h = h(P)}

U{d'P: h = f2(P)} \fhehal,

{d'P,d'p} ifh=hr

D„ \ih = h!

1}

fair if h = h'

good if h G Han

excellent \{{hP: Pe

Now H = {hp: P G /}u{/i'} is a complete and parsi

monious explanation. Any better complete and parsi

monious explanation using the best-for-all plausibility

criterion must include {hp: P G /}, otherwise some d'P

and dp would discriminate in tf's favor. Clearly then,

h' must be excluded. Also, at most one element out

of each P G / can be part of a better explanation be

cause any P makes the corresponding hp superfluous.

Thus, if a better complete and parsimonious explana

tion exists, then IP has a complete explanation. In

particular if H ' is a better complete and parsimonious

explanation using best-for-all than H for IP', then

H'\{hp: P G /} is a complete explanation for IP.

Theorem 11 For the class of independent problems

using the best-for-some criterion, finding a best expla

nation is tractable.

Theorem 12 For the class of monotonic problems us

ing the best-for-some criterion, finding a best explana

tion is tractable.

The algorithm below adapted from Allemang et al.

[Allemang et al., 1987] is tractable and obtains a best

explanation for the class of monotonic problems us

ing the best-for-some plausibility criterion. Since the

class of independent problems is a subset of the class of

monotonic problem, this algorithm also applies to in

dependent problems. It performs in 0(h(h + d)) steps

where d is the size of D„ and h is the size of H,m and

each call to e, e_1, and pi is counted as one step.
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W stands for the working composite hypothesis.

D stands for the data yet to be explained.

Nil is returned if no best explanation exists.

W

D* D0

Use most plausible hypotheses to construct

a complete explanation.

Until D = 0

Let d be an element of D

C^e-l(d)\W

If C = 0 then

Return nil

else W *— W U most plausible element of C

D <- D\e(W)

Find a parsimonious subset of W .

For each h G W from least to most plausible

Ue(W\{h}) =e{W) then

W - W\{h}

Return W

This algorithm also finds a best explanation for the

class of ordered monotonic problems using the best-

small plausibility criterion, as well as the class of or

dered monotonic problems using the best-for-all plau

sibility criterion. Thus, for the purpose of generating

a best explanation, ordered monotonic problems using

either the best-small or best-for-all plausibility criteria

can be treated as a monotonic best-for-some problem.

Theorem 13 For the class of monotonic problems,

given a set of complete and parsimonious explanations,

it is NP-complete to determine whether an additional

complete and parsimonious explanation exists.

This can be reduced from 3SAT incompatibility prob

lems. Let IP = (Da, Hau, e, pi, I) be a 3SAT incom

patibility problem, and let MP = (D'ol H'all,e' ,pl') be

a monotonic problem constructed from IP as follows.

D'

t'{H)

D0

Hall

j D„

pl'(h) = pl(h)

if 3P G I{P C H)

otherwise

It turns out that / is a set of complete and parsimo

nious explanations for MP. Consequently, any other

complete and parsimonious explanation can only have

at most one hypothesis from each pair P G /• Thus,

it would also be a complete and parsimonious expla

nation for IP.

Theorem 14 For the class of ordered independent

problems using the best-small plausibility criterion,

given a set of best explanations, it is NP-complete to

determine whether an additional best explanation ex

ists.

This reduction is very similar to that of Theorem 8.

Let IP = (Drl, Han,e, pi, I) be a 3SAT incompatibility

problem, and let IP' = (D'„, H'aU,e',pl') be an inde

pendent problem constructed from IP as follows:

Let fi be a function from / to Haii, such that f\

chooses one hypothesis from each pair in J. Let H\ be

the set of hypotheses that f\ chooses. Let fi be a func

tion from / to Hau that chooses the other hypothesis

from each pair in /. Now define IP' as:

D'„ = DoU{dP:P€l}

Ku = HauU{h'}

„>th\ _ / e{h)u{dP: h G P} if he Ha,i
e(fl) ~ \ £>„\e(ifi) ith = h'

V/i € Ha,i(Pl'(h') > pl'(h))

VP G /(p/'(/i(P)) > p/'(/2(P)))

The remaining orderings for pi' do not matter. Now

H = HiL){h'} is a best explanation of size n + 1,

where n = |/|. Because one hypothesis out of each

pair in / (a total of n hypotheses) is needed to explain

{dp: P G /}, and because H includes the more plausi

ble hypothesis of each pair and the most plausible hy

pothesis overall, no other complete and parsimonious

explanation of size n + 1 or greater can be as good as

H. Hence, to construct another best explanation, h'

must be excluded and only one hypothesis out of each

pair in / can be accepted. Thus, another best expla

nation for IP' exists if and only if IP has a complete

explanation.

Theorem 15 For the class of ordered independent

problems using the best-for-all plausibility criterion,

given a set of best explanations, it is NP-complete to

determine whether an additional best explanation ex

ists.

This can be reduced from 3SAT incompatibility prob

lems. Let IP = (D„, Hnu, e, pi, I) be a 3SAT incom

patibility problem, and let IP' = (D'„, H'all,e',pl') be

an independent problem constructed from IP as fol

lows:

Again let /i be a function from / to Haii, such that

/i chooses one hypothesis from each pair in /. Let /j

be a function from / to H„n, such that fj chooses the

other hypothesis from each pair in /. Now define IP'

as:

Kn = HaiiU{h'p,h'r:PeI}

D\, = D,,U{d'P,d'P: P £ 1}

f e(h)d{d'r: h = h(P)}

0{d'r: h = f2(P)}

{d'r,d'r}

. D.,\j{dP,d'r}

if h G h„i

if h = h'p

if h = h'P

>'(h) = <
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Vfc € Han, h! G {h'P, hP: P G I}(pl'(h') > pl'(h))

Vfc' G {h'P: P G I},h" G {h'P: P G I}{pl'(h') > pl'(h"))

The remaining orderings for pi' do not matter. Now

for each Pel, {h'P}u{h'P,: P ^ P'} is a best explana

tion using the best-for-all plausibility criterion. Let "H

be this set of best explanations. Any additional best

explanation must include {hP: P G /}, otherwise some

explanation in Ti would be better. Consequently, ev

ery h'p must be excluded. Also, at most one element

out of each P £ I can be part of another best ex

planation because any P makes the corresponding h'P

superfluous. Thus, if another best explanation exists,

then IP has a complete explanation. In particular if

H' is another best explanation using best-for-all for

IP', then H'\{h'p: P G /} is a complete explanation

for IP.
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Abstract

Many Sorted Logics have been widely recog

nized as useful in Artificial Intelligence for com

putational as well as pragmatic reasons. There

are many different formulations of many sorted

logic; most do not allow characteristic (i.e. sor

tal) literals. This paper is largely devoted to a

discussion of characteristic literals in many

sorted logic: whether they should appear (and

why) and in what form. The final section is

devoted to a consideration of the implications of

allowing characteristic literals in the broader

context of many sorted logic as a hybrid reason

ing system.

1. Introduction

In a many sorted logic the universe of discourse is divided

up into subsets, and variables are restricted to range over

these subsets (called sorts) rather than the whole universe

as is normally the case. Declarations regarding the sortal

behaviour of all the function symbols (and possibly the

predicate symbols as well) must be made; this allows the

notion of a well sortedformula to be defined (intuitively:

one in which the sort of every term matches the sort of the

argument position in which it occurs). Many sorted log

ics are an important kind of logic for Artificial Intelli

gence. There are many reasons for this; the main one

perhaps is the computational efficiency that can be

achieved when deduction takes place in a many sorted

formulation compared to an unsorted one - for example

see Cohn [1985], Walther [1985], Ohlbach and Schmidt-

Schauss [1985] or Frisch [1986]. Another important rea

son often given for using many sorted logics is their nota-

tional convenience, e.g. see McDermott [1982] or Hayes

[1985]. A further advantage of many sorted logics is the

This work has been supported by the SERC under grant

GR/E/00273.

fact that one can perform (certain kinds of) integrity

checking of assertions and queries to a knowledge base

efficiently - e.g. see Minker and McSkimin[1977] or

Reiter [1981]. Many sorted logics vary in their expres

sive power, where by expressive power we mean the

amount of knowledge that can be represented by special

purpose declarations rather than by ordinary logical for

mulae. Cohn [1989] discusses the main dimensions along

which many sorted logics differ:

• The structure of the set of sorts.

• The way in which the sortal behaviour of the non logical

symbols is described.

• The way in which sortal constraints on variables are

specified.

• Whether the sort of a term is constrained to be a subsoil

of the sort of the argument position it occurs in.

• Whether characteristic literals are allowed.

It is the last of these with which this paper is concerned.

Traditionally, many sorted logics do not allow charac

teristic literals (i.e. literals whose predicate symbol is a

sort symbol) to appear in formulae. However, greater

expressiveness results when such literals are allowed as

we shall see. This paper is devoted to an exploration of

characteristic literals in many sorted logic. The title of

the paper is deliberately ambiguous and can be interpreted

in the following ways:

1) Are characteristic literals allowed to appear in a for

mula?

2) Under what circumstances are characteristic literals

required? (We shall see that sometimes characteristic

literals may appear dynamically.)

3) What syntactic form do characteristic literals take?

(We shall discuss several different options).

We shall discuss each of these questions in more detail

in the three sections following the introduction to many

sorted logic in section 2. In the final section we will con

sider the implications of allowing characteristic literals in

the broader context of many sorted logic as a particular
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hybrid reasoning system.

2. Many Sorted Logic

As outlined above, a many sorted logic differs from an

unsorted logic in that the universe of discourse is divided

into non empty subsets, each of which is denoted by a

sort symbol. Traditionally, the set of sorts are pairwise

disjoint (or rather, their interpretations are), as in Ender-

ton [1972]. However sorts may overlap and a sort hierar

chy (ordered by set inclusion) may be formed.1 One

speaks of a sort zx being a subsort of x2 if X!=x2 or it *s

lower in the hierarchy; in such cases we write XjEx^ It is

common to insist that there is a unique most general sort,

called T, (read top) which is always interpreted as the

universe of discourse. The special sort _L (read bottom)

which is below all other sorts in the hierarchy always

denotes the empty set and a term of this sort is ill-sorted.

We write XiUx2 to indicate the least upper bound of two

sorts tj and x2 in the hierarchy and Til-^ to indicate their

greatest lower bound, x^ indicates the relative comple

ment of x2 with respect to Xj in a sort lattice. (We assume

here that these three operators are always defined and

unique).

In a many sorted logic there is always a way of attach

ing sortal constraints to variables. Usually, this is done

locally on a per variable basis, either by predeclaring that

certain variable names have a particular sort restriction or

by tagging occurrences of variables in clauses with sorts.

However it is also possible for variables to gain their sor

tal restrictions implicitly from the argument positions they

occur in (e.g. as in the many sorted logic Llama [Cohn

1987]).

In a many sorted logic the non logical symbols are only

defined as making sense certain arguments sorts. The sort

of the result of a function is also specified. We will write

a(x,, • • • ,xn) =xn+1 to indicate a declaration of a function

symbol a being of sort x^ when its arguments are of sort

X] ... xn. If more than one such declaration is allowed then

the function is said to be polymorphic. In this case the

sort of a term will vary depending on the sorts of its argu

ments. The sortal behaviour of a predicate symbol a may

specified similarly; we can write: a(X!, • • • ,x„) to specify

that any literal whose predicate symbol is a is well sorted

when its arguments are of sort X] ... xn. If we regard a

predicate symbol as a Boolean valued function we can

give a result sort for predicate symbols as we do for func

tion symbols. We will use a special sort lattice, B, whose

1 Such logics are sometimes called order sorted to em

phasize the fact that the sort structure can be hierarchical.

elements are UU, TT, FF, EE; the interpretations of these

sorts are fixed and are {true, false), (true), {false} and

the empty set respectively. Thus UU and EE are the top

and bottom elements of B respectively. We can now

write a(X!, • • • ,xn) =x„+1 where xn+J e B, to describe the

sortal behaviour of a predicate symbol. We will exploit

this method of sorting predicate symbols later.

Making a logic many sorted has three main effects: on

the syntax, on the semantics and on the inference

machinery. Formulae which are ill-sorted (because the

sorts of one or more terms do not match the sorts required

for the argument positions they occupy) are deemed to be

syntactically ill-formed. The semantics of a many sorted

logic is such that function symbols are only total with

respect to their argument sorts, and can thus be partial

functions on the universe of discourse; moreover only

well sorted formulae can have a Tarskian truth valuation.

In the absence of characteristic literals, the effect that a

many sorted logic has on the inference machinery is res

tricted to modifying any substitution rule for variables so

that only terms of appropriate sorts can be substituted for

variables.

If characteristic literals are allowed into formulae then

the inference mechanism of the logic is affected in other

ways too. For example, to retain completeness in a reso

lution based system, a rule of characteristic resolution

must be introduced so that it is possible for two sort

literals to clash even if they are not of opposite sign and

even if the predicate names differ (e.g. Man(c) and

Woman(c) would be contradictory if Man and Woman

are sorts whose greatest lower bound is _!_ in the sort

hierarchy). It is also possible for characteristic literals to

clash partially, leaving a residue literal in the resolvent

Thus in general two positive characteristic literals x^c)

and x2(c) resolve to give x3(c) where x3 is x1nx2(c); if x3

is J. then the literal is equivalent to false and can be

deleted and one can always insist that x^X] and x3dx2

without losing completeness. See the description of the

many sorted logic Llama [Cohn 1983, 1987] for details of

such a rule including the case when one or both literals

are negative. Characteristic resolution can be viewed as

an instance of Theory Resolution [Stickel 1985].

One can also change the definition of subsumption to

take note of characteristic literals (e.g. Man(c)vd> sub

sumes Human(c)vd>). Formulae may also be simplified

when they contain more than one characteristic literal:

clauses can be normalised so that no term is predicated by

more than one sort predicate providing that the sort

hierarchy is closed under U (e.g. Man(c)vWoman(c) can

be simplified to Human(c)). It may turn out that a clause

is a tautology after such simplification (iff it contains a

literal of the form T(a)). Again, see Cohn [1983,1987]
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for details of these rules.

3. Are characteristic literals allowed to appear at all?

First, we should point out that characteristic literals predi

cating a variable are never needed in a many sorted logic

since the variable can be restricted directly; so the follow

ing discussion only concerns instantiated characteristic

literals (except at the end of section 5.4). It is easy to

argue that allowing characteristic literals to appear at all

in a formula is at odds with the notion of a many sorted

logic; a many sorted logic allows knowledge about sorts

to be represented separately (and reasoned about more

efficiently than would be possible in an unsorted logic).

Since there exists a special language for representing

such information why allow redundancy? Why not force

sortal knowledge to appear only in special purpose

declarations and not in ordinary formula? There is much

to be said for such an approach to many sorted logic.

Essentially it allows the interface between the sortal 'box'

(i.e. the component which contains the sortal knowledge)

and the main representation to be very clean and simple.

Inference can proceed on formulae as normal until such

time as a substitution is required; at this point the sortal

box is called to ensure that the proposed substitution is

consistent with the sortal knowledge given the sortal con

straints on the variables involved. Frisch [1989] has

characterised this approach as the substitutional

approach. By disallowing characteristic literals the

required changes to the underlying logic are kept to the

minimum: no extra inference rules are required. If the

interaction between the sorts and the underlying logic is

restricted to checking the well sortedness of substitutions

then a sortal component can easily be added to any

unsorted deductive system and the meta theoretic results

(such as completeness) can be easily transferred to the

sorted system.

If the sorted logic cannot be accommodated within a

substitutional framework then the completeness results

may have to be derived anew for each deductive system

to which the sort mechanism is added. (For example, see

Cohn [1983] for a completeness proof for Llama, a non

substitutional many sorted logic).

The main disadvantage of the substitutional approach

is that expressiveness is limited because sort literals can

not appear in normal formulae. An example of a problem

where this might be useful is Lewis Carroll's Salt and

Mustard Problem [Bartley 1977] discussed below. This

problem can be viewed as having to deduce what taxo-

nomic class certain things are in. In a many sorted logic

without characteristic literals one cannot reason about the

sorts of terms, these are predeclared, so such reasoning

has to be performed entirely by ordinary unsorted infer

ence. However by making the taxonomic classes sorts,

and allowing characteristic literals, one can take advan

tage of the built in sort structure. Although the Salt and

Mustard Problem is an artificial one, performing taxo

nomic classification is an important task for knowledge

based systems [Levesque and Brachman 1987].

3.1. The 'Salt and Mustard problem'

This problem was previously discussed in the the problem

corner of the very first issue of the Journal of Automated

Reasoning (Lusk and Overbeek 1985). It was originally

formulated by Lewis Carroll [Bartley 1977]. We repeat2

the formulation of the problem here for the reader's con

venience.

Five friends, Barry, Cole, Dix, Lang and Mill,

agreed to meet every day at a certain table-

d'hote. They devised the following rules, to be

observed whenever beef appeared on the table.

(1) If Barry takes salt, then either Cole or Lang

takes one only of the two condiments, salt and

mustard: if he takes mustard, then either Dix

takes neither condiment, or Mill takes both.

(2) If Cole takes salt, then either Barry takes

only one condiment, or Mill takes neither: if he

takes mustard, then either Dix or Lang takes

both.

(3) If Dix takes salt, then either Barry takes nei

ther condiment or Cole takes both: if he takes

mustard, then either Lang or Mill takes neither.

(4) If Lang takes salt, then either Barry or Dix

takes only one condiment, if he lakes mustard,

then either Cole or Mill takes neither.

(5) If Mill takes salt, then either Barry or Lang

takes both condiments: if he takes mustard, then

either Cole or Dix takes only one.

The Problem is to discover whether these rules

are compatible; and, if so, what arrangements

are possible.

[N.B. In this Problem, it is assumed that the

phrase 'If Barry takes salt' allows of two possi

ble cases, viz (I) 'He takes salt only'; (2) 'He

takes both condiments' . And so with all similar

phrases.

It is also assumed that the phrase, 'Either Cole

or Lang takes one only of the two condiments'

2 Two typographical errors in Lusk and Overbeek [1985] are

corrected here.
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allows of three possible cases, viz. (I) 'Cole

takes one only, Lang takes both or neither' ; (2)

'Cole takes both or neither, Lang takes one

only' ; (3) 'Cole takes one only, Lang takes one

only' . And so with all similar phrases.

It is also assumed that every rule is to be under

stood as implying the words 'and vice versa'.

Thus the first rule would imply the addition 'and,

if either Cole or Lang takes only one condiment,

then Barry takes salt'.J

The answer is:

Dix and Cole take neither salt nor mustard.

Barry takes both.

Lang takes mustard but not salt.

Mill takes salt but not mustard.

Lusk and Overbeek [1985] formulated the problem

straightforwardly in clausal form thus:

*Both(x) means 'x takes both salt and mustard'.3

♦Neither (x) means 'x takes neither salt nor mustard'.

*Oneof(x) means 'x takes exactly one of salt and mustard'

♦Salt(x) means 'x takes salt'.

♦Mustard(;c) means 'x takes mustard'.

♦Exactly one of Both, Neither and Oneof holds;

1) BothCx) v Neither(x) v Oneof(;c);

2) -,Oneof(jc) v -,Both(x);

3) -,Oneof(jt) v -nNeither(;t);

4) -,Both(;c) v -,Neilher(jc);

♦Definition of Oneof;

5) Oneof(jc) -» Salt(x) v Mustard(jc)

6) Oneof(jt) -> -iSalt(x) v -iMustard(x)

♦Definition of Neither;

7)Neither(;t)->-,Salt(;c)

8) Neither(;c) -» -.Mustard^)

9) -iSalt(;c) a -,Mustard(*) -» Neither )

♦Definition of Both;

10)Both(;t)-»Salt(;c)

1 1) BothOc) -» Mustard(jc)

12) Salt(;c) a Mustard^) -» Both(x)

13) Salt(Barry) -> Oneof(Cole) v Oneof(Lang)

14) Mustard(Barry) -> Neither(Dix) v Both(Mill)

15) Oneof(Cole) -> Salt(Barry)

16) Oneof(Lang) -» Salt(Barry)

17) Neither(Dix) -» Mustard(Barry)

3 Note that we use italic symbols (e.g. x ) for individual vari

ables.

18) Both(Mill) -* Mustard(Barry)

19) Salt(Cole) -> Oneof(Barry) v Neither(Mill)

20) Mustard(Cole) -> Both(Dix) v Both(Lang)

21) Oneof(Barry) -» Salt(Cole)

22) Neither(Mill) -> Salt(Cole)

23) Both(Dix) -* Mustard(Cole)

24) Both(Lang) -^ Mustard(Cole)

25) Salt(Dix) -> Neither(Barry) v Both(Cole)

26) Mustard(Dix) -> Neither(Lang) v Neither(Mill)

27) Neither(Barry) -> Salt(Dix)

28) Both(Cole) -» Salt(Dix)

29) Neither(Lang) -^ Mustard(Dix)

30) Neither(MiU) -+ Mustard(Dix)

31) SaltfLang) -> Oneof(Barry) v Oneof(Dix)

32) Mustard(Lang) -» Neither(Cole) v Neither(Mill)

33) Oneof(Barry) -> Salt(Lang)

34) Oneof(Dix) -» Salt(Lang)

35) Neither(Cole) -» Mustard(Lang)

36) Neither(Mill) -» Mustard(Lang)

37) Salt(Mill) -* Both(Barry) v Both(Lang)

38) Mustard(Mill) -» Oneof(Cole) v Oneof(Dix)

39) Both(Barry) -+ Salt(Mill)

40) Both(Lang) -» Salt(Mill)

41) Oneof(Cole) -» Mustard(Mill)

42) Oneof(Dix) -» Mustard(Mill)

Lusk and Overbeek comment that the problem is

difficult: "The first unit clause is not derived until fairly

late in the run, and then there is another long wait for the

second one. In the course of the run, more than 32,000

clauses were generated and then subsumed." I gave the

problem to the theorem prover ITP [Lusk and Overbeek

1984] with the standard settings and options and the set of

support was exhausted after 426 interpreter cycles and

846 minutes of cpu time; the failure to derive a contradic

tion (given the complete proof strategy) shows that the

rules are consistent; sufficient unit clauses concerning the

individuals were derived after 854 minutes of cpu time4

and 424 interpreter cycles; there were 130 clauses

involved in the derivation of these unit clauses.

3.1.1. A Many Sorted Solution

Although at first sight the problem would appear to be

eminently suitable for attacking with a many sorted logic

since all the predicates in the problem are unary, and

indeed the first 12 clauses can be regarded as defining a

sort hierarchy, the rest of the clauses consist of disjunc

tions of ground literals and in most many sorted logics,

All timings were performed on a 2MIP SUN3.
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sort (or characteristic) literals are not allowed and so the

rest of the clauses cannot be expressed if the unary predi

cates are to be sorts. However the remaining 30 axioms

are all disjunctions of ground literals. In each of these

clauses each literal predicates a different constant symbol.

Such clauses cannot be eliminated by special purpose

declarations in any many sorted logic known to the author

because the clause represents disjunctive information

about the sort of more than one non-logical symbol.5

However, if we are to forbid characteristic literals in for

mulae then the monadic predicates involved in such for

mulae cannot be sort symbols. In the many sorted logic

Llama [Conn 1987] characteristic literals can appear in

normal formulae and so problems such as the Salt and

Mustard Problem can exploit the sortedness of the logic.

The search space is considerably reduced because certain

inferences can be performed by the special purpose

mechanisms in the many sorted logic.

Clauses 13 through 42 are identical to those in the

unsorted formulation, but the first 12 clauses are not

needed since the sort declarations take care of them (i.e.

make them tautologous). The sort lattice for the problem

is given below in Figure 1; note that the sort symbols

Onlysalt and Onlymustard have been introduced in order

to define Salt, Mustard and Oneof.

 

Both Onlysalt Onlymustard Neither

1

Figure 2.

Table 1 below shows the results obtained, with the figures

for the unsorted logic in the ITP formulation along side;

the proof strategies6 were the same, though binary resolu

tion was used for the Llama run and hyperesolution for

the ITP run. The search space would have been yet

bigger for ITP if binary resolution had been used.

Llama ITP

total cpu seconds 4178 51005

clauses generated 6145 >32000

interpreter cycles 237 424

number of clauses in proof 55 130

Table 1.

The statistics in the table come from a run which was

automatically terminated as soon as positive unit clauses

predicating a base sort of each of the individuals had been

derived.

This logic puzzle, which is characteristic of any situa

tion where one knows of a number of taxonomic classes

and some rules for assigning objects to them, but not

explicitly which objects are members of which classes,

demonstrates the computational advantages of allowing

characteristic literals in a many sorted logic. In this par

ticular problem there were only characteristic literals in

the problem formulation but in general clauses may be

mixed i.e. contain both characteristic literals and non sor

tal literals. Note that Frisch [1989] actually proposes that

the sort component might be represented explicitly as a

set of clauses where all predicates are sort symbols. In

this case one could solve the Salt and Mustard problem

entirely within the sortal box, but this would be identical

to the unsorted case, since ordinary resolution is used in

his sortal box.7

5 The information content of a sort declaration for a non log

ical symbol a can usually be expressed by a formula of the

form:

V(*! • • • xn ) a(xu ■••,*«)—» Ti(xi)a • • • aT„(»j )

if a is a predicate symbol whose argument sorts are Ti ... tn and

V(x, • • • xn ) t^x^a • ■ ■ AT„(xn) -> Vi(a(*i. - ' " W ))

if a is a rank n function symbol which is of sort t^ when its ar

guments are of sort Tj ... v For further details see descriptions

of relativizing a many sorted logic (i.e. translating it into unsort

ed logic) in e.g. Walther [1987], Schmidt-Schauss [1988] or

Cohn [1989]. In each case notice that there is at most one non

logical symbol (discounting 'sort' symbols) in these formulae.

6 Using a different proof strategy for Llama has resulted in a

run about four times faster (i.e. in about 17 minutes total cpu

time). The implementation of Llama has not been optimised at

all; for example there is no indexing of clauses performed at

present. As always, comparative timings should be treated with

due respect. The figures giving the size of the search space and

the length of the proof are of course independent of the imple

mentation.

7 It is not clear whether Frisch's logic should actually be

called a many sorted logic as there is no notion of well sorted

ness; since his sort theory contains only sort literals there is no

way to express any information about the sorts of arguments of

predicate symbols: not only does he not allow characteristic

literals in ordinary axioms, he also disallows ordinary predicates

in sortal axioms. The sortal box can only be used to deduce

sorts of terms but has no special effect on the semantics of the

logic in the same way that sort declarations actually restrict the

set of possible interpretations.
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In this problem, the (many sorted) axiomatisation con

tains no variables so the usefulness of the many sorted-

ness of the logic had nothing to do with any restriction on

unification cutting out branches of the search space early,

but is entirely due to the fact that the search space is

smaller because 12 clauses have been treated specially as

defining a sort hierarchy. Apart from the reduction of the

search space engendered simply by having fewer initial

axioms this means that literals clash directly when other

wise they would not have done. This could also have

been achieved in Stickers [1985] Theory Resolution. For

example, clauses 14 and 19 resolve (on their final literals)

to give

Mustard(Barry) a Salt(Cole) -»

Neither(Dix) v Oneof(Barry)

which is automatically simplified (because the first and

last literals predicate the same term) to

Both(Barry) a Salt(Cole) -* Neither(Dix)

Clauses 40 and 41 can be resolved together to give

Both(Lang) a Oneof(Cole) -» Both(Mill)

(after simplification) which includes a residue literal,

Both(Mill).

Whenever a clause is simplified by combining charac

teristic literals predicating the same term (as happened

above) the search space is reduced because the resulting

clause is shorter: branches in the search space have been

collapsed.

3.2. Other uses for characteristic literals

Another use for characteristic literals in formulae is to

represent what Schmidt-Schauss [1988] calls term

declarations. A term declaration is a way of specifying

the sort of a term directly rather than indirectly, i.e. by

declaring the sortal behaviour of all the constituent func

tion symbols. This is more expressive because we can

write declarations such as Even:plus(jc,x) which cannot

be expressed in the traditional way because of the

repeated variable. If characteristic literals are allowed

into the logic then of course it is easy to express the infor

mation content of arbitrary term declarations (for example

in the above situation we would write Even(plus(;c ,*))).

Of course, this is not a sort declaration in the manner of

Schmidt-Schauss's logic for there, a term declaration

directly affects the unification algorithm, while a unit

clause consisting of a characteristic literal (such as

Even(plus(jc j. ))) does not. Of course, it is more expres

sive in the sense that we can write arbitrary conditions on

such 'declarations' (e.g. <J>(x,y) -» Even(x ,y )) which is

not possible in term declarations. It must be pointed out

again though, that such formulae do not affect the logic in

the direct way that a term declaration does. However

Schmidt-Schauss shows that unification under term

declarations is in general undecidable so it is not clear

whether it is worth treating this kind of information spe

cially (although he does isolate some decidable special

cases).

There is a strong case for not allowing characteristic

literals if we wish to restrict formulae to Horn clauses.

This is because in normal Horn clauses a literal in the

body of a clause could only be complementary with one

in the head of another clause. However if we were to

allow characteristic literals then a characteristic literal in

the body of a Horn clause might be complementary with

one in the body of another clause. This would inevitably

lead to loss of completeness of SLD resolution which is

the normal inference rule used for Horn clauses.

For example given the sort structure in Figure 2 below,

the following Horn clauses are unsatisfiable

:- S4(cl)

S2(c2) :- S6(cl)

S3(c2)

but there is no SLD refutation even if characteristic reso

lution is available (because the literal in the body of the

first clause will not unify with the head of any other

clause). However the logically equivalent formulae

:-S4(cl)

Sl(cl):-S5(c2)

S3(c2)

do have an SLD refutation.

 

Figure 2.

3.3. Characteristic literals and the disjointness of

sorts

Sometimes a problem specification does not explicitly say

whether predicates which are desired to be interpreted as

sorts are disjoint or not For example in the English

description of Schubert's Steamroller [Stickel 1986] it is

not explicitly stated that foxes, wolves, caterpillars and

other animals are disjoint sets. However as pointed out in

Cohn [1986] in the absence of characteristic literals in the

axiomatisation it can never hurt to assume that sorts not

known to have a non _L gib are in fact disjoint This is

because declaring two sorts to be disjoint is equivalent to
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a clause of the form -iX!(;c)v-iX2(.x): i.e. one which con

tains only negative literals. If a many sorted axiomatisa-

tion, J3, without characteristic literals is translated to

unsorted logic, only negative 'sort' literals are added to

the clauses of the axiomatisation (in order to express the

sortal restrictions on the variables in the clauses). Clearly

clauses such as —lX1(x)v~iX2(x) could never be used in a

refutation of A

4. The dynamic appearance of characteristic literals

In the previous section we showed that it might be desir

able to allow a many sorted logic to include formulae

which contained characteristic literals because the initial

problem formulation contained predicates which might be

naturally regarded as sort predicates except that they

occurred in formulae which could not be viewed as sort

declarations for a non logical symbol. In this section we

show that we might also want to allow derived formulae

to contain characteristic literals (even if none of the origi

nal axioms do). Plotkin first noticed [Kowalski and

Hayes 1971] that an increase in expressive power in a

many sorted logic results if the sort of a term is allowed to

be more general than the sort of the argument position

where it occurs (this is called overlapping in Cohn

[1987]).

For example one might define the monadic function

symbol 'cr' (standing for 'closest relation') to return a

Human given a Human argument. If M is a two place

predicate symbol whose first argument must be a Woman

and whose second a Human, then we cannot resolve

M(jc,cr(y)) with -iM(z,z) (where x,y and z are all vari

ables) unless we allow the term cr(y) (which is of sort

Human) to be substituted for z which is constrained to be

of sort Woman (where Woman a Human). However

even if we allow this substitution, in order for the infer

ence rule to be sound, the resolvent has to contain an

additional (sort) literal (called a prosthetic literal in Cohn

[1987]) which predicates that the term is of the more res

tricted sort. Thus in the example above the resolvent will

contain the literal -iWoman(cr(y)). The inference is

sound because in any interpretation, either cr(y) will

denote a woman (in which case z has been appropriately

instantiated) or -Womanly)) will be true. With this

technique, a term a of sort Xj may be substituted for a

variable of sort x2 providing x1rh2vt±. Unless XjEx2

then the condition that x2(a) must be added to the instan

tiated clause.

Thus we see that if we relax the definition of well sort-

edness to allow overlapping then we need to also allow

characteristic literals into formulae. Note that if overlap

ping is not allowed, then we are forced to reduce the

granularity of the sort structure or the sort declarations for

the non logical symbols. For example in the situation

above we would either have to make Woman an ordinary

predicate rather than a sort predicate or define M as tak

ing a Human in the first argument position. In order to

keep the same semantics for the clauses, a restriction on

any variable occurring as the first argument to M is neces

sary: as Woman is no longer a sort, we would have to

include the literal -.Woman(z) in the clause containing

the literal -iM(z ,z ). By not allowing overlapping we are

forced to reduce the amount of information we can

represent as special purpose sort declarations, either by

not being able to say that Woman implies Human, or that

M(x ,y ) implies Womanfr ).8

Another example of the utility of allowing overlapping

arises in a Naive Physics axiomatisation of topology

being developed [Randell and Cohn 1989]. One of the

sorts in the theory is REGION, which denotes spatial

(and/or temporal) regions. Various (binary) predicates

such as C(onnects), P(art of), O(verlaps) and

D(isconnected) are defined on this sort. However, when

defining function symbols to represent Boolean composi

tions of regions one runs into the problem that the inter

section of disconnected regions is not defined. If this con

cept is to be a function rather than a relation, then a null

object has to be introduced. However there are philo

sophical objections to introducing the null object, espe

cially since the theory is developed from a calculus of

individuals [Clarke 1981,1985] which has no null object

The solution which can be adopted is to define a sort

NULL (whose intended interpretation is the singleton

subset of the universe of discourse containing the null

individual) disjoint from REGION, and specify the result

sort of 'prod' (the name of the intersection function) as

REGIONUNULL. Providing we allow overlapping,

expressions such as

0(a,prod(a,b))

are well sorted. However we have kept the calculus clean

in the sense that we have not admitted the null object as a

region.

8 Actually, there is a third possibility in Llama. The sortal

behaviour of predicate symbols is declared by specifying the

result sort is one four special Boolean sorts TT, FF, UU or EE

(meaning definitely true, definitely false, not known whether

true or false, and ill sorted respectively). Given this mechanism

(and the ability to specify polymorphic predicates, i.e. give more

than one declaration for any predicate) we could specify the

result sort of M as UU when the arguments are both Human and

FF when the first argument is a non Woman Human (i.e. a Man).

However the clause involving —iM(z ,z ) will be tautologous (i.e.

of sort TT) when z is of sort Man and therefore the variable z is

automatically restricted to sort Woman and thus overlapping is

still required.
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Another example of the utility of allowing overlapping

can be found in Cohn [1989]: a theory of lists is

developed and the problem is what sort the functors head

and tail should have, given the sort structure in Figure 3.

Element

 

Nonemptylist

Figure 2.

Overlapping avoids the introduction of error sorts to deal

with the case of taking the tail of an empty list, while

specifying as much information as possible in the sortal

declarations for head and tail, cons and the constant nil:

cqhs(EIement,List) = Nonemptylist

head(Nonemptylist) = Element

tail(Nonemptylist) = List

nil() = Emptylist

All these functions have their natural definitions on the

sort structure and expressions such as head(tail(* )) are

well sorted providing overlapping is allowed.

5. The syntactic form of characteristic literals

In the previous sections we argued that it is sometimes

useful to allow characteristic literals to appear in formu

lae. In this section we will briefly mention three standard

representations for characteristic literals and propose a

fourth one for use in the many sorted logic Llama.

5.1. Characteristic literals using unary predicates

The most common representation for characteristic

literals is the one we have been using thus far in this

paper - i.e. as monadic predicates. This would seem to be

a natural representation in many ways since a sort

represents a subsort of the universe of discourse and so

does a monadic predicate.

5.2. Characteristic literals using the 'Isa' predicate

An alternative sometimes seen is to have a unique binary

predicate symbol 'Isa'; thus e.g. we might write

Isa(c,man) rather than Man(c). Characteristic resolution

must be changed so that Isa(cman) can be resolved

against Isa(c,woman). Thus certain constant symbols

representing sorts are treated specially by the unification

algorithm.9

This seems perhaps a rather trivial syntactic

modification but can be more convenient and expressive.

One advantage is that one can now quantify over sorts

and can therefore write formulae such as Isa(x,s) a

P(x j) a R(x,y) -» lsa(y,s). It is also possible to gen

erate an infinite number of sorts by relaxing the zero-adic

nature of sort symbols. For example in the logic pro

gramming domain one might want to have the sorts

number, string, list(number), list(string),

list(list(number)), list(Iist(string)) ...10 This can be

achieved by making 'list* a rank one sort constructor. A

term such as list(x) now represents infinitely many sorts.

One possible problem with this idea is that some proofs of

completeness of many sorted logics rely on there being a

finite number of sorts.

A question which arises is what the sort of sorts is

(because sort symbols are now terms and terms must have

sorts). One can introduce a special sort (called, say, ss)

which is the sort of any sort symbol or expression. In fact

one could specialise this sort and create subsoils of it in

order to distinguish different kinds of sorts (e.g. sorts with

a natural ordering (such as number) from those with no

natural ordering (such as colour)). Alternatively one

could introduce mutually disjoint subsorts of ss, called so

and sn, such that all rank zero sort symbols are of sort so

and all others of sort sn. By then declaring a rank one

sort constuctor 'linearlist' to take only arguments of sort

so (rather than ss as would be usual if one wanted to have

lists of anything) one could insist that lists were linear and

expressions such as

Isa(c,linearlisl(linearlist(number)))

would be ill-sorted. Similarly the term

lcons(lcons(4,nii),nil)

would be ill-sorted, where Icons is the linearlist construc

tor function whose sortal declaration is:

lcons(x,linear!ist(x)) = linearlist(x)

S3. Characteristic literals using equality

Another method for representing sortal knowledge of

terms within a sorted formulation other than by special

purpose declarations is given in Walther [1987]. In order

to express that a particular term a has a particular sort x,

and Nasr 1985] has such a unification algorithm (although it

does not have an 'Isa' predicate). Every term is a type, there are

no constant symbols; types at the bottom of the type hierarchy

are effectively constant symbols; LOGIN also allows types to

have attributes called features whose values may in turn be any

type).

10 Mycroft and O'Keefe [1984] have such a parametrically po

lymorphic type system.

9 The typed logic programming language LOGIN [Ait-Kaci
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one writes 3$:x a=p, i.e. one predicates that the term is

equal to an existentially quantified variable of an

appropriately restricted sort.

However, although one can express the information

content of a characteristic literal using this technique (i.e.

one can predicate that a term is of a particular sort), there

is no obvious way to define a characteristic resolution rule

for such literals in the way outlined for the previous two

methods. So we hesitate to call this a technique for

representing characteristic literals.

5.4. Characteristic literals using a binary 'Samesort'

predicate

Llama is a polymorphic n logic, which means that

predicate and function symbols can be overloaded to be

defined on several different combinations of argument

sorts; moreover in order to exploit this, variables in for

mulae do not have a unique sort but each formula has an

associated sort array i.e. a set of constraints on the vari

ables occurring in the clause. Furthermore, as already

mentioned, Llama allows overlapping. The combination

of these two features means that given the logic as formu

lated in Cohn [1987] it is possible for a clause to have

several instances. The example given there is applying

the substitution c/x to the unit clause Spouse(jc ,y ) where

the sort array12 is {(Man.Woman), (Woman,Man)} and c

is of sort Human; there are two instances:

Man(c) -> Spouse(c,y )

Woman(c) -» Spouse(c,y)

The first has the sort array {(Woman)} and the second the

sort array {(Man)}. Although the search space is no worse

than would be the case in unsorted logic,13 it would be

11 Polymorphism can be useful because it can reduce the

search space by collapsing multiple branches (e.g. see Ohlbach

and Schmidt-Schauss [1985] or Cohn [1985]. It is also useful

because it makes the logic more expressive; e.g. in the logic be

ing developed in Randell and Cohn [1989] the binary predicate

'In' can be defined so that it is only well sorted when the first ar

gument is a point and the second a boundary, or the first argu

ment a boundary and the second a non boundary region.

12 Here, we represent a sort array as a set of n-tuples of

sorts: each n-tuple gives an allowable assignment of sorts for the

n variables in the clause (in alphabetic order). In each of these

sort environments the clause is of sort UU. Environments for

which the clause is TT do not need to be kept because the clause

is tautologous and the tuple can be deleted for the same reason

that ordinary tautologies can be deleted. Similarly, when any

result is FF the clause is a contradiction (because variables are

implicitly universally quantified). Therefore in order to

represent the environments in which a clause is well sorted we

only need keep those for which the clause is of sort UU.

13 In unsorted logic we would have to represent the unit

clause SpouseCc y ) as two clauses

nice if the split in the search space could be avoided.

The proposal we make here achieves this; it makes use

of another feature of Llama: the ability to describe the

result sort of predicate symbols as being one of EE (i.e.

ill-sorted), TT (i.e. definitely true), FF (i.e. definitely

false) or UU (either true or false). We introduce a binary

predicate 'Samesort' declared thus:

Samesort(a.a) = TT

Samesort(a,P) = FF

where a and P are base sorts (i.e. immediately

above A.) and a*p.

The instance of Spouse(x ,y ) referred to above can now

be represented as the unique clause

Samesort(c^c) -» Spouse(cj)

with the same sort array as its parent. The Samesort

predicate is a logical predicate and a rule of characteristic

resolution can be defined on it. If this representation is

regarded as an internal representation for ordinary

monadic characteristic literals then (assuming every sort

has a complement) we only ever need negative (or alter

natively positive) Samesort literals, each of which is of

the form -iSamesort(a,P) where P is a variable and a is

not a traditional characteristic literal of the form x(a)

would be represented as ->Samesort(a,P) where the sort

array for the clause restricts the variable P to T\x

Two clauses containing the literals -iSamesort(a1,p1)

and -iSamesort(02,P2) respectively can be resolved

together by unifying these two literals and forming a

resolvent in the normal way but including the residue

literal -iSamesort(a,P) where a and P are the mgus of a]

and a2, and Pj and p2 respectively. The sort array for the

resulting clause is created in a special way in that when

'diagonalizing' on pt and p2 (i.e. substituting p, for p2 in

the sort array), the least upper bound of the sorts of pt and

P2 are taken, rather than the greatest lower bound as

would normally be the case.

For example, suppose we have the unit clauses S6(c)

and S5(c). These would be represented as

-iSamesort(c^c ) and -iSamesort(c,y ), with sort arrays

{(SI)} and {(S2)] respectively, where we are using the

sort structure in Figure 2. The resolvent is

-.Samesort(c^), with a sort array of {(S1US2)} = {(S4)}

which is the representation of S3(c) as should be

expected. If the two parent clauses had been S3(c) and

S2(c) the sort arrays for the 'Samesort clauses' would be

{(S4)} and {(S5)} respectively, and the sort array for the

resolvent would be {(T)}. Llama would determine this

Woman(jt ) a Man(y ) -» Spouse(x ,y )

Man(x ) a Woman(y ) -» SpouseU ,y )

Thus the split in the search space is already present.
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literal to be contradictory (using its elementary evaluation

rule) and there would end up being no residue literal.

This is what is desired since S3(c) and S2(c) clash leaving

no residue.

Another advantage of this representation is that it

allows clauses to be merged when otherwise they might

not be. Two clauses in Llama can be merged to a single

clause whenever the text of the clauses is identical even if

the sort arrays differ (a similar technique is possible with

the many sorted logic of Chaminade [1988]). For exam

ple, the representation of the Salt and Mustard problem

mentioned earlier can be reduced from 30 to 20 clauses

when this representation is used. Of course, complexity

of the search space is traded for size of the sort array -

but computation with sort arrays should be more efficient

than general purpose resolution; moreover the proof

theoretic analysis of the logic is considerably simplified

by this innovation. For example, clauses 22 and 41 when

represented using the Samesort notation become

-iSamesort(Mill,x )v-.Samesort(Cole,y )

with sort arrays

{(Neither,T\Salt>} and

{(TVMustard.Oneof))

respectively. Because the text of these clauses is identi

cal, they can be merged into a single clause by combining

their sort arrays: { (Neither,TNSalt), (T\Mustard,Oneof)}.

The modification to the existing implementation of

Llama to incorporate 'Samesort' characteristic literals has

not yet been completed so we are not able to report on the

deduction statistics for the Salt and Mustard problem

here.

If we were to allow arbitrary use of the Samesort predi

cate, rather than the restricted syntactic form described

above, (i.e only negative literals, first argument always

instantiated, second argument always a variable), then

greater expressiveness can be obtained. For example,

-iSamesort(x,)') (i.e. both arguments uninstantiated) will

restrict the sorts of x and y so that they are not identical

which cannot be easily stated otherwise. Even if nothing

is known directly about the sorts of two constants cl and

c2 (i.e. they are both of sort T), the unit clause

-iSamesort(cl,c2) could be used to give the information

that their sorts are disjoint (or alternatively the same, if

the negation sign is dropped). No investigation of how

deduction is to be performed with these literals has taken

place yet though.

6. A non substitutional framework for hybrid reason

ing

Many Sorted Logic can be viewed as a particular kind of

hybrid representation and reasoning system. Apart from

many sorted logics, there are various proposals for hybrid

representation schemes in the literature (e.g. KRYPTON

[Brachman et al 1983], KL-TWO [Villain 1985], LOGIN

[Ait-Kaci and Nasr 1985], Theory Resolution [Stickel

1985], REP [Allen and Miller 1986], and EcoNet [Miller

and Schubert 1988]). A common theme is that different

kinds of knowledge are represented separately and dif

ferent reasoning procedures may be used on different

kinds of knowledge. In the case of a many sorted logic, it

is taxonomic knowledge which is being factored out.

Usually, a criterion for deciding whether a particular kind

of knowledge should be factored out of the general

representation and treated specially is whether the special

purpose reasoner remains decidable (the general purpose

reasoner is unlikely to be so) and what the effect is on the

computational complexity of the specialized reasoner

(Levesque and Brachman 1987).

There are several hybrid reasoning systems which do

not fit into Frisch's substitutional framework - e.g.

Shekel's Theory Resolution or any many sorted logic

which allows characteristic literals (such as Llama). In

Frisch's model the box containing the special theory is

only called when a substitution is proposed. In the more

general framework we are developing here, the special

ised box is called to perform other functions as well and

thus the communication channel is much richer. In the

case of a many sorted logic the specialised box will con

tain the sort structure and the declarations of the sortal

behaviour of the non logical symbols. In any many sorted

logic with characteristic literals the following questions

may be asked of the specialised representation by the gen

eral representation:

1) Is this formula well sorted?

2) Is this substitution well sorted?

3) Do these characteristic literals (partially) clash and

what is the residue if any?

4) Does this characteristic literal imply this one? (For use

when checking clause subsumption).

In Llama the following additional questions can be asked

(because of the use of the use of the B lattice for specify

ing the result sorts of predicate symbols):

5) Can the truth value of this literal be determined given

these sortal constraints on the variables? (This imple

ments what is called evaluation in Llama. It is

closely related to procedural attachement and what

Stickel [1985] calls unary Theory Resolution)

6) What can be determined about the sorts of the non

variables terms in this literal, given these sort con

straints on the variables? (This corresponds to the

inference rule of sortcasting in Llama which, for

example, given the declarations:

Mothcr(Woman,Human) = UU

Mother(Man,Human) = FF

cl() = Human
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c20 = Human

allows one to deduce Woman(cl) from

Mother(cl,c2)).

The task of formalizing this framework to cope with a

reasonably wide class of theories is currently under inves

tigation. Obviously what is required is a specification of

an inference mechanism, a protocol for communication,

and restrictions on the syntactic form of knowledge in

both the specialised and the general theories that will

allow metatheoretic results to be applicable to any logic

which can be fitted to the framework.

7. Final comments

Allow characteristic literals in a many sorted logic is

unusual if not controversial. This paper has discussed the

use and representation of sortal literals. By allowing

characteristic literals in a many sorted axiomatisation the

logic becomes more expressive: more knowledge can be

treated specially. A consequence of this is that computa

tion can become more efficient. The price to be paid is

the additional complexity of the inference machinery.
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Abstract

One of the fundamental problems in the the

ory of knowledge representation is the diffi

culty of achieving both logical coherence and

computational tractability. We present steps

toward a theory of access-limited logic, in

which access to assertions in the knowledge

base is constrained by semantic network style

locality relations. Where a classical de

ductive method or logic programming lan

guage would retrieve all assertions that sat

isfy a given pattern, an access-limited logic

retrieves all assertions reachable by follow

ing an available access path. The complexity

of inference is thus independent of the size

of the knowledge-base and depends only on

its local connectivity. Access-Limited Logic,

though incomplete, still has a well denned se

mantics and a weakened form of completeness

('Socratic Completeness') and is complete in

some important special cases.

1 Introduction

Access-Limited Logic (ALL) is a logic for knowl

edge representation which utilizes semantic network

style access limitations to guarantee computational

tractability, even in very large knowledge-bases. Pre

vious work has used the access limitations inherent

in semantic networks for special purpose reasoning; in

ALL these limitations form an integral part of the logic

itself. A semantics for ALL has been defined by map

ping queries, assertions and knowledge-bases to pred

icate calculus, and in terms of this mapping, consis

tency and weakened completeness results have been

proven.

'This work has taken place in the Qualitative Reasoning

Group at the Artificial Intelligence Laboratory, UT-Austin.

Research of the Qualitative Reasoning Group is supported,

in part, by NSF through grant IRI-8602665, and by NASA

through grants NAG 2-507 and NAG 9-200.
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Reasoning is hard. If a knowledge representation

language is as expressive as first-order predicate calcu

lus then the problem of deciding what an agent implic

itly knows (i.e. what an agent could logically deduce

from its knowledge) is unsolvable. Thus a knowledge

representation system, which does not give up expres

sive power, must use a weak inference system with an

incomplete set of deduction rules or accept artificial

resource limits (e.g. bounds on the number of appli

cations of modus ponens). However, these approaches

tend to be difficult to describe semantically and tend

to place unnatural limits on an agent's reasoning abil

ity [Levesque, 1986].

Our primary interest is the development of a sys

tem for the representation of commonsense knowledge.

People seem to be able to reason efficiently with a

very large commonsense knowledge-base. One rea

son for this is that when solving a given problem they

only make use of the limited subset of their knowledge

which is relevant to the problem.

Our approach in ALL begins with the well known

mapping between atomic propositions in predicate cal

culus and slots in frames; the atomic proposition that

the object a stands in relation r to the object b can be

written logically as r(a,b) or expressed, in frames, by

including object b in the r slot of object a. Thus in a

frame-based system it is natural to define the frames

directly accessible from the frame a as those which ap

pear in slots of a1. Extending this idea, one may define

an access path, in a network of frames, as a series of

frames each directly accessible from its predecessor.

It proves useful to generalize this definition and allow

access paths to branch on all values found in a given

slot. A sequence of propositions defines an access path

if any variable appearing as the first argument to a

proposition has appeared previously in the sequence.

For example, "John's parent's sister" can be expressed

in ALL as the path:

(parent(John, x), sister(x, y))

'Slots in ALL contain only frames and rules (defined

below).
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This defines an access path from the frame for John to

the frames for John's parents (found by looking in the

parent slot of the frame for John), to John's parents'

sisters.

From access paths we build the inference rules of

ALL. A rule is always associated with a particular slot

in the network. Backward chaining if-needed rules are

written in the form: /? <— a (the structure of a and (3 is

discussed below) and applied when a value for the slot

is needed. Forward chaining if-added rules are written

in the form: a —► (3 and applied when a new value for

the slot is inserted. In either case the antecedent of the

rule must define an access path (beginning with the

slot the rule is associated with). For example, using

the access path above we can write the if-needed rule:

aunt(John, y) <— parent(John, x), sister(x, y)

But note that we cannot write the (logically equiva

lent) rule:

aunt{John,y) «— sister(x, y),parent(John,x),

since the antecedent does not define an access path.

Where a classical deductive method or logic pro

gramming language would retrieve all known asser

tions that satisfy a given pattern, an access-limited

logic retrieves all assertions reachable by following an

available access path. The use of access paths alone,

however, is insufficient to guarantee computational

tractability in very large knowledge-bases. The evalu

ation of a path can cause an explosive back-chaining

of rules which can spread throughout the knowledge

base. To prevent this, ALL introduces a second form

of access limitation. The knowledge-base in ALL is

divided up into partitions and back-chaining is not al

lowed across partitions — facts in other partitions are

simply retrieved. When used together, these two kinds

of access limitations can limit the complexity of infer

ence to a polynomial function of the size of the portion

of the knowledge-base accessible from the local parti

tion.

However, a price must be paid for the efficiency of

access limitations. Inference in ALL is weaker than

inference in predicate calculus, since only locally ac

cessible facts and rules can be used in deductions.

However, any concept in the knowledge-base is poten

tially reachable; A string of queries, while conveying

no new information, can move the focus of attention

around to invoke the rules of the system in any or

der. Thus, access-limited logic has a property we call

Socraiic Completeness 2 — for any query of a proposi

tion which is a consequence (in predicate calculus) of

The idea of Socratic Completeness was invented in

dependently in [Powers, 1987] where it is referred to as

Socratic Adequacy.

the knowledge-base, there exists a preliminary query

after which the query succeeds. Further, ALL is Par-

titionally Complete — if the rules needed to derive a

proposition are in the same partition as the propo

sition and the proposition can be proven using only

backward-chaining rules then a query of the proposi

tion succeeds.

The logical properties of ALL are stated more care

fully in the next section. Section 3 examines the com

plexity of inference in ALL, section 4 presents a sim

ple example from our implementation of ALL, section

5 discusses related work, and section 6 overviews our

current plans for future work.

2 The Logical Coherence of ALL.

'Logical coherence' is an informally defined collection

of desirable formal properties. We have proven that

ALL has the following properties of a logically coherent

knowledge representation system:

• ALL has a well defined syntax and proof theory.

• The semantics of ALL can be defined by a

purely syntactic mapping of ALL knowledge

bases, queries and assertions to predicate calcu

lus.

• In terms of this mapping, inference in ALL is con

sistent, Somatically Complete, and Partitionally

Complete.

These properties are stated more precisely in theorems

below.

We view these formal properties as necessary but

not sufficient conditions for logical coherence. There

remains, at least, the less formal claim that knowledge

can be organized cleanly into partitions. This claim is

discussed in the last subsection of this section.

The rest of this section sketches the formal develop

ment of ALL. The full account can be found in [Craw

ford and Kuipers, 1989].

2.1 Basic Notation

In the meta-theory of ALL we use the following nota

tion. Quantified expressions are written in the form:

((quantifier)(variable) : (range) : (expression)).

Thus, for example:

(Vz : predx(x) : pred2(x))

is read "For all x such that pred^x), pred2(x)n . Sim

ilarly:

(Ux : pred(x) : foo(x))

(where foo is a set valued function) denotes the union

over all x such that pred(x) of foo(x).

If a is a list then:

• head(a) is the first element in a.

• rest[a) is all but the first element in a.
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2.2 Syntax of ALL

We now build up the syntax of ALL. First the alphabet

of an ALL is defined and then terms, propositions,

access paths, rules, knowledge-bases, and finally ALL

formula are defined.

2.2.1 Alphabets, Terms and Propositions

The alphabet of an Access-Limited Logic consists of

countably infinite sets of variables, constants, and re

lations, the binary relation isa, the connectives <— and

—♦, and the operators query, and assert. A term is a

constant or a variable. A proposition is r(ti, ...,tn)

where r is an n-ary relation and all t,- are terms. A

fact is a proposition such that all ti are constants. For

a proposition or list of propositions a:

• vars(a) is the set of variables appearing in a.

• relations(a) is the set of relations appearing in a.

• constants(a) is the set of constants appearing in

a.

2.2.2 Access Paths

An access path (or simply a path) is a pair (V, a)

such that: V is a set of variables, and a is a list of

propositions in which the first term of each proposition

is either a constant, a member of V, or has appeared

previously in a (this can be made precise by a simple

recursive definition). If V = {} then we omit it and

say a is an access path. A path of length one is a

primitive path.

2.2.3 Rules

Conseq <— Ant is an if-needed rule iff:

• Key = r(<i , . . . , tn)3 is a proposition,

• Conseq = Key,

• Ant is a list of propositions,

• Either <i is a constant and Ant is a path, or <i is

a variable and ({<i}, Ant) is a path, and

• vars(Conseq) C vars(Ant).

Ant —► Conseq is an if-added rule iff:

• Key and Conseq are propositions.

• Ant is a list of propositions such that

head(Ant) — Key,

• (vars(Key), Ant) is a path, and

• vars(Conseq) C vars(Ant).

For any rule p: Key(p), Conseq(p), and Ant(p) access

its respective components.

intuitively, the Key of a rule is the proposition that

the rule is indexed under in the knowledge-ba.se.

2.2.4 Knowledge-Bases

A Knowledge-Base, K, is a seven-tuple

(C,R,Nr,Ar,F,P,A).

The definition of a knowledge-base is given in figure 1 .

If

K = (C,R,Nr,Ar,F,P,A)

is a knowledge-base and a is a proposition, list of

propositions or a rule then a is allowed in K iff

constants(a) C C A relations(a) C R-

2.2.5 Operations and Formula

If a is a path then query(a) is a query. If a is a

primitive path then query(a) is a primitive query. If

/ is a fact then assert(f) is an assertion. Any query

or assertion is an operation. Any primitive query or

assertion is a primitive operation. If O = query(a)

or O = assert(a) is an operations and a is allowed

in a knowledge-base K then O is allowed in K. If an

operation O is allowed in a knowledge-base K then

0(K) is an ALL formula.

2.3 Knowledge Theory

In this subsection we sketch the knowledge theory of

ALL. The knowledge theory of ALL defines the value

of ALL formula by defining the action of ALL oper

ations (i.e. queries and assertions). Intuitively, the

assertion of a fact /, adds / to a knowledge-base

and returns the resultant knowledge-base (i.e. the

knowledge-base after / is added and all applicable if-

added rules are applied). A query of q, returns the

substitutions needed to make q true in the knowledge

base, and a new knowledge-base (since processing the

query may change the knowledge-base by invoking

rules).

2.3.1 The Domain and Range of ALL

Operations

Any given sets C, R,Nr,Ar,P and function A, de

fine a finite set of possible knowledge-bases (differ

ing only in facts) KB and an infinite set of ground

substitutions 0 (binding variables in the alphabet

to constants in C). For this subsection fix the sets

(\R,Nr,Ar,P, and the function A. Then, for any

operation, O. allowed in the knowledge-bases in KB

(note that an operation allowed in any knowledge-base

in KB is allowed in all knowledge-bases in KB):

O : KB —► 2e x KB.

We notate these returned values with pairs: ( < set of

substitutions >, < knowledge-base > ). and use kb and

sub as accessors on their first and second components

respectively.
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A Knowledge-Base, K, is a seven-tuple (C, R, Nr,Ar,F, P, A) where:

C = A set of constants.

R = A set of relations.

Nr = A set of if-needed rules such that: (Vp : p G Nr: constants(p) C C A relations(p) C jR)

ylr = A set of if-added rules such that: (Vp : p G Ar: constants(p) C C A relations(p) C i2).

P = A set of facts such that: (V/ : f £ F: constants(f) C C A relations(f) C P).

P = A set of partitions, subsets of C x R, {pi,...,pn}, such that:

(Uj : 1 < i <n : pi) = C x R (i.e. each element of C x R is in some p<).

A = A rule association function mapping: Nr U Ar ==► C U P, such that:

(Vp : p 6 Ar U Nr : A(p) G P — M(p)} = relations(Key(p)))

(i.e. if a rule p is associated with a relation then that relation must

be the one appearing in Key(p)).

Figure 1: Definition of a Knowledge-Base.

2.3.2 The Partitions of ALL Operations

Intuitively, a partition of K corresponds to a part

of the knowledge-base which is somehow semantically

cohesive and distinct from the rest of the knowledge

base. Facts and rules are often thought of as being

'in' partitions and operations are thought of as 'taking

place' in subsets of C x R (unions of partitions). The

intuition behind this comes from the frame view of

ALL knowledge-bases. Recall that ALL constants can

be thought of as frames and relations as slots in these

frames (e.g. the fact r{c\ , C2) is equivalent to having

the value C2 in the r slot of the frame Ci). Thus a

pair (r, c) can be thought of as a particular slot in a

particular frame in the knowledge-base. We refer to

such a pair as a frame-slot. Partitions are thus sets of

frame-slots. Further, note that any primitive path a

(by the definition of a path) must reference exactly one

frame-slot and thus can be said to be 'in' a partition.

In fact, since partitions can overlap, it can be in several

partitions and any operation on a is performed 'in'

the subset ofCxfl formed by taking the union of the

partitions a is in. Intuitively, this union defines the

rules which are available to the operation. Thus an

operation on a has access to the rules of all partitions

a is in.

More formally, if K = (C, R, Nr, Ar, F, P, A) is a

knowledge-base and a = r(c, t\, . . . ,tn) is a primitive

path (i.e. c a constant and all U, 1 < i < n, are terms)

and p is a partition of K then a G p iff (c, r) £ p. If

P = {pi, . . .,pn} and O = query(a) or O = assert(a)

then union of partitions for O is:

par/f (0) = (Ui : 1 < » < n A a G Pi : p,)

2.3.3 The Values of ALL Operations

Defining the values of ALL operations is primar

ily a mater of formalizing the action of forward

and backward chaining rules. We use the follow

ing basic notation for knowledge-bases and substitu

tions: If A'i = (C, R,Nr,Ar,FuP,A) and K2 =

(C, R, Nr, Ar, P2, P, A) are knowledge-bases, then:

K1UK2 = (C,R,Nr,Ar,Fi U F2,P,A).

If further, / is a fact allowed in K\ then:

K1+f = (C,R,Nr,Ar,Fl U {f},P,A),

and / G K\ iff / G F\. If 0 and n are substitutions

then 9 on notates 6 followed by n. If further, ©i is a

set of substitutions then noQi = {no6\ \B\ G ©i }■

For a primitive operations O, we define On(K,p) as

the result of the operation O on the knowledge-base

K, in some subset of C x R, p, with rule chaining cut

off at depth n (the full formal definition of On is given

in [Crawford and Kuipers, 1989]). We then define O

in terms of On as shown in figure 2. Note that since O

is defined as the union over all n of 0„, recursive rules

(e.g. rules of form q «— q) do not cause any problems

in ALL (or its lisp implementation). Figure 3 shows

an example of a query on a simple knowledge-base.

2.4 Mapping ALL to Predicate Calculus

We define the semantics of ALL by mapping ALL

knowledge-bases, assertions, and queries to (first or

der) predicate calculus. An alternative approach

would be to define a model theory for ALL, in terms

of which ALL is complete. This could be done, but we

believe that (since the model theory of predicate calcu

lus is well understood), mapping to predicate calculus

and appropriately weakening the notion of complete

ness gives a more perspicuous picture of the seman

tics of ALL. Further, we believe that consistency and

Socratic Completeness relative to predicate calculus

(or perhaps an appropriate non-monotonic logic) are
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If O is a primitive operation allowed in a knowledge-base K then:

0(K) = (Un : n > 0 : On(K, parK(O)))

The result of a non-primitive operations is defined in terms of the results of its constituent primitive

operations. Again assume that O is an operation allowed in K:

If sub(query(q){K)) = {} (i.e. query(q) 'failed'),

O(K) = {{},!<)

else

0{K) = (U0 : 9 G su6(guery(9)(/0)

: (9 o sub(query(a'9)(K)), kb(query(q){K)) U fc&^uerj^a'Xtf))) )

Figure 2: The definition of O.

Assume A' = (C, R, Nr, Ar, F, P, A) is a knowledge-base such that:

c

R

Nr

Ar

F

P

{c}

{n,r2}

{ri(c,.v) — r2(c,x)}

=
{}

{»"2(C,C)}

{{(c,ri),{c,ra)}}

Further, A(r\{c, x) <— r2(c, z)) = r\. Consider query(ri(c,x))(K) (where x is a variable). This is

a primitive operation so we first compute qneryo(ri(c, x))(K , parj((ri(c, x))). Rule back-chaining

is cut off at depth 0 so no rules apply and queryo(ri(c, x))(K , parK(ri(c, x))) = ({}, K) (an empty

list of substitutions is returned since there is no known value of x such that the query suc

ceeds). However when we calculate query\(r\(c, x))(I\,parjc(i'i(c, x))), the if-needed rule applies

and queryi(ri(c, x))(K,parK(ri(c, x))) = ({{x/c}}, K + ri(c, c)) (where {x/c} binds x to c). As n is

increased further there are no other rules to apply so query(r\(c, x))(K) = ({{x/c}}, K + ri(c,c)).

Figure 3: A query on a simple knowledge-base.
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Assume K = (C, R, Nr, Ar, F, P, A) is a knowledge-base such that:

C = {c}

R = {ri,r2,r3}

Nr = {ri(c,x)<- r2(c,x)}

Ar = {ri(c,x)-> rs(c,x)}

F = {r*(c,c)}

P = {{(c.''i),(c, r2),(c,r3)}}

Finally, A(ri(c,x) <— r2(c x)) = n, A{ri{c,x) -* r3(c,x)) = r\. Consider query(r3(c, c))(K). This

query must fail since r3(c, c) is not a fact in K and there are no if-needed rules for r3(c c). But any

model of VC(K) must be a model of VC(r3(c, c)) (by the two rules and the fact that r2(c,c) is in

F). Hence, inference in ALL is not complete.

Figure 4: A form of incompleteness in ALL.

Assume K = {C, R, Nr, Ar, F, P, A) is a knowledge-base such that:

C = {c}

R = {ri,r2,r3}

Nr = {ri(c, x) <- r2(c, x), r2(c, x) <- r3(c, x)}

Ar = {}

F = {r3(c,c)}

P = {{(C.T!)},

{{c,r2),{c,r3)}}

Finally, A(r\(c, x) *- r2{c,x)) = ri, A(r2(c,x) 1— ?'3(c,x)) = r2. Consider query(r\(c, c))(K). This

query must fail since r2(c, c) is not a fact in K and is not in parfc(ri(c, c)) (so no rules for r2(c,c)

can fire). But, any model ofVC(K) must be a model of VC{ri(c, c)) (by the two rules and the fact

that r3(c, c) is in F).

Figure 5 Another form of incompleteness in ALL.
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necessary properties for any knowledge representation

system.

Mapping ALL to predicate calculus is fairly straight

forward. Propositions do not change at all. Paths be

come conjunctions. Rules become implications with all

variables universally quantified (there are some com

plications in mapping rules associated with frames (as

opposed to slots) — these are discussed in [Crawford

and Kuipers, 1989]). Knowledge-bases become the

conjunction of their rules and facts. We notate the

Predicate Calculus equivalent of an ALL object, a, by

VC(a).

2.5 Consistency

Consistency is often intuitively thought of as "You

can't derive a contradiction." Thus consistency re

quires that the substitutions returned by a query must

be semantic consequences of the old knowledge-base.

The requirements on the new knowledge base are more

subtle. Consistency intuitively requires that proposi

tions do not suddenly become true, or, in model the

oretic terms, that models are not suddenly lost. Thus

any model of the new knowledge-base must also be a

model of the old knowledge base (and in an assertion

a model of the formula being asserted):

Theorem 1 (Consistency) For any knowledge-base

K , any path a allowed in K, and any fact f allowed

in K:

(V0 G 0 : 6 e sub(query(a)(K))

: VC(K) \= VC(aO))

2. VC(K) f= VC(kb(query(a)(K)))

3. (VC(K) AVC(f)) \=VC(kb(assert(f)(K)))

Proof (sketch): The proof of consistency is primar

ily a matter of carefully working through the definition

of O. We induct on n to show that On is consistent.

We then induct on the length of a to show that O is

consistent.

2.6 Completeness

Completeness can be thought of as "Any true fact

is derivable." Thus completeness requires that all

substitutions which are semantic consequences of the

old knowledge-base are returned by query. Complete

ness also requires that true facts do not suddenly

become false. In model theoretic terms this means

that we do not gain models. Thus any model of the

old knowledge-base must also be a model of the new

knowledge-base. Note that the requirements for com

pleteness are simply the requirements for consistency

with their implications reversed:

Conjecture 1 (Completeness of ALL)

For any knowledge-base K , any path a allowed in K,

and any fact f allowed in K , let Qa be the set of all

1.

ground substitutions binding all and only variables in

a. Then:

, (V0 G Qa : VC(K) f= VC(ae)

: 0 € sub(query{a)(K)))

2. VC(kb(query(a)(K)) |= VC{K)

3. VC(kb(assert(f)(K))) t= (VC(K) AVC(f))

Unfortunately, part one of this conjecture is false.

In some cases, rules necessary for a query to succeed

cannot be accessed. Two such cases are shown in the

examples in figures 4 and 5. Notice, however, that in

the example in figure 4:

query(r3{c, c))(fc&(guer2/(r!(c, c))(K)))

would succeed since T3(c, c) is added to

kb(query(ri(c, c))(K))

by the if-added rule r\(c, x) —► r${c, x). Similarly, in

the example of in figure 5:

query(ri(c,c))(kb(query(r2(c,c))(K)))

succeeds. This suggests the idea behind Socratic Com

pleteness. Very informally, the Socratic Completeness

Theorem says that for any query a which 'should' suc

ceed in a knowledge-base, there exists a preliminary

query /?, after which a query of a succeeds. We also

show a second type of partial completeness result, Par-

titional Completeness. Partitional Completeness says,

that if all the information needed to process a query

can be located by the if-needed rules in the partitions

of the query, then that query succeeds.

2.6.1 Socratic Completeness

Theorem 2 (Socratic Completeness)

For any knowledge-base K , any path a allowed in K,

and any fact f allowed in K , let Qa be the set of all

ground substitutions binding all and only variables in

a. Then:

i. (ye e ea-. vc(i<) \= vc{aO)

: (3p: 0 a path allowed in K

:6£sub(query(a)(kb(query(P)(K))))))

2. VC(kb(query(a)(K))) \= VC(K)

3. VC(kb(assert(f)(K))) \= (VC(K) A VC(f))

Proof (sketch): Parts 2 and 3 follow relatively easily

from the definitions of O, and VC. Part 1 is shown by

induction on the length of a. The tricky part is the

base case. We map K to an equivalent logic program

C'P(K). We show that for any rule in K which would

apply on the next iteration of Tcy>(K) (where T is

the immediate consequence operator in logic program

ming — see [Crawford and Kuipers, 1989, Apt, 1988,

Lloyd, 1984]) there exists a path in ALL the query

of which causes the rule to fire. The result then fol

lows by a completeness result for the study of logic

programming.
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2.6.2 Partitioned Completeness

In order to state the partitional completeness the

orem we first have to define which rules in the

knowledge-base are considered 'part' of which parti

tions. A rule is considered a part of a partition if it can

apply to a frame-slot in that partition. If p is a parti

tion of a knowledge-base K = (C, R, Nr, Ar, F, P,A),

and 5 is a set of rules from K then 5\p is the restric

tion of S to p (the set of rules from S which can apply

to frame-slots in p — the formal definition is given

in [Crawford and Kuipers, 1989]). If p is a union of

several partitions then S\p is just the union of S re

stricted to the partitions. The restriction of K to only

the if-needed rules in p is:

K\p = (C,R,Nr\p,<!>,F,{p},A').

where A' is A restricted to the domain Nr\p. Note

that the restriction of K to some union of partitions p

is never computed (in the definition of ALL formula or

in our lisp implementation of ALL), but is only a for

mal object used to state the partitional completeness

theorem.

Theorem 3 (Partitional Completeness) For any

knowledge-base K, any primitive path a allowed in K ,

let Qa be the set of all ground substitutions binding all

and only variables in a. Then:

(V0G9O : VC(K\parK(a))\=VC(a6)

: 9 G sub(query(a)(K)))

Proof (sketch): The proof of this theorem again re

lies on results from the study of logic programming.

Let ground(a) be the set of all variable free instantia

tions of a. Further, for any logic program pg, and any

set of facts /, let:

TP,T0(/) = /

TMT(n + l)(I) = Tpg{Tpg T n(I))

The key lemma is:

(V/ € ground(q) : / G TCV(K\r) T "(0)

: fe kb{queryn(q)(K,parK(q))))

Which is shown by induction on n from the defini

tion of On and which again implies the result by a

completeness result from logic programming (for the

induction to go through, this lemma must actually be

strengthened somewhat — see [Crawford and Kuipers,

1989] for details).

2.7 About Partitions

An important part of the claim that ALL is logically

coherent is the claim that knowledge can be divided

into semantically distinct segments. Fortunately, par

titions are not a new idea. Among other places, simi

lar ideas can be found in Hayes' clusters [Hayes, 1985].

The related idea that reasoning can be done by sep

arating rules into partitions is also not new. It is

the idea behind, for example, blackboard architectures

[Hayes-Roth, 1985] (the difference between partitions

in ALL and the similar limitations in blackboard ar

chitectures is the idea of access paths, which allow us

to use the entire knowledge-base as our 'blackboard').

3 The Computational Tractability of

ALL.

In the worst case the time complexity of an ALL op

eration is a polynomial function of the size of the por

tion of the knowledge-base accessible from the local

partition. We focus on primitive operations since non-

primitive operations are defined as sequences of prim

itive operations (figure 2).

Assume O is a primitive operation allowed in a

knowledge-base K. By examination of the rules in

the partition of O in K we can determine:

• reacli(0, K) — the set of all frame-slots which O

can ever reference.

• change(0, K) — the set of frame-slots which O

can ever change.

• frames(0, K) — the set of frames which O could

possibly put into frame-slots in change(0, K).

• operations(0 , K) — the set of all queries of

frame-slots in reach(0, K) and assertions of

frames in frames(0, K) into frame-slots in

change(0, K).

(Formal definitions of these sets are given in [Crawford

and Kuipers, 1989]). In a well partitioned knowledge

base these sets should be much smaller than the total

size of the knowledge-base.

For a set S, let | S | be the cardinality of S.

Theorem 4 (Complexity) Assume O is a prim

itive operation allowed in a knowledge-base K =

(C,R,Nr,Ar,F,P,A). Let

• o =\ operations(0 , K) \

• c =| change(0, K) \

• / =| frames(reach(Ot K)) \

• r = the number of rules in parx(0).

• a = the maximum arity of any relation in R.

• v = the maximum number of variables in any rule

in parn{0).

The worst case time complexity of calculating O(K) is

bounded by:

aVr(r + /)V+2

Proof (sketch): Consider the vector of all opera

tions O' G operations(0 , K). For any n these opera

tions produce a vector of knowledge-bases On(K). We
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John = Beth

Kim = Tom

I
William

David = Sarah

I
Suzan

Figure 6: A genealogy.

show that if for some n and for all such O' , 0'n(K) =

0'n+1(K) then O(K) = On(K). We then show that

there must exist such an n which is less than or equal

to ao(r + f)c (by showing that knowledge-bases can

not shrink as n increases and showing a bound on how

large they can grow). Finally, we show that the time

to calculate any 0'n(K), from the values of all Oln_1,

is bounded by ar(r + f)cv+l .

4 Genealogy Example

An important part of our work with ALL has been

our experience with the lisp implementation of ALL.

We now present an introductory example from our im

plementation work. The knowledge-base consists of

simple family relationships and the rules describe how

to deduce more complex relationships. We emphasize

that this example is one of the simplest we have imple

mented and is presented because it is relatively short

and self-contained, yet gives a feel for the use of ALL

and illustrates the use of access paths.

Figure 6 shows an example genealogy. To translate

this into a knowledge-base assume that:

C ={ People, John, Beth, Kim, Tom, David,

Sarah, William, Suzan, Male, Female}

R ={ isa, parent, child, son, daughter, brother,

sister, spouse, husband, wife, uncle, aunt,

cousin, gender)

Further, we need several if-added rules to enforce

invariants in the knowledge-base. For example, we

make sure that whenever there is a link parent(x, y)

there is also a link child{y,x) (and vice-versa). Sim

ilarly, whenever there is a link son(x, y) there are

links child(x,y) and gender(x, Male), and so on. A

important class of invariants are type restrictions —

any frame put in a parent, child, or spouse slot 'isa'

'People'. The if-added rules are shown in figure 7.

There are several other types of invariants which we

parent(x,y)
 

child(y, x)

child(x, y) -» parent(y,x)

son(x,y) -+ gender{y, Male)

son(x,y) — child{x,y)

daughter(x,y) -* gender(y, Female)

daughter(x, y) — child(x,y)

husband(x , y) — wife(x,y)

husband(x,y) —• spouse{x, y)

husband(x,y) -* gender(y, Male)

wife(x, y) -» husband(x,y)

wife(x,y) -» gender(y, Female)

spouse(x,y) — spouse(y, x)

parent(x,y) — isa(y, People)

child{x, y) — isa(y, People)

spouse(x,y) —'* isa(y, People)

Figure 7: If-added rules for genealogy example.

brother(x, z) i parent(x, y), son(y, z),x ^ z

sister(x,z) <" parent(x, y), daughterly, z),

x ^ z

uncle(x,z) «~ parent(x, y), brotherly, z)

uncle(x, z) «- aunt(x, y), husband(y, z)

aunt(x, z) ♦- parent(x, y), sister(y, z)

aunt(x,z) «- uncle(x, y),wife(y, z)

cousin{v, z) parent(v, w) , parent(w , x),

child(x,y),y^ w,

child(y, z),v ^ z

Figure 8: If-needed rules for genealogy example.
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could add (e.g. whenever there are links child(x,y)

and gender(y,Male) then there is a link son(x,y))

but which are not necessary for this example. Simi

larly, we could add additional type restricting if-added

rules for some of the more complex relations (e.g.

uncle(x,y) —► isa(y, People)). Note, however, that

the type restricting rules together with the other in

variants ensure that any frames in the relations son,

daughter, husband, and wife are 'People'. We asso

ciate these if-added rules with the relations in their

keys (e.g. A(parent(x, y) —► child(y,x)) = parent).

We use the if-needed rules shown in figure 8 to de

duce the more complex relations. In these rules x ^ y

is true when x and y are bound to different frames. We

associate these rules with the frame People (thus they

are available to fill slots in any frame known to be a

People). Notice that the rules for uncle and aunt are

mutually recursive, but this causes no problem in ALL

(though it would cause an infinite loop in Prolog) since

query is defined as the union over all n of query„ (see

figure 2). Finally, we assume that the knowledge-base

consists of a single partition, and initially contains no

facts. We have thus defined an initial knowledge-base

K0.

Now we assert into Ko the family relations in figure

6. This can be done by asserting the following path:

wife(John,Beth),wife(Tom, Kim), (1)

wife(David, Sarah), son(John, Tom),

son(Beth, Tom), son(John, David),

son(Beth, David), son{Tom, William),

son(Kim, William), daughter(David, Suzan),

daughter(Sarah, Suzan)

Asserting this path adds many more facts to the

knowledge-base than just those mentioned in the path.

For example, it adds gender(Tom, Male), and that

the frames John, Beth, Torn, Kim, David, Sarah,

William, and Suzan are all People. Let A'i be the

knowledge-base after the assertion of the path in 1.

Finally, we can make queries into K\ . Consider first.

query(uncle(W illiam, x))(K\).

Assume,

p = parKl{uncle{W illiam, x)).

Clearly,

queryo(uncle(William, x))(Ki,p)

fails. Similarly,

queryi (uncle(William, x))(K\ , p)

fails since the facts parent{William, John) and

parent{William, Beth) are known, but no brothers of

John or Beth are known. However,

queryi {brother(John, y)){K\ , p)

succeeds with y bound to David (by the if-needed rule

for brother). Hence,

query2(uncle(William, x))(Ki , p)

succeeds with x bound to David. Similarly,

query(cousin(Suzan, x))(K\ )

succeeds with x bound to William. One important

advantage gained by the use of access paths is that

the size of the knowledge-base could be increased with

no effect on the time taken to compute these queries

(unless we add frames which cause the access paths to

branch — e.g. by adding more children of John and

Beth).

5 Related Work.

ALL draws from several diverse fields and we will not

have space here to examine in detail its relationship to

the large body of previous work. We simply sketch in

general terms the fields from which it draws and a few

particularly relevant past approaches.

ALL draws from semantic networks [Findler, 1979,

Brachman et al., 1983, Bobrow and Winograd, 1985,

Vilain, 1985] the intuition that retrieval and reason

ing can be guided by the structure of the network.

This has long been a key intuition behind semantic

networks: "...the knowledge required to perform an

intellectual task generally lies in the semantic vicin

ity of the concepts involved in the task." [Schubert,

1979]. ALL also draws from semantic networks its

frame based data structures [Minsky, 1985].

ALL differs from past work on semantic net

works in that it uses a single general purpose re

trieval/reasoning mechanism which is guided by the

structure of the network. Past work has generally

used the structure of the network only for special

purpose reasoning (spreading activation, classifica

tion etc.), and has relied on a first-order logic theo

rem prover [Brachman et al., 1983, Schubert et al.,

1983] or a weaker deduction system [Levesque, 1984,

Patel-Schneider, 1985, Vilain, 1985] for general reason

ing.

A notable exception to this rule is the recent work of

Schubert [Schubert, 1979, Haan and Schubert, 1986].

ALL and the networks of Schubert share several fea

tures including the use of access limitations to guide

reasoning. The most obvious way to use the structure

of a semantic network to limit access would be to per

form deduction with facts not more than a few (say

maybe two) nodes away in the network. The prob

lem with this strategy is that some nodes (e.g. the

node for your spouse) may have a large number of

links, many of which are irrelevant to the problem at

hand. The solution used in ECOSYSTEM is to main

tain a taxonomy of knowledge and use this taxonomy
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to guide reasoning [Haan and Schubert, 1986]. The

difference in ALL is that access is limited to known

access paths, which may access facts many nodes away

in the network, but do so in a controlled fashion. Thus

in ALL it is the structure of the knowledge itself (or

more specifically the structure of the access paths in

the rules) which controls access and reasoning.

The design of the inference mechanism in ALL has

been heavily influenced by logic programming. In fact

any function free logic program (without negation) can

be written in ALL. Further, the notation, and the

proofs of the completeness of logic programming [Apt,

1988, Lloyd, 1984], have been used extensively in the

completeness proofs for ALL.

6 Discussion and Future Work.

Ultimately we are working towards a formal theory

which has the expressive power of predicate calculus,

and is consistent and Somatically Complete, but still

has polynomial time complexity. The current formal

ism of ALL (unlike our Lisp implementation) can ex

press only implication — not general negation. It is

straight forward to add to ALL the ability to express

full classic negation (i.e. not negation by failure), but

then inference in ALL (using rules alone) is no longer

Somatically Complete. For example, from two rules of

the form:

P *-

one should be able to conclude -*q, but neither rule can

apply since there are no facts. We are currently work

ing to increase the deductive power of ALL by adding

a Reduciio Ad Absurdum mechanism. This involves

adding the ability to make an assumption and then

reason about its consequences. If the consequences

include 'false' then we can conclude the negation of

the assumption. In the above example we assume q

and derive p and ->p. Thus we can conclude -117. We

believe that such a mechanism will allow Somatically

Complete reasoning in the presence of classic negation.

There is also no obvious way to express full existen

tial quantification in our current formalism or our im

plementation. We have incorporated definite descrip

tions (e.g. "The man with the wooden leg"), which

define a type of existential quantification (a definite

description should pick out a unique known frame or,

if there is no frame meeting the description, create

a new one) into the implementation of ALL, but. we

have not yet formalized them as they do not seem to

translate naturally into predicate calculus.

However, we have observed that commonsense rea

soning often involves reasoning about groups of similar

objects, and that much of this reasoning can be done

without full first order quantification. One may, for

example, reason about a large class of objects by rea

soning about a representative object having the prop

erties common to all objects in the group (or reason

about a 'skolem' object having properties that some

(unknown) object of the group is known to have). In

our implementation work we have been developing a

"commonsense set theory" entirely within the quanti

fier limitations of ALL, and have applied it to several

examples.

In general, our lisp implementation of ALL is con

siderably ahead of our formalism. Beyond definite de

scriptions and common-sense set theory we have im

plemented full negation (using Reduciio Ad Absurdum

as discussed above) and an ability to make default as

sumptions. We have built up a small knowledge-base

of common-sense knowledge and have investigated sev

eral classes of problems:

• We have written a version of the inferential dis

tance rule of Touretzky [Touretzky, 1986]), and

have looked at some standard examples of mul

tiple inheritance (e.g. royal elephants and birds

that are penguins) and at a Nixon diamond.

• We have implemented a fairly standard solution

to the Yale shooting problems [Hanks and McDer-

mott, 1986].

• Using our common-sense set theory we have im

plemented a solution to McCarthy's sterilization

problem [1987] and other more complex problems

involving sets of similar objects.

• To demonstrate Socratic Completeness and the

use of Reduciio Ad Absurdum, we have imple

mented a solution to the following logical puzzle

taken from [Wylie, 1957]:

In a certain bank the positions of cashier,

manager, and teller are held by Brown,

Jones and Smith, though not necessar

ily respectively. The teller, who was an

only child, earns the least. Smith, who

married Brown's sister, earns more than

the manager.

What position does each man fill ?

Our solution involves the use of rules which de

fine notions of partial orders and one-to-one rela

tions between sets. When we state the problem

in ALL, our lisp implementation initially fails to

solve it, but after a suitable sequence of prelimi

nary queries (essentially the questions one would

ask a person to step them through the puzzle) is

able to do so.
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Abstract

A realistic theory of perception and knowl

edge must deal with the fact that percep

tions have limited acuity. However, in con

structing such a theory, care must be taken

to avoid a paradox whereby an agent can ex

tract perfect knowledge from imperfect per

ceptions, using his knowledge of these imper

fections. This paper presents two ways to

avoid this paradox: first, by supposing that

the agent has imperfect knowledge about his

own perceptual system; second, by assum

ing that the perceptual system behaves non-

deterministically.

1 Introduction

Consider the following inferences: (1) A driver cannot

read a road sign from a mile off, even if the sign is in

view. (2) A sundial cannot be used as a stop-watch,

since the position of the shadow does not change per

ceptibly in a second. (3) The length of a table can

be more accurately gauged by measuring it against

a yardstick than by estimating by eye. These infer

ences rely on an understanding of the limits of per

ceptual acuity. A commonsense theory of perception

must therefore be able to express these limits. The

commonsense theory need not incorporate the detail

suitable for evaluation of actual sensory systems ([Ba-

jesy et. al.,86], [Brooks, 87].) Rather, it should give a

rough account, capable of supporting inferences such

as those above.

An important characteristic of perceptual acuity is

that a series of small changes, each imperceptible, may

combine to form a perceptible change. For example,

the shadow of a sundial moves imperceptibly in each

second, but the total motion is visible after an hour.

Formally, let us define two states of the world as "indis

tinguishable" (by the perceptions of an agent or by a

measuring device) if the change from one to the other is

imperceptible. Then the indistinguishability relation,

'Thanks to Leora Morgenstern for her suggestions. This

research was supported by NSF grant #IRI-8801529.

though reflexive and symmetric, is not transitive. It

is a tolerance on the space of world states [Hayes, 85]

[Poston, 72].

This property of indistinguishability can lead to the

following paradox: Let A, B, and C be three states

of the world such that A is indistinguishable from B

and B from C, but A is not indistinguishable from C.

Suppose the real state of the world is A. Then the

agent can see that the world is not in state C. If he

knows enough about his own perceptual system, then,

even though he cannot see that the state of the world

is not B, he can infer it, since, if the world were in B

then he could not see that the world is not in state C.

Consider, for example, a class of perceptions that

varies along a single real-valued parameter, such as the

measurement of temperature by a thermometer. Sup

pose that the perceptual system is accurate to within

2.0; that is, two states of the world are indistinguish

able just if the values of the parameter differ by less

than 2.0. If the actual value of the parameter is 10,

then the agent sees that it is less than 12.0 and greater

than 8.0, but he sees no greater detail. However, if he

knows the laws governing his own perceptions, then he

can deduce that the parameter's value of the parame

ter is exactly 10.0. But this is unrealistic.

There are at least two ways out of the paradox. The

first is to deny that the agent knows the properties of

his own perceptions accurately enough to carry out

this deduction. The second is to deny that the per

ceptions of the agent depend determini'-tically on the

state of the world. As an example of the latter, con

sider a th- rmometer whose readings are accurate only

within a range of 2 degrees. In that case, a reading of

10 degrees implies only a real value between 8 and 12

degrees, no matter how well the thermometer is under

stood. (A third resolution, that perceptions are vague,

is not easily expressed in a standard logic [Zadeh, 87]

[Parikh, 83].)

Many natural theories of perception and knowledge

implicitly contain assumptions leading to the above

paradox. This paper will show how the theory pre

sented in [Davis, 88] gives rise to the paradox and will

propose two possible modifications of the theory, corre

sponding to the above two resolutions of the paradox.
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2 Initial theory

Oui initial theory [Davis, 88] combines a standard

possible-worlds semantics for knowledge ([Moore, 80])

with a modified possible-worlds semantics for percep

tion. To represent knowledge, we use a collection of

possible worlds, also called situations. A situation is

one possible state of the world at an instant. Situ

ations are connected by knowledge accessibility rela

tions. Situation 52 is accessible from situation 51 rel

ative to agent A, written "k(A, 51, 52)", if 52 is con

sistent with everything that A knows in 51. We can

then represent the assertion UA knows $ in 51" in the

form "$ is true in all situations 52 that is accessible

from 51 relative to A." Situations are also organized

temporally, but this will not be important here.

We represent perception using a reduced form of

possible world, called a layout. A layout represents

only the physical aspects of the world, since only these

can be perceived. In our initial theory, layouts are

connected by a relation of indistinguishability or per

ceptual compatibility. Layout LI is perceptually com

patible with layout £2 relative to agent A, written

"pc(A, £1,2/2)", if L2 is consistent with everything

that A can perceive in LI; that is, as far as A can

see in LI, the world could be in L2. We represent

facts about perception using constraints on compati

ble layouts. For example, the statement that John sees

that object Ol and 02 abut in situation 50 can be ex

pressed by asserting that, in each layout compatible

with the layout of 50, Ol abuts 02

Vl2 pc(john,layout(50),L2) =»

abuts(place(01, L2),place(02, 12))

Here ulayout(5)" denotes the layout contained in

situation 5, and "place(0, L)n is a function giving the

position of object O in layout L.

We assume the following axioms:1

1. What is known is true. Formallly, knowledge acces

sibility is reflexive.

VAtsHA,S,S)

2. What is perceived is true. Formally, perceptual

compatibility is reflexive.

Va,l pc(A, L, L)

3. Any layout is part > f some situation.

VL35 L=layout(5).

4. What is perceived is known. Formally, if a situ

ation is consistent with A's knowledge, its layout is

compatible with his perceptions.

VJt,si,52k(A,51,52)=>

pc(A,layout(51),layout(52))

5. If A perceives $ then he knows that he perceives $.

1 These axioms are not independent. (4) follows from

{2,5}. (2) follows from {1,3,4}.

Vj4)si,s2.L3[k(A,51,52)A

pc(A,Iayout(52),L3)] =►

pc(A,layout(51),L3)

This formal expression of (5), analogous to the stan

dard axiom for positive introspection on knowledge,

can be justified as follows. Consider the following

equivalent statement:

Vyi,si,L3 ->pc(A,layout(51),L3) =*

[VSJk(A,51,52)=>

-ipc(layout(52),I3) ]

The embedded implication asserts that L3 is not

compatible with the layout of any situation knowledge

accessible from 51; that is, that A knows in 51 that

he is not seeing L3. The antecedent of the overall

statement is that A can see in 51 that the world is

not in L3. Overall, therefore, the statement is that, if

A sees something in 51 (some fact that rules out L3),

then he knows that he sees it, which was the desired

statement.

We can now display the paradox discussed in the

introduction. Let 51 and 52 be situations, and let LZ

be a layout compatible with the layout of 52 but not

with the layout of 51. Then we have

pc(A,layout(52),L3) A

-1pc(A,layout(51),L3)

The conclusion -ik(A,51,52) follows directly from

axiom (5); i.e. situation 52 is not consistent with A's

knowledge in 51.

Consider now an intelligent agent equipped with a

measuring device for a single ordered parameter. Let

"param(L)" denote the value of the parameter in lay

out L. Assume the following conditions:

(i) For any layout L , there exist values XI and X2

such that, for any layout L2, if param(L2) < XI

or if param(L2) > X2, then L2 is not compati

ble with L. That is, if the parameter value is far

enough apart, then the layouts are distinguish

able. Define the interval "p_range(L)" as the max

imal interval not containing any such XI or X2.

(ii) If LI and L2 are compatible, and param(Ll)

< parami L2) then p_range(Ll) contains values

lower than any in pjange(L2) and p_range(L2)

contains values greater than any in pjange(Ll).

It follows directly from these two assumptions that,

for any LI, L2, if param(Ll) ^ param(L2), then there

exists a layout L3 that is compatible with L2 but not

with LI. Therefore, by axiom (5), no situation con

taining L2 is accessible from any situation containing

LI. Thus, the agent knows the exact value of the pa

rameter, since any situation with a different value is

inaccessible.

Though (ii) is not a necessary feature of a compati

bility relation, it is characteristic of many natural def

initions of compatibility, and avoiding it may involve
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introducing artificial complications into the theory of

perception.

3 First Solution

The first solution removes the assumption that an

agent knows the rules governing his own perceptions.

This assumption is built into the model above, in that

compatibility is viewed as depending purely on the lay

outs and the agent. If agents are to be partially igno

rant of the rules governing perception, these rules must

vary from one possible world to another. We therefore

redefine the compatibility relation "pc(.A, XI, X2)" to

be a fluent, a term whose value varies from one world

to another, rather than a predicate. We introduce the

predicate "trueJn(S, P)" to mean that fluent F is true

in situation S. (Since "true-in" applies to fluents and

not sentences, problems of self-reference do not arise.)

The statement, UA sees in 50 that # is true," is ex

pressed by stating that $ is true in every layout X2

that is compatible with the layout of SO, using the

compatibility relation of SO. For example, the sen

tence, "A sees in SO that Ol abuts 02" is expressed

as

V/,3 trueJn(S0,pc(>l,layout(S0),I2)) =>

abut(place(01,X2),place(02, X2))

Axioms 2, 4, and 5 now take the following forms:

2. Va.s.l trueJn(S,pc(A, X, X))

4. V5i,sak(A,Sl,S2)=>

true_in(Sl,pc(i4,layout(Sl),layout(S2)))

5. Vsi,si,Lsfr(A,Sl,S2)A

truein(S2,pc(yi,layout(S2),L3))] =>

trueJn(Sl ,pc(A,layout(Sl ),I3))

The paradox is now blocked, because the compati

bility relation is relative to possible world. If in real

ity — that is, in some fixed possible world SO — L2

is compatible with X3 but XI is not compatible with

X3, it does not follow from axiom (5) that a situation

containing L2 is inconsistent with one containing XI.

That conclusion can only be drawn if the compatibility

of L2 with X3 is given relative to a world containing

L2, and the incompatibility of XI with 7,3 is given

relative to world containing XI.

Indeed, we can construct models in which an agent

can have substantial knowledge of the laws of percep

tion, and still not know more about the value of a

parameter than he can directly sense. For each real

D (E [0, 1] and each real P, define a possible world

Sd,p satisfying the following:

i. param(layout(Sx)ip)) = P

ii. tiueAn(SDip,pc(A, XI, X2)) •»

param(X2) - param(Xl) G [-D, 1 - D]

The knowledge accessibility relation is defined by re

quiring two worlds to be knowledge accessible just if

the agent sees the same possible range for the value of

the parameter in each.

iii. k(A, SD1,pU SD7iPJ) o PI - X>1 = P2 - X>2

In this model axioms (l)-(5) are satisfied, as are

the axioms of positive and negative introspection on

knowledge; the agent knows the statement, "There ex

ists a D £ [0, 1] such that layouts XI and X2 are com

patible only if param(X2) - param(X2) € [-D, 1-D],"

since this statement is true in all possible worlds; but,

in world Spto, the agent knows only that the value of

the parameter is in the range [P — D, P+ 1 — £>], since

each such value is attained in some accessible world.

4 Second Solution

Our second solution is modeled on a measuring de

vice that exhibits non-deterministic error. Even with

a perfect understanding of this device, an agent can

not extract more information out of it than its error

allows.

We introduce the concept of a percept, which is the

state of an agent's entire perceptual field at an instant.

Any given physical layout may give rise to one of a

range of possible percepts. In the thermometer ex

ample, the layout is the actual parameter value; the

percept is the report of the device. The predicate

"image(.A, X, P)" means that layout X can give rise

to percept P in agent A. Two layouts are compatible

if they have some percept in common.

pc(J4,Xl,X2)o

3P image(A, XI, P) A image(i4, X2, P)

In a specific situation S, an agent A receives exactly

one percept, denoted "percept(.A, S)". If A perceives

percept P in situation S, then he knows that the cur

rent layout is some layout with image P. Therefore,

the statement UA sees that $ holds in S" is expressed

by saying that $ holds in every layout that can give

rise to the percept of S. For example, the statement

"In SO, A sees that 01 abuts 02" is expressed as fol

lows:

Vx, image(A, X,percept(A, SO)) =>

abut(place(01, X),place(02, X))

Axioms (2), (4), and (5) are expressed as follows:

2. Va,S image(j4,layout(S),percept(j4, S))

That is, the percept received in S is always possible

for the layout of S.

4. V*,si,sak(A,Sl,S2)=*.

image(yl .layout (S2),percept(Sl))

That is, for S2 to be consistent with SI, it must be

possible for S2 to give rise to the percept A receives

in SI.

5. V„iSi,52k(>i,Sl,S2)=>

percept(.4, SI) = percept(.A, S2)
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That is, an agent knows what his perceptions are in

any situation. Note that this formulation is simpler

and more natural than in either of the two previous

theories.

The paradox is now blocked. It is possible to have

LZ compatible with the layout of 52 and incompatible

with the layout of 51 and still have 52 consistent with

51, as long as the percept actually received in 52 is

not one of the percepts compatible with £3.

We can again construct a model in which the agent

has strong knowledge about the limits of perception,

and yet cannot deduce more about the layout that he

can see. Consider the measurement of a single param

eter, so that we can identify a percept with a real num

ber. Let image(X, X) hold for a layout L and real X if

X — param(L) G [-1,1]; thus, the measurement is ac

curate to with 1. For each D € [-1, 1] and each real P,

let Sp,p be a situation in which param(layout(5x)1p))

= P and percept(A, SD,p) = P + D. Let k(A, 51,52)

just if percept(j4, 51) = percept(A, 52). This model

satisfies axioms (1) through (5), and also the axioms

of positive and negative introspection on knowledge;

the agent knows that the image is always within 1

unit of the true value of the parameter; but, given a

percept P, the agent only knows that the value of the

parameter lies between P — 1 and P + 1.

The two approaches can be combined by taking the

"image" relation defined in the second solution, and

making it dependent on the possible world, so that

agents can have imperfect knowledge of the image pro

ducing operation. In this theory, the statement "A sees

in 5 that Ol abuts 02" would be expressed

Vx, true_in(5,image(A, L,percept(.A, 5))) =>

abut(place(01, 1),place(02, L))
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5 Conclusions

Our original motivation for developing the above new

theories was to avoid the paradox which made it pos

sible for an agent to make unrealistically powerful de

ductions from his perceptions. Serendipitously, we

found that thee theories not only avoided the para

dox in a natura' way, but also led to more expressive or

more elegant 1. iguages of perception and knowledge.

Having established these framework, we are now able

to proceed with the development of a specific theory of

perceptual acuity in worlds richer than the toy, one pa

rameter world that we have used as an example above.
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Abstract

The paper extends classical methods of solving

constraint satisfaction problems to include con

tinuous variables, thus providing a framework

for processing temporal constraints. In this

framework, called Temporal Constraint Satisfac

tion Problem (TCSP), variables represent time

points, and temporal information is represented

by a set of unary and binary constraints, ex

pressed as disjunctions of temporal intervals.

We present algorithms for performing the fol

lowing reasoning tasks: Finding all feasible

times for the occurrence of a given event, finding

all feasible relationships between two events,

and generating one or more scenarios that are

consistent with the information provided.

Two approaches to processing temporal

constraints are presented: Decomposition and re

laxation. The first decomposes a TCSP into

several simpler TCSP's (STCSP), each solvable

in polynomial time. The decomposition is

managed systematically by a backtrack algo

rithm and can employ traditional enhancement

schemes (e.g. forward-checking, backjumping,

learning etc.) to prune the number of STCSPs

processed. This method is complete, but has ex

ponential worst case complexity. The relaxation

method is an extension of the common path-

consistency algorithm. We discuss its special

features when applied to TCSPs, prove its con

vergence, and discuss open problems regarding

its complexity and effectiveness.

1. Introduction

Problems involving temporal constraints arise in various

areas of computer science such as scheduling, program

verification, and parallel computations. Recent research in

common-sense reasoning [Hanks 1986; Shoham 1988],

natural language understanding [Kahn 1977; Allen 1984],

and planning [McDermott 1982], has attracted more at

tention into such problems from the AI community.

Several formalisms for expressing and reasoning about

temporal knowledge have been proposed, most notably,

Allen's interval algebra [Allen 1983], Vilain and Kautz's

point algebra [Vilain 1986], linear inequalities [Malik

1983; Valdes-Perez 1986], and Dean and McDermou's

time map [Dean 1987]. Each of these representation

schemes is supported by a specialized constraint-directed

reasoning algorithm. At the same time, an extensive

research has been carried out over the past years on prob

lems involving general constraints [Montanari 1974;

Mackworth 1977; Gaschnig 1979; Haralick 1980; Freuder

1982; Dechter 1987], yet, much of this work hasn't been

extended to problems involving temporal constraints.

This paper presents a unified approach to temporal

reasoning based on constraint network formalism. Using

this formalism, we were able to develop:

1. A formal basis for various algorithmic schemes, per

mitting the analysis of their complexity and range of

applicability.

2. An economical representation called a minimal net

work, which encodes all temporal relations between

a pair of event points, including absolute bounds on

time distances.

* This work was supported in part by Air Force Office of

Scientific Research, Grant #AFOSR 88 0177.

t Current affiliation, Computer Science Department, Technion,

Haifa, Israel.

3. An efficient scheme of generating specific temporal

scenarios, consistent with the given constraints.
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We envision a temporal reasoning system to consist

of a temporal knowledge base, a routine to check its con

sistency, a query answering mechanism, and an inference

mechanism capable of discovering new information. The

primitive entities in the knowledge base are propositions

to which we assign temporal intervals, e.g., "I was driving

a car" or "the book was on the table"; each interval

representing the time period during which the correspond

ing proposition holds. The temporal information might be

relative (e.g., "Pi occurred before P2"), or metric (e.g.,

"Pi had started at least 3 hours before P2 was terminat

ed"). To express less specific information, disjunctive

sentences may also be needed (e.g., "Pi occurred during

or after P2"). We also allow references to absolute time

(such as 4:00 p.m.), and to the duration of propositions

(e.g., "P lasted at least two hours"). Given temporal infor

mation of this kind, we want to answer queries such as: Is

it possible that proposition P holds at time f ? What are

the possible times at which a proposition P holds? What

is the temporal relationship between two propositions P x

and/V

There have been various suggestions of how to

represent temporal information. If propositions stand for

events, and each proposition P-t is associated with an in

terval /, = [aitbi], then information about the timing of

events can be expressed by means of constraints on the

intervals or their associated beginning and ending points.

Allen [1983] defined 13 possible relationships between

any pair of intervals, and every constraint is specified as

a list of the possible relationships between a pair of inter

vals. Since this leads to computational difficulties when

trying to find all the feasible relationships between a pair

of intervals, Vilain and Kautz [1986] suggested to express

the information by means of constraints on the beginning

and ending point of each interval. This approach gives

rise to a polynomial time algorithm, but can handle only a

limited class of problems. Recently, Ladkin and Maddux

[1989] have proposed an algebraic approach to problems

similar to those posed by Allen and Vilain and Kautz.

One of the requirement of our system is the ability to

deal with metric information. Since both Allen's interval

algebra and Vilain and Kautz's point algebra do not offer

a convenient mechanism for dealing with such informa

tion, we take a different approach. We consider time

points as the variables we wish to constrain, where a time

point may be a beginning or an ending point of a temporal

interval, as well as a neutral point of time unrelated to any

interval (e.g., 4:00 p.m.). Malik and Binford [1983] and

Valdes-Perez [1986] suggested to constrain the temporal

distance between time points, i.e. if X, and Xj are two

time points, a constraint on their temporal distance is of

the form Xj - X(- < c. This leads to a set of linear ine

qualities on the time points under consideration. In order

to express compound constraints on temporal distances,

we must also allow disjunctive sentences. Consider the

following example:

Example 1: John goes to work either by car (30-40

minutes), or by bus (at least 60 minutes). Fred goes to

work either by car (20-30 minutes), or in a carpool (40-50

minutes). Today John left home between 7:10 and 7:20,

and Fred arrived at work between 8:00 and 8:10. We also

know that John arrived at work about 10-20 minutes after

Fred left home.

We wish to answer queries such as: "Is the informa

tion in the story consistent?", "Is it possible that John took

the bus, and Fred used the carpool?", "What are the possi

ble times at which Fred left home?", etc. Let Pt be the

proposition "John was going to work", and P2 the propo

sition "Fred was going to work". Px and P2 are associat

ed with the intervals [Xi.XJ, and [X3,X4] respectively.

The beginning and ending points of these intervals are

also associated with meaningful time points. For instance,

X] represents the time John left home while X4 represents

the time Fred arrived at work. Several temporal con

straints are given in the story. From the fact that it takes

John either 30-40 minutes or more than 60 minutes to get

to work, the temporal distance between X, and X2 is con

strained by

30<X2-X!<40 orX2-X!^60.

Similar constraints apply to X4 - X3 and X2 - X3. Choos

ing X0 = 7:00 a.m., the fact that John left home between

7:10 and 7:20 imposes the constraint

10£X,-Xo<20.

The constraint on X4 - X0 assumes a similar from.

This paper introduces a framework based on con

straint satisfaction formalism for representing and pro

cessing such problems. Within this framework two solu

tion methods are established. Section 2 presents the tem

poral constraint satisfaction model. Section 3 deals with a

restricted, simpler TCSP (called STCSP), solvable in po

lynomial time. Section 4 solves the general TCSP

through decomposition into several STCSPs, while Sec

tion S describes a relaxation algorithm applicable to the

general TCSP. Section 6 provides a summary and con

cluding remarks.

2. The TCSP Model

The definitions of the temporal constraint satisfaction

model are based on similar definitions for the general
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Constraint Satisfaction Problem (CSP) [Montanari 1974].

A Temporal Constraint Satisfaction Problem (TCSP)

involves a set of temporal variables, Xlt...,Xn,

representing time points, whose domains are the real

numbers, R . Unary and binary constraints on these vari

ables are expressed in terms of temporal distances. A

binary temporal constraint ly, between the variables

Xt and Xj , is a disjunction of intervals indicating the per

missible values for the distance Xj - Xt . Namely, the set

of intervals

{{a\,bi) (aHJbH)\ak <bk)

represents the constraint

Tij-. (ai<Xj -Xi £6,) v ■ • ■ vfo <Xj-Xi <b„).

Using set notation 7"y can be denned as:

Tij = {(xt jj) \xteR , xjeR , and

3k , 1 < k ^ n , ak < Xj - x-, < bk).

We assume that the constraints are always given in a

canonical form, namely, all intervals are pairwise dis

joint (Vj, 1 £j &n-l,bi <fli+i). The set of intervals

specifying the constraint 7y is called the interval

representation of 7y , denoted by / (7y ),

/(Ty) = /, u •• u/B,

where /* = [akJbk]. Interchangeably, /(7y) will also be

written {Ix /J.

A unary temporal constraint, J) , on temporal vari

able Xi is the disjunction of inequalities (given in its

canonical form):

7): faZXiibdv ■■■ v(.aH<Xi<,bH),

and is defined by:

Ti = fo !*,€*, and 3k,l<k <n,ak<Xi <bk}.

A unary temporal constraint can also be represented by an

interval representation. When we refer to the domain of

variable X-t , we usually mean the set of values that satisfy

the unary constraint Tt .

A network of binary temporal constraints (a

binary TCSP) consists of a set of temporal variables

Xu . . . , X„, and a set of unary and binary temporal con

straints. Such a network can be represented by a directed

temporal constraint graph, G ={V £), where the nodes

V = {l n}, represent the variables X{ Xn , and

an edge (iJ)eE indicates that constraint Ttj is specified.

The edge can be labeled by the interval set /(Ty). Each

input constraint, 7y , implies an equivalent constraint Tjt ,

however, the graph of a given set of constraints contains

only the ones expliciUy specified. For presentation uni

formity and algorithmic simplicity, a special time point,

Xq, is introduced to represent the "beginning of the

world". Its value is assumed to be 0. This enables us to

refer to the unary constraint T, as a binary constraint ra

having the same interval representation. The constraint

graph of Example 1 is given in Figure 1. A tuple

X = (xj x^ is called a solution, if the assignment

Xi = Xi satisfies all the constraints. A value v of X, is

feasible, if there is a solution such that X, = v . The set of

feasible values of a variable is its minimal domain. The

network is consistent if at least one solution exists.

[30,40]
 

[60.70]

Figure 1. The constraint graph representing Example 1.

We define binary operations on temporal constraints:

union, intersection, and composition, respecting their usu

al set-theoretic definitions. The union of two constraints

T^ and Sy , denoted by Ty u 5y , admits only pairs of

or Sij. If

u Jm , then

values that are allowed by either 7y

I(Jij) = IXKj ••• u/;,and/(5y) = /i u

I(Tij uS0) = /iU ••• u/, u7,u ■•• KjJm.

The intersection of two constraints 7y and Sy , denoted

by T^ ® S^ , admits only pairs of values that are allowed

by both T^ and Sy. If I(Jij) = I\<j ■■• u/(, and

/(5y) = /iU ••• u/m,then

7(Ty e5y) = ^,u ■■■ uKH (n <l +m),

where VI < k <n there exist intervals /,- , 1 < i < / , and

Jj , 1 £ j < m , such that Kk = 7, n /; . The composition

of two constraints 7y and Tjk , denoted by 7/y ® Tjk , ad

mits only pairs of values (x, jck), such that there is at least

one value x;, for which (XijCj)eTij and (Xjjck)eTJk. If

HJij)=I\V ■ ■■ «-»/,, and I(Tjk) = Jl u • • • u/m,

then
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HJij ®Tjk) = Ki u • • • kjKk (n </ xm),

where Vl<jfcS«, there exist intervals

Ai = la Jb 1, 1 < i:S / and 7; = [c ,d], 1 < 7 < m , such that

tft = [a + c ,6 + </]. Note that {Kx, . . . ,KJ may not be

the canonical form.

Using these operations we define binary operations

on networks of constraints. The union of two networks T

and 5 , denoted by T u S , is defined as

v/j,/((ru5)i;)=/(r/;)u/(Siy).

Similarly, the intersection of two networks T and S,

denoted by T n S , is defined as

ViJJOJ nS)ij) = I(Tij)nI(Sij).

A partial order among constraints can be defined in

the following way: constraint T,j is tighter than con

straint Sij , denoted 7y c Sy , iff every pair of values al

lowed by 7y is also allowed by Sy , i.e. for every interval

/te/(7y) there is an interval //e/(Sy) such that/* c7,.

The tightest constraint between variables X, and X, is the

empty constraint, denoted 0y , where /(0y) = 0. If the

network contains an empty constraint, then it is trivialy

inconsistent. The most relaxed constraint is the universal

constraint, denoted C/y, where /(C/y) = [-00,00]. A partial

order among networks of binary temporal constraints,

having the same set of variables, can be defined as fol

lows. A network T is tighter than network S, denoted

T e S , iff the partial order is satisfied for all the

corresponding constraints, i.e. Vij.Ty cSy. Two net

works are equivalent iff they represent the same set of

solutions. A network may have many equivalent represen

tations. In particular there is one equivalent network

which is minimal with respect to c, called the minimal

network (note that the minimal network is unique be

cause equivalent networks are closed under intersection).

Another important property of constraint networks is

decomposability(1) [Montanari 1974]. A network is

decomposable iff every assignment of values to any sub

set of k variables, 0 < k S n-1, S = /X„ XtJ, that

satisfies the constraints applicable to S (namely those in

volving only variables which are contained in S including

the unary constraints), can be extended by an assignment

of a value to any variable XittieS, such that the extended

assignment satisfies the constraints applicable to

Su{XuJ. In particular, decomposability permits the

construction of a solution by a backtrack-free search. A

search is backtrack-free if every consistent assignment

(1) In [Montanari 1974] decomposability is defined for minimal

networks only.

of a value to a variable is never changed because of a

dead-ends in higher variables [Freuder 1982].

Given a network of binary constraints, the first in

teresting problem is to determine its consistency. If it is

consistent, we may wish to find some solutions, each

representing one possible scenario. Since it is hard to

represent the infinite set of all possible solutions (i.e., the

set of all scenarios) we settle for a more practical task of

finding the minimal domains (answering queries such as

"What are the possible times in which time point X, could

take place?"), and finding the minimal network (answer

ing queries such as "What are all the possible relation

ships between a pair of time points?"). The rest of the pa

per discusses two approaches to solving these problems.

3. The Simple TCSP (STCSP)

A simple type of TCSP, called a simple temporal con

straint satisfaction problem (STCSP), is one whose all

constraints have a single disjunct. This section presents a

polynomial time algorithms for solving the STCSP. Sec

tion 4 extends the method to the general TCSP via a

decomposition scheme.

Consider the constraint graph, G=(VJZ), of an

STCSP T. Each edge (iJ)eE is labeled by a single in

terval / (7y ) = [ay Jb,j ], representing the binary constraint:

OijZXj-XiZbij. (1)

This constraint can be expressed as a pair of inequalities:

Xj-XiZby, (2)

and

*,-*;< -fly. (3)

Thus, solving the STCSP amounts to solving a set of

linear inequalities on the variables Xx Xn (called

simple linear program in [Valdes-Perez 1986]).

This problem is well-known in the Operations

Research literature, and it can be solved by the (exponen

tial) simplex method [Dantzig 1962] or Khachiyan's algo

rithm [Khachiyan 1979], which is rather complicated and

not efficient in practice. Fortunately, the special class of

linear inequalities characterizing the STCSP admits a

simpler, graph-based algorithm. Also, graph-based rea

soning seems to better reflect human style of reasoning

than linear programming does, and, hence, constitutes a

more plausible model of qualitative reasoning. The graph

representation we use, and which has been used by Shos-

tak [1981], Aspvall and Shiloach [1980], Leiserson and

Saxe [1983], and Liao and Wong [1983], also yields a
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simple criterion for deciding the consistency of STCSPs.

A similar data structure called time map was introduced

by Dean and McDermott [1987] but was not employed to

solve the reasoning tasks addressed in this paper.

We associate an STCSP with a directed edge-

weighted graph G ={VJE), called distance graph (dif

ferent than the constraint graph). Each node ieV

represents the temporal variable X,-, and each edge

(iJ)eE is labeled by a weight air and represents the

linear inequality X; - X, < ai; . In Example 1 , if we as

sume that John used a car and Fred used a carpool, we get

an STCSP having

/fj12) = [30,40] and I{T*) = [40,50],

and the distance graph depicted in Figure 2.

Theorem 1: An STCSP is consistent if and only if its dis

tance graph has no negative directed cycles.

Proof. Suppose there is a negative cycle consisting of the

nodes i\ i* = /' \. If we sum the inequalities along the

cycle we obtain Xit - X,-, < 0 which cannot be satisfied. If

there is no negative cycle in G , then the shortest directed

path between each pair of nodes is well-defined. For all

pair of nodes i and j , the shortest directed path from 0 to

j satisfies:

d0j < dta + ah

or

doj - du ^ a,
v

(6)

(7)

Thus, the tuple (rf0i.

STCSP. □

,d0n), is a solution of the

 

Figure 2. A distance graph representing

one labeling of Example 1.

Each directed path, i0 = i,ix ik -j, between

nodes i and / in G , induces a constraint on the values of

X, and Xj , representing the composition of the constraints

along the path:

*;-*!* £<W (4)

If there is more than one path between nodes i and j , then

the intersection of the induced path constraints results in a

new constraint on X; -X,. If we consider all the paths

from node i to node j , then it can be easily verified that

the induced constraint is:

Xj-XiZdij, (5)

where d^ is the length of the shortest directed path from

node i to node j. Based on this observation, Shostak

[1981], Liao and Wong [1983], and Leiserson and Saxe

[1983] presented the following theorem.

The tuple X] = (d0i ^o,) assigns to each time

point its latest possible time(2). Similarly, the tuple that as

signs to each time point its earliest possible time, can be

found from

4o ^ a.y + dj0, (8)

or

{-dj0)-{-di0)<aih (9)

yielding X2 = (-dio, . . . .-d„o). as the desired solution.

From the preceding discussion it follows that an

STCSP can be specified more effectively by a complete

directed graph (i.e. each pair of variables has two direct

ed arcs), where each edge (fj) is labeled with the shor

test path length d,j of G . This graph is called d -graph and

it corresponds to a more explicit specification of our

STCSP (see Eq. (4) and Eq. (5)).

Theorem 2 (decomposability): Any consistent STCSP is

decomposable relative to the constraints specified by its

d -graph representation.

Proof. We have to show that any subset of instantiated

variables S that satisfies all the shortest path constraints,

is extensible by any other variable. If S = 0, then any as

signment of a value v to X; , that satisfies the shortest path

constraints Ti0 and To, is a valid extension, v must satis-

(2) In fact, since it is a solution of Bellman's equations, it can be

shown [Lawler 1976] that it is also a solution to the problem:

maximize X0 + Xi+ ••• +X„

subject to: X 0 = 0 and Vi *j , Xy - X,- < ai; .
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fy:

-di0^v <doi, (10)

but, since all the cycles in G are nonnegative,

dot + di0 > 0, and there exists a value v satisfying Eq.

(10). Assume now that 5 is not empty and let

S = {X1 Xk.J. Let {Xi =xi\0<i<sk-\) be an as

signment that satisfies the shortest path constraints among

the variables in S . We need to find a value Xk = v that

satisfies the shortest path constraints T& and Tti for

0 < i < k-\. Thus, v must satisfy:

v -Xi <dik,

Xi-v <dti,

for every 0 < i < k-l, or

v < min {xt + dik 10 < i < Jfc-lJ

v > max {xi - dw 10 < i <k-\}.

(11)

(12)

(13)

(14)

Suppose the minimum is attained at iQ, and the maximum

at 7o- Thus, v must satisfy:

Xj.-dkJ,^v <xit + dUk. (15)

Since *,-, and xlt satisfy the constraint between them, we

have

Xj,-Xi,<d^,. (16)

This, together with d,v, < dijc + dkJ„ gives

Xj.-dkj,<xit + di^. (17)

Therefore, there exists v that satisfies the conditions in

Eq.(15). □

The importance of Theorem 2 is that it provides an

efficient algorithm for finding a solution for the STCSP;

we simply assign to each variable any value that satisfies

the d -graph constraints relative to previous assignments.

Decomposability guarantees that such a value can always

be found, regardless of the order of assignment. A second

by-product of decomposability is that the domains charac

terized by the d -graph are minimal.

Corollary 1: Let Gd be the d -graph representation of a

consistent STCSP. The set of feasible values for X, is

i-dio4oil-

Proof. According to Theorem 2 any value X,; = v ,

vg [-di0,doi], can be extended to a solution. Thus, v is a

feasible value. □

We have noted that the d -graph represents a tighter,

yet equivalent, network of the original STCSP. From

Theorem 2 we can now conclude that this new network is

the minimal network.

Corollary 2: Given a consistent STCSP, T, the

equivalent STCSP, M , defined by:

/(Wy) = [-^4y].ViJ,

is the minimal network representation of T.

Proof. We will show that M is the minimal network by

showing that it cannot be tightened any more, namely,

that for any d e [-d;,^iy], there exists a solution

X = (*!, . . . ,xH), such that Xj -Xi=d. Since the net

work is consistent then, according to Corollary 1, X, = d^

is a feasible value. Clearly,

+ d<doi +dij<d0j,

and

do: + d> d0, - da > -dI/O-

(18)

(19)

Therefore, the assignment {Xt = da .X, = ^a + d)

satisfies the constraints applicable to {XiJCj}, and by

Theorem 2 it can be extended to a solution. □

Illustration: Consider the distance graph of Example 1

(Figure 2). Since there are no negative cycles, the

corresponding STCSP is consistent. The shortest path dis

tances, dij, are shown in Table 1. The minimal domains

are 10<Xi<20, 40<X2<50, 20<X3<30, and

60 < X4 < 70. In particular, one special solution is the tu

ple (d0i dw), namely X,=20, X2 = 50, *3 = 30,

XA = 70, which assigns to each time point the latest possi

ble time. According to this solution John left home at 7:10

and arrived at work at 7:50, while Fred left home at 7:30

and arrived at work at 8:10. The interval representation of

the minimal network is given in Table 2. Notice that the

interval representation of the minimal network is sym

metric in the sense that if 7iy = [a Jb] then T,, = [-b ,-a ].

An alternative scenario, in which John used a bus and

Fred used a carpool (i.e. HJ\i) = [60,°°] and

'(^34) = [40,50]), results in a negative cycle and is there

fore inconsistent.

The d -graph of an STCSP can be constructed by ap

plying Floyd-Warshall's all-pairs-shortest-paths algo

rithm [Papadimitriou 1982] to the distance graph (see Fig

ure 3). The algorithm runs to completion in time O (n 3),

and detects negative cycles merely by examining the sign

of the diagonal elements du. It constitutes, therefore, a

polynomial time algorithm for determining the consisten

cy of an STCSP, for finding one solution, and for deter

mining both the minimal domains and the minimal net-
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0 1 2 3 4

0 0 20 50 30 70

1 -10 0 40 20 60

2 -40 -30 0 -10 30

3 -20 -10 20 0 50

4 -60 -50 -20 -40 0

Table 1. Lengths of shortest paths in the

distance graph of Figure 2.

0 1 2 3 4

0 [0] [10,20] [40,50] [20,30] [60,70]

1 [-20,-10] [0] [30,40] [10,20] [50,60]

2 [-50,-40] [-40,-30] [0] [-20,-10] [20,30]

3 [-30,-20] [-20,-10] [10,20] [0] [40,50]

4 [-70,-60] [-60,-50] [-30,-20] [-50,^0] [0]

Table 2. The minimal network corresponding to Figure 2.

work.

All-pairs-shortest-paths algorithm

1. for i :=0 to n do du :=0;

2. for i J :=0 to n do di; :=atl ;

3. for k :=0 to n do

for i :=0 to n do

for j :=0 to n do

dij:=mm{dij,dik+dkj};

Figure 3. Floyd-Warshall's algorithm.

4. A Decomposition Method for Solving the

TCSP

One way of solving the general TCSP is to decompose it

into several simple TCSPs, solve each one of them, then

combine the results. Given a network of binary temporal

constraints, T, we define a labeling of T as a selection of

one interval from each temporal constraint (i.e. one dis

junct). Each labeling defines an STCSP with an associated

constraint graph whose arcs are labeled by the selected in

tervals. We can solve any of the TCSP's problems by

considering all its STCSPs. Specifically, the original net

work is consistent iff there is a labeling whose associated

STCSP is consistent Any solution of T is also a solution

of one of its STCSP and vice versa. Also the minimal

network of T can be determined by the minimal networks

associated with its individual STCSPs as stated in the fol

lowing theorem.

Theorem 3: The minimal network M of a given TCSP

satisfies M = uM( , where Mt is the minimal network of

the STCSP having the labeling / .

Proof. M is by definition the tightest of all networks

equivalent to our TCSP, T. Therefore, to prove

M c uA/, , it suffices to show that uAf( is equivalent to

T. However, this is clear form the fact that the solution

set of T is identical to the union of the solution sets of its

labelings. The opposite also holds. Since any solution in

uM; is a solution to at least one Mt , its elimination would

reduce the solution set of the corresponding STCSP.

Moreover, since the solution sets offered by the labelings

are disjoint, such an elimination reduces the solution set

of 7", and thus would violate the equivalence with the ori

ginal TCSP. Therefore uAf, cM . □

Illustration: Consider Example 1 . The interval represen

tation of the minimal network is shown in Table 3. In this

case only 3 out of the 4 possible labelings contribute to

the minimal network.

0 1 2 3 4

0 [0] [10,20]

[40,60]

[70] [20,50] [60,70]

1 [-20,-10] [0]

[30,40]

[60]

[10.30]

[40] [40,60]

[-70] [-60]

[-40,-30]2 [-60,-40] [0] [-20,-10] [0,30]

3 [-50,-20]

[-40]

[-30,-10] [10,20] [0]

[20,30]

[40,50]

4 [-70,-60] [-60.-40] [-30,0]

[-50,-40]

[-30,-20] [0]

Table 3. The minimal network of Example 1.

The complexity of solving a general TCSP by gen

erating all the labelings and solving them independently is

0(n3k'), where k is the maximum number of disjunct in

tervals of an edge, and e is the number of edges in the

constraint graph (the number of input constraints). This

enumeration process can be enhanced by viewing the

problem as a higher-order constraint-satisfaction problem,

where the variables are the arcs, their domains are their

possible intervals, and then solving it using some back
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tracking techniques. Backtrack assigns an interval to an

edge, as long as the condition of Theorem 1 is satisfied. If

no such assignment is possible, it backtracks. Although

the worst-time complexity of this approach is also

0(n3k'), it enables us to utilize enhancement techniques

which, in practice, prove to substantially reduce the com

plexity of backtrack below its worst case value. Such

techniques include backjump [Gaschnig 1979], variable

ordering [Freuder 1982; Purdom 1983], value ordering

[Haralick 1980; Dechter 1987], learning schemes

[Dechter 1989] and various graph-based techniques

[Dechter 1987; Dechter 1988].

5. A Relaxation Method for Solving the

TCSP

The decomposition method for solving the TCSP suffers

from two major drawbacks. First, even the more elaborate

backtracking techniques we have suggested, do not seem

to exploit the fact that most labelings differ from each

other by only a small number of constraints. For each la

beling we must apply the shortest-paths algorithm afresh.

Second, the process of translating each labeling into a dis

tance graph, although it takes only a polynomial time,

might be too cumbersome in practice. Therefore, we have

devised an alternative method applicable directly to the

original constraint graph.

The all-pairs-shortest-paths algorithm can be con

sidered a relaxation algorithm — in every step of the

process the value of an edge is updated by an amount that

depends only on the current values of adjacent edges. In

fact, there is a rich family of similar algorithms [Aho

1974; Backhouse 1975; Lehmann 1977; Tarjan 1981a;

Tarjan 1981b; Parker 1987], all based on the same princi

ple. Monuinar i [1974] was the first to use such an algo

rithm, called path consistency algorithm, in the context

of constraint satisfaction problems, and this was further

explored and analyzed by Mackworth [1977], and

Freuder and Mackworth [1985].

We present now a relaxation algorithm that attempts

to enforce path consistency on TCSPs. The concepts of

arc and path consistency for TCSPs are defined similarly

to those of general CSPs [Montanari 1974; Mackworth

1977]:

Definitions: An arc (ij) is arc consistent iff for any

value veTj, there is a value weT, such that (v,w)ejTi;.

A path through nodes i o> * i • - - - • 'm is Pa,n consistent iff

for any pair of values v^eTit and vneTim such that

(v0,vm)e7j^., there exists a sequence of values

vi- • • • .vm-i.sucn that

(a) v ^Ti, vm_,eTi.„and

(b) (v0,vi)e7/1-1,(v1,v2)e7/11I-, (vm_i,v„)eri..„..

A network is arc (path) consistent iff every arc (path) is

arc (path) consistent.

Using © to denote intersection of constraints, and ®

to denote composition, Montanari's path consistency al

gorithm takes the form shown in Figure 4. The algorithm

imposes a local consistency among triplets of variables

ijjc, until a fixed point is reached, or until some con

straint becomes empty indicating an inconsistent network.

For discrete-domain CSPs, Montanari showed that the al

gorithm terminates and that the resulting network is

indeed path consistent

Path consistency algorithm

1. for i :=0 to n do A (i 4 ):=[0];

2. for i J :=0 to n do A (i J):=I (Ti; );

3.B:=A;

4. for k :=0 to n do

for /' :=0 to n do

fory':=0ton do

A(iJ):=A(iJ)®A(iJc)®A(kJ);

5. ifA *B then goto 3

Figure 4. A path consistency algorithm.

Comparing Figures 3 and 4, the path consistency al

gorithm is seen to be a generalization of the all-pairs-

shortest-paths algorithm. When applied to an STCSP, the

relaxation step that updates A(iJ) amounts to two trian

gle operations of updating dis in Floyd-Warshall's algo

rithm. Therefore:

Theorem 4: Applying the path consistency algorithm to

the constraint graph of an STCSP is identical to applying

Floyd-WarshaU's all-pairs-shortest-paths algorithm to its

distance graph.

In general CSPs a path consistent network is not

necessarily the minimal network. Montanari showed that

when the constraints obey the distributivity property (i.e.,

that composition distributes over intersection), then any

path consistent network is both minimal and decompos

able. Moreover, in such a case only one application of the

main loop (line 4) is sufficient for reaching the fixed

point. When constraints are defined by one interval, the

distributivity property holds. Indeed, for this case (the

STCSP case), the path consistent network is minimal

(Corollary 2), decomposable (Theorem 2), and requires

only one iteration (see the shortest-paths algorithm). The

question is whether any of these properties extends to
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TCSPs whose constraints have multiple intervals. For in

stance, applying path consistency to Example 1 converges

to the minimal network in a single iteration.

It turns out, however, that distributivity doesn't hold

for the multi-interval TCSP. As an example consider the

network of Figure 5. For convenience both direction of

each edge are explicitly given. There are two paths from

node 1 to node 3, representing the constraints

/(T13) = [25,50], and /(SI3) = [0,30] u [40,50], the later

is obtained from composing Ti2 with 7"23- Performing in

tersection first and then composition we get:

/(r01)®(/(r13)e/(S13)) =

([0,1] u [10,20]) <8> ([25,30] u [40,50]) =

0 1 2 3

[0.1]

[10,20]

[25,31]

[35.70]0 [0] [030]

[-20.-10]

[-1.0]

[25.30]

[40,50]1 [0] [0,10]

[15,20]

2 [-30.0] [-10.0] [0] [40]

3

[-70.-35]

[-31.-25]

[-50.-40]

[-30.-25]

[-40]

[-20.-151 [0]

Table 4. The minimal network of Figure 5.

[25,31] u [35,70].

Performing composition first, and then intersection,

results in:

(/(7-01)®/(r13)) e (/(7-01)®/(s13)) =

([0,31] u [40,51] u [10,50] u [50,70]) 0

([25,51] u [35,70]) =

[25,70].

Clearly, distributivity doesn't hold. Indeed, if we apply

the path consistency algorithm to this network, then one

iteration gives /(7,2f3)= [25,70], whereas in the minimal

network (shown in Table 4), I(M2,3) = [25,31] u [35,70].

Another application of the main loop results in a fixed

point which is also the minimal network.

In view of the continuous domains of TCSPs one

cannot guarantee a priori that path consistency terminates.

It is clear, however, that running the algorithm

indefinitely will results in a limit network. Each applica

tion of the main loop yields tighter, yet equivalent, net

work, and since the network is bounded below by M , a

limit point is assured.

In order to analyze the applicability of the relaxation

method the following questions need to be answered:

1. Is convergence guaranteed in a finite number of

steps?

2. How many steps (if finite) are required?

3. Does the number of intervals on each edge proli

ferate?

[0,1]

[10.20] [0.10] 

[0.20]

[40]

Figure 5. A nondistributive network.

4. Is the limit network minimal?

Although the answers to these questions are still unk

nown, we believe that in practice the path consistency al

gorithm converges efficiently to the minimal network for

a large class of problems, and thus provides a practical al

ternative and a complementary approach to the decompo

sition scheme.

6. Summary and Conclusions

The paper provides a formal basis for dealing with prob

lems involving temporal constraints. Using this formula

tion we can evaluate various algorithms for solving the

fundamental problems. We presented two approaches to

solving the TCSP. The decomposition scheme provides

answers to all the basic tasks but its computational

efficiency might be limited in practice. We have indicated
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how decomposition can be improved by traditional con

straint satisfaction techniques, such as backjumping, clus

tering, learning, and directional algorithms. The second

approach amounts to using a path consistency (or relaxa

tion) algorithm. The completeness and efficiency of this

method are still open problems. We believe it is a good

practical approach that will prove useful at least as an ap

proximation.

In this paper we have not addressed some of the

problems raised by Allen and Vilain and Kautz, primarily

because their formulation does not involve metric infor

mation. Still, some relationship can be established. For

example, we showed that the STCSP can be solved in

time O (n3), the same time needed for Vilain and Kautz's

algorithm for point algebra. On the other hand, Allen's in

terval algebra cannot be expressed using binary relations

between time points. For example, the sentence "P x hap

pened during P2" imposes a constraint on four time points

that cannot be decomposed into binary constraints (with

or without multiple intervals). The natural extension of

this work, therefore, is to explore higher-order TCSPs. In

such a network, a constraint will involve more than two

time points. For example the constraint "John drives to

work at least 30 minutes more than Fred does", will be

expressed by a 4-ary constraint: X2-Xi + 30<X4-Xi.

Another extension is to invoke both logical and algebraic

constraints.
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Abstract

Research on nonmonotonic and default rea

soning has identified several important pat

terns (autoepistemic, taxonomic specificity,

chronological ignorance, threshold proba

bilistic) of nonmonotonic inference. The the

ories of reasoning based on each of these pat

terns may uniformly be viewed as theories

of rational inference, in which the reasoner

employs preferences among states of belief to

select maximally preferred states of belief.

Though research has identified some cases

of apparent conflict between the preferences

supported by different theories, it has been

hoped that these special theories of reason

ing may be combined into a universal logic

of nonmonotonic reasoning. We show that

the different categories of preferences conflict

more than has been realized, and adapt for

mal results from social choice theory to prove

that every universal theory of default reason

ing will violate at least one reasonable prin

ciple of rational reasoning.

1 Introduction

The proliferation of formalisms for nonmonotonic in

ference [Ginsberg, 1987] attests to a diverse set of cri

teria for reasoning by default. These include circum

scriptive inference [Lifschitz, 1986, McCarthy, 1980],

which draws those conclusions valid in all minimal

models of a set of axioms; autoepistemic inference [Mc-

Dermott and Doyle, 1980, Reiter, 1980, Moore, 1985],

which permits rules of inference to refer to unprov

able statements as well as to provable ones; specificity-

based taxonomic inference [Touretzky, 1986], which

makes assumptions based on the most specific of the

relevant prototypes; and chronologically ignorant in

ference [Shoham, 1988], which draws conclusions based

on the shortest or simplest possible histories of events.

'Authors listed in alphabetical order. Jon Doyle is

supported by National Institutes of Health Grant No.

R01 LM04493 from the National Library of Medicine.

In addition to these major patterns, there are often

domain-dependent reasons for adopting default poli

cies in particular problem situations. In the absence

of an explanation for why it exists, the proliferation

of formalisms is unsatisfying. Our purpose in this pa

per is to investigate the natural question of whether

there is some deeper or more comprehensive theory

which combines or unifies all patterns (those known

and those awaiting discovery) of nonmonotonic infer

ence.

Toward this end, some theories have been proposed

as unifications or partial unifications of some of these

ways of making assumptions (see, for example, [Ether-

ington, 1988, Konolige, 1987, Shoham, 1988]). At the

same time, doubts about the existence of complete uni

fications have also been expressed, notably by Touret

zky et al. [1987], who argue, for the special case of in

heritance theories, that the gross differences between

the theories stem from substantially different under

lying intuitions about how to make assumptions. As

they put it, the differing theories reflect a "clash of in

tuitions." These differences need not rule out the pos

sibility of a unified theory encompassing inheritance,

since a unified theory still may exist as long as these

different intuitions can be shown to apply to disjoint

cases of inferences. In that event, the unified theory

can be obtained as a "big switch," or sum of the the

ories of each of the cases.

To investigate the existence of universal theories of

default reasoning, we use Shoham's [1988] unifying for

malism to translate questions about nonmonotonic in

ference into the context of rational decision making.

If there is no irreconcilable clash in this more tradi

tional context, the unified theory may be obtained by

translating the decision-theoretic answer back to the

case of nonmonotonic inference. Unfortunately, the

translation illuminates an impediment to this unifi

cation, namely Arrow's [1963, 1967] celebrated results

about the impossibility of universal social choice rules.

We adapt Arrow's theory to obtain analogous results

about the apparent nonexistence of universal theories

of nonmonotonic and default reasoning, and draw on

the literature of social choice to consider some possible

ways around these results.



Impediments to Universal Preference-Based Default Theories 95

2 Preferential theories of default

reasoning

The initial theories of default, circumscriptive, au-

toepistemic, chronologically ignorant, and specificity-

based taxonomic inference had very different appear

ances. Despite their diversity, Shoham [1988J has

shown how to cast each of these theories in similar

form, as sound inference with respect to models min

imal in some partial order. In his construction, a

nonmonotonic logic is characterized by a strict par

tial order C over interpretations, which, depending on

the base logical language £, represent truth assign

ments, models, Kripke structures, or similar objects.

The meaning of a nonmonotonic theory in these log

ics is then obtained by modifying the usual notions of

satisfaction and entailment to take the model order

ing into account. A model M C-satisfies a formula P,

written M f=c P, iff M (= P and there is no M' C M

such that M' \= P. A formula P C-eniails a formula

Q, written P \=c Q, iff M \= Q whenever M \=c P.

Substitution of these variants for the usual satisfaction

and entailment concepts yields a complete description

of the nonmonotonic logic £c-

Shoham illustrates the construction by providing

partial orders corresponding to circumscription [Lif-

schitz, 1986], default logic [Reiter, 1980], the mini

mal knowledge logic of Halpern and Moses [1984], his

own chronological ignorance [Shoham, 1988], and a few

others, thus demonstrating that the construction ac

counts for a significant share of the extant formalisms.

In circumscription, for example, models are ranked by

minimality according to subset relations among exten

sions of specific predicates (i.e., abnormalities). That

is, Mi C A/2 if the extension of the circumscribed

predicate P in A/i strictly contains its extension in M2

and the two interpretations agree on all other functions

and predicates. Other logics obtained in the same way

include theories of inheritance (with models ordered

according to the specificity of the defaults they sat

isfy), chronological ignorance (models ordered accord

ing to amount known about histories), and autoepis-

temic logic (models ordered according to a hierarchy

among assumptions). All of these theories thus have

the same formal structure, differing from each other

only in how they order different models.

One natural interpretation of inference in this frame

work is as rational inference to maximally preferred

states of belief, or to those conclusions that hold in

all maximally preferred states of belief. Shoham 's ter

minology is in accord with this interpretation, as he

calls C a preference order, and the corresponding log

ical notions preferential satisfaction and entailment.1

In fact, this way of viewing nonmonotonic inference is

more than just an interpretation: it provides a justi

fication for the formal structures of the various non

monotonic logics missing from the early theories (but

see [Doyle, 1983b, pp. 3-5]). The early theories pro

vided clear formal concepts, but were less clear on why

these concepts were interesting. The interpretation of

default reasoning as rational inference, in which the

agent adopts a belief if the expected utility of holding

it exceeds the expected utility of not holding it, shows

that the subjects of these theories are not completely

new notions, but are instead cases of the concept made

famous by Blaise Pascal and William James, whose

ideas are commonly referred to as "Pascal's wager"

and the "will to believe."

Pascal [1962] framed his problem of belief in God in

the following way: he can either believe or doubt the

existence of God, and God may either exist or not ex

ist. If God exists and Pascal believes, he gains eternal

salvation, but if he doubts he suffers eternal damna

tion. If God does not exist, belief may lead Pascal to

forgo a few possible pleasures during his life that doubt

would permit him to enjoy. We may summarize these

evaluations in the decision matrix shown in Table 1,

where e represents the finite amount of pleasure en

joyed or forgone due to belief during Pascal's life. Of

God exists doesn't

Believe

Doubt

+00

—00

—
€

'Given the view of inference as maximizing preferabil-

ity of models, it seems unfortunate that Shoham retained

the notation C and contrary sense of ordering from ear

lier treatments of circumscription, in which set-theoretic

Table 1: Utilities of consequences in Pascal's decision

about belief in God.

course, these same quantities modify the first column

as well, but finite modifications to infinite quantities

are negligible. As long as God's existence is not judged

impossible, the expected utility of belief is +00, dom

inating the expected utility of doubt, —00. This con

vinced Pascal that doubt was not a viable alternative

for him.

Much later, William James [1897] made the case

that rational belief is ubiquitous in mundane rea

soning. Today, his theory of the "will to believe"

is one of the pillars of artificial intelligence practice,

for knowledge representation and reasoning systems

are filled with mechanisms for making assumptions in

response to incomplete information. Taxonomic de

faults, threshold probabilities, and nonmonotonic or

circumscriptive proof procedures are all means used

to guess at the information about actions and their

consequences needed in deliberation. These mech

anisms are ordinarily not presented in terms of ra

tional choice, and their mechanization usually in

volves no decision-theoretic calculations. But when

minimality of models was the key notion.
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closely examined, they are clearly based on ratio

nal responses to computational problems involving in

complete information (see [Doyle, 1983b, Doyle, 1989,

Shoham, 1988]), as they avoid or minimize the costs

associated with acquiring and analyzing the needed in

formation, and are used until they prove wrong when

ever the risks of serious consequences of error are

judged to be low enough. Of course, Pascal's deci

sion and other cases of adopting beliefs are usually

viewed as making individual assumptions, where de

fault rules make classes of assumptions. But we may

assimilate the two cases theoretically by evaluating in

dividual default rules as individual assumptions, that

is, by adopting a default rule if the expected utility

of using it to make individual assumptions is great

enough.

3 Conflicting preferences about

defaults

Since each of the specific sorts of nonmonotonic reason

ing can be viewed as cases of rational inference, many

have hoped or expected that with careful analysis one

could combine the choices made in each into a single

rational choice, yielding in effect a universal theory of

nonmonotonic or default reasoning. However, the vari

ous theories are founded on different criteria for choice

among belief states. The potential for conflict among

them may impede any integration attempt.

For example, the famous "Yale shooting problem" of

Hanks and McDermott [1987] illustrated that existing

nonmonotonic logics are too weak to arbitrate conflicts

among abnormality minimization of different individ

uals. In this view, the normality of loadedness after

waiting and life after shooting are two conflicting crite

ria. Defenders of nonmonotonic logics have responded

by proposing a third criterion—such as chronological

minimization or some causality theory—to resolve the

issue. However, as Hanks and McDermott point out,

in some contexts other criteria (perhaps even chrono

logical maximization for diagnostic reasoning) may be

compelling, leading to further unresolvable conflicts.

It seems a good bet that enterprising researchers will

always be able to generate problems that fall through

the cracks of fixed configurations of criteria.

In fact, numerous examples suggest that conflicts

are unavoidable. The most widely known conflicts

occur in inference from the most specific prototypes,

where multiple dimensions of specificity within a tax-

onomic lattice can result in conflicting preferences be

tween conclusions. An example is the famous "Nixon

diamond" (so called because of the shape of its di

agram when written as an inheritance network; per

haps also because it is so hard): Republicans are typi

cally not pacifists, Quakers are typically pacifists, and

Nixon is a Republican Quaker. The question is, is

Nixon a pacifist or not? Since neither default is more

specific than the other, one cannot tell simply from the

information given in the taxonomic lattice. Moreover,

though one might resolve the question of Nixon's paci

fism empirically, one cannot expect to use that resolu

tion to yield a rule which correctly interprets the large

number of formally similar but substantially dissimilar

conflicts among other taxonomic defaults.

Conflicts are also possible between pairs of more

global preference orders. For example, chronological

preferences can conflict with specificity preferences.

Suppose we know that TRACK-STAR(<,a;) implies

FINISH-RACE(t + n,x), while TRACK-STAR-ON-

STEROIDS(*, x) implies FINISH-RACE(< + n-d, x).

The interpretation with a more specific causal an

tecedent leads to a result which is chronologically less

ignorant. This example too is typical of a large num

ber of structurally similar conflicts. For example, at

some institutions computer science graduate students

usually finish their doctorates in five or six years, but

students of theoretical computer science usually finish

in three or four, and students working on large com

puter systems can take seven or eight.

Similarly, ordering assumptions according to their

relative probability can conflict with specificity orders.

For example, suppose that with probability .99, over

half of the kernels in a bag of microwave popcorn will

pop within 2.5 minutes of starting the oven. But if we

pick a pair of kernels from the bag, the probability that

at least one of these kernels pops within 2.5 minutes

is much less than .99. In this case, thanks to the law

of large numbers, the more specific information leads

to the less probable conclusion. This example too is

simply one representative of a large class of similar

conflicts.

Conflicts also occur because reasoners may have

multiple informants or refer to multiple authorities

to obtain their information. Most practical artifi

cial intelligence systems are designed to incorporate

all the available knowledge about the relevant sub

jects by combining expertise from multiple sources.

This means that differences of opinion between experts

must be worked out, either in advance or while reason

ing. In the simplest case, one might consider encoding

each expert's knowledge as a separate set of rules in

the system, or as justifications for a subset of the rules

which name the expert proffering them. In this case,

as Thomason [1986] points out, conflicts between ex

perts become conflicts within the expert system. Of

course, the system designer can instead try to reconcile

these conflicts at design time, but this may not always

be feasible if some conflicts are too subtle to detect,

or if the experts themselves knowingly hold mutually

irreconcilable opinions. Thus if the system must per

form in isolation from the original experts, one must

expect it will sometimes have to deal with conflicts as

they arise. For instance, many adults have had the ex

perience of having to administer medications to them
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selves or to their children while on vacation, only to

find that several medications have been prescribed by

different doctors or for different symptoms, with each

medication contraindicating the others.

4 Social choice and nonmonotonic

logics

Each of the existing nonmonotonic formalisms was

originally designed to capture a single criterion for

preference among competing interpretations. In these

formalisms the preferential nonmonotonic logics are di

rect expressions of the global preference criteria. To

obtain a unified nonmonotonic logic, we must aggre

gate the several individual preference orders into a

global order.

Constructing global preference orders can be dif

ficult, since any comprehensive mechanism for non

monotonic reasoning must embody some way of han

dling the conflicts that arise among the different pat

terns of inference. There are two major approaches

taken to resolve conflicts: to choose to satisfy one

preference instead of another, and to refuse to sat

isfy any of the conflicting preferences. In fact, each of

the different theories proposed for nonmonotonic rea

soning takes one of these approaches. For example,

nonmonotonic logic, autoepistemic logic, default logic,

and "credulous" inheritance [Touretzky et a/., 1987]

describe how a single set of axioms and rules may yield

several different, often incompatible sets of conclusions

closed under inference. In these theories, conflicts be

tween specific defaults are resolved in every possible

way, with each maximal consistent set of preferences

yielding a different set of conclusions. In contrast, cir

cumscription, closed-world reasoning, Pollock's [1987]

defeasible inference, and so-called "skeptical" inher

itance [Horty et a/., 1987] resemble ordinary logic in

that they describe how a set of axioms or rules yields a

single set of conclusions closed under inference. These

theories handle conflicts among preferences by failing

to draw any conclusions in those circumstances.

Any universal theory of default reasoning must pro

vide a rationale for its treatment of conflicts, whether

credulous, skeptical, or sometimes one or the other.

Placing responsibility for resolving potential conflicts

on the human designer is infeasible because for large

sets of criteria it is difficult to anticipate all of the po

tential conflicts. Furthermore, introduction of new cri

teria necessitates complete restructuring of the global

preference order. A more satisfactory solution would

exploit the concept of modularity to base conflict res

olution mechanisms on general rules of combination

that could be applied either manually or automati

cally as the need arises. As is widely recognized, mod

ular design is critical to the successful construction of

complex structures, and large commonsense knowledge

bases certainly count as such.

To investigate this approach formally, we say that an

aggregation policy is a function that specifies the global

order corresponding to any given set of individual or

ders. Let ZZi denote the preference order corresponding

to the ith pattern of inference to be included in the uni

fied logic. Each Q could represent preferences based

on a single criterion, such as predicate minimization,

specificity, or chronological ignorance. Or, they might

be at a finer grain, denoting the separate predicates

to minimize, the individual dimensions of specificity,

or individual default rules (as in Section 4.2). In any

case, each Q reflects a distinct attribute, encoding the

local preferences over interpretations according to its

dictates. Let / denote the set of all order indices. The

multicriteria nonmonotonic logic problem is then to

aggregate the orders Q : » € / into a global preference

order C-

For example, one simple aggregation function is

unanimous decision: Mi C Mi iff M\ Q Mi for all j

that rank the two. This policy, of course, is extreme

skepticism, failing to resolve any conflicts whatsoever.

Another sort of aggregation function comes from ap

plying some kind of voting scheme, for example, ma

jority rule among the criteria: M\ C Mi iff

|{i € I | Mi Q M2}\ > \{i £I\M2 Q Mi}|.

Simple majority rule, however, is technically not a le

gal aggregation policy because the resulting global or

der C is not guaranteed to be transitive. (The intran-

sitivity of majority rule is also known as "Condorcet's

voting paradox," after the eighteenth century social

scientist who discovered it [Roberts, 1976].)

This voting analogy can be taken quite literally. The

problem of designing aggregation policies has been

studied extensively in economics, under the heading

social choice theory. In the language of social choice

theory, the ranked interpretations Mi, Mi, . . . are con-

didates, the Q are individual orders, and the global or

der is the social ranking. The aggregation policy itself

is called a social choice function.

Reasoning has been viewed in social terms in AI

by several authors. The most prominent example is

Minsky's "society of mind" [Minsky, 1986], which ex

plicitly models thinking as the aggregate activity of

many small mental agents. Nowakowska [1973] ex

plores the relation of social choice concepts to the

psychology of agents made up of sets of motivational

components. In the context of nonmonotonic reason

ing, Borgida and Imilienski [1984] appeal to committee

decision-making as a metaphor for default inference,

and Doyle [1983a, 1985, 1988] presents nonmonotonic

reasoning from a group decision-theoretic perspective.

The main result of social choice theory is a startling

theorem due to Arrow [1963] that establishes the

nonexistence of social choice functions possessing a set

of desirable and apparently reasonable properties. In

Sections 4.2 and 4.3, we show that slightly modified
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versions of this result apply to preferential nonmono

tonic logics, with important implications for the poten

tial construction of universal default formalisms. We

first discuss the hypotheses underlying these results.

4.1 Aggregation principles

The principled design of an aggregation policy for mul-

ticriteria preferences begins with a consideration of

properties we think a reasonable policy should ex

hibit. The properties we propose are analogs of Ar

row's desiderata for social choice, and can be expressed

technically using Shoham's notation. We first present

the proposed properties, and then discuss their desir

ability.

1. Collective rationality. The global order C is a

function of the individual orders Q, which are

unrestricted partial orders.

2. Pareto principle (unanimity). If Mi Q Mi for

each i € /, then M\ C Mi. The global order

agrees with unanimous preferences.

3. Independence of irrelevant alternatives (HA). The

relation of M\ and Mi according to C depends

only on how the Q rank those two interpreta

tions. That is, considering new alternatives does

not alter rankings among the originals.

4. Non- dictatorship. There is no » £ / such that for

every M\ and Mi, Mi C Mi whenever Mi C. Mi,

regardless of the Cj for j ^ i. That is, there

is no "dictator" whose preferences automatically

determine the group's, independent of the other

individual orderings.

5. Conflict resolution. If Mi Q Mi for some i, then

Mi C. Mi or Mi C Mi. That is, if two interpreta

tions are comparable in an individual order, then

they are comparable in the global order.

Technically, these desiderata are a bit more general

than Arrow's, as his framework requires the orders to

be total orders rather than partial orders. The differ

ence is most apparent in the conflict resolution prin

ciple, which for Arrow is implicit in the requirement

that the global order be total.

Collective rationality is just a statement of the ag

gregation framework in preferential nonmonotonic log

ics. It merely stipulates the goal for aggregation poli

cies, that they define general methods for combining

multiple preference criteria.

The Pareto principle is the least assailable of the ax

ioms. Any aggregation function that violated a unan

imous preference would be clearly unacceptable.

IIA has been perhaps the most controversial con

dition among social choice theorists. In the logical

context, however, it is precisely the kind of syntax-

independence that we would like to enforce. Without

IIA, the aggregation function could depend on arbi

trary syntactic features such as the introduction of a

new predicate symbol.

Dictators are just as unwelcome in preferential non

monotonic logics as they are in human societies. If

we need a sovereign authority there is not much point

to the decentralized representation of preferences in

the first place, since dictatorial theories presuppose

that a unified theory exists, obviating the need for

combination of criteria. For example, Konolige's hi

erarchic autoepistemic theories [Konolige, 1988] rep

resent a dictatorial approach where each node of the

hierarchy exercises tyrannical authority over its sub

ordinates. Specifying the hierarchy is tantamount to

dictating the resolution of potential conflicts, in effect

directly expressing the global preference order. This

strict chain of command violates the underlying mod

ularity principle motivating aggregation.

The conflict resolution condition rules out skepti

cism by mandating that the global order commit one

way or the other whenever the individual orders ex

press a preference. Some authors defend skepticism in

the face of any conflict. Pollock [1987], for example,

argues that belief should be based on epistemically de

fensible positions. But uniformly skeptical or noncom

mittal strategies are too weak to serve as universally

appropriate theories of default inference. As we saw

earlier, the agent cannot always rationally choose to

remain skeptical about questions concerning actions

that are very important to an agent's prosperity. This

is true for the case in which there is too much in

formation (i.e., conflicting preferences) as well as the

case in which there is too little information (i.e., in

complete beliefs). In either case, it may be better to

adopt a stance on some issue and risk error than to

take no stance at all and risk paralysis (see [Doyle,

1989] for examples and further discussion). This does

not mean that universal theories should never indi

cate skepticism—actions presenting enormous risks of

ten call for skepticism—only that universal theories

should not uniformly result in skepticism regardless of

the conflict.

The following theorem states that the desirable and

apparently reasonable properties enumerated above

are not simultaneously satisfiable by any aggregation

policy for preferences expressed by total orders.

Theorem 1 No aggregation policy mapping total in

dividual orders to a total global order satisfies the prop

erties 1-4 above.

Proof: With the restriction to total orders, this

theorem is exactly Arrow's theorem. For a proof of

the original result see Arrow [1967] or Roberts [1976,

Chapter 7].D

4.2 Default logic

To examine the satisfiability of these aggregation prin

ciples, let us consider aggregating a set of default rules

P : Q/R in the sense of Reiter [1980]. In order to ex

press preferences about when to be skeptical and when
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to commit to belief, we employ models which describe

belief states as well as the contents of beliefs. For our

purposes, we may employ Moore's [1984] models for

autoepistemic logic.2 In this semantics, each model

M is a pair M = (A', V) of an ordinary valuation V

and a Kripke structure K. A Kripke structure con

tains a set of possible worlds and an "accessibility"

relation between pairs of possible worlds. The truth

of a formula is evaluated with respect to each world,

and a formula of the form LP (read "P is believed") is

true in a world W just in case P is true in every world

accessible from W. In Moore's semantics, each K is

required to be what he calls a "complete" structure

for the modal logic S5, that is, an equivalence relation

in which every possible world is accessible from every

possible world. Moore proves such models are in ex

act correspondence with stable autoepistemic theories,

that is, deductively closed sets of sentences which con

tain LP whenever they contain P and which contain

->LP (read "P is not believed") whenever they do not

contain P.

With such interpretations, we may express default

rules as preferences in a very natural way. Let us first

introduce a bit of helpful notation. If p and q are

mutually inconsistent sentences, they are satisfied by

disjoint sets of models, and we write p -< q (q preferred

to p) to mean that M C M' iff M |= q and M' \= p,

and that M (£ M' for all models M, M' of p and all

models M, M' of q. In other words, the models of

p (resp. q) are all equally preferable (i.e., the agent

is indifferent among them), but all models of q are

preferred to all models of p.

We may then express a preference for skepticism

about P by

LPvL-^P < --LPA--L-iP,

which says that believing neither P nor its negation is

preferred to believing either. A preference for credulity

about P is expressed by

->LP A ->L->P -< LP V L-iP,

which is just the opposite of the preference for skepti

cism. Similarly, a default rule P : Q/R expresses the

preferences o* -< a' -< <t" (read transitively), where

<r - LP A --L--Q A --LP,

a' = LP A L-*Q, and

a" = iIPV(£PA-.L-.gALP.).

That is, if P is believed, the default rule prefers be

lieving R to believing -<Q, and prefers believing either

->Q or R to believing neither. Note that each of these

orders is a total order: for any two models, either they

are indifferent to each other, or one is preferred to the

other. It never happens that two models are incompa

rable.

While there may be other motivated ways of inter

preting default rules as preference orders over states

of belief (cf. [Etherington, 1988]), the interpretation

above seems natural in a direct reading, and is cor

roborated by previous results of Doyle [ 1983b, 1985]

which showed that the extensions of default theories

are Pareto-optimal choices, that is, correspond to max

imal consistent sets of default-rule preferences.3

Theorem 2 No policy for aggregating default rules

into a total global order satisfies the properties 2-4

above.

Proof: We show that restricting the input order-

ings to those arising from default rules is not sufficient

to forestall the impossibility theorem. Consider three

sentences

<7! = LP A ->LQ A -i£i<2 A -*LR A --L--P A LS

<72 = LP A L-.Q A -.LP A --L-.P A -.LS A --L--5

o*3 = LPA-*LQA-*L-*<9aLPA--LSA--L--S.

As shown in Table 2, there exist default rules to rep

resent every strict preference order among the mod

els satisfying these sentences. Because the individual

orders are effectively unrestricted, Theorem 1 applies

directly. D

Default Preferences

P Q/R <T\ -< 0*2 -< 0*3

P -•P/-.Q <f\ -< 0*3 -< 0*2

P -P/5 0*2 -< 0*3 -< 0*1

P ->S/R <?1 -< <?\ -< O3

P Q/S 0*3 -< 0*2 -< 0~\

P ^S/iQ 0~3 -< 0*1 -< 0"2

Table 2: Six default rules which result in all possible

preference orders over 0*1,0*2,0*3.

4.3 A general impossibility theorem

The special case of default rules by itself does much

damage to hopes for a unified theory of nonmonotonic

reasoning since a general theory should cover at least

these. But one might still escape this limitation by

dropping the restriction that the orders be total, re

quiring only the partial orders appearing in Shoham's

2 One can also formalize these preferences using situ

ations to describe belief states, as in Levesque's logic of

explicit belief [Levesque, 1984].

3Shoham's [1988] treatment of default logic directly de

fines a global preference order for each default theory.

While these orders recast the global interpretations (ex

tensions) of default theories as maximally preferred mod

els, Shoham's treatment does not address the question of

why these global orders best represent sets of individual

default rules.
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framework. The following theorem shows that the im

possibility result recurs if we require global orders to

be as complete as the individual orders.

Theorem 3 No aggregation policy for preferential

nonmonotonic logics satisfies the properties 1-5 above.

Proof: The only difference between the multicrite-

ria nonmonotonic logic problem and the classic social

choice setup is that C and the C, can be partial orders

whereas individual and social rankings are taken to be

total. Partiality is constrained, however, by the con

flict resolution condition's restriction that the global

order be at least as complete as the constituent orders.

Therefore, any set of interpretations that is totally or

dered by some Ci is also totally ordered by C The

impossibility of the special case of aggregation func

tions mapping sets of total orders to a total order as

in Theorem 2, together with the IIA condition, implies

impossibility of the generalized problem where the or

ders may be incomplete. □

We earlier showed that uniformly skeptical aggrega

tion is not always reasonable. Whether the gap be

tween uniform skepticism and the conflict resolution

condition is wide enough to allow a way out remains

to be seen.

4.4 Paths toward possibility results

The impact of the impossibility result is proportional

to the judged importance of conforming to the premise

conditions, as well as the degree to which they need

be relaxed in order to achieve "possibility." For social

choice, the theorem has had great force due to the ap

parent reasonableness of the conditions and its demon

strated robustness despite countless mathematician-

years spent laboriously tweaking axioms. For non

monotonic logics, the reasonability of the desiderata

is more in question, and more study will be needed

to demonstrate the robustness of our results. Parallel

ing the investigations made in social choice, one can

identify two primary options for dealing with impossi

bility. The first and most direct way out is to restrict

or expand the specification of preferences and the basic

construction of nonmonotonic logics from them. The

second approach attempts to find a compromise among

the conflicting desiderata, and to analyze the tradeoffs

involved in different compromises.

The impossibility result is fundamentally a state

ment about the relation between the expressive power

of a preferential nonmonotonic logic and the difficulty

of combining multiple criteria. To accept the aggre

gation principles yet avoid the implications of Theo

rem 3, the language for representing preferences needs

to be more or less expressive in some way than the

framework presented above.

For example, the impossibility result can be circum

vented by expanding the language of preferences to

include some expression of intensity of preference (in

contrast to the merely ordinal information expressible

by the Q)4 More specifically, the ordinal specifica

tion of individual preferences can be strengthened in

two ways. The first is to allow intercriteria compar

isons, permitting statements of the form "criterion i

likes Mi more than criterion j likes M2" The sec

ond enhancement introduces intracriteria intensities,

where »'s degree of preference for Mi over M2 can be

compared to its preferences for M3 over M4. Taken

alone, intercriteria comparison only opens the door a

crack, leading to aggregation policies that are almost-

but-not-quite dictatorial (in a precise sense described,

for example, by Roberts [1980]). And incorporating

only intracriterial intensity comparisons helps not at

all. Together, however, the two measures induce a

fully cardinal description of preferences (i.e., a numeric

measure of degree of preference), which leads immedi

ately to satisfactory aggregation functions of the sort

recommended by multiattribute utility theory [Keeney

and Raiffa, 1976]. Although it solves the impossibility

problem, we suspect that designers of nonmonotonic

logics will not be eager to require in effect that nu

meric utility measures be assigned to every interpre

tation. Numeric representations are typically avoided

because they are excessively precise and present an

intolerable specification burden on the source of de

fault assertions. To make this approach palatable, one

would have to find some qualitative (direct) expression

of the available preference information (going beyond

purely ordinal comparisons) from which the numerical

measures could be automatically constructed. Unfor

tunately, this sort of global comparative information

is just what seems to be lacking in our intuition in

many cases, as indicated in Section 3. Nevertheless, it

may be possible to learn pragmatically useful numeri

cal measures through experience.

Similarly, limiting expressive power by restricting

the form of individual partial orders that are handled

by the aggregation policy can lead to acceptable poli

cies operating over the smaller domain. Theorem 3

declares the impossibility of a completely general ag

gregation policy but admits that aggregation might

be achievable in special cases. Social choice theo

rists have explored this route in depth, but the special

cases they consider (such as single-peakedness, a condi

tion that the candidates be orderable according to one

global dimension) do not appear to be viable for the

multicriteria preference problem. On the other hand,

AI researchers may discover aggregable special cases

particularly well-suited for nonmonotonic reasoning,

whether or not they make sense in the original social

choice context.

If we insist on maintaining the ordinality of con

stituent preferences and the universality of the aggre-

4 Strictly speaking, this is not an expansion of expressive

power because the intensity information would have to be

mandatory to guarantee satisfactory aggregation.



Impediments to Universal Preference-Based Default Theories 101

gation policy, we must consider which of the desider

ata may be abandoned or relaxed. At the extreme, we

could simply give up on global rationality, permitting

C to be intransitive or inconsistent and so wreaking

havoc on the semantics of the resulting nonmonotonic

logic. Fortunately, more moderate courses are avail

able. We could choose to live with a bit of syntax-

dependence, some lack of resolve (skepticism), or dic

tators (benevolent we hope), as the least of a selection

of evils. Intelligent compromise on this issue requires a

much better understanding of the tradeoffs we face. A

determination of how much syntax-dependence, etc.

we must endure in return for aggregation will result

from a deeper analysis of the sources of impossibility.

If we can characterize a subclass of preference profiles

that fully account for the pessimistic conclusions of

Theorem 3, we can limit our desiderata violations to

that class. This step is simply a less drastic version

of the suggestion above that we restrict the expres

sive power of the language to exclude the problematic

cases. For example, while we argued above that skepti

cism as a response to all conflicts is irrational, it would

be less objectionable to suspend commitment when the

conflict is further classified as one of the peculiarly

difficult instances. To justify this approach, however,

we need some way of estimating the likelihoods with

which different sorts of conflicts appear and the risks

and benefits that skepticism and credulity offer in each

of these cases. Such information about the reasoning

process in which the conflicts arise can then be used

to determine the cases in which suspending judgment

is rational.

5 Conclusions

Translating questions about nonmonotonic reasoning

into the language of rational inference and social choice

yields valuable insights into the design of nonmono

tonic logics. The translation provides a rational justi

fication for the non-deductive structure of some non

monotonic logics, and the impossibility results pre

sented above expose previously unarticulated difficul

ties in the quest toward universal default mechanisms.

The problem is not attributable to the use of logical

or mathematical formalisms for describing or mech

anizing reasoning, nor is it due to limited computa

tional resources for carrying out reasoning. Our results

delimit the nature of feasible forms of rationality for

agents integrating preferences from multiple sources,

independent of their representational structure, com

putational power, or extent of knowledge.

To address the problem, we must continue to inves

tigate special theories of reasoning and the conditions

under which each of these is to be preferred or to be

avoided. We expect that further analysis from the so

cial choice perspective will suggest promising solution

approaches, both because it provides the vocabulary

for expressing concepts related to aggregation policies,

and because it allows artificial intelligence studies to

draw on a large literature of detailed investigations of

social choice questions.
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Abstract

The plan net formalism presented in this

paper is a language for expressing possi

ble actions independent of any particular

plan. Plan nets encode non-deterministic

control programs which specify the local con

ditions under which actions may be taken.

A two stage analysis synthesizes situated

control rules which act to reduce this non-

deterministic choice such that all remaining

alternatives for action necessarily satisfy any

given goals. Action execution can precede

situated control rule synthesis: situated con

trol rules simply help ensure that actions are

first steps on the way to eventual goal satis

faction. Situated control rules inform action;

they do not define it.

1 Introduction

Two assumptions are often made about the nature of

plans in AI systems. First, there is the assumption

that plans are programs; second, the assumption that

plans are totally or partially ordered sets of operators.

These two assumptions have limited the generality and

success of planning in AI. This first section explains

why this is so.

Consider the assumption that plans are programs.

This is limiting, since an agent must be able to act

without plans. If plans are programs then without

a plan there is no program for an agent to run. An

agent's basic behavioural abilities must be informed by

plans, and not defined in terms of plans. This point

has been well made by Agre and Chapman (1988).

When there is time to plan, the results of planning

should help make behaviour more goal-directed. But

when situations warrant, action must be taken without

advance planning. A plan should be only one of many

possible resources to action. Plans must inform action,

and should not be solely responsible for defining it.

Consider next the assumption that plans are totally

or partially ordered sets of operators. This assump

tion limits an agent's ability to robustly execute plans

of action. There is no sure way to realize the actions

that a plan'8 operators describe. Executing an instruc

tion inside the computer controlling an agent may or

may not realize the desired action in the environment.

The view of "plans as programs" is derived from the

notion of "agent as computer". But the analogy is

a poor one. When programming a computer we rely

on descriptions of machine instruction behaviour that

are provided by the machine's manufacturer. If the

machine fails to realize these descriptions we should

ask for our money back. The computer is expected to

live up to these descriptive promises. For an agent,

the connections between the operators and the actions

they describe is uncertain: actions cannot always be

performed as specified in a plan. Sometimes, actions

simply fail

Since actions fail, plans cannot be expressed as or

dering relations on sets of operators. A plan executor

that blindly selects and attempts to execute operators

in planned sequence will fail too often to be useful. In

stead, a plan executor must carry out explicit checks

to see whether or not fictions have been successfully

executed. To allow this, a plan must specify operators

in terms of the overall conditions under which their

performance is appropriate. STRIPS triangle tables

(Nilsson, 1984) do this, as do Schoppers' (1987) uni

versal plans. Under this general view, a plan is not a

sequence, but is instead a specification of reactions to

situations.

2 Overview

Plan nets are a language for describing the basic be

havioural abilities of an agent. Situated control rules

(SCRs) are synthesized through temporal projection

and are used to constrain the behaviours produced by

plan nets. Each SCR characterizes the performance of

possible actions in terms of an agent's current environ

ment. This approach guides plan execution by doing

situation-based action indexing and so better handles

the problem of action failure. Action can also be taken

by the agent without advance planning, simply by exe

cuting the plan net. Any planned behaviour produced

by the agent is a result of interactions between its plan

net and any SCRs that have been synthesized.
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Figure 1: Information Flow

An agent-level sketch is given in figure 1, the com

ponents of which interact as follows. The executor ac

cepts a plan net and interprets it as a nondeterministic

program to be run. It also accepts data from sensors

describing the state of its environment. Planned be

haviour by the executor is the result of SCR input.

The projector accepts the same plan net as the execu

tor and interprets it as a nondeterministic program to

be analyzed. The projector analyzes the plan net and

produces SCRs to deal with critical choice points in

the future. A critical choice point is a situation dur

ing execution where it is possible for the executor to

take a locally possible action that does not lead to a

globally acceptable solution. The executor will always

check to see if any SCRs exist that are appropriate to

the current situation. If so, the SCRs' advice about

what to do next will be heeded. If there are no ap

propriate SCRs, unplanned execution is still possible.

Without reference to the SCR input from the projec

tor, the executor will simply select and attempt to exe

cute any enabled operator in the plan net. The results

of such non-deterministic execution are (of course) un

predictable.

The process of SCR synthesis takes time. In some

cases, the execution component will act before the pro

jection process is "complete". This simply affects the

overall quality of the agent's behaviour, and not its

basic ability to execute and project independently. Of

course, the hope is that the projector can always re

main ahead of the executor. If not then the agent may

have to "physically backtrack" to get out of tricky sit

uations (like waiting for the paint to dry after painting

itself into a corner).

To focus the discussion more sharply, this paper con

siders a simple assembly problem that demands a high-

degree robustness from an agent. The example is only

used to demonstrate plan nets and SCRs. Our ap

proach is more general than this example might sug

gest. This problem is presented in section 3. Section 4

presents plan nets and SCRs. Section 5 establishes the

connection to related work.

3 A Planning and Control Problem

Our example plan projection and execution problem

is adapted from Fox and Kempf (1988). In it, we are

given a table on which to assemble three blocks in a

row: block A on the left, at location 1; block B in

the middle, at location 2; and block C on the right,

at location 3. The blocks are initially available for

placement, and each block can be placed on the table

once it's available. The exact means for moving the

blocks does not matter: when a block is available it

may be placed. The only constraint on assembly is

that block B cannot be placed last: once A and C are

down, there is not enough room to place B. B must

be swept in from the left or from the right, and cannot

be placed if A and C are in the way. We call this the

BNL (B Not Last) problem.

We have to be careful about what it means to

"solve" this problem. Suppose that the BNL problem

is under the control of a particular assembly agent.

We want to define the problem for this agent such

that it can reason about the different possible assem

bly strategies, and select only those strategies where B

is not placed last. That is, the agent should be able to

reason about possible assembly strategies if it has time

to do so, but it should also be able to simply begin the

assembly process if there is no time to carry out the

required reasoning. Of course if no reasoning is done

about the assembly, the agent could easily "deadlock"

in the state where blocks A and C are in place; B could

not then be placed according to the BNL constraints.

The results of reasoning should guide the agent away

from this state. Further, for our version of the BNL

problem, we want the agent to reason about as many

assembly strategies as possible. The motivation for

this is uncertainty, if the blocks were not available at

the problem's start, and if their availability was in

stead determined by individual block deliveries, then

it would be desirable to have the agent consider as

many assembly strategies as reasoning time allowed.

Relevant strategies would be indexed by the actual

block deliveries which occurred during plan execution.

While this robustness requirement is not well moti

vated in our simple version of the BNL problem, it is

easy to understand why such robustness is required in

general.

It takes three partially ordered plans to represent all

assembly strategies for the BNL problem. Using the

notation (X, Y) to indicate that action X must oc

cur before action Y, the following three partial orders

are needed to give full assembly competence to the

BNL executor: {{A, C), (B, C)}, {(B, A), (C, A)}, and

{(B, A), (B,C)}. While there is some overlap in the

extensions of these partial orders, all three are neces

sary. If only two of the three partial orders are passed

to the executor it will be unable to realize all possible

assembly strategies.

If one partial order is thought of as one plan then
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there is no one plan that can be given to the execu

tor to solve the BNL problem (in the sense discussed

above). For instance, suppose that the executor is

given {(A, C), (B, C)} as its plan. This plan does not

specify that block C can be placed first, even though

such an action could begin a strategy which achieves

the required assembly. There are different possible as

sembly strategies, and no one partial order can de

scribe all of them. To deal effectively with this prob

lem, we must be able to represent and reason about

disjunction within a plan.

One might deal with disjunction by defining a plan

to be a set of partial orders; unfortunately, this turns

out to be unsatisfactory from an execution stance.

Given the three partial orders, how does the execu

tor index the appropriate planned action? The plan is

essentially a disjunction of partial orders. We might

expect that the executor will simply perform actions

in a sequence compatible with one of the partial orders

it has been given. As explained in section 1, sequence

following approaches to plan execution will not work

in general; instead, actions must be given in terms of

the conditions under which their performance is ap

propriate.

Our approach does not depend on the view of plan

execution as sequence following. Instead, the executor

indexes appropriate operators by current environmen

tal conditions. This approach handles the problem of

action failure. If an action is attempted and fails, the

environment will reflect the results of the failed action.

The state of the environment following the failure can

be used to determine the appropriate action to perform

next. Of course successful execution is also captured

by the indexing approach: when actions are executed

as expected, the environment will be in the state pre

dicted by the planner, and the preconditions of the

next operator will actually hold. So when actions oc

cur as predicted, the indexing approach generates the

same behaviour as the sequence following approach.

One last difficulty lurks within BNL: contingent

causal independence. Consider the initial situation for

the BNL problem, where all the blocks are available.

According to the constraints, blocks A and B could be

placed in any order, or in parallel Similarly, blocks

B and C could be placed in any order, or in paral

lel. Alternatively, if B is placed first, then A and C

could be placed in any order, or (once again) in par

allel. This situation-contingent causal independence

makes disjunctive action indexing even more difficult

(and interesting!).

4 Plan Nets and SCRs

This section defines and explains plan nets and SCRs.

Examples drawn from the BNL problem are scattered

throughout. The first few subsections simply define

plan nets and the formal machinery needed to do tem

poral projection.

4.1 Plan Nets

A plan net is a type of Condition/Event system

(Reisig, 1985), essentially, a specific sort of Petri Net.

A plan net is a bipartite directed graph built from two

types of nodes called conditions and operators. Condi

tions are facts about the agent's environment that can

be true or false (equivalently: can hold or not hold).

Operators denote events. The arcs between nodes de

scribe relationships of causation and enablement: op

erators cause the holding of conditions and the holding

of conditions enables the application of operators.

For the rest of this paper, let Le be a set of terms of

the form /(ii, 12, • ■-, xn), where / is an n-ary predi

cate and each a:,- is an argument of /; each Xi may be

a variable or constant. Conditions in plan nets will be

drawn from Lc; thus, each term in Lc will be inter

preted as a fact about the agent's domain which can

be true or false. Similarly, let L0 be a set of opera

tor terms. Each operator in a plan net will be drawn

from L0. Le and L0 must be disjoint: LCC\L0 = {}.

An arbitrary finite subset S C Le is called a case; S

describes a set of domain states, precisely those states

in which each condition in S is true. (The symbol "S"

is used to suggest the word "state".) Three final bits

of notation: R* denotes the transitive closure of the

relation R; n(O) denotes the powerset of the set O;

and \ denotes set subtraction.

Definition 1 A plan net is a triple N = (C,0,F),

with C C Le, O C Lol and F = (C x O) U (O x C);

both C and O must be finite.

So each c 6 C is a condition which can be true

or false in the agent's domain, and each o G O is an

operator which denotes an event. F is composed of

two relations: (C x O), interpreted as enables; and

(O x C) interpreted as causes.

Definition 2 Let N = (C, O, F) be a plan net. For

each o £ O: pre(o) = {c \ (c,o) G F) and post(o) =

{c I (o,c) € F}. Elements of pre(o) are called the

preconditions of o and elements of post(o) are called

the postconditions of o. The functions pre and post

are extended to handle sets of operators: for P C O,

pre(P) = \JP£ppre(p); similarly for post(P).

A plan net for the BNL problem is shown in figure 2.

Operators are drawn as squares, conditions are drawn

as circles, the enablement relation is drawn as arrows

from circles to squares, and the causation relation is

drawn as arrows from squares to circles. This plan net

has four operators. place(A, 1) is an operator which

denotes the event of placing block A at location 1.

The preconditions for this event are available(A) and

/ree(l). The first precondition is true when block A

is available for placement, and the second is true when

location 1 is unencumbered. Similar to the operator

place(A, 1), we have place(C, 3) at the bottom of the

figure. Its preconditions are that C is available, and
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place(A,l)

available(A)

availablc(B

 

at(B,2)

available(C) place(C, 3)

O at(c-3)

Figure 2: The Plan Net for BNL

that location 3 is free. The postcondition of placing A

at 1 is that at(A, 1) will be true; similarly erf(C, 3) is

made true by place(C, 3).

Block B is treated differently from A and C. There

are two ways that B can be placed at location 2: it

can be swept in from the left or swept in from the

right. The operator Lplace(B, 2) denotes the action of

sweeping B in from the left, through the space occu

pied (eventually) by block A. This is why location 1

must be free for the left placement of B. The predicate

/ree(l) is also a postcondition of Lplace(B, 2) since

the condition is reachieved after the action is finished.

The right placement of B, denoted by the operator

Rplace(B, 2) is similar. It requires that location 3 be

free, in order to sweep B through the location to be

eventually occupied by C. Either method of placing

B results in the condition at(B, 2) being true.

4.2 Operator Enablement and Application

To reason about the future we must be able to do

temporal projection. Projections are built up from

the repeated application of individual operators. So to

define a projection, we must first define the conditions

under which a single operator may be applied; i.e.,

when the operator is enabled.

Definition 3 Let N = (C, O, F) be a plan net, let

S C Lc be a case, and let o £ O be an operator in the

plan net. We say that o is enabled in S iffpre(o) C S.

There are various ways to define operator applica

tion. This paper takes an extremely simple approach:

successor cases are derived by deleting all operator

preconditions and adding all operator postconditions.

This approach gives us a special sort of STRIPS oper

ator (Fikes & Nilsson, 1971). In STRIPS terminology,

our operator's precondition formula would be a con

junction of atomic formulae, and its delete list would

contain each of the precondition's conjuncts. There

are more general ways to define operator application

(Drummond, 1986; Ginsberg & Smith, 1987a, 1987b),

but this simple approach will suffice for current pur

poses. The results of this paper do not depend on any

particular definition of operator application.

Definition 4 Let N = (C, O, F) be a plan net, let

S C Le be a case, let o EO be an operator in the plan

net, and let o be enabled in S. The successor to S

under o is S' = (S\pre(o)) +post(o). This is written

asSZ S'.

4.3 Causal Independence

Events can occur in parallel when they are causally in

dependent. Of course there are other situations where

events must occur in parallel; causal independence sim

ply allows parallelism. Temporal projection must be

able to use causal independence when reasoning about

parallelism.

Definition 5 Let N = (C, O, F) be a plan net, let

S C Lc be a case, and let 01,02 € O be operators in

the plan net.

1. Operators o\ and 02 are causally independent iff

pre(->i)r\pre(o2) = {}.

2. A subset of the plan net 's operators P CO is free

from interference in S iff Vo G P , o is enabled in

S and Voi,02 € P such that 0\ ^02, 01 and 02

are causally independent.

3. Let P CO be a subset of the operators in N that

are free from interference in S: the successor to

S under P is S' = (S\pre(P))+post(P), written

asS^S'.

The definition of causal independence must vary

with the expressiveness of the operator language.

Since our operator application mechanism assumes

that all preconditions are deleted, the definition of

causal independence can exploit locality of possible

change: all that is required for two operators to be

independent is that their preconditions be disjoint.

Other operator languages require different definitions

of causal independence. For many languages, the def

inition does not get very complex. For instance, it

is easy to give an appropriate definition for STRIPS

operators, the AI planning industry standard.
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4.4 Plan Net Projection

Extending the definition of operator application to

cover sets of operators affects the structure of the pro

jection. Typically, state-space structures are defined

such that state-transitions describe the application of

single actions. Not so here. With an application mech

anism defined on sets of operators, transitions in a

projection can no longer be labelled with individual

operators; instead, transitions must be labelled with

sets of operators. Operators in a set labelling a transi

tion will have been proven to be free from interference

in the case that anchors the transition.

Definition 6 A tuple G = (D, A) is called an fare

labelled oriented^ graph over L iff D and L are sets

such that A C (DxLxD). The elements of D, L, and

A are called nodes, arc labels, and arcs respectively.

Definition 7 Let G = (D, A) be a graph over L. For

i= 1,2,..., let pi = (di, /,-, d{). w = pi, p2, . . . is called

a path in G iff for i = 1, 2, . . ., d\ = d,+i . Paths may

also be written as w — d\l-\_d2h . . .

We can now define the projection of a plan net N

from an initial case (state characterization) S. The

projection is simply a graph: the nodes are cases and

characterize future possible domain states; the arc la

bels are sets of operators and characterize the simulta

neous application of domain actions. Consistent with

this, a path in a projection graph will be interpreted

as a behaviour.

Definition 8 Let N = (C, O, F) be a plan net, and let

S C Le be a case. The projection of N from S is the

arc labelled oriented graph G = (D,A), where the set

of nodes, D, is given by D = {S' C Lc | (S, 5') € T'}.

The relation T is given by T = {(Si, S2) C (Lc x Lc) \

3P CO: Si => 52}. The set of arcs, A, is given by

A = {(Si, P, S2) C (Lc x Le x Lc) J Si, S2 € D A Si 4

S2}.

This approach allows temporal projection to exploit

operator independence when possible. Assume that

the projection process has arrived at a case (future

state characterization) where there are n different op

erators that are enabled. The cost of proving that this

set is free from interference is 0(n2) - simply the cost

of performing a pair-wise causal independence test. If

operators cannot be proven to be causally independent

projection can still proceed. Of course the analysis

cost then approaches 0(n\), since it might be neces

sary to reason about all possible orders of operator

application. But in the best case, when all enabled

operators are free from interference, the cost of anal

ysis goes down dramatically. Contrast this with the

classical approach to reasoning about operator appli

cation (Chapman, 1985), where pair-wise causal inde

pendence is assumed. If the assumption proves false

then the reasoning mechanism simply fails. With our

project(H,S,X,G) {

if X > 0 then {

A = free_from_interference(S,I) ;

for P in A {.

SI = apply(P.S);

if SI is not in G then {

G = add_case(Sl,G) ;

G = add_labelled_arc(S,Sl ,P,G) ;

project(H,Sl,X-l,G) ;

>

else G = add_labelled_arc(S,Si,P,G);

}

}

return(G) ;

}

Figure 3: The Plan Net Projection Algorithm

approach, the operators are assumed to conflict with

each other, unless the proof of causal independence

goes through. Only when operators can be proven to

be causally independent can they be applied in paral

lel.

A projection algorithm is given in figure 3. The al

gorithm accepts a plan net H, an initial case S, a depth

cutoff indicator X, and an initial projection graph G

(which contains S) as arguments; it returns the pro

jection of N from S to an event horizon X events into

the future. The depth cutoff argument allows the pro

cess to terminate before an exhaustive projection has

been formed. The case S is assumed to be in the graph

G to begin with - initially, S will be all that is in G.

The function apply (P ,S) accepts a set of operators, P,

and a case, S; it returns the successor to S under the

p

application of P. This function implements S => S' .

The function free_from_interference(S,N) accepts

a case, S, and a plan net, N; it returns a set of sets of op

erators in H, each of which has been proven to be free

from interference in S. The function add_case(S,G)

accepts a case, S, and a projection G; it returns the pro

jection which results from adding S to G. The function

add_labelled-arc(Sl,S2,P,G) accepts two cases, SI

and S2, a set of operators, P, and a projection G; it re

turns the projection which results from adding an arc

in G from SI to S2, labelled with P.

This algorithm is guaranteed to terminate, and not

simply due to the horizon cutoff argument, X. Suppose

that X is set to 00: the algorithm will still terminate.

The cases that a plan net can produce are determined

by its conditions, and each condition can either hold

or not hold. Each plan net has a finite number, n,

of conditions. Thus, the maximum number of cases

that a plan net can give rise to is 2". So while the

algorithm is exponential in complexity, it is guaranteed

to terminate, given an arbitrary value for X.
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A.C  

JBC

-B. ABC

-*■ AB-

Figure 4: The Basic Structure of the BNL Projection

There are various ways to consider improving the al

gorithm's efficiency. The projection algorithm is per

forming a chronologically organized search through a

space of world state descriptions. One way to restrict

this search is through the use of an operator relevancy

analysis such as Means-Ends Analysis (MEA). MEA

can be used as a heuristic to control the number of

alternatives considered at each point in the search.

Like any search procedure, projection requires heuris

tic knowledge to make it efficient. We return to this

topic in section 5.

The basic structure of the complete BNL plan net

projection from the problem's initial case is given in

figure 4. The initial case is drawn as " ". All blocks

are available for placement, but this is not shown. In

other cases, blocks are located as indicated by the ap

propriate letter. So aA—n indicates the case where

only block A has been placed; aAB" indicates the

case where blocks A and B have been placed; etc. Pos

sible transitions between cases are indicated by arcs in

the figure. For clarity, these arcs are not labelled. It

should be obvious what the actual projection cases and

arc labels are, given the plan net of figure 2.

Seven transitions are possible from the initial case.

The placement of A and the right placement of B are

causally independent, so there is an arc from " " to

"AB.". Similarly, block C and the left placement of B

are independent, leading to "_BC. Two of the tran

sitions from the initial case deal exclusively with the

individual placement of block B: it may be swept in

from the left or from the right; from the initial case,

both means of placing B are enabled. The placements

of A and C are also causally independent in the initial

case. Notice however that placing A and C first leads

to the case UA.C", from which no further progress is

possible. It is this case that makes the BNL problem

interesting (to the extent that it is). Not all projection

paths arrive at the final case "ABC", so some care is

required during execution. The projection indicates

that there are some executions which achieve the goal,

and that there are some executions which do not. This

is not unreasonable: the plan net simply specifies what

can happen, not what should happen.

4.5 A Goal Language

Our goal language is based on the work of Ben-Ari et al

(1981). Goals are expressions which post constraints

on acceptable projection paths. The agent must ensure

that goals are necessarily satisfied by a given set of

situated control rules. This means that the agent must

have access to modal operators defining the notions of

necessity and possibility. The language Lg contains all

of the formulae needed to deal with these notions. Lg

is recursively defined as follows.

Definition 9 All elements of Le are in Lg. If p and

q are in Lg then ->p, pAq, pVg, DtMtnl(p), Dach(p),

Oobt(p), Omaint(p), Oach(p), and Oobt(p) are in Lg.

Nothing else is in Lg. Elements of Lg that do not

contain □ or O are called goals; goals in Lg that do

not contain maint, ach or obt are called simple goals.

The satisfaction of an Lg wff is defined with re

spect to a specific case in a given plan net projection.

Consistent with standard interpretations, Omaint(p)

is true in a projection case 5 if and only if p is nec

essarily maintained in all projection paths rooted at

S; similarly, Oach(p) is true in 5 if and only if p is

possibly achieved in some path rooted at S. This is

expressed more precisely by the following definition.

Definition 10 Let N = (C, O, F) be a plan net, let

S C Le be a case, let G = (D, A) be the projection ofN

from S, let p, q G Lg, and let W be the set of paths in G

rooted at S, given by W = {w = d\l\d2li . . . | di = S}.

An ordering relation > on cases in projection paths is

defined by di > dj iff i > j.

1. ForpeLc, S^=piffp€S.

2. S\=^piffS#p.

S. S^=pAqiffS^=p and S \=q.

4. S\=pVq iffS\=porS\=q.

5. S [= Dmaint(p) iffVweWVdew: d\=p.

6. S\= Oach(p) iffVw£W3dew: d\=p.

7. S |= aobt(p) iff

Vtu G W 3di e w : d, f= p A Vd,- > d,- : dj (= p.

8. S\= Omaint(p) iffBwEWVdew: dlf=p.

9. S\= Oach(p) iff3w£W3dew: d\=p.

10. S [= Oobt(p) iff

3w G W 3d,- G w : dt \= p A Vd; > d< : dj f= p.

The goal for BNL in Lg is

ach(at(A, 1) A at(B, 2) A at(C, 3)).

We will assume that all goals given to the system are

goals of necessity; i.e., if the goal given to the system

is p then the system attempts to ensure that "WM f=

□p" from the agent's current case, WM (for World

Model), in terms of its current plan net and projection.
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When a formula p is evaluated with respect to a

specific case S in a projection, there are three possi

ble outcomes: p might be necessarily true (5 [= Op),

possibly true (S (= Op or S \= 0->p), or necessarily

false (5 |= O-ip). Each of these situations demands a

different response from the agent.

A goal will be necessarily true in a projection case if

it is true for all paths that are rooted in that case. If a

goal is necessarily true then no extra work is required:

all possible behaviours already satisfy the goal.

A goal will be possibly true in a projection case if

it is true for some of the paths rooted in the case and

false for some others. Possible truth indicates that

some extra work is required of the agent. Since not all

behaviours satisfy the goal, only those that do must

be realized.

A goal p will be necessarily false in a projection case

5 if there are no paths rooted in S which make p true.

In such a situation, there is nothing the agent can do

to make the goal true: the goal cannot be satisfied, no

matter what behaviours are produced.

If the projection does not include at least one path

that satisfies the required goal then there is no way of

synthesizing a satisfactory plan. On the other hand, if

all paths through the projection satisfy the goal then

no plan (and no planning) is necessary: all possible be

haviours are acceptable. Such luck is unlikely in prac

tice. More typically, there will be some behaviours

that achieve the goals and some others that do not.

The agent must transform this possibility into neces

sity.

4.6 Situated Control Rules

The goal for BNL is only possibly true in the initial

projection case (figure 4). In total, there are three

cases in the projection in which the goal is only pos

sibly true. We call such cases critical choice points.

The critical choice points in the BNL projection are,

graphically: "_", "A_" and "_C. There is only one

case in which the goal is necessarily false: "A-C" . The

goal is necessarily true in all other projection cases.

The problem is that the executor does not have ac

cess to global information in the plan net projection.

It must make local decisions about what it is best to do

next, based only on information regarding what it is

possible to do next. The executor cannot be expected

to recognize critical choice points simply by sensing the

state of its environment. Information must be com

municated to the executor regarding behaviours that

satisfy goals. This information must be structured in

a way that informs the executor about what to do

in terms of directly-sensible environmental conditions.

The information cannot be in the form of operator

sequences. Objections to the sequence-following ap

proach were raised in section 1.

We give advice to the executor in the form of Situ

ated Control Rules (SCRs). The antecedent of an SCR

is a well-formed-formula that can be evaluated in the

agent's current domain state. If the antecedent of an

SCR is satisfied then the rule is applicable. The con

sequent of an SCR is a set of sets of operators: any

one of the operator sets can be executed. Execution of

the operators is guaranteed to lead to the satisfaction

of the agent's goal. Each operator set in the conse

quent of an SCR must be free from interference in the

projection case in which the SCR's antecedent holds.

Definition 11 Let N = (C, O, F) be a plan net, let

S C Le be a case, let G = (D, A) be the projection of

N from S, and let p€ Lg be a goal.

1. A situated control rule (or SCR) is a rule of the

form I —» E, where I £ Lg is a simple goal and

E C 11(0).

2. An SCR I —» E is sound in S with respect to p iff

• S |= I and

• S (= Op and

• Ve 6 E : e is free from interference in S and

• 35' C Le : (S, e, S') G A and S' |= Op.

An SCR provides local information about what the

executor can do next. The notion of SCR soundness is

critical in this context. An SCR is sound in a case with

respect to a goal only if it is applicable to the case, if

the goal is already possible from the case, if each of the

operator sets suggested by the SCR is free from inter

ference, and if the application of each of the suggested

operator sets gives rise to a case from which the goal

is still possible. If sound SCRs exist for every critical

choice point, the executor will never take an incorrect

action. Sound SCRs guarantee that local execution

choices always lead to possible goal achievement.

This last point brings up the problem of SCR cov

erage: does the set of available SCRs completely cover

every possible critical choice point? SCR coverage is

necessarily occasionally incomplete, since it will often

be infeasible to compute a complete set of SCRs for

a problem due to resource constraints imposed on the

projection process. If the entire projection is com

puted then appropriate SCRs can be formed to deal

with all critical choice points. But if the projection

is only partially computed, SCRs coverage might be

incomplete. Incomplete coverage might result in the

synthesis of unsound SCRs. This is a problem for any

search process with a limited event horizon: if search is

not carried out completely, surprises can hide beyond

the event horizon considered.

As an example, let's consider the SCRs for BNL.

There are three critical choice points in the complete

BNL projection; thus, we need three SCRs. Recall

the critical choice points that must be covered: " ",

"A-" and "_C. The rules have been placed in fig

ure 5 for easy reference.

The first SCR covers the case " " . It indicates that

when all the blocks are available, A may be placed by
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available(A) A available(B) A available(C) A

/ree(l) A free(2) A /ree(3) -►

{{place(A,l)},{Lp/ace(B,2)},

{Rplace(B, 2)}, {p/ace(C, 3)},

{p/ace(>4, 1), Rplace(B, 2)},

{IpZace(B, 2), place(C, 3)}}

The First SCR

at(A, 1) A awat'ZaWe(S) A available(C) A

/ree(2) A /ree(3) -> {{iJpface(fl, 2)}}

The Second SCR

available(A) A avai/a6/e(B) A at(C, 3) A

/ree(2) A /ree(l) — {{Ip/ace(B, 2)}}

The Third SCR

synthesize(G,S,W) {

SCRs ■ nil;

lor i in V {

Ante = nil;

lor i = length(w) to 2 {

Ante = Ante + pre(arc_label(i,w));

Added = cased, w) - case(i-l,w);

Ante = Ante - Added;

>

Ante = Ante + pre(arc_label(l ,w)) ;

SCRs = make_scr(Ante,arc_label(l,w)) ;

}

return (simpl ify(SCRs) ) ;

}

Figure 6: The SCR Synthesis Algorithm

Figure 5: The BNL Situated Control Rules

itself; that C may be placed by itself; that B may be

swept in from the left or from the right; that A and

the right placement of B are free from interference and

may be executed in parallel; and that C and the left

placement of B are free from interference, and may

also be executed in parallel.

In the first SCR, one might think that the set

{place(A, 1), Rplace{B, 2)} entails that {place(A, 1)}

is also acceptable by itself. This is not always true.

If the projection has only considered maximally paral

lel operator applications, then cases which result from

arbitrary event interleavings might not have been con

structed in the projection. For our example, these in

termediate cases have been considered, since a com

plete projection has been constructed. This is com

municated to the executor by explicitly listing the in

dividual actions that may be performed.

The second SCR covers the case "j4_" . It permits

placing B only through a right sweep. The other

possibility for immediate execution from this case is

place(C, 3). The SCR does not permit this, since plac

ing C gives rise to a case in which the goal is necessarily

false.

The third SCR covers the case "_C. Symmetric

with the second SCR, it precludes the placement of A

when such action would lead to necessary failure. In

the case covered by this rule, the only safe action to

perform is Lplace(B, 2); that is, B must be swept in

from the left.

4.7 SCR Synthesis

An SCR synthesis algorithm is given in figure 6. This

algorithm accepts three arguments: G, a plan net pro

jection; S, a particular case in G; and W, a set of paths

in G rooted at S. It returns a situated control rule for

the case G which permits only the execution of opera

tors which comprise the first transition in any of the

paths in W.

SCR formation for a case and path is, in princi

pal, quite trivial: the antecedent of the SCR is sim

ply the conjunction of all conditions in the case; the

consequent of the SCR is simply a set containing the

operator set labelling the first arc on the path. But

in practice, some discretion is required in forming the

SCR's antecedent. Not all conditions in a case are rel

evant to the success of the given path, and putting all

conditions in the antecedent will doom the executor to

checking endless irrelevant details. To find just those

conditions that are relevant, we must scan along the

given path, forming a conjunction of conditions rel

evant to the operators encountered during the scan.

This is exactly what the algorithm in figure 6 does.

Of course, in a problem as simple as BNL, the two ap

proaches produce the same result, since there are no

conditions given in the initial case that are irrelevant

to the operators in the plan net being projected.

The algorithm depends on the following primitive

functions. The function length(w) accepts w, a path;

it returns an integer indicating the length of w. The

function arc-label(i.v) accepts an integer i and a

path w; it returns the ith arc label in w. The function

case(i.w) accepts an integer i and a path w; it returns

the ith case in w. The function pre(O) accepts a set of

operators 0; it returns the set of preconditions of these

operators. The function make_scr(C,0) accepts a set

of conditions C, and a set of operators, 0; it returns an

SCR of the form I —» E, where I is the conjunction of

the conditions in C and E is a set containing the set

of operators in 0. The function simplify (S) can do a

variety of things, depending on how it is implemented.

For now, it simply accepts a set of SCRs, S; it returns

another set of SCRs derived from S by packing to

gether SCRs in S with identical preconditions. This is

how the SCRs for the BNL problem end up with mul
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tiple operator sets in their consequents: many of the

operator sets have identical preconditions, and this lets

simplify package them together into a single SCR.

The synthesis algorithm will always terminate, pro

vided that the set of paths, V, is finite, and provided

that each path in W is also of finite length. The first

of these requirements is guaranteed by the projection

algorithm: projection can only produce finitely many

states, and so must terminate eventually. If paths are

formed by including each state at most once, then all

paths will also be of finite length. The complexity of

the synthesis algorithm is polynomial in the number

of projection cases in V.

One might wish to guarantee that the synthesis algo

rithm always generates sound SCRs. Attempts at pro

viding such guarantees are, however, misguided. The

synthesis algorithm is given a projection, a case, and

a set of paths rooted in that case. It generates SCRs

that simply index the first operator set in each path

by relevant conditions in the case. So if the first op

erator set in each path is sound, then the SCRs pro

duced by the synthesis algorithm will also be sound.

SCR soundness is determined by the path selection

mechanism, and paths are selected on the basis of goal

achievement. So if paths given to the synthesis algo

rithm necessarily satisfy the agent's goals, the SCRs it

returns will do this as well.

4.8 Execution

A plan net is a non-deterministic program for the ex

ecutor to run. We adopt the approach taken in the

STRIPS Planex system (Nilsson, 1984), where an In

termediate Level Action (ILA) is given for each oper

ator. The execution of an operator becomes a call to

the corresponding ILA. The ILA implements what the

operator describes.

A simple algorithm for an executor is given in fig

ure 7. The algorithm accepts two arguments: N, a plan

net to run, and R, a set of situated control rules. This

executor simply checks to see if there are any applica

ble SCRs in the given set: if there are, it acts on the

advice of one of them, randomly selected. If there are

no applicable SCRs then a random selection is made

from among the operators in the plan net that are

enabled in the current case ("world model", or WM). If

the SCRs are sound and have complete coverage of the

problem's state space, this executor will never take an

incorrect action.

The translation from operator to ILA is carried out

by the routine exec(P); it accepts a set of opera

tors, P, and calls the ILAs that implement each of

the actions described by the operators in P. The func

tion app_in(S,R) accepts a case describing the cur

rent state of the environment, S, and a set of sit

uated control rules, R; it returns a subset of R, the

antecedents of which are satisfied in S. The function

choose-SCR(R) accepts a set of SCRs, R; it returns one

executed,R) {

AppSCRs = app_in(WM,R) ;

ToDo = choose_SCR(AppSCRs) ;

Operators = choose_OPS(consequent(ToDo)) ;

ii Operators = nil then {

Poss = iree_irom_interference(WM,H) ;

Operators = choose_OPS(Poss) ;

>

exec(Operators) ;

}

Figure 7: The Plan Net Execution Algorithm

SCR randomly selected from this set. The function

consequent(T) accepts an SCR, T; it returns the con

sequent part of this SCR. The function chooseJJPS(P)

accepts a set of operator sets, P; it randomly selects

and returns one operator set from P. The function

free_from_interference(S,H) is the same as used in

the algorithm for plan net projection: it accepts a case,

S, and a plan net, H; it returns a set of sets of operators

in H, each of which has been proven to be free from in

terference in S. The case WM is assumed to be globally

available throughout the executor, and describes the

state of the agent's environment during execution.

5 Related Work

The current paradigm for plan generation begins with

NOAH (Sacerdoti, 1975) and NonLin (Tate, 1977);

this approach has been extended by others (Vere, 1981;

Wilkins, 1984, Currie k Tate, 1985), but the core idea

remains the same. A planner searches through a space

of incomplete plans, each of which is partially ordered.

Each plan is incomplete in the sense that it must be

further refined to be considered acceptable. Transi

tions through the space of partial plans correspond

to plan refinements; typically, operator introductions,

variable bindings and additional operator orderings.

The choices in this search space have very little to do

with choices open to the executor regarding possible

actions to perform.

We have defined the search space to be a state-space

structure in which the nodes describe domain states

and the transitions describe the occurrence of possible

domain actions. This search space is chronologically

organized in the sense that choice in the search space

corresponds to, and subsequently directs, the choice

of next relevant domain action. The advantage of our

search space is that choices in the search correspond

directly with choices of which fiction to perform in a

situation; thus, incremental search necessarily incre

mentally informs execution. This is not so with a

classical planner. The disadvantage of our approach

is that there is not yet any provision for goal direct-

edness in the projection process. Indeed, this is why
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we have avoided the term "planning", and used the

less dangerous phrase "temporal projection" instead.

Some sort of means-ends analysis mechanism will be

integrated into the projection process in the near fu

ture.

Suchman's (1987) ideas on situated action have had

significant impact on research within AI. Her study of

action-in-context has provided insight on the relation

ship between planned and unplanned activity. Schop-

pers' (1987) work on universal plans has motivated

parts of our approach. His view of planning as the

synthesis of reactions to situations has has affected

our work, but there are significant differences. Uni

versal plans are typically seen as a compiled response

to all possible situations. SCRs do not need to cover

all possible situations. When SCRs exist, they can be

used to guarantee goal satisfaction. When they do not

exist, action can still be taken. In contrast, univer

sal plans seem to be the only mechanism available for

generating action. If there is no universal plan, then

nothing can be done. Universal plan formation is also

a one-shot process: the planner must produce a com

plete universal plan before the executor is called. In

contrast, plan nets allow incremental SCR synthesis.

STRIPS triangle tables (Nilsson, 1984) are a repre

sentation for plans that specify reactions to situations.

Triangle tables can give reactions to any one of a set

of situations, provided that the situations occur in a

pre-specified total order. That is, triangle tables de

termine a total order on actions to be executed, and

cover action failure (where actions must be repeated)

and serendipitous goal achievement (where actions can

be skipped). Our work can be viewed as an gener

alization of the triangle tables idea. Triangle tables

cannot represent disjunctive behaviours, while SCRs

can. Triangle tables also cannot deal with causally in

dependent actions, and this is a major motivation in

the theory of SCRs.

Recent work by Nilsson (1988) considers the produc

tion of behaviour through action networks. It appears

that these action networks are more expressive than

plan nets. While no techniques for action network syn

thesis have been presented yet, we expect to be able

to borrow from some of Nilsson's work on action net

abstraction.

Rosenschein and Kaelbling's (1987) work on the the

ory of situated automata is in part an attempt to pro

vide a theory of high-level symbolic control. They view

a machine as situated in an environment, and pro

vide a formal characterization of the machine's knowl

edge in terms of objective correlations between states

of the machine and states of that environment. The

GAPPS system (Kaelbling, 1988) is part of this work.

GAPPS is a rule compiler: it accepts symbolic goal-

reduction rules and produces a circuit which realizes

the behaviour inherent in the rules. Each individual

rule is expressed in terms of a locally defined leads-to

operator. The problem of goal interactions between

rules must be sorted out by the programmer. GAPPS

assumes that the rules' recommendation for action can

be composed conjunctively by merging the individual

components of each recommendation. It is the busi

ness of classical planning to sort out such interactions.

Our work deals with goal interactions by doing tem

poral projection: futures that do not satisfy all goals

are prevented from occurring through the creation of

appropriate SCRs.

Minton's (1988) work on the Prodigy system is sim

ilar in some respects to ours. Prodigy is a general-

purpose planner that can improve its performance over

time. It improves by learning knowledge regarding cor

rect and incorrect decisions made during the planning

process. This knowledge is expressed in search con

trol rules. Search control rules are used during subse

quent planning to improve the decisions made regard

ing goal ordering, variable binding and operator intro

duction. Although Prodigy's search control rules are

learned and used across different problem instances,

they are similar to our SCRs. Search control rules

and situated control rules both express local choice

information in terms of global objectives. However,

Prodigy defines its search space differently. We use

a chronologically organized space, where decisions in

the search correspond to actions to perform in the do

main. Prodigy defines its search to be through a space

of partial plans. Thus, choices in its search correspond

to goal orderings, variable bindings, and operator in

troductions. Future work will examine the relationship

with Prodigy's search control rules more closely.
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Abstract

An autonomous agent's control problem is

often formulated as the attempt to min

imize the expected cost of accomplish

ing a goal. This paper presents a three-

dimensional view of the control problem

that is substantially more realistic. The

agent's control policy is assessed along the

three dimensions of deliberation cost, ex

ecution cost, and goal utility. The agent

must choose which goal to attend to as well

as which action to take.

This control problem is addressed in the

context of an architecture with record

keeping and class-formation capabilities.

Consequently, the architecture is able to of

fer its control module expected utility and

expected cost estimates that are gradually

refined as the agent accumulates experi

ence. A programmer is not required to sup

ply that knowledge, and the estimates are

provided without recourse to distributional

assumptions. Furthermore, control choices

are made by a simple and fast algorithm.

Thus, three of the standard objections to

decision-analytic control are blocked.

The agent's control decisions are guided by
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with Tom Mitchell. Stuart Russell and Eric Wefald's lu

cid exposition of the issues involved in Decision-analytic

control have inspired much of my thinking on the sub

ject. Jonathan Amsterdam, Danny Sleator, Doug Ty-
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mal aspects of this paper. Jim Blythe, Murray Camp

bell, Haym Hirsh, Craig Knoblock, Tom Mitchell, and

Prasad Tadepalli provided helpful comments on a pre

vious draft. Jonathan Amsterdam was of particular as

sistance in clarifying my notation. I am supported by

an AT&T Bell Labs Ph.D. Scholarship. In addition, this

research was sponsored by the National Science Founda

tion under contract IRI-8740522.

our principle of greedy rationality—choose

the actions whose marginal expected util

ity (utility/cost) is maximal. Thus, when

necessary, the agent will prefer a speedy

approximation to costly, high-utility alter

natives.

1 Introduction and Motivation

In a paper dating back to 1975 Simon & Kadane

defined the problem of satisficing search. Un

like best-value search—search aimed at finding the

best goal node—satisficing search aims to mini

mize the expected search effort for reaching any of

a set of goal nodes. Controlling the actions of

a resource-bounded autonomous agent requires a

three-dimensional view of search. To achieve sat

isfactory performance the agent must trade the util

ity of the sought goal (maximized by best-value

search) against the expected cost of the path to the

goal (minimized by satisficing search). The qual

ity of that tradeoff must itself be traded against the

agent's deliberation efforts, simply because the agent

needs to act before it's too late. This paper pro

poses an approach to the control problem that leads

to satisfactory behavior along the three dimensions

of deliberation cost, execution cost, and goal utility.

1.1 A Critique of Simple Satisficing Search

Simon & Kadane introduce their approach with the

fanciful example of searching for a treasure chest.

Chests may be buried in any of a number of excava

tion sites. The agent's problem is to find a treasure

chest as quickly as possible. Given expected cost

and probability of success figures for the excavation

of each site, Simon & Kadane derive a search strat

egy for the agent that provably minimizes the ex

pected cost of the search. They proceed to generalize

the strategy to the case where ordering constraints

hold between different excavation operations. While

mathematically pleasing, Simon & Kadane's formu

lation makes several important simplifications. It is

the burden of this paper to remove some of these
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simplifications while retaining Simon and Kadane's

original insight that minimizing expected search ef

fort is an important component of the control prob

lem.

Simon & Kadane presuppose that probability of

success and expected cost figures are available for

each potential search action. In practice, such fig

ures must be computed. In section 3.1 we describe a

mechanism that enables an agent to estimate these

figures based on its problem-solving experiences. Al

though Simon & Kadane do not report on a complex

ity analysis of their procedure for computing an op

timal search strategy, the procedure analyzes every

node in the search graph. Consequently, the proce

dure's complexity is at least linear in the size of the

graph. The search graphs in typical AI problems

(e.g., chess) are sufficiently large that the computa

tional cost of such a procedure is prohibitive. This

paper proposes a tractable procedure for control.

Satisficing search does not distinguish between

goals, nor does it distinguish between methods for

achieving a given goal. But even in the simple trea

sure chest example, such additional complexity is

warranted. The value of the treasures in different

chests may vary, and distinct excavation procedures

may yield varying portions of the treasures. Thus, a

more powerful search control mechanism would not

blindly seek to minimize search effort, but would

rather trade execution effort and treasure value in

an attempt to maximize the expected utility of the

search subject to the agent's resource constraints.

Computing which excavation procedure to use must

not take too long, however, lest the agent run out

of time. Thus, the three-dimensional view of search

applies even to this simple case.

Satisficing search focuses on trying to achieve a

single goal. An agent often has multiple independent

goals, however. For example, there may be several

islands with different treasures buried on each. The

agent may wish to carry off as many treasures as

it can before an impending native attack. Multiple

independent goals are distinct from disjunctive sub-

goals, in that the agent wishes to achieve more than

one of them. Multiple independent goals are also

distinct from conjunctive subgoals in that failing to

achieve one independent goal does not impinge on

trying to achieve the rest. Our approach handles

multiple independent goals.

1.2 Preview of the Paper

The control problem for a resource-bounded

autonomous agent is essentially an economic

problem—the problem of utilizing resources to max

imize satisfaction. It is not surprising, there

fore, that the central notions underlying our ap

proach to the control problem, opportunity cost and

marginal utility, are both borrowed from economic

theory (Samuelson, 1976).

When the utilization of a resource (such as time

or money) for some action A means that another

action cannot be performed, A is said to have an

opportunity cost. If several actions contend for the

same resource, then the opportunity cost of choosing

one of them is the maximum of the utility of the oth

ers. Attending graduate school, for example, has the

opportunity cost of not being able to earn a higher

salary in industry. The opportunity cost of time is

at the crux of a time-bounded agent's control prob

lem. Taking one course of action means that time

may not be available to take another, and deliberat

ing about which action to perform robs the agent of

time that could have been used to act. Opportunity

cost is defined precisely in Section 2.3.

The degree to which an agent desires a goal may

be represented by defining a utility measure over

world states. A state in which a goal is achieved

has a higher utility than one in which it is not. In

the treasure chest example, a simple utility measure

is the value of the treasure the agent has on its ship

as it departs. A utility function also models partial

goal satisfaction. The utility of achieving a goal with

a given method is a function of the goal's worth and

the degree to which the method satisfies the goal.

Given a utility function, marginal utility may be

defined as the derivative of the utility function with

respect to a cost variable (time in this case). We em

ploy marginal utility as a choice criterion between

the options available to an agent. Picking the op

tion whose marginal utility is greatest maximizes the

ratio of expected utility to execution cost. Thus,

an easy-to-obtain but small treasure chest may be

preferred to a valuable but difficult-to-reach chest.

Maximizing marginal utility enables the agent to

trade goal utility for search time. It is the essence

of greedy rationality, a notion that harks back to

the conclusion of Simon & Kadane's forward-looking

1975 paper.

The balance of the paper is as follows: The next

section formulates precisely the control problem in

troduced above. Sections 3 and 4 outline our solu

tion to the problem. Section 5 analyzes two special

cases of the general control problem that have proven

amenable to precise theoretical treatment. Section 6

explores the benefits of using concept learning tech

niques in conjunction with decision-analytic control.

And Section 7 discusses related work. The paper

concludes by calling for the integration of decision-

analytic and concept learning approaches to the con

trol problem.



116 Etzioni

Goal

Methods

Classes

A

Beliefs/preferences

Decision

Procedure

Method Choice

Figure 1: An Architecture

Given:

• A time constraint.

• Multiple goals.

• A set of methods for each goal.

• A Utility measure over final world states.

Determine: A sequence of methods that max

imizes the expected utility of the agent's ac

tions.

Table 1: The General Control Problem

2 The Control Problem

In formulating and solving an agent's control prob

lem, we will presuppose the architecture described

below.

2.1 An Architecture

The architecture's default control strategy is depth-

first search. Control knowledge obtained by the ar

chitecture is represented by (class, belief/preference)

pairs. The class denotes the set of world states

to which the belief or preference applies. Con

trol rules (e.g., Laird et al., 1987; Minton et al.,

1989) are roughly equivalent to this representation:

a rule's left-hand side picks out the class to which

the rule applies, and the rule's right-hand side ex

presses some belief or preference. Throughout the

paper we refer to this set of classes as the agent's

state- division. In chess, for example, dividing all

possible board positions into opening, middle game,

and endgame positions is a state-division. Although

exhaustive, the classes in the state-division are not

necessarily mutually exclusive.

In any given state, the agent must choose between

the methods available to achieve its current goals.

In our excavation example, methods may consist of

digging and using dynamite. The class of "excava

tions into volcanic rock" may have the preference

"use dynamite" associated with it. The architec

ture maps the current state to one or more classes

in the state-division. Beliefs and preferences associ

ated with these classes yield a (possibly empty) set

of beliefs and preferences about executing the ap

plicable methods in the current state. A decision

procedure takes this set of beliefs and preferences as

input, and outputs a method choice that is executed

by the architecture and results in an updated state.

A schematic depiction of the architecture appears in

figure 1. The description models the current state of

the Theo architecture (Mitchell et al., 1989). Theo

is a software framework intended to support the con

struction of autonomous agents.

2.2 Formulating the Control Problem

Table 1 outlines an agent's control problem in

decision-theoretic terms. An optimal solution is one

that maximizes the agent's expected utility. Formu

lating the problem in these terms does not commit us

to employing decision-analytic control, or to build

ing an agent that explicitly considers the expected

utilities of its options. The problem formulation is ex

ternal to the agent. It may be used to model a de

vice as simple as a thermostat or as complex as the

Soar architecture, neither of which employ decision-

analytic control.

2.3 Precise Formulation

Let B denote a deadline. Let the set of goals T be a

subset of the set of final states F which is a subset

of the set of world states S. In chess, for example,

T denotes the set of board positions in which the

agent has won the game, F denotes the set of final

board positions in which the agent has either won,

lost or drawn, and S denotes the set of legal board

positions.

A method m is a (possibly atomic) sequence of

actions that maps that current state s to a final state

m(s)(F. T,(m) is the time which m takes to execute

from state s. The utility measure U is defined over

final world states. In chess, it corresponds to an

evaluation function that is only defined over board

positions in terminated games. Applying a method

in a state s may result in failure, a final world state

with zero utility. Furthermore, the utility of any

final world state that is reached after the deadline

B is 0. P(m) is the probability that m terminates

in a final world state with nonzero utility. Strictly

speaking both U and P are functions of time, but

our notation does not reflect this. From U we derive

a utility function U for methods: f/,(m) = U(m(s)).

Executing the method m from a variety of differ

ent world states will take differing amounts of time

and result in one of several final world states. Thus,

we define the expected utility of m as E[U(m)], and
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the expected time consumption of m as E[T(m)].

The expectation is over the probability that the

agent will encounter a given state.

To solve the control problem in Table 1 the agent

chooses a sequence of methods c. The first subscript

ofeach method denotes the method number, and the

second subscript denotes which of the agent's goals

it is intended to achieve.

<f = ("»iii,m2,i...,niilii)mii2,m2,2,...,mfcltif,)

If the first method aimed at achieving goal gi fails,

the agent moves to the second method and so on.

Once goal gi is achieved the agent skips over any

unexecuted methods aimed at achieving <7i , and tries

to achieve goal gi and so on until the deadline B is

reached.

The expected utility of <r is:

E[U(<r)] = E[U(mltl)] + £[*7(m2il)](l - P(raM))...

+E[U(mlj2)} + E[U(m2t2)](l - P(m1|2))...

+ ...

t-i

+E[U(mlin)] + ... + E[U(mkn,n)] H (1 - -P(™.>))

The above definition presupposes that the methods'

expected utility and probability of success are inde

pendent of the order in which they are executed.

The framework introduced above enables us to de

fine an optimal solution to the agent's control prob

lem: an optimal solution is a method sequence whose

expected utility is maximal. We denote such a se

quence by aB because it is a function of the agent's

deadline. We define two additional quantities re

quired to state Proposition 1 below. First, the ex

pected opportunity cost of a method m is:

E[yB(m)] = E[U(*B)] - E[U(v* B-T(m))]

That is, the difference between the expected util

ity of the optimal method sequence before m is exe

cuted and the expected utility of the optimal method

sequence after m. Second, the expected gain of a

method m is its expected utility minus its expected

opportunity cost:

E[GB(m)] = E[U(m)] - E[yB(m)]

We treat both gain and opportunity cost as random

variables whose expectation is defined over the pop

ulation of world states encountered by the agent.

2.4 Simplifications

The above formulation makes several simplifications.

The control problem is defined for an off-line con

trol mechanism. No analysis is provided of how to

dynamically modify the flow of control at execution

time. The only resource we consider is time, and the

time constraint is a deadline. We have abstracted

away from considering the cost of switching between

different goals and the cost of recovering from failed

methods. The model is easily elaborated to handle

these considerations.

The formulation can also be extended to handle

choices between the individual actions that make up

methods. Each action has a set of completions M—

the set of methods that begin with that action. An

action may be "completed" differently in different

states. A probability distribution over the comple

tions of an action may be derived from a probabil

ity distribution over the states encountered by the

agent. The expected utility of an action a is a func

tion of the probability of its completions and their

expected utility.

E[Ua] = £ v{m)E[Ur

The expected cost of an action a can be defined

analogously. The necessary extensions to the record

keeping mechanism are described in Section 3.1.

Thus, the MU heuristic could be extended to choose

between actions.

A more difficult problem is the assumption of mu

tual independence between the different methods

and the different goals. This assumption is unrealis

tic in many domains. Multiple goals will often share

subgoals and interact in various ways. The failure

of one method may implies that other methods will

fail etc. The performance of decision-analytic con

trol mechanisms degrades in the presence of complex

interactions.

2.5 Optimal Control

We can now define a criterion for choosing between

methods that enables the agent to construct the op

timal method sequence.

Proposition 1 Repeatedly choosing the method

whose expected gain is maximal enables the agent

to construct an optimal method sequence.1

The above proposition indicates how to directly map

our problem formulation into a control cycle for an

autonomous agent. This mapping fails because com

puting the expected gain of a method turns out to be

intractable. Section 5.2 demonstrates that even in

the case where only one method is associated with

each goal, computing the optimal control strategy

turns out to be NP-hard. The agent must therefore

resort to a heuristic approach in order to address

the control problem with manageable deliberation

1Proofe of the results in the paper appear in (Etzioni,

1989).
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costs. For this reason, attempts to apply decision-

theoretic ideas to the problem of control are forced to

employ approximations to decision-theoretic formu

lae. We refer to such approaches as decision-analytic

approaches to control.

The three-dimensional view of control is not ex

plicitly represented in Table 1. However, the pres

ence of multiple methods for satisfying (to varying

degrees) multiple goals imply a range of possible ex

ecution cost and goal utility tradeoffs. The presence

of a time constraint means that time spent deliber

ating is time that is not available to act. Thus, all

three dimensions are present in our formulation of

the control problem.

We do not assume that the agent is given expected

utility and expected cost estimates for its methods.

The following section describes how the agent ac

quires these estimates over time.

3 Acquiring Control Knowledge

3.1 Keeping Records

Initially, the agent proceeds by attending to its goals

and executing its methods in an arbitrary default

order. After the execution of a method, the agent

records how long the execution took, and the utility

obtained from the execution. If the method is an ex

cavation procedure, for example, a clock is consulted

before the procedure begins and after it terminates

to determine its time cost. The utility of the ex

cavation is determined by evaluating the utility of

its result. The result may be a pile of gravel (with

utility 0) an unmolested treasure chest (with utility

equal to the value of the chest), or a portion of the

buried treasure (with utility corresponding to the

portion's value).

By definition, a method terminates in a final world

state whose utility may be evaluated. A more elab

orate sampling mechanism is required in order to

extend our formulation to individual action choices.

To record execution cost, a clock is consulted before

each action is executed and, again, after the method

(a sequence of actions) terminates. The time cost

recorded for each action is the termination time mi

nus the initial time, which is the cost of the por

tion of the method beginning with the given action.

The utility of each action is simply the utility of

the method which includes the action. In chess, for

example, the utility of the final board position is

assigned to each move made during the game.

A difficult credit assignment problem lurks here,

because the game may have been won through a

stroke of genius in the twentieth move even though

the tenth move lost the queen. Yet the tenth move

will be rewarded all the same. We do not have a sat

isfactory domain-independent solution to this prob

lem. Nevertheless, adequate sample sizes will reduce

its effect. It seems reasonable to suppose that the

majority of games where a player loses his or her

queen will be lost. Thus, although the treacherous

tenth move has been assigned high utility in one in

stance, in other games its utility will be recorded

more accurately. As section 3.3 shows, averaging

over a sufficiently large sample of games is likely to

lead to a reasonable estimate of the move's expected

utility.

3.2 From Samples to Expectations

The agent's state-division defines classes of world

states. The agent encounters states from each

class with some probability (unknown to the agent).

Hence, we may think of a given class in the state-

division as a population. A sample of previously

encountered instances is associated with each class.

Suppose, for example, that one of the agent's

classes is "excavations in granite rock." The agent

is concerned with estimating the cost of digging into

the granite rock in a particular case. The mean or

expected cost for the class can serve as a cost es

timate for a particular instance. The quality of the

estimate depends on the homogeneity of the class. If

the class is perfectly homogeneous, for example, the

mean will provide perfectly accurate estimates. If

the variance of the class is high, on the other hand,

the mean will be a poor estimator. A formal anal

ysis of these considerations is provided in (Etzioni,

1988).

3.3 Distribution-Free Estimation

Of course, the mean of the class is not known to

the agent. However, the record-keeping apparatus

described above associates cost and utility informa

tion with instances of method executions. In turn,

these instances are associated with the classes in the

agent's state-division yielding samples from which

the population means may be estimated. The dis

tance of a sample mean, X , from the population

mean, ft, is a rapidly decreasing function of the sam

ple size. Hoeffding's inequality (Hoeffding, 1963)

quantifies this intuition.2

p(| X - n \< e) > 1 - 2e-2nf3/(l-a)a

The inequality provides us with a lower bound on the

probability that X is within c of the true mean with

out making distributional assumptions. The range

of the random variable is assumed to be bounded,

however. Hoeffding's inequality also presupposes a

2X is an independent random variable, a < X < b; X

is the mean of a random sample of X; n is the sample

size.



Tractable Decision-Analytic Control 119

fixed (but arbitrary) probability distribution over

the population.

Hoeffding's inequality enables us to compute the

sample size required to guarantee bounds on the reli

ability and accuracy of estimated means. As the fol

lowing definition makes apparent, the required sam

ple size increases logarithmically with the desired re

liability and quadratically with the desired accuracy

for a mean estimate.3

Definition 1 sample-size(S, e) = » ^' ln(j).

If the value of sample-size is substituted for n in

Hoeffding's inequality, the resultant inequality is

^(1 X - fi \< c) > 1 - 6. Therefore,

Proposition 2 Given values for any pair out of the

triple t, 6, and sample-size, the value of the third

parameter may be computed via Hoeffding's inequal

ity.

The analysis in Section 5 makes use of this proposi

tion to determine the accuracy of its estimates given

samples and desired reliability levels. Expected ac

curacy and reliability are derived for populations of

states. The statistical theory used provides no guar

antees on the error of using the estimates to make

predictions in any single state.

3.4 Class Formation

Hoeffding's inequality demonstrates that as the

agent accumulates experience (which is translated

to increased sample sizes) the reliability and accu

racy of its estimates increase. At any given point,

however, the agent may not be certain of having a

large sample at its disposal for reliably estimating

the mean of a given class. The agent may, there

fore, combine several related classes (e.g., digging in

granite and digging in basalt), compute the sample

mean for the combined classes, and use that sam

ple mean as its estimate for new instances from the

combined classes. The likelihood that the agent will

have an adequate sample size increases with the size

of the class. However, as more classes are combined

into one it is also likely that the variance of the class

will grow thus reducing the accuracy of the estimate.

Consequently, the agent must trade sample size and

class variance against each other.

Although the agent is likely to succeed in obtain

ing reliable and accurate mean estimates for suffi

ciently large populations, the agent's choice of pop

ulation or class is critical for the usefulness of the es

timates. Suppose that the agent is trying to choose

between digging into the granite rock and using dy

namite to clear the ground. If the agent were to map

3Results obtained by (Haussler, 1988) in a concept

learning application suggest that this bound can be im

proved upon.

1. For each method (of each goal):

(a) Map the (state, method) pair to a class of

states.

(b) Collect previously encountered instances of

this class into a sample.

(c) Compute the mean utility U and mean cost

T of the sample.

(d) Form the method's key: U/f.

2. Sort the methods on their keys in decreasing

order.

3. Execute the methods in succession.

Table 2: A (simplified) Control Cycle

the current excavation instance to the class of exca

vations performed on weekends, for example, dyna

mite would be unlikely to distinguish itself over dig

ging. In some cases digging is superior to dynamite

and there is no correlation between the cases and the

class of "weekend excavations." In contrast, the es

timated figures will be useful if the agent succeeds in

mapping the instance to a homogeneous class such

as "excavations in volcanic rock."

Homogeneous classes are often required to provide

accurate cost and utility estimates. Randomly ag

gregating instances into classes is unlikely to prove

beneficial. It is unrealistic to expect, however, that a

domain-independent control mechanism will broach

a new domain with the appropriate classes already

formed. Therefore, dynamic class formation is es

sential to any domain-independent instantiation of

the model described in Figure 1. The agent can

employ Concept learning techniques to dynamically

form homogeneous classes based on its past experi

ence.

4 A Greedy Control Cycle

The previous section described how an agent can,

over time, acquire and refine utility and cost esti

mates for its methods. Our proposed control mech

anism utilizes these estimates to guide the agent. A

simplified description of the control cycle appears in

Table 2. In a nutshell, the proposal is to choose

methods in a best-first fashion where the evaluation

function is the methods' marginal expected utility.

In accord with the abstract description in Figure 1,

the cycle maps the current state to classes of states

and uses beliefs about these classes as inputs to a

decision procedure. The decision procedure chooses

the next method. Specifically, the agent maps each

(state , method) pair to a class of states. A sample



120 Etzioni

of previous executions of the method (in states be

longing to the class) is indexed under the class. The

agent attempts to find a homogeneous class which

has a sufficiently large sample associated with it.

The mean utility and cost of the sample are com

puted and used as estimates or predictions of the

cost and utility of executing the given method in the

current state. If the sample associated with the class

is too small to yield reliable predictions, a search

may be initiated for a larger class with an adequate

sample.

Once all the cost and utility estimates have been

computed, the methods are sorted in decreasing or

der on the ratio of their individual utility/cost esti

mates. That is the essence of our decision procedure.

As we discuss in Section 6 the possibility of refining

the state-division is considered. If it is rejected the

sorted methods are executed in succession, otherwise

the state-division is refined and the control loop is

restarted.

We have glossed over numerous details to convey

the essence of the control cycle in limited space. Exe

cution considerations such as updating time bounds,

removing redundant methods from the method list,

and the handling of subgoals, as well as efficiency

considerations such as caching sample means are not

discussed.

4.1 The Decision Procedure

For the sake of tractability, our decision procedure

sorts the available methods on estimates of their

marginal expected utility rather than on their ex

pected gain. Marginal utility is the derivative of

the utility function with respect to the cost variable

(time in our case). Utility in our model is not a

continuous or differentiable function since executing

a method has value only once its goal is achieved.

However, dividing the utility of executing a method

by the time it takes is an easily computed, discrete

analog to the continuous case. Of course, this com

putation is done for all the methods before their exe

cution in order to choose the method to execute. We

treat the utility and cost of a method about to be ex

ecuted as random variables. The values used, there

fore, are estimates of the expected cost and utility

of the outcome of each method's execution. These

estimates are sample means derived from past expe

rience as outlined in Section 3.1.

Maximizing the marginal expected utility is a

greedy control heuristic. The agent picks the

method that is expected to maximize the "return"

for its time investment. We refer to this approach as

greedy rationality, and to the heuristic used as the

MU heuristic. Employing the MU heuristic enables

the agent to trade goal utility (and degree of satis

faction) for reduced execution cost. Thus, when nec

essary, the agent will prefer speedy approximations

to costly, high-utility alternatives. For example, the

agent will prefer a treasure worth one thousand dol

lars, which can be found in five minutes to a treasure

worth three thousand dollars, but which requires one

hour to excavate. However, the agent will prefer

a sixty thousand dollar treasure, which requires an

hour to excavate, to the five-minute treasure above.

5 Formal Analysis

What guarantees can we make on the performance

of an agent using the MU heuristic? In two special

cases described below we have demonstrated that

the heuristic is optimal (in the single goal case, Sec

tion 5.1) or within a factor of two of optimal (in the

single method case, Section 5.2). The suboptimality

of decisions made by the heuristic is shown to de

crease linearly with the inaccuracy of the estimates

used. In the general case, Section 5.3 guarantees

that the heuristic exploits dominance relations be

tween methods. Thus, if one option appears better

than another in every regard the MU heuristic will

provably make the correct choice. The problem of

further analyzing the MU heuristic is open.

5.1 The Single Goal Case

The MU heuristic may result in suboptimal perfor

mance if the agent attempts to achieve a single goal

given multiple methods and a deadline.4 However,

a slightly altered model demonstrates the efficacy of

the MU heuristic. Consider the case where the agent

attends to a single goal, but has a constant oppor

tunity cost 7 for every time unit spent on the goal.

Since the agent doesn't know which of its methods

will succeed in the current state, it attempts to max

imize the expected gain of its actions. We can model

the agent's control problem as follows:

Given:

• A current goal g.

• An opportunity cost for time 7.

• A set of methods M for achieving the goal g.

• Each method miM has

- An expected time cost E[T(m)].

- An expected utility E[U(m)].

- A probability of achieving a satisfactory

outcome P(m).

Determine: A method ordering whose expected

gain is maximal.

4Consider the case where the expected utility for a

method m is the same as m's expected cost, and this

holds for all methods.
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The expected gain of a method m is:

E[G(m)] = E[U(m)] - yE[T(m))

The agent only executes methods whose expected

gain is positive. Let a stand for an ordering of the

method set M indexed by i, and define P(0) = 0.

The quantity to be maximized is:

E[U{c)] = £ E[G(mi)] IJ(1 -P(mk))

E[G(m,)]>0 *=0

Thus, a method ordering is optimal if it maximizes

the expected gain of trying to achieve the current

goal. This definition assumes that the methods'

probability of success, utility, and cost are indepen

dent of the order in which the methods are executed.

Naively, the optimal method ordering can be

found by computing the expected gain for all possi

ble method orderings, but for N methods this takes

0(N!) time. Proposition 3 suggests an equivalent

O(NlogN) procedure.5

Proposition 3 Sorting M on E[G(m)]/P(m) in

decreasing order results in an optimal method order

ing.

The cases in which time has no cost for the agent

can be modeled by setting 7 to 0. In that case, max

imizing the expected gain reduces to simply sort

ing the methods on their maximal utility outcomes.

Neither time consumption nor probability of success

have any relevance in this case, because the agent

has unlimited time at its disposal, at no cost.

Of course, this is highly unrealistic. As our own

experience indicates, an agent always has a positive

opportunity cost for time. There is always some

thing useful to do. Previous formulations of the

control problem have focused on minimizing the ex

pected time for achieving the goal given a set of

equal-utility methods with binary outcomes (either

success or failure) and varying costs. This formula

tion is easily accommodated within our framework

by making some additional simplifying assumptions.

Namely, setting 7 to 1 and assuming that U(m) is

identical for all methods m in M.

Under these assumptions the key reduces to:

[P(m)U(rn) - E[T(m)]/P(m)

The I/(m)'s may be factored out since they

are the same for all methods leaving us with

-E[T(m)]/P(m) or equivalently P(m)/E[T{m)],

which is a result obtained by (Simon and Kadane,

1975; Barnett, 1984; Smith, 1988) and others. Un

der the stated assumptions, sorting methods on this

5The number of possible outcomes for each method

is assumed to be bounded by a constant.

key is equivalent to sorting the methods on their

marginal expected utility. Thus, employing the MU

heuristic leads to optimal behavior in this special

case.

In practice, we do not know E[T(m)] and P{m)

for each method, but these parameters can be es

timated from samples as discussed in Section 3.2.

Let P(m) and E[T(m)] be estimates of P(m) and

E[T(m)] such that

pfl P(m) - P(m) \< e) > 1 - 6

and

p{\ E[T(m)} - E[T(m)] \< a) > 1 - 6

That is, mean estimates whose accuracy and relia

bility is guaranteed by Hoeffding's inequality. Let

the number of methods for achieving a given goal be

N. Define <rh to be the method ordering produced

by sorting the methods on P(m)/E[T(m)], and let

<r* be the optimal method ordering. Define the time

cost of a sequence, T(<r), to be the sum of the time

cost of the elements of a.

Proposition 4 E[T(ah)]-E[T(a')] is linear in 1/e

and \/a with probability linear in 1/6.

That is, the expected cost of the method ordering

produced by sorting on the estimates provided di

verges from the optimal expected cost by an amount

that decreases linearly with the inaccuracy of the

estimates, with probability that grows linearly with

the reliability of the estimates. A similar result was

obtained by Barnett (1984).

Our more general framework enables us to make

the following observations:

• The expected gain of executing the methods can

be recomputed after one or more methods have

failed. When the expected gain drops below 0,

the agent ought to abandon the current goal.

• When 7 > 1, the agent ought to trade the de

gree of satisfaction on the current goal for time

to be used on other goals. 7 > 1 indicates that

there is "pressing business" at hand.

• Similarly, when 7 < 1, the agent ought to pro

portionally discount the time cost of satisfying

the current goal, because the opportunity cost

for time is low.

The following section argues that opportunity cost

for time 7 cannot be tractably computed in general.

Indeed, previous work has implicitly assumed it to

be always equal to one. The above observations are

of interest for special cases in which the opportunity

cost is readily available.

5.2 The Single Method Case

Given a set of multiple independent goals, a sin

gle method for achieving each goal whose success
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is guaranteed, and a deadline—the agent's (special

ized) control problem is isomorphic to the knapsack

problem. We can define the optimization version of

the knapsack problem as follows:

Instance: A finite set I, for each iel there is a

weight w(i)eZ+ , a value v(i)eZ+ , and a positive in

teger "weight capacity" B. Viel,w(i) < B.

Question: What is the subset I' C I such that

Ylui' "(0 •* as large as possible, subject to the con

straint 22ieji tw(«) < B?

In the control case the items are methods. The

value of an item may be interpreted as the utility of

achieving a goal with the given method; the weight

of an item becomes the time required to execute

the method, and the weight capacity of the knap

sack is a deadline. The knapsack problem is known

to be NP-hard. Since computing the expected op

portunity cost of a method necessitates computing

the optimal solution to a knapsack problem, com

puting the expected opportunity cost of a method is

NP-hard. Furthermore, while estimates of expected

utility and expected time consumption are readily

produced by the mechanisms in Section 3, estimates

of opportunity cost are not. Thus, an agent fac

ing multiple goals and a deadline will not be able to

tractably determine its optimal course of action.

However, powerful approximation algorithms ex

ist for the knapsack problem. Garey & Johnson (p.

135) remark that it is not difficult to show that the

following approximation algorithm comes within a

factor of two of optimal:

1. Pick the item in I whose value is maximal and

call it max.

2. Sort the items in iel in decreasing order on their

value-density v(i)/w(i).

3. Starting with /' empty, proceed sequentially

through I, each time adding the next iel to /'

whenever the sum of the weights of the items

already in /' does not exceed B — w(i).

4. Compare the combined value of the elements in

I' with v(max) and take the better of the two.

Essentially, the algorithm sorts the items on their

value-density and places them in the knapsack in

that order. This scheme is isomorphic to step 2

in our control cycle (Table 2).6 Marginal utility

is equivalent to value-density. We use the term

marginal utility to underscore the connection be

tween our approach and economic theory.

Two steps must be taken before Garey & John

son's guarantee on the performance of their algo

rithm can be mapped to our single method case.

6Our algorithm also compares the maximal value item

with the sorted list, but this detail is glossed over in the

in Table 2.

First, since the actual value and weight figures are

not known for our items (the methods), Garey &

Johnson's guarantee must be shown to hold for ex

pected value and weight figures. Let ah be the pack

ing produced by the value-density algorithm run on

expected value and weight figures, and Let a* be

the packing of the knapsack whose expected value is

maximal. Define the value of a sequence, v(a), to be

the sum of the values of the elements of a.

Proposition 5 2E[v(ah)] - E[v(a*)] > 0

The value-density algorithm's packing is within a

factor of two of optimal. As in the single goal case,

this proposition does not suffice because we only

have estimates for the expected utility and time cost

for the methods. The statistical theory presented in

Section 3.3 demonstrates that we can control the

divergence of our estimates from the true expected

value by using sufficiently large samples. However,

is the suboptimality of the value-density algorithm

a well-behaved function of estimates' accuracy? The

answer is yes.

Let v and w stand for the expected weight and ex

pected value estimates whose inaccuracy is bounded

by e with probability at least 1 — 6 as guaranteed

by Hoeffding's inequality. Let N be the number of

items in the set I. Suppose that for any set of items

/' C / we have w(I') < B if and only if w(I') < B.

That is, no item is excluded from a packing due to

the inaccuracy in the estimation of its weight.7 The

suboptimality of the packing produced by the value-

density algorithm is linear in 1/e with probability

that is linear in 1/6.

Proposition 6 2E[v(o-h)]-E[v(o-*)]+2Ne > 0 with

probability at least 1 — 2N6.

Again, the MU heuristic proves to have satisfactory

and well-understood performance.

5.3 Exploiting Dominance

The previous subsections covered two important spe

cial cases: the single method (multiple goals) case,

and the single active goal (multiple methods) case.

This section offers a weak but important guarantee

on the behavior of the MU heuristic in general.

A method is said to dominate another method for

achieving a given goal if, according to the agent's be

liefs, the dominating method is no worse along any

dimension, and better along at least one. For exam

ple, if method A is cheaper, has higher utility, and is

more likely to succeed than method B, then method

A dominates method B. If we consider >,<,= as

three possible qualitative relationships between two

7 In practice we can guarantee that this assumption

holds by introducing a small leniency in the deadline.
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methods along a given dimension, then we may ob

serve fourteen distinct (up to symmetry) qualitative

relationships between methods compared on their

cost, probability of success, and utility.

Of the fourteen, seven represent dominance rela

tions (in one remaining case the methods are inter

changeable and the other six represent tradeoffs).

This observation gives credence to Wellman's asser

tion that "the ability to separate tradeoffs from obvi

ous choices defines a lower bound on competence for

decision-making agents" (Wellman, 1988, page xvi).

It is indeed important to guarantee that a control

heuristic exploits dominance relations.

Proposition 7 // one method dominates another,

the MU heuristic will choose the dominating method.

6 Optimal Versus Maximal

Section 5 demonstrated that a record-keeping agent

can rapidly converge to optimal (or close to optimal)

control choices in two special cases of the general

control problem. Surprisingly, perhaps, optimality

is not a very strong guarantee on the performance

of an agent. Optimal control merely means making

the choice that is expected to be the best over a

class of cases. Thus, if the agent's state-division is

too coarse poor performance will ensue.

Consider an agent that has no state-division and

two actions at its disposal. Based on its experience

the agent determines that the probability of achiev

ing its goal is 0.6 using action A, and 0.5 using action

B. Clearly choosing action A is optimal, because on

average choosing action A is better than action B.

However, always choosing action A will still result

in poor performance. If the agent may only use one

action, optimal control will lead to success merely

sixty percent of the time. It is possible, however, for

the agent (given a better state-division) to succeed

one hundred percent of the time.

In order to measure how 'good' optimal control

is, we may define a notion of maximal control. A

maximal control mechanism chooses the option that

leads to the maximal utility outcome in any given

world state. It is unlikely that an agent will be able

to always find the maximal choice. However, defin

ing the notion of maximal control provides us with

a vantage point from which to evaluate the perfor

mance of an optimal control mechanism.

6.1 Improving on Optimality

An agent may improve on the optimal control strat

egy by refining its state-division. The application

of concept learning techniques to acquiring control

knowledge (e.g., Minton et ai, 1989; Mitchell et ai,

1989) may be analyzed in these terms. Unfortu

nately, the problem of quickly acquiring general and

effective control knowledge is difficult (cf., Etzioni

and Mitchell, 1989). In this section we consider how

our architecture may be used to accelerate the con

vergence of an agent towards maximal control.

Standard concept-learning approaches to control

attempt to define classes of states where applying

a given method is guaranteed to lead to success.

This amounts to trying to define equivalence classes

over world states. Certainly, the best possible state-

division is a set of equivalence classes over states

with respect to the quantities of interest—utility,

cost, and probability of success. Even in very simple

domains, however, such state-divisions are difficult

to acquire. Fortunately, equivalence classes are suf

ficient but not necessary even for maximal control.

In fact, any state-division that results in the same

method ordering as the equivalence-class division is

maximal as well.

For example, if method A's time cost ranges from

100 to 200 seconds, and method B's cost ranges from

500 to 800 seconds, then method A will be preferred

to method B, ceteris paribus. Obtaining precise pre

dictions of the cost of A and B is unnecessary since

method A will always be cheaper. Although maxi

mal divisions are difficult to acquire, the above ex

ample demonstrates that approximate information

can be used to make maximal control decisions.

6.2 Controlling Refinement

A time-bounded agent is faced with the problem of

allocating some of its scarce time to refining its state-

division. Time spent refining the state-division is

time that is not available to act. The agent must,

therefore, trade the time saved by having a superior

state-division against the time spent refining the di

vision. This tradeoff may be formulated precisely in

decision-theoretic terms (cf., Barnett, 1984). Con

sider the two methods F and G whose expected time

costs are 500 and 600 seconds respectively. Ceteris

paribus, method F will be chosen. The expected loss

of always choosing F, relative to making the max

imal choice at each point, can be estimated from

a sample. The estimated loss of using the current

state-division enables an agent to decide whether to

allocate resources to refining the state-division or

not. Comparing the estimated loss of making con

trol choices based on different classes in the state-

division tells the agent which classes to refine. Thus,

the process of judiciously refining the state-division

over time is facilitated. Unfortunately, the problem

of mapping estimated time savings from refinement

to their utility for the agent remains unsolved.
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7 Related Work

In the AI literature Simon & Kadane (1975) pro

vide an early example of the use of decision-theoretic

ideas to control search. More recently, Smith (1988)

has extended Simon & Kadane's approach to the

problem of controlling backward inference. Al

though important, this body of work suffers from

three chief drawbacks: The control problem is solved

for a single goal, the decision-making computations

are at least linear in the size of the given search

graph, and no indication is given as to how to obtain

or estimate the requisite knowledge. The approach

developed by Simon & Kadane and Smith is more

general than our own because it provides guidance

for individual action choices. However, we have indi

cated how to extend our approach in this direction.

SproulFs dissertation (1977) introduced a three-

dimensional view of planning. Sproull argued that

finding an optimal plan is often suboptimal when

the costs of planning are taken into account. He

pointed to the possibility of employing decision the

ory to trade execution cost, plan reliability, and goal

utility. Sproull continued to assume that the requi

site knowledge for the planner's decision analysis is

given.

The work of (Natarajan, 1988) on optimizing Pro

log programs, and of (Rendell, 1983; Abramson and

Korf, 1987; Lee and Mahajan, 1988) on constructing

evaluation functions for game-playing domains rep

resented the next step forward by suggesting that

sampling a program's experience can allow it to esti

mate the extensive knowledge required for decision-

analysis.

Abramson <k Korf describe an application of

decision-theoretic ideas to constructing evaluation

functions for game-playing. Their approach esti

mates the expected utility of making a move by ran

domly sampling continued play after that move. The

estimated utility is used as the move's evaluation.

Despite being developed independently, Abramson

& Korf's approach is similar in spirit to our own.

The application to game-playing enables Abramson

<k Korf to ignore execution cost. Hence, they sort

their options on estimates of expected utility rather

than marginal expected utility as in our approach.

Abramson & Korf's work demonstrates the deep

connection between search guided by heuristic eval

uation functions and decision-analytic control.

Russell li Wefald (1988) present a general the

ory of decision-analytic control. Russell &; Wefald

propose to control an agent's computations by esti

mating their expected utility. They point out that

the utility of an agent's computations depends on

their effect on the agent's ultimate action choices.

The link between the computations performed and

the agent's choice of actions depends on the spe

cific architecture being studied. Russell k. Wefald

have applied their general theory to several prob

lems including the control of game-tree expansion

with promising empirical results. Like ours, their

approach relies on sampling to obtain estimated val

ues that are fed into a simple and fast decision proce

dure. Furthermore, both approaches converge to op

timal control with increased sample sizes, and both

require a state-division into homogeneous classes to

achieve satisfactory performance.

In contrast to our approach, however, their ap

plication to game-tree expansion employs powerful

meta-level theorems to move from estimates for the

values backed up from leaf expansions to utilities for

the agent. To simplify their analysis Russell k. We

fald explicitly make several assumptions. The most

interesting from our perspective is the assumption of

a uniform opportunity cost for time. This assump

tion allows Russell & Wefald to focus on computing

the expected utility of computations instead of the

expected gain, which is difficult to compute (as ar

gued in Section 5.2).

Analytic models of previous work have been pro

vided at the cost of making distributional assump

tions. Russell & Wefald and Lee & Mahajan as

sume a normal distribution, and Smith assumes a

uniform distribution. Our approach is unique in em

ploying distribution-free statistical theory to analyze

our control mechanism. In fairness, when distribu

tional assumptions are empirically validated (e.g.,

Lee and Mahajan, 1988) they can allow more effi

cient sampling. However, since the statistical infer

ence required is merely the estimation of means, an

inference for which adequate distribution-free theory

exists, it seems more parsimonious to dispense with

distributional assumptions in the general case.

8 Concluding Remarks

The opportunity cost of time has emerged as a

paramount consideration in choosing a course of ac

tion that is satisfactory along the three dimensions

of deliberation cost, execution cost, and goal utility.

As demonstrated by our analysis of the knapsack

problem, computing the opportunity cost of time is

intractable. Thus, an agent facing multiple goals

and a time bound will not be able to tractably de

termine its optimal course of action. Our solution is

to employ the principle of greedy rationality (choose

the action whose marginal expected utility is max

imal) as the basis of our control regime. Happily,

greedy rationality obviates the need for computing

or even estimating the opportunity cost of time.

Previous work on decision-analytic control has not

considered the problem of acquiring a division of an
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agent's world into classes. Section 6 argues that ac

quiring and refining such a division is essential for

satisfactory performance. Simply, finding the "opti

mal chess move" will not do. The 1040 or so chess

positions have to be divided into classes for which

optimal moves can be determined. Several archi

tectures have applied concept learning techniques to

the control problem with some success. Considering

the chess domain, however, illustrates the difficulty

of the class-formation task for realistic applications.

Solving the class-formation problem is facilitated

by the use of a decision-analytic control mecha

nism with record-keeping capabilities. The decision-

analytic control mechanism exploits approximate in

formation in the form of probabilities and estimated

costs/utilities. Thus, even when the agent does not

know what the optimal action is, it can quickly make

an educated guess. In contrast, attempts to actually

compute the identity of the optimal action suffer

from a prohibitive deliberation cost. The record

keeping module enables an agent to evaluate the

classes it has formed. If a class turns out to be

nonhomogeneous, it may be refined. Thus, feed

back from the record-keeping module can guide the

class-formation process. Finally, learning which of

several goals to attend to is a problem that has re

ceived scant attention in the machine learning lit

erature. Our approach suggests how to reduce this

problem to a standard class-formation or concept-

learning problem.
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Abstract

Researchers in artificial intelligence have re

cently been taking great interest in hybrid

representations, among them sorted logics—

logics that link a traditional logical repre

sentation to a taxonomic (or sort) represen

tation such as those prevalent in semantic

networks. This paper introduces a general

framework—the substitutional framework—

for integrating logical deduction and sortal

deduction to form a deductive system for

sorted logic. This paper also presents some

results that provide the theoretical under

pinnings of the framework. A distinguish

ing characteristic of a deductive system that

is structured according to the substitutional

framework is that the sort subsystem is in

voked only when the logic subsystem per

forms unification, and thus sort information

is used only in determining what substitu

tions to make for variables. Unlike every

other known approach to sorted deduction,

the substitutional framework provides for a

systematic transformation of unsorted deduc

tive systems into sorted ones.

1 Introduction

Recently, researchers in artificial intelligence (AI) have

been taking great interest in hybrid representations—

representation systems that consist of two or more in

tegrated subsystems, each of which may employ dis

tinct representation languages and inference systems.

Included among such systems are:

• sorted logics (e.g., [McSkimin and Minker, 1979],

[Cohn, 1987], and [Walther, 1987]), which inte-
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ful discussions related to this work, especially Tony Cohn.

This work has been partially supported by NASA under

grant number NAG 1-613 and by the University of Illinois

Research Board.
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grate logical languages and languages for sort in

formation,

• systems that mix assertional information and ter

minological information (e.g., KRYPTON [Brach-

man et al., 1983] and KL-TWO [Vilain, 1985])

• systems that mix a weak logic with a taxonomic

representation (e.g., [Frisch, 1986a] and [Patel-

Schneider, 1987]),

• logic programming systems that integrate Horn-

clause reasoning and inheritance (e.g., LOGIN

[Ait-Kaci and Nasr, 1985] and HORNE [Frisch et

al., 1983]) and

• logics with built-in theories (e.g., theory resolu

tion [Stickel, 1985]).

Researchers often cite two advantages to using hy

brid representations. They point out that, instead of

expressing all information in a single general-purpose

representation language, it is often easier to express

different kinds of information in representation lan

guages specialized to each. Secondly, they claim that

the use of specialized representations enables them to

use specialized, and hence more efficient, methods of

reasoning.

One particular form of hybrid representation that

has been receiving a good deal of attention is sorted

logic. Sorted logics can be seen as hybrid representa

tions that link a traditional logical representation to

a taxonomic representation such as those prevalent in

semantic networks. The taxonomic component, which

I shall call a sort module, contains information about

relationships among various categories, or sorts. The

logic component uses as its representation language

a standard first-order predicate calculus that is aug

mented with sorted variables—variables that are re

stricted to taking on values that are in a specified sort.

In axiomatizing a domain, many researchers—both

in mathematics (e.g., Feferman [1974]) and in artifi

cial intelligence (e.g., Hayes [1971; 1985], McDermott

[1982] and Allen [1984])—have long preferred sorted

logics to unsorted ones. The sorted logics are more

natural because one usually wants to make a general

claim about every individual in a certain class rather
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than every individual in the entire universe. However,

only recently have researchers begun to explore the

possibility of using the sorted logics in automated de

ductive systems. Some extremely powerful deductive

systems for sorted logic have been built and, in sev

eral test cases, have demonstrated dramatic superior

ity over unsorted systems. Among these demonstra

tions are Cohn's [1985] and Walther's [1985] solutions

to Schubert's Steamroller problem1—a puzzle-like de

ductive problem—and Frisch's [1986b] work on a de

ductive parsing problem.

Constructing a hybrid representation system in

volves more than just building a multitude of com

ponents, each with its specialized representation lan

guage and specialized deductive methods. The vari

ous deductive systems must be integrated in a manner

that enables the knowledge represented and deduced

by one component to be available for other components

to use. Even if each component is a complete deduc

tive system, the entire system may be incomplete if the

components are not integrated in a proper manner.

A common way for two deductive components to

interact is for one component to use some special form

of unification that invokes the second deductive system

as a subroutine. In some, though not in all, systems

this is the only use made of the information stored in

the second component.

There are a number of sorted logics whose deductive

systems are prime examples of this architecture. There

are two ways in which sorts commonly enter a sorted

logic: variables can be restricted to range over the ele

ments of a given sort and predicates and functions can

be restricted to take arguments of some given sorts.

When performing unification in a sorted logic these

restrictions can be used to eliminate certain substitu

tions from consideration. To do this the unifier calls

upon a second deductive mechanism, the sort module,

to decide whether certain sentences are consequences

of the information that it has stored. For example,

the sort module may store the information that Clyde

is in the sort of elephants and that everything in the

sort of elephants is in the sort of mammals. During

unification the sort module may be asked to deduce

that Clyde is in the sort of mammals.

Suppose that we are given an unsorted logical lan

guage with ordinary variables and a deductive system

that operates on that language by using unification

to handle variables. Now suppose that we extend the

unsorted language to a sorted language and wish to

extend the unsorted deductive system to operate on

the sorted language. Furthermore, suppose we wish to

do this repeatedly for many languages and deductive

systems. Must we initiate a large research project to

work on each deductive system individually or is there

lA comparison of solutions to Schubert's Steamroller

problem has been compiled by Stickel [1986]

a set of principles and a systematic way to generate

these new systems?

In all previous work, each system for sorted de

duction and its completeness proof is produced from

scratch. No general principles or methods have been

available to do this systematically. For example, the

recent theses of Cohn [1983; 1987] and Walther [1987]

present sorted logics and develop resolution-based de

ductive systems for them. Neither of these deductive

systems are generated systematically from deductive

systems for unsorted logics. Consequently, each of

these theses is forced to conclude by raising an open

question: how can other unsorted deductive systems

be extended to deal with a sorted logic?

This paper introduces a framework for integrating

logical deduction and sortal deduction to form deduc

tive systems for logics with sorted variables. In a de

ductive system constructed according to this frame

work the sort module is invoked only when the logic

module performs unification. Because the sort infor

mation gets used only when making substitutions, this

framework is called the substitutional framework.

The substitutional framework provides not only an

architecture for sorted deduction, but also a method

for systematically transforming unsorted deduction

systems into sorted ones. As we shall see, these trans

formations are applicable to all deductive systems that

handle quantified variables schematically by using uni

fication. This includes almost all known deductive sys

tems, and that is why the title of this paper refers

to the substitutional framework as a "general frame

work."

The basic idea of reasoning about taxonomic infor

mation during unification dates back to Reiter's [1977]

work on deductive databases. The results reported in

this paper greatly generalize his results. To begin with,

his results pertain to a language that is much weeker

than that employed here. His language, which can

best be described as "database logic," has no existen

tial quantifiers or function symbols other than 0-arity

ones. Thus the only terms that occur in the language

are constants and variables, and therefore much of the

difficulty of sorted unification is avoided. Furthermore,

Reiter only considered integrating sorted unification

into a particular deductive system, O-resolution. He

proved the completeness of sorted O-resolution, but

because the proof is an argument about the syntac

tic form of O-deductions, there is no apparent way in

which it generalizes to other forms of deduction.

Reiter also observed that there are certain cases in

which sorted O-resolution is incomplete and he identi

fied an extremely strict condition sufficient for its com

pleteness. Though he pointed out that this condition

is not necessary for completeness, he did not identify

a necessary condition. The present paper identifies

a condition that is both necessary and sufficient for

completeness, not just for sorted O-resolution, but for
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any form of sorted deduction that falls into the sub

stitutional framework. This result thus identifies the

limitations inherent in building taxonomic reasoning

into unification.

After presenting the syntax and semantics of a first-

order language with sorted variables, this paper gives

an overview of the substitutional approach. Section 4

presents some fundamental definitions and theorems

on which the substitutional framework rests. In par

ticular, that section generalizes the notions of substi

tutions and unifiers to account for sorted variables,

and generalizes the Herbrand Theorem accordingly.

Using resolution as an example, Section 5 illustrates

how ordinary deduction systems and their complete

ness proofs can be transformed into sorted deduction

systems and their completeness proofs.

2 The Sorted Language

This section introduces a language called Sorted First

Order Predicate Calculus (SFOPC) that extends the

ordinary First Order Predicate Calculus (FOPC) by

introducing sort symbols and variables that are re

stricted to range over specified sorts. There is lit

tle about this extension that is particular to FOPC;

any first-order language containing standard quanti

fied variables can be extended in the same manner. In

this paper SFOPC is used for illustrative purposes. In

deed, all the ideas, definitions and theorems presented

here in terms of SFOPC were originally developed for

a three-valued logic [Frisch, 1986a].

SFOPC is written with a lexicon that contains func

tion and predicate symbols in the usual manner. In

addition, the SFOPC lexicon contains a countable set

of sort symbols. Typographically, sort symbols are

written entirely in small capitals as such: MAMMAL.

Semantically, a sort symbol, like a monadic predicate,

denotes a subset of the domain, called a sort.

SFOPC consists of two disjoint sublanguages that

share the same lexicon. The first sublanguage is used

to express general information while the second sub

language is for representing information about the re

lationships among sorts in the sort module. The sen

tences of the first sublanguage are called "A-sentences"

while those of the second are called "S-sentences."

A-sentences are similar to ordinary FOPC sentences

except that they may contain sorted variables, vari

ables that are restricted to range over specified sub

sets of the domain. A sorted variable is a pair, sb:t,

where x is a variable name and r, often referred to as

a restriction, is a sort symbol. Here is an example of

an A-sentence, which has a single sort symbol, DOG:

Vx:DOG Urin/!(as:DOG, beer) V Eat(x.DOG, meat) (1)

To avoid confusion I never write a formula contain

ing two distinct variables that have the same variable

name. That is, no formula contains variables x:t and

x'.r1 where t and t' are distinct. This enables use of the

following shorthand. If a formula has multiple occur

rences of the same variable then the restriction often

is written on only the first occurrence. For example,

(1) can be abbreviated as (2).

Va;:DOG Drink(x, beer) V Eat(x, meat) (2)

For clarity, variables are sometimes written in angle

brackets, such as (x:t). t and w are used as meta

linguistic symbols that always stand for a restriction.

Henceforth, the term "variable" refers generally to ei

ther an ordinary variable or a sorted variable. This

paper's treatment of sorted variables can be general

ized to the case where variables are restricted by the

intersection of a finite set of sorts. For simplicity this

is not done here, but see [Frisch, 1986a] for an example

of this generalization.

Semantically, a sorted variable ranges only over the

subset of the domain denoted by its restriction. For

mally this is captured by the following semantic rules

for restricted quantifiers, quantifiers with sorted vari

ables. In these semantic rules [-0] '* is the semantic

value assigned to an expression or symbol V" by a model

M and an assignment to variables e, and e[d/x] is the

assignment to variables that is identical to e with the

possible exception that x is assigned d. (Recall that

[t] ' is a subset of the universe.)

IY*:t 4>j
M,t

= True if for every d € [r] '' ,

= False otherwise

[3*:t 0]
M,« _ M,e

True if for some d £ [r]

l<gM't[d/*] = True

= False otherwise

Notice that if r is a sort symbol that denotes the

entire domain in some model M , then fVa::T <f\ ' =

{ix<j>\Mt and {3x:t. vM,e [3x <f>jM,e. Conse

quently, unsorted variables are often treated as sorted

variables implicitly restricted to the "universal" sort.

Also notice that if r denotes the empty set in some

model, then that model assigns True to Vas:T <j> and

False to 3x :r <f>.

While A-sentences employ variables restricted by

sorts, the role of S-sentences is to express relation

ships among the sorts and the sortal behavior of the

functions. S-sentences are constructed like ordinary

sentences of FOPC except that they contain no ordi

nary predicate symbols; in their place are sort symbols

acting as monadic predicate symbols. Hence, every

atomic S-formula is of the form r(t), where r is a sort

symbol and t is an ordinary term. In the obvious way

I use the terms S-formula and S-literal. Here are ex

amples of S-sentences:

DOG(/ido) A DOG(mother(fido))
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Vx dog(x) —> mammal(z)

Va;, y ODD(a) A even(z) —► ODD(sv.m(x, y))

S-formulas are assigned truth values as one would

expect: an atomic formula S(t) is assigned True if the

domain element denoted by t is a member of the set

denoted by S, and a molecular S-formula is assigned a

value in the usual Tarskian manner.

A representation consisting of a set of SFOPC sen

tences can be partitioned into a set of A-sentences and

a set of S-sentences. The S-sentences are stored in

the sort module, and, according to the substitutional

framework, only get called into play when the reason

ing engine operating on the A-sentences performs uni

fication. The set of S-sentences stored in the sort mod

ule will be referred to as a sort theory.

Instead of having a sort theory, typical sorted logics

have a sort structure, which is an ordering on the sort

symbols. The sort structure is not represented in the

logical language but is used in the meta-language spec

ification of the syntax and semantics of the language.

In dealing with these sorted logics one can speak of

the sort of a term. Strictly speaking, this cannot be

done in SFOPC; only elements of the domain have

sorts. The denotations of terms and of sorts can vary

from model to model and hence a term can denote

objects of different sorts in different models. Nonethe

less, there are ways of translating between SFOPC and

typical sorted logics but discussion of them is outside

the scope of this paper.

It should be noted that SFOPC is no more expres

sive than FOPC; each sentence of SFOPC is logically

equivalent to one (of about the same length) of FOPC.

Clearly the addition of sort symbols does not make the

language more expressive since they behave semanti-

cally like monadic predicate symbols. Nor does the

addition of sorted variables enhance the expressiveness

of the language. To see this, observe that any formula

containing restricted quantifiers can be rewritten to a

logically equivalent one without restricted quantifiers

on the basis of two logical equivalences:

Vx:t V = V* r(x) - V'

3x:t if> = 3x t(x) A if)'

where tp' is the result of substituting x for all free

occurrences of x:t in ip. The formula that results from

removing all restricted quantifiers from a formula <j> by

this rewriting process is called the normalization of <j>

and is denoted by <j>N . If $ is a set of formulas, then

To simplify the exposition of the remainder of the

paper we consider only sentences in Skolem Normal

Form (SNF), that is, sentences that are free of existen

tial quantifiers and whose universal quantifiers are in

prenex position (i.e., at the beginning of the sentence).

Hence, "quantifier" always means universal quantifier

and a quantified sentence is always a universally quan

tified sentence in prenex form. This assumption is

common in work on deduction and does not result in a

loss of generality since any set of FOPC sentences can

be mechanically transformed to SNF without affecting

their satisfiability or unsatisfiability. In a similar man

ner, any set of SFOPC sentences can be transformed

to SNF [Frisch, 1986a], but the transformation is not

discussed in this paper.

3 The Substitutional Framework

Since the introduction of resolution in 1965, nearly

every automated deductive system has handled uni

versally quantified variables. by using a unifica

tion algorithm. The method is ubiquitous, being

used in theorem provers, rewrite systems, parsers,

logic-programming systems, logic databases, question-

answering systems, and planners.2. By paralleling this

general approach to deduction with ordinary variables,

the substitutional framework for deduction with sorted

variables achieves the same degree of generality.

The gist of this approach is that a quantified sen

tence is treated as a schema standing for the set of its

ground instances. The justification for this is found in

Herbrand's Theorem, which states that a set of quan

tified sentences is satisfiable if, and only if, the set

containing every ground instance of every one of the

sentences is satisfiable.

A deductive system that operates on ground sen

tences can be made to operate on quantified sentences

by replacing tests for equality between expressions

with tests for unifiability between them. Sometimes

this is all that needs to be done, though sometimes

additional mechanisms must be incorporated. Regard

less of which is the case, the idea is that deductions on

quantified sentences are themselves schematic for de

ductions on ground sentences. A schematic deduction

is said to lift each deduction that is an instance of it.

Given a deductive system based on unification we

would like to show that it does indeed treat quantified

sentences as schemas. This usually takes the form of

a lifting theorem for the deductive system stating that

every deduction that can be made from the ground in

stances of a set of sentences can be made schematically

from the sentences themselves.

The substitutional approach to handling restricted

quantifiers is built upon the notion of well-sorted sub

stitution in the same way that the method for handling

ordinary quantifiers is built upon the notion of substi

tution. The well-sortedness of a substitution is relative

to a sort theory; thus to simplify terminology a substi

tution that is well-sorted with respect to sort theory E

is called a S- substitution. Intuitively, a S-substitution

is a substitution that respects the restrictions attached

to the variables it replaces. Thus, an algorithm for

'The substitutional framework applies to all of these

systems. Collectively, these systems are referred to as "de

ductive systems."
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performing E-unification must query the sort module

in order to obtain certain information about E. The

sort module must deduce an answer to the query from

the sort theory. The computational complexity of re

sponding to these queries, and hence the complexity

of E-unification, depends upon the structure of E.

It is a simple matter to extend an unsorted deduc

tive system V to a sorted deductive system, Vs, that

operates on the new, sorted language. All that need

be done is to replace the unification algorithm of V

with a sorted unification algorithm. Notice that the

resulting system, Vs , uses the sort module in only one

place—in its computation of unifiers. Thus, the in

terface between the original deductive methods of V

and the newly-incorporated deductive methods of the

sort module is extremely simple. Furthermore, inte

grating the two kinds of deductive methods does not

involve restructuring V. So, for example, if V is based

on a set of proof rules, no new rules need be added to

obtain the corresponding proof system for the sorted

language. On the other hand, in extending a reso

lution proof system to deal with sorted logic, Cohn

[1983] was forced to formulate and incorporate addi

tional proof rules; the expressiveness of his logic makes

it impossible to build a complete deductive system by

modifying only the unification component of a stan

dard resolution system.

T>s treats quantified sentences as sentence schemas

in much the same way that V does. The only dif

ference is that a sentence with sorted variables does

not stand for the set of all its ground instances, but

only for its well-sorted ground instances. This treat

ment of restricted quantifiers is justified by the Sorted

Herbrand Theorem, according to which a sort theory

E and a set S of sentences with restricted quantifiers

are jointly satisfiable if, and only if, the set containing

every E-ground instance of every sentence in S is satis

fiable. In saying that S and E can be replaced by the

E-ground instances of S, the Sorted Herbrand The

orem justifies using E only in computing E-unifiers.

Notice that E must be used in generating the correct

instances of S, but once they are obtained E is irrel

evant because ground instances have no variables and

hence no sort symbols.

To show that Vs treats schemas with sorted vari

ables properly one must prove the Sorted Lifting The

orem for Vs. This theorem asserts that every deduc

tion that can be made from the E-ground instances of

a set of sorted sentences can be made schematically

from the sentences themselves. Section 5 presents a

simple, systematic way of taking a proof of the Lift

ing Theorem for any V and producing a proof of the

Sorted Lifting Theorem for Vs ■

4 Fundamental Definitions and

Results

4.1 Well Sorted Substitutions and Unifiers

Roughly speaking, a substitution is well sorted relative

to a sort theory if it maps each variable to a term that

satisfies the restriction associated with the variable.

More precisely, a substitution 9 is well sorted relative

to a sort theory E if, and only if, for every variable

x:t, (x:t)6 is a term t such that E ^= V r(<). Here, and

in general, an expression of the form V 4> denotes the

universal closure of <f>—that is, the formula V^i • ■ ■ xn <f>

where x\,...,xn are the freely-occurring variables of

<t>-

Two special cases of this definition are worth noting.

If 9 is well sorted relative to E and maps x:t to a

ground term t, then it must be that E \= r(t). In other

words, E must entail that t is of sort r. If 9 maps x:t

to a variable y:u> then it must be that E \= Vy:w r(y).

That is, E must entail that w is a subset of r.

Expression e' is said to be a well sorted instance of e

relative to E if e' = e9, for some substitution 9 that is

well sorted relative to E. In the obvious way, I speak

of well sorted ground instances of a formula and write

cejt to denote the set of all ground instances of e that

are well sorted relative to E.

Substitutions, well-sorted or not, are functions and

therefore can be composed. If 9 and cr are substitutions

then their composition, 9 • cr, is Xe.cr(9(e)). In other

words, 9 ■ cr is such that e(9 ■ cr) — (e9)cr.

The usual notions of what it means for a substitution

to be a unifier and for one substitution to be more

general than another can be adapted to well sorted

substitutions as follows:

Definition 1 (Well Sorted Unifier) Let E be a set

of expressions and 9 be a substitution. 9 is a well

sorted unifier of E relative to E if it is a unifier of

E and is well sorted relative to E.

Definition 2 (E-More General) Let 9\ and #2 be

substitutions that are well sorted relative to E. 9\ is E-

more general than 9i (written #i >s 9i) iff 9\ -a — 9i

for some substitution cr that is well sorted relative to

E.

The set of all ordinary unifiers of a set of expres

sions contains unifiers that are more general than every

other unifier in the set. These so-called most general

unifiers are important because any one of them can

serve as a representative for the entire set. On the

other hand, the set of all well-sorted unifiers of a set

of expressions may not contain a most general unifier.

It will, however, contain maximally general unifiers,

unifiers such that no other unifiers are strictly more

general. Here is an example:
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Example 3 (E-unifiers) Let

E ={Va!, y odd(i) A ODD(y) —> EVN(»«m(x, y)),

Vse, y EVN(z) A EVN(y) —> EVN(*«m(a, y))}

#={z:evn, sum(v, w)}

0i={«um(ir:EVN, y:EVN)/z, se:EVN/v, y:EVN/u;}

52={*«"i(x:ODD, y:ODD)/z, js:ODd/«, y:ODD/iu}

Tften #i and #2 ore each maximally-general T,-unifiers

of E and neither 8\ nor 82 is E-more general than the

other.

Indeed, a finite set of expressions may have an in

finite number of maximally-general unifiers, none of

which are more general than any others. For instance:

Example 4 (E-unifiers) Let

E = {V* t(*(*)) - T(«(f(*))), T(t(a))>

E = {z:T,i(s(y))}

Then

{{a/y, i(«(a))/z:T}, {s{a)/y, i(,(,(a)))/z:T}, . . .}

j* an infinite set of maximally general H-unifiers of E

and none of these is E-more general than any of the

others.

In performing unsorted deduction there is no need

to consider all unifiers of two expressions; it suffices to

consider only a most general unifier. A most general

unifier forms a basis from which all other unifiers can

be generated by composing it with other substitutions.

A corresponding basis also can be formed for the set

of unifiers of two sorted expressions. As the above

examples suggests, it may be necessary to form the

basis from a set of unifiers rather than a single unifier.

Since the basis should be a small as possible it should

not contain two substitutions such that one is more

general than the other. The basis we speak of is called

a E-mos< general complete set of unifiers (or HMGCU)

and is defined as follows.

Definition 5 (E-MGCU) Let E be a set of expres

sions and let 0 be a set of substitutions that are well

sorted relative to E. Then 0 is a E-most general com

plete set of unifiers (or T.MGCU) of E iff:

1. 0 is correct; if 8 G 0 and 8 >E 8' then 8' is a

Ji -unifier of E.

2. 0 is complete; if 8' is a 'S-unifier of E then for

some 6 £0,0 >E 8' .

3. 0 is most general; 0 does not contain two distinct

substitutions such that one is E-more general than

the other.

It is easy to verify that every element of a HMGCU

is a maximally-general E-unifier. Suppose that 8 is a

non-maximal E-unifier and is in the set. Then there

is some unifier 61 that is strictly E-more general than

8 and since the set is complete it contains some sub

stitution 62 >e 81. But then the set would contain

comparable elements, 82 and 8, thus contradicting the

third condition of the definition of T,MGCU.

There is no effective procedure for finding a EMGCU

of two given sorted-expressions relative to an arbitrary

sort theory. However there are restrictions that can be

placed on the sort theory so that such procedures do

exist. Space precludes an extensive discussion ofsorted

unification and algorithms for computing it. However,

since the substitutional framework depends on the de

cidability of sorted unification, Appendix A presents

a particular restriction on the form of a sort theory,

the monomorphic tree restriction, and gives an algo

rithm that computes a Y,MGCUot any two expressions

provided that E meets the restriction.

Because they are substitutions, well sorted substi

tutions enjoy all the properties possessed by substitu

tions in general. So, for example, since the composi

tion of substitutions is associative, so is the composi

tion of well sorted substitutions. For other reasons well

sorted substitutions have many of the other properties

that ordinary substitutions do, such as those stated in

the following lemmas.

Lemma 6 (Identity Lemmas) The identity substi

tution, e, is well sorted relative to any sort theory.

Proof: e maps every variable x:t to itself and any

sort theory entails Vas:T r(as) since Va:r t(x) is a valid

sentence. Q

Lemma 7 (Composition Lemma) If a and 6 are

well sorted substitutions relative to E, then so is 9 • a.

Proof: I assume 8 and c are E-well sorted, and show

that for any variable, x:t, E ^ V t((x:t)0<t). Let

<j)[y\-M1,...,yn:un) be (x:t)8, where yi:«i, . . .,y„:wn

are the free variables of the term. (Subsequently, an

expression of the form i>[ti, . . .,tn] shall refer to the

expression that results from replacing all free occur

rences of yi'.Wi in <f> by U, for 1 < i < n.) Since 8 is

E-well sorted, E entails

VT(^[y1:u>i,...,yn:a>n])

which normalized is

Va>i(y1)A---Awn(yn) -*r(4>\jfi,...,ym]) (3)

For 1 < i < n let V"» be (y,:«j)<r. Since a is E-well

sorted, E entails

VWl(^)A-Awn(^) (4)

By combining (4) and (3) with modus ponens we can

conclude that E entails

Vr(#,..,i])

which is

V r{(x:r)8a)
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4.2 The Sorted Herbrand Theorem

The statement of the Sorted Herbrand Theorem relies

upon the commonly-used notion of a least Herbrand

model.3 The Herbrand models can be partially or

dered in the following way:

Mi < M2 iff for every predicate symbol or

sort symbol P, {PjMl C lP}Ml

A set of sentences has a least Herbrand model if one

of its Herbrand models is less than all its others.

Theorem 8 (Sorted Herbrand Theorem) 4 Let

a be a set of A-clauses and let E be a set of S-clauses

that has a least Herbrand model. Then aUS is unsat-

isfiable if, and only if, a^gT is.

Proof:

<= aUS entails each element of asgT. Thus, if ccsgr

is unsatisfiable then so must be a U E.

=>• If a-Ejr is satisfiable then it is satisfied by a Her

brand model. Indeed, since a^gT contains no sort sym

bols, it is satisfied by a Herbrand model M that assigns

every sort symbol the same denotation that is assigned

by the least Herbrand model of E. I show that M also

satisfies E U (akbN)gT. Clearly M satisfies E. I now

consider a, an arbitrary sentence in a and show that

M satisfies (aN)9, an arbitrary ground instance of aN .

(aN)6 is of the form Ti A • • • A Tn -» /3. If f3 & a^gT

then E ^ Ti A • • • A Tn. Since Tx A • • • A T„ is satisfied

by some model of E it must be satisfied by M, which

agrees with the least Herbrand model of E. On the

other hand, if (3 G <*£jr then M satisfies (3 (since it

satisfies ccsgT) and therefore also satisfies (aN)6.

D

What happens if E has more than one minimal Her

brand model? Consider the case where

E = {BABY(Ralph) VDOG(Ralph)}

a = {VziDOG Annoys(x, Alan),

VaiBABY Annoys(x, Alan)}

Observe that E has two minimal Herbrand models;

one that satisfies only BABY(Ralph) and another that

satisfies only DOG(Ralph). Because E does not entail

any atomic sentences, asgT is empty. Now, here is the

problem: E U a (= Annoys(Ralph, Alan), but asflT

does not.

Reiter [1977] noticed that this difficulty arose in his

work on deductive databases. His solution was to insist

that E satisfies a condition called "r-completeness"—

that for every sort symbol w and every term t either

3 These least Herbrand Herbrand models are central to

the theory of logic programming. In that literature, least

models are often called unique minimal models.

* For simplicity this theorem is stated in terms of clauses.

Nonetheless, like the unsorted Herbrand Theorem, it ap

plies to sentences that are in Skolem Normal Form.

E f= w(t) or E (= ->w(f). This condition is equivalent

to requiring that E has a unique Herbrand model, not

merely a unique minimal one. Though Reiter found a

sufficient condition, it is grossly over-restrictive. What

about the condition that E must have a least Her

brand model? Is it also over-restrictive? The Neces

sity/Sufficiency Theorem asserts that the condition is

indeed necessary. The proof of the theorem demon

strates that for any sort theory having multiple mini

mal Herbrand models an example like the above baby-

and-dog one can be constructed.

Lemma 9 (Least Model Lemma) A satisfiable set

of clauses 9 has a least Herbrand model iff for any

finite disjunction of ground atomic formulas, A = ipiV

■ • ■ V Tpn, 9 t= A implies 9 (= ^t, for some 1 < i < n.

Proof:

■i= Let M be the greatest lower bound of all Herbrand

models of 9. Assuming the antecedent of the theorem,

I show that M satisfies 9 and, thus, is the least Her

brand model of *. Let C = -iaiV---V-iaJkV/3iV---V

(3m be an arbitrary clause in $ST . If some model of *

satisfies one ->ai then so does M and hence M satisfies

C. Otherwise every model of * falsifies every -ion and

hence 9 \= 0i V ••• V/3m. By the assumption, there

is an i such that 9 \= fy. Thus, M satisfies fy and

therefore it also satisfies C. Either way, M satisfies C,

an arbitrary member of 9gT , and therefore M satisfies

=> Assume 9 has a least Herbrand model M and that

A = tj>\ V • • • V rj>n is a disjunction of ground atomic

sentences such that 9 f= A. Then it must be that M

satisfies A, and hence satisfies some ip{. But since M

is a least model, every Herbrand model of 9 satisfies

a. Therefore * f= i/>{. □

Theorem 10 (Necessity/Sufficiency Theorem)

Let E be a set of S-clauses. It is both necessary and

sufficient that E has a least Herbrand model for the

following statement to hold:

For every set of A-clauses a, E U a is unsat

isfiable if, and only if, a^gT is.

Proof:

Sufficiency: This is equivalent to the Sorted Herbrand

Theorem.

Necessity: I assume that E does not have a least Her

brand sort assignment and construct a set of A-clauses

a such that aUS is unsatisfiable but a^gT is satisfiable.

By the Least Model Lemma, there is a disjunction of

ground atomic S-formulas, ip = Pi(ti) V • ■ • V Pn(fn)

such that E (= ij> and for every 1 < i < n, E ^ P<(*i)-

Let a be the set of sentences

{Vz-.Pi Qi(x) 1 1 < i < n} U {-^Qi(U) 1 1 < » < n}

It is now easy to verify that ctj<gT is satisfiable even

though a U E is not. □
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5 Example: Sorted Resolution

This section uses standard resolution to illustrate how

the substitutional framework can be used to system

atically extend an unsorted deductive system and its

proof of completeness into a sorted deductive system

and its proof of completeness.

The resolution rule of inference operates on clauses,

each of which we shall take to be a set of literals. If L is

a set of literals, then L denotes the set containing the

complement of every literal in L. Assume that L and

M are two FOPC clauses whose variables have been

standardized apart. If some ICL and m C M are such

that /Umis mailable by a maximally general unifier

6, then the clause (L — 1)6 U (M — m)6 is a resolvent

of L and M . A resolution derivation of FOPC clause

C from a set of FOPC clauses 5 is a binary tree such

that its root is C, each leaf is a member of S, and each

interior node is a resolvent of its daughter nodes. We

shall write SIres C to assert that there is a resolution

derivation of C from S.

It is now straightforward to extend the definition of

resolvent to the SFOPC case where the two clauses

may contain sorted variables and the resolvent is rel

ative to a set of S-sentences E. Such a resolvent is

the same as an ordinary resolvent except that the sub

stitution involved, 6, must be a maximally general E-

unifier. Let us make this explicit by considering a set of

S-sentences E and two A-clauses of SFOPC, L and M ,

whose variables have been standardized apart. If some

ICL and m C M are such that I U fh are unifiable

by a maximally general E-unifier 6, then the clause

(L - 1)8 U (M - m)6 is a E-resolvent of L and M. The

definition of resolution derivation extends in the obvi

ous straightforward manner. A E-resolution derivation

of A-clause C from a set of A-clauses 5 is a binary tree

such that its root is C, each of its leaves is a member

of 5, and each of its interior nodes is a E-resolvent of

its daughter nodes. We shall write 5ISRES C to assert

that there is a E-resolution derivation of C from S.

In unsorted resolution, given two clauses and a par

ticular set of literals to be resolved upon, one need

only consider a single resolvent. All other resolvents

are variants of it. However, in sorted resolution one

may need to consider many resolvents—one for each

substitution in a EAfGCI/of the literals to be resolved

upon. All other resolvents are variants of these.

The Completeness Theorem for Resolution states

that a set S of FOPC clauses is unsatisfiable only if

Slgus □ . Typically, proofs of this theorem take the

following form. First one proves the completeness of

resolution for the ground case and then one connects

this up to the non-ground case. Assuming S is unsat

isfiable, the Herbrand Theorem for FOPC tells us that

SgT also is unsatisfiable, from which the completeness

of ground resolution tells us that Sgr hggs □ . From

this, a theorem known as the Lifting Theorem for Res

olution tells us that SHe^c □.

Many first-order deductive systems that handle vari

ables schematically via unification can be proved com

plete in this manner. One proves that the system is

complete in the ground case and that ground proofs

can be lifted, and then couples this with the Herbrand

Theorem.

Now consider proving the completeness of sorted res

olution.

Theorem 11 (Completeness of E-Resolution)

Let E be a set of S-clauses with a least Herbrand model

and a be a set of A-clauses. //Ella is unsatisfiable

then aiSRES □ .

The proof of this theorem parallels that for the com

pleteness of unsorted resolution. Assuming EuS is un

satisfiable, the Sorted Herbrand Theorem tells us the

5ejt is also unsatisfiable. Then the completeness the

orem for ground resolution tells us that S^gr Isres D •

We know that E-resolution is complete for ground

clauses because it is the same as ordinary resolution

on ground clauses. To complete the proof one must

resort to the Lifting Theorem for E-resolution, which

tells us that if Ssgr I^res □ then 5ISRES □.

So, a completeness proof of the form used for or

dinary resolution can be modified systematically to a

completeness proof for the corresponding sorted de

duction system. All references to the Herbrand The

orem are replaced with references to the Sorted Her

brand Theorem. The ground completeness theorem

remains unchanged. All that needs to be done is that

a lifting theorem for the particular sorted deduction

system must be proved. As we will now see, this too

can be done in a systematic manner.

For any set S of clauses and any clause C the

Lifting Theorem for Resolution says that SIres C if

SgT Fjjjss C f°r some C £ C

theorem for sorted resolution follows.

Theorem 12 (E-Resolution Lifting) Let S be a

set of A-clauses, let C be an A-clause and let E be

a set of S-sentences. Then, 5ISRES C »/5sgTlsRES ^"

for some C <E CgT .

A proof of the Sorted Lifting Theorem can be pro

duced by systematically modifying the proof of the

Lifting Theorem. Simply replace all occurrences of

the words "substitution," "unifier" and "maximally

general unifier" with the words "E-substitution," "E-

unifier" and "E-maximally general unifier" respec

tively. The resulting argument is correct because

all properties of substitutions, unifiers, and maxi

mally general unifiers on which the original proof relies

are also properties (as established in Section 4.1) of

E-substitutions, E-unifiers, and E-maximally general

unifiers.

6 Conclusions

Though this paper has left unanswered many questions

regarding sorted deduction, it has proposed a frame-

The corresponding
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work under which such questions can be addressed for

an entire class of deduction systems rather than for

one system at a time.

As this paper presents sorted deduction in the con

text of sorted first-order logic, sorted variables are in

troduced by restricted quantifiers. These sorted quan

tified variables can be treated as sorted schematic vari

ables on the basis of the Sorted Herbrand Theorem.

Nonetheless, the substitutional framework can be ap

plied to systems that introduce schematic variables di

rectly. For example, there is no reason why production

systems or grammar systems that use unsorted vari

ables cannot be extended to incorporate sorted vari

ables. The results presented here concerning sorted

substitution, sorted unification, and sorted lifting are

as applicable in those contexts as in the logic context.

Appendix A: The Monomorphic Tree

Restriction and Sorted Unification

Here we present both a particularly severe restric

tion on the form of a sort theory and an algorithm,

which is shown in Figure 1, that computes a 'EMGCU

of any two expressions provided that E meets the re

striction. Further results on sorted unification have

been presented by Walther [1988] and by Schmidt-

Schauss [1985].

The restriction on the sort theory is the combina

tion of two restrictions, the tree restriction and the

monomorphism restriction, and hence is called the

monomorphic tree restriction. A sort theory meet

ing the tree restriction consists only of sentences of

two kinds. Sentences of the first kind are of the form

Va: t(x) —+ t'(x), where t and r' are sort symbols.

Furthermore, the tree restriction requires that for any

t there is at most one sentence of the above form. Sen

tences of the second kind are of the form V r(t) where

r is a sort symbol and t is a term. Furthermore, the

tree restriction requires that the sort theory does not

contains two sentences, V r(t) and V r'(i'), such that

r(t) and r'(t') are unifiable.

The tree restriction affects what sentences logically

follow from a sort theory. The effects can be easily

described using the notion of the extension of a sort

symbol. The extension of r is the set of all terms t such

that E entails V r(t). The effect of the tree restriction

can now be stated easily: if the extensions of two sort

symbols have a non-empty intersection, then one of

the extensions is a subset of the other.

The monomorphism restriction imposes on every

sentence of the form V r(t) the additional restriction

that t must be of the form f(x\, ..., xn) where / is an

n-ary function symbol for some n > 0. The effect of

this restriction is that a non-variable term is in the ex

tension of a sort symbol if, and only if, every instance

of the term is in the extension. Consequently, one can

determine whether a non-variable term is in the exten

sion of a sort symbol solely on the basis of the term's

main function symbol.

If a sort theory E meets the monomorphic tree re

striction then any two E-unifiable expressions have a

S-most general unifier; in other words, they have a sin

gleton "EMGCU. Notice that in both Example 3 and

in Example 4 E violates the tree restriction.

Given a two expressions and a sort theory E meet

ing the monomorphic tree restriction the algorithm in

Figure 1, whose form is based on Martelli and Mon-

tanari's [1982] algorithm for ordinary unification, de

termines whether the two expressions are E-unifiable,

and if so it returns a E-most general unifier. The

algorithm assumes that we have a procedure for de

termining whether the extension of one sort symbol,

t, is a subset of the extension of another, r', (i.e.,

whether E f= Vz r(z) —» t'(x)) and one for deter

mining whether a term t is in the extension of a sort

symbol T (i.e., whether E \= V r(t)). Both of these can

be determined easily by SLD-resolution.

Like the Martelli and Montanari algorithm, this al

gorithm operates by repeatedly transforming a set of

equations between expressions to be unified until no

more transformations apply, whereupon the most gen

eral unifier can be read directly from the equations.

The unsorted unification algorithm uses four transfor

mations, the first three of which are used unadultered

in the sorted algorithm. The fourth unsorted trans

formation deals with equations in which the left side

is a variable and the right is any term. In the sorted

algorithm this transformation is divided in two; trans

formation 4 handles those cases in which the right side

is not a variable while transformation 5 handles the

cases in which it is. Each of these two transforma

tions first checks the well-sortedness of the unifier it is

building and, if this succeeds, then proceeds as in the

unsorted case. Transformation 4 checks that a term

that gets substituted for a variable is in the extension

of the sort of the variable. When transformation 5

unifies two variables, x:r and x':t', it must check the

extensions of r and r' . If the extension of t' is a subset

of the extension of t then x':t' is substituted for x:r.

If the extension of r is a subset of the extension of t'

then x:t is substituted for x'-.t1. If neither extension

is a subset of the other then the unification fails.

The final difference between the unsorted and sorted

algorithm is that the sorted one must check every equa

tion for well-sortedness. If the unsorted algorithm

starts with the single equation x = f(a) then it can

halt immediately and report that {f(a)/x} is a most

general unifier. However, the sorted algorithm should

only report a unifier if /(a) is in the extension of the

sort of as. Thus whenever an equation is checked for

well-sortedness it is marked and the algorithm does

not report a successful unification until all equations

have been marked.
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Input: Two expressions, *i and 12, and a sort theory £ meeting the monomorphic tree restriction.

Output: SUCCESS or FAILURE; if SUCCESS then a substitution is also output.

Let X be the singleton set of equations {«i = «j}

Repeatedly perform any of the following transformations until no transformation applies:

1. Select any equation of the form t = x:t where t is not a variable and x:r is a variable, and

rewrite it as x:t = t.

2. Select any equation of the form x:t = x:t where x:t is a variable and erase it.

3. Select any equation of the form t = t' where neither t nor t' is a variable.

If t and t' are atomic and identical then erase the equation

Else if t and V are atomic and different then FAIL

Else if t is composed of e\ , . . . , en and t' is composed of e[ , . . . , e'n in the same manner

then replace t = t' by the equations e\ = e[ , . . . , en = e'n

Else FAIL.

4. Select any unmarked equation of the form x:r = t where x:t is a variable and t is not

If x:t occurs in t then FAIL

Else if E \= V t(i)

then apply the substitution {t/x:r} to all other equations (without erasing x:t = t)

mark x:r = t "reduced"

Else FAIL

5. Select any unmarked equation of the form x:t = x':t' where x:t and x':t' are distinct variables

If £ |= V* t'(x) — t(x)

Then apply the substitution {x' :t'/x:t} to all other equations (without erasing x:r = x':r')

mark x:r = x':t' "reduced"

ElseifEt=VzT(:c)-»T'(a:)

then replace x:r = x':r' with x':t' = x:r

apply the substitution {x:t/x':t'} to all other equations (without erasing x':t' = x:t)

mark x':r' = x:r "reduced"

Else FAIL

SUCCEED with {ti/zi,. ..,tn/xn} where xi =tu tn are the equations that remain in X.

Figure 1: Sorted Unification Algorithm
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Abstract

A preferential semantics for default reasoning

is presented. A partial order is defined over

classes of models which establishes a prefer

ence for classes with a minimal set of unex

plained exceptions. Exceptions are explained

in terms of justifications which are syntac

tically extracted from the knowledge base.

The resulting semantics succeeds in pruning

the spurious models which arise in minimal

model semantics, legitimizing a behavior in

closer correspondence with intuition. Like

wise, the proposed framework unifies and ex

tends ideas stemming from work in default

reasoning, logic programming and abductive

reasoning.

1 Introduction

In [McCarthy, 80;86] McCarthy proposed circumscrip

tion as a simple but powerful second order axiom capa

ble of endowing first order logic with non-monotonic

features. In model theoretic terms, circumscription

can be understood as replacing the traditional notion

of entailment as truth in all models by a weaker, de

feasible form of entailment in which only a subset of

minimal models is considered. [McCarthy, 80; Lifs-

chitz, 85; Etherington, 88].

Since then, several studies have analyzed the mathe

matical properties of circumscription.1 Less attention,

however, has been given to the circumscriptive frame

work as a framework for representing commonsense

knowledge. In this regard, recent work has illustrated

that, more often than not, the inferences sanctioned

by circumscription from relatively simple conceptu

alizations turn out to be weaker than expected (e.g.

[Hanks and McDermott, 86; Haugh, 88]). Minimal,

unintended models often arise which prevent certain

intended conclusions from being certified.

'This work was supported in part by National Science

Foundation Grant # IRI-8610155.

1 See [Reiter, 87] for a relevant bibliography.

This mismatch between intended meaning and the

meaning uncovered by circumscription has recently

prompted Shoham [88] to propose a close alterna

tive to circumscription in which the notion of minimal

model is replaced by an appropriate notion of preferred

model. Shoham convincingly argues in favor of this se

mantic shift, and illustrates its convenience by consid

ering a troubling problem in the domain of temporal

reasoning raised by Hanks and McDermott [86].

More recently, these ideas have been further devel

oped by Makinson [89] and Kraus et al. [88], who prove

some interesting soundness and completeness results.

Sandewal [88] has also proposed a preferential seman

tics for non-monotonic entailment, which he defines in

terms of partial interpretations.

Nonetheless, no 'preferential semantics' attempting

to capture the intended meaning of general default the

ories has yet been proposed. Defining such an account

is the main goal of this paper. Our approach draws on

McCarthy's [86] suggestion that default reasoning be

formalized in terms of the minimization of 'abnormal

ity.' We depart, however, from McCarthy's minimal

model semantics in two ways. First, the preference or

dering does not apply directly to models, but to classes

of models, with each class embedding a commitment

to certain set of assumptions. Second, the preference

ordering favors classes of models which minimize un

explained abnormality, rather than plain abnormality.

These explanations are assembled in terms of justifica

tions which are syntactically extracted from the knowl

edge base. The result is an account which succeeds in

eliminating the spurious models that arise in minimal

model semantics, permitting a behavior in closer cor

respondence with intuition. In addition, the resulting

framework unifies and extends ideas stemming from

work in default reasoning, logic programming and ab

ductive inference.

The paper is organized as follows. In section 2, we

introduce the preference ordering. Such ordering ap

plies to sets of models, which we call classes. We

define the conditions under which an abnormality is

regarded as explained in a given class, and the condi

tions which make a class admissible. In section 3, we

illustrate the appeal of the proposed account by ana
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lyzing examples from the domains of reasoning about

action, inheritance hierarchies, logic programming and

abductive reasoning, and by comparing the results to

related proposals. Finally in section 4, we summarize

the main ideas, discuss some of the controversial points

and point out some of the remaining problems.

2 A Preferential Semantics for

Default Reasoning

2.1 Definitions

The default theories we shall consider are comprised of

two components: a background context K and an ev

idence set E. The background context corresponds to

an intensional characterization of the domain of inter

est in the form of a set of defeasible and undefeasible

rules, while the evidence set corresponds to an exten-

sional characterization of the particular situation of

interest in the form of factual assertions [Geffner and

Pearl, 87].

Among the predicate symbols occurring in the the

ories of interest, a distinguished set AB of predi

cates is used to express assumptions and abnormal

ity conditions. In the context of default reasoning

such set would contain 'abnormality' predicates [Mc

Carthy, 86], while in the context of logic programming

it would contain all the predicate symbols of interest.

For a predicate ab^ in AB, we shall refer to atoms

of the form ab^(a), where a stands for a vector of

ground terms, as exceptions or abnormalities, and to

their negations, -!abi(a), as assumptions.

The background context if of a given theory is it

self structured into four components. There is a ter

minological component given by a set of strict rules

(e.g. 'penguins are birds'), a default component given

by a set of defeasible rules (e.g. 'birds fly'), a set of

user-supplied explicit exceptions or justifications (e.g.

'injured birds are abnormal birds with respect to fly

ing'), and a set of implicit justifications derived from

the defaults in K, in a way to be described below.

Given a theory T, we are interested in character

izing the set of consequences it certifies. We shall

achieve such characterization by determining the set

of assumptions which can be accepted in T. For that

purpose, we shall introduce the notion of a class C

with gap G, given by a set of exceptions {6\,.. .,8n},

as the non-empty collection of models of T which val

idate all the assumptions ->8, for 8 0 G.

We shall also say that a proposition holds or is val

idated in a class when the proposition holds in all the

model members of the class. The set of all the as

sumptions validated by a class constitutes what we

shall refer as the class support. Thus, in proof theo

retic terms, a proposition a holds in a class C of T

when the support of C comprises a set of assumptions

.AS such that T, AS h a.

From the complementarity of gap and support it fol

lows that a class with a minimal gap will have a max

imal support, and vice versa. Classes with minimal

gaps will be referred as minimal classes.

As an illustration, consider for instance a theory T

with a default A A -iabj =>• B, an explicit justification

C A -labQ => ab^, and a body of evidence E — {A, C}.

For such a theory, there are no models which can make

both assumptions -lab^ and ->ab2 true simultaneously.

Thus, there is no class of T with an empty gap. There

are, however, two minimal classes C\ and C2, with

gaps {abj} and {ab2}, respectively. But note that

the two classes of models are not equally meritorious.

Intuitively we would expect the assumption -iabj to be

defeated by the explicit justification C A ->ab2 => abj,

as the latter expresses a condition under which the

default A A -lab^ => B is not to be applicable.

Our task hereafter will be to establish a partial or

der among classes which will permit us to uncover the

intended models of a given theory. Since each class re

flects a choice of assumptions, such an ordering can be

usefully regarded as a preference ordering among dif

ferent assumptions sets. Thus, in the example above,

we would expect the preference ordering to favor the

class Ci, committed to the assumption -iab2, over the

other minimal class C2, committed to the inferior as

sumption -labj. Such preference will be indeed estab

lished on the basis that the exception abj is explained

in the class Cj, while the exception ab2 is not ex

plained in the class Ci- Thus, we shall say that C\

is more coherent than C2 and is, therefore, preferred

over C%. The conditions under which an exception is

explained in a class are elaborated below.

We regard default instances such as A A -16 => B as

expectations, and exceptions such as 8 as expectation

failures. Essentially, we assume that an exception such

as 8 can be explained in a class in one of two ways. Ei

ther the class validates a proposition C, in the presence

of an explicit justification of the form C =► 8 in K, or

the class validates the propositions A and D and the

assumption -i5', in the presence of a competing default

expectation D A -<8' =>B' in K, where B' stands for a

proposition incompatible with B in K (fig. 1).

-8

T
-*•-! B

_-S'

Figure 1: Explaining an exception 8

For the purposes of uniformity, however, the second

case will be dealt with in a slightly different way. For

each pair of defaults Vx.A(x) A -lab^x) =>• B(x) and
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Vx.D(x) A -iabjc(x) =>• B'(x) with incompatible con

sequences in K, a formula of the form

Vx.A(x) A C(x) => abi(x) V abk(x),

referred as an implicit justification, will be added to

K. Such formula is a deductive consequence of the

rules in K, and has no effect on the models of T. Its

addition, however, will permit a simple translation of

the intuitions above into a formal definition.

Consider the ground instances of the rules in K.

Each such ground rule might or might not involve cer

tain assumptions in its body. For a set of assumptions

AS we shall denote by K^s the set of ground rules

whose assumptions, if any, are among those of AS.

We shall then say that an exception 8 is explained in a

class C of a context with background K and evidence

E, if there is a set AS of assumptions validated by C,

such that E,Kas,AS h 8. In such case, we refer to

the set AS of assumptions as an explanatory support

of 6.

Note that an exception 6 explained in a class C must

belong to the class gap and, furthermore, it must hold

in (every model of) the class. On the other hand, an

exception that holds in a class, does not necessarily

have an explanation in that class. Indeed, as hinted

above, an exception 8 can only be explained if there

is a justification rule, explicit or implicit, whose con

sequent mentions 6. By definition, rules whose an

tecedents include the assumption ->8 cannot take part

of the set Kas of rules needed to explain 8.

This definition of "explanation" introduces an im

portant distinction between logically equivalent formu

las, which can be illustrated by considering the rules

-iSi =>• 82 and true =>■ 6i V 82, for two exceptions Si

and 62. The first rule permits an explanation for 82 in

any class that validates the assumption -itfj. It does

not permit however, an explanation of 6\ in terms of

-162; the rule ->6\ =>■ 82 , with assumption ->6i, will be

long to Kas only if ->8\ belongs to AS. The second

rule, on the other hand, does not involve any assump

tions in its body and, as a result, permits explanations

for 8\ in terms of -^82 and for 82 in terms of -i8\ .

Recalling the example above, the reader can ver

ify that the exception abj is explained in C\ and has

an explanatory support AS = {-iab2). The excep

tion abQ, on the other hand, is not explained in the

class C2. Thus, C\ is the only class with an empty

unexplained gap, and it will therefore constitute the

preferred class. We will make this notion more precise

in the following definition.

Among two classes C and C of a theory T, we say

that C is preferred to C' when the unexplained gap of

C is a strict subset of the unexplained gap of C". In

that case, we also say that the class C is more coherent

than the class C. If there is no class preferred to C,

we say that C is a preferred class of T. Furthermore,

we say that a proposition a is a consequence of T when

a holds in all the preferred classes of T.

Note that it follows from these definitions that

classes with smaller gaps are preferred to classes with

larger gaps and, therefore, that preferred classes are

always minimal. Furthermore, the preferred classes of

a theory T can be determined by comparing minimal

classes of T only.2 Likewise, a class with an empty

unexplained gap is always a preferred class. In these

classes all exceptions are explained. We call these

classes the perfectly coherent classes of T.

Example. Let us illustrate these definitions with the

following example. We consider a theory T with a

background context K comprising the following de

faults (fig. 2):

1. Vx. i(x) A -iabi(x) => B(x)

2. Vx. A(x) A ->ab2(x) => C(x)

3. Vx. B(x) A ->ab3(x) => D(x)

4. Vx. C(x) A ->ab4(x) => -.D(x)

 

Figure 2: Simple diamond example

No undefeasible rules or explicit justifications are

introduced, but the conflict between the last two de

faults will result in the following implicit justification

being added to K:

5. Vx. B(x) A C(x) =»■ ab3(x) V ab4(x).

Note that, as we said above, such a justification is al

ready a deductive consequence of the formulas in K.

Its role is not in affecting the models of T, but in

permitting the constructions of explanations for ex

ceptions ab3(i) and ab4(x), reflecting the conflicting

expectations in which they participate.

Let us now consider in T a body of evidence E =

{A(a)}. The goal is to determine the preferred classes

of T. There are four minimal classes Ci in this con

text, with gaps {abj(a)} for i = 1,2,3,4 respectively.

Furthermore, the exceptions abj(a) and ab2(a) have

no explanation in the classes C\ and C2, as there are

no justifications for these exceptions in K. On the

other hand, the exceptions ab3(a) and ab4(a) are ex

plained in C3 and C4 respectively, by virtue of the jus

tification encoded by (5). As a result, we end up with

two preferred and indeed perfectly coherent classes C3

and C4, which sanction among other conclusions, B(a)

2This will no longer be true after admissibility con

straints are introduced in section 2.2.
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and C(a), and which suspend judgment regarding D(a).

Note that this is indeed the behavior we would expect

from the diamond structure encoded by the defaults

1-4 (fig. 2). A minimal model semantics, on the other

hand, would propagate the uncertainty about D(a) to

the propositions B(a) and C(a) as well.

2.2 Admissible Classes

Before proceeding with more interesting cases, we

must address a problem that arises from a tradeoff

between exceptions and explanations induced by the

proposed preference ordering. We can illustrate this

tradeoff by considering a theory T, with a background

comprising a default (fig. 3):

1. A A->abi =>• B

and explicit justifications:

C A -labQ =*■ abj

B => ab3,

r
Figure 3: Spurious behavior and admissible classes

together with a body of evidence E = {A, C}. Such

a theory gives rise to two minimal classes C\ and C-i

with gaps {abjj and {ab2,ab3}, respectively. Fur

thermore, C\ explains abj and C2 explains ab3. The

exception ab2, on the other hand, has no explana

tion in Ci- It follows then, that C\, unlike C2, has

an empty unexplained gap and, therefore, that Ci is

the preferred class. This in turn can be interpreted

as indicating, in agreement with intuition, that the

proposition C defeats the default A A ->abi =$■ B.

Consider now the case in which the exception ab3

is incorporated into the current evidence pool, so that

the total evidence becomes E = {A,C,ab3}. In such a

context, again, two minimal classes C[ and C'2 arise;

the former with a gap {abj, ab3), and the latter with a

gap {ab2, ab3}. As before, abj is explained in C[ and

ab3 is explained in C'2. Nonetheless, in the current

context, neither class turns out to be preferred over

the other. As a result, unexpectedly, the introduction

of the exception ab3 has the effect of reinstating the

default encoded by 1, which is no longer defeated.

This spurious effect can be explained in terms of the

abductive bias embedded in the preference ordering,

by which classes capable of explaining their exceptions

are rewarded. In this case, the reinstatement of the as

sumption -iabi permits the construction of an expla

nation for the exception ab3, but comes at the price

of introducing the unexplained exception ab2- This

tradeoff can be shown indeed to underlie this and other

forms of abnormal behavior arising from the proposed

preference ordering. In what follows a restriction on

classes will be defined which will rule out such type

of situations. Classes to be considered will have to be

admissible in the sense defined below.

First, let us say that a class C of T with gap G

supersedes a class C of T with gap G', when the set

G — G' is not empty and only contains exceptions ex

plained in C, while the set G' — G contains exceptions

unexplained in C".

Thus, the gap of a class C" superseded by a class

C can be constructed by eliminating some explained

exceptions from C's gap, and by adding new excep

tions, not all of them explained in C". In terms of

the example above, it can be verified that the class C[

with gap {abj, ab3} supersedes the class C2 with gap

{ab2,ab3}. The latter gap can indeed be obtained

from the former by removing the explained exception

abj and by adding the unexplained exception ab2-

Finally, a class is admissible when it is not super

seded by any other class. Hereafter, preferred classes

will be selected by considering admissible classes only.

3 Applications

In the previous section we have laid out a semantic

framework for the characterization of default theories.

Our goal in this section is to illustrate how such a

framework applies to a variety of domains ranging from

problems in temporal reasoning, to problems in inher

itance hierarchies, logic programming and abductive

reasoning. Special emphasis will be placed on the type

of behavior legitimized by the proposed account. Re

call that our main goal is to arrive at an interpretation

of the theories of interest which better approximates

the intended interpretation.

3.1 Reasoning about Action

Our appeal to coherence considerations in pruning the

set models of a given theory makes the proposed frame

work closely related to the proposals of Lifschitz [87] ,

Haugh [87] and Morgenstern and Stein [88] for for

malizing reasoning about action. In these proposals,

clippings (persistence exceptions) can only originate

from acting causes. Lifschitz and Haugh then mini

mize then over these causes, subject to explaining the

clippings. Morgenstern and Stein take a slightly differ

ent view and select those models in which the actions

are causally 'motivated' by the available evidence.

In our proposal, we do not require a cause behind

every clipping, but 'reward' those classes of models in

which this is the case and, therefore, those classes in

which clippings are explained. We thus avoid some un

desirable features of these approaches (Lifschitz's and

Haugh's ontologies and Morgenstern's and Stein's lim
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itation to accommodate defeasible causal rules), while

obtaining an additional degree of flexibility.

Consider the following version of the 'Yale Shooting

Problem' raised by Hanks and McDermott [86]. We

have a theory T with a background context K given

by the following expressions:3

l.Vt.LD(t) =>LDD(t+ l)

2.Vt.LDD(t)A-.ab1(t) =>• LDD(t+ l)

3.Vt.ALV(t)A-.ab2(t) => ALV(t-K)

4.Vt.SHT(t) ALDD(t) A -iab3(t) =* -.ALV(t + l)

5. Vt. SHT(t) A LDD(t) => ab2(t)

Thus, we have that a loading event makes the gun

loaded, that loaded guns remain loaded and that alive

'animals' remain alive unless shot with a loaded gun.

Furthermore, due to the conflict between the persis

tence of 'alive' (3) and the shooting rule (4), an im

plicit justification of the following form is added to K :

6. Vt. SHT(t) A LDD(t) A ALV(t) => ab3(t) V ab2(t)

The evidence indicates that a turkey called Fred was

alive at time t = 1, that a loading event took place

at time t = 2, and that a shooting event directed

at Fred took place at t = 3. Intuitively, it ap

pears that Fred should no longer be alive as a re

sult of the shooting. However, as Hanks and McDer

mott noted, several minimal classes pop up, in some

of which Fred survives the shooting. In our formula

tion, these are classes in which the gun is mysteriously

unloaded or in which the shooting, for some reason,

misses its target. The collection of minimal classes

of T thus corresponds to classes with a single excep

tion among abj(2) ('mysterious unloading'), ab2(i),

ab2(2) ('mysterious death'), ab2(3) ('death by shoot

ing'), and ab3(3) ('target missed'). It is not difficult

to show that the class corresponding to ab2(3) is the

only perfectly coherent class, and is thus the single

preferred class of T. This is due to the fact that the

persistence exception ab2(3) can be explained in terms

of the explicit justification encoded by (5). None of the

other exceptions, on the other hand, can be given an

explanation.

An undesirable feature of the above formulation

which is shared by Hanks' and McDermott's, is the

need to explicate by means of an explicit justification

(5), that the shooting rule is supposed to prevail over

Note that, unlike Hanks and McDermott, we have ex

pressed the shooting rule (5) as a default rule. Indepen

dently of whether this is a more appropriate encoding,

such a choice is motivated by the assumption embedded

in the definition of 'explanations', by which expectations

are assumed to be encoded by defaults. A slight extension

would be needed to accommodate, for instance, undefeasi-

ble causal rules. We shall not pursue that extension in this

paper. Let us just point out, however, that the shooting

rule could be made undefeasible by simply declaring the

proposition ->3t. ab3(t) as part of the evidence.

the persistence of 'alive' (3). This is done by declar

ing the latter persistence to be abnormal in the con

text of a shooting. In a more realistic setting though,

where a number of events leading to different type of

changes are to coexist, the number of intended 'clip

pings' which must be enumerated could be overwhelm

ing. Moreover, these explicit exceptions, as we show

below, make theories less modular.

Consider for instance the possibility that Fred was

wearing a metal vest at the time of the shooting. We

could describe the effect of wearing a metal vest by

asserting that the shooting rule is not applicable to

somebody wearing a metal vest:

7.Vt.VEST(t) =► ab3(t)

Such rule, however, would fail to achieve its intended

effect. While the death of Fred would no longer fol

low, the justification encoded by (5) would still prevent

proving Fred alive after the shooting. This suggests

that a more flexible means of specifying the intended

priority of rules about change is needed.

Our proposal is a simple one, consisting of two parts.

First, we allow the user to lexically distinguish the as

sumptions associated with rules about change from the

assumptions associated with rules about persistence.4

We do so by replacing the generic type of normality as

sumption -iabi(-) with two different types of assump

tions: -icp(-), read 'not clipped', which is used for

assumptions about persistence; and -ipv(-), read 'not

prevented', which is used for assumptions about the

result of actions. The formulation above would then

be translated into the more concise description:

l'.Vt.LD(t)=>LDD(t+ l)

2'.Vt.LDD(t)A-.cp1(t) =>LDD(t+ l)

3'.Vt.ALV(t) A-.cp2(t) =>• ALV(tH-l)

4'.Vt.SHT(t) ALDD(t) A-.pv3(t) => ->ALV(t + l)

where the priority of the shooting rule over the alive-

ness persistence rule is not explicated.

As usual, the conflict between the last pair of de

fault rules results in the addition of a corresponding

implicit justification to K. Recall that these implicit

justifications permit us to explain the failure of certain

expectation in terms of the success of an alternative,

incompatible expectation. Now, however, we have two

different types of expectations: we have expectations

of change on the one hand, and expectations of per

sistence on the other. The two expectations, however,

are not intended to be treated symmetrically. While

it is assumed that a successful change explains a cor

responding clipping, it is also assumed that a failed

* If we were using a reified temporal notation in the

style of [Shoham, 88], a single persistence rule would suf

fice. Nonetheless, in order to simplify the description of

the example, we have found a non-reified notation more

convenient and, therefore, a collection of persistence rules

is needed.
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action is not to be explained in terms of the persis

tence it fails to clip. We incorporate this asymmetry

into our account by defining the implicit justifications

associated with the conflict of a rule about change and

a rule about persistence in a different manner. Thus,

from the conflict between defaults (3') and (4') above,

rather than eliciting the implicit justification:

5". Vt. SHT(t) A LDD(t) A ALV(t) => pv3(t) V cp2(t)

we assert the logically equivalent, but asymmetric jus

tification:

5'. Vt. SHT(t) A LDD(t) A ALV(t) A ->pv3(t) => cp2(t)

Thus, we allow the clipping of 'alive', cp2(-)i to be ex

plained in terms of a 'successful' shooting, but preclude

the 'successful' persistence of 'alive' from explaining an

'unsuccessful' shooting, pv3(-). The reader can verify

that from a theory with the background context de

fined by the formulas l'-5', and given the same ev

idence as above, the same conclusion about Fred fol

lows. The difference now is that certain preferences are

handled implicitly, and that the resulting formulation

is more flexible. The metal vest variation, for instance,

would work without modification in this setting.

3.2 Inheritance Hierarchies

Another area in which minimal model semantics falls

short of delivering the intended models of a set of de

faults is in the context of inheritance hierarchies. In

heritance hierarchies are convenient devices for orga

nizing knowledge about prototypical classes of individ

uals. Rather than explicitly stating the attributes of

each possible individual, individuals are assumed to

implicitly inherit a certain set of attributes by virtue

of the place they occupy in the hierarchy. The key

problem to address in these structures arises when an

object belongs to classes with incompatible attributes.

The typical example goes like this: Tweety is a pen

guin and, therefore, a bird. Typically birds fly and

typically penguins do not fly. What should be con

cluded about the flying abilities of Tweety?

It is commonly accepted that there is an implicit

preference among the defaults represented in these

networks. Such preference appears to establish a pri

ority for defaults rooted in more specific information

[Touretzky, 86]. In terms of the example above, such

preference would favor for instance the belief that

Tweety is likely not to fly, on the basis that penguins

are a subclass of birds. For more complex cases, the

preferences are not always so clear, though significant

progress has been made in recent years, both in the

context of inheritance hierarchies [Horty et a/., 87] and

in more general settings (e.g. [Loui, 87; Delgrande, 87;

Geffner and Pearl, 87]).

An important insight into the nature of the in

tended preferences among conflicting defaults that has

emerged from these proposals is that a default 'if A

then B' constitutes a license to infer B when A rep

resents all the available evidence. In other words, a

default antecedent provides a safe context on which

the truth of the default consequence can be asserted.

We refer to this aspect of defaults as the context sen

sitivity property of defaults.

In the context of the framework we have been devel

oping, accounting for the context sensitivity of a de

fault 'if A then B' would amount to making B true in

all the preferred classes of A.5 With that goal in mind,

we shall impose a further restriction on the classes to

be considered when dealing with theories, such as in

heritance hierarchies, where there is an implicit pref

erence to be uncovered among defaults.

Let A A ->6 ^> B be the ground instance of a default

in K such that K,Ajf-6. We say that a set of assump

tions AS = {""^i, . . . , ->6n} is in conflict with the as

sumption -16, if the assumptions in AS compete with

-iS upon learning A, i.e. if K, A h <5 V 6\ V • • • V 8n.

Since ->6 is the intended assumption in such context,

it is reasonable to assume that the user intends to re

ject some of the assumptions in AS. We say then,

that the set of assumptions AS is dominated by A. A

context-admissible class C is then defined simply as an

admissible class which does not validate any assump

tion set dominated by propositions that hold in C6

For inheritance theories, only context-admissible

classes will be considered. Note that in order to test

contcxt-admissibility, it is sufficient to examine mini

mal dominated assumption sets only.

Example. This example illustrates the type of speci

ficity preferences entailed by the context-admissibility

restriction. Let T be a theory with a background con

text K given by the following defaults (fig. 4):

Vx. A(x) A -^ab1(x) => B(x)

Vx. B(x) A -^ab2(x) => C(x)

Vx. B(x) A -<ab3(x) =>• D(x)

Vx. C(x) A -^ab4(x) => ->D(x)

Vx.F(x)A-.ab5(x)=>C(x)

Due to the conflict between the defaults associated

with the assumptions ab3(i') and ab^(x) (fig. 4), the

following implicit justification will also be part of A':

Vx. B(x) A C(x) => ab3(x) V ab4(x)

We consider a body of evidence E — {A(a),F(a)}.

&Kraus et al. [88] interpret defaults in a similar manner.

Selman and Kautz [88], on the other hand, account for

specificity preferences by intepreting defaults as imposing

an ordering over pairs of models.

6 Let us point out that in a pathological net with de

fault instances A A ->6 => B and A A ->6' => ->J3, a context-

admissible class would be forced to reject both assumptions

->8 and ->6' upon learning A. With good reason, such net

works are inconsistent in the frameworks of Horty et al.

[87], Delgrande [87] and Geffner and Pearl [87].
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Figure 4: A simple inheritance hierarchy

Intuitively, we would expect the preferred classes of

T to sanction the propositions B(a), C(a) and D(a).

There are however four minimal classes of T, among

which are two perfectly coherent classes C3 and C4,

with explained gaps {ab3(a)} and {ab^a)} respec

tively. C4 represents the intended class of models,

while C3, which sanctions -'D(a), fails to embed the

right specificity preferences. We show below that C3

is not a context-admissible class.

Consider the default instance B(a)A->ab3(a) => D(a).

It follows from the body of defaults in K that the

assumption set AS = {->ab2(a), ->ab4(a)} is in conflict

with the assumption ->ab3(a), and therefore, that the

set AS is dominated by the proposition B(a). The class

C3, however, validates both B(a) and AS, and thus is

not context-admissible. This leaves C\, the intended

class, as the single preferred class of T.

Let us remark that even if we add the following ex

plicit justification to T:

Vx. B(x) => ab4(x)

a simple minimization of abnormality would still not

yield the expected conclusions in this case. Among

the minimal models of T there would still be models

validating both the abnormality abi(a) and the propo

sition -iB(a).

3.3 Closed World Reasoning

The reader may have noticed that the preference order

ing introduced above does not involve a minimization

of the extension of the (abnormality) predicates in AB,

but rather, a minimization of the set of truths. In other

words, the gap of a class is not defined in terms of the

exceptional individuals in the domain, but in terms of

a set of ground exceptions. As a result, and in contrast

to minimal model semantics, a default like 'birds fly'

allow us to conclude that 'Tweety flies' upon learning

that 'Tweety is a bird', without ever being committed

to the conclusion that 'all birds fly'. A model in which

only certain unnamed birds do not fly is as preferred as

a model in which all birds fly, and both models would

be indeed part of the same preferred class.

The same choice also permits jumping to conclu

sions without the need of unique name axioms [Re-

iter, 80b]. If Tim is a penguin, we do not need to

prove that Tweety is different from Tim in order to

jump to the conclusion that Tweety flies. This again

contrasts with the form the same inference would be

certified by a minimal model semantics, in which such

inequality would be required.

Both of these features suggest that, in terms of

jumping to conclusions, the proposed framework bears

a closer similarity to Reiter's default logic than to Mc

Carthy's circumscription. Furthermore, as we shall

see, the framework inherits a difficulty of Reiter's

logic in handling conclusions regarding unbounded

sets of individuals, pointed out by McCarthy in [Mc

Carthy, 80].

Let us say, for instance, that we want to capture

the type of default behavior found in some relational

database. We might have in the database a collection

of tuples of the form P(a),P(b) and q(a),Q(b),Q(c).

From such database, conclusions like as that "a and b

are the only P's," or that "all the P's are Q's" would

follow. These are conclusions that non-monotonically

depend on the state of the database, and that can

potentially be defeated by the acquisition of new tuples

(e.g. P(d)).

A minimal model semantics would have no difficulty

in accounting for such behavior. A simple minimiza

tion of the extensions of P and Q, together with the

appropriate unique-name axioms will do. In our frame

work however, the straightforward approach of declar

ing the predicates P and Q as 'abnormality' predicates,

members of AB, would not quite work. From such a

declaration, we could derive conclusions such as -'P(x),

for any x different than a and b, but not universals

such as Vx. P(x) -»x = aVx = b, which involve a

commitment regarding unnamed individuals in the rel

evant models. In the remainder of this subsection we

show that it is possible to capture this type of closed

world reasoning in the present setting. The key, as

hinted in [McDermott, 82], consists of incorporating

sets into the universe of discourse. We shall not elab

orate here on the details of how such an extension can

be defined; suffice it to say that any weak set theory

will do.7

In order to illustrate how the behavior of the data

base described can be captured in terms of defaults

involving reference to sets of individuals, we shall in

troduce the following two abbreviations:

P[S] : Vx. x G S => P(x)

P[S] : Vx. x 6 S O P(x)

where S stands for an arbitrary set of individuals.

Thus, P represents the definition, or as we shall we

say, the 'closed' version of P. Having these abbrevia

tions available, we can capture the database behavior

by a theory with background:

7The interested reader might want to consult [Perlis, 88]

for a relevant discussion.
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VS. P[S]A-.ab1(S) =>P[S]

VS, S'. P[S] A S D S' =*■ ab^S')

That is, if the members of a set S' are all instances of

P, then it is assumed that S' contains all the instances

of P unless there is a larger set S whose members are

also instances of P. We shall also need a unique name

hypothesis in order to distinguish different sets:

Vx, y. -iab2(x, y) =>• x ^ y

Notice that this default introduces a set of unexplained

exceptions of the form ab2(z,x) in every class. We

refer below to these exceptions as the common excep

tions.

We can now analyze different states of the database

as well as the conclusions which are sanctioned in each

case.

Case 1. E = 0. Without any tuples in the database,

the preferred class includes no exception in addition

to the common exceptions mentioned above. Thus,

-iabj(0) forms part of the support of the preferred

class and, therefore, P[0] and ->3x. P(x) follow.

Case 2. E = {P(a)}. abj(0) becomes an explained

exception, part of the gap of the preferred class. Still,

the assumption -iabi({a}) holds, and the conclusion

P[a] : Vx. P(x) & x = a follows.

Case 3. E = {P(a),P(b)}. Now the gap of the

preferred class is enhanced by two new explained ex

ceptions abi({a}) and ab^({b}). The assumption

->ab1({a,b}) still holds, so that P[a,b] : Vx.P(x) O-

x = a V x = b follows.

Case 4. E = {P(a) V P(b)}. In this context, the

preferred class includes only the explained exception

abj(0) in addition to the common exceptions. Its

models can be divided into two sets: those in which

P(a) A ->P(b) holds, and those in which P(b) A -iP(a)

holds. In the first class of models, P[a] holds as well,

and in the second set of models, P[b] does. As a result,

the disjunction P[a] V P[b], which abbreviates the ex

pression [Vx. P(x) o x = a] V [Vx. P(x) o x = b], holds

in the preferred class.

These results illustrate that it is possible to capture

in the present framework the form of closed world rea

soning found in databases. Circumscription will sanc

tion the same conclusions in each of these cases [Lifs-

chitz, 85]. In other cases, however, the results might

differ. One such case, for instance, would correspond

to E = {3x.P(x)}. Given such a context, circumscrip

tion would conclude that there is a single instance of P,

i.e. Bx.Vy.P(y) O x = y. However, such a conclusion

does not follow from the account presented.

3.4 Logic Programming

The semantic framework proposed can also be applied

to logic programs with negation (see [Shepherson, 88]

for a review). For logic programs, the set AB of pred

icates whose truth sets are expected to be minimal

is identical to the set of all predicates of interest. A

logic program is thus a collection of what we have been

calling explicit justifications. In what follows, for ease

of comparison with other proposals, we consider only

Herbrand models.

The first result we show relates the proposed se

mantics to the stable semantics for logic programs

proposed by Gelfond and Lifschitz [88] and, inde

pendently, by Kit Fine [88]. Elsewhere [Van Gelder

et a/., 88], it has been proved that the stable model of

stratified logic programs is unique, and that it coin

cides with the canonical model of Apt et al. [88] and

the perfect model of Przymusinski [88].

Following Gelfond and Lifschitz we assume that each

rule in the program P of interest has been replaced

by all its ground instances. A Herbrand model M of

P is then defined as stable if and only if M is the

minimal model of the program PM . PM is the positive

program obtained by removing from P all the rules

whose bodies contain assumptions ->6, with 6 G M',

and by deleting the assumptions (i.e. negative literals)

from the remaining rules.

If M is a model of a program P, we will denote by

Cm the class of models of P with a gap equal to M.

Thus M, as well as models of P smaller than M, will

belong to Cm- The following theorem then holds:8

Theorem 1. M is stable if and only if the

class Cm is perfectly coherent.

In words, the theorem says that M is stable if each

atom of M has an explanation in terms of the assump

tions validated by M. Note that since a stable model

is always minimal, the class Cm will contain a single

model, namely M .

Still, there are programs which have no stable mod

els. These programs might nonetheless have a well de

fined set of preferred classes. One typical example is

the program P, composed of the single clause p <= -"p.

The preferred class of P has the single unexplained

atom p in its gap.

The correspondence between stable models and per

fectly coherent classes suggests that the criterion of

stability which is used in defining the stable semantics

of logic programs embeds an abductive bias by which

models capable of explaining their atoms are rewarded.

This feature becomes apparent when we consider the

following two programs:9

Px : q •<= -ir Pi : q •<= ->r

r <= ~"l P •*= """^

p «= -ip p <= -ip

p <= -ir

In both programs, the clause p <= -<p introduces, but

does not explain, the atom p. This leads the stable se

mantics to produce results in both cases which differ

'Proofs are omitted due to lack of space. They can be

obtained by writing to the author.

9 Pi is taken from [Van Gelder et al, 88].
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from those which would be obtained if this clause were

replaced by the simpler clause p <=. The problem is

that our preference ordering, as well as the stable se

mantics for logic programs, rewards those classes in

which p gets an explanation. Thus in P\, both seman

tics favors the model Mi = {q, p} over the apparently

equally meritorious model M[ = {r, p}, while in Pj,

the apparently superior model M? = {q, p} fails to

receive a better ranking than the model M£ — {r, p}.

These examples appear to suggest that a more in

tuitive preference criterion for selecting the intended

models of general logic programs should have this ab

ductive bias removed. We discussed the effects of such

a bias when the admissibility restriction was intro

duced in section 2.2. Recall that an admissible class is

a class not superseded by any other class. Likewise, a

class C with gap G' is superseded by a class C with

gap G when the set G — G' is non-empty and only con

tains exceptions explained in C, while the set G' — G

contains exceptions unexplained in C",

In the examples above, the minimal admissible

classes turn out to be in precise correspondence with

the more intuitive models Mi, M{ and Mi. The class

with gap Mj, on the other hand, is superseded by the

class with gap Mi, and is therefore not admissible.

Interestingly enough, the perfectly coherent class of

a stratified program is also its unique minimal admis

sible class. That is, there is a correspondence between

the minimal admissible class of a stratified program

P and the canonical model of P, as defined by Apt

et al., Przymusinski and others. This correspondence

is summarized in the following theorem:

Theorem 2. For a stratified program P,

there is a unique minimal admissible class,

whose gap is the canonical model of P.

Thus we have two alternative semantics for general

logic programs: one based on the preference ordering

formerly introduced, the other which simply selects

the minimal admissible classes. Both semantics coin

cide for the family of stratified programs, but diverge

outside that family. The examples above suggest that

a semantics based on minimal admissible classes is free

from the abductive bias exhibited by the stable seman

tics and the preferential semantics here proposed and,

therefore, that it might constitute a more appropriate

basis for identifying the intended model(s) of general

logic programs.

As a final illustration, we will consider a program P

in which none of the minimal classes is admissible and

in which, therefore, the preferred class is non-minimal.

P is given by the following rules:

p<=-.q

q ■<= -ir

r <S= -ip

The minimal Herbrand models of P are M\ = {p, r} ,

Mi = {q,p} and M3 = {q, r}, while the minimal

classes are C\fl, Cm3 and Cm3. It can be shown

that none of these classes is admissible: Cm3 super

sedes Ctttt Cm, supersedes Cm,, and Cm, supersedes

Cm,- Thus, the minimal admissible class of P which is

also the admissible class favored by preference ordering

turns out to be the non-minimal class Cm , with gap

M = {p, q, r}. Cm stands in this case for a collection

of models; indeed, it represents the set of subsets of M

which are models of P, i.e. Cm = {M, Mi, M2, M3}.10

It follows then, that none of p, q, r, or any of their

negations are sanctioned as consequences of P.

3.5 Abductive Reasoning

Work in non-monotonic reasoning has been inspired

by the goal of providing a formal account of some

of the pervasive patterns of inference found in com-

monsense reasoning. Most of this work to date has

been focused on the characterization of what has been

called default inference, a form of reasoning akin to

deductive inference, in which certain assumptions are

adopted in the absence of contrary evidence. Nonethe

less, other forms of non-monotonic inference, qualita

tively different from default reasoning, also appear to

play an important role in commonsense inference. One

such form, analyzed in some detail in [Harman, 86], is

what has been variously referred to as "inference to

the best explanation," "abductive reasoning" or "con

jectural reasoning." This is a form of inference which

attempts to make sense of the evidence by increasing

the coherence of a given set of beliefs. The characteri

zation of these patterns of inference involves both the

determination of sources of incoherence in a given be

lief state and the identification of hypotheses capable

of explaining such incoherence away. In this subsec

tion, we shall attempt to show that the framework we

have so far developed lends itself to a characterization

of this sort.

We assume that the unexplained gaps associated

with the preferred classes of a given context provide

a useful measure of the coherence of such context; in

deed, they point out 'what needs to be explained.' For

instance, in a inheritance hierarchy about animals, a

context which mentions a bird Tweety that does not

fly would be slightly incoherent. In such an incoher

ent state, it might make sense to jump to conclusions

which could explain away the source of incoherence.

We could hypothesize for instance, that Tweety is sick,

or that he is penguin and so on. We shall refer to those

propositions as conjectures. More precisely, a ground

10 Recall from section 2, that for a theory T, a class C

with gap G stands for the non-empty collection of models

of T which validate all the assumptions ->S, for 8 £ G. Cm

thus represents the collection of models of P which validate

all the literals ->a, for a & M, i.e. all the Herbrand models

of P included in M.
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atomic proposition 7 would be regarded as a conjec

ture in a context T if its adoption yields a new context

T U {7} more coherent than the original context T.

In section 2.1, we defined the conditions that make

one class more coherent than another. Now we must

define a similar order between contexts. For this pur

pose, we will associate with every context T a co

herence descriptor H[T], given by the vector of un

explained gaps in its preferred classes. A context T

with a coherence descriptor [Gi,...,Gn] would then

be said to be as coherent as a context T' with a coher

ence descriptor [G'v . . . , G'm], if each G,-, 1 < i < n, is

included in G'j, for some j, 1 < j < m. Furthermore,

if T is as coherent as T' but T' is not as coherent as

T, we say that T is more coherent than T'.

Recalling, the example above, we obtain then that

the proposition 'Tweety is a penguin' would qualify as

a conjecture in the above context, since its adoption

would lead to a context whose preferred classes are

perfectly coherent. Nonetheless, a proposition such as

'Tweety is a brown arctic penguin' would also qual

ify as a conjecture. In order to rule out unnecessar

ily specific conjectures, we must restrict the space of

admissible conjectures. Let us say that a conjecture

7' is less specific than a conjecture 7 in a context T

if 7' follows from T U {7}, but 7 does not follow from

TU{y1}. Then, we say that a conjecture 7 is admissible

if there are no less specific conjectures leading to con

texts as coherent as those resulting from the adoption

of 7. Thus, while 'Tweety is a penguin' and 'Tweety

is sick' would represent admissible conjectures in the

above context, the proposition 'Tweety is a brown arc

tic penguin' would not.

Note that there is an important distinction between

the set of default conclusions that follow from a given

theory and the set of admissible conjectures legit

imized by it. The set of admissible conjectures, un

like the set of default consequences, is not deductively

closed. Indeed, while it is reasonable to conjecture

that Tweety does not fly because it is sick, or because

it is a penguin, it is not so reasonable to conjecture

that Tweety does not fly because it is a sick penguin.

Conjectures, unlike defaults, represent alternative be

lief changes.

While this account of conjectural reasoning does not

limit the space of admissible conjectures a priori,11 it

may nonetheless be useful to provide the user with

the facility of expressing conditions under which cer

tain conjectures would be preferred over others. For

instance, following Pearl [87], we might want to ex

press things like 'if you are not aware of an expla

nation for the grass being wet, then conjecture that

it rained'. Thus, if the grass is observed to be wet,

even in the presence of other admissible conjectures,

an explanatory conjecture stating that it rained would

be adopted. However, if an alternative explanation

is learned, say that the sprinkler was on, the reason

for having postulated 'rain' would vanish, and so the

'rain' conjecture. Pearl refers to these defaults as ev

idential defaults, and convincingly argues that they

require a treatment different from the one given to nor

mal (causal) defaults. In our framework, evidential de

faults turn out to be essentially context guided conjec

tures. The details on how they can be accommodated

as part of the language are elaborated in [Geffner, 89].

4 Discussion

We have presented a framework for characterizing

defeasible inference based on a preference ordering

among classes of models. The ordering favors classes

with a minimal unexplained set of exceptions. We

have shown how such a framework permits to unify

ideas stemming from work in default reasoning, logic

programming and abductive inference. We have also

illustrated how the proposed account eliminates the

spurious models that arise in minimal model seman

tics, permitting a behavior in closer correspondence

with intuition.

The account presented here is unorthodox in several

ways. First, a preferential ordering is described which

does not apply directly to models, but to classes of

models. The motivation for such a choice originates

from viewing default reasoning in the 'abnormality'

setting as a labeling problem, in which the set of legit

imate assumptions in a given context needs to be iden

tified. Each class of models thus represents a choice of

assumptions, and these choices are evaluated accord

ing to the preference ordering.12

The distinction between explained and unexplained

abnormality plays a central role in such ordering. We

have argued that the value of a class is not in inverse

proportion to its abnormalities, but rather to its un

explained abnormalities. No penalty, for example, we

have maintained should be associated with a class in

which a bird does not fly, if the bird is, say, a penguin.

In that situation, being an 'abnormal bird with respect

to flying' is the normal, expected condition. Abnor

malities are unlikely in certain contexts but likely in

others, and a reasonable preference ordering should be

able to make this distinction.

Our reliance on justifications which are syntactically

extracted from the database and used to construct ex-

lSee [Poole, 87] for a different view.

12 This view also suggests an alternative, stronger defi

nition of default entailment which we have not pursued in

this paper. Rather than defining a to be a default con

sequence of T when a holds in all the preferred classes of

T (section 2.1), we could require the existence of a set of

assumptions AS validated in all the preferred classes of T,

such that T, AS h a. This stronger definition appears to

bear some resemblance with those semantic accounts based

on partial models (e.g. [Van Gelder et al., 88]), which we

have not yet investigated.
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planations is potentially more controversial. We have

assumed that abnormalities represent expectation fail

ures, and as such, could be either explained by explicit

exceptions which assert that a default is not applicable

in a given circumstance, or by competing expectations.

This choice, however, is not unique and, quite possi

bly is not the best. It is, however, relatively simple

and intuitive, and as we have illustrated, it can 'rea

sonably' account for 'reasonable' examples. Further

refinements may still be necessary.

The framework for defeasible inference proposed

here shares several features with the system L pro

posed in [Geffner, 88]. Both systems represent defaults

in the same way and they appeal to the same distinc

tion between background and evidence. Both regard

the antecedent of a default as providing a safe context

in which the truth of the consequent can be asserted,

and both attempt to capture the distinction between

defaults and their contrapositives in a similar way.

There are, nonetheless, significant differences be

tween the two frameworks. First, L has the form of a

natural deduction system whose rules originate from a

probabilistic interpretation of defaults. This set of

rules is supplemented by an additional, more ad-hoc

rule, which attempts to supply the probabilistic rules

with appropriate assumptions about conditional inde

pendence. Such an "irrelevance rule," as it is called,

permits us to infer for instance conclusions like 'a red

bird flies,' given that 'birds fly'. These conclusions

would otherwise escape the probabilistic machinery.

The irrelevance rule in L, and an analogous con

struction in the conditional logic of Delgrande [87],

plays a central role in endowing these systems with

a reasonable inferential power. There has been, how

ever, a difficulty in justifying and making precise the

form this rule should take. This difficulty has been a

primary motivation behind the work reported in this

paper. The framework we have elaborated here pro

vides a rationale for identifying the set of assumptions

to adopt in a given context.

Nonetheless, the proposed semantics does not vali

date the probabilistic rules of L; indeed, unlike L, the

semantics is not cumulative.14 In other words, even if

H defeasible follows from T, the contexts T and Tu{H}

are not guaranteed to yield the same conclusions.18

13 Indeed, L comprises a set of rules which define a sound

and complete logic of high probability (see [Adams, 66] and

[Pearl and Geffner, 87]). This probabilistic interpretation,

however, is not essential; Kraus et al. [88] have developed a

system with equivalent power within a preferential seman

tics setting.

l4The term "cumulativity" has apparently been coined

by Makinson [89]. See also Kraus et al. [88].

1&Just consider a theory with defaults 'if A then B', 'if

A and B then C and 'if C then ->B\ It is possible to verify

in such a theory that both C and B follow from A. B, on

the other, does not follow from A and C.

In this regard, two important questions remain to be

answered. The first has to do with whether 'cumula

tivity' is a reasonable property to have in a defeasible

logic, and if so, whether it is possible to embed a cu

mulative logic within a semantics capable of drawing

sensible assumptions about conditional independence.

A discussion of some of the issues involved in these

questions can be found [Geffner, 89].
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Abstract

This paper introduces a novel approach to

similarity-based inductive reasoning. Induc

tion is defined as inference in a nonmonotonic

logic; this approach contrasts with the classi

cal approach that consists of adding formulae

to a theory in order to deduce other formu

lae. We point out problems arising in this

setting and show how they are solved within

our framework. Given a set of formulae A, we

define the set T of inductive generalizations

of A, and derive several of its properties.

1 Introduction

This paper introduces a novel approach to empirical

(similarity-based) inductive reasoning. The model pre

sented here contrasts with what we call the classical

approach to induction: in this approach, a system is

presented with information concerning a domain; its

task is to infer hypotheses that allow it to "explain"

what it observes. From a logical standpoint, what we

informally call here "explain" is in fact "deduce". So

the task of the system is to add formulae to a theory in

order to be able to deduce other formulae. Deduction

thus plays a key role in the definition of induction.

This situation can be formalized as follows:

Given some background knowledge A and

observations 0, such that A ^ 0, Find T

(called generalizations of 0 with respect to

A) such that AUT |= 0. (1)

(Although the problem is not always expressed in log

ical terms, it is always equivalent to this formulation.

See for example the book by Genesereth and Nilsson;

we omit additional details that are not relevant here.)

Now, this is certainly a satisfactory model of induc

tion in the framework of scientific, rigourous thinking;

but is does not seem to mirror accurately induction as

the kind of ubiquitous reasoning of everyday life. For

'This work is based on the author's doctoral research

that was done at GRTC, Centre National de la Recherche

Scientifique, Marseille, France

example, upon observing a number of birds and their

ability to fly, people might generate the rule that all

birds fly simply as a conclusion of the observations,

grounded on their similarities, rather than as an ex

planation of the fact that, for example, Tweety flies

knowing that it is a bird. No deductive step is involved

here, so there is no reason for deduction playing such

an important role in the definition of induction.

Contrasting with this, we argue that induction is a

process of "jumping to conclusions" in the presence of

partial information and thus a kind of inference un

der uncertainly. Predictably enough, it shares a basic

property with certain kinds of default inference: induc

tion assumes that the similarities between the observed

data are representative of the rules governing them (we

subsequently call it the similarity-assumption). This

assumption is like the one underlying default reasoning

in that a priority is given to the information present

in the database. In both cases, some form of "closing-

off" the world is needed. However, there is a difference

between these: loosely speaking, while in default rea

soning the assumption is "what you are not told is

false", in similarity-based induction, it is "what you

are not told looks like what you are told".

This motivates the approach we introduce here in

which, given a set of formulae, we infer other formulae

called inductive generalizations of the former. For

mally, the problem is

Given a set of formulae A (we do not dis

tinguish between background knowledge and

observations), Find T (the generalizations of

A) such that A \=ind T, where \=ind is a

certain rule of inference that embodies the

assumptions underlying induction.

T is supposed to represent all the regularities present

in A, i.e. all the rules satisfied by its objects. In

the machine learning terminology, this is often called

"learning by observation and discovery", and is sup

posed to model a situation in which the learning sys

tem receives no assistance from a teacher. However,

our aim here is not to model a particular learning sit

uation, but rather to point out problems concerning

the way inductive inference is currently formalized in
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AI, and propose a solution for it. The main arguments

put forward in this paper thus apply to other learning

situations as well.

Basically, we will define the inductive generaliza

tions of a set of formulae as the rules that follow from

it by some form of closed-world reasoning. We will use

a first-order logic using a "logic database" language,

i.e. function-free non-Horn clausal logic. Many defini

tions and results are taken from Bossu <k Siegel's [1985]

subimplication, a logic that can be viewed as a partic

ular case of circumscription [McCarthy, 1981] in which

every relational symbol has its extension minimalized

instead of some, and problems concerning equality are

avoided using discriminant interpretations; further re

lationships between circumscription and subimplica

tion are investigated by Shoham [1987]. Associated

with the logic is an attractive language, that of ground-

able clauses (g-clauses for short). Beyond this, the re

sults presented here are independent of any particular

application; no bias is assumed other than the one im

plicit in the representation language.

The emphasis in this paper is on showing the ad

vantages of such an approach to induction. We do not

address basic problems such as relevance of the repre

sentation language, dealing with noisy information, or

learning disjunctive expressions.

The next section discusses problems arising with the

formulation (1); section 3 introduces the main defini

tions; section 4 provides an example; in section 5 we

prove some properties of generalizations; we then dis

cuss the motivations behind the definitions and survey

related work.

2 Problems with the classical

approach

In this section we point out some problems arising with

the classical formulation (1). Consider the simple ex

ample in which we know Tweety is a bird, and we sud

denly observe that he is able to fly. Using the notation

of (1), this is expressed:

A = {bird(Tweety)},

and

0 = {flies{Tweety)}

We then look for explanations to this fact, i.e. for

mulae T satisfying (1).

Ti = {Vx bird(x) D flies(x)}

is such a formula, but so are the following:

T2 = {VzVy bird(x) D flies(y)}

T3={Vxflies(x)}

T4 = {Vz bird(Tweety) D flies(x)}

and there are many more. T\ is clearly the intended

generalization, but there is no way to prefer it to the

others using the definition (1). The solution usually

adopted is to introduce additional information in the

system, called bias in the machine learning literature,

a popular one being to favor the more specific formu

lae over the more general ones (Genesereth & Nilsson

[1986] call it the model maximization heuristic).

Unfortunately, this doesn't come even close to pro

viding a satisfactory answer: first of all, there are still

many solutions, as there can be generalizations incom

parable w.r.t. this order, i.e. two formulae neither of

which has its models included in the others'.

But the most serious problem is that no reason

able justification exists for choosing such formulae. Of

course some form of control is needed to avoid over-

generalization, but the model maximization heuris

tic performs poorly at this task. Evidence for this

is that it does not work in any but the most triv

ial representation languages: for example, for first-

order clausal logic with functional symbols, Buntine

[1988] shows that no such most-specific generalization

exists (i.e. there is an infinite set of formulae satis

fying (1), ordered according to model-inclusion). Al

though this is a pathological case, he also reports on

realistic situations in which these more specific formu

lae can be clauses of several dozen literals. Niblett

[1988] makes a detailed analysis of generalization in

first-order logic and shows additional problems aris

ing with most-specific generalizations. Much work has

been done on trying to relax the model maximization

rule and look for domain-independent information that

can help to choose more general formulas [Kodratoff

& Ganascia, 1986, Vrain, 1989].

Of course several alternatives exist. For example,

use "negative evidence" (e.g. counter-examples of a

concept), and look for the version space [Mitchell,

1982] of possible solutions; or introduce domain-

dependent bias into the system.

But basically problems remain. We argue that these

problems are essentially connected with the formula

tion (1), and thus cannot be solved within it. The

reason is that the fundamental similarity-assumption

that grounds inductive inference comes down to pre

ferring some models of the input information to others;

the "good" generalizations correspond to the preferred

models, and this cannot be captured within the frame

work (1). We will show that in our setting, from

A = {bird(Tweety) , flies(Tweety)} ,

Ti is the only of the above formulae that can be in

ferred.

3 Generalizations

This section introduces the main definitions. Given a

set of formulae A, we define T(A) 1, the set of gen

eralizations of A. This definition aims to capture the

intuition underlying inductive reasoning. We will then

1We will simply write T when there is no confusion.
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derive some properties concerning the syntax offormu

lae in T.

We will use a subset of clausal logic and consider

discriminant interpretations. A property of these is to

interpret different ground terms by different elements

of the domain (this is equivalent to making the unique-

names assumption). So we will identify an interpreta

tion with a set, that of the ground atoms to wich it

assigns the value true. Note however that we do not

consider Herbrand interpretations, neither do we make

the domain closure assumption, so the domain will be

infinite, even in the case of a finite set of constants in

the initial set and no function symbols.

We consider minimal models in which the extension

of every relational symbol is minimalized, i.e., M is

a minimal model of a set of formulae if for no other

model M'.tf'CM.

But inductive reasoning occurs over a finite set of

objects. We thus need to represent the initial set with

a class of formulas for which minimal models always

exist; moreover, we want these minimal models to be

finite. Here is a class of formulae that has such prop

erties:

Definition: A groundable clause (g-clause for

short), is a clause that satisfies the following proper

ties:

1. its function symbols are constants.

2. every variable that appears in a positive literal

also appears in a negative one.

For example, p(x,y) D q(y) is a g-clause, while

p(*,y) 3 l(z) is not.

The expected properties (proofs in [Bossu &; Siegel,

1985]) are the following:

Proposition:

1. Every set of clauses has a minimal model.

2. A set of g-clauses has a finite set of finite minimal

models.

The definition of generalization will be in two parts:

we will first define the value of a clause w.r.t. an in

terpretation, and then define the generalizations.

We first need for the generalizations to verify a tech

nical condition.

Definition: A clause P D Q 2 is injective over a set

of ground atomic formulae A, whenever there exists a

substitution a, mapping the literals of P onto elements

of A, such that for every pair of variables x,y of P,

a(x) £ a(y).

For example, if

A = {hand(l, clubs, clubs), wins(l),

2 Notation P D Q means P = pi A . . . Apn, the premise

and Q = qi V . . . V qm, the conclusion. Alternatively, we

will write ->P V Q.

hand(2, spade , spade) , wins(2)}

then the clause

hand(x,y,z) D wins(x)

is not injective over A because both

a1 = {xI 1, yIclubs, z/clubs)

and

ct-i — {x/2, y/spade, z/spade}

assign the same value to y and z. Of course

hand(x,y,y) D iy:'ns(a:)

is injective over A.

The generalizations will have to satisfy an injectivity

condition over the set of atomic formulas that can be

deduced from the original set. There are two reasons

for this: firstly, it avoids the introduction of "unneces

sary" variables in the generalization; secondly, we will

show it is a necessary condition to prove an important

property: the set of generalizations is finite.

Definition:

1. Let M be an interpretation and 4> = P D Q a

clause. The value of 4> in M, denoted Val(<j>,M),

is defined as follows:

1 if M \= <j>, M (= P{, a ground instance of P,

and P is injective over M . 3

0 otherwise.

2. Let A be a set of formulae and <j> a clause. The

value of 4> in A, denoted Val(<j>, A), is:

1 if Val(<j>, M) = 1 for every minimal model M

of A.

0 if Val(4>, M) = 0 for every minimal model M

of A.

| otherwise.

Example: Let A be

deputy(tom) V senator(tom)

deputyix) D corrupt(x)

senator(x) D corrupt(x)

rich(tom) rich(bill)

A has two minimal models, Mi and M2 that assign

true to the following formulae:

Ml = {deputy'(torn), corTupt(tom),rich(tom),rich(bill)}

M2 — {senator(torn)tcorrupt(torn),rich(torn),rich(bill)}

Let

4>i = deputy(x) D rich(x)

<j>2 — corrupt(x) D rich(x)

(j>3 = rich(x) D corrupt(x)

3 As in [Shoham, 1987], if M is an interpretation, M (= <f>

means M satisfies <f>
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Then

Val(fa,Ml) = l,Va/(^1)M2) = 0: Val{4>ltA) = -

Val{<j>2,M\) = l,Val(<j>7,M2) = 1 : Val(<t>2l A) = 1

Val{<j>3, Ml) = 0, Val{(f>3, M2) = 0 : Val(4>3, A) = 0

So a clause P D Q has value 1 in an interpretation

M whenever it is satisfied by it (i.e. if M (= P then

M J= Q), it is not trivially satisfied by it (there is a

ground instance Pj of P such that M (= P,), and P

does not introduce unnecessary variables as discussed

above.

Moreover, we want to take into account disjunc

tive information, i.e. distinguish completely irrelevant

facts from facts that cannot be deduced from the orig

inal set but appear in a disjunctive formula that can

be deduced from it. Those facts will be true in some

minimal model of A, but not in all.

But the most important point about the definition is

the use of minimal models. This is discussed in section

6.

Generalizations are now defined as follows:

Definition: Let A be a finite set of g-clauses.

1. The set of strong generalizations of A, denoted

rs(A), is the set of clauses 4> that satisfy:

(a) Val(4>,A) = l

(b) A £ <j>

(c) For any clause <f>' of r.s(A), <f>' \= <j> entails

2. The weak generalizations of A, IV(A),are defined

likewise, with the first condition replaced by

(a) Va/(0,A) = 1

3. The generalizations of A, T(A) = rs(A)UlV(A)

Condition (b) simply discards formulae in the de

ductive closure of A: we do not want to learn what

we "already knew". Condition (c) "cleans up" T un

der subsumption 4: we do not want T to include both

p D q and p A r D q. This is not only for aesthetic

reasons: it is a necessary condition to prove some of

the properties listed in section 5.

4 Example

Let A be the following set of formulae:

expensive — car(rolls — royce)

expensive — car(mercedes — benz)

drives(x,y) A expensive — car(y) 3 rich{x)

deputy(tom)

drives(tom, rolls — royce) V drives(tom,

mercedes — benz)

deputy(bill)

rich(bill)

drives(bill , mercedes — benz)

friend(bill, bob)

drives(bob, mercedes — benz)

Ts(A) then contains the following clauses:

deputy(x) D rich{x)

deputy(x) A friend(x,y) D rich(y)

rich(x) D drives(x, rolls — royce)V

drives(x, mercedes — benz)

T\y contains

rich(x) D drives(x, rolls — royce)

rich(x) D drives(x, mercedes — benz)

A has two minimal discriminant models. They

can be associated with the sets of ground atomic for

mulae that can be deduced from A, to which we

add drives(tom, rolls — royce) in one model, and

drives(tom, mercedes — benz) in the other.

The formulae in Ts are true in both models; those

in IV in only one of them.

These formulae thus follow from closed-world rea

soning over A, i.e. they are true on the objects present

in A.

Additionally, the following clauses are true in both

minimal models of A, but there are not generalizations

because they fail to satisfy some of the conditions re

quired:

drives(x, rolls

from A

royce) D rich(x) : can be deduced

4 Without function symbols as here, semantic entailment

between clauses is equivalent to subsumption: tj> \= ip if[

4>o C r)> for some substitution <r. This is not the case if the

language contains function symbols.

drives(x, Volkswagen) D rich(x) : trivially true in

both models: no instance of its premise is satisfied

in any model (i.e. nobody drives Volkswagen)

deputy(x) A drives(x, rolls — royce) D rich(x) :

subsumed by a formula in Ts-

5 Properties of T

We now give some results concerning the set of general

izations of a theory. These properties refer to the syn

tax of such generalizations, and they are consequences

of the definition.

We would like to point out the interest of such an ap

proach compared with the traditional one in machine

learning. This consists of imposing some a priori syn

tactical restrictions (the learning bias) to the formulae

to be learnt. Contrasting with this, our definition did

not make any reference to syntax. However, formu

las like deputy(tom) (a ground formula), ->deputy(x)



Induction As Nonmonotonic Inference 153

(a negative formula), or deputy(x) A friend(y,z) D

rich(w) (which is not really meaningful), would not

be intuitively acceptable as generalizations, as they

can hardly represent interesting regularities present in

the original set.

We now show that this will never occur, as the gen

eralizations satisfy the following properties (proofs are

given in the appendix):

Proposition 1: T contains only g-clauses.

Proposition 2: There are neither positive nor neg

ative clauses in T. 5

The following definition characterizes in a very nat

ural way formulas that are "meaningful" .

Definition:

1. The set of linked literals of a clause (f> is the small

est set containing every literal / of <f> having one

of the following properties:

(a) / is positive.

(b) / shares a variable with a linked literal of fa

2. A clause is linked if all of its literals are linked.

Loosely speaking, a link in a clause indicates a

"path" between every negative literal and a positive

one, through its variables. For example,

p(x)Aq(x,y) D r(y,z)

is linked, as p(x) is linked to q(x, y) which is linked to

r(j/,2),but

p{x) A q(y) D r(y)

is not, as p(x) does not share a variable with a linked

literal.

Note that, as this example shows, linked clauses are

not necessarily g-clauses, and vice versa.

This definition is motivated by the following:

Proposition 3: Every clause of T is linked.

With these results it is easy to prove:

Corollary 4:

1. No clause of T contains a negative ground literal.

2. No Horn clause of T contains ground literals.

Altogether these results give a strong syntactic char

acterization of formulae in T.

Finally we prove:

Proposition 5: T is finite.

We motivate here the injectivity property. Consider

the following set of clauses:

<t>\ =p(x0,xi)/\p(x1,x0) Dq(x0)

fa =p(xo,Xi) Ap(xi,x2) Ap(i3,io) D q(xo)

4>k =p(*o,*i)A...Ap(*»fx0) D q{x0)

and the set

A= {p(a,a),q(a)}.

The above clauses are are unordered w.r.t. model-

inclusion, i.e. there is no pair of clauses fa and fa

such that fa |= fa.6 Moreover, they are all true

in the only minimal model of A. Fortunately, none

of these clauses satisfy the injectivity condition: the

substitutions a grounding its premises are such that

a(xi) = a{xj), for every pair of variables Xi,Xj of the

clause, so none of these is a generalization of A. Of

course fa) = p(xo> *o) 3 <l(xo) is such a generalization.

Note that without the injectivity, fa would not be in

T, as it is subsumed by fa .

Plotkin [1970] also shows similar infinite sets of

fuction-free clauses {fa, fa,..-} ordered in a specific-

to-general direction: fa+i |= fa. If, as in the example

above, all these are true in the minimal model of some

set of formulae, no generalization would existe as any-

clause would be subsumed by the next one.

6 Discussion and Comparison With

Related Work

6.1 On the use of minimal models

In this section we explain the motivations for the def

initions given so far; while doing so we examine alter

natives to it and survey related work.

Given a set of formulae A, we want to produce all

the "hidden" laws in it, i.e. all the rules verified by

the objects in A. Within a first-order logic, these will

then have the form VX P D Q. The problem is then to

define the weakest conditions that constitute enough

evidence to support such a rule.

These weakest conditions are:

• A contains an instance of P and Q.

• A does not contain an instance of P and ->Q.

Such an approach is taken by [Delgrande, 1985]. In

this situation, positive and negative information play

a symmetric role, and this leads to a well-known prob

lem in inductive logic, the Hempel paradox: a rule

P D Q being logically equivalent to its contraposi-

tive ->P D -<Q, with the two conditions listed above

one can generate rules with counter-intuitive support.

The famous example is a white shoe being support for

the rule all crows are black: it is supposed that we

have information with which we can derive that if an

5 A positive (negative) clause is a disjunction of positive

(negative) literals.

6 Recall that without function symbols, model-inclusion

is equivalent to subsumption and observe that for no pair

of clauses there is a substitution that makes one clause a

subset of the other.
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object is a shoe it is not a crow, and if it is white it

is not black. The two conditions above thus allows us

to conjecture that every non-black thing is not a crow,

which is equivalent to say that all crows are black.

Delgrande's solution is to change the role of negation

within the logic to avoid such paradoxes.

Now, this is to give too much importance to nega

tive information. With the concerns of inductive logic

from a philosophical perspective, i.e. to find a logical

justification for induction, it may be fine. But arti

ficial intelligence is concerned with modelling human

thinking, and it seems quite obvious that positive and

negative information do not play symmetric roles in

inductive reasoning. Evidence for this is that in vir

tually every machine learning approach to induction,

negative information is used to "control" the general

ization process, rather than in a "constructive" way

(although see [Nicolas, 1988] for a different view).

The approach we have taken here of course gives

high priority to positive information. We thus want

the set of generalizations to increase or decrease when

positive facts are added to the original database. This

naturally leads to the use of minimal models in our def

inition: entailement over minimal models is monotonic

on positive formulas (if a positive formula is satisfied

by the minimal models of a set of formulas, it is satis

fied by all its models [Bossu & Siegel, 1985]). So if a

new (i.e. non-deductible) positive fact is added to the

database, it will alter its minimal models, and thus it

may alter T. So this monotonicity result tells us that

minimal models achieve the required effect; moreover,

it seems to be the weakest condition with which this

is verified.

Regarding the conditions that constitute sufficient

evidence to support a generalization P D Q, it is easily

proved [Helft, 1988] that our definition imposes the

following condition:

• For every instances Pi,Qi of P D Q, if P, is in A,

so is Qi .

This condition is of course stronger than Del

grande's. For example, from

A = {bird(Tweety),bird(Opus),flies(Tweety)}

he can derive Vxbird(x) D flies(x), while we cannot.

What role do negative formulae thus play in our

framework? The same as in any closed-world database:

they alter the minimal models only when they can be

used to produce a clause that subsumes and thus re

places an older one. For example, if we add ->p to a

database containg p V q, we are able to derive q and

thus use it to produce a new generalization.

To end up this comparison, it is interesting to note

that from a model-theoretic perspective, Delgrande's

approach is equivalent to minimalizing the left-hand

side of the rules and maximalizing the right-hand side.

6.2 Computing Generalizations

In [Helft, 1988], we present an algorithm for computing

r. Of course there serious complexity problems, as we

first need to compute the minimal models of a set of g-

clauses, which is equivalent to deriving all the positive

ground clauses that can be deduced from the original

set. From these, generalizations can be obtained per

forming a general-to-specific search, with techniques

similar to those used by Shapiro [1983]. However, all

the syntactical restrictions proved in Section 5 (espe

cially the link between the variables) are used here to

dramatically reduce the search space, and the algo

rithm performs reasonably well at this stage.

6.3 Extensions

We restricted the representation language used here

to g-clauses mainly for didactical reasons. However,

[Bossu & Siegel, 1985] use a richer language, that of

g-formulae, which are, loosely speaking, equivalent to

rules having existentially quantified positive literals.

For example,

Vxp(x) D By(q(y) Ar(x,y))

As the results on existence and finiteness of minimal

models remain valid for these formulas, generalizations

can easily be extended to handle these. For example,

instead of the two weak generalizations produced with

our example of Section 2, we would get

Vx(deputy(x) D 3y(expensive — car(y)/\drives(x,y)))

i.e. every deputy drives some expensive car.

7 Conclusion

The main message of this paper has been the following:

there are serious problems with the way similarity-

based inductive reasoning is currently formalized in

AI. Whatever representation formalism is used, the

definition is always based on the idea of "inverting

deduction" . This definition fails to capture the funda

mental similarity-assumption that grounds inductive

inference, and this is the cause of the many counter

intuitive generalizations produced by it.

We argued that induction is basically a form of

closed-world reasoning, quite close to other forms of

default reasoning in AI.

We then defined the set of inductive generalizations

of a given set as the formulae that are true in the min

imal models of the initial set, and satisfy some addi

tional restrictions. Finally some syntactical properties

of such generalizations were derived.
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A Appendix: Proofs of Properties

Proposition 1: T contains only g-clauses.

Proof: Suppose not. Then T contains a clause <f> =

P D Q, for which one of the following hold:

1. Q contains a variable that does not appear in P.

In this case, let M be a minimal model of the

initial set; the two following cases are possible:

(a) There exists a ground instance P, of P such

that M |= Pi.

Then, let x be a variable that appears in Q

and not in P; if M \= (j> then M \= Vz Q(x).

Let Q = Q\ V Q2, where Q\ are the literals

containing x and Q2 the rest of the literals

of Q. Then M ^ VxQl, because M is fi

nite. So M \= Q2. So M |= P D Q2, which

subsumes fa So each time a model satisfies

such a clause fa it satisfies a clause that sub

sumes it. So <j> is not in T because of the last

condition in the definition of generalizations.

(b) Such an instance does not exist.

So for every ground instance P,- of P, M )fc

Pi. So Val(4>,M) = 0, and thus <f> is not in

r.

2. <f> = P D Q contains a function symbol that is not

a constant. Call / a literal in which such function

symbol appears.

In this case, if M is a minimal model of the orig

inal set, M ¥= I because of [Bossu & Siegel, 1985]

Property 3.2.1 which says that if a minimal model

of a set of g-clauses A satisfies an atomic formula,

this atomic formula contains only constants that

appear in A. Now,

(a) if / occurs in P, M satisfies no ground in

stance of P, so 4> is not a generalization be

cause Val(<f>,M) = 0.

(b) if / occurs in Q, call fa = <f> - {/}. Then if

M f= fa M |= fa. The conditions for <p and

fa to be generalizations being the same, <j>

cannot be one because it is subsumed by <j>' .

This concludes the proof.

Proposition 2: There are neither positive nor neg

ative formulas in T.

Proof:

1 . No positives: a positive formula is true in the min

imal models of a set of formulae if and only if it

is true in all models, i.e. if it can be deduced

from such a set. Condition (b) in the definition of

generalizations discards such formulas from T.

2. No negatives: if an interpretation M satisfies a

negative clause ->P (i.e. M \= V^f-iP), it can

never satisfy a ground instance of P.

Proposition 3: Every clause of T is linked.

Proof: Suppose not, let cj> = p A P D Q be such a

clause, p being a non-linked literal, and call <j>' = P D

Q-

If <f>' is in T, 4> is not since it is subsumed by a clause

in T. Otherwise, one of the following conditions hold:

1. Val(<f>',A) = 0.

So for every minimal model M of A, Val(4>', M) =

0. Again, one of the following must hold:

(a) M ^ <f)'. Then <f>' has a ground instance $ =

P/ D Q'i not satisfied by M. Now consider

the ground clause fa = p,- A P{ D QJ- , where

Pi is some ground instance of literal p, not

satisfied by M. (This is always possible, as

M is finite). As p is not linked in <j>, fa is

necessarily a ground instance of fa As M

satisfies neither p,- nor <j>'i} it doesn't satisfy

fa either. So M does not satisfy phi (as it

does not satisfy one of its ground instances),

and thus phi is not a generalization.

(b) M satisfies no ground instance of P. Then

M will not satisfy an instance of pAP either.

(c) P is not injective. Then neither is p A P be

cause p has no variable in common with P.

2. A \= fa

As A \= fa and fa \= fa A \= fa so <f> is not a

generalization.

3. fa is subsumed by a generalization.

Then the same clause that subsumes fa subsumes

(f> by transitivity, so <j> is not a generalization.

Corollary 4:

1. No clause of V contains a negative ground literal.

2. No Horn clause of T contains a ground literal.

Proof:

1. Negative ground literals are not linked (as they

contain no variables).

2. A Horn clause has only one positive literal. It

cannot be a ground literal, because no negative

literal would be linked. As there are no negative

ground literals, there are no ground literals at all.

Proposition 5: T is finite.

Proof: T has a finite number of finite minimal mod

els. We show that any of these can only satisfy a finite

number of injective clauses.

Suppose not, and let {fa, fa, ... .} be an infinite set

of such clauses. Then it is possible to construct a set

{^1,^2, • • •} such that fa C fa and all the {fa} have

the same predicate symbol: as the number of predicate

symbols is finite, in an infinite set there must be at

least one that appears an infinite number of times.
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T does not contain redundant clauses: in particular,

it does not contain clauses equivalent modulo variable-

renaming. So it contains an infinite number of vari

ables, as only finitely many non-equivalent clauses can

be formed with a finite number of variables. So the

{tpi} are not injective, since it is not possible to map

an infinite set (the variables of the xpi) into a finite

one (the constants appearing in A) with an injective

function.
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Abstract

If knowledge representation formalisms

are to be suitable for semantic interpre

tation of natural language, they must

be more adept with representations of

existence and non-existence than they

presently are. I review the philosophi

cal background, and exhibit some onto

logical problems for Kit. I then look at

the shortcomings of current approaches,

including several intensional formalisms

and the work of Hobbs. The Meinongian

theory of Parsons is considered. Lastly,

I present a naive ontology for knowl

edge representation, identifying about

nine distinct kinds of existence.

1 Introduction

Most contemporary logics implicitly or explicitly base

the semantics of the quantifiers 3 and V on the widely-

held ontological assumptions of Russell [1905, 1918]

and Quine [1948]. A small but growing number

of philosophers (e.g., [Parsons 1980, Routley 1980,

Lambert 1983] believe that these assumptions are

mistaken,1 and have proposed various alternatives.

In this paper, I will discuss the consequences of the

Russell-Quine assumptions for knowledge representa

tion formalisms, and show that an adequate treatment

requires a multi-faceted view of existence.

My motivation comes from the KR needs of natu

ral language understanding. As I have argued else

where [Hirst 1988b], a KR formalism to be used in

"Parts of this paper were written while the author was

at the Department of Artificial Intelligence, University of

Edinburgh, with the support of a Visiting Fellowship from

the U.K. Science and Engineering Research Council. The

balance of the work was supported by the Natural Sciences

and Engineering Research Council of Canada.

Introducing his work, Parsons says of the Russell-

Quine position that "clear progress is rare in philosophy,

and I was pleased to have [it as] an example to cite. But

as I thought about it more, I became increasingly dissatis

fied" (p. xii).

an NLU system for unrestricted text must have (at

least) the expressive power of natural language (for

otherwise it could not be a target language for se

mantic interpretation). Moreover, natural languages

reflect genuine properties of the real world (with dif

ferent languages possibly highlighting different prop

erties or viewpoints). Thus, KR research may include

exhibiting sentences of natural language and consider

ing how their meaning, and the world it reflects, may

be adequately represented—where 'adequately' means

that the representation permits the same inferences to

be drawn as the original sentence. Here, I am con

cerned with sentences that speak of existence, of non

existence, or of non-existent objects.

2 Three ontological slogans

2.1 Existence is not a predicate

Immanuel Kant, in his Critique of pure reason [1787,

B.625ff], argued that existence is not a property that

may be predicated of an entity the same way that prop

erties like color and species can be.

Kant was responding to an argument by St Anselm

of Canterbury [Anselm 1078, II] that purported to

demonstrate the existence of God a priori: his 'onto

logical proof. Anselm's argument was basically this:

What we mean by God is, by definition, that entity

that is right up the top end of the scale in all desirable

properties: the entity that is most wise, most good,

and so on. On the scale of existence, clearly actual

or necessary existence is better than mere conceptual

or possible existence; therefore existence is a defin

ing property of God; therefore God exists.2 Descartes

[1641, V] later took much the same approach: God has

all perfections; existence is a perfection; therefore God

exists.3

2Compare Smullyan's proof [1978, p. 205-206] that uni

corns (or anything else you like) exist: To prove that uni

corns exist, it suffices to prove the stronger statement that

existing unicorns exist. But for existing unicorns to not

exist would be a contradiction; therefore existing unicorns

exist; therefore unicorns exist.

3 For the history of the argument, and a discussion of

some of the ontological issues mentioned below, see Barnes
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Now, being able to define things into existence like

this is metaphysically disturbing, and doesn't really

seem possible. Thus, Hume [1779, IX] tried to show

that it is not possible that an entity exist of necessity,

and Kant took the position described above, which is

often characterized as "Existence is not a predicate".

This position is now widely accepted in philosophy

[Plantinga 1967, p. 38]. Nevertheless, while it may

have the merit of keeping God off our backs, it raises

difficulties in knowledge representation.

What I want to show in this paper is that existence

can be predicated, but (lest God be found to be an

emergent property of our knowledge representations;

no deus ex machina here!) it is neither a single predi

cate nor an ordinary kind of predication.

2.2 Everything exists

An adequate treatment of existence in KR formalisms

is complicated not only by the problem described

above, but also by a related set of difficulties that de

rive from a position often summarized by the slogan

"Everything exists" (c/[Quine 1948, p. 1]). That is,

there is nothing that doesn't exist, for if it doesn't

exist it isn't anything, and statements apparently

about non-existents are either incoherent or can be ex

plained away. The development of this approach is due

mainly to Russell [1905, 1918] and, later, Quine [1948].

The Russell-Quine position has become so firmly en

trenched in twentieth-century Anglo-American philos

ophy that it is usually accepted without question [Par

sons 1980, p. 1-5]. If we take the slogan literally, then

even if existence can be predicated of an entity, it

is no more than a tautology; no entities don't exist.

And to assert non-existence of something would be

self-contradictory. As we will see, this position too is

problematic for knowledge representation.

To a large degree, the question seems to be nothing

more than what the word exist does or should mean,

and what status is to be assigned to 'non-existent ob

jects'. Quine grants two kinds of existence: concrete,

physical existence in the world (the kind that Margaret

Thatcher has), and abstract, non-physical existence

(the kind that the number 27 has). "Idea[s] in men's

heads" [1948, p. 2] are included in one or the other of

these categories, and so too, I assume, are events and

actions. Clearly, this is a wider definition of existence

than the kind that Anselm and Descartes wished to at

tribute to God. Presumably they intended some divine

equivalent of physical existence—able to have causal

interaction with the physical world—and would be un

happy with the idea that God existed only in the way

the number 27 does. Likewise, Hume and Kant were

using the narrower definition, for many mathematical

objects obviously exist of necessity (the number 27; the

least prime greater than 27). So perhaps existence in

this other sense, non-physical existence without causal

connection to the world, could be a predicate.

2.3 There are things that don't exist

Quine's sense of the word exist may be wider than

Anselm's and Descartes's, but it is still much narrower

than that of Meinong [1904], who described his posi

tion in an oxymoron: "There are objects of which it is

true that there are no such objects" [1904, Levi et al

translation, p. 83]. For Meinong (like Brentano before

him), every thought or idea, such as the idea of a gold

mountain, must be 'directed toward' some object, and

so all objects of thought have being in some sense, even

if not real-world existence. Meinong therefore wanted

to give status to objects such as the gold mountain,

which is not real, and the round square, which is not

even possible, arguing that the gold mountain is just

as good an object as Mount Everest, and the fact that

it is unreal makes no difference. Note that the question

is not about the concept or idea of the gold mountain

and whether that exists; clearly, it does. But when

we say that the gold mountain is 1000 metres tall, we

aren't just talking about an idea; it is not the idea that

is 1000 metres tall but the alleged thing that the idea

is of.

Russell pointed out that Meinong's approach got

into trouble with objects like the gold mountain that

exists—which isn't real even though existence is part

of its definition (c/ footnote 2). It also troubled him

that there was any sense in which a contradiction like

a round square could exist.4

Thus the question to be considered is what, exactly,

do quantifiers like 3 and V quantify over? If an ex

pression begins with 'Vx' or '3x', then what values

may be used or considered for x? Do they include

Margaret Thatcher, the number 23, World War II, my

putting the cat out last night, the late Alan Turing, the

possibility of rain tomorrow, suavity, fear, the set of

round squares, the concept of round squares, or Sher

lock Holmes? In other words, what is in the universe

of quantification? What exists?

3 What exists?

The burden on the everything-exists position is to ex

plain the apparent counterexamples—the entities that

don't exist and yet seemingly form part of the popu

lation of everyday naive ontology. In the next subsec

tion, I will list some of the problematic examples from

natural language, and in section 3.2 I will show how

Russell tries to dissolve the problems.

[1972].

4 Parsons [1980, p. 38-42] has argued that a round

square is not a contradiction in the same way a non-square

square is, and that the former is a good object but not the

latter. Such distinctions need not concern us in this paper.
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3.1 What doesn't exist?

Things that aren't there: Perhaps the simplest

apparent counterexample (one that we will see Rus

sell's answer to in section 3.2) is that we can explicitly

speak of non-existence and non-existent things:

(1) There's no one in the bathroom.

(2) The car I need doesn't exist, [spoken after

a long and fruitless search for a suitable car]

[Williams 1981, p. 37]

(3) There's no such thing as the bogeyman;

he doesn't exist, and neither does Margaret

Thatcher.

(4) Nadia doesn't own a dog.

(5) Round squares are impossible, gold mountains

merely unlikely.

We may also speak of events that don't occur and ac

tions that are not taken:

(6) A complete lack of money has prevented reno

vation of the rectory.

(7) The workers threatened to hold a strike if their

pay claims were not met. The company acceded

to the demands, and the strike was averted.

(8) There are no trains to Saginaw on Sundays,

[i.e., the event of a train going to Saginaw on a

Sunday does not occur.]

(9) Due to maintenance work on the line, the 6:06

to Saginaw will not run on Sunday.

(10) Today's lecture is cancelled.

(11) Nadia refrained from commenting on Ross's

new hairstyle.

(12) Ross failed to notice that Nadia had failed to

feed the newt.

Existence itself as an object: We can seemingly

speak of existence as an object, one that need not ex

ist:

(13) The existence of Pluto was predicted by math

ematics and confirmed by observation.

(14) The existence of Vulcan was predicted by math

ematics but disproved by observation.

(15) It's a good thing that carnivorous cows don't

exist, [i.e., the non-existence of carnivorous

cows is a good thing.]

Claims of reality: We can even (untruly, but not

incoherently) assert that unreal objects exist:

(16) I saw a gold mountain near the freeway this

morning.

(17) Round squares make me seasick—especially the

green ones.

(18) Unreal objects exist.

We can also report such beliefs of others without com

mitting ourselves.

(19) Nadia believes that a unicorn named Old Iron

sides has been intercepting her mail and steal

ing the fashion magazines.

Claims of possibility: We can speak of possible

objects and events without committing ourselves ei

ther to their reality or unreality, and of objects and

events whose existence is merely contingent upon other

things.

(20) There may be someone in room 23 who can help

you.

(21) If you assemble the parts correctly, you will

have created a handsome two-metre model of

the CN Tower.

(22) It might rain tomorrow.

Existence at other times: We can refer to things

that don't now exist, but did or will. We can speak of

things now gone:

(23) Alan Turing was a brilliant mathematician.

(24) Last night's dinner was disastrous.

Sometimes, we may or even must even use the present

tense for things of the past, suggesting that they have

some kind of continuing existence:

(25) (a) Alan Turing is a celebrated mathematician,

[after Barnes [1972, p. 48]]

(b) *Alan Turing was a celebrated mathemati

cian, [in the sense that he continues to be cel

ebrated]

(26) (a) Alan Turing is dead.

(b) *Alan Turing was dead.

And we can talk of things to come:

(27) Tomorrow's dinner is going to be delicious.

(28) The baby that Diane is planning to have will

surely interfere with her violin lessons.

Fictional and imaginary characters: We can

speak of fictional entities and classes as if they really

existed:

(29) Sherlock Holmes was the protagonist of many

stories by Conan Doyle.

(30) Sherlock Holmes lived in London with his

friend, Dr Watson.

(31) Nadia models herself upon Sherlock Holmes.

(32) Dragons don't have fur. [Plantinga 1967, p. 40]

and possibly even

(33) Sherlock Holmes is no longer alive.
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3.2 The Russell-Quine ontology

3.2.1 Paraphrases and the theory of

descriptions

Russell's approach, his theory of descriptions [1905,

1918], was to regard apparent assertions of existence

and non-existence as merely paraphrases—in logic or

a literal English rendering thereof—of other forms in

which the assertion is not actually made. Instead, the

offending bits are expressed as variables and quanti

fiers, and the resulting expression is something that

can legitimately be true or false. Thus, Dragons exist

is a paraphrase of There is at least one thing that is a

dragon:

(34) 3x(dragon(x))

Since no such x exists, the sentence is false. Likewise,

Dragons don't exist is a paraphrase of the negation of

(34):

(35) Vx^dragon^))

'For any x, it is not the case that x is a dragon.'

Attempts to assert properties of non-existent objects

may be handled in a similar manner:

(36) Dragons like baklava.

Wx(dragon(x) —> likes-baklava(x))

This is vacuously true if there are no dragons [Russell

1918, p. 229]; but statements about particular dragons

would be false:

(37) My dragon likes baklava.

3x(my-dragon(x) A likes-baklava(x))

This is false because there is no x for which the left-

hand side of the conjunction is true. One might instead

have used a vacuously true form like that of (36), but

the form of (37) reflects Russell's belief that such sen

tences were false, and also his concerns with definite

descriptions (see below).

In the natural language versions of these statements,

we have the apparent problem that even to mention

dragons seems to give them some sort of existence;

to say that Dragons like baklava seems to presuppose

the existence of the class of dragons. Russell's claim

was that on the 'correct' reading—the representations

above, or literal English glosses of them—the problem

dissolves. The logical forms contain no assertion of the

existence of a non-empty class of dragons. Moreover,

the predicate dragon is itself a complex term, and may

be regarded as simply an abbreviation for a description

such as

(38) fire-breathing(x) A leather-winged(x) A . . .

Definite references may also be paraphrased.

Thus:

(39) The builder of Waverley station was a Scot.

3x(built(Waverley, x)

A Vy(built( Waverley, y) —+ y = x)

A Scot(x))

'One and only one entity built Waverley station,

and that one was a Scot.' [Russell 1905, p. 113—

114]

(If the noun phrase being interpreted does not contain

sufficient information to uniquely identify the individ

ual, information from context may be added. Thus

(39) might also be the representation of simply The

builder is a Scot if the context made it clear that the

builder was that of Waverley station.) A similar treat

ment upon The present king of France is bald shows the

sentence to be false, like (37), because there is no en

tity denoted by the present king of France.5 Quine

[1948, p. 7] showed how the method can be extended to

include proper names, so that sentences about named

fictional entities might be paraphrased:

(40) Sherlock Holmes is smart.

3x(isHolmes(x) A smart(x))

'There is an x that has the property of being

Sherlock Holmes, and x has the further prop

erty of being smart.'

Again, the result is a sentence that is false, for there is

no x that has the property of being Sherlock Holmes.

3.2.2 Problems with the theory

Paraphrasing in this manner immediately disposes

of some of the problems mentioned in section 3.1, but

it does so at some cost.

First, all sentences that assert properties of non-

existents are false if talking about a single thing and

true if talking about a class, so negating such sentences

doesn't change their truth value! For example, the

negation of (37) is:

(41) My dragon doesn't like baklava.

3x(my-dragon(x) A ->likes-baklava(x))

This is false for the same reason that (37) is. Likewise,

the negation of (36), Dragons don't like baklava, is still

sThe problem here is, of course, presupposition

failure—the sentence tries to talk about something that

doesn't exist, and does so without any of the "redeem

ing" characteristics of the sentences about non-existents

that were exhibited in section 3.1. Russell's position on

presupposition was famously disputed by Strawson [1950],

and is no longer generally accepted. Strawson 's position is

that the presuppositions of a sentence (or, more precisely,

of a particular utterance of a sentence) are distinct from

its main assertion, and, unlike the main assertion, are un

changed by sentence negation. If a presupposition is false,

then the main assertion, or the sentence itself, can be nei

ther true nor false; rather, it has no truth value at all.

For a review of current approaches to presupposition, see

[Levinson 1983] or [Horton 1987].

A treatment of presupposition per se is beyond the

scope of the present paper; for that, see [Horton 1987,

Horton and Hirst 1988]. I am concerned here rather

with the treatment of the entities that may be felicitously

presupposed.
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true. The underlying problem here, of course, is that

English negation and logical negation aren't the same.

If we put a '->' in front of the logical form of (37),

we do change its truth value, but that's not what the

English word not does. In particular, negation in Eng

lish (and probably in all natural languages) preserves

the presuppositions of the original sentence. In the

case of (41), alas, it also preserves Russell's erroneous

approach to presuppositions (see footnote 5).

A second problem is a technical one in the nature

of the paraphrasing task itself: it destroys, quite de

liberately, the similarity between the surface form of

the sentence and the representation of its meaning.

I have argued elsewhere [Hirst 1987, Hirst 1988a] for

the virtues of compositional semantic representations

in which each element is a direct reflection of a surface

constituent of the sentence. While it is not always

possible to maintain this, the advantages to be gained

from it are such that it is not to be given up lightly.

Third, and most seriously, there are, as we saw

earlier, sentences about non-existents for which one's

intuition strongly contradicts the theory of descrip

tions. These include sentences about defining prop

erties of non-existents and sentences in which non-

existents seem to have some actual interaction with

the real world.

In the first of these classes, we have sentences such

as this:

(42) Dragons have a horn in the middle of their fore

heads.

For Russell, this is true, though in any ordinary con

versation it would be thought of as false. Likewise, we

all agree with Russell and Quine about the falsity of

(43):

(43) Sherlock Holmes was stupid.

but we disagree about the reason: in ordinary conver

sation this sentence is taken as false exactly because

(40) is taken as true (c/ [Parsons 1980, p. 37]).

In the second class are sentences like the follow

ing assertions of non-existence themselves. While we

might accept representations like (35) for the denial of

classes, the denial of the existence of specific entities

is trickier. Consider again:

(44) Ross cancelled the lecture.

(45) The [threatened] strike was averted by last-

minute negotiations.

On Russell's theory, sentences like these must invari

ably be false, which is clearly wrong. Notice that para

phrase, in the style of sentence (35), doesn't help here,

because these sentences are asserting more than just

non-existence; they are asserting a causal relationship.

The expression The strike was averted means that the

strike never occurred—it did not exist—and that some

specific action by someone prevented its occurrence.

And which strike was averted? The particular strike

that the workers threatened to hold, which has specific

properties of time, cause, participants, and so on that

differentiate it from all other real or potential strikes,

all properties that could be used when constructing

the description in a Russellian paraphrase. But under

Russell's view, we cannot truthfully talk about this

strike at all, for it does not exist; any sentence that

attempts to refer to it will be false. (Note, as before,

that we can't get out of this by saying that the refer

ence is to the idea of the strike; it is not the idea that

is averted.)

It might be objected here that to say The strike

was averted is a looseness of the English language, for

one can also use an indefinite reference, saying A strike

was averted; perhaps this is the basic form that should

be interpreted [Barry Richards, personal communica

tion]:

(46) Someone caused that there be no strike.

3y(cause(y, -<3x(strike(x))))

(We shall allow cause as a predicate that takes a

proposition in its second argument, and which asserts

that the entity in the first argument caused the second

argument to be true.) The problem with this tack is

the need to say exactly what didn't happen. After all,

there are a lot of strikes that were not averted; but

(46) says there were no strikes at all. Clearly, some

identification from the context is necessary: what was

averted was a strike by some particular set of workers

at some particular time over some particular claim—

so we must identify the strike in context, bringing us

back to where we started.

Another objection could be that the proper para

phrase is The strike that was planned was averted, the

claim being that the strike does exist, non-physically,

like mathematical objects, by virtue of its having been

planned. (This would explain why it sounds a bit

funny to say The accident was averted instead of An

accident was averted (cf above), as accidents aren't

planned.) The problem with this is that one cannot

avert mathematical objects any more than one can

avert ideas. Perhaps what was averted was the phys

ical realization of this non-physical object—in effect,

the instantiation of a concept. I will pursue this line

in section 4.2 below.

One could also claim that if the strike was planned,

it exists as a 'future object'. To examine this, we must

consider the role of time. Unfortunately, Russell pro

vides no treatment of existence at times other than the

present, but we can speculate on how he would extend

his theory to do so.

Let's consider the simpler case first: the past. It

is unclear from Russell's account how he would para

phrase, say, Alan Turing was smart and Alan Turing

is dead. That is, would he allow the scope of quantifi

cation to include past entities? Doing so would let the

first of these sentences be paraphrased like any other,
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and the past-tense verb would just be an artifact of

the past-ness of Alan Turing himself, not included in

the paraphrase:

(47) Alan Turing was smart.

3x(isTuring(x) A smart(x))

This would then be a true sentence, unlike Sherlock

Holmes was smart. But trying this for the second sen

tence:

(48) Alan Turing is dead.

3x(isTuring(x) A dead(x))

doesn't work, because Turing wasn't dead when he

existed, and the verb tense hasn't behaved. At a min

imum, we need to add some notion of time points or

intervals such that propositions can be true at some

times and not others; thus, (48) would be true today,

but false in 1945 and 1862—false in 1945 because Tur

ing was still alive, and false in 1862 because he hadn't

yet come within the scope of the existential quantifier.

Thus the universe is seen as travelling through time,

collecting up entities into its ontology as it proceeds.

Once a thing has started to exist, it never stops. This

helps represent sentences (47) and (48), but I don't

think this view can be pleasing for the everything-

exists gang, for the fact remains that Alan Turing does

not now exist in the world any more so than the gold

mountain does, nor does he seem to exist as a mathe

matical object. (The idea of Turing continues to exist,

but it's not that that's dead.) There doesn't seem to

be any good reason why his brief time on earth should

give Turing any subsequent ontological advantage over

the gold mountain.6

*A rejoinder that I shall not take very seriously: Alan

Turing does in fact still exist, or at least his soul does, in

Heaven or Hell or somewhere like that. On this view, one

might say that the best paraphrase for Alan Turing is dead

is one of these:

(i) Alan Turing's body doesn't exist (or no longer ex

ists).

-<3x(bodyOfTuring(x))

(ii) Alan Turing is in the afterlife.

3x3y(isTuring(x) A afterlife(y) A tn(x, y))

Form (i) is undoubtedly true, and the truth of form (ii)

depends on whether there is an afterlife and if so who's

there (issues that I will not solve in this paper).

The value of this particular objection is to draw at

tention to the cultural bias in the expression of the prob

lem; perhaps we say that Alan Turing is dead just be

cause English reflects our long cultural history of belief in

a soul and an afterlife. If we are careful to avoid such

bias in our language, we will be able to analyze the prob

lem correctly (or so said a large twentieth-century school

of philosophy). Notice, for example, that English offers no

analogous expressions for the past existence of objects to

which we do not (culturally) attribute an afterlife; if my

wristwatch has ceased to be, I can say My wristwatch was

destroyed but not My wristwatch is destroyed (and only as

a joke or metaphor, My wristwatch is dead). Thus when

These problems may be seen even more clearly if

we now consider future entities, such as the strike that

the faculty are threatening to hold. We can talk about

this just as easily as we can about Alan Turing (albeit

with less certainty)—it will be long and nasty, it will

cause the university president to resign, it may never

happen (!). For Quine, certainly (and presumably for

Russell—guilt by association), the strike is merely a

'possible object', to be kept out of one's ontology at

all costs (c/his arguments against the existence of the

'possible man in the doorway' [Quine 1948]). So now

the averted strike is out on two separate counts, each

fatal on its own. When it was still a planned strike, it

was merely a possible object; after it was averted, it

became a past object as well.

But for KR and NLU, this is simply not accept

able. I have shown above that objects like Alan Turing

and the averted strike must be able to be represented,

quantified over, and reasoned about just as much as

Margaret Thatcher. So the Russell-Quine position is

inadequate, and we must look for alternatives. This I

will do in sections 5 and 6, after first examining the de

gree to which KR formalisms share the Russell-Quine

deficiencies.

4 Existence assumptions in KR

formalisms

To what extent are knowledge representation for

malisms able to deal adequately with existence and

non-existence? The universe of discourse of a system

is, of course, circumscribed by what's in its knowledge

base; but given that non-existent entities may have

to be included (and, in a full NLU system, must be

included), how does the average formalism behave?

we say that Turing is dead, our paraphrase should be no

more than that there is no i such that isTuring(x); and

that this statement was false at an earlier time is an impli-

cature of the word dead.

I don't think that this argument goes through. There

are too many other things we can say about entities of the

past that seem to presume their continued existence:

(iii) Alan Turing {is | *was} a celebrated mathemati

cian.

(iv) Nadia models herself upon Alan Turing.

(v) Nadia knows more about NP-completeness than

Alan Turing ever did. [Although Turing is referred

to in the past tense, the entity Alan Turing's knowl

edge of NP-completenessis available for comparison

with an entity, Nadia's knowledge, that exists in the

present and did not exist at the time of Turing.]

(vi) Nadia modelled her new sculpture upon my old

wristwatch (which was destroyed last year).

(vii) The Flat Earth Society is now disbanded.
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For the most part, KR formalisms are Russellian in

their approach to ontology. It is a general characteris

tic of KR formalisms that even when they are declar

ative they are assertional—that is, to state something

is to assert its truth; one cannot say that something is

false. One can, of course, assert the negation of false

hoods on those occasions when this yields truth, but

there is no concept of the truth value of a statement

being independent of the expression of the statement.

Likewise, it is a usual assumption in formalisms that

to use a term is to assert that it denotes, and, in par

ticular, that it denotes an extant entity. To assert, for

example, cancelled(lecture23, Ross), implies for most

systems (e.g., KRYPTON [Brachman ei al 1983] and

conceptual graphs [Sowa 1984]) that lecture23 exists

just as much as Ross does, even if the expression says

that it doesn't.

4.1 Hobbs: Ontological promiscuity

Not all KR formalisms impute existence to denota

tions of their terms. A simple first-order system in

which (ignoring all the philosophical wisdom discussed

above) exists is a predicate like any other has been pro

posed by Hobbs [1985] in his paper entitled "Ontolog

ical promiscuity". The 'promiscuity' of the title refers

not to the Meinong-like inclusion of all non-existent

objects, but rather to reification of events and prop

erties as objects;7 Hobbs's set of objects, over which

quantifiers range and in which all variables are as

sumed to denote, is a Platonic universe, "highly con

strained by the way the . . . material world is" (p. 63).

The formalism is deliberately simple and 'flat', with

out modals, intensions, or even negation.

In this approach, no object mentioned in a repre

sentation is assumed to exist in the real world unless

such existence is either explicitly stated or axiomat-

ically derivable. For example, Ross worships Zeus is

represented as:

(49) Exist(E) A worship'(E, Ross, Zeus)

This says that E is a worshipping by Ross of Zeus, and

E exists. The predicate worship' is transparent in its

second argument but not its third. This means that

the existence of E implies the existence of Ross, but

not that of Zeus. Hobbs shows that with an adapta

tion of Zalta's system of abstract objects [Zalta 1983],

this approach is able to deal with several problems of

opaque contexts that are usually thought to require

higher-order representations, while at the same time

remaining (moderately) faithful to the surface form of

the English sentence.

7 Treating events as objects, in the style of Davidson

[1980], is a position that I have adopted in this paper and

assumed to be relatively uncontroversial even for support

ers of the Quine-Russell position. Treating properties as

objects is a separate question somewhat orthogonal to the

concerns of the present paper; suffice it to say here that

Quine and Russell would not, I think, approve.

Although Hobbs mentions non-existence only

briefly, it is clear that by extending his approach we

can account for some of the problems mentioned above.

Just as transparent argument positions entail exis

tence, we will allow an argument position to be anti-

transparent, entailing that the object in that position

does not exist.8 (Anti-transparent positions are not

to be confused with Hobbs's opaque positions, which

entail nothing.) We can then represent the prevention

of the occurrence of the strike:

(50) The strike was averted.

strike(s) A 3x(Exist(E) A avert'(E, x, s))

It would be stipulated that avert' is transparent in its

second argument and anti-transparent in its third—

that is, the existence of E implies the non-existence of

s.

The existence of existence also seems representable.

Hobbs has a 'nominalization operator', ', which turns

an n-ary predicate into an (n + l)-ary predicate

whose first argument is the condition that holds

when the base predicate is true of the other argu

ments. We saw this above with the ternary predi

cate worship' (E, Ross, Zeus), derived from the binary

predicate worship(Ross,Zeus). Since Exist is just

another predicate, there is nothing to stop us nomi-

nalizing it:

(51) The existence of carnivorous cows is predicted

by GB theory.

Exist'(Ei, carnivorous- cows)

Apredici'(E2, GB-iheory, Ex)

AExist(E2)

'Ei is the existence of carnivorous cows, E2 is

the prediction of Ei by GB theory, and E2 ex

ists (but Ei might not).'

On the other hand, there is no treatment of fictional

objects. Non-existent objects can be mentioned, as we

saw in the assertion of Ross worships Zeus, but there

is nothing that lets us say that Zeus exists in fiction

whereas the Giant Cosmic Groundhog (which I just

made up) and the averted strike do not. An obvious

move is simply to add a predicate Fictional to the for

malism. Then worship' would have the property that

its third argument must exist either in the real world

(like Nadia, whom Ross also worships) or in fiction

(even if only a small fiction in Ross's mind). Hobbs's

Platonic universe would now have a tripartite division

into the existent, the fictional, and all the rest.9

Hobbs explicitly excludes negation from his formalism,

but I shall assume it to be added in the usual way.

9 1 will resist the temptation to be side-tracked onto the

question of characterizing more precisely what it means

to be fictional. However, there is no principled reason I

can see for limiting the property to the imaginary enti

ties in published or oral literature; those in lies and un

true thoughts are just as fictional as Sherlock Holmes ever
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But so far, this approach doesn't give an adequate

treatment of objects like Alan Turing—for simplicity,

Hobbs did not include any notion of time in his formal

ism, so we can't talk about Turing's different statuses

at different times. In addition, it seems that Anselm's

fallacy is valid in the system. Although Hobbs gives

no examples of definitions, it would seem that Exist

could be used directly or indirectly as a defining char

acteristic, it being just another predicate. Its direct

use in a definition could be prohibited by stipulation;

but preventing its indirect use is not possible, as it is

a deliberate feature of the system that existence can

be axiomatically derived from various assertions—one

has to be allowed to define predicates with transpar

ent arguments. Thus, following Descartes's version of

the fallacy, one could define the predicate perfect to

be transparent in its (sole) argument, and then assert

that God is, by definition, perfect.

4.2 Intensional approaches

Although it was important for Meinong that thoughts

and ideas could be directed to non-existent objects, I

have said little up to now, except in passing, about

ideas, intensions, and concepts. Indeed, both Russell

and Hobbs were at pains to avoid the standard Fregean

distinction [Frege 1892] between intension and exten

sion (Sinn and Bedeutung). But even Quine grants

ideas a place in his universe (see section 2.2 above); so

we now turn to this topic. I will use the terms con

cept, idea, and intension interchangeably below; the

technical differences between them will be unimpor

tant. Likewise, I will conflate extension with the de

notation, realization, or instance of an idea.

An adequate treatment of concepts as 'first-class ob

jects' has often eluded knowledge representation sys

tems. By a first-class object, I mean here an object

that can be referred to as an individual in its own right,

used in inference, be a component of other objects, and

so on. This would be necessary if we were to act on

the suggestion (section 3.2.2 above) that sentence (45)

be represented as the prevention of the realization of

an instance of the concept of strikes. Now, because

concepts are used to define other objects, many sys

tems accord them a special status that precludes their

simultaneously acting as ordinary objects or individu

als. A typical example is Frail [Charniak et al 1983],

a language in which concepts are generic frames, but

inference can be carried out only on instances of those

frames; it is not possible for a frame to be simultane

ously generic and an instance. In Krypton [Brachman

et al 1983], which makes a careful separation of 'ter

minological' knowledge (which goes in its 'T-box') and

assertions about the world (in its 'A-box'), it is possi

ble to reason with the terminological knowledge, which

can be thought of as statements about concepts, but

concepts per se can still not be reified as first-class

individuals.

Languages in which concepts are first-class objects

include McCarthy's first-order language [McCarthy

1977, McCarthy 1979], Shapiro and colleagues' SNePS

[Maidaand Shapiro 1982, Shapiro and Rapaport 1987],

and Sowa's Conceptual Graphs [Sowa 1984]. Such lan

guages must provide a mechanism to relate objects to

the concepts of which they are instances. For example,

Sowa's conceptual graphs tie concepts and their ex

tensions together by notational means. Thus [CAT:*]

represents the concept of cats, and [CAT: #234] rep

resents some particular cat (namely, cat number 234).

The notation [CAT:*x] represents the individual con

cept of a cat: a single cat, but not any particular

known one; the x may be thought of as a variable,

so that all occurrences of [CAT : *x] must refer to the

same (unknown) cat, but [CAT:*y] may be a different

one. The different types may be used interchangeably

(with different meaning, of course) in the graph repre

sentations that can be built. However, all graphs are

implicitly existentially quantified; that is, the ontology

is implicitly Russellian.

Likewise, McCarthy's language has both concepts

and extensions as entities, not formally distinguished

from one another.10 A function called denot maps con

cepts to the entities, if any, that they denote. (Thus in

dividual concepts such as John are mapped to an indi

vidual, and presumably generic concepts like Dog, not

explicitly mentioned by McCarthy, would be mapped

to an appropriate set of individuals.) A predicate

Exists is true of those concepts for which there is a

denotation.11 'Parallel' predicates may be defined for

denotations and concepts. For example, if ishorse is

a predicate true of horses, then Ishorse can be de

fined as a predicate true of concepts for which ishorse

is true of their denotations, and possibly also true of

some concepts that don't have denotations, such as

Pegasus.

The SNePS network formalism is of special interest,

as Rapaport [1985b] has suggested that Parsons's the

ory (section 6 below) could give it a formal seman

tics. In SNePS, all entities are intensions, and exten

sions per se are not used. This is because SNePS takes

representations to be those of the knowledge of an

was, even if not as widely known. In the strictest inter

pretation, this means that just mentioning examples of

non-existent entities, such as the Giant Cosmic Groundhog

above, gives them status as fictional—which is not really

what one wants, as then all non-existent entities would be

fictional.

10The typographical distinctions in McCarthy's formulas

are for the reader's convenience, and are not part of the

theory.

11 McCarthy's Exists is not to be confused with Hobbs's

predicate of the same name (section 4.1 above). Mc

Carthy's Exists is a predicate true of concepts that have

real-world denotations; Hobbs's Exists is true of the real-

world objects themselves.
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agent, rather than of the world directly. The inten

sions are connected to reality only through the agent's

perception.12 Like McCarthy, Shapiro and colleagues

show only individual concepts, such as the node John

representing the idea of John;13 I assume that if the

agent is to think about the idea of John, it will need

a node that represents the idea of the idea, with a

denoi-like arc relating them.

It is interesting to note that, generally speaking,

KR formalisms that treat concepts as first-class ob

jects do not formally distinguish them from individ

uals. (Those that don't do—they have to, in order

to discriminate against them.) I don't know of any

principled reason for this. Such systems are weakly

intensional systems, countenancing intensions but not

making anything special of them. In contrast, strongly

intensional systems take intensions to be not just

first-class objects but objects of a distinct kind.14

Montague semantics [Montague 1973] is a good (non-

computational) example of a strongly intensional sys

tem.

I suspect that a strongly intensional system will be

necessary for an ontologically adequate treatment of

intensions. McCarthy could use his denot function to

map intensions to their extensions, but going in the op

posite direction requires an operator, as in Montague

semantics. The examples of section 3.1 show such op

erations to be frequently necessary, and the modes of

existence to be discussed in section 7 below suggest

that a diverse set of operators may be required.

5 Free logics

One solution that has been suggested to the problems

of the Russell-Quine approach is the use of free log

ics. A free logic is a logic that makes no assump

tions about existence—specifically, a logic that tol

erates terms that have no denotation in its universe

but never quantifies over such terms.15 For example,

Woodruff's system UE [Woodruff 1970] is a free logic

with truth-value gaps (i.e., the truth values t, f, and

u) and a distinction between assertions of truth and

assertions of non-falsity. Non-denoting terms have no

12Thus SNePS is free of extensions only for an external

observer of the system. The SNePS objects used by a com

putational agent that employs the formalism (such as Ra-

paport's CASSIE [Shapiro and Rapaport 1987]) are the con

cepts in that agent's 'mind', so to the observer they are

intensions. To the agent itself, however, they are subjec

tive extensions, identified with its perceptions of reality.

For simplicity, I will ignore Shapiro's careful distinction

between nodes and their names.

14 Both the distinction and the terminology are due to

Graeme Ritchie [personal communication].

Hobbs's system (section 4.1 above) is not a free logic.

While it makes no assumptions about real-world existence,

it does assume that all terms denote something in the Pla

tonic universe, and it quantifies over them.

interpretation at all, and a predicate need only have

truth value t or f if all its arguments denote. Thus the

system is explicitly Strawsonian. In contrast, Schock's

free logic [Schock 1968] has only two truth values, and

(in the style of Frege) uses the empty set as the 'deno

tation' of non-denoting terms. Both systems have an

'existence' predicate, which is true just of those terms

that denote.

Free logics seem to be an attractive solution in KR

to the problems of Russellianism. From an NLU per

spective, free logics help avoid Russellian paraphrases,

thereby leading to a more compositional semantics.

From a KR viewpoint, they are a conceptually easy

extension of classical systems; deduction systems al

ready exist for them; and truth-value gaps are already

a focus of research in the field (e.g., Patel-Schneider's

four-valued logic [Patel-Schneider 1986]). But alas,

free logics turn out to have most of the same problems

for NLU as Russell's standard logic. Sentences about

non-existents need not be false (at least in Woodruff's

logic), but (except in a trivial, unhelpful way) they

still can't be true.

6 Parsons: Non-existent objects

Hobbs's scheme implicitly countenanced nonexistent

objects, but, as we saw, found itself limited because

it tried not to make anything special of the notion

of existence. Free logics also accept non-existent ob

jects, but try their best to ignore them. We now turn

to an approach that doesn't just accept such objects,

but whole-heartedly embraces them. The approach is

that of Parsons [1980]; it is explicitly motivated by

Meinong's ideas (see section 2.3 above).16

Parsons defines the set of nuclear properties as the

set of properties such as being green, being in New

Zealand, or being Nadia. Such properties are "ordi

nary properties" [Parsons 1980, p. 24] that we reg

ularly attribute to individuals, and corresponding to

each is a nuclear predicate true of individuals that have

that property. Nuclear predicates are in contrast to

extra-nuclear predicates, of which the prime example

is Exists. Thus, existence is taken as a predicate, but

one of a special kind.

Parsons's universe contains only, for any set of nu

clear properties, the unique object that has exactly

that set of properties. There is an object that is green

(and has no other property but that); there is an object

that is both green and Nadia; there is even an object

1 Rapaport [1981, 1985a] has also presented a Meinong-

inspired theory of non-existent objects. Space does not

permit discussion of both theories. The main differences

between the two are that (a) Parsons has two types of pred

icate, whereas Rapaport has one type that can be applied

in two different ways; and (b) Parsons has only one type

of object, which may or may not exist, whereas Rapaport

distinguishes Meinongian objects ('M-objects') from actual

objects ('sem-correlates' of M-objects).
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that is green and Nadia and Margaret Thatcher. But

not all these objects exist in the real world—in some

cases because they just happen not to, and in other

cases because they are not possible. Being possible is

another extra-nuclear predicate.

The tricky part is what to do with non-existent ob

jects like the existent golden mountain. It's an object

with the properties of goldenness, mountainhood, and

existence, but it's not included in the universe as de

fined above because existence is not a nuclear prop

erty. Nonetheless, it must be accounted for, as we can

still talk about it, and the account must not entail its

existence. So following Meinong, Parsons introduces

the concept of watering down extra-nuclear properties

to a nuclear ones. Thus for Parsons, there is also a

nuclear existence property, call it Existn, and that's

what the existent golden mountain has. Watered-down

existence says nothing about real, genuine, full-blown

extra-nuclear existence, and the existent golden moun

tain still doesn't have the latter. A similar story can

be told about the possible round square; its possibility

is merely the watered-down variety.

The watering-down operation on an extra-nuclear

predicate creates a nuclear predicate true of a su

perset of the objects of which the original predicate

was true. That is, if a given object has an extra-

nuclear predicate true of it, it will have the correspond

ing watered-down nuclear predicate true of it as well

(but not necessarily vice versa). Anything that ex

ists full-strength also exists in a watered-down way;

anything that is full-strength-possible is also watered-

down-possible. But it's not clear exactly what sort

of a thing these watered-down properties can be if

they don't really do anything. What exactly is it that

the watered-down-existent gold mountain has that the

regular gold mountain doesn't? Just, it seems, an ab

stract attribution that has no effect on anything except

in serving to distinguish the two.

Parsons develops a formal language, called O, for

talking about this universe. O is a second-order modal

language with belief contexts; quantification is explic

itly over all objects in the universe. The language dis

tinguishes the two types of predicates, and the extra-

nuclear predicate of existence, denoted E\, has spe

cial axiomatic properties. The watering-down oper

ation on extra-nuclear predicates is defined. Using

Montague-like techniques [Montague 1973], Parsons

shows how O can act as a semantics for a fragment

of English, treating sentences such as

(52) The King of France doesn't exist.

->(ix)(E\(x) A King-of-France(x))[XyE\(y)\

Roughly, this says that it is not true that there is—in

the actual world—a unique x that both is the King

of France and exists in the world; if there is indeed

no King of France, this formula is true. Also in

cluded in the fragment is the sentence Every good mod

ern chemist knows more about chemical analysis than

Sherlock Holmes (cf sentence (v) of footnote 6).

If we are willing to accept Parsons's approach, then

a number of our problems are solved. We can talk

about Sherlock Holmes and dragons and other fictional

objects all we like (Parsons devotes two chapters to fic

tional objects). We also have Alan Turing available,

and, presumably, all future objects. And we have all

objects that don't exist, including the strike that was

averted and the lecture that was cancelled—that is,

we have the objects that have exactly the properties

required, with no necessity that they exist. And the

existence of God is expressible in O, but is not a the

orem.

Parsons's approach is not without problems. (See

[Rapaport 1985c] for a detailed critique.) The most ob

vious, especially for a computational implementation,

is the profligate scope of the quantifiers. A free-logic

insight that must be retained is that quantification

scope must be restrained. Parsons's universe is much

too large to quantify over (although Meinong would do

so). But there is no single correct constraint on quan

tification. For example, it would normally be silly to

quantify over all the unwritten books, unthought ideas,

or unlived lives; but sometimes, one might have to do

so. (An unwritten book is surely reified in the sentence

Ross is going to start writing a book.) In KR systems,

this may not be a practical problem, for the size of

the universe is limited by the size of the knowledge

base anyway, and even within that, searches would

normally be further constrained. This is not to say

that a knowledge base cannot contain (finite repre

sentations of) infinite objects—the set of integers, for

example—but a practical system will normally limit

itself to the entities it already knows about and won't

capriciously start generating new ones just to see what

turns up.

Another problem is that while the averted strike and

cancelled lecture are available as objects, we can't do

everything with them that we would like. O can say

that an existent Ross stands in a cancelled relation to

a non-existent lecture, but it is not possible, I think,

to explicate the meaning of this as Ross causing the

non-existence; Parsons did not consider such things.

7 Naive ontology: The ontology of

natural language

The real problem with the Russell-Quine position, the

free logic approach, and even Parsons's approach is

that they equivocate about existence; they speak as

if all things that exist exist in the same way. This is

clearly not so. Margaret Thatcher exists, and so does

the number 27, but they do so in different ways: one

is a physical object in the world, while the other has

only abstract existence. But even Quine is willing to

grant the existence of mathematical entities—and of

concepts in general. If we admit these two kinds of
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existence, then perhaps we can find even more kinds if

we look. And arguments about the nature of one kind

need not hold true of the others.

In fact, we can identify about nine different kinds of

existence. In doing so, we will follow Meinong, Par

sons, and Rapaport in not limiting existence to things

in the world, but attributing it to anything that can be

spoken of.17 In this view, everything exists, but not as

Quine meant that slogan. In particular, we solve the

problems of sentences (44) and (45) by attributing ex

istence (but not physical actuality) to the lecture and

the strike concerned. Thus all terms will denote, and

all sentences will be about existent objects, in some

sense of existence, and will have the potential to be

true.

The various kinds of existence are as follows:18

• Physical existence in the present real world,

with causal interaction. Margaret Thatcher ex

ists this way.

• Physical existence in a past world (with causal

interaction therein, and some indirect causal

connection to the present world). The late Alan

Turing, for example, exists in a world of the

past; he doesn't exist now, but nevertheless he

is, in the present, a celebrated mathematician,

and likewise he is dead (see section3.2.2 above).

• Abstract, necessary existence, as of mathemat

ical objects such as 27 and the least prime

greater than 27.

• A sort of doubly abstract existence, granted

to objects such as y/~1; mathematicians dis

tinguish such 'imaginary' numbers from other

numbers for good reason.

• Existence outside a world, but with causal in

teraction with that world. In most Western re

ligions, this kind of existence is attributed to

God; that is, God is not thought to exist merely

the way the number 27 does.

• Abstract, contingent existence in the real world.

Freedom, suavity, and fear would come into this

category.

• Existence as a concept, which is abstract but

contingent, such as the concept of Margaret

Thatcher, which need not have existed.19

1 The view presented here goes beyond these authors in

that it imposes a taxonomy of existence upon their basic

ontology.

18 It should be clear that these kinds of existence can't

all be accounted for just by organizing the IS-A hierarchy

the right way. It is true that one can, at the top, make

a distinction between abstract and concrete entities. But

past existence and unactualized existence are certainly or

thogonal to the hierarchy of concrete entities.

19 One may wish to combine this category with the previ

ous one, saying that concepts are not ontologically distinct

• Unactualized existence,20 as of the baby that

Diane wants to have after she graduates, the

strike that the faculty would have held if they

hadn't got a pay rise, or Margaret Thatcher's

brushing her teeth the day after tomorrow.

This category includes objects that could be

come actual in the future, objects in counterfac-

tuals, 'past' objects that never came into being,

and perhaps also impossible objects. Again:

objects with this sort of existence are distinct

from concepts—it is not just the concept of the

faculty strike that was averted, it was the strike

itself.

• Existence in fiction. This is the sense in which

Sherlock Holmes and dragons exist.21

My point here is not to argue for exactly this list of

types of existence—that is a topic in philosophy, not

knowledge representation—but to demonstrate that

however many distinct types of existence there are,

it's rather more than two. Any KR formalism that is

to be adequate to the task of NLU will need to be able

to account for them all—that is, it will treat existence

as a set of properties, and, given a particular object's

mode of existence, draw inferences accordingly.

8 Conclusion

Before closing, a word should be said about possi

ble worlds. It might be suggested that objects such

as the averted strike, the gold mountain, or Nadia's

baklava-loving dragon do have physical existence, just

like Margaret Thatcher, but have it in a different pos

sible world. This misses the point. What we want

to talk about and represent is one particular world,

usually the actual world, and the question is therefore

how dragons and averted strikes exist in the particu

lar world of interest. It is insufficient to say merely

from other abstract entities like suavity. I will not take a

position on this. Alternatively, one might argue that the

existence of a concept may be necessary or contingent de

pending on its extension. That is, the concept of Margaret

Thatcher is as contingent as Margaret Thatcher is, but the

concept of the least prime greater than 27 is necessary be

cause its extension is. This category of existence would

then be split over the three abstract categories above.

20 1 use this horrible term for want of a better one.

21 "Everyone knows that dragons don't exist. But while

this simplistic formulation may satisfy the layman, it does

not suffice for the scientific mind . . . The brilliant Cere-

bron, attacking the problem analytically, discovered three

distinct kinds of dragon: the mythical, the chimerical, and

the purely hypothetical. They were all, one might say,

non-existent, but each non-existed in an entirely different

way." (Stanislaw Lem. "The third sally, or The dragons

of probability." The cyberiad: Fables for the cybernetic

age (Michael Kandel, translator). NY: Avon books, 1976,

p. 76.)
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that the status of dragons is that they exist in a dif

ferent possible world, for so, after all, does Margaret

Thatcher. That tells us nothing about the difference

between dragons and Margaret Thatcher in the world

that we are representing.

KR formalisms that are to be suitable for NLU must

take account of the many different modes of existence

that can be spoken of in natural language. Traditional

Russellian approaches are inadequate, as are free log

ics. However, by taking existence to have a variety

of modes, and treating it as a property of objects, an

adequate approach can be developed.
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Abstract

Dynamic memory organization has been

proposed by R. C. Schank which allows con

tent addressing in a case base. Case-based rea

soning on the dynamic memory proceeds in the

following two steps: (1) For the problem solv

ing of the given case, find the nearest cases in

the case-base, (2) transform the cases so that

the information in the case is applicable to the

current case.

In this paper, we first introduce the mecha

nism to drive the dynamic organization of the

memory. In the memory, knowledge is rep

resented by the frame which is structured to

maintain the number of slots small by shar

ing the common attribute-values among cases.

An architecture for case-based diagnosis is pre

sented, using the memory organization where

diagnostic cases are indexed both by the symp

toms and by the causal relation among symp

toms. The program CAOS (CAse Operation

System) is implemented for the process diag

nosis domain.

1 Introduction

Rule- based reasoning is used for most of the knowledge-

based systems, however; many other reasoning meth

ods are used in human problem solving. One of such

reasoning method, which seems complementary to rule-

based reasoning is case-based reasoning. For compar

ison, consider the problem solving process in judge

ment. In making judgement, judges use two methods:

(1) applying laws to the present case, and (2) trans

forming the judgement of the similar cases. Roughly,

case-based reasoning may correspond to the latter,

while rule-based reasoning to the former. Case-based

reasoning [Schank 1986] uses analogical mapping from

the previous cases to the present cases under con

sideration. Among many types of analogical reason

ing [Winston 1982,Carbonell 1985], case-based reason

ing have been studied as a reasoning method on the

dynamic memory [Schank 1982].

IPP[Lebowitz 1982] generalizes from the instances

of newspaper stories such as terrorism. We will

compare this generalization mechanism with ours

later(section 2.2). CYRUS[Kolondner 1986] organizes

memory by indexing cases by the different features.

JUDGE[Bain 1986] uses the case-based reasoning in

sentencing in the judgement. CHEF[Hammond 1986]

is a case-based planing system applied to cooking. Its

dynamic memory indexes the past cooking experiences

by the goal they must satisfy and by the problems they

must avoid. Then, the indexes are used by reasoner to

organize goals for the current case.

We introduce the dynamic representation of knowl

edge following this line. The structure of human knowl

edge is dynamically updated whenever the new fact is

stored. The structural changes depend upon the ab

straction level of the new fact, how it is related to the

already structured fact, and how it contradicts or fits to

the current structure. Whenever memorizing the new

fact we always associate it with the already stored fact

having certain relation with the fact. What is related

plays an important role when recalling the memorized

fact. In realizing such dynamic memory, we pursue a

mechanism of the dynamic reconfiguration of the knowl

edge representation. We use frame representation where

the generalization is made by saving as many slots as

possible by sharing common slots.

In section 2, the memory organization and general
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ization mechanism adopted here are presented. The

problem of making proper genralization is formalized as

combinatorial optimization problem. Section 3 presents

the architecture for case-based diagnosis utilizing the

memory organization. By the program CAOS, how

the memory organization is used for case-base of di

agnostic cases and how the case operation is selected

are discussed. Section 4 states the implementation and

shows a sample session of CAOS. Section 5 discusses

the impact of introducing dynamic case-base into the

knowledge-based systems.

2 Dynamic Structuring of

Cases

2.1 Generalization by Saving Slots

In this section, we consider the problem of finding a

simple frame representation (each frame expressing a

case) structured by inheritance. In order to structure

frames in a simple form, generalization having many

slots out of many instances must be made. To obtain

such generalization, the next problem must be solved.

In order to formalize the problem set theoretically, each

case is expressed by a set of attribute-value pairs. One

slot is used to store one attribute-value pair.

[Minimum Slot Problem]

Given the set of cases {Si}i = l..n where each case Si

is characterized by the set of attribute-value pairs, find

the set So of attribute-value pairs such Yli=i 5> — l^o| (

\S\ denotes the cardinality of a set S ) is the maximal

where

~{
\So\

0

if Si D S0

otherwise

So is the generalization from the subclasses S,- (3 So).

53*=1 s,- — | So | is the number of slots which can be saved

by letting S, such that S< D So be subclasses of So-

This problem is a combinatorial optimization prob

lem ' which must find the generalized class So satisfying

two contradicting requirements: (1) So must contain as

many attribute-value pairs as possible, and (2) So must

have as many subclasses as possible. The structuring

of cases is carried out by iteratively solving this MSP.

That is, find So for a given set of cases {Si}i = l..n,

and let all the cases Si such that S; D So be subclasses

of So where all the attribute-value pairs inherited from

'This problem is NP-complete. Graph theoretically, this MSP

is the problem of finding complete subgraph with maximal num

ber of edges for a given bipartite graph.

So are omitted. Then again, carry out this process on

the structured case-base iteratively.

We use the notation:

( [element -name] name= [case-name]

[attribute-value -pair1]

[attribute-value-pair2] . . .)

for expressing the case whose name is [case-name] and

arbitrary number of attribute-value pairs where each

attribute-value pair is expressed as: attribute-name,

predicate and value. The name field is not counted as

an attribute-value pair.

Let us consider the example of structuring many

classes of squares:

(fig name:

(fig name1

square

lozenge

(fig name=trapezoid

(fig name:

(fig name:

(fig name:

corner=4 side=4)

corner=4 side=4

EqualSide=4)

corner=4 side=4

ParallelSidel=l)

parallelogram corner=4 side=4

ParallelSidel=l ParallelSide2=l)

rectangle corner=4 side=4

Parallels idel=l ParallelSide2=l

EqualAngle=4)

PerfectSquare corner=4 side=4

ParallelSidel=l ParallelSide2=l

EqualAngle=4 EqualSide=4)

The hierarchical structure obtained by solving the

MSP is shown in Fig. 1. The numbers of slots

shared by the superclasses are shown. First, So = (fig

name=square corner=4 square=4) is chosen as a super

classes of the rest of classes, since placing the rest of

classes under this So can save 2x6 — 2 = 10 slots.

I tripeiold—l—pinlUlotrM—4—reeunglev

PerfectSquire

2^ lozenge

Fig- 1 Hierachcal Structure of the Minimum

Slot Representation

Since this reconfiguration process requires huge com

putations, it is not practical to reconfigure whenever
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the new case is stored. Instead, we use the following

incremental algorithm which is more efficient, but does

not gurantee that the structure is the same as the one

obtained by solving MSP.

Before presenting the incremental algorithm, a con

cept of a distance between related cases Cl and C2 must

be defined.

d(Cl, CI) = |Cl/C2|/|Cl U C2|

where C1/C2 denotes the symmetric difference of two

sets Cl and C2, i.e. C1/C2 = (Cl - Cl n C2) U (C2 -

Cl n C2). When three cases, A, B, and C are related

as shown in Fig. 2, the case A is called supercase of the

cases B and C, and cases B and C are called subcase of

the case A. The case B is called close case of C. If there

is no relation between two cases, the distance between

them is equal to 1.

Fig. 2 Relation among Cases

In the reasoning discussed in section 3, the distance

is used to specify the case transformation operation to

apply.

[The Incremental Algorithm]

For a given the case,

1. Reminding: Find the nearest case in the case-base

in terms of distance defined above.

2. Storing: Insert the given case into the case-base by

associating it with the nearest case as follows.

• If the given case is super(sub)case of the

nearest case(s), insert the given case as su-

per(sub)class in an appropriate position.

• If the nearest case is the close case of the near

est case(s), insert the case as the subclass of

the common superclass if possible, or make

the superclass of these two cases and place

these two cases as the subclass of the super

class.

confirmed (disconfirmed) by the positive (negative) evi

dences against the generalization. The generalized class

is regarded as tentative until enough cases which sup

port the generalization enter, otherwise it is removed.

Since we want to keep the memory organization sim

ple and general, we do not facilitate such evaluation

mechanism. It seems that the generalized class which

saved many slot tends to be correct, for otherwise all

the subclasses under the generalized classes includes the

erroneous set of attributes. Thus, as long as there are

many cases of sufficient varieties in the case- base, the

generalization which can save many slots corresponds

to the correct generalization.

The structure obtained by iteratively solving MSP

tends to be simple, keeping the number of generalized

classes small; however the MSP is NP-complete. The

structure of cases obtained by the Incremental Algo

rithm is highly dependent on the order of cases input.

Thus, another limitation for the memory organization

mechanism is that it is sensitive to the order of cases

input.

Despite these limitations, generalization mechanism,

when worked properly, have the following merits (which

will be explained by the examples in the next subsec

tion): (1) It can abstract diagnostic case of single fault

out of many cases of multiple faults. (2) It can filter out

unrelated and erroneous symptoms in diagnostic case.

2.3 Memory Organization Applied to

Diagnostic Cases

Let us consider a simple example of diagnosis of the pro

cess shown in Fig.3 [Belenblut and Whitehouse 1973].

1

?~?}-&-u

£

 

Fig.3 Flow Diagram of a Buffer Tank

[Belenblut and Whitehouse 1973]

2.2 Evaluation of the Generalization

Without considering the causal and hierarchical relation

among attributes in each case, erroneous generalization

may occur.

Lebowitz avoid this problem by introducing confi

dence with each new generalization. The confidence is

The process is a simple buffer tank having inflow Fl (to

the tank) and outflow F2 (from the tank) of the liquid.

The level Ll of tank is controlled within a certain range

by adjusting valve VI. The netflow DF is defined as

Fl - F2. Table 1 is a decision table for diagnosis where

each column indicates the rule associating syndrome of
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sensor pattern with the events on the bottom row. Our

problem here is structuring cases of events so that case-

based reasoning is possible.

Table 1 Decision table used for diagnosis

[Belenblut and Vhitehouse 1973]

2 |3 |4 |5 |6 |7 |S |9 1 10 1 11 1 12 | 13 1 14| 15 J 16 1 17| 1S| 19)20

■UN I I I I I I I I I I I I I I I I I

I IL |H IN | | | | | | | | | | | | | |

-l_l_l_l_l_l_l_l_l_l_|_|_|_ -l_l_l_|_|.
I I I I U 1 1 |H |H |" | | | | | | | | |

— ■— t— ■— I— I— ■— t—•— ■— I— I I ■ I 1 t I 1

I I I I |0 |N |N |C |* |0 |0 |0 |N |N |C |C |C |N

-•— I 1—i—t— I— I—■—t—f—I ■ I i f 1 ■ |_

I I I I I I I I I |L |N |H IL |H |L |M |H |N

— I— I— I— I— I— I— I— I— I — I — I I I I I I | |_

A |1 |61|6h|l |A |A |A |A |1 < |4 |Gh|4 1 2 . 1 5 . | 2 . 1 2 , | 1

I I I I I I I I I I I I I |3 161 13 13 |

Flow | -Supply | Control Loop | Leaks and Blockage

Salaries j J j

•l'posiiive -l-nogat1ve N-normal H-h1gh L-low O'open Oclosa

Events:

(1) Normal operation

(2) Pipe leakage between F2 and VI

(3) VI by-pass open In error

(4) Blockage tn exit 1 Ine

(5) Leak in tank

(6h) Abnormal throughput high

(61) Abnormal throughput low

(A) Anomally (defined as a physically

impossible combination of measure

outputs from the point of view of the plant)

2.3.1 Generalization in diagnostic case-base

To see how the generalization mechanism works, con

sider the next cases given initially,

(event name=BlockInF2tVl_15

fault=block location=F2*Vl

Fl=high Vl=open F2=low)

(event name=BlockInF2fcVl_24

fault=block location=F2ftVl

Fl=low Vl=open F2=low)

(event name=BlockInF2ftVl_6

fault=block location=F2fcVl

Fl=normal Vl=open F2=low)

The generalization mechanism create the next super

class out of these three cases.

(event name=GENl

fault=block location=F2ftVl

Vl=open F2=low)

Thus, the unrelated attribute Fl is filtered out in this

generalized class. Further, when cases of multiple faults

are given such as;

(event name=BlockInF2fcVl*AnormalyInControl_31

fault=anormaly location=control

fault2=block location2=F2fcVl

Fl=normal Vl=normal F2=low Ll=high)

(event name=LeakInTankkAnormalyInControl_31

fault=anorinaly location=control

fault2=block location2=F2*Vl

Fl=high Vl=normal F2=normal Ll=high)

Then, the follwoing single fault case is generalized.

(event name=GEN2

fault=anormaly location=control

Vl=normal Ll=high)

2.3.2 Introducing causal relation in indexing

In diagnosis, two faults can be quite different even if

the syndromes of them resemble each other. Thus, us

ing only the cases which has the similar syndromes leads

to poor diagnosis. We induce causal relations from syn

drome for each case. The causal relation among symp

toms indicates the the qualitative direction of the inter

action among attribute.

As discussed in analogical reasoning[Winston 1982],

causal relations must be preserved in mapping values

from known case to the current case. This heuristic is

universal one which hold in analogical reasoning of most

domains. In fault diagnosis, we introduce the causal

relation, which is used for indexing cases.

A base model is needed to generate causal relation

from symptoms. The base model, as in Fig. 4, shows all

the path from one attribute to the other attributes when

the value of the former may cause the value of the latter.

A base model is the component dependent knowledge,

and hence only one base model is given which are com

monly shared by all the cases for the example.

F a u

 

Fig. 4 Base Model for the Buffer Tank Example

There is a causal path from Fl to Ll, VI, F2. But no

causal path exists from F2 to Fl in this example. The
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base model must be given beforehand. With the base

model, causal relations are induced as follows. If a case

has Fl=high and Vl=open as its symptoms, then the

effect pattern that Fl=positive_Vl is generated, since

there is a causal path from Fl to VI (positive or negative

is determined whether the values of these attributes are

same or opposite direction). For example, the following

two cases are quite different patterns.

(event name=ThroughputHigh_14 type=data

fault=high location=throughput

Vl=open F2=high)

(event name=ThroughputLow_27 type=data

fault=low location=throughput

Vl=close F2=low)

However, the induced causal relations induced from

these two cases are same.

(event name=ThroughputLow_16 type=effect

throughput=poaitive_Vl

Vl=positive_F2)

(event name=ThroughputHigh_18 type=effect

throughput=positive_Vl

Vl=positive_F2)

Here after, we will call the syndrome given for eacs

case as data type, and causal relations among these

symptoms as effect type.

Reasoning

Case-Base

on Structured

The problem to reason about is; given a new case which

may include unknown attribute, infer the unknown at

tribute based on value of corresponding attribute of the

related case. Reasoning on the structured case-base has

two steps:

1. Reminding: find the related case in the case-base

as in section 2.1.

2. Case operation: transform the nearest case(s) by

the operator. Operator is selected how the given

case is related with the nearest case.

The reminding process is carried out by the same one

as that used in the reconfiguration process stated in the

incremental algorithm.

We will see the reminding, and case operations in the

following subsections in more detail using the example.

3.1 Reminding - Searching the Related

Cases

We have already discussed how cases are structured in

the case-base. The same process occurs in reminding

whenever a new case is entered in the structured case-

base. Suppose several cases are already structured in

the case-base. In order to use several types of relations

in associating the related case, vocabularies used for

specifying attribute-values must be related from many

view points. The followings are some of them used for

the process diagnosis example.

(relation name=opposite argl=high arg2=lo»)

(relation naae=positive argl=open arg2=high)

(relation name=near argl=normal arg2=high)

In CAOS, cases are indexed both by data type (symp

toms) and by the effect typc(ca.uszl relation among

symptoms). Reminding (finding the similar cases) is

carried out on these two representations.

3.2 Case Operations

lated Cases

Transforming Re-

Depending upon the reminded case(s) and its relation to

the current case, several candidates for case operations

are proposed for the transformation of reminded cases.

Case operations are divided into two types: single case

operation and multiple case operation. Single case oper

ation uses the information of the only one related case,

and multiple case operations uses that of more than two

related cases. In this subsection, we will see how these

case operations are selected using the information of

how the current case is related to the existing case(s).

Further, for the case operation to infer the unknown

fault type from the known fault type, these types must

be related in the event space.

comp I ete

Block

 abstract i

Fig. 5 Event Space for Operations
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Fig. 5 shows the event space in which the nearest faults

related are operated to infer the unknown value of the

given falut. These operators and vocabularies are do

main dependent.

With the structured case-base, relations among vo

cabularies specifying values, and event space, case op

erations can be carried out. The followings are some

examples of case operations. These operations are or

ganized so that the strong heuristics must be applied

earlier than weak ones by the rule control mechanism.

Sample scenarios of inferring the unknown fault fol

lows as below.

For the given case,

(event name=target status=current type=data

Fl=high F2=high Ll=high Vl=open)

suppose the same case has not yet been given to the

case-base , however, the next case exists in the case-

base.

(event name=ThroughputLow_27 type=data

fault=low location=throughput

Fl=low F2=low Ll=low Vl=close)

As pointed out, this case is the nearest in terms of

the effect type, although this case is quite different in

terms of data type . In fact, the distance of data type is

equalt to 1 whereas the distance of effect type is equal

to 0.

Fig. 6 is the rule expressed by OPS83 [Forgy 1986]

proposing the case operator.

rule Fault Lo cat ion_propose_OppositeType

{

fcg (goal PhaseStatus=current ; step=propose;

ProblemSpace=FaultLocation) ;

fee (event status=current );

kd (distance from=Jte. id; type=effect;

(@ . name=super\/@ . name=sub\/<3 . name=close) ;

value<=fcg.Edistance) ;

(event id=fed.to);

"(distance from=id.from; to=td.to

type=data; ) ;

"(operator object=fcd. to;

ProblemSpace=OppositeType;

(® . PhaseStatus=done\/

(9 . PhaseStatus=pending) ; ) ;

-->

modify ftg (Edistance=0 . 0 ; Ddistance=0 . 0) ;

make (operator id=gint ();

PhaseStatus=pending;

};

status"proposed ;

ProblemSpace=OppositeType ;

priority=5;

object=td.to );

Fig. 6 0PS83 rule for case operation making

the fault type opposite

Only one case operator is selected among candi

date case operators by the heuristics and default rule

using priority. The control structure of the case

operation part uses the control structure of SEAR

[van de Brug 1986] modified for OPS83. We will de

scribe implementation of CAOS later.

The English translation of this rule follows:

Even if the case is not related as to data type,

if it is related as to effect type, then propose

the candidate case operator which guess the

fault type of the current case as opposite of

the related case.

Applying

the operator, fault=high location=throughput is rea

soned, for it does not contradicts to the causal relation

from throughput to inflow Fl, outflow F2, valve Vl,

and level Ll.

Typical single and multiple case operations are enu

merated with the example of how it is selected.

• Abstraction: If the effect type distance of the re

lated case from the current case is under a threshold and

the related case is the supercase of the current case, then

propose a case operation which guess the fault type of

the current type by abstracting the fault type of the

related case. e.g.

Given case:

(event name=target status=current type=data

Vl=open F2=lou)

Related case:

(event name=Leak_41 type=data fault=leak

Vl=open Ll=high F2=low)

the inferred result:

fault=FlowLost

• Magnitude variation: If the related case is inter

preted as the same event except the magnitude, then

make the magnitude of the given case in that way keep

ing event type same. This relation is recognized by

matching only important attribute for that event type
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(netflow DF, and valve VI in this case), leaving away

slight difference of other attributes, e.g.

Given case:

(event name=target status"current type=data

F2=high Vl=close DF=-)

Related case:

(event name=Leak_43

type=data fault=leak

F2=normal Vl=cloBe DF=-)

the inferred result:

fault=leak and magnitude=big

Other than these operators for a single case, operators

are prepared for multiple cases. If these nearest cases

satisfy a certain relation with each other, case opera

tions for multiple cases are applicable. The followings

are typical examples of multiple case operators.

• Extrapolation (or interpolation): If the related

cases have values whose value assignment is corelated

(F2 in this case) with fault type, then infer the un

known fault type by extrapolating these event types in

the event space, e.g.

Given case:

(event name=target status=current type=data

location=F2feVl F2=low Vl=normal)

Related cases:

(event name=LeakInF2ftVl_2 type=data

fault=leak location=F2ftVl

F2=high Vl=normal)

(event name=NormalInF2feVl_l type=data

fault=normal location=F2ftVl

F2=normal Vl=normal)

the inferred result:

fault=block location=F2fcVl

• Combination: This case operator is used when

there are two cases which are related as to effect type,

but faults of these two cases seems to be independent.

This operation combine the independent two faults.

As a typical multiple case operator, OPS83 rule used

in CAOS is presented in Fig. 7.

rule FaultType_propose_combination_mul

{

ftg (goal Phase Status= current; step=propose;

ProblemSpace=FaultType) ;

feel

fed

ftdl

fee 2

fee 3

};

(event status=current) ;

(distance from=fcel .id; type=effect;

value<=feg.Edistance) ;

(distance from=feel . id; toOkd.to;

type=effect;

value<=ftg. Edistance) ;

"(distance from=fed.to; to=fedl.to;

type=effect;

value<0.5);

(event id=ftd.to; type=data) ;

(event id=fedl.to; type=data);

(relation argl=te2.fault; arg2=fee3.fault ;

name=opposite) ;

"(operator object=ftd.to; object2=ftdl . to;

(Q . Ph.aseStatus=done\/

9 . PhaseStatus=pending) ;

ProblemSpace=combination ) ;

modify ftg (Edistance=0.0; Ddistance=0.0);

make (operator id=gint ();

PhaseStatus=pending ;

status=proposed ;

ProblemSpace= combination;

priority=5 ;

object=fed.to;

object2=ftdl .to) ;

Fig. 7 0PS83 rule for case operation of

combining independent two cases

English translation of this rule is:

If there are two cases whose effect type distance

to the current case is under the threshold, and

there is no relation between these two cases

as to effect type, then propose the candidate

operator to guess the fault of the current case

by combining the faults of these two cases.

In the rule, independency of these two related cases is

expressed by the non-existency of relation case between

them. The example showing how this operation behaves

as follows:

Given case:

(event name=target status=current type=data

F2=low Ll=low Vl=open)

Related cases:

(event name=BLockInF2feVl_15 type=data

fault=block location=F2feVl
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F2=low Vl=open)

(event name=AnormalyInControl_31 type=data

fault=anormaly location=control

Ll=low Vl=open)

the inferred result:

fault=block location=F2fcVl and

fault=anormaly location=control

Abstraction (synthesis) is also possible for multiple

case operator which abstract from leak, block to flow

lost in terms of fault type, from high, low to abnormal

as for flow, and so on. Case operations are summarized

in Table 2.

4 Implementation and Sample

Session

The experimental system is implemented for the pro

cess diagnosis example. It is implemented on the pro

duction system OPS83, where cases are structured at

working memory as working memory elements with

network structure. Case operation subsystem is writ

ten by about 100 rules including control mechanism of

rules. The control mechanism uses automatic subgoal-

ing mechanism of SEAR. About 20 cases are stored in

the dynamic memory.

Table 2 Summary of

A sample session of case-based diagnosis by CAOS. The

reasoning is carried out in the following order: (1) input

of the current case, (2) reiminding of the nearest cases in

terms of data type and effect type, (3) operate adequate

case operation, and (4) output of the operated results. 2

In this example, for the current case

(event name=target 6tatus=current type=data

Vl=close F2=high Ll=high)

where the fault is unknown, two cases are reminded,

i.e.

(event name=LeakInF2fcVi_7 type=data

fault=leak location=F2ftVl

Vl=close F2=high)

(event name=Anormaly_30 type=data

fault=anormaly location=control

Vl=close Ll=high)

by the reason that these two cases are nearest to the

current case in terms of effect type distance. Since these

two cases are considered to be independent of each other

(confirmed by the fact that effect types of these two

cases are not near), the case operator for combining

these two cases is operated. As a result, the current

case is diagnosed to have the multiple faults.

Case Operations

case operator Conditions the base case(s) must satisfy Operation on related case(s)

SINGLE

Abstraction sub pattern(effect type) abstract the fault type

Opposite Type distance(effect type) <= threshold

no relation(data type)

make the fault type opposite

Magnitude Variation distance(effect type) <= threshold

distance(data type) <= threshold

sub pattern(data type)

super pattern(data type)

make the magnitude of fault bigger

make the magnitude of fault smaller

MULTIPLE

Extrapolation

(Interpolation)

distance(data type) <= threshold

One sympton(data type) in two related

cases and given case change the same

direction as that of values of faults

in two related cases.

extrapolate (interpolate) the

value of two faults

Combination distances(effect type) <= threshold

no relation between two related cases

combine two faults in conjunctive

Abstraction distances(effect type) <= threshold

related cases has opposite fault type

abstract the fault type

2These four tasks can be selected independently from the top
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***************************

CAse Operation System

***************************

********* Output case operation results.

1 Input new case

2 Structure cases

3 Case-based reasoning

4 List structured cases

5 Output case

Enter the number : 3

********* Input the new case.

Input the case name : target

Input the attribute value pairs (E to end):

VI close

F2 high

LI high

E

********* Reminding by data type.

target =super=> LeakInF2ftVl_7

F2 high

VI close

target =super=> Anormaly_30

VI close

LI high

********* Reminding by effect type.

target =super=> Anormaly_30

LI negative.Vi

VI negative_F2

target =super=> LeakInF2fcVl_7

VI negative_F2

anormaly at Control

leak at F24V1

Fig. 8 Sample Session of CAOS

(Inputs from user are underlined.)

Other than successful results, some failed reasoning

done by CAOS will show the current status of the im

plementation. For the given case:

(event status=current Vl=open F2=high

type=data)

where a symptom Fl=high is missed. Then the follwo-

ing case is selected as the nearest in terms of effect type

distance.

(event name=LeakInTank_9 Vl=close F2=low

fault=leak location=tank type=data)

Since the syndrome is opposite pattern of the cur

rent syndrome, the case operator which make the fault

type opposite is selected. Thus, "tank is block" is con

cluded.If the data type of the current case is given prop

erly, the case:

(event name=ThroughputLow_27 Fl=low Vl=close

F2=low fault=low location=throughput

type=data)

will be selected to operate this case operation. Then,

correct diagnosis, "throughput is high", will be ob

tained.

Most of wrong diagnosis occurs reminding inappro

priate cases for operation. This happens when qualita

tively different two cases are placed near to each other

in the structure. Other indexing besides data type and

effect type must be introduced to avoid such wrong di

agnosis, or rules must be modified to clearly separate

case operations for superficially similar cases.

********* Searching for case operation.

data distance = 0.9

effect distance =0.9

operator combination is selected for cases:

LeakInF2ftVl_7 Anormaly_30

5 Comparison with the Rule-

based Reasoning

There is no need for abstracting rules from cases in case-

based reasoning, for cases themselves can be knowledge

source. The generalization mechanism is built in the dy

namic case-base. However, cases must be expressed in
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such a manner that association of them is possible. Fur

ther, sample cases must be chosen from various types of

cases, since the case-base of almost similar cases cannot

respond flexibly to the many cases.

Although case-based and rule-based reasoning have

fairly different knowledge representation and hence dif

ferent reasoning mechanism, they are compatible in one

system. There are many ways to combine these two

paradigms. As an example, SEEK [Ginsberg et al 1988]

is basically a rule-based system, but uses cases exten

sively to refine rules. CAOS uses rules as case transfor

mation operators.

The combined paradigm of the case-based and the

rule-based reasoning may contribute to break through

the bottleneck of knowledge acquisition in most of

knowledge-based systems. Rule-based system depends

upon heuristic rules which are fixed once the domain

knowledge are acquired, and does not have any dynamic

part. This makes rule-base updated and maintained

whenever the new rules are found. Knowledge acquisi

tion problem arises from pushing permanent knowledge

and variable knowledge into a uniform expression of

rules. Assigning permanent knowledge to rule-base, and

dynamic knowledge to case-base may lessen the neces

sity of modifying rule-base. However, as demonstrated

in this paper, we must admit that the introduction of

case-base causes the different problem of case acquisi

tion summarized as: (1) Not only the amount but the

variety of cases provided must be rich enough. (2) The

order of cases input affects the structure of case-base.

6 Concluding Remarks

The architecture of case-based diagnosis presented

shows that diagnosis by the case-base indexed by causal

relation among symptoms becomes more flexible than

diagnosis by that indexed by symptoms. This resem

bles the fact thata case can remind the human experts

of the case with deeper similarities, while the same case

remind the novices of the cases with superficial similar

ity. The introduction of the indexing by a new aspect

will lead to more interesting reminding, and hence rea

soning.

Although CAOS is still in the development stage es

pecially in case operation subsystem, the only remind

ing subsystem without case operating system seems to

be useful as an intelligent decision-support for. human

experts who need previous similar cases to analyze the

current problem system.

Implications as to the case acquisition strategy such

as; cases should be sampled from a widespread variety of

types, and the order of cases input affects the structure

of the case-base, are obtained from the experiments of

CAOS.
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1. Introduction

One of the key problems facing Artificial

Intelligence (AI) is performing efficient infer

ences over large knowledge bases. Viewing this

problem in the context of parallel computation

poses fundamental research problems such

knowledge representation in a parallel environ

ment, problem decomposition methods, classes

of (AI) problems which are amenable to parallel

computation, the role of incremental methods,

parallel matching, and parallel search strategies

that eliminate redundancy.

It is generally believed that humans per

form many tasks efficiently (i.e., in almost con

stant time) due to the exploitation of massive

parallelism in the brain (e.g., Feldman's 100

instruction step metaphor). In a view of paral

lelism advocated by many AI researchers (e.g.,

Connection Machine) we associate a small sim

ple processor with each data element (thus

loading data does not require time). In this

perspective logarithmic time parallel algorithms

have important implications since they show

how to represent the data and perform parallel

search in almost constant time for any reason

able size network. In this paper, we relate

parallel constraint networks to standard models

of computation (PRAMS). We present several

basic techniques for achieving parallel execution

of constraint networks. We are primarily

interested in developing a classification of

constraint networks that admit massively

parallel execution. We show that contrary to

the common intuition, chain networks do admit

parallel solutions (as in fact do all acyclic

graphs). We also present a parallel solution for

general constraint graphs with the restriction

that only two labels are allowed per variable.

The major result supported by our recent

investigations reported in this paper and in

[Kasif & Delcher 88] is that the parallel com

plexity of constraint networks is critically

dependent on subtle properties of the network

that do not influence its sequential complexity.

2. Constraint Satisfaction Networks

Constraint satisfaction networks have

been shown to be an important tool for model

ling a variety of Artificial Intelligence applica

tions [Winston 84], [de Kleer 86]. These net

works often utilize local constraint propagation

techniques to achieve global consistency (con

sistent labelling in vision). Such methods have

been used extensively [Rosenfeld et al. 76],

[Haralick & Shapiro 79], [Mackworth 77] as well

as planning, natural language analysis and

common-sense reasoning (truth maintenance

systems) [Winston 84], [de Kleer 86].

A commonly accepted formalization of

constraint networks is in terms of a constraint

satisfaction problem (CSP), sometimes referred

to as the consistent labelling problem (CLP).
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The constraint satisfaction problem can be

informally defined as follows. Let S be a set of

objects. Each object has a set of possible labels

associated with it. Additionally, we are given a

set of constraints that for each object * and

label z describe the compatibility of assigning

the label z to object s with assignment of any

other label J to any other object sf

An interesting approach to model CSP

problems is by means of a constraint graph.

The nodes of the constraint graph correspond

to variables of CSP. The edges of the graph

correspond to the binary constraints in the

CSP. That is, with each edge in the constraint

graph we associate a matrix that shows which

assignments of labels to variables on the arc are

permitted. In this interpretation CSP can be

seen as generalized graph coloring

Since CSP is known to be NP-complete,

the discrete relaxation method has been pro

posed to reduce the initial ambiguity. Arc

Consistency (AC) allows an assignment of a

label x to an object s iff for any other object

S7 in the domain there exists a valid assign

ment of a label J which does not violate the

constraints (a formal definition is given in the

next section). This formalization allows us to

achieve global consistency in many cases by

local propagation of constraints. Specifically, a

discrete relaxation algorithm can discard a label

from an object if it is incompatible with all

other possible assignments of labels to the

remaining objects. The discrete relaxation

approach has been successfully applied to

numerous computer vision applications [Waltz

75.], [Kitchen 1980], [Barrow & Tenenbaum 76],

[Brooks 81]. The sequential time complexity of

AC is discussed in [Mackworth & Freuder 85].

Since the constraint propagation pro

cedures such as discrete relaxation appear to

operate locally, it has been previously believed

that the relaxation approach for CSP has a

natural parallel solution [Rosenfeld et al. 76],

[Ballard & Brown 82], [Winston 84]. Our

analysis, presented in [Kasif 86] suggests that a

parallel solution is unlikely to improve by much

the known sequential solutions. Specifically, we

proved that arc consistency belongs to the class

of inherently sequential problems called log-

space complete for P (or P-complete).

Intuitively, a problem is P-complete iff a

logarithmic time parallel solution (with polyno

mial number of processors) for the problem will

produce a logarithmic time parallel solution for

any polynomial time deterministic sequential

algorithm. This implies that unless P C NC

(the class of problems solvable in logarithmic

parallel time with polynomial number of pro

cessors) we cannot solve the problem in loga

rithmic time using a polynomial number of pro

cessors.

In the next sections we give a formal

definition of a constraint satisfaction problem

and provide several parallel techniques.

3. Constraint Satisfaction and Discrete

Relaxation

The constraint satisfaction problem (CSP)

and its less restrictive versions are formally

defined in [Mackworth 77] and [Rosenfeld et al.

76]. For completeness we give a semiformal

definition here. Let V=< »i, • • ■ , vn \ be a

set of variables. With each variable v,- we

associate a set of labels Z/,- . Now let P,-,- be a

binary predicate that defines the compatibility

of assigning labels to objects. Specifically,

iff the assignment of label x to v{ is compati

ble with the assignment of label y to Vj . The

Constraint Satisfaction Problem (CSP) is

defined as the problem of finding an assignment

of labels to the variables that does not violate

the constraints given by P,;- . More formally, a

solution to CSP is a vector (z 1; . . . , x„ ) such

that Zj is in L, and for each i and j, P,-; (z,- ,z;- )

= 1.

For example, the 4-queens problem can

be seen as an instance of CSP. To confirm this,

associate a variable with each column in the
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board and let L: =i=/l,2,3,4i for 1<»<4. Let

Pij (x ,y )=1 iff positioning of a queen in row x

at column t is " safe " when there is a queen in

column j and row y . As mentioned in the

introduction, the CSP is known to be NP-

complete. Therefore several polynomial

approximation algorithms were proposed and

were shown to perform quite well in practical

applications. The most significant class of algo

rithms are variations on discrete relaxation

[Rosenfeld et al. 76] also known as local net

work consistency algorithms [Mackworth 77].

Formally, a solution to the local version of CSP

(arc consistency) is a set of sets Mlt . . . , Mn

such that Mi is a subset of L,- and a label x

is in Mi iff for every M;- t j^j there is a yxj

in Mj , such that Pij(x,yxj) = 1. Intuitively,

a label x is assigned to a variable iff for every

other variable there is at least one valid assign

ment of a label to that other variable that sup

ports the assignment of label x to the first

variable. This condition is most commonly

referred to as arc consistency (AC) [Mackworth

77]. That is, for every two nodes in the con

straint graph we verify that the current set of

possible assignments to nodes residing on the

arc are consistent in the sense of being a poten

tial solution. Clearly, a solution to arc con

sistency is a necessary condition to any solution

to CSP but it is not a sufficient condition. We

call a set M v . . . , Mn to be a maximal solu

tion for AC iff there does not exist any other

solution Si, . . . , Sn such that M,- C 5,- for

all 1<j <n . We are only interested in maximal

solutions for an AC problem. This restriction

is necessary since any solution for a AC

represents a set of candidate solutions for the

original CSP, which will eventually be verified

by a final exhaustive check. Thus, by insisting

on maximality we guarantee that we are not

losing any possible solutions for the original

CSP. Therefore, in the remainder of this paper

a solution for an AC problem is identified with

a maximal solution.

4. Parallel Processing of Constraint Net

works

The standard approach for achieving arc

consistency is repeatedly applying the following

procedure (discrete relaxation)

Par-AC

for each directed arc from X{ to Xj of the

constraint graph test whether

for each label / for Xj there exist /' for

Xi that permits it.

It is easy to see that this algorithm will

terminate in O (EK2nK) time, where E is the

number of edges in the graph and K is the

number of labels, (recall that EK2 is the size of

the input). In fact, [Mackworth & Freuder 85]

and this paper develop much better sequential

algorithms for the problem. Clearly procedure

Par-AC can be parallelized in a straightfor

ward way. If we assume CRCW PRAM as our

model of parallel computation we have the fol

lowing simple result: CRCW PRAM is a stan

dard shared memory parallel computation

model that permits concurrent read and writes

into the same location. Concurrent writes are

permitted if they agree on the written data.

Claim 1: The parallel complexity of procedure

Par-AC is O (n/f) on a CRCW PRAM.

Proof:

Simply attach a processor to each arc and label

and repeatedly test the arc consistency condi

tion. Arc consistency is essentially an OR on

set membership of a set of labels which can be

performed in constant time on CRCW PRAM.

At each parallel step a label must be dropped

and there are at most nK labels. □

On a more realistic model of computation such

as EREW (exclusive read/write) PRAM we can

perform the above procedure in 0(nK\ogK)

parallel time.

The usual way to see parallel computation

of constraint networks in the AI community is
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not via shared memory models such as the

CRCW PRAM. We usually assume that we

have processors associated with nodes/arcs of

the network. The processors communicate to

their neighbors. It is obvious that this perspec

tive requires the full power of a CRCW PRAM

model for the following reasons.

1. We assume constant overhead for com

munication between adjacent processors,

i.e., complete graph connectivity.

2. We assume at any time all the neighbors

of a node can communicate with the node

(i.e., propagate constraints, remove labels,

etc), that is concurrent read/write capabil

ities.

It is easy to see that the procedure above

has a lower bound of nK steps, i.e., does not

parallelize in the worst case. As a simple exam

ple, consider a chain symmetric constraint

graph Xl-X2-X3-,...,-Xn with label set {0,1}

and assume the only supporting assignment for

a 0 is 0. All the initial label sets for the vari

ables are {0,1} except Si = {1}. In [Kasif 86]

we proved a much stronger result namely that

no procedure is likely to parallelize in the worst

case.

Theorem 2: (Kasif 86)

The Propositional Horn clause

satisfiability problem is log-space reducible to

the AC problem. That is, AC is P-complete.

Intuitively, this result states that to achieve

logarithmic parallel time one would (probably)

need an exponential number of processors (in

the worst case). This is indeed a worst case

result and indeed [Dixon & de Kleer 88]

reported a successful experiment with massively

parallel constraint processing.

One intuitive but incorrect interpretation

of the Theorem 2 is that inherent sequentiality

is caused because of long constraint chains such

as the one below.

XI—X2—X3 ...—Xn

We give a simple technique for parallel process

ing of constraint chains or more generally trees.

Most importantly we show that while the

degree of parallelism is dependent on the diam

eter of the constraint graph, a long diameter is

not a sufficient condition for inherent sequen

tiality of constraint networks.

We first make an important observation

which is critical to the understanding of the

complexity of achieving arc consistency. Given

a constraint satisfaction problem S one can

construct a propositional Horn formula

(AND/OR graph) G such that arc consistency

of S can be achieved by (essentially) running a

satisfiability algorithm for G . For a formal

construction see [Kasif 85]. We sketch the

intuition here. For each label / and a variable

X we construct a propositional atom Px j

which means / stays at X . Consider a variable

X connected in the constraint graph to vari

ables Y and Z . Assume that Y has labels 11,

12 and Z has labels /3 I A that support / at

X . Thus, we construct the formulae:

JV.I1 -J' 12

PYtl2 -* P11

Pz',13 ^F34

Pz,lA ^^34

P 12,PM^Pxl

Note that if the constraint graph has E edges

and K labels per variable, the size of the for

mulae is EK2. More importantly, the sequen

tial complexity of solving satisfiability of this

graph is 0(EK2) (see [Kasif 85] for details.

This is a slight improvement over the result in

[Mackworth & Freuder 85]. Note, that this

reduction is from AC to propositional Horn sol

vability (PHS) as opposed to the one used to

prove Theorem 2 (from PHS to AC).

We first show that if the number of possi

ble labels per variable is two or less we can pro

cess the constraint graph in logarithmic parallel

time.

Lemma 3:
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Given a CSP P , where the \ S{ \ < 2 , that is

number of possible labels (solutions) per vari

able is at most 2, then P can be converted to a

2-SAT problem (satisfiability of clauses with

two literals per clause) S such that / is a

solution for S iff / is a solution for P .

Proof: (sketch)

We convert each one of the arcs to a 2-CNF

formula (formula in conjunctive normal form

with at most two variables in any disjunction).

Details are omitted. For instance, the con

straint

X Y | Px v

0 o |o

0 1 11

1 0 11

1 1 10

is converted to the set of clauses

c( ^X V Y),(X V -. Y). □

Given a set of clauses in 2-SAT form, we

create a new directed constraint graph that

captures the constraints of the initial constraint

graph more explicitly. For each disjunction of

the form A V B we create a set of 4 nodes

<A,0>,<A,1>,<B,0> and <B,1>.

<A,L> is connected with a directed arc to

<Y,L ' > iff assigning L to X forces assigning

L ' to Y in order to evaluate the disjunction to

true. For the constraint above expressed by

the formula (--XV Y),(X V -. Y ) we generate

the following graph.

<X, 0>

^

<Y, 0>

J

»r
-> <Y, 1><x, 1>

Using the construction of an explicit

directed graph we can find solutions to the ori

ginal problem by tracing the strongly connected

components of the constraint graph. This

method is a systematic application of deter

ministic constraint pushing employed in several

constraint systems. The precise claim is cap

tured in the next intuitive proposition stated

without proof. The formal proof is involved.

Proposition 4:

Let 5 be a 2-SAT formula and C be its expli

cit constraint graph constructed as above. S is

satisfiable iff X=0 and X =1 do not belong to

the same strongly connected component of C

for any variable X in S . Moreover, if S is

satisfiable, the directed components of C can

be used to derive an assignments for the vari

ables of S .

Computing directed components in parallel is a

well understood problem and is done by transi

tive closure methods.

Proposition 5:

Given a CSP S where the \ S{ \ < 2 , that is,

the number of possible labels (solutions) per

variable is at most 2, S has a poly-logarithmic

parallel time solution O (log N) with N pro

cessors.

Thus, in the special case when the number of

labels per object is at most than 2, we can com

pute the solution in sublinear time with a rela

tively large number of processors (jV15 proces

sors where N is the size of the input). We note

that we are actually solving the constraint

problem directly without attempting to achieve

arc consistency first.

The next set of results utilizes the topol

ogy of the constraint graph to achieve parallel

ism. We take advantage of the separability

properties of the constraint network for recur

sive parallel decomposition of the problem. A

more powerful (but higher overhead method

was presented for planar constraint networks in

[Kasif et al 1987] (see also [Seidel 81]).



Parallel Solutions to Constraint Satisfaction Problems 185

Lemma 6:

Given any constraint tree T of size |T| = N,

we can construct a binary constraint tree T'

with a constant increase in size and T and T'

have the same solutions.

Proof

The proof is trivial and is omitted. We per

form the standard n-ary to binary tree

transformation and copy the appropriate con

straints to the new arcs. □

Notice we are not transforming n-ary con

straints networks into binary constraint net

works; we just modify the topology of the origi

nal constraint tree with a constant increase in

size. Thus, without loss of generality we con

sider binary trees only.

Lemma 7: Given any tree T of size |T| = N,

there is a node n0 in T such that the subtree

Tl rooted at n0 that satisfies 1/3N < |T1| <

2/3N.

Proof (sketch)

Start from the root, if one of the subtrees

satisfies this condition we, are done. Other

wise, follow the path in the direction of the

larger tree and repeat. □

Proposition 8: If the constraint graph is a

connected acyclic graph (i.e. tree) we can solve

the CSP for the graphs in O(logN) time with

O (E ) processors.

Proof (sketch)

Find a node n0 in T and a subtree Tl rooted

under n0 such that 1/3N < |T1| < 2/3N.

Disconnect nQ and its adjacent edges, thus gen

erating two disconnected trees. Recursively

solve CSP for the two trees. The recurrence is

T(N) < C*Max{TN(2/3N),TN(l/3N)}+Cl,

where C, and Cl are constants. Thus, we can

solve the CSP in poly-logarithmic time with a

polynomial number of processors (that depends

on K, the number of labels per variable). □

A similar method is possible for solving

the AC problem and is discussed in the full ver

sion of the paper.

5. Discussion

In this paper we presented several tech

niques for parallel processing of constraint net

works. Our methods are motivated by graph

theoretical considerations, similar to the metho

dology of [Dechter & Pearl 88]. Surprisingly,

the separator based methods fail even for chain

graphs when the number of labels per variable

is large (proportional to the size of the graph)

It turns out that in this case the parallel com

plexity of processing constraint graphs is criti

cally dependent on the specifics of the con

straint predicates. In [Kasif & Delcher 88] we

show that consideration such as whether the

constraint graph is directed, symmetric and the

number of labels per variable play an impor

tant role in the parallel solution.

We mentioned before the direct connec

tion between AND/OR graph solvability and

constraint satisfaction. Parallel AND/OR

problem reduction is another important AI

technique, based on the concepts of decompo-

sability in production systems. Consider the

simple partial program below:

SOLVE(P) :- SOLVE(Pl),SOLVE(P2).

SOLVE(P) :- SOLVE(P3),SOLVE(P4).

This program asserts that in order to

solve problem P we can either solve problems

Pi and P2 or solve problems P3 and P4.

AND-parallelism refers to the parallel solution

of conjunctive goals such as Pi and P2. This

kind of parallelism is found in conventional

languages where we execute several program

statements in parallel. OR-parallelism

addresses the parallel activation of both clauses

that may solve the problem P. OR-parallelism

is typical in AI problems where there may be

many rules initially applicable to a given
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situation.

The experimental evidence accumulated

by many researchers thus far seems to suggest

that only limited parallelism is attainable in

large scale knowledge base (production) systems

[Symp. 88]. This could be an inherent feature

of a particular problem domain or the result of

lack of adequate tools for exploring the sources

for parallelism. We believe that although

achieving parallelism is a non-trivial complex

task, it is nevertheless possible by choosing the

right representation of data and proper prob

lem decomposition. Consider the following sim

ple example:

r(l) - r(2).

r(2) «- r(3).

r(n-l) ♦— r(n).

On the surface, this appears to be as an

inherently sequential set of logical implications,

and indeed it does not contain any AND/OR

parallelism. However, using the tree contrac

tion technique developed by Miller & Reif we

can compute perform this sequence of rule

application in parallel. The basic idea is as fol

lows. We use the following three transforma

tion rules.

1 B is true and

- C is true.

B C are true

2.

3.

If A 4-

then A

If A «— B,C; and C is true, we create the

fact A •<- B.

If A ^— B,C is true and B and C are true

so is A.

It can be shown that for many inference

networks the above procedure generates

optimal parallel execution. For example, in the

case of the program above, we repeatedly use

rule 1 which corresponds to "parallel doubling"

and we get the following execution.

1. Parallel Step 1:

r(0) *- r(2); r(2) <- r(4); r(4) «- r(6);...

Parallel Step 2:

r(0) - r(4); r(4) - r(8); r(8) <- r(12);...

Parallel Step 3:

2.

r(0) - r(8); r(8) - r(16);..

The main idea is dynamic tree restructur

ing (proof tree) that allows full utilization of

the available processors.

The example above illustrates that it is

sometimes possible to generate a parallel execu

tion in seemingly sequential problems by

employing slightly more sophisticated tech

niques. This paper made a step in that direc

tion in the context of constraint networks.
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Abstract

We investigate the complexity of reasoning

with a number of limited default logics. Sur

prising negative results (the high complex

ity of simple three literal default rules) as

well as positive results (a fast algorithm for

skeptical reasoning with binary defaults) are

reported, and sources of complexity are dis

cussed. These results impact on work on de

feasible inheritance hierarchies as well as de

fault reasoning in general.

1 Introduction

It has been suggested that some kind of default infer

ence can be used to simplify and speed common sense

reasoning. Researchers have appealed to default logics

as a solution to the problem of generating and reason

ing with large numbers of "frame axioms"; as a way

of simplifying complex probabilistic calculations; and

recently as a way of "vivifying" (filling out) an incom

plete knowledge base, thus suppressing the complex

ities of reasoning with uncertainty [McCarthy, 1985,

Levesque, 1986].

While current formal theories of default inference

are computationally much worse than ordinary logic, it

has been tacitly assumed that this additional complex

ity arises from their use of consistency tests. Our inter

est in fast, special purpose inference mechanisms led us

to investigate very simple propositional, disjunction-

free systems of default reasoning, where consistency

checking is trivial. Here, we thought, default reason

ing should shine.

This paper reports a number of surprising complex

ity results involving restricted versions of Ray Reiter's

Default Logic [Reiter, 1980]. We define a partially-

ordered space of more and less general propositional

default theories. For each we determine the complex

ity of solving the following three problems: finding an

extension; determining if a given proposition is true in

some extension; and determining if a given proposition

is true in all extensions. While all of these problems

are NP-hard (or co-NP-hard) for unary theories (which

roughly correspond to inheritance graphs), they are

all tractable for unary normal theories (which corre

spond to inheritance graphs without any specificity or

dering). Other limited systems demonstrate that the

three kinds of problems are strictly ordered in order of

difficulty.

Finally we provide an intuitive characterization of

sources of complexity in default reasoning.

Only a limited number of proofs are presented in this

[>aper; all proofs and further discussion will appear in

Kautz and Selman, 1989].

2 Reiter's Default Logic

Reiter formalized default reasoning by extending first-

order logic with default rules. This paper will not

consider the other non-monotonic formalisms based

on modal logic, circumscription, or model preference

rules, although many of the results it presents have

counterparts in those systems. (See [Selman and

Kautz, 1988] for a similar analysis of model-preference

theories.)

A default theory is a pair (D, W) where D is a set of

default rules and W a set of ordinary first-order wffs.

A rule is of the form:

a : (3 A 7

where a is the prerequisite, /? the conclusion, and 0Af

the justification of rule, each of them wffs. The rule is

intuitively understood as meaning that if a is known,

and f3Ay is consistent with what is known, then /3 may

be inferred. If y is missing then the rule is normal;

otherwise, it is semi-normal.

An extension is a maximal set of conclusions that

can be drawn from a theory. But care must be taken

that none of the justifications of the rules used in the

construction of an extension conflict with its final con

tents, and that every wff in the extension can in fact be

derived from W and the rules. The formal definition of

an extension (from [Reiter, 1980]) is therefore rather

complex. For any closed set of wffs 5 let T(5) be the

smallest set satisfying the following three properties:

1. W C T(S)

2. T(5) is deductively closed.
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3. If there is a rule such that a G T(S), and ->(/? A

7) g 5, then /? e T(S).

An extension is defined to be a fixed-point of T, so

E = T(E). A theory can have several, one, or no

extensions.

Although normal theories have a number of nice

theoretical and computational properties, semi-normal

rules are often needed to establish a priority among the

defaults. For examples, two default rules may have

conflicting conclusions, yet have their preconditions

satisfied in the same situation. If normal rules were

used, this kind of situation would lead to two different

extensions. One may know, however, that the first rule

should always take priority over the second when both

apply. This can be encoded by adding the negation

of the precondition of the first rule to the justification

of the second rule. Formally, given rules Di and D2,

where

Di

ori : /?i A 71

£>2 =

<*2 : /?2 A 72

A ft

in order to establish D\ as being of higher priority than

D2, replace Di by D'2:

, _ a2 : ft A 72 A 57

D>~ ft"

One kind of priority that this scheme can encode

is the "specificity" ordering that intuitively should ap

pear in an inheritance hierarchy. For example, W may

include the fact that "penguins are birds",1 and D de

faults that assert that penguins don't fly, and that

birds do fly. The first, more specific default can be

given priority over the second by encoding the pair as

Penguin Fly

Fly

Bird : Fly A Penguin

3 Complexity

Following [Garey and Johnson, 1979], we shall refer to

a problem class as "tractable" if a polynomial-time al

gorithm can solve all its instances. While it is usually

very difficult to to prove that a problem is intractable,

it is often possible to show that it is as hard as any solv

able in polynomial time by a non- deterministic com

puter. Such a reduction to an "NP-complete" problem

indicates intractability for all practical purposes: no

one seriously doubts that such problems require expo

nential time, even though it has not been so proven.

The NP-complete problem "3SAT" is that of de

termining the satisfiability of a conjunction of three-

element clauses in propositional logic; that is, of a for

mula of the form:

er = (zi V yi V zx) A (z2 V y2 V z2) A ■ • •

1 It remains an open problem to determine if a default

theory must include this assertion, although a survey of

the literature lends strong evidence to the conjecture. Cer

tainly it is true that every paper on non-monotonic reason

ing must include this example [Etherington et al., 1989a].

For each default logic problem considered in this pa

per, we will present either a polynomial-time algorithm

to solve its instances, or a reduction of the problem

class to 3SAT. In the case of a reduction we'll call the

problem NP-hard, without any implication that the

problems are not in NP (and thus NP-complete). (In

some cases we'll actually show that a problem is "co-

NP-hard", meaning that it is as hard as any whose

complement is in NP. For example, while determining

that a formula is satisfiable is in NP, determining that

a formula is not satisfiable is in co-NP. The distinc

tion is not important for the purposes of this paper.

Although it is unknown whether NP=co-NP, almost

certainly neither are equal to P.)

Coarse as it may be, this division into tractable and

intractable problems is an extremely useful one. We

feel safe in dismissing claims that massively parallel

computers can be used to "solve" NP-hard problems.

(The chart on [Garey and Johnson, 1979, page 7] is

instructive in this regard; a problem that would require

100,000 steps using an 0(n3) algorithm would require

over 1013 steps with an 0(2") algorithm.)

Furthermore, we find it difficult to appreciate work

on parallel marker-passing algorithms for special cases

of default reasoning until we know if the particular

problems being solved have a practical serial solution,

and can calculate the speedup the parallel solution

yields.

A valid criticism of this analysis is that we should go

on to develop fast algorithms which yield an approxi

mate solution to the intractable problems. We do not

yet have a clear idea of how to define a "approximate

solution" to a problem in logical reasoning.

4 A Taxonomy of Default Theories

Two sources of complexity in default theories are read

ily apparent: the inherent complexity of the first-order

component (W), and the complexity of determining

whether the justification of a default rule is consistent

with the currently-derived set of formulas. We'll re

strict our attention to finite propositional theories in

which W is simply a set (conjunction) of literals. The

precondition, justification, and consequence of each

default rule must be a conjunction of literals. Thus

determining whether a default rule is applicable to W

is trivial: the precondition must be a subset of W,

and the intersection of W with the negation of each

literal in the justification must be empty. The ex

tended theory is again a set (conjunction) of literals.

Although an extension is, by definition, an infinite,

deductively closed set of formulas, any extension of a

finite disjunction-free theory is logically equivalent to

a finite set of literals. Henceforth when we speak of

"computing an extension", we will mean computing

such a finite set of literals.

Any inferential power such systems possess resides in

the default rules; the only non-default inference rules
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Figure 1: Unary Default Theories

which apply are conjunction-in and -out (to convert,

e.g., {a, $} to a A/? and vice-versa). The reader should

remember, in particular, that because the default rules

are in fact rules and not axioms, the principle of rea

soning by cases does not apply. For example, given a

theory with empty W and rules

p:q p:q

q 9

one may not conclude q.

Further restrictions on the form of the default rules

leads to the following kinds of theories.

Unary These theories restrict the prerequisite to a

single positive literal; the consequence to a single

literal; and the justification to either the conse

quence or, in the case of a positive consequence,

to the conjunction of the consequence and a sin

gle negative literal. These theories have a simple

graphical notation, as shown in figure 1. Positive

and negative default arcs appear, where optional

cancel links may be attached to positive arcs.

Unary theories are a special case of Etherington's

"network theories" [Etherington, 1988, page 9l],

which also allow negative literals to appear in the

prerequisite, and binary disjunctions to appear in

W.

Disjunction-Free Ordered In an ordered theory

the default rules induce a partial order on the set

of literals. While the exact definition of an or

dered theory is complex [Etherington, 1988, page

86], the intuitive goal is to insure that some se

quence of default rule applications exists in which

the application of a rule never undercuts the jus

tification of a previously applied rule. In the

Figure 2: Cycles involving cancel arcs are prohibited

in ordered theories.

disjunction-free case, a rule of the form:

a! A • • • A a„a : 6t A • • • A 6nt A Ci A ■ • • A c„c

6i A • ■ • A 6„6

orders the literals as follows, for all i and j:

ai £ ty Ci < bj bi < bj

where < and < are transitive and related as usual.

It must not be the case that p < p for any literal

in an ordered theory.

Ordered Unary These unary theories have no cycles

involving cancel arcs, as shown in figure 2. Or

dered unary theories appear to possess the mini

mum amount of machinery necessary to represent

inheritance hierarchies with prioritized rules.

Disjunction-Free Normal The justification of each

default rule in a normal theory is exactly the same

as the conclusion.

Horn In these theories the literals in the prerequisite

are all positive, and the justification and conse

quence is a single literal.

Normal Unary The graphical representation of

these theories contain only positive and negative

default implication arcs, with no cancellation arcs.

There is no way for a more specific default to over

ride a less specific one in these theories.

The sets of such theories form a partial order, as

shown in figure 3. A negative complexity result (that

is, a reduction to an NP-Hard problem) for an element

in the partial order applies also to all elements above

it. A positive complexity result (that is, a polynomial

time algorithm) for an element applies also to all ele

ments below it.
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Disjunction
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• Ordered
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Horn
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Figure 3: The hierarchy of default theories.

5 Finding an Extension

Extensions are defined by a fixpoint construction, and

considerable effort has gone into the problem of con

verting that definition into an algorithm. Not all the

ories have extensions, and indeed, the very question of

whether an arbitrary theory has an extension is unde-

cidable. But a positive result exists for ordered theo

ries:

Theorem 1 There is an 0(n2) algorithm which finds

an extension of a finite, propositional, disjunction-free

ordered theory, where n is the number of default rules

in the theory.

A sound and complete general non-deterministic al

gorithm for finding extensions of ordered theories ap

pears in [Etherington, 1988, page 89], and Etherington

proved that the procedure always converges for finite

ordered network theories, and in a single pass for nor

mal theories. We've modified the procedure to create a

deterministic algorithm which finds some extension of

any finite, disjunction-free ordered theory in a single

pass, as we'll show in the forthcoming paper [Kautz

and Selman, 1989]. The basic idea is to use the literal

ordering to induce a total ordering on the set of de

fault rules, so that an extension can be built incremen

tally from W by always applying the lowest applicable

rule. This deterministic algorithm finds a particular,

arbitrary extension. It can be further modified to it-

eratively compute all possible extensions of a theory,

although some patience on the part of the user may be

required: even a disjunction-free ordered theory may

have an exponential number of extensions.

Unary theories do not share this low complexity.

Theorem 2 Finding an extension of a unary default

theory (or determining that it has no extension) is NP-

Hard.

The proof of this theorem depends on the following

reduction of formulas in 3CNF to default rules.

Definition: <r, N and K'

We will use a to stand for a propositional 3CNF for

mula. K is the set of set of atoms which appear in a.

N' contains N plus a new atom p' for every atom p in

N.

Definition: n and n

The functions 7T and 77 map literals from N to K' as

follows: it maps each positive literal to itself, and each

negative literal p to a p'; while t] maps each positive

literal p to p', and each negative literal p to p. Thus,

*(p) = P t(p) = p'

■nip) = p' v(p) = P

Definition: fu

The function fu maps a formula a in 3CNF to the

union of the following three groups of default rules:

(A) For each atom p which appears in <r, where p' =

ir(p), the following two rules appear:

P P

(B) Likewise for each p, the following two rules ap

pear:

P-F :p'Ap

7 P'

(C) For each clause x V y V z of a, the following three

rules appear, where Fxy, Fxy2, T, and Z are new

atoms:

n(x) : Fxy A ir(y) Fxy : Fxyz A ir(z)

■ry xyz

Fxyt \Tf\Z

Definition: fus

The function fus maps a 3CNF formulae to the union

of /{/(it) and the set containing the single default rule

T:Z

Proof of Theorem 2 (sketch) An arbitrary 3CNF

formula a is satisfiable if and only if the theory

containing just the rules fuE(c) has an extension.

Therefore the problem of determining if a unary

theory has an extension is also NP-Hard.

(if) Suppose fuE(ff) has an extension £. By the

rules in group (A) every atom in a or its negation

appears in £ . The rules in group (B) ensure that

any extension containing p contains p*, and any



Hard Problems for Simple Default Logics 193

containing p contains p'. Furthermore, it must

not be the case that T G £; because rule (D)

would make Z G £, so no rule in group (C) could

ground T. Thus no triple of group (C) rules cor

responding to any one clause in a can all apply in

£ . Therefore every clause in a is satisfied by any

model which agrees with £ on the truth value of

every atom in K.

(only if) Suppose M is a model of K which sat

isfies a. Let £ be the set_of literals which hold

in M, together with p' or p7 for every literal p or

p respectively which holds in M. Then £ is an

extension of fuE{&)- Note that £ is grounded by

the rules in groups (A) and (B), and that none of

the rules in groups (C) or (D) apply. ■

The inherent complexity of unary theories is surpris

ing, particularly in light of their close resemble to lan

guages such as NETL [Fahlman, 1979] and the graphs

which have been used to represent inheritance hierar

chies [Etherington and Reiter, 1983]. One reason that

their complexity has gone unnoticed may have been

due to the concentration on problems which could be

represented by acyclic graphs. Such problems fall in

the class of ordered theories, which, by the previous

theorem, are tractable.

A typical inheritance problem is to find a consistent

set of default properties for a single individual (by de

fault, "Tweety"). This can be done in the default logic

formalism by having W contain a single atom which

stands for the existence of the individual in question.

The literals in the expansion then stand for the prop

erties the individual inherits. This kind of reasoning

is similar to what Touretzky calls "upward, credulous,

decoupled" reasoning [Touretzky et al., 1987]. They

differ in that an "expansion" of a Touretzky-style hi

erarchy always contains all inheritance paths for all

individuals and classes. The results of an decoupled

reasoner, however, can be paralleled in default logic

by letting W iterate through the set of all atoms, and

finding an expansion based on each one individually.

Although ordered theories are still quite expressive,

some natural situations do map into unordered theo

ries. Consider the "corrupt city government" example

illustrated in figure 4. We are using default rules to

represent the concept "most". This year, most Repub

lican councilmen are running for office, as are most

Democratic councilmen. Furthermore, most council-

men running for office are under indictment. The Dis

trict Attorney is Democratic, and will push the cases

against the Republicans much harder than the cases

against the Democrats. Therefore most Republican

Councilmen who are under indictment are not run

ning for office. This final condition is most naturally

represented by a justification on the default rule for

Republicans running for office, that is:

Republican : Running A UnderIndictment

Running

Under Indictment
*

»

; Running For Office
 

Republican

Councilman

Democratic

Councilman

Figure 4: An unordered default theory.

It is not possible, as some might think, to instead make

"not Republican" a justification on the "under indict

ment" rule, which would leave the theory ordered. It is

easy to verify that there are worlds where most Repub

licans who are running for office are under indictment,

and yet most Republicans who are under indictment

are not running for office.

The complexity of general unary theories is also of

significance due to their close relation to truth or rea

son maintenance systems. Unary theories are less ex

pressive than any current TMS or RMS, and the neg

ative result should carry over: that is, such a system

could require an exponential amount of time to achieve

consistency.

The intuitive cause of the complexity of unordered

theories appears to be the ability to make default as

sumptions which must later be retracted, without the

addition of new information. Figure 5 summarizes the

results of this section.

6 The Complexity of Goal-Directed

Reasoning

An extension can be thought of as one way the world

could be, which is consistent with all of our knowledge

of default information. If a theory happens to have

a unique extension, and the extension is reasonably

small, then it is practical to take the aim of default

inference to be the computation of that extension. But

a theory may have many extensions, and it may appear

wasteful to compute an entire extension when one is

only concerned with the truth value of a handful of

propositions. Thus another way to frame a default

reasoning problem is to ask if a given proposition is
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Figure 5: Finding an extension.

true in some extension, or perhaps in all extensions.

We'll call the problem of determining whether

a given proposition holds in any extension "goal-

directed" reasoning. This corresponds to asking, for

a given p, whether there is "good" evidence for p, that

is, evidence that is not overridden by other informa

tion. If p is desirable, then this kind of reasoning is

appropriate for a very optimistic reasoner (p could well

be true, therefore I'll assume it is); if p is undesirable,

then it is appropriate for a very cautious reasoner.

Reiter [Reiter, 1980] showed that p holds in some ex

tension of a normal theory just in case there is a top-

down default proof of p. (A top-down default proof

is, roughly, a sequence of non-default proofs; the first

proves the goal given W and the conclusions of some

set of the default rules; the next proves the antecedents

of those defaults, perhaps given the conclusions of an

other set of of default rules; and so on, until a proof

which only depends on W is reached.) As we noted

above, Touretzky's notion of "credulous" reasoning is

similar to finding an extension; he lias no notion sim

ilar to goal-directed reasoning.

Goal-directed reasoning is much more difficult than

simply finding an extension, as the following theorems

demonstrate.

Theorem 3 Determining if a given literal p appears

in any extension of a propositional, disjunction-free

normal theory is NP-Hard.

Theorem 4 Determining if a given literal p appears

in any extension of a unary ordered theory is NP-Hard.

Definition: fuG

The function fca maps a 3CNF formula a to the union

of fu (a) and the set containing following rule, where

Proof of Theorem 4 (sketch) An arbitrary 3CNF

formula a is satisfiable if and only iff T holds

in some extension of the theory containing just

fuG(o')- This is because T can only appear in

an extension in which T does not appear. Note

/i/g(c) is ordered, unlike fuB(c)- ■

These theorems show that backward, goal-directed

default reasoning is much harder than forward-

directed reasoning. Ordering the theory does not re

duce complexity; difficulties do not arise just from the

possibility of one rule "undercutting" the support for

another, but from the way in which defaults can be

used to make a set of non-deterministic choices about

the truth-values of various propositions. Searching for

an extension where some proposition holds simulates

the action of an oracle in a non-deterministic com

puter, which selects a successful computation from the

set of possible computations. Upon reflection, then,

the NP-hardness results are to be expected.

There is a useful default system, however, which

does not fall prey to these negative results.

Theorem 5 There is an 0(n) algorithm which deter

mines if a given literal p appears in any extension of a

horn default theory, where n is the number of default

rules in the theory.

This algorithm is based on the fast "pebbling" algo

rithm for determining satisfiability of a set of propo

sitional horn clauses in ordinary logic [Dowling and

Gallier, 1984]. If the given p is a positive literal, one

translates only the default rules with positive conclu

sions into horn clauses, and then runs the pebbling al

gorithm. If p is negative, then one also includes those

defaults whose conclusion is p. This fast algorithm is

possible because negative conclusions can only block

the application of another rule, but never enable an

other rule.

Horn default theories may have some practical ap

plications in artificial intelligence. Such a theory is

like a variable-free "pure" Prolog program (that is, no

negation by failure), where all the rules are defaults. A

much more interesting system would allow W to con

tain (non-default) horn clauses, instead of simply a set

of literals, so both default and non-default information

could be represented. We are currently investigating

the complexity of such a system.

Figure 6 summarizes the results of this section.

7 The Complexity of Skeptical

Reasoning

In a skeptical reasoning problem one asks if a given

proposition holds in all extensions of a theory. One

should note that skeptical reasoning cannot be derived
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Figure 6: Goal-directed reasoning.
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Figure 7: The extended Nixon diamond.

from goal-directed reasoning; that is, one cannot skep

tically affirm p if there is no default proof of p. This is

because some extensions may contain neither p nor p.

Skeptical reasoning is often taken to be the central

aim of default logic. It possesses a number of attractive

formal properties absent from the arbitrary-extension

and goal-directed patterns. For example, the set of

skeptical conclusions of a theory is closed under or

dinary logical deduction. This leads to the practical

advantage of allowing a certain amount of (interaction-

free) decomposition in solving problems expressed in

the logic. Finally, skeptical reasoning comes closest

to providing a simplified version of probabilistic rea

soning. For example, one cannot skeptically conclude

both p and p, just as one cannot assign a probability

greater than 0.5 to both p and p.

Our use of the term "skeptical" is closely related to

Touretzky's. He takes the output of a skeptical rea-

soner to be the set of inheritance paths for every term

in the hierarchy. When applied to inheritance hierar

chies, our formulation of skeptical reasoning only de

termines if a single property of a single individual or

class holds in every extension. It is a simple matter to

do a double iteration, however, on the initial atom in

W and the literal p under consideration. The result

would be a complete set of properties inherited by each

individual or class in every extension. Since this itera

tion would require n2 calls to the default logic skepti

cal reasoner (where n is the number of literals), either

definition of what constitutes a skeptical solution to a

particular class of problems leads to the same catego

rization in terms of polynomial or NP-hard problems.

As one would expect from the results of the previous

section, skeptical reasoning is hard for unary ordered

theories.

Theorem 6 Determining if a given literal p appears

in every extension of a unary ordered theory is co-NP-

Hard.

Proof (sketch) An arbitrary 3CNF formula o- is un-

satisfiable if and only iff T holds in all extensions

of the theory containing just fu{&)- ■

In fact, skeptical reasoning is strictly harder than

simple goal-directed reasoning. While goal-directed

reasoning is easy for horn theories, as [Kautz and Sel-

man, 1989] will show, skeptical reasoning is not.

Theorem 7 Determining if a literal p appears in ev

ery extension of a horn default theory is co-NP-Hard.

Lemma 8 There are default logics for which it is

strictly harder to determine if a given literal p ap

pears in all extensions than to determine if it appears

in some extension of a theory.

The lack of progress in devising complete and

tractable algorithms for any kind of skeptical reasoning

has lead some researchers to suppose that any formu

lation of reasoning based on an intersection of exten

sions or expansions is intractable. An example some

times used to demonstrate this point is the "extended

Nixon diamond", as shown in figure 7. Nixon inher

its from "Voter" in all three extensions, but through

Republican in one, Quaker in the other, and both in

the third. (Note that in the default logic formulation,

unlike Touretzky's system, no special priority is given

to the default rules that lead directly out of a leaf node

such as Nixon.)

This problem and others like it can be encoded en

tirely in a normal unary theory. We have devised a
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normal-unary-skeptical(pfc, D)

input: pi k. set D of normal unary defaults

output: "yes" iff p* holds in all extensions

M := {pi,P2, •• -,~<Pk, ■■■,Pn}

while [ pos-consistent(AZ) ] do

if [ exists 9, ->r in M such that

(NOT grounded(g, M) OR

neg-inconsistent(g, ->r, M)) ]

then M := (M - {->?}) U q

else return "no"

fi

od

return "yes"

end.

Auxiliary definitions:

fixed-pos(g, M) iff

a) : q/q in D,

b) : -<q/-<q not in M, and

c) ->r in M , for each rule r : ~<q/->q in D

pos-consistent(g, Af) iff

for all q, fixed-pos(g, M) D q in M

grounded(g, M) iff

exists a sequence qo, q\, qi,...,qk = q

for some qo with

a) 9, in M, 0 < t < Jfc,

b) : 9o/?o in D, and

c) qfj_i : qi/qi in D, 0 < i < k

neg-inconsistent(<7, ->r, M ) iff

a) g and -ir in Af

b) q : r/r in D,

c) : ->r/->r not in D, and

d) ->s in M, for each rule s : -ir/->r in D

Figure 8: Unary normal skeptical reasoning algorithm.

sound and complete polynomial algorithm for skepti

cal reasoning in this logic.

Theorem 9 There is an 0(n3) algorithm which de

termines if a given literal p appears in every extension

of a normal unary theory, where n is the number of

default rules in the theory.

The main body of the algorithm (for the case where

W is empty, and p is positive) appears in figure 8,

with the complete algorithm and proof of correctness

in [Kautz and Selman, 1989]. To determine if p holds

in all extensions, the algorithm attempts to construct

a model containing p which is consistent with some

extension. To our knowledge, this is the first time

a sound and complete skeptical algorithm has been

discovered. One must remember, however, that this

default system does not include any kind of priority

among rules (such as inferential distance).

The reader may gain some understanding of the al

gorithm by "running" it on the extended Nixon dia

mond example. The set of rules D, where each propo

sition is abbreviated by its initial letter, is:

n :q r : q

9 q

r : v q : v

1-r

r

v v

Rather than including n in W, we'll simply add a de

fault rule which always adds n. Since no rule adds n",

this yields exactly the same set of extensions.

: n

n

We wish to determine if p holds in all extensions. The

model M is initially set to

Mi = {n, r, q, ->v}

My is positive consistent, and all its elements are

grounded. However, (r, -<v) is negative inconsistent,

because a rule with precondition r adds v, and no rule

whose precondition holds in M adds ->v. So r is re

placed by ->r, yielding the next version of M:

Mi {n, -ir, q, -<v}

Now the algorithm may notice that (q, ->v) is negative

inconsistent, so q is replaced.

M2 = {n, ->r, -<q, ->v]

But now (n, t) is negative inconsistent, so n must be

replaced by -in. (Due to the random choice made in

the if statement, this pair could have also been chosen

in the previous step.)

A/3 = {-"", t, ~<q, -if}

M3 is not positive consistent, because n is fixed pos

itive. Therefore the algorithm returns "yes", v holds

in all extensions.

Figure 9 summarizes the results of this section.

8 Conclusions

Some of the main intuitions gained from this study

follow.

• It is easy to determine a maximal consistent set

of conclusions of a non-monotonic theory if the

rules can be so ordered so that the justification

of a rule never makes reference to a literal which

could be afTected by a rule which appears later in

the ordering.

• Forward-chaining default reasoning is easier than

backward-chaining, goal-oriented default reason

ing. It may be practical to use a system based

on default logic to vivify (fill out) an incomplete
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Disjunction
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DF Normal "^Ordered

| Unary

Horn w /co-NP-Hard

Normal
0(n3)

Unary

Figure 9: Skeptical reasoning.

knowledge base, by forward chaining to an ar

bitrary extension [Etherington et al., 1989b]. It

is probably impractical, however, to use default

logic as extension to normal resolution-style the

orem proving.

• It's usually a bad idea to quantify over exten

sions, either existentially or universally. If possi

ble, try to reformulate the problem so that there

is a unique extension, or the differences between

extensions do not matter.

• Despite these warnings, there are some special

and useful cases of default reasoning which can

be efficiently handled (e.g., goal-directed reason

ing for horn defaults and skeptical reasoning for

normal unary defaults); don't take the complex

ity of any problem involving default reasoning for

granted.
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Abstract

Allen's interval-based temporal logic [1983]

derives some of its power from the well-

defined way constraints can be propagated

through a network of interval relations. How

ever, the cubed time and quadratic space

complexity in a fully connected network is

prohibitive. This paper demonstrates that

Allen's proposed solution, grouping inter

vals into clusters and propagating constraints

within clusters only, is inadequate. Instead,

an automatic reference method is proposed

which creates a reference hierarchy based

on temporal containment, dynamically re

structures the hierarchy as more assertions

are added to the network, and obviates the

need to define an a priori reference struc

ture. Using this hierarchy, most of the rela

tions between disjoint intervals can be elim

inated without loss of information, consid

erably reducing the connectivity of the net

work, and therefore the cost of constraint

propagation. Empirical results on both ran

dom and planner-generated networks bear

out the superior performance of the auto

matic referencing method.

1 Introduction

Interval-based temporal logic, introduced by Allen

[1983], has proven to be a powerful paradigm. In many

A.I. systems, information about the temporal relation

between two events or propositions is as important,

if not more so, as absolute length or position on a

time line of any one such event or proposition. Recog

nizing that intervals can be related to other intervals

in at most seven different ways (before, meets, over

laps, starts, during, finishes and equals) plus their in-

*This work was supported by NSF research giant DCR-

8351665. We thank the Xerox Corporation University

Grants Program for providing equipment used both in the

implementation of the algorithms and in the preparation

of sections of this paper.

verses, Allen proposed a way of storing partial tempo

ral knowledge by maintaining sets of possible tempo

ral relations between any two intervals, and provided

a temporal constraint propagation algorithm. Knowl

edge can be added to a network of interval constraints

by reducing the set of possible temporal relations be

tween two intervals, and propagating the effects of this

reduction to all other intervals related to these two.

Given the relational constraint sets between inter

vals i and j and between j and k, the relational con

straint set between t and k can be obtained through a

transitivity function which successively indexes a tran

sitivity table by the elements of the i-j and j-k sets

and computes the union of the table entries. If there

already existed a set of constraints between i and k,

this set is intersected with the computed union to ar

rive at a new constraint set. If the cardinality of the

resulting set is 1, then the constraint between t and k

has been uniquely determined; if the intersection re

sulted in the empty set, then a conflict exists in the

network.

Since the cardinality of the initial sets of possible

relations is at most 13, each relational constraint can

be asserted and updated at most 12 times.1 How

ever, propagating the effects of such an update is pro

portional to the branching factor, i.e., the number of

other intervals related to the two intervals whose con

straint changed. Without imposing structure, a net

work of temporal relations between n intervals tends

toward full connectivity. Hence, for each relational

constraint added, Allen's basic algorithm attempts to

propagate the effect to all other "Comparable" (i.e.,

connected) intervals, 2n — 2 times invoking the (ex

pensive!) transitivity function Constraints. Each time

propagation reduces another constraint, this reduction

too will be propagated across the network. Vilain and

Kautz [1986] showed that the time complexity of this

algorithm in terms of Constraints invocations is 0(n3).

As the number of intervals in the network grows, this

becomes entirely insufferable. Moreover, in a system

using the interval logic, activity tends to focus on the

Asserting the set of all 13 possible relations is equiva

lent to having no information at all.
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most recently added intervals; new information does

not affect old relations much, and propagating effects

back to older intervals tends to be useful only for con

sistency checking.

Clearly, the cubed time and quadratic space com

plexity for a temporal database of this nature is pro

hibitive for all but the smallest problem sets. Allen

proposed the use of reference intervals to limit con

straint propagation, thereby reducing the average time

and space requirements. This paper first demonstrates

that, in general, arbitrary reference clusters fail to

propagate crucial constraints, resulting in an under-

constrained network. Then a new algorithm is pre

sented which allows a temporal database to dynami

cally create, without loss of information, a reference

hierarchy based on temporal containment. Directly

stored relations between disjoint intervals can be elim

inated if the same relation can be found along a path

through the containment hierarchy. As such a hier

archy tends to be tree-like, this search is acceptable

(i.e., logarithmic). Empirical results of experiments

based on random networks of intervals and on a more

realistic planning problem bear out the superior per

formance of this algorithm.

2 Localizing propagation

Allen proposed adopting a notion of reference intervals

similar to that of Kahn and Gorry [1977] to reduce the

space requirements of an interval network. Clusters

are formed within the network by associating inter

vals with one or more reference intervals. Constraint

propagation takes place within each cluster only, while

inter-cluster relations are obtained indirectly by ap

plying the transitivity function along paths through

the network, where paths consist of reference intervals

only. For instance, consider the two activities gar

dening and dinner with associated intervals Gardening

and Dinner. The intervals associated with all activities

relating to this instance of gardening, such as Mowing

and Raking, would be related directly to Gardening, and

likewise, intervals such as BoilWater, CookFood, etc.

would be directly related to this instance of preparing

for and having dinner. The intervals BoilWater, Cook-

Food, etc. would not be directly related to Gardening

or any of its subintervals, however; those relationships

would be determined by applying the constraint prop

agation algorithm along the path through Dinner. The

effect of further constraining two dinner-related inter

vals would not be propagated to any gardening-related

intervals. This mechanism obviously can reduce the

branching factor at each node considerably, resulting

in a significant space savings (fewer relations to store)

as well as a speed-up in adding new constraints due

to propagation to fewer related intervals. The time to

fetch inter-cluster relations is increased, but this can

be kept manageable (i.e., logarithmic) if the reference

intervals are organized in a tree-like hierarchy.

Allen claims that imposing a reference hierarchy

"can be done with little loss of information," as long

as "care is taken." He does not make clear, how

ever, of what this care consists. The fact is that it

is rather easy to lose information due to the structure

of the reference hierarchy, particularly between inter

vals in different, temporally overlapping clusters. To

flesh out the example above, assume that the following

constraints have been asserted:

c\: Mowing {starts} Gardening

C2- Mowing {6e/ore} Raking

C3: Raking {finishes} Gardening

C4: BoilWater {smarts} Dinner

C5: BoilWater {meets} CookFood

cq: CookFood {before, meets} EatFood

C7: EatFood {finishes} Dinner

C8'- Dinner {meets} Dishes

Now suppose I decided to boil the water while I'm

raking the lawn:

eg: Raking {equals} BoilWater

In a "flat" network, the following additional con

straints, among others, would be derived automati

cally:

Cio- Gardening {overlaps} Dinner

di: Mowing {before} Dinner

Ci2- Mowing {6e/ore} Dishes

C13: CookFood {during} Dinner

However, consider a structured system where Garden

ing is a reference interval for Mowing and Raking, and

Dinner is a reference interval for BoilWater, CookFood

and EatFood. The reference structure is depicted in

Figure 1.

. Today

Gardening'

—jt'^Z.—'
Mowing . Kaking,

. Dinner

BQJgjtoE^ Eat

. Dishes .

I I
■+-

Figure 1: Example of interval reference structure

In this case constraint c\o would be derived, but the

interval Mowing would not be comparable with Din

ner and Dishes (they do not share a reference interval,

nor have explicit relationships been asserted between

them), and hence constraints en and C12 would not

be derived. Unfortunately, computing the constraint

between Mowing and Dinner along the path Mowing-

Gardening-Dinner results in the constraint {before,

meets , overlaps} which is clearly weaker than con

straint en obtained in the flat system. Note that over
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lapping reference intervals and multiple reference in

tervals per simple interval are by no means contrived

situations; for instance, they can easily arise in plan

ning situations [Allen and Koomen, 1983]. Moreover,

this example shows that merely requiring that inter

vals are wholly contained in their reference intervals, as

Allen suggests, is insufficient to assure proper inferenc-

ing. Allen already noted that merging two reference

subtrees whenever such an overlap is detected tends to

quickly flatten the entire reference hierarchy, defeating

the purpose for reference intervals.

3 Automatic referencing

Devising a reference structure for a temporal con

straint network such that no information is lost turns

out to be a very nasty problem, and certainly one that

a temporal reasoning system ought not to leave up to

higher level reasoning systems, as Allen suggests. It is

hard, if not impossible, to predict what effect predefin

ing a reference structure has on temporal inferencing,

and it certainly requires taking into account the or

der in which constraints are posted as well as detailed

knowledge of the temporal constraint propagation al

gorithm, details of which would best be kept in the

specialized temporal reasoning system. It would be

very desirable if the temporal reasoning system itself

could structure the network dynamically on the basis

of posted and derived constraints, and do it without

losing information. This and the following sections de

scribe a method for doing this.

As Allen [1983] and Kahn and Gorry [1977] sug

gested, a reference hierarchy is naturally based on

temporal containment: higher level intervals have a

greater span in time, and lower level intervals are con

tained in higher ones. Propositional inheritance is an

obvious reason for basing the structure on contain

ment: any proposition that holds over an interval X

necessarily holds over any subinterval of X, and any

relation between X and another, disjoint interval Y, is

necessarily true between any subinterval of X and Y.

Another reason a reference structure based on tempo

ral containment is desirable is that it reflects tempo

ral locality of reference: most queries to a temporal

database concern relations between intervals associ

ated with propositions currently under consideration,

such as planning a task, where propagation is likely to

be useful, whereas very few queries would be concerned

with the constraints between two (semantically) unre

lated and temporally distant propositions. However,

this reasoning breaks down if a lot of global domain

constraints apply to the problem at hand [Allen and

Koomen, 1983]. For instance, in the blocks world a

rule such as

V blocks 61,62, intervals <i,< 2

on(6i,62)@<i A clear(62)@<2

=> DISJOINT(<i,<2)

would cause task-unrelated intervals to be temporally

related, violating the notion of temporal locality of

reference.

The automatic referencing method described in this

paper revolves around two notions, namely, dynami

cally constructing a reference hierarchy based on con

tainment, and reducing the interval branching factor

by removing direct constraints that can be obtained

indirectly through this reference hierarchy.

In the following discussion, the constraints between

lower and higher level intervals in the reference hier

archy will be referred to as uplinks (with downlinks

going the other way), and constraints between disjoint

intervals as sidelinks, with the proviso that sidelinks

are singular, i.e., relational constraint sets with car

dinality 1. Let Refs*(i) be the closure of Allen's Refs

function, i.e., the set of all reference intervals directly

or indirectly above i. Let C(ij) be the direct constraint

between intervals i and j and N(i,j) be the constraint

between i and j derivable from the hierarchy. (See

[Koomen, 1988] for formal definitions of these links

and more detailed descriptions of the automatic refer

encing algorithms.)

3.1 Constructing the hierarchy

The reference hierarchy is constructed on the basis

of asserted uplinks and downlinks. If an uplink be

tween intervals 1 and j is asserted (either explicitly or

through propagation), i.e., the new constraint set be

tween t and j is a subset of {starts, during,finishes) ,

then j is a candidate reference interval for i. Adding a

reference link from t to j, if necessary, is accomplished

by he following algorithm:

to AddRef(i,j)

ifj 6 Refs(i) then

Exit

else ifI E Refs*(i) then

;; «' is already below j

Refs(i) - Refs(i) - {j}

else begin

Refs(i) <- Refs(i) n {j}

for each node k € Refs*(j) do

;; remove now indirect links, if any,

;; from i to ancestors of j

Refs(i) <- Refs(i) - {k}

for each node h such that i 6 Refs*(h) do

;; remove now indirect links, if any,

;; from descendants of i to j

Refs(h) «- Refs(h) - {j}

end

end AddRef

In the gardening/dinner example above, for instance,

the same hierarchy as depicted in Figure 1 is con

structed dynamically as the constraints c\ , cz, C4 and

C7 are posted. Assuming that all gardening and dinner

intervals are initially constrained to be during Today,

constraint c\ causes Gardening to become a reference
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interval for Mowing while the reference link between

Mowing and Today is removed. Likewise, the reference

links between EatFood and Dinner (by assertion of C7)

and between CookFood and Dinner (by implication)

are created, and the corresponding reference links to

Today are removed.

3.2 Reducing the branching factor

The branching factor of an interval is reduced by re

moving singular2 sidelinks and indirect uplinks with

other intervals, provided those links can be derived

from a path through the reference hierarchy. If a sin

gular sidelink between intervals i and j is asserted (ei

ther explicitly or through propagation), i.e., some in

terval is disjoint from another and the constraint set

is singular, the procedure RemoveLink attempts to re

move the sidelink. This is successful if and only if the

same relation can be obtained by applying the con

straint propagation algorithm along all paths through

the reference hierarchy starting from i and ending up

at j, and i and j do not have a reference interval in

common.

to RemoveLink(i j)

/7SingularP(C(ij))

and Refs(i) U Refs(j) = 0

and C(i,j) = N(ij)

then Remove C(i j) from the network

end RemoveLink

If a singular uplink between intervals i and j is asserted

(either explicitly or through propagation), i.e., some

interval is contained in another and the constraint set

is singular, the uplink can be removed if it is an indi

rect uplink. Additionally, all singular sidelinks or in

direct uplinks between i or any of its descendants and

j or any of its ancestors may now be removable, since

this uplink has added information to the hierarchy.

In the example above, the constraints cio, en and

C12 are all derived and recorded. Both en and C12 are

sidelinks, so both are candidates for removal. There

exists a path along which C12 can be obtained exactly,

hence the relation C12 can be removed. However, there

exists no reference path that obtains the same relation

as en and therefore the relation en cannot be removed

without loss of information. Note also that C2 cannot

be removed; in general, this is true for all relations be

tween disjoint intervals that have a common reference

interval.

4 Empirical results

The automatic referencing mechanism described above

suffers no loss of information, since each relation is ini

tially computed, and it is not deleted until it has been

uniquely determined and it can be obtained indirectly

through the reference hierarchy. This initial computa

tion of a relation followed by its deletion may seem to

be a lot of extra and unnecessary work—how have we

gained anything? It turns out that the greatly reduced

average branching factor at each node (and hence re

duced propagation) more than offsets any extra work

entailed in the automatic management of the reference

hierarchy. Unfortunately, it is difficult to get a handle

on the kind of improvement this mechanism affords,

since it is very dynamic in nature, and therefore very

much dependent on the order and kind of relations

asserted.

Nevertheless, two experiments have borne out that

this approach is generally superior in performance to

the flat system. The first experiment consisted of gen

erating a network of 101 intervals and randomly as

signing singular relations between any two intervals

until all pairs of intervals have singular relations, ei

ther posted or derived, that are locally consistent [Vi-

lain and Kautz, 1986]. In all, 450 relations were posted

to obtain the total of 5050 singular relations. The re

sults are given in Table 1, which compares average val-

Statistic NoRefs AutoRefs

Branch factor, average 100.0 18.3

# UpLinks, average 19.4 1.4

# SideLinks, average 47.3 1.6

Reference depth, average 1.0 13.8

Propagations, total 775,015.0 252,411.0

Constraints invocations 1,105,346.0 475,585.0

2 Non-singular uplinks or sidelinks should not be re

moved, as they are still subject to revision and should re

main in the active network.

Table 1: Propagation statistics on 101 randomly re

lated intervals

ues per node and total values of several statistics for

the flat system (NoRefs) and the automatic referenc

ing system (AutoRefs). Note in particular the sharply

reduced average number of uplinks and sidelinks per

node.

The second experiment involved planning the task of

exchanging the top two blocks of a stack using a two-

armed robot, with the additional constraint that there

is no room to place either block on the surface support

ing the stack in an intermediate state (see [Allen and

Koomen, 1983] for a more detailed description of this

problem). The planner generates 33 intervals, assert

ing 65 temporal relations between them. In a flat sys

tem, another 1063 constraints are asserted due to con

straint propagation, causing some 43000 invocations

of the transitivity function Constraints and resulting

in an average branching factor of 31, i.e., the network

ends up almost completely connected. Using the auto

matic referencing mechanism as described above, the

average branching factor and the number of invoca

tions of the transitivity function are roughly cut by a

half. These experiments confirm our intuition that au
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tomatic referencing should make things progressively

better as the number of intervals increases.

5 Related issues

5.1 Non-monotonicity and backtracking

The automatic referencing algorithm, as well as the

algorithms in Allen [1983], have been presented with

the assumption of monotonic updates to the tempo

ral database. Many reasoning systems, however, re

quire either the ability to retract one or more previ

ously posted constraints, or support of efficient back

tracking. For a forward-chaining constraint propaga

tion system this implies keeping both the derived con

straints themselves and adequate dependency informa

tion. Hence, removing relations from the network as

suggested in Section 3.2 is out of the question. Limited

to 0(n2) space, we can still benefit from the algorithm

presented here by simply marking relations "broken"

where they would have been removed. Propagation

does not need to take place across broken links, and in

addition, these links can still be used to obtain rela

tional information, circumventing the need for travers

ing the reference hierarchy!

5.2 Propagating equality

Equality between intervals can occur frequently in a

logic-based reasoning system. Intervals are associated

with non-grounded terms which are said to hold over

the intervals. In such a system, unification of terms re

quires unification of intervals. Temporal equality can

be viewed as a form of temporal containment, and so

should be usable for automatic referencing. The only

obstacle is the fact that equality is symmetric, which

begs the question: is it an uplink or a downlink? This

can be resolved by assigning sequence numbers to in

tervals as they are introduced, indicating their age.

Now the above mechanism for automatic referencing

can be extended to include equality by redefining up

link to include equals if the link is between a younger

and an older interval, making the older of two equal

intervals a reference interval for the younger one. The

definition of downlink is modified analogously. Using

this extended definition increases the number of po

tential reference intervals, which in turn tends to re

duce the overall network connectivity. Unfortunately,

incorporating equality in the referencing mechanism

like this will also have the effect of linearizing equiv

alence sets. Additional gain can be had by using a

UNION-FIND algorithm to make the oldest interval

in an equivalence set the reference interval for the set,

and the youngest the reference interval for all subin-

tervals.

be propagated through a network of interval relations.

However, the cubed time and quadratic space complex

ity in a fully connected network is prohibitive. The

solution proposed by Allen, namely to group intervals

into clusters and to propagate constraints within clus

ters only, has been shown to be inadequate. Many re

lations obtained in a flat network are underconstrained

in a clustered network when derived from application

of the transitivity function along a path between clus

ters. The automatic reference method relieves the rea

soning system using the interval-based temporal logic

from having to design a reference structure. It auto

matically creates a reference hierarchy based on tem

poral containment, dynamically restructuring the tem

poral network. Using this reference hierarchy, most

of the sidelinks, i.e., singular relations between dis

joint intervals, can be eliminated without loss of infor

mation, which considerably reduces the connectivity

of the network, and therefore the cost of constraint

propagation. Empirical results on both random and

planner-generated networks bear out the superior per

formance of the automatic referencing method.
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Abstract

Case-based reasoning is a technique which

draws inferences about a new instance pre

sented to the system by comparing it to other

instances previously presented to the system.

The knowledge representation structure used

by case-based reasoning systems is built up

incrementally, with the structure modified

each time a new instance is seen. In this

paper, we formalize case-based inference and

show that the conclusions that are made us

ing this process are consistent with standard

default reasoning.

1 Introduction

Case-based reasoning is a technique which draws infer

ences about a new instance presented to the system by

comparing it to other instances previously presented

to the system. The case-based approach to knowl

edge representation and reasoning has three underly

ing principles.

1. The ability to identify an instance as being like an

instance already encountered is the fundamental

means by which knowledge is applied.

2. Individual instances should be organized on the

basis of their similarities and differences, in order

to facilitate the identification of similar instances.

3. Aggregates of individual instances (called gener

alizations) form the basis for default reasoning.

These principles require that the knowledge repre

sentation system used by case-based reasoners differs

from traditional knowledge representation systems in

several ways. For example, whereas in traditional sys

tems, new instances are added to the knowledge struc

ture by the user, the case-based reasoner must decide

where in its existing knowledge representation struc

ture to integrate a new instance. In traditional sys

tems, the principal relationship used to organize con

cepts is subcategorization (e.g., the IS-A or AKO link).

In case-based reasoning systems, there is no distin

guished link indicating subcategorization. It might

seem that a knowledge representation structure orga

nized in such a loose and dynamic fashion would not

be conducive to deriving a coherent set of inferences.

We show that exactly the opposite is true.

We begin with an informal description of the knowl

edge representation system used by case-based reason

ing systems and an overview of the case-based reason

ing process. The process is formalized in an algorithm

for case-based inference. We then present a reformu

lation of case-based reasoning in terms of Reiter's de

fault logic [Reiter, 1980], and use this to prove that

the conclusions which can be drawn using case-based

reasoning are valid and coherent.

2 The Case-based approach

The case-based approach centers around the self-

organizing memory system developed by Kolodner

[Kolodner, 1983, Kolodner, 1984]. A self-organizing

memory system records and organizes instances or

cases. Cases are made up of features, which can be

thought of as attribute-value pairs. The memory sys

tem also creates generalization structures, or gens,

which are structures that hold knowledge describing a

group of similar cases. A gen is created from the simi

larities between the cases that it organizes. Individual

cases that are stored in a particular gen are indexed

by the features that distinguish them from the other

cases in the same gen. Two cases are said to be similar

if they are integrated into the same gen and share a

set of differences with the gen. Each gen maintains a

list of features that are common to most1 of the cases

it organizes. These are called the norms of the gen.

Following the scheme described in [Kolodner, 1983],

the memory structure is represented as a discrimina

tion net in which each node is either an individual case

or a gen. Each pointer to a subnode is labeled (or in

dexed) by a feature of the subnode that differentiates

it from the parent node. The features that differen

tiate the subnodes from the parent gen are called the

'This research was supported in part by the Defense

Advanced Research Projects Agency.

'in many case-based reasoning systems, "most"

plemented as > 2/3.
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diffsoi the gen. Indexing requires two levels. The first

level indicates the category of the index. The second

level indicates the values that the feature takes on in

the subnodes.

Figure 1 shows a fragment of a memory structure

containing some knowledge about birds. The upper

most box, labeled GO, is a gen that has one norm,

covering = leathers. The instances of things with

feathers that have been presented to the memory

structure can be differentiated by their feet, their diet,

and their habitat. For example, things with feathers

and clawed feet are described by gen G\, which con

tains additional norms that indicate that feathered,

claw-footed things are likely to live on land and eat

insects.

When presented with a new instance, a case-based

reasoning system searches its memory for a similar

case. The set of features which describe the new in

stance defines a set of paths through the memory struc

ture. When installing a new instance in the case mem

ory, one of three conditions obtains at each point in the

path.

1. If exactly one case is stored at this point, the

stored case and the new case are compared, their

similarities (the norms of the new gen) are placed

in a new gen, and they are indexed beneath the

gen by their differences from each other. This

is the way in which new gens are created by the

memory.

2. If there is a gen at the point, the new case is

indexed in the existing gen.

3. If no other case is stored at this point, the new

case is simply installed there.2

The initial set of norms and diffs for a gen are de

termined by the features of the two original cases that

create the gen. Subsequent cases added to the gen may

not share all the norms. Eventually, a norm might no

longer describe most of the cases stored in the gen.

Kolodner calls this overgeneralization. Conversely, a

feature that had initially been stored as a diff might

turn out to characterize a large number of the cases

subsequently stored in the gen and is no longer useful

for differentiating among cases. Kolodner terms this

undergeneralization. The memory structure contains

mechanisms by which these conditions can be detected

and corrected. For a further explanation of the mech

anisms of the self-organizing memory structure, the

reader is referred to [Kolodner, 1983].

3 An Algorithm for Case-based

Inference

Having described the structure of the case memory,

we now proceed to show how inferences are drawn us

ing this structure. Given a new instance, the task of

the case-based reasoner is to find the instances in the

case memory most similar to the new one, and to re

organize the memory structure to account for the new

information contained in the new instance. Finding

similar instances allows the case-based reasoner to in

fer features that are not explicitly present in the new

instance.

As stated in the previous section, the set of features

which describe the new instance defines a set of paths

through the memory structure. Starting from the root,

the case-based reasoner uses the features of the new in

stance as "keys" to unlock the next level of nodes in

the memory. Each level down in the memory struc

ture represents a specialization of the gens preceding

it. When the features of the new instance lead to a

gen, the norms of that gen are assumed to hold for

the new instance, unless they are overridden by more

specific norms subsequently acquired from gens lower

down in the memory structure. This can be formalized

in the following way.

A case memory contains cases C\ , . . . , Cn described

by feature sets <fri , . . . , <f>m , and gens G\ , . . . , Gr with

norms sets V\,...,u, respectively. A feature is often

represented as an attribute-value pair, < a,-,i',- >. A

norm is also represented as an attribute-value pair.

The cases and gens are arranged in a discrimination

net indexed by features of the cases in the network,

with a distinguished node called the root. For each

case or gen in the net, there exists at least one path

from the root to that object.

Let A/" denote the sets of conclusions that can be

inferred at any point P in the network. By "set of

conclusions" we mean the features explicitly present

at P and the features that are inherited. P can be

either a gen or a case. There are k paths from the

root to P and each path is of length /*. Each path

defines a set of conclusions at point P.3 Formally,

AT=LJM, M = U^

where |J is defined as:

for each norm (a, v)

ii 3x 3 (a, x) £ Sfi

then Aft = (Af{ - (a, x)) U (a,n)

else Mi = Aft U (a,u)

next norm

An input instance may have similarities with many

previous cases. In a later section we show that this cor

responds to the notion of multiple extensions.

3The interpretation of multiple paths to the same point

is discussed in the next section.
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G1

GO

COVER = feathers

 

DIET = insect

HABITAT = land

FEET = claw

 

DIET = fish

HABITAT = water

FEET = web

 

DIET = fish

HABITAT = water

FEET = claw

Figure 1: A fragment of memory structure.
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In each step down the path, the new (more specific)

value of the feature replaces the previous (more gen

eral) value, if such a value exists. This induces an

order on the objects in the memory.

A gen Gj is said to be the most specific general

ization along some path to a memory object, Pi, if

it is the last gen along that path. The most specific

generalization of a gen G is itself. The most specific

generalizations of of a case C are the last gens on the

path leading from the root to C.

4 Reformulating CBR in Terms of

Default Logic

Reiter and EtheringtonfEtherington and Reiter, 1985,

Etherington, 1987] have shown how various kinds of

inheritance networks can be reformulated in terms of

default logic[Reiter, 1980]. The motivation behind this

endeavor is to provide a formal grounding for the pro

totypical reasoning carried out by these representa

tions. In this section we will develop a similar corre

spondence between default theories and case memory.

We will then be able to understand how case-based rea

soning systems perform. We will also see that many

of the desirable features of case-based reasoning sys

tems, such as inferring default properties and reason

ing about exceptions, emerge from the default logic

reconstruction.

4.1 Default Logic

Recall that a default theory is an ordered pair, (D, W),

consisting of a set of defaults D and a set of first-order

formulae, W. A default is rule of inference of the form:

q(»): A (?),. ..,&„(?)

7(7)

where a(x), Pi(x), and y(x) are all formulae whose

free variables are among x — X\ , . . . , xn.

Intuitively this default rule can be interpreted: if

a(x) is known and it is consistent to believe the Pi(x),

then one may conclude f(x). a is the prerequisite, the

Pi are the justifications , and 7 is the consequent of the

default rule.

Defaults of the form

a(x) : /3(x)

W) '

are called normal defaults and default theories which

contain only normal defaults are called normal default

theories. Defaults of the form

a(x) : y(x) A 0(x)

y(x)

are called semi-normal defaults and default theories

which contain only semi-normal defaults are called

semi-normal default theories. Most naturally occur

ring situations can be expressed solely in terms of these

restricted kinds of defaults.

The sets of conclusions that are sanctioned by a de

fault theory are called extensions. Default theories

that have an extension are said to be coherent because

they support an acceptable set of beliefs about an in

completely specified world. Although we can not com

pletely characterize the default theories that possess

extensions, some conditions that guarantee coherence

are known. Reiter showed that all normal theories

have at least one extension[Reiter, 1980]. Ethering

ton has found some sufficient conditions that guaran

tee the coherence of semi-normal theories[Etherington,

1988]. Typically a default theory may have multiple

extensions, although theories with unique extensions

are preferable (since conclusions drawn from different

extensions may be incompatible).

4.2 Reformulation of CBR

We will now establish a correspondence between case

memories and default theories. Recall that the case

memory is a discrimination network composed of gen

eralizations and cases linked by diffs. In the following,

we will assume that the case memory has the follow

ing structures. Each node in the memory (both cases

and generalizations) has a unique label. This label is

not necessarily a class name that can be used directly

as an assertion about class membership, although case

memories that include class names and IS-A links be

tween classes can be constructed. Each node has a list

of features. Each feature has an attribute name and

an associated value. If the node is a case these features

represent the properties possessed by the case; if the

node is a gen, they represent the properties possessed

by most cases organized by the gen. Each diff is a link

from a gen to a gen or a case. Each diff is labeled by a

feature that differentiates the more specific node from

the generalization, i.e., the gen and the node have dif

ferent values for this attribute. Note that there may

be multiple diffs linking two nodes.

A case memory can be translated into default logic

as follows. We always assume that an individual is an

instance of the root of the case memory, so W always

contains the formula Vx.Root(x). Since all properties

represented in the memory are contingent upon the

cases that have been presented, there are no first-order

formulae relating features and nodes. However, if the

values of an attribute are mutually exclusive, W may

contain formulae of the form Vx./(x,a,) D ->f(x,a.j)

for each a; ^ aj. The features of nodes (i.e., the

norms of generalizations and the features of cases) and

the diffs that link generalizations to nodes provide the

"inference" rules of the case based reasoner and are

translated into default rules as follows:

1. Feature. A node, N(x), has a feature f(x,a)

and there are no diffs at this node corresponding

to this feature. This is interpreted to mean: nor

mally N's have value a for feature /. Identified

with:
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N(x):f(x,a)

f(x,a)

2. Link. A generalization, G(x), is linked to a node,

N(x), by a diff f(x,b). This is interpreted to

mean: N's differ from G's by possessing value

b for feature /. Identified with:

N(x)Af(x,b) :N(x)

N(x)

3. Differentiated Norm (DN). A generaliza

tion, G(x), has a norm f(x, a) and din's

f(x, bi), . . . , f(x, bn). This is interpreted to mean:

G's usually have value a for feature /, unless there

are exceptions. Identified with:

G(a)Ai/(g,6i)A---A-V(g,6n):/Qc,a)

/(*,«)

4. Restricted Closed World (RCW). A general

ization, G(x), has a norm f(x,a), is linked to a

node N(x) by the diff f(x,b), and has additional

diff links to N(x), /i(6i), . . . ,/„(&„). This is in

terpreted to mean: when G can not be specialized

to an N by any other diffs from G to N, do not

assume G has value b for feature /. Identified

with:

G(g)A-./1(»,61)A---A-n/„(a;,6w):-i/(a!,6)

When /(x, 6) is the only diff linking G and JV, the

default rule becomes:

G(z):-*f(x,b)

-./(«, 6)

Using these defaults we can translate the fragment

of case memory depicted in Figure 1 into a default

theory. The corresponding default theory is shown in

Figure 2.

Go is the root of the memory, and corresponds to

the generalization of all the cases that have been in

tegrated into the memory. The only feature common

to all the cases is that they are covered with feathers.

Gi corresponds to the generalization of birds that have

clawed feet, whose habitat is land, and whose diet con

sists of insects. G2 corresponds to the generalization

of birds that have webbed feet, whose habitat is wa

ter, and whose diet consists offish. G3 corresponds to

the generalization that is a specialization of both G\

and G2. G3 differs from G\ in representing those cases

that are like Gi's but whose habitat is water and diet

is fish; it differs from G2 in representing those cases

that are like G2's but have clawed feet.

Note that four default rules are required to represent

the relationship between a gen and a specialization of

the gen. For example, that G3 differs from Gx in eating

fish added the following defaults:

1. A feature default that asserts that Ga's possess

that feature (eating fish).

2. A link default that asserts that Ga's are differen

tiated from Gi's by that diff (eating fish).

3. A differentiated norm default that makes explicit

the exception that Gi's usually eat insects, unless

they eat fish.

4. A restricted closed world default that makes ex

plicit the assumption that Gj 's typically do not

eat fish.

The case memory is used to reason in the following

manner. We always assume that an individual is an

instance of the root of the memory. In addition, sev

eral features about the individual are asserted. We

use these features to traverse the memory in order

to find generalizations that match the given individ

ual. Simultaneously, we collect norms from the gens

encountered along each path following the algorithm

presented in the previous section. In this way, we are

able to infer that the individual possesses features that

were not explicitly given.

In the context of the corresponding default theory,

we are given some first-order assertions and then con

struct an extension. The extension will consist of a

consistent set of beliefs that can be concluded from

the theory and these assertions. ,

For example, if we are told that cover(Tweety, feath

ers), feet(Tweety, claw), and habitat(Tweetrj, water)

the following extension is constructed:

' G3(Tweety), G2(Tweety),

Gi(Tweety), Go(Tweety),

diet(Tweety, fish), habitat(Tweety , water),

feet(Tweety, claw), cover(Tweety, feathers)

namely that Tweety is an instance of the generaliza

tions G3, G2, Gi, and Go; and that Tweety's diet con

sists offish, Tweety's habitat is water, Tweety's feet

are clawed, and Tweety is covered with feathers.

Note that the extension is unique because the pairs

of DN / RCW defaults allow features from more spe

cific gens to override the norms from more general

ones.4

For example, the DN default

G2(x) A ->feet(x, claw) : feet(x, web)

feet(x,web)

in conjunction with the the explicitly given feature

feet(Tweety,claw) blocked inheriting feet(x,web) from

G2, while the DN default

4 These pairs of defaults are similar to the way Reiter

and Criscuolo handle interactions between defaults that are

usually translated into semi-normal defaults. [Reiter and

Criscuolo, 1983]
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W = {Vx.Go(x)}

D= {

Go(x):cover(x,feathers)

cover(xjeathers) '

Go(x)Afeet(x,web):G2(x)

Ga(x)

G0(x)Ahabitat(x,water):G2(x)

G,(x)

G0(x)Adiet{x,fish):G2(x)

G2(x)

Gi(x)Adiet(x,insect):G3(x)

G&) i

Gi(x)A-ihabitat(x,water):habitat(x,land)

habitat(x,land)

Gi(x)A-<diet(x,fish):-<habitat(x,water)

->habitat{x , water)

G2Jx)A-<feel(x,claw):feet(x,web)

feet(x,web)

G3(x):habitat(x , water)

habitat(x ,water) '

G3(1):feel(x ,claw)

feet(x,claw)

Go(x)Afeet(x,claw):Gi(x)

G\(x) '

G0(x)Ahabitat(x,land):Gi (x)

Gi(x) '

G0(x)Adiet(x,insect):Gi(x)

Gi(*)

Gi(x)Ahabitat(x,water) :Gs{x)

G3(x) '

G2(x)Afeet(x,claw):G3(x)

G3(x) '

G\(x)A->diet(x,fish):diet(x,insect)

diet(x , insect) '

Gi(x)A-ihabitat(x ,water):->diet(x ,fish)

->diet(x,fish)

G2(x):->feet(x,claw)

->feet(x,claw) '

G3(x):diet(x,fish)

diet(xjish) '

Figure 2: Default Theory for Memory Fragment.
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Gi(x) A -ihabitat(x, water) : habit at (x, / and)

habitat(xjand)

along with the given feature habitat(Tweety, water)

blocked inheriting habitat(xjand) G\. The explicit

feature, habitat(x, water), combined with the RCW

default

G\ A -<habitai(x, water) : -*diet(x,fish)

-<diet(x,fish)

and the DN default

Gi(x) A -<diet(x, fish) : diet(x, insect)

diet{x, insect)

blocks inheriting diet(x, insect) from G\.

Thus, the default theory permitted us to generate

the taxonomic relations implicit in the case memory

and correctly infer default features through inheri

tance.

On the other hand, we may have genuinely ambigu

ous memory structure that give rise to multiple ex

tensions. The familiar Quaker-Republican example is

depicted as a fragment of case memory in Figure 3.

We can imagine this memory structure as having been

built up by encountering a number of pacifist Quak

ers and non-pacifist Republicans. The corresponding

default theory shown in Figure 4.

If all we are told is religion(Dick,quaker) and

party(Dick, republican), we will generate the the fol

lowing two extensions, depending upon the order in

which the defaults are applied:

' Gi(Didb),

G0(Dick),

E\ — { religion(Dick,quakcr),

party( Dick, republican),

pacifist(Dick,yes)

and

G2(Dick),

G0(Dick),

Ei = { party(Dick, republican)

reliyion(Dick, quaker),

pacifist(Dick, no)

5 Discussion

The ability to represent the kinds of knowledge present

in a case memory structure as a collection of normal

defaults is reassuring. Normal default theories possess

several nice properties. In particular:

1. normal default theories are coherent, i.e., they

possess at least one extension, and

2. normal default theories are semi-monotonic, i.e.,

if D\ and D? are sets of normal default rules and

E\ is an extension for (Dt, W), then there is an

extension of the theory (D\ U Dn), E2, such that

Ei C E2.

The first property assures us that we can derive a con

sistent of features possessed by an individual. The sec

ond property assures us that when the changes made

to a case memory only require adding defaults to the

corresponding default theory, there is a consistent set

of features that can be derived in the new memory

structure that contains a consistent set of features de

rived in the old one. In general, however, the changes

to the case memory correspond to deleting, as well

as adding, defaults in the corresponding default the

ory, so we are not guaranteed of semi-monotonicity.

The non-monotonicity of case memory should not be

surprising, since the self-structuring process involves

creating new generalizations as well as creating new

specializations.

The Quaker-Republican example reveals that, as ex

pected, the default theory corresponding to a case

memory may give rise to multiple extensions. Indeed,

in a complex memory structure multiple extensions

may be the rule. Typically, case-based reasoning sys

tems use extra-logical machinery to prefer one collec

tion of features over another.

The algorithm presented in Section 3 will find all

possible sets of features along each path. When there

are multiple extensions in the underlying default the

ory, some of these sets may contain incompatible fea

tures. We believe that each set of features, which cor

responds to traversing a single path from the root to

a node in the memory, lies within a single extension

of the corresponding default theory, at least for "nat

urally" occurring case memories. Traversing a single

path essentially serves to choose an order in which to

apply the defaults, and because the path goes from a

gen to another node specialized from the gen by pos

sessing a diff, a consistent collection of defaults are

applied.

It might appear surprising that the correspondence

between case memory and default logic made use of

normal defaults alone, while inheritance networks re

quire semi-normal defaults[Reiter, 1980, Etherington,

1988]. The reason is that the case memory is a discrim

ination network and the links between nodes represent

specializing a more general node to a more specific

node. Likewise, it is reasonable, without any further

knowledge, to assume that if differences are not made

explicit that they should be assumed not to hold. Thus

we can use pairs of normal defaults to block unwanted

conclusions instead of using semi-normal defaults to

represent explicit exceptions.

Acknowledgments: Janet Kolodner's work on self-

organizing memory structures laid the foundation

for the ideas presented in this paper.
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G1

RELIGION = quaker

PACIFIST == yes

G2

PARTY = republican

PACIFIST = no

Figure 3: The Quaker-Republican Example.

D= I

Vi.Go(x),

W = ^ Wx.pactfist(x, yes) D -ipacifist(x,no),

Vx.pacifist(x,no) D -ipacifist(x,yes)

' Go(x)Areligion(x ,quaker):G\{x) Go(x)Aparty(x,republican):G2(x)

G,(x) ' G2(x)

Go(x)Apacifist(x,yes):Gi(x) Go(x)Apacifist(x,no):G2(x)

CiOO ' G2(x)

G\(x):pacifist(x ,yes) Gi(x):religion(x ,quaker)

pacifist(x,yes) ' religion(x,quaker) '

Go(x):party(x, republican) G2(x):pacifist(x,no)

party(x , republican) ' pacifist(x,no)

Figure 4: The Quaker-Republican Default Theory.
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Abstract

This paper presents a purely logical approach

to nonmonotonic reasoning. A conditional

knowledge base, consisting of a set of condi

tional assertions of the type if . . . then . . . ,

represents the explicit defeasible knowledge

an agent has about the way the world gen

erally behaves. The set of all conditional as

sertions entailed by a conditional knowledge

base is studied. This set does not grow mono-

tonically with the knowledge base. This pa

per relies on both a proof-theoretic approach

based on cumulative logic, as proposed by

D. Gabbay in [Gabbay, 1985], and a seman

tical approach, as advocated by Y. Shoham

in [Shoham, 1988] and [Shoham, 1987]. Two

families of consequence relations are central

to this work: preferential and rational con

sequence relations. Those families have been

characterized in [Kraus et a/., ] and [Lehmann

and Magidor, ] as those consequence rela

tions defined respectively by two families of

models. Those models are sets of possible

states equipped with a preference relation,

some states being preferable, i.e. more natu

ral, than others.

1 Introduction and background

This paper surveys and extends previous results ob

tained jointly with Sarit Kraus and Menachem Magi

dor. Preliminary versions of those results may be

found in [Lehmann and Kraus, 1988], [Lehmann,

1988], [Kraus et al, 1988a] and [Lehmann and Magi

dor, 1988].

Inference is the process of achieving explicit informa

tion that was only implicit in the agent's knowledge.

Human beings are astoundingly good at infering use-

*The elaboration of this work was partially supported

by the Jean and Ilelene Alfassa fund for research in Arti

ficial Intelligence.

ful and very often reliable information from knowledge

that seems mostly irrelevant, sometimes erroneous and

even self-contradictory. They are even better at cor

recting inferences they learn to be in contradiction

with reality. It is already a decade now that AI has

realized that the analysis of such inference processes

was a major task.

Many examples of nonmonotonic systems have been

proposed as formal models of this kind of inferences.

The best known are probably: circumscription [Mc

Carthy, 1980], the modal system of [McDermott and

Doyle, 1980], default logic [Reiter, 1980] and negation

as failure [Clark, 1978]. An up-to-date survey of the

field of nonmonotonic reasoning may be found in [Re

iter, 1987].

Though each of these systems is interesting per se,

it is not clear that any one of them really captures

the whole generality of nonmonotonic reasoning. Re

cently (see in particular the panel discussion of [Vardi,

1988]) a number of researchers expressed their disap

pointment at existing systems and suggested that no

purely logical analysis could be satisfactory.

This work tries to contradict this pessimistic out

look. It takes a purely logical approach, grounded in

A. Tarski's framework ofconsequence relations [Tarski,

1956] and studies the very general notion of a sensi

ble conclusion. It seems that this a common ground

that can be widely accepted: all reasonable inference

systems draw only sensible conclusions. On the other

hand, as will be shown, the notion of a sensible conclu

sion has a non-trivial mathematical theory and many

interesting properties are shared by all ways of drawing

sensible conclusions.

D. Gabbay [Gabbay, 1985] was probably the first to

suggest to focus the study of nonmonotonic logics on

their consequence relations. Y. Shoham in [Shoham,

1988] and [Shoham, 1987] proposed a general model

theory for nonmonotonic inference. lie suggested mod

els that may be described as a set of worlds equipped

with a preference relation: the preference relation is a

partial order (sometimes supposed to be well-founded)

and a world v is preferable to some other world w if v is
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more normal than w. Shoham claimed that adequate

semantics could be given to all known nonmonotonic

systems by using such a preference relation.

This paper shows that the proof-theoretic and the

model-theoretic approaches are closely related. The

clarification of the relations between proofs and mod

els that has been achieved and is surveyed here al

lows for the (future) design of efficient decision proce

dures tuned to different restrictions on the language

of propositions or the knowledge bases. Such decision

procedures (or heuristics) could be the core of auto

mated engines of sensible inferences.

This paper is intended to be a short readable intro

duction to a growing body of work, aimed at readers

already acquainted with the field of nonmonotonic rea

soning. Therefore it is short on motivation and concen

trates on explaining the meaning of technical results

and neither provides proofs nor tries to present the

most general possible results. Two assumptions must

be mentioned. The underlying set of formulas is as

sumed to be a propositional language. If one wants to

express formulas in first order predicate calculus, some

additional rules of inference have to be introduced to

deal with the quantifiers. But the main results and

the construction of the logical closure of a conditional

knowledge base are unchanged. The distinction be

tween soft i.e. defeasible and hard constraints is not

dealt with here. It is assumed that all pieces of in

formation, i.e. conditional assertions, are soft con

straints. Dealing with hard constraints, in addition

to soft ones, involves relativizing to some given set of

tautologies and poses no problem at all.

In section 11 the relations of this work and some

other different lines of enquiry are described. Since

it contains some technical points relating to the ma

terial presented here, it has been left for the end of

the paper. In section 2 the syntax is defined. In sec

tion 3 a number of inference rules are defined and dis

cussed. The rules provide the definition of two fami

lies of consequence relations: preferential and rational

consequence relations. The discussion helps grasping

the intended meaning of conditional assertions. In sec

tion 4 preferential models are introduced and shown to

define exactly the preferential consequence relations.

In section 5 ranked models are introduced and shown

to define exactly the rational consequence relations. In

section 6 the notion of preferential entailment is char

acterized and it is shown that the problem of comput

ing preferential entailment has low complexity: it is

in co-NP. The question put forward in the title is dis

cussed in section 7 and further studied in section 8.

Section 9 discusses a standard example and section 10

tries to charter the course of future research.

2 The language

The first step is to define a language in which to ex

press the basic propositions. In this paper Proposi

tional Calculus is chosen. Let L be the set of well

formed propositional formulas (thereafter formulas)

over a set of propositional variables. The classical

propositional connectives will be denoted by ->, V, A, —►

and «-►. The connective —► therefore denotes material

implication. Small greek letters will be used to denote

formulas.

A world is an assignment of truth values to the

propositional variables. The set U is the set of all

worlds. The satisfaction of a formula by a world is

defined as usual. The notions of satisfaction of a set

of formulas, validity of a formula and satisfiability of

a set of formulas are defined as usual. We shall write

^ o if a is valid, i.e. iff Vu G U, u |= a.

If a and /? are formulas then the pair a K /? (read

from a sensibly conclude /?) is called a conditional as

sertion. A conditional assertion is a syntactic object

to which the reader may attach any meaning he wants,

but the meaning we attach to such an assertion, and

against which the reader should check the logical sys

tems to be presented in the upcoming sections, is the

following: if a represents the information I have about

the true state of the world, I will jump to the conclu

sion that P is true.

A conditional knowledge base is any set of condi

tional assertions. Typically it is a finite set, but need

not be so. Conditional knowledge bases seem to pro

vide a terse and versatile way of specifying defeasible

information. They correspond to the explicit informa

tion an agent may have.

Certain well-behaved sets of conditional assertions

will be deemed worthy of being called consequence re

lations. We shall use the notation usual for binary

relations to describe consequence relations. So, if f~ is

a consequence relation, a (~ 0 indicates that the pair

(a,/3) is in the consequence relation [~ and a f j3 in

dicates it is not in the relation. Consequence relations

correspond to the implicit information an intelligent

agent may have. Consequence relations are typically

infinite sets.

3 Rules

3.1 Preferential relations

Certain especially interesting properties of sets of con

ditional assertions (i.e. binary relations on L) will be

described and discussed now. They are presented in

the form of inference rules. Consequence relations are

expected to satisfy those properties.
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(Left Logical Equivalence)

(1)

(Right Weakening) (2)

(Reflexivity) (3)

(And) (4)

(Or) (5)

(Cautious Monotony) (6)

Definition 1 A set of conditional assertions that sat

isfies all six properties above is called a preferential

consequence relation.

Considered as inference rules the six properties

above constitute a logical system that we shall de

note by P. The system P is essentially the flat (i.e.

unnested) part of the system SS of J. Pollock. A larger

family of consequence relations: cumulative relations,

has been studied in [Kraus et al, ]. This family is

closely related to the cumulative inference operations

studied by D. Makinson in [Makinson, 1989].

Before we mention some derived rules, let us justify

the rules above. The rules of Right Weakening and

Reflexivity seem to be valid universally in any kind

of reasoning. The rule of Left Logical Equivalence,

that the conclusions one can draw from a proposition

a depend only on the meaning of a, not on its form,

also seems unavoidable. Cautious Monotony says

that learning of a new fact, the truth of which was ex

pected cannot invalidate a previous conclusion. This

is, for us, and following D. Gabbay [Gabbay, 1985],

the central property of the inference systems of inter

est to us. This condition is named triangulaiion in

[Pearl and Geffner, 1988] and is similar to axiom A3

of [Burgess, 1981]. Some probabilistic interpretations,

though, e.g. interpreting a conditional assertion as

meaning that the corresponding conditional probabil

ity is larger than some p < 1, invalidate Cautious

Monotony. It is valid in Adams' system [Adams,

1975]. Similarly, the rules And does not seem ob

jectionable, if one rejects the semantics described just

above. The rule Or is more disputable. First, as Cau

tious Monotony and And, it does not fit the simple

minded probabilistic semantics just described. But,

there is also an epistemic reading of a h 0 that inval

idates the Or rule. If we interpret a h 0 as meaning:

if all I know about the world is a then it is sensible

for me to suppose that 0 is true, we must reject the

Or rule. Indeed, one may imagine a situation in which

a expresses a fact that can very well be true or false

but the truth value of which is normally not known

to me. If I knew a to be true, that would be a quite

abnormal situation in which I may be willing to ac

cept 7. If I knew a to be false, similarly, it would be

an exceptional situation in which I may accept 7, but

the knowledge that a V ->a is true is essentially void

and certainly does not allow me to conclude that any

thing exceptional is happening. Notice that, in this

reading, the left hand side of the symbol h involves

a hidden epistemic operator (the right hand side may

also do so, but need not). It is therefore possible to

defend the Or rule by saying that such a hidden op

erator should be made explicit and the example just

above only invalidates the inference: from Ka h 7 and

K0 h 7 infer K{a V 0) h 7- But nobody would defend

such an inference anyway.

For the reader's ease of mind we shall mention two

important derived rules. Both S and Cut are satisfied

by any preferential relation.

aA/?h7

oh 0 -►7

aA/?h7 , aM

»h7

3.2 Rational relations

(S) (7)

(Cut) (8)

A more restricted family of consequence relations will

be defined now.

Definition 2 A preferential consequence relation |~

is said to be rational iff it satisfies the following condi

tion of Rational Monotony: ifa h 7 and a A 0 \f* 7

then a h ""•/?.

Rational Monotony is similar to CV of condi

tional logic. From the results of sections 4 and 5,

the reader will easily see that there are preferential

relations that are not rational. The justification for

Rational Monotony is the following: if I am ready

to conclude (sensibly) that 7 holds because a is true

but am not ready any more to conclude 7 if I learn

that, in addition to a, 0 is also true, then it must be

the case that, learning that 0 is true in addition to a

is surprising, i.e., on the basis of o, I expected 0 to be

false. Rational Monotony expresses some kind of

restricted monotony. The fact that it is not satisfied

by all preferential consequence relations means that

some of those relations lack a degree of monotony that

seems natural.

The following are properties of rational relations

that are not enjoyed by all preferential relations.

Lemma 1 Lei h be a rational relation. Ifa V/?h 7

then either a h 7 or 0 h 7 (or both). If a h 7 then

either a A /? h 7 or a A ->0 h 7 (°r both).
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Lemma 1 implies that rational consequence relations

represent ways of infering information in which one

never draws conclusions solely on the basis of igno

rance. Its failure for preferential relations indicates

that not all preferential consequence relations repre

sent bona fide nonmonotonic reasoning.

4 Preferential models

In this section, preferential models are defined and

shown to fit exactly the preferential consequence rela

tions. This is an important step in the study of prefer

ential and rational relations. Those models are called

preferential because they represent a slight variation

on those proposed in [Shoham, 1987]. The differences

are nevertheless technically important.

Preferential models give a model-theoretic account

of the way one performs nonmonotonic inferences. The

main idea is that the agent has, in his mind, a partial

ordering on possible states of the world. State s is

less than state /, if, in the agent's mind, s is preferred

to or more natural than t. Now, the agent is willing

to conclude 0 from a, if all most natural states that

satisfy a also satisfy 0.

Some technical definitions are needed. Let U be a

set and -< a strict partial order on U, i.e. a binary

relation that is antireflexive and transitive.

Definition 3 Let V C U. We shall say that t £ V is

minimal in V iff there is no s G V, such that s -< t.

Definition 4 Let V C U. We shall say that V is

smooth iff V< G V, either 3s minimal in V, such that

s ~< t or t is itself minimal in V.

We may now define the family of models we are inter

ested in.

Definition 5 A preferential model W is a triple

(S, /,-<) where S is a set, the elements of which will

be called states, I : S >-*U assigns a world to each state

and -< is a strict partial order on S satisfying the fol

lowing smoothness condition: Va G L, the set of states

a == {s | s G S, s^ a] is smooth, where ^ is defined

as s)p a (read s satisfies a) iff l(s) \= a.

The smoothness condition is only a technical con

dition needed to deal with infinite sets of formulas, it

is always satisfied in any preferential model in which

5 is finite, or in which -< is well-founded (i.e. no infi

nite descending chains). The requirement that the re

lation X be a strict partial order has been introduced

only because such models are nicer and the smoothness

condition is easier to check on those models, but the

soundness result is true for the larger family of mod

els, where -< is just any binary relation (definitions 3

and 4 may make sense even when -< is any binary re

lation). In such a case, obviously, the smoothness con

dition cannot be dropped even for finite models. The

completeness result holds obviously too for the larger

family, but is less interesting.

We shall now describe the consequence relation de

fined by a model.

Definition 6 Suppose a model W = (S, /, -<) and

a,/3(:L are given. The consequence relation defined

by W will be denoted by \~w and is defined by:

<* Kw 0 iff for <*ny $ minimal in a, s^ 0.

If a r*w 0 we shall say that the model W satisfies

the conditional assertion a K- 0, or that W is a model

of a h P-

The following characterizes preferential consequence

relations.

Theorem 1 (Kraus, Lehmann and Magidor) A

binary relation |~ on L is a preferential consequence

relation iff it is the consequence relation defined by

some preferential model.

5 Ranked models

We may now characterize in a similar way the rational

consequence relations. Ranked models are a subfamily

of preferential models in which the partial order -< is

in a way well-behaved. They provide an appealing

model-theoretic account of nonmonotonic reasoning.

Definition 7 A ranked model W is a preferential

model (S,l,-<) for which the strict partial order -<

may be defined in the following way: there is a to

tally ordered set fi (the strict order on Q will be de

noted by <) and a function r : S >—► Q such that s -<t

iffr(s)<r(t).

Those models are said to be ranked since the effect

of function r is to rank the states: a state of smaller

rank being more normal than a state of higher rank.

Notice that we still require W to satisfy the smooth

ness condition. It is easy to see that for any subset T

of S and any t G T, t is minimal in T iff r(t) is the

minimum of the set r(T). It follows that all minimal

elements of T have the same image by r. The smooth

ness condition is then equivalent to the following: for

any formula a G L, if a is not empty, the set r(a) has a

minimum (a has been defined to be the set of all states

of 5 that satisfy a). The smoothness condition is al

ways verified if fl is a well-ordered set. It was shown

in [Lehmann and Magidor, ] that the characterization

of theorem 2 would not be correct, had we dropped

the requirement that fi be well-ordered.
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The rational consequence relations are characterized

by the following:

Theorem 2 (Lehmann and Magidor)

A consequence relation is rational iff it is defined by

some ranked model.

6 Preferential entailment

6.1 Definition

It is time to begin to try to answer the question of the

title. Let K be a set of conditional assertions and A

some conditional assertion. Since it has been argued

above that any bona fide nonmonotonic reasoning sys

tem should define a rational consequence relation and

in view of theorem 2, the natural answer to the ques

tion of the title seems to be the following: the condi

tional assertion A is entailed by the set of conditional

assertions K iff it is satisfied by all ranked models that

satisfy all the assertions of K. Unfortunately this first

try cannot provide a satisfactory answer, as will be

seen now.

Theorem 3 // the assertion A is satisfied by all

ranked models that satisfy all the assertions ofK then

it is satisfied by all preferential such models.

Theorem 3 is a precise way of describing the prob

lems caused by the first temporary definition of section

4 of [Delgrande, 1988], and noticed there.

Before we can assess the implications of theorem 3,

and explain why it is disappointing, let us lay down a

definition and some results.

Definition 8 The assertion A is preferentially en

tailed by K iff it is satisfied by all preferential mod

els ofK. The set of all conditional assertions that are

preferentially entailed by K will be denoted by Kp. The

preferential consequence relation Kp is called the pref

erential closure ofK.

The characterization of preferential consequence re

lations obtained in theorem 1 enables us to prove the

following.

Theorem 4 Let K be a set of conditional assertions,

and A a conditional assertion. The following condi

tions are equivalent:

1. A is preferentially entailed by K, i.e. A G Kp

2. A has a prooffrom K in the system P.

The following compactness result follows.

Corollary 1 (compactness) K preferentially en

tails A iff a finite subset ofK does.

The following also follows from theorem 4.

Corollary 2 The set Kp, considered as a consequence

relation, is a preferential consequence relation, there

fore there is a preferential model that satisfies exactly

the assertions ofKp. IfK is itself a preferential con

sequence relation then K = Kp. The set Kp grows

monotonically with K.

6.2 Probabilistic entailment

In [Adams, 1975] E. Adams defines a notion of prob

abilistic entailment. Roughly speaking a conditional

assertion A is probabilistically entailed by a set K of

conditional assertions iff for all (suitable) probability

assignments the conditional probability assigned to A

can be made as close as one wants to one, if only one

makes sure that the conditional probabilities of the el

ements of K are close enough to one. He showed that,

for finite sets K, a conditional assertion A is proba

bilistically entailed by K iff it has a proof from K in the

system P. For finite knowledge bases then, probabilis

tic entailment is preferential entailment. The result

does not hold for infinite knowledge bases, though,

since, as Adams remarked, probabilistic entailment

does not satisfy the compactness property.

6.3 Discussion of preferential entailment

Corollary 2 explains why the notion of preferential en

tailment cannot be the one we are looking for: the

relation Kp can be any preferential relation and is not

in general rational. For typical K's, Kp fails to satisfy

a large number of instances of Rational Monotony

and is therefore highly unsuitable. One particularly

annoying instance of this is the following. Suppose a

conditional knowledge base K contains one single as

sertion p \~ q where p and q are different propositional

variables. Let r be a propositional variable, differ

ent from p and q. We intuitively expect the assertion

p Ar K q to follow from K. The rationale for that has

been discussed extensively in the literature and boils

down to: since we have no information whatsoever

about the influence of r on objects satisfying p it is

sensible to assume that it has not and that there are

normal p-objects that satisfy r; the normal pAr-objects

are therefore normal p-objects and have all the prop

erties enjoyed by normal p-objects. Nevertheless it is

easy to check that p Ar |- q is not in Kp. The prob

lem lies, at least in part, with the fact that Kp is not

rational, since any rational relation containing p h g

, must contain p A r \~ q unless it contains p K ->r.

This question will be brought up again in section 7.2

and a solution will be proposed.
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6.4 Complexity of preferential entailment

Nevertheless preferential entailment is a central con

cept and it is therefore worthwhile to study its com

putational complexity. The results here are quite en

couraging: the problem is in co-NP, i.e. in the same

polynomial class as the problem of deciding whether a

propositional formula is valid.

Theorem 5 There is a non-deterministic algorithm

that, given a finite sei K of conditional assertions and

a conditional assertion A, checks that A is not prefer

entially entailed by K. The running time of this algo

rithm is polynomial in the size ofK. (sum of the sizes

of its elements) and A.

Proof: Let K be {7,M.}£r Let I C {1, .. .,N]

be a set of indexes. We shall define: <f>i = Vie/Ti

and ifrj = Aigj (ft ~~* &i)- A sequence is a sequence of

pairs (U,fi) for i = 0, . . . , n, where /,• C I and /< is a

world. Let a and /? be in L.

Definition 9 A sequence (/,-,/,), i = 0,...,n, is a

witness for a |~ /? (we mean a witness that a h* /?

is not preferentially entailed by K ) iff

1. fk M/», V* = 0,...,n

2- fk \=4>ik, Vt = 0,...,n-1

3. h+i = h f)U I fk W ti), V* = 0, . . .,n - 1

I I0 = {l,...,N}

5. fkfia, Vk = 0,...,n-1

6. fn \= a A -./?.

We must check that: witnesses are short and a con

ditional assertion has a witness iff it is not preferen

tially entailed by K.

For the first point, just remark that, for

k = 0, . . . , n — 1 the inclusion It D h+i is strict be

cause of items 3 and 2. The length of the sequence is

therefore bounded by the number of assertions in K.

Eacli pair, on the other hand has a short description.

For the second point, suppose first there is a wit

ness for a K /?. Then the ranked model W consisting

of worlds /o , . . . , fn where /* -! A+i Vfc = 0, . . . , n - 1

satisfies K but not a \*> f}. That it does not satisfy

a (~ f3 is clear from items 5 and 6. Let us check that

W satisfies 7,- f~ 6,-. If none of the /it's, k = 0, . . . ,n

satisfies 7,- then IV satisfies 7; K ;/ for any rj in L.

Suppose therefore that j is the smallest k for which

fj \= 7,-. We must show that fj |= <5;. But, by items 4

and 3 i £ Ij and by item 1, /; (= <5,-.

Suppose now that a f~ 0 is not preferentially en

tailed by some given finite K. By techniques used in

the proof of theorem 3 one may show that there is a fi

nite linearly ordered model W of K, no state of which

satisfies a, except the top state that is labeled by a

world m that satisfies aA-"/?. Let 7o = {1,...,JV}.

It is easy to see that (remark 1): if V is any pref

erential model of K, for any set I C Io, V satisfies

4>i h* V"/- Let us first consider the set a V <f>j0. It can

not be empty, therefore it has a unique minimal state.

Let /o be the label of this state. We must consider two

cases. First suppose that /o ^= a. Then /o is minimal

in q and therefore must be m. In such a case (Io,m)

is a witness. The only thing to check is that item 1 is

satisfied. Indeed either m \= <j>j0 and we conclude by

remark 1 or 0/o = 0 and m satisfies none of the 7,'s.

Let us deal now with the case fa \£ a. We shall build a

sequence beginning by (7o,m). Since m does not sat

isfy a, it must satisfy <f>j0, which takes care of item 2.

Remark 1 takes care of item 1. Let us now define

h — JofKJ I /o t^ 7j}- h is strictly smaller than Io-

We may now consider the set a V <£/, . It is not empty

and therefore has a unique minimal element and we

may, in this way, go on and build a proof for a \+> /?.

7 The rational closure of a

conditional knowledge base

7.1 Perfect extensions

All has been done so far does not allow us to give a

satisfactory answer to the question of the title. Let K

be a set of conditional assertions. We would like to

define a consequence relation K, the rational closure

of K, that contains all the conditional assertions that

we intuitively expect to follow from K.

At this point the reader should be convinced that K

must be a rational consequence relation that extends

K. Any such relation also extends Kp.

The techniques used in the proofs of the results pre

sented in section 6.1 show that not only is there no

unique rational extension of K, there is no minimal

such rational extension. There is obviously a maxi

mal such extension: the full consequence relation, (i.e.

a \~ P for all a, /? in L) but this is certainly not the

one we are looking for. Can we find out a number of

properties that we want K to possess in order to, at

least, narrow the field of possibilities? The general un

derlying idea is that the assertions that are in K but

not in Kp should be assertions that have support in

Kp, i.e. assertions a f-j3 such that a is of the form

7 A <5 for some 7 such that 7 (~ (3 is in Kp. Let us

encapsulate this idea in definitions.

Definition 10 An assertion a \~ (3 is said to be sup

ported by (or in) Kp iff a is of the form 7 A 6 for some

7 such that 7 (~ P is in Kp.
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Definition 11 A rational extension K' ofK is called

perfect iff every assertion ofK' is supported by Kp.

We may present the following disappointing result.

Lemma 2 There are conditional knowledge bases that

have no rational perfect extension.

Proof: Let L be the set of all propositional formu

las built out of the set of four propositional variables:

{a, b, c,d}. Let W be the preferential model with three

states: {s,t,u}, in which s-<( (and this is the only

pair in the relation -<) and s satisfies only a, t satisfies

only b and u satisfies only c and d. Let K be the set

of all conditional assertions satisfied in W. We claim

that K has no rational perfect extension. Notice, first,

that W satisfies oVi K ""■&• This assertion is there

fore in K. Any ranked model satisfying a Vb }- ->b

must satisfy at least one of the following two assertions:

aV c f--icor6Vc |~ ->b. Any rational extension of

K must therefore contain one of the two assertions

above. But aV c f- ->c has clearly no support in Kp

and therefore any perfect rational extension ofK must

contain: Wc h ->6. But W satisfies c H and any

ranked model satisfying both b V c | <b and c M

must also satisfy 6 V c f- d. Any perfect rational ex

tension of K must therefore contain this last formula

but it clearly lacks support in Kp. We conclude that

K has no perfect rational extension. I

It is therefore reasonable to look for less than perfect

extensions. Perfection restricted to two special kinds

of formulas will now be defined.

Definition 12 A rational extension K' of a condi

tional knowledge base K is said to be c-perfect iff every

assertion ofK' of the form a f- false is supported by

KP.

Definition 13 A rational extension K' of a condi

tional knowledge base K is said to be t-perfect iff every

assertion ofK.' of the form true (~ a is supported by

KP.

A rational extension that is both c-perfect and t-

perfect will be called ct-perfect. The following is easy

to prove and will help understand the meaning of def

initions 12 and 13.

Lemma 3 An assertion of the form a \~ false is

supported by Kp iff it is in Kp. An assertion of the

form true h-- a is supported by Kp iff it is in Kp.

7.2 Rational closure

The remainder of this paper is devoted to describing a

way to build, for any finite conditional knowledge base

K, a ct-perfect rational extension of K. The result of

this construction will be denoted K. Some additional

properties of K will be described. At this point our

long preparatory work will pay off since we may use a

model-theoretic construction to describe K.

For the rest of this paper, let us suppose that K

is a finite conditional knowledge base. Let P be any

finite set of propositional variables that contains all

the variables appearing in K. How the choice of P

affects the construction will be studied later. Let L

be the set of all propositional formulas on P. The

language L is logically finite, i.e. finite up to logical

equivalence. From now on L will be fixed. The first

step is to build a finite preferential model W (i.e. W

has a finite number of states) that defines KP. The fact

that this can be done follows from results of [Lehmann

and Magidor, ]. How the choice of a specific W may

affect the construction will be studied later. Let W be

the preferential model ( S, I, -<) .

The second step is to massage W gently so as to

make it a ranked model. More precisely we shall de

scribe a partial order -<', that is an extension of -<,

such that W = ( S, /, -<') is a ranked model. The con

sequence relation K is the relation defined by W.

Before we proceed to describe -</, let us remark that

any relation -<' that extends -< and makes W a ranked

model will enable us to define a rational extension of

K that is c-perfect. The consequence relation defined

by W is rational since W is ranked, it extends the

consequence relation defined by W because -^ extends

-< (a state minimal in the new order must have been

minimal in the old order) and it is c-perfect because,

since the set of states and the labeling function stay

the same, the sets of formulas of the form a |~ false

that are satisfied by W and W respectively are the

same.

The way chosen to define -<' is the following: let

the states of W sink as low as they can, respecting

-<. More precisely: let us define the height of a state

s € S as the length of the longest ascending (under -<)

chain of states whose top element is s. States that are

minimal in S have height zero. States that are minimal

in the set of states that are not of height zero have

height one, and so on. The relation -<' will be defined

in the following way: s -<' t iff height(s) < height(t).

It is clear that -<' is an extension of -< and that W is

a ranked model.

It is left for us now to check that K, the relation

defined by W is a t-perfect extension ofK. But this

follows from the fact that all states that were minimal

in S in the model W are of height zero and therefore

still minimal in S in the model W' . We may now state:

Theorem 6 For any finite set K of conditional as

sertions there exists a rational ct-perfect extension of
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KP.

The question now is whether the rational closure K

of K really represents the set of all conditional asser

tions we intuitively expect to be entailed by K.

There is a preliminary point that must be clarified

first. At two separate points in our construction some

arbitrary choice was made: the set P of propositional

variables may be any finite set large enough to contain

all the variables appearing in K and the model W may

be chosen as any finite preferential model that defines

Kp. Do those choices affect the construction of K?

Let us first deal with the last choice, that of W.

The answer is that the construction may be affected

by the choice of W but one may, without any harm,

restrict oneself to a subfamily of preferential models,

the honest models and all honest models W will define

the same rational closure.

Definition 14 Let W be the preferential model

(5, /,-<). We shall say that W is honest iff for ev

ery s € S there is a formula a £ L such that s is a

minimal element of a.

It is clear that, given any preferential model, remov

ing from it all the states that are not minimal in any

S, leaves a preferential model that is equivalent to the

first one, i.e. defines exactly the same consequence

relation. There is therefore no harm in restricting our

selves to honest models.

Lemma 4 The construction ofK above is not affected

by the choice ofW as long as W is honest.

Lemma 4 follows from a proof-theoretic character

ization of K that will be described now. This proof-

theoretic characterization is important per se. It pro

vides an alternative way of defining K.

Given a conditional knowledge base K (not neces

sarily finite), for every i = 0, 1, 2, ... we shall define, by

an inductive procedure, the degree of a formula. Let

Ko be the preferential closure of K.

The state zero of the induction is: the set of formulas

of degree strictly less than zero is empty.

Suppose now that t > 0 and that the set of formulas

of degree less than t has been defined. The set of

formulas of degree i will be defined in the following

way: formulas of degree i are those formulas a that

are not of degree less than i and that satisfy: V/? € L

such that a V /? ho ~,o, ft is of degree less than i.

In the procedure above not every formula gets a de

gree. Let us give the degree oo to formulas that are

not assigned a degree.

Lemma 5 Let a be any formula. If degree(a) < oo

then, in any honest preferential model defining Kp

there is a state s such that height(s) = degree(a), s

satisfies a and no state of height less than height(s)

satisfy a. Ifdegree(a) = oo then a |~ false is in Kp.

Lemma 6 If W is a finite honest preferential model

that defines the preferential closure o/K, then the in

ductive procedure described above terminates, i.e., the

degrees given to all formulas that are given finite de

grees are bounded, and K is the consequence relation

defined by: a \~ ft iff degree(a) < degree(a A ->/3) or

degree(a) = oo.

The claim that the choice of W (as long as it is

honest) follows, since the iterative procedure depends

only on Kp, not on W.

The iterative procedure described above, that may

be applied also to infinite knowledge bases, most prob

ably gives a clue as how to extend the rational closure

operation to infinite knowledge bases.

What about the choice of the set of variables P?

For the rest of this section, let P' be the finite set

of variables that appear in K, let p be a propositional

variable that is not in P', let PDP'U {p}, let a and

ft be propositional formulas over P' and let 7 be a

formula over P.

Lemma 7 a \- ft is in the rational closure o/K com

puted over P iff it is in the rational closure o/K com

puted over P'

Lemma 8 If a \~ false is not in the preferential clo

sure o/K then a \~ p is not in the rational closure of

K.

The proof of lemma 8 proceeds by showing that the

canonical model of Kp is stable under the automor

phism changing p into ->p.

Corollary 3 If a f~ 7 is in the rational closure o/K

then so is a A p h 7-

Lemma 9 IfaAp \~ ft is in the rational closure of

K then so is a h- ft.

The practical meaning of corollary 3 and lemma 9 is

that the choice of the set of propositional variables

does not really matter. It also says that rational

closure behaves as we expect regarding propositions

about which we have no information at all. The notion

of rational closure defined above solves the problem de

scribed in section 6.3. If a knowledge base contains the

information that birds generally fly but contains no in

formation about colors, we shall be able to conclude

that green birds generally fly too.
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8 Nonmonotonicity 11 Related works

The notion of rational closure as proposed in sec

tion 7.2 models two distinct types of nonmonotonicity.

First, for given K, it may well happen that some con

ditional assertion a f-' P is in K whereas a A 7 K /?

is not. But a more subtle kind of nonmonotonicity

is also at work: if K C K', it must not be the case

that KCK. One example only of this phenomenon

will be described. Consider a knowledge base K where

the propositional variable p does not appear, that con

tains q (~ r but that does not preferentially entails

q (~ false. By corollary 3, K contains q A p h-r. Let

now K' be K U {q A p | >r}. It is easy to check that

q A p f~ r is not in K .

9 Example

Let K be the famous knowledge base consisting of

three assertions:

1. bird h* fly

2. penguin \~ bird

3. penguin \ < fly

The complete description of the rational closure of

K is not an easy task, but let us list some assertions

contained in K and some that are not. In the ra

tional closure are : fly K ~" penguin, -> fly [- -1 bird,

"■ fly K ~" penguin, bird |~ -1 penguin,

-1 bird \~ -> penguin, bird A penguin \ 1 fly,

penguin A black f~ -1 fly, bird A green |~ fly-

_The following assertions are not in

K: bird A ->fly K penguin, bird A ->fly K -l penguin,

penguin h fly.

10 Open problems and future work

More work has to be done to assess whether the ra

tional closure operation proposed here fully fits our

intuition. Better ways of completely describing the

rational closure of finite knowledge bases have to be

found. The complexity of computing the rational clo

sure should be analyzed and practical heuristics looked

for. Families of knowledge bases for which efficient al

gorithms exist may probably be defined. One could

also look for families of knowledge bases with perfect

rational extensions but the simplicity and naturalness

of the counter-example used in the proof of lemma 2

leaves little hope.

This work stems from a very different motivation than

the vast body of work concerned with conditional logic

and its semantics that is surveyed in [Nute, 1984]. The

main technical difference is that conditional logic con

siders the nonmonotonic consequence as a new logical

connective that is part of the language (here it is part

of the meta-language) and that can be embedded in

side other connectives and even itself. One of the log

ical systems, P, studied in this paper turns out to be

the flat (i.e. non-nested) fragment of one of the nu

merous logical systems proposed for conditional logic,

introduced by J. Pollock [Pollock, 1976] and studied

by J. Burgess in [Burgess, 1981] and by F. Veltman in

[Veltman, 1986]. Theorem 1 cannot be derived from

the completeness result of [Burgess, 1981] since the

latter concerns a extended language and it is not clear

that a proof in the extended language may be trans

lated in the restricted one.

This very fragment had been considered by

E. Adams in [Adams, 1975] (see also [Adams, 1966] for

an earlier version and motivation), where it was given

a probabilistic justification. The results of [Lehmann

and Magidor, ] allow for an easy proof of the complete

ness result of Adams. Recently J. Pearl and II. Geffner

[Pearl and Geffner, 1988] studied a system for non

monotonic reasoning based on Adams' ideas.

The material on rational reasoning in this paper

may be compared with the results of J. Delgrande in

[Delgrande, 1987] and [Delgrande, 1988]. The gen

eral thrust is very similar but differences are worth

noticing. A first difference is in the language used.

Delgrande's language differs from this paper's in three

respects: his work is specifically tailored to first-order

predicate calculus, whereas this work deals with propo

sitional calculus; he allows negation and disjunction of

conditional assertions, which are not allowed in this

paper; he allows nesting of conditional operators in the

language, though his results are good only for unnested

formulas. Therefore Delgrande's central completeness

result in [Delgrande, 1987], only shows that any propo

sition in which there is no nesting of conditional oper

ators (let us call those propositions flat) that is valid

has a proof from the axioms and rules of his system.

But this proof may use propositions that are not flat.

The completeness results reported here show that valid

assertions have proofs that contain only flat assertions.

A second difference is that Delgrande's logical sys

tem is different from ours: Delgrande's logic N does

not contain Cautious Monotony. Our class of

ranked models is more restricted than his class of mod

els: our models are required to obey the smoothness

condition and Delgrande's are not. One may also no

tice that our logic enjoys the finite model property,
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but Delgrande's does not. This difference between our

two logical systems may sound light when one remarks

that many instances of the rule of Cautious Mono

tony may be derived from Rational Monotony, and

are therefore valid in Delgrande's system N. What we

mean is that if a f~ /? and a h) then, if a ^ ->/?

one may conclude a A 0 f~ 7 by Rational Mono

tony rather than by Cautious Monotony. But if

a f~ ->/?, and therefore a |~ false one cannot con

clude. The rule

a |~ false

a A /? K false

(9)

is sound in preferential logic but not in Delgrande's

logic.

A third difference is that his definition of the set of

conditional assertions entailed by a conditional knowl

edge base is different from the one presented here, at

least at first sight.
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Abstract

This paper describes an analogical tool based

on the formation of partial correspondences

between knowledge structures represented as

conceptual graphs. The formation of

correspondences is controlled by evaluation

criteria for ordering analogies by plausibility

that relate naturally to operations on

conceptual graphs. The tool and its

underlying theory are tested empirically

against critical examples of analogical

reasoning in the literature. To clarify

relations between the examples, reasoning

patterns and knowledge representation

scheme, an object-oriented implementation is

used whose operation is simple and

transparent.

1 Introduction

Analogical reasoning is based on the formation of a

plausible partial correspondence between

knowledge structures. The problem for

computational emulations of analogy is to

determine what these knowledge structures are and

what constitutes a plausible correspondence. There

are a variety of applications of analogical

reasoning which can help direct the search for a

solution to this problem. Analogy is used in

metaphor understanding [Indurkhya, 1985, Lakoff

and Johnson, 1980], in scientific exploration

[Gentner, 1987, Hesse, 1966], in argumentation and

rhetoric [Hesse, 1966], in schema abstraction for

problem solving [Gick and Holyoak, 1983] and for

teaching [Murphy et al., 1963]. Examples of these

different applications of analogy, particularly

problematic cases, can serve as test cases for a

computer emulation of analogy.

This paper presents an analogical tool which

embodies critical functions of analogical reasoning

derived from the analysis of previous research in

the field. It is shown that the choice of a

conceptual graph model for knowledge

representation ensures that these functional

requirements are met and also brings with it certain

evaluation criteria which constrain the search for

analogies. The tool is described in three ways,

firstly in terms of the conceptual graph formalism,

secondly in terms of the evaluation criteria

contained within it, and thirdly, in terms of the

basic algorithm. The final section discusses how

well the analogical tool performs on examples from

the literature and shows it to be effective in the

derivation of analogies and in reasoning based on

them. The simple modular structure of the

algorithm clarifies the relations between the

argument forms of analogical reasoning and general

properties of the knowledge representation schemes

used.

2 Analysis of Prior Studies of Analogy

Analysis of colloquial connotations and

psychological processes of analogy has generated

research which can be classified as follows:

1) Abstract theories of analogy;

2) Psychological models of analogy;

3) Evaluation criteria for analogy.

Analyzing works in each of these areas results in a

definition of critical functions essential to the

notion of analogy. These critical functions can be

found in many computational emulations of analogy

although often they are not explicitly stated.

Abstract theories view analogy as an algebraic or

logical process. Comparison of works in this area

reveals the common theme that analogy is the
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formation of a plausible partial correspondence

between parts of the participating analogues.

Indurkhya [1985], for example, describes a theory of

analogy and metaphor called Approximate

Semantic Transference which forms AT-MAPS.

These maps represent an approximately coherent

partial mapping of terms between source and target

domains. Gaines and Shaw [1982] explicate

analogy as a partial correspondence between

systems represented as mathematical categories.

Russell's use of determinations [Russell, 1987] also

requires the formation of a plausible partial

correspondence between terms.

Psychological models of analogy attempt to

account for how and in what circumstances people

reason from analogies. Comparison of works in this

area reveals the common theme that a critical part

of any model of analogy is the knowledge that is

used and how it is represented. Gentner's Structural

Mapping Theory [1983] is based on a principle of

systematicity which attempts to maintain chains

of relations when forming correspondences between

domains. The choice of higher order predicate

calculus as the knowledge representation scheme

aids in detection of these chains. Lakoff and

Johnson [1980] argue that the human conceptual

system is comprised of a limited number of non-

metaphorical base concepts supplemented by

metaphorical concepts based on experiential

gestalts. These gestalts can be thought of as

analogues, and a partial correspondence formed

over terms they contain allows us to understand

metaphors such as ARGUMENT IS WAR. From

this psychological model, Lakoff and Johnson note

that the most difficult part of constructing a

computational emulation of metaphor understand

ing will be in properly representing the knowledge

contained in the experiential gestalts.

Evaluation criteria for analogy focus on the

problem of what is a plausible analogy—why one

analogy is seen as more plausible than another.

Comparison of works in this area reveals the need

to control the formation of plausible partial

correspondences through evaluation criteria which

relate to psychological notions of plausibility and

the applicability of analogies. For example,

evaluation criteria which use generalization/

specialization hierarchies are central to the CYC

project being conducted at MCC [Lenat et al, 1986],

as well as to the work of Hofstadter and Mitchell

on analogical reasoning [1988]. Criteria based on

connectivity can be found in Indurkyha's [1985] AST

theory and in Gentner's [1983] systematicity

principle. Winston's [1981] early paper on

analogical reasoning contains many useful criteria

such as the use of case relations and matching of

terms which share the same relations between

them; this latter criterion is also evident in

Gentner's work.

This three-way analysis leads to the following

critical functions which are necessary for a com

putational emulation of analogy:

1) Algorithms for finding partial correspondences

between abstract structures;

2) Semantic schemas for representing knowledge

of the domains involved in the analogies;

3) An evaluation relation for partially ordering

analogies by plausibility.

The analogical tool described in this paper

implements each of these functions as well defined

modules. The evaluation criteria arise naturally

from the knowledge representation scheme chosen,

namely conceptual graphs. These criteria include

those used by other researchers. The resulting

algorithm clearly defines the rationale for the

analogies formed, and is readily tested on examples

of analogy taken from the literature.

3 Conceptual Graphs

The semantic schema requirement above is satisfied

in this work by the use of the conceptual graph

model as described by Sowa [1984]. A single

conceptual graph states a proposition and contains

concept nodes, relation nodes, and arcs between

them. This structure allows analogues to be

represented as finite bipartite graphs. Concept

nodes represent entities, attributes, states and

events while relation nodes specify relationships

between concepts and include case relations among

others [Sowa, 1984]. Each concept in a conceptual

graph is part of a lattice of concepts. This lattice

supports inheritance, and concepts higher in the

lattice are more general than lower ones. Concepts

to be used in a domain must be specified beforehand.

Graphs can also express more complex sentences

that contain individuals, modality, nested

propositions and co-references as shown in Figure 1.

The sentence for this graph is shown at the top. Co-

reference links are shown with dashed lines and

the nested propositions are shown by the boxes

surrounding subgraphs. Concepts in a conceptual

graph can be generic, such as [Person] or can refer to
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"Sam thinks that the house has a kitchen and that

Ivan believes that there is a cat in the kitchen'
.*»

Person: Sam
"■ (Expr)-

Think

Person: Ivan House (an

L

Proposition: /

House
*&■

Kitchen

Person: Ivan *" (Expr Believe

I

T /
Proposition:

Cat "*^LocJ *" Kitchen

Figure 1 Conceptual graph for a complex sentence
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particular individuals such as [Person: Sam]. This

concept refers to a specific individual Sam of type

Person where Sam is specified in the referent field

of the concept. The modal concepts Think and

Believe in Figure 1 take nested conceptual graphs

as their objects. These nested graphs are

Propositions whose referent field is the set of

conceptual graphs being asserted. They are also

referred to as context boxes and a box with no type

label defaults to a proposition (context) box. Also

present in this figure are co-reference links which

show anaphoric references and express an equality

relation between concepts. Co-reference links often

join pronouns to their referents or refer to a concept

previously mentioned. In Figure 1 for example the

phrase, "Sam thinks that the house has a

kitchen," refers to a house that Sam already knows

about. This requires a co-referent to house outside

the context of the house having a kitchen.

Each conceptual graph is also embedded in a

larger semantic net which contains background

knowledge that enriches the meaning of the graph.

3.1 Specialization and Generalization

The conceptual graph model defines specialization

operations used for selectional constraints on

sentence formation and generalization operations

for logic and model theory. Specialization of a

conceptual graph can be done in two ways. First a

particular concept can be restricted, either by

addition of an individual to a generic concept or by

replacing a concept with one of its subtypes from

the concept lattice. Second, a conceptual graph can

be specialized by making the graph more extensive.

This amounts to adding more concepts and relations

to a graph. Rules for when and how these

specialization operations take place are specified

by the conceptual graph model [Sowa, 1984]. These

specialization rules and operations are not truth

preserving but enforce constraints on sentence

formation.

Generalization of conceptual graphs is truth

preserving and if a graph u is a specialization of a

graph v, written u <= v, then v is a generalization

of u. Generalization of conceptual graphs defines a

partial ordering called a generalization hierarchy.

Graphs can be generalized in three ways:

1) Any subgraph is a generalization of the

original graph;

2) Replacing a type label with a supertype

generalizes a graph;

3) Deleting an individual from the referent field

generalizes a graph.

These specialization and generalization operations

have important uses in analogy formation and

analogical reasoning.

3.2 Conceptual Graphs for Analogy

There are three reasons why conceptual graphs are

a good choice for the knowledge representation

scheme of an analogy emulation program:

1) They have a direct mapping to predicate

calculus and thus can be incorporated into any

reasoning system based on logic [Sowa, 1984];

2) They contain constraints which constitute

evaluations for forming partial correspondences

as well as an evaluation relation for partially

ordering analogies by plausibility;

3) Their straightforward mapping to and from

natural language allows for a linguistic

description of analogues.

4 Implementing the Analogical Tool

This section outlines the implementation of the

analogical tool in terms of the conceptual graph

operations used and the resulting specifications for

algorithms.

4.1 Minimal Common Generalizations

In the conceptual graph formalism, the natural

partial correspondence on which to base the

formation of an analogy is the minimal common

generalization of the graphs corresponding to two

or more analogues. A common generalization

specifies a graph which is a generalization of all

analogues in an analogy. There can be more than

one of these generalizations and as stated

previously, they will be ordered in a

generalization hierarchy. Figure 2 gives a very

simple example of three ordered common

generalizations which can be formed from the two

analogues shown.

The lowest generalization on the page is the

minimal common generalization. It is the most

specific of the three, first in concept restriction

(from Animate to Person) and second in extent (it

contains the maximal number of nodes and arcs). A

minimal common generalization is a generalization

as low as possible in the generalization hierarchy

—such that no other is more specific.
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Figure 2 Forming Common Generalizations
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It is these minimal common generalizations that

the analogical tool derives. They satisfy

requirements 1) and 3) specified in Section 2, that is

of providing: a basis for algorithms for finding

partial correspondences; and an evaluation relation

for partially ordering analogies by plausibility.

A minimal common generalization:

• Is maximally extensive since the generalization

chosen for each of the corresponding concepts is

the lower bound of all possible common

generalizations;

• Preserves linkages in the graphs which can be

seen as minimal structural criterion for

plausibility;

• Is truth preserving, a necessary logical criterion

for plausibility;

• Minimizes conflicts in the type hierarchy, a

minimal semantic criterion for plausibility.

There will typically be many generalizations of

two analogues, a subset of which will be minimal.

The analogical tool uses four formation evaluations

to search for generalizations, and two general

ordering evaluations to establish which of these

are minimal. These are described in the following

sub-sections.

4.2 Formation Evaluations

Four formation evaluations arise from the

generalization criteria, and reduce search in the

analogy operation. These evaluations are used to

form the common generalizations.

The first two were presented above; firstly the

requirement of the same relations between two

pairs of potentially corresponding concepts; and

secondly the requirement of type comparability.

Two concepts will be comparable if there exists a

common generalization for them which is not the

absurd type. For example, an event and an attribute

will not be comparable concepts, but two entities

will be. The third and fourth formation

evaluations emerge as analogues become compound

graphs with co-reference links and nested context

boxes.

Co-reference links form chains of equality

between concepts in a graph. For the third

evaluation, these chains of equality must be

maintained when forming the common

generalizations and putting concepts into

correspondence.

The fourth evaluation requires that referents of

corresponding proposition concepts (i.e. graphs)

must be compatible. This means that if projections

put two proposition boxes into correspondence in the

analogy, then their referent subgraphs are

candidates to be put into correspondence only with

each other.

4.3 Ordering Evaluations

The formation evaluations above are a consequence

of specifying an analogy as a common

generalization. Specification of the more plausible

analogies as minimal common generalizations has

implications for ordering them. A minimal common

generalization is maximally extensive. Because of

the partial nature of the generalizations formed in

analogy, this maximal extent becomes a measure of

connectivity. The first general ordering evaluation

is a measure of this connectivity.

This first evaluation, connectivity, can be

subdivided into three specific components. The

first, Extent, measures how much of the target

domain has been matched with the source domain.

A measure of 0 reflects a total match. This ensures

that only the most extensive analogies are

considered. The second component evaluates the

Kind-Of connectivity that results in the most

extensive analogies. Preference is given to long

chains of connectivity and a high score here will

indicate more connectivity and less fragmentation.

The third component is a measure of Extendability.

Given two equal analogies as ordered by the first

two components of connectivity, the one with a

greater capability of being extended through

analogical reasoning is preferred. An example of

this measure appears in the section on testing the

analogical tool.

Minimal common generalizations are also those

which choose the lowest common supertypes for

each pair of corresponding concepts as defined by

the concept lattice. A higher preference is given to

analogies with the lowest semantic distance

between corresponding concepts. The second general

ordering evaluation says that for two analogies

which are equally connected, the better analogy is

determined by minimizing the distance climbed on

the concept lattice for each pair of comparable

concepts. This amounts to measuring the semantic

distance of concepts according to this lattice.

Concepts which are further apart correspond to

weaker analogies.
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4.4 Correspondence and Projections

The formation of a minimal common generalization

of two analogues involves putting the concepts and

relations in one analogue in correspondence with

those in the other, and hence in the generation of an

analogy. This correspondence again has a natural

interpretation in conceptual graphs as arising from

a pair of projections.

As shown in Figure 2, formation of a common

generalization results in projections from the

generalization into each of the analogues (these

are shown by the dashed lines). A projection maps

graphs at higher levels of the generalization

hierarchy into ones at lower levels. A projection is

defined as follows [Fargues, 1986]:

Let u and v be two conceptual graphs. If u <= v,

there exists a subgraph u' joined with some

additional edges. The induced graph u' is called

the projection of v in u. A graph v may have

several distinct projections in the same given graph

u.

The projection operation consists of finding a

subgraph u' of u which satisfies the following

conditions:

1) The conceptual relations in u' and v are

identical;

2) The concepts cl, . . ., en of u' are some

restrictions (i.e. specializations) of the

corresponding concepts dl, . . ., dn of v, as

defined by the concept lattice;

3) If a relation r links two concepts di and dj in v,

then it also links the concepts ci and cj in u'.

4.5 Object-Oriented Formulation of the Algorithm

The analogical tool is written in the object oriented

language Smalltalk [Goldberg and Robson, 1983 ] in

such a way that each of the formation and ordering

evaluations exist as well defined, identifiable

modules. The basic algorithm searches for

analogies, with the formation evaluations serving

as constraints that prune branches of the search

tree; and the ordering evaluations ordering the

analogies. Input consists of two analogues expressed

as conceptual graphs. Output consists of displays of

the analogies as lists of concept correspondences,

together with their measures.

As analogies are being formed, potential concept

matches are considered. These must pass all

formation evaluations before the concepts can be put

into correspondence with each other. For example,

the requirement of same relations between concepts

is a very strong constraint and permits only agents

to match to agents, objects to objects, etc.

Only the most extensive analogies as measured by

the Extent connectivity metric are considered

further. These are then ordered using the Kind-Of

connectivity metric. Any ties in ordering at this

point are broken using the semantic distance of

concepts metric.

At this point, if an analogy is Extendable,

analogical reasoning can take place. This reasoning

attempts to maximize the connectivity measure and

minimize the semantic distance measure while

adhering to the formation evaluation constraints.

Examples of the tool in operation in the following

section clarify these points.

5 Testing the Analogical Tool

The analogical tool has been tested on various

examples of analogy from the literature. Examples

have been taken from the CYC project [Lenat et al,

1986], from Centner's work [1983], from Indurkyha's

PhD thesis [1985], from Russell's PhD thesis [1985]

and from Gick and Holyoak [1983]. Two of these

examples are presented here. They show that the

analogical tool performs effectively, using

evaluations which are a result of the knowledge

representation scheme chosen.

5.1 Example I

The first example, shown in Figure 3, is taken from

work on schema abstraction by Gick and Holyoak

[1984] and will be used in two ways by the

analogical tool: first to form a general problem

solving principle, and second to perform simple

analogical reasoning.

In the first case, two analogous problems and

their solutions are presented. An analogy is drawn

between the two domains then abstracted to obtain

a general problem solving principle. This abstrac

tion can later be used to solve similar problems.

Gick and Holyoak use as an example a military

problem and an analogous radiation problem.

In the military problem, a commander wants to

capture a fortress using a large army but cannot send

the entire army down one road because they will be

noticed. The solution is to send small parts of the

army along many roads simultaneously. These sen

tences are represented in the four conceptual graphs
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at the top of Figure 3. Co-referent links are shown

by the very angled arcs connecting concepts with

the same name. Context boxes representing

propositions are the boxes which contain subgraphs

within them.

In the analogous radiation problem, a doctor

wants to use rays to destroy a tumor. The rays

cannot all come from one direction without killing

the patient. The analogous solution is to send low

intensity rays from multiple directions

simultaneously. These sentences are represented in

the bottom four conceptual graphs containing

dashed nodes in Figure 3.

These two situations as represented are given to

the analogical tool, which forms the same analogy

as that presented by Gick and Holyoak. The

following concept correspondences are formed by the

tool:

Rays Army

Tumor Fortress

Possess Possess

Go Go

One One

Many Many

Doctor Commander

Destroy Capture

Want Want

Powerful Large

Direction Road

WeakRays... .Group

The tool also automatically forms an abstraction

similar to that described by Gick and Holyoak, by

using the concept lattice to find common

generalizations of the concepts. The general

problem solving principle formed by the tool is:

A Person wants to use a Mobile Entity to perform a

Violent act on a Stationary Entity.

A Person has a Mobile Entity with an Attribute of

Strength.

The Mobile Entity cannot go along one Path.

The Solution is for Parts of the Mobile Entity to

Go along Many Paths Simultaneously

Note that, although the sentences of the

analogues appear in the same order in Figure 3, the

tool will still find the analogy if the order of the

sentences is changed.

This example can also be used to show how the

tool can perform simple analogical reasoning. In

this case the analogues are the same with the

exception that the solution to the radiation

problem is not known. This is represented as an

empty Proposition node attached to the Solution

relation. When the tool reports the correspon

dences resulting from the best analogy formed, the

two Solution propositions are matched together.

With substitution of corresponding terms inside the

solution to the military problem, a solution to the

radiation problem is realized: to have parts of the

rays go in many directions simultaneously.

5.2 Example II

Example two, shown in Figure 4, is taken from

Centner's description of a heat-water analogy used

by the French thermodynamicist Carnot [Gentner,

1987]. This example is very significant because it

contains a pitfall for over-simplistic analogy

formation processes. The problem arises because

two equal matches occur. An analogy formation

algorithm must be able to determine which is the

more relevant one. Use of the systematicity

principle in Gentner's Structure-Mapping program

results in the correct choice. For the analogical tool

described in this paper, the more relevant match is

correctly detected by the Extendability measure.

At the top of Figure 4 is a representation a person

might have of a water flow situation. The person

knows that if the pressure being exerted on water in

a beaker is greater than the pressure being exerted

on water in a vial, and if there is a fluid path from

the beaker to the vial via a pipe, then this will

result in a flow of the water through the pipe from

the beaker to the vial. The person will also have

other knowledge about the situation such as the

diameter of the beaker being greater than the

diameter of the vial.

The graph at the bottom of Figure 4, represented

by dashed nodes with connecting arcs, is a

description of what that same person might know

about heat flow. In this case the person knows that

the coffee is hotter than the ice-cube and that heat

will flow from the coffee to the ice-cube. The person

does not know that the heat flow is a result of the

difference in heat between the ice-cube and the

coffee.

These two analogues are presented to the

analogical tool. In this example the tool forms two

analogies with equal measures. Both analogies

have formed the same correspondences between

concepts except that in one Temperature has been

matched to Pressure, and in the other Temperature

has been matched to Diameter. Both of these

analogies have the same connectivity rating as

given by the Extent and Kind-Of connectivity

measures.
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Figure 4 Example of A Heat-Water Analogy
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Using the Extendability measure in the analogy

which matches Temperature with Pressure, it is

possible to hypothesize both of the context boxes

from the source water domain as well as the result

relation between them over to the target heat

domain. This hypothesis will be consistent with

all formation evaluation criteria. In contrast, the

analogy which has matched Temperature with

Diameter can only hypothesize the context box

which surrounds the flow concept and its relations.

It is not possible to hypothesize the other context

box as existing without breaking the proposition

evaluation criteria. Thus the Extendable ordering

evaluation not only answers whether an analogy is

extendable or not but can also help with decisions

about which hypotheses are best to make when

performing analogical reasoning.

The result of this use of Extendability is very

similar to that obtained by Gentner's use of the

systematicity principle. The difference is that

rather than being an explicit driving principle like

systematicity, the Extendability measure is more of

an emergent property. This property is part of a

system which has a strategy of maximizing

ordering evaluations while adhering to the

formation evaluation constraints.

6 Summary and Conclusions

This paper has described an analogical tool based

on the formation of partial correspondences between

knowledge structures represented as conceptual

graphs. Evaluation criteria have been derived for

ordering analogies by plausibility that relate

naturally to operations on conceptual graphs.

These have been tested empirically against critical

examples of analogical reasoning in the literature.

The algorithms are written in Smalltalk to give

a tool whose operation is simple and transparent so

the essential relations between the examples,

reasoning patterns and knowledge representation

scheme are apparent.

The use of conceptual graphs for knowledge

representation has been beneficial:

i) in allowing examples of analogical reasoning in

the literature expressed in natural language to

be simply translated to a computational

representation;

ii) in providing a principled algebraic

formulation of the essential operations of

analogy formation and analogical reasoning

that relates simply and naturally to the

semantic constraints found in cognitive studies

of analogy.

The notions of analogy and the relative

plausibility of analogies are cognitively rich and it

is not clear that any computational framework can

capture them in full. There is certainly a very

strong dependence on the underlying knowledge

representation scheme that is used. The results of

this study indicate that conceptual graphs

naturally support the mathematical operations of

forming partial correspondences and provide

evaluation criteria that are strong enough to result

in plausible analogies that correspond to

psychological expectations.
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Between Circumscription and Autoepistemic Logic*
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Stanford, California

\ModaJity—si, modal logic—no!

—John McCarthy, personal communication

Abstract

We introduce a modification of circumscrip

tion which is in many ways similar to au

toepistemic logic, although it does not use

modal operators. Traditional "minimizing"

circumscription can be viewed as a special

case of the new "introspective" version. At

the same time, introspective circumscription

allows us to represent the forms of nonmono

tonic reasoning that correspond to the use of

nonnormal defaults.

1 Introduction

Among the available mathematical models of non

monotonic reasoning, the definition of circumscription

[McCarthy, 1980], [McCarthy, 1986] stands out as par

ticularly economical in its use of logical tools. Unlike

its main competitors, circumscription is not even a new

logic; it is merely a syntactic transformation of formu

las that allows us to formalize nonmonotonic reasoning

in classical logic.1

On the other hand, default logic [Reiter, 1980] and

autoepistemic logic [Moore, 1985] provide some ex

pressive possibilities that seem to have no counterparts

in circumscription. Circumscribing a predicate P cor

responds to the use of the default

-nP(x)

("If it is consistent that ^P(x), then -P(x)"). This

default has a very special form: It is a "normal default

without a prerequisite." The corresponding autoepis

temic axiom is P(*) 3 LP(x) (1)

"This research was partially supported by DARPA un

der Contract N00039-84-C-0211.

'[McCarthy, 1980], Remark 1. "Classical" means here

classical second-order. Although ill-reputed in the auto

mated deduction community, second-order formulas have

always been favorite instruments in foundational studies.

Such important postulates as the axiom of induction and

the completeness axioms in real arithmetic and geometry

are expressed by second-order formulas.

("P(x) only if I believe that P(x)"). Such "normal"

axioms are, syntactically, very special also.

Recent work on applications of formal nonmono

tonic reasoning shows that nonnormal defaults and

nonnormal autoepistemic axioms may be quite use

ful. In [Gelfond, 1987], general logic programs are

translated into autoepistemic theories by inserting the

modal operator L after each negation. This translation

provides a simple and elegant declarative semantics

for a wide class of logic programs. In [Morris, 1987],

[Gelfond, 1989] and [Morris, 1989], nonnormal defaults

and corresponding autoepistemic axioms are used for

eliminating unwanted models in nonmonotonic theo

ries of action ("the Yale shooting problem"). These

important ideas cannot be reformulated in terms of

circumscription in any obvious way.

This discussion leads us to the problem of develop

ing new approaches to formalizing nonmonotonic rea

soning, that will combine the attractive features of cir

cumscription, on the one hand, and of default logic and

autoepistemic logic, on the other. In the best possible

world, a counterpart of nonnormal defaults would be

available, as well as the full power of circumscription,

while modelling nonmonotonicity would be based on a

simple syntactic transformation of formulas of classical

logic.

An important step in this direction is made in

[Perlis, 1988], where the definition of "autocircum-

scription" is proposed. It is formally similar to the

definition of circumscription. But the new concept "is

not really circumscription at all, in the sense that it

does not aim at minimizing extensions." Instead, it is

"related to self knowledge, and especially to negative

introspection."

In this paper we introduce another modification of

circumscription along the lines of Perlis's work. We

call this form of circumscription "introspective." The

main difference between our definition and Perlis's au-

tocircumscription is that our formalism includes both

negative and positive introspection. As a result, it has

some interesting new properties. First, many versions

of McCarthy's "minimizing" circumscription turn out

to be equivalent to special cases of introspective cir

cumscription. Second, introspective circumscription is
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in many ways similar to autoepistemic logic, and has

similar applications to logic programming and com-

monsense reasoning, although it does not use modal

operators.

The new form of circumscription is defined in Sec

tion 2, and its model-theoretic meaning is discussed in

Section 3. Then we study the relation of this theory

to the usual "minimizing" circumscription (Section 4)

and apply the introspective approach to the seman

tics of logic programs (Section 5) and to formalizing

commonsense reasoning (Section 6).

2 Introspective Circumscription

2.1 Definition

Consider a second-order language with finitely many

predicate constants Plt ... , Pn, of arities ill. . .,kn. Ex

tend it by adding, for each i = 1,. . .,n, a new predicate

constant LPi, of arity hi. We will write P for Pi,. . .,Pn,

and LP for LPl,...,LPn.

The formula LPi(...) reads: Pi(-..) is believed. Our

choice of notation LPi is related to the modal operator

L in autoepistemic logic. But the language we use

is not a modal language; it is simply a second-order

language in which predicate constants come in pairs,

Pi and LPi.

For any sentence A(P, LP), its introspective circum

scription A!{P,LP) is the formula

A(P,LP)

A AT=i Vx'[ip(x<) = Wp(A(p, LP) D Pit**))]. W

Here p is a tuple of n distinct predicate variables

Pif-iPm such that the arity of pi is fcj, and X* is

a tuple of ki distinct object variables.

Informally, we think of A as the conjunction of all

beliefs that an agent has (i) about the predicates Pi

and (ii) about his beliefs about the predicates Pi. The

conjunctive term

V**[ifi(**) =\fp{A(p,LP) D Pi(x*))}

in (2) expresses the "rationality" of the agent: he be

lieves that Pi(x') holds if and only if this follows from

his beliefs A. This equivalence will be called the in

trospection condition for Pj. The implications left-to-

right and right-to-left represent "negative" and "posi

tive" introspection.

2.2 Special Cases and Examples

In the following examples n = 1, so that P is a single

predicate, and A1 (P, LP) has the form

A{P, LP) A Vx[ZP(z) = Vp{A{p, LP) D p(x))].

First consider the case when A does not contain LP.

Then A1 can be written as

A{P) AVx[IP(z) = MMp) ^ p[x))].

The introspection condition is in this case an explicit

definition of LP.

Example 1. If A is P(a), then A1 is equivalent to

P{a) AVz(LP(x) = x = a)

(a is the only object about which I believe that it sat

isfies P).

Example 2. If A is P(a) V P(b), then A1 is

[P{a) V P(b)} A [a = b D Vx(LP(x) = x = a)]

A[a^bD Vx-nLP(x)].

On the other hand, if A does not contain P, then

A1 is

A(LP) A Vx[LP(x) = Vp(A{LP) D p{x))}.

In the presence of the term A(LP), the right-hand

side of the introspection condition can be written as

Vp[p(x)]; consequently, it is identically false, and A1 is

equivalent to

A{LP) AVx^IP(x).

Example 3. HA is LP(a), then A1 becomes LP(a)A

Vx-iLP(x). This formula is equivalent to false—a

counterpart of the fact that, in autoepistemic logic,

LP has no stable expansions.

Now let A(P, LP) be

A)(P)AVx(P(x)D£P(x)),

where Aq(P) does not contain LP. The second con

junctive term here is similar to autoepistemic axiom

(1). Then the result of introspective circumscription

is the same as the result of McCarthy's "minimizing"

circumscription applied to Aq(P). More precisely:

Proposition 1. If A is A0(P) A Vx(P(x) D LP{x)),

where Aq(P) does not contain LP, then A1 is equiva

lent to

Circum(A0(P); P) A Vx(LP{x) = P(x)).

The expression Circum(Ao(P); P) denotes here the

circumscription of P relative to Ao(P), i.e., the con

junction of Ao(P) and

MMP) A Vx(p(x) D P(x)) D Vx(p(x) = P(x))].

(Proofs are given in the appendix.)

In Section 4 we show that some other forms of min

imization can be reduced to introspective circumscrip

tion too.

Remark 1. Since this formalism includes quantifiers,

it is interesting to compare it with the existing defini

tions of predicate autoepistemic logic, [Levesque, 1989]

and [Konolige, 1987]. Our approach has some expres

sive capabilities not available in these two systems.
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The first of them does not have equality (only "iden

tity"), so that it cannot represent our Example 2. The

second system does not permit "quantifying-in," so

that it cannot represent the formula from Proposition

1.

Remark 2. Autoepistemic logic allows us to write

the modal operator L in front of any formula, not nec

essarily atomic, while the use of the predicates LPi

corresponds to applying the belief operator to atoms

only. This restriction is not very essential. In order

to express that a nonatomic formula F(x) is believed,

we would introduce a new predicate constant Pn+i>

explicitly defined by the axiom Pn+i(x) = F(x), and

then write LPn+\(x).

3 Models of Introspective

Circumscription

In this section we give a model-theoretic characteriza

tion of introspective circumscription.

3.1 Fixpoints

Let M be a model of A(P, LP), where P and LP are

tuples Pi, . . ., Pn and LPi, . . . , LPn, as in Section 2.

Consider the models of A(P,LP) obtained from M

by possibly changing the extents of some or all of the

predicates P. For any i = 1, . . . ,n, let aj(Af) be the

intersection of the extents of Pi in all such models.

Furthermore, let (3(M) be the structure obtained from

M by making the extent of each LPi (i = l,...,n)

equal to Qi(Af).

Proposition 2. A model M of A satisfies A1 iff

0(M) = M.

We see that the models of introspective circumscrip

tion can be characterized as the fixpoints of the op

erator (3. In this respect, introspective circumscrip

tion is similar to default logic and autoepistemic logic,

where "extensions" and "stable expansions" are de

fined as the fixpoints of certain operators. The differ

ence is that our fixpoints are models, rather than sets

of formulas.2

The definitions of or* and /3 can be reformulated us

ing the following notation. Let Xi , . . . , Xn be sets

of tuples of elements of M such that the length

of each tuple in Xi equals the arity of Pi. We

will write M[Xi, . . . , Xn/Pi, .. ., Pn] for the structure

which differs from M in that it interprets Pi, . . . , Pn

as Xi, .. .,Xn. Then

Oi{M) =

'McCarthy's circumscription is sometimes described as

a "minimizing" and "model-theoretic" approach, while

most other nonmonotinic formalisms are said to be "fix-

point" and "syntactic." Our analysis of introspective cir

cumscription shows that there is no reason why these char

acteristic should be correlated.

n **. (3)
...,x

I. —I

P(M) = M[ai(M), . . .,an(M)/LPu ..., LPn).

M[Xi Xn/Pi,l,K)l=A(P,LP)

Remark 3. The definition of /3 is closely related to

the usual model-theoretic interpretation of modality.

We can think of a model M[Xi, . . ., Xn/Pi, . . . , Pn] as

a "possible world," and then /3(M) interprets LP,(x)

as the truth of Pi(x) in each of these "worlds."

3.2 Propositional Case

The definition of introspective circumscription and its

model-theoretic characterization given above are ap

plicable, in particular, to the case when the arities of

some or all of the predicates Pi equal 0, i.e., when some

or all of the symbols Pi are propositional. In this case,

Xi is a Boolean variable, and the intersection opera

tion in (3) should be understood as conjunction.

If all symbols Pi are propositional, then a model of

A(P, LP) is simply a 2n-tuple of truth values, repre

senting the interpretations of Pi,. . .,Pn,LP\,. . .,LPn,

and the operator /? defined above is a mapping of

{false, true}2n into itself. Instead of using /3, we can

describe the models of propositional introspective cir

cumscription by means of a simpler operator 7, which

maps {false, true}*1 into itself. This operator is defined

as follows:

7<(y)= A x* (*

X:A(X,Y)

1... ,n),

y(Y) = (yi(Y),...,yn(Y)).

Here both X and Y range over {false, true}n, and Xi

is the i-th component of X.

Proposition 3. A model (X, Y) of a propositioned

formula A{P,LP) satisfies AJ(P,LP) iffy(Y) = Y.

In order to stress the fact that 7 is determined A,

we will sometimes write it as -fA.

3.3 Examples

Example 4. Let A be Px A P2. Then

li{Yi,Y2)= f\ Xi =tme.

Similarly, 72(^1, Y2) = true. Then

7(^1) ^2) = {true, true).

The only fixpoint of this operator is (true, true).

Proposition 3 shows that the models of A are the

models of A in which both LPi and LP2 are true.

Consequently, the only model of A is

(true, true, true, true).
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Example 5. If A is Px V P2, then

-ri(YuY3)= /\ Xi = false.

Similarly, 72 (Yi, Y2) = false. Then

j(YuY2) = (false, false).

The only fixpoint of this operator is (false, false). The

models of A1 are the models of A in which both LP\

and LP2 are false; there are 3 such models:

(true, true, false, false),

(true, false, false, false) ,

(false, true, false, false).

Example 6. If A is LP\ V P2, then

-Yi(YuY2)= /\ X, = false,

X1,X3:Y1vX3

72(Vi,r2)= /\ X2 = ^YU

X^XfYiVX?

y(YuY2) = (false, ^Yi).

The only fixpoint of this operator is (false, true). The

models of A1 are the models of A in which LP\ is false

and LP2 is true; there are 2 such models:

(4)

(true, true, false, true),

(false, true, false, true).

Example 7. Let A be LPi V Px. Then

T(Yi) = 71(^1)= A *i =^yi"

It is clear that 7 has no fixpoints. Consequently A1 is

inconsistent.

4 Minimizing by Introspection

Our next goal is to extend Proposition 1 to other forms

of minimization. We use the notation of [Lifschitz,

1985]. For any predicate symbols Qi, Q2, the ex

pression Qi < Q2 stands for Vx(Qi(x) D Q2(x)), and

Q\ = Q2 stands for Vx(Qi(x) = Q2(x)).

4.1 Parallel Circumscription

If P is a single predicate (n — 1), then, according to

Proposition 1, minimizing P is expressed by the ax

iom P < LP. Consider the general case, when P is

the list of n predicate constants Pi, . . . ,Pn. Several

different minimizations can be applied then to Aq(P).

We can decide which of the predicates Pi,. . .,Pn will be

minimized; let the minimized predicates be Pi,...,Pk

(1 < k < n). Furthermore, about each of the remain

ing predicates we can decide whether it will be fixed

or varied in the process of minimization; let the fixed

predicates be Pk+i,- ■ -,Pi (k < I < n), and the remain

ing predicates Pj+i,. . .,Pn be varied. The result of the

minimization corresponding to this "circumscription

policy" is denoted by

Circum(A0(P); Pi, ... , Pk; ft+i, . . . , Pn). (5)

How can this formula be expressed in terms of intro

spective circumscription?

It turns out that the introspective circumscription

of

A0(P) APi<LPi/\...APk<LPk

corresponds to minimizing Pi,..., ft with all othei

predicates Pk+i,. . . ,Pn varied (i.e., to the case when

I — k). Having the predicate Pj for some i > k fixed

can be expressed by Pj = LPi, so that the effect of

circumscription (5) can be achieved by applying intro

spective circumscription to

A0(P) APi<LPiA...APk<LPk , v

APk+i = LPk+i A . . . A Pt =LPl W

More precisely, we will prove the following generaliza

tion of Proposition 1:

Proposition 4. If A(P,LP) is (6), where A0(P)

does not contain LP, then A\P,LP) is equiva

lent to the conjunction of (5) with explicit defini

tions of the predicates LP (i.e., with formulas of the

form Vx'(IPi(z*) = Bi(P,x{)), i = l,...,n, where

Bi(P,xt) does not contain LP and has no parameters

other than xl).

In other words, the introspective circumscription of

(6) is a definitional, and consequently conservative, ex

tension of (5).

Remark 4. The introspective circumscription A1 is

completely determined by the formula A; it does not

have any additional "policy" parameters. Different

forms of minimization are represented by additional

axioms: P; < LP{ minimizes P<, and Pi = LPi makes

it fixed. In this respect, introspective circumscrip

tion is similar to the formalisms proposed in [Lifschitz,

1987] and [Lifschitz, 1988]. There are some differences,

however. First, this special case of introspective cir

cumscription performs "global," rather than "point-

wise" minimization. Second, additional axioms are re

quired here to keep a predicate fixed, rather than to

let it vary.

4.2 Prioritized Circumscription

Some applications require that priorities be established

between the tasks of minimizing different predicates

[McCarthy, 1986], [Lifschitz, 1985], or between the

tasks of minimizing a predicate at different points [Lif

schitz, 1987], [Lifschitz, 1988]. Our method can be

easily extended to these more general forms of mini

mization.

Assume, for instance, that n — 2, and that we want

to minimize Pi and P2 relative to A0(Pi, P2), with Px
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given a higher priority. This assignment of priorities

can be described using the lexicographical order ■< on

pairs (pi,p2):

(P1.P2) ■< (9i>92) =Pi <9i Mpi =9i DP2 <q2)-

The corresponding prioritized circumscription is

AVp1p2[A(pi,P2)A(p1,p2)^(P1,ft) (7)

D(pi = -PiAp2 = P2)].

In terms of introspective circumscription, minimizing

Pi at a higher priority and P2 at a lower priority can

be represented by the axioms Pi < LP\ and

Pi = LPi D P2< LP2.

The conjunction of these formulas can be written as

(fi.-Pi) < (LP1,LP2). We will prove the following

counterpart of Proposition 1 for prioritized circum

scription:

Proposition 5. If A is

A0(Pi, P2) A (Pi, P2) ^ (IPi, LP2),

where Ao(Pi, P2) does not contain LP\, LP2, then A1

is equivalent to the conjunction of (7) with the formu

las LPi = Pi and LP2 - P2.

"Chronological minimization" [Shoham, 1988] can

be reduced to introspective circumscription, too. If P

is a unary predicate whose argument is interpreted as

time, then the axiom

Vt{W[earlier(t',t) D (P(f') = LP{t'))] A P(t)

DLP(t)}

expresses that a higher priority is given to minimizing

P at earlier instants of time.

5 Introspection and Logic

Programming

In [Gelfond, 1987], logic programs are translated into

autoepistemic theories by inserting the modal opera

tor L after each negation. We will define a semantics

for logic programming on the basis of a similar trans

lation, that replaces each negative literal ->P<(. . .) by

-i£Pj(. . .), and then applies introspective circumscrip

tion. Both transformation are based on the same idea

of interpreting "negation as failure" in terms of intro

spection: A negative literal -iA in the body of a rule

expresses that the program gives no grounds for be

lieving in A.

First we will define the semantics for propositional

programs and compare it with the "stable model" ap

proach proposed in [Gelfond and Lifschitz, 1988] and

with Gelfond's autoepistemic semantics. Then the

general case will be discussed.

5.1 Propositional Programs

A propositional logic program is a finite set of formulas

of the form

Ai A . . . A Am D B, (8)

where m > 0, each of Ai^.^Am is a propositional

literal (i.e., a propositional symbol possibly preceded

by negation), and B a propositional symbol. These

formulas are called the rules of II; the antecedent of

rule (8) is called its body, and the consequent B is its

head.

Let II be propositional logic program. By TLL we

denote the conjunction of the formulas obtained from

the rules of II by replacing each negative literal -iPj

in its body by ->XPj. We claim that TiLI , the intro

spective circumscription of UL, represents the declar

ative meaning of II. More precisely, we consider a

propositional program II "well-behaved" (meaningful)

if, for each i, ULI entails exactly one of the literals

LPi, -1LP,-. If a meaningful program II implies LPi,

then we say that the value assigned by II to Pi is true;

otherwise, it is false.

Example 8. Consider the program II consisting of

just one rule:

-Pi D Pi- (9)

Then IIL is -.LPi D P2, or, equivalently, LPi V P2.

In Example 6 we found that the introspective circum

scription of this formul has two models. In both of

them, the value of LPi is false, and the value of LP2 is

true. Consequently, II is a well-behaved program, as

signing the value false to Pi and the value true to P2 .

This conclusion agrees, of course, with the traditional

procedural interpretation of (9).

Example 9. The program -*Pi D Pi is not well-

behaved: We showed in Example 7 that the introspec

tive circumscription of LPi V Pi is inconsistent.

The following proposition shows how this semantics

can be reformulated in terms of the operator 7 defined

in Section 3.2.

Proposition 6. (i) A propositional program U is

well-behaved iff f11 has a unique fixpoint. (ii) If a

propositional program II is well-behaved, and Y is the

fixpoint off , then the value assigned by U to Pi

equals YJ.

5.2 Stable Models

The basic definitions related to stable models [Gelfond

and Lifschitz, 1988] can be stated as follows. Let II

be a propositional logic program whose propositional

symbols are Pi,. . .,Pn. For any Y £ {false, true}n, let

Ily be the program obtained from II by deleting (i)

each rule that has a negative literal -<Pi in its body

such that Yi = true, and (ii) all negative literals in the

bodies of the remaining rules. Clearly, II y is negation-

free, so that it has a unique minimal Herbrand model.
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This model is denoted by Sn(l^). Thus Sri is a map

ping of {false, true}*1 into itself. We say that Y is a

stable vector of II if it is a fixpoint of Sn- Any stable

vector of II is a model of II ([Gelfond and Lifschitz,

1988], Theorem 1), so that stable vectors can be also

called stable models. According to the stable model

semantics, a propositional program II is meaningful if

it has exactly one stable model; the value of P* in that

model is declared to be the value assigned to Pi by II.

There is a simple relation between the construction

used in the stable model semantics and the operator 7

defined in Section 3.2:

Proposition 7. For any propositional logic program

n,Sn
un*

Propositions 6 and 7 show that the semantics of

propositional logic programs defined in Section 5.1 and

the stable model semantics are exactly equivalent.

5.3 Autoepistemic Logic

According to Theorem 3 from [Gelfond and Lifschitz,

1988], the stable model semantics is also equivalent to

the translation of logic programs into autoepistemic

theories proposed in [Gelfond, 1987]. We conclude that

autoepistemic logic, stable models and introspective

circumscription provide three equivalent descriptions

of the meaning of propositional logic programs.

This fact has an interesting consequence related to

the more general problem of comparing autoepistemic

logic with the propositional case of introspective cir

cumscription. A propositional formula A(P, LP) can

be viewed as a formula of autoepistemic logic, if we

identify an atom LPi with the autoepistemic formula

"LPi. What is the relation between the introspective

circumscription A1 and the stable expansions of the

autoepistemic theory with the axiom A1

We can answer this question in the special case when

A has the form II^, where II is a well-behaved pro

gram. According to Theorem 3 from [Gelfond and

Lifschitz, 1988], such A has a single stable expansion.

For every i, this stable expansion contains either LPi

or ->LPi. Our Propositions 6 and 7 and Theorem 3

from [Gelfond and Lifschitz, 1988] imply that such a

literal belongs to the stable expansion of A if and only

if it follows from A1.

Michael Gelfond has proved a generalization of this

fact to arbitrary propositional formula (personal com

munication).

5.4 General Programs

A general logic program is a finite set of formulas of

form (8) where each of A\,. . .,Am is a literal, and B is

an atom.

Both the autoepistemic approach and the stable

model method reduce general programs to the proposi

tional case by replacing every rule with variables by its

ground instances. This amounts to ignoring any mod

els of a logic program other than its Herbrand models.

When introspective circumscription is used, it is no

longer necessary to use such a reduction. The defini

tion of EI for general programs is similar to the defi

nition for propositional programs given in Section 5.1:

II is the conjunction of the universal closures of the

formulas obtained by replacing every negative literal

-iPi(. . .) in the body of each rule of II by -iLP,(. . .).

As before, we claim that ULI represents the declarative

meaning of II. A general logic program II assigns the

value true or false to a ground atom Pi(. . .) depending

on whether LPi{. . .) or -i£Pi(. . .) can be derived from

ULI using Clark's equality axioms [Clark, 1978]. (For

a logic program without functions, these axioms are

simply the inequalities a ^ b for all pairs of distinct

constants a, b.)

The following example illustrates the difference be

tween applying introspective circumscription directly

to a program with variables, as suggested here, and

replacing rules by their ground instances.

Example 10. Let II be the program

-.Pi(x) D Pa,

Pi (a).

Then UL is

V»(-.IA(«) D P2) A Pi(a).

The introspective circumscription of this formula im

plies that LP2 is equivalent to 3x(x ^ a); it entails

neither LP2 nor -1LP2. This absence of a definite re

sult reflects the fact that, intuitively, II assigns dif

ferent values to Pi depending on whether or not a is

considered the only possible value of x. The answer

would have been different if we replaced the first rule

of II by its only ground instance in this language,

-.Pi(a) D P2,

because the introspective circumscription of

(-.LP^a) D P3) A P^a)

implies ^LPi-

6 Introspection and Commonsense

Reasoning

We will illustrate the use of introspective circum

scription for formalizing default reasoning on a simple

example—Problem Al from [Lifschitz, 1989]. We are

given the following information: Blocks A and B are

heavy; heavy blocks are normally located on the table;

A is not on the table. The goal is to conclude that B

is on the table.

In the appendix to [Lifschitz, 1989], this example

is formalized in many different ways, using a number

of nonmonotonic formalisms. Here are two more solu

tions, based on introspective circumscription.
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The first formalization has the axioms

A ^ B, heavy A, heavy B, -tontable A, (10)

heavy x A -*ab x D ontable x, (11)

and

ab x D Ljib x.

According to Proposition 4 (Section 4.1), the intro

spective circumscription of (the universal closure of

the conjunction of) these axioms has the same effect

as minimizing ab relative to (10) and (11), with all

predicates varied. Its result is

ab x = x — A,

and the desired conclusion

-tontable B (12)

easily follows. This solution is essentially a "simple cir

cumscriptive theory" in the sense of [McCarthy, 1986],

expressed in the language of introspective circumscrip

tion.

The second possibility is to use axioms (10),

heavy x A -^L.ab x D ontable x (13)

and

ab A.

By simplifying the introspection condition for ab we

get:

Luab x = x = A,

and this again implies (12). This solution is in the style

of the autoepistemic approach of [Gelfond, 1989], like

Solution 6 from [Lifschitz, 1989], except that we did

not have to replace (13) by its ground instances.

Notice that both solutions given above allow us to

prove

heavy x A x ^ A D ontable x.

Like other solutions based on circumscription, they

formalize "default reasoning in an open domain,"

which presents problems for Reiter's logic of defaults

and for autoepistemic logic (see [Lifschitz, 1989], note

to Problem A5).

This example is rather typical: Using introspective

circumscription, we are able to model familiar appli

cations of minimizing circumscription and autoepis

temic logic to formalizing commonsense reasoning, and

we get some additional benefits from the availability

of quantifiers and equality. As another example of

such benefits, we can observe that introspective cir

cumscription easily handles "autoepistemic reasoning

in an open domain": Given that block A is on the ta

ble, conclude that about any block other than A it is

not known whether it is on the table ([Lifschitz, 1989],

Problem E3). Here the only axiom is ontable A, and

introspective circumscription gives

Ljontable x = x = A.

This is isomorphic to Example 1 from Section 2.2.
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Appendix. Proofs of Theorems

Some of the proofs use the following fact:

Lemma 1. A'{P,LP) implies LP{ < P{ (1 < i < n).

Proof. Assume AT(P,LP) and LPi(x). Then

A(P,LP) and Vp(A(p,LP) Z> Pi(xi)). Consequently,

«(»')•

Proposition 1. If A is Mp) A Vx{P(x) D LP(x)),

where Ao(P) does not contain LP, then A1 is equiva

lent to

Cucum{A0(P);P) AVx(LP{x) = P(x)).

Proof. If A is A0(P) A P < LP, then A1 is

A0{P) AP<LP

AVx[LP(x) = Vp(A0(p) Ap < LP D p{x))}.

Lemma 1 shows that the second conjunctive term can

be replaced by LP — P. Consequently, A1 can be

written as

A0(P) A Vx[P(x) = VP(Mp) A p < P D p(x))]

ALP = P.

In this formula, the second conjunctive term can be

replaced by the implication left-to-right

Vx[P(x) D MMP) A P < P D p(x))}, (14)

because the implication right-to-left is trivial (substi

tute P for p). Furthermore, (14) is equivalent to

MMp) a p < p d p < p).

We conclude that A1 is equivalent to

Ao(P) A Vp{MP) Ap<PDP<p)ALP=P.

The conjunction of the first two terms is equivalent to

Circum(A0(P);P).

Proposition 2. A model M of A satisfies A1 iff

f3{M) = M.

Proof. Let M be a model of A(P, LP). The condition

fi(M) = M is equivalent to

MlLPiJ = Oi{M) (1 < t < n).

(By M[Q] we denote the extent of Q in M.) Further

more, it is clear from the definition of a, that

ai{M) = M[AxVP(A(p,IP) D Pi(xi))l

Consequently, /3(M) = M iff

M\LPil = Ml\xip{A{p,LP) D Pi(xi))l

for all i = 1, . . . , n, which is equivalent to saying that

M satisfies the introspection conditions in (2).

Proposition 3. A model (X, Y) of a propositional

formula A(P,LP) satisfies A'{P,LP) iff-y{Y) = Y.

Proof. The introspection condition for a propositional

symbol P* is

LPi=Vp(A(p,LP)DPi).

Let (X, Y) be a model of A{P,LP). It is clear from

the definition of fi that n(Y) is the truth value

of Vp(A(p,LP) D pi) in this model. Consequently,

ji(Y) = Y{ iff (X,Y) satisfies the introspection con

dition for Pit and y(Y) = Y iff (X,Y) satisfies all

introspection conditions.

Proposition 4. If A{P,LP) is (6), where A0(P)

does not contain LP, then AT(P,LP) is equiva

lent to the conjunction of (5) with explicit defini

tions of the predicates LP (i.e., with formulas of the

form Vx'(LPj(x') = Bi(P,x{)), i = l,...,n, where

B,(I\xl) does not contain LP and has no parameters

other than xx).

Proof. To simplify notation, we will drop the super

script i in xl. Using Lemma 1, we can transform A1

as follows:

A\P, LP) = AJ{P, LP) A AJ LPi < Pi

= A0(P) A ALi Pi < LPi A AU+i Pi = LPi

AA?=iVx[LP,s

= Vp(A0(p) A A*=1P, < LPj A /\'j=k+1 Pj = LPi

3 Pi*))

*K=iLPi<Pi

= mp) a a!=i Pi = LPi a a:=j+1 l^ < ^

AAr=iVx[LP,-z

= Vp(A0(p) A Aj=1Pi < Pj A Aj=fc+1 Pi = Pj

DPi*)]

= MP) A Al=i pi = LPi A Al=i MPi* = Ci{x))

AAL+iIY*("4» = Ci(*)) A LPi < Pi],
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where Ci(x) stands for

it i

Vp[(Ao(p) A /\ Pj < P};A /\ Py=Py)DPix]

3=1 }=k+l

(»=l,...,n).

To simplify A1 further, we will first show that Ao(P)

implies Vi(Cj(x) D Pix). Assume Ci(x). Then

k i

{A0(P)a/\Pj<PjA /\ P^P^DPiX,

and consequently PjX.

This fact allows us, first, to replace Vx(P,x = C{(x))

by Vx(PjX D Ci(x)), and, second, drop the term LPi <

Pi. We conclude that A'(P, LP) is equivalent to

MP) A ALi Pi = LPi

Define

(15)

*x{r,x)- \d(x)} iil+l<i<n.

Then (15) can be written as

MP) A ALiVz(P<z ^ Ci(x))

AK=1Vx(LPiX = Bi(P,x)).

Now take some i < I, and consider the formula

Vx(P;z 3 Q(z)). It is equivalent to

Vx[P<x

D Vp((A0(p) A A*=1 Pi < P, A A5=t+1 Pj = -P;)

3p<i)],

and consequently to

* t

Vp[(A0(p) A /\ Pi < P, A /\ Pj; = Pj) DPi< Pi] .

j= l j=k+ l

For i = fe + 1, • • ■ 1 1, the last formula is trivially true;

for i = 1, . . . , k, it is equivalent to

V[A0(p1,...,Pfc+i,...,pi+i,...) A A*=iPj < Pj

DPi< Pi] ■

where V stands for Vpi . . . pjtpi+i . . . p„. Then

i

A0(P) A /\Vx{PiX D Ci(x))

t=i

is equivalent to

AojP)

AV[A0(pi, . . . , Pk + i, . . . ,pi+i, . . .) A ALi Pj < -Pj

^A;=iP.<Pi].

which is equivalent to circumscription (5).

Proposition 5. If A is

A0(Pi,P2) A (Pi, P2) ;< (IPi, LP2),

where Ao(Pi, Pj) does not contain LPi, LP2, then A1

is equivalent to the conjunction of (7) with the formu

las LPx = Pi and LP2 = P2.

Proof. We write P for Pi, P2 and p for Pi,P2- As in

the proof of Proposition 1, we use Lemma 1 to simplify

A1 , as follows:

A1 = A0(P) AP^ LP

AVx[IPi(z) = Vp(A0(p) Ap X LP D pi(x))]

AVy[IP2(y) = Vp(A0(p) Ap ^ LP D p2(y))]

= A0{P) A P = LP

AVx[Pi(x) = Vp(A0(p) A p < LP D pi(x))]

AVy[P2(y) = Vp(A0(p) A p X LP D p2(y))]

= A0(P)aP = LP

AVx[Pi(x) = Vp(A0(p) A p X P D Pl(x))]

AVy[P2(y) = Vp(A0(p) A p * P D p2(y))]

= A0(P) AP = LP

AVx[Pi(x) D Vp(A0(p) Ap < P D Pi(x))]

AVy[P2(y) D Vp(A0(p) Ap ^ P D p2(y))]

= A0(P) AP = LP

AVp[A0(p)ApXPDPi <Pi]

AVp[A0(p) Ap^DP2<P2]

= A0(P) A P = LP A Vp[A0(p) Ap ■< PDP<p\

= A0{P) A Vp[A0(p) Ap X PDp = P]AP=LP.

It is convenient to prove first Proposition 7, and then

Proposition 6.

Proposition 7. For any propositional logic program

H, Sn=7n'-

Proof. Let II (P) be (the conjunction of the rules

of) a propositional logic program, and let UL(P, LP)

be the result of replacing each literal -<Pi in II(P)

by -iLPj, as defined in Section 5.1. Take any vec

tor Y £ {false, true}*1. It is clear that the program Ily

constructed as in Section 5.2 is equivalent to TlL(P, Y).

It follows that a vector X G {false, true}" satisfies

UL{X,Y) if and only if X is a model of Ily. Then

the conjunction of Xi over all X satisfying UL(X,Y)

is the value of Pj in the minimal model of Ily. Con

sequently, ~yn(Y) is the minimal model of Ily, that is,

Sn(Y).

The proof of Proposition 6 is based on the following

lemma.

Lemma 2. Let II be a propositional logic program. If

Y is a Rxpoint of 7"*, then (Y, Y) is a model ofULI.

For instance, if II is (9), then the second of the mod

els (4) of ULI has the form (Y,Y), where Y is the

fixpoint (false, true) of 711 .

Proof. Let II(P) be (the conjunction of the rules of)

a propositional logic program, let UL(P,LP) be the

result of replacing each literal ->Pj in II(P) by -'LPi,
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and let Y be a fixpoint of 7 . In view of Proposition

7, Y is a stable vector of Tl(P). Consequently, Y is a

model of II(P). But it is clear from the definition of UL

that n(Y) is equivalent to UL(Y, Y). Consequently,

(Y, Y) is a model of IlL{P, LP).

Proposition 6. (i) A propositional program U is

well-behaved iff ~fU has a unique fixpoint. (ii) If a

propositional program II is well-behaved, and Y is the

fixpoint of 7 , then the value assigned by U to Pi

equals Yi.

Proof, (i) Assume that II is well-behaved, that is,

for each i, IIL/ entails exactly one of the literals LPi,

-*LPX. Then ULI is consistent. It follows then from

Proposition 3 that -yp' has a fixpoint. If Y and Y'

are two different fixpoints of fPl , then, by Lemma 2,

(Y, Y) and (Y1, Y') are models of IIL/, and they assign

different values Y, Y' to LP. This contradiction shows

that 7 has a unique fixpoint. Assume, on the other

hand, that yPt has a unique fixpoint Y. Then, by

Lemma 2, (Y, Y) is a model of ULI . Consequently, II1,7

is consistent, and it cannot entail both LPi and ^LPi.

If it entails neither LPi nor ^LPi, then there exist

models (X, Y) and {X', Y') of HLI such that Y{ = false

and y/ = true. Then, by Proposition 3, jPt has two

different fixpoints Y, Y'. (ii) Assume that II is well-

behaved, and let Y be the only fixpoint of 7° . Then,

by Lemma 2, (Y,Y) is a model of Y1L . Consequently,

the value assigned to Pi by II is Yi.
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Abstract

We introduce the notion of argument sys

tems. The key notions in an argument sys

tem are inference rules, arguments, argument

structures, and completeness conditions. Ar

gument structures are aggregations of argu

ments, which in turn are trees of inference

rules. Completeness conditions define the

closure of knowledge. From the informal

standpoint, we find the definitions both sim

ple and intuitive. From the formal stand

point, we show that default logic, autoepis-

temic logic, negation as failure principle, and

circumscription are all special cases of the

proposed framework.

1 Introduction

In this paper we propose a new framework for for

malizing commonsense reasoning, and in particular its

nonmonotonic nature. Many nonmonotonic logics ex

ist in the literature. These include various forms of

circumscription [McCarthy, 1986, Lifschitz, 1987], Mc-

Dermott and Doyle's nonmonotonic logic I [McDer-

mott and Doyle, 1980] and II [McDermott, 1982], Re-

iter's default logic [Reiter, 1980], Moore's autoepis-

temic logic [Moore, 1983], and Shoham 's chronological

ignorance [Shoham, 1988].

Our proposed framework, the notion of argument

systems, is in a way a radical departure from previ

ous approaches. The most novel feature of argument

systems is that they are based entirely on inference

rules. This contrasts with existing systems (such as the

"This work was supported by NSF grant IRI-8721701,

IBM grant 1220042, and a gift from DEC Corporation.

The first author acknowledges also the support of the Sloan

Foundation.

ones listed above), which are all sentence-based (de

fault logic might be considered an exception). In fact,

our proposal will not even presuppose that the under

lying language has associated truth-functional seman

tics, although, of course, we allow that as a special

case.

We find the framework advantageous in two re

spects. First, we show that default logic, autoepis-

temic logic, negation as failure, and circumscription

are all special cases of the proposed framework. As

an added benefit, we show that further insight can

be gained into common features of the various special

cases. We will thus be able to greatly extend previous

unifying results, such as [Etherington, 1987, Konolige,

1987, and Shoham, 1988]. In particular, our unifying

results suggest that a generalized "negation as failure"

rule may be useful in implementing the existing non

monotonic logics. Second, our framework is very sim

ple, both mathematically and conceptually. In fact,

it surprised us that such a simple framework can cap

ture all those logics mentioned above, some of which

are quite complex.

In this paper we stick to theoretical considerations,

focussing on the expressive power of our framework. In

a companion paper [Lin and Shoham, 1988] we discuss

the applications of argument systems to "practical"

cases, such as inheritance hierarchies. This paper is

organized as follows. In Section 2 we define the theory

of argument systems. In Section 3 we show that all

major existing nonmonotonic logics are special cases of

our framework. In Section 4 we summarize our results.

2 Basic Definitions

Throughout this section we fix a language C so that

in the following when we say, for example, that ip is a

well-formed formula (wff), we mean that ip is a wff in
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C. The only requirement we have of C be that it has

a special operator "->" so that if y is a wff, then -up

is also a wff. At the moment no logical properties are

assigned to the operator -i. In particular, no inher

ent connection between <p and -i-up is assumed. We

do not even presuppose the existence of the notion of

variables in £, nor do we presuppose that it has asso

ciated truth-functional semantics. Its sole function is

to provide us with a set of wffs.

Definition 2.1 An (inference) rule is an expression

of one of the following forms:

1. A, where A is a wff. A rule of this form will be

called a base fact.

2. Ai,...,An—*B, where n > 0, and A 's and B are

wffs. A rale of this form will be called monotonic.

3. A\, . . . , An => B, where n > 0, and A 's and B are

wffs. A rule of this form will be called nonmono

tonic .

Intuitively, a base fact represents our explicit knowl

edge about a specific domain. For example, the fact

that Tweety is a bird can be represented as a base

fact bird(Tweety). A monotonic rule A\, . . . , An —» B

represents our deductive knowledge about the domain,

it always enables us to conclude the B from the A's.

For example, the knowledge "if a is a penguin, then it

is also a bird" can be represented as the monotonic

rule penguin(a) —* bird(a). A nonmonotonic rule

A\, ... ,An => B represents our commonsense knowl

edge about the domain. It usually enables us to con

clude the B from the A's, but there may be excep

tions. For example, the statement "if a is a bird, then

it flies" can be represented as the nonmonotonic rule

bird(a) => fly(a).

Chaining rules together into trees we get arguments,

which are used to establish propositions.

Definition 2.2 Let R be a set of rules. An argument

in R is a rooted tree with labeled arcs, and is defined

inductively as follows

1. If A is a base fact, then the tree consisting of A

as a single node is an argument. A is the root of

that argument.

2. If pi pn are arguments whose roots are

Ai,..., An, respectively, and A\,...,An —* B is

a rule in R such that B is not a node in any one of

the trees pi, • • • ,Pn, then the tree p with B as its

root and p\ pn as its immediate subtrees is an

argument, p is said to be formed from pi, . . . ,p„

by using the monotonic rule A\, . . . ,An —* B.

This monotonic rule is the label of all links from

the root B to Us children.

S. If p\ , . . . , Pn are arguments whose roots are

A\, ... , An, respectively, and A\, . . . , An => B is

a rule in R such that B is not a node in any one of

the trees Pi, . ■ ■ ,pn, then the tree p with B as its

root and Pi,-..,Pn as its immediate subtrees is an

argument, p is said to be formed from Pi, ■■ ■ ,pn

by using the nonmonotonic rule A\, . . . , An => B.

This nonmonotonic rule is the label of all links

from the root B to its children.

An argument p is said to be for <p, or ip is supported

by p, if <p is the root of p. Notice that according to our

definition of arguments, if the argument pis for <p, then

ip can only appear as the root of p, that is, arguments

are well founded. This is in order to prevent us from

generating an infinite number of redundant arguments.

For example, from the rules A and A —► A we can only

have one argument, that is, A. A —► A, A —» A —* A,

etc. are not arguments.

Example 2.1 [Penguins do not fly] Let R be the set

of following 8 rules:

ri : True

r2 : Penguin(a)

r3 : Penguin(a) —* Bird(a)

r< : Penguin(a), -iab(penguin(a)) —> -<Fly(a)

r5 : Bird{a),-nab{bird(a)) -* Fly[a)

T6 : Penguin(a) —» ab(bird(a))

r-j : True -^ -iab(penguin(a))

r$ : True => -iab(bird(a))

There are also 8 arguments in R:

Pi

P2

P3

P4

P5

Pe

Pi

P8

True

Penguin(a)

p1 ^ -iab(penguin(a))

p1 ^ -Tab(bird(a))

P2 ^ Bird{a)

P2 -A ab(bird(a))

P3.P2 H -'Fly (a)

P4.P5 ^ Fly(a)
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Grouping arguments together we get the notion of

argument structures. These can be viewed as the sets

of logically consistent arguments held by an agent.

Definition 2.3 Let R be a set of rules. A set T of

arguments in R is an argument structure of R if the

following conditions are satisfied:

1. If p is a base fact in R, then p € T.

2. T is closed, that is, for any p £ T if p' is a subtree

of p, then p' € T.

3. T is monotonically closed, that is, if p is formed

from pi, . . . ,pn in T by a monotonic rule, then p

is also in T.

4- T is consistent, that is, it does not contain argu

ments for both tp and -xp, for any wff tp.

These conditions for argument structures are very

weak. In particular, notice that no attempt is made to

have argument structures be "maximal" in any sense.

In fact, the related notion of completeness will play a

central role in the following sections.

Intuitively, knowledge is complete if for every propo

sition about the world, either it or its negation is

known. Clearly, complete knowledge is desirable

but often unattainable. Nonmonotonic logics can be

thought of as transforming partial knowledge to a more

complete one.

In our formal system, we will define the notion of

completeness with respect to a wff <p: an argument

structure is complete about ip iff it contains an argu

ment for either tp or its negation. We will then consider

argument structures that are complete with respect to

a class of wffs. It turns out that by being subtle about

choosing these classes of wffs, we can capture both

the similarities and differences between specific exist

ing nonmonotonic logics. In practical, as we show in

[Lin and Shoham, 1988], completeness conditions of

ten enable us to pick out the intuitively right argument

structures from the logically possible ones.

Another notion that will be used throughout this pa

per is the set of wffs supported by an argument struc

ture.

Definition 2.4 Let T be an argument structure. The

set of wffs supported by T, written Wff(T), is defined

as follows:

Wff(T) = {tp | there is a p £ T such that p is for ip}

Thus an argument structure T supports a logically

consistent set of beliefs, and T is complete about tp iff

either <p £ Wff (T) or ^tp £ Wff(T).

Example 2.2 [Penguins do not fly, continued] As

sume the rules and arguments in Example 2.1. There

are two argument structures of R:

Ti = {pi,P2,P5,Pg}

T2 = {Pl,P2,P5,P6,P3,P7}

Notice that only T2 is complete about ab(penguin(a))

and ab(bird(a)). In fact, we have Wff(T2) =

{True, Penguin(a), Bird(a), -<ab(penguin(a)) ,

ab(bird(a)),-*Fly{a)}. ■

This concludes our basic definitions. To summarize,

we start with the primitive notion of inference rules,

and define those of arguments, argument structures,

and completeness conditions. We shall call the result

ing framework an argument system. In the following

we show that this single framework is sufficient to cap

ture the major existing nonmonotonic logics.

3 Capturing Existing Nonmonotonic

Logics

In this section we show that the major existing non

monotonic logics can be formulated naturally as spe

cial argument systems. The nonmonotonic logics con

sidered here are default logic, autoepistemic logic,

negation as failure principle, and circumscription.

3.1 Reiter's Default Logic

In this subsection, we suppose the underlying lan

guage is the ordinary first-order one, augmented with

a second-order predicate ab. In the following, we

shall use Reiter's notions without explanations [Reiter,

1980].

Let A = (W, D) be a closed default theory. Define

R(A) to be the set of the following rules:

1. True is a base fact.

2. If A £ W, then A is a base fact of i2(A).

3. If A\, . . . , An, and B are first-order sentences and

B is a consequence of A\, . . . , An in first-order

logic, then A\, . . . , An —» B is a monotonic rule.1

1 Some people may feel uneasy about this "rule schema."

But we can replace it by any finite axiomatization of first-
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4. If A is a first-order sentence, then ->A —» ab(A) is

a monotonic rule.

5. HA: MBi, ..., MBn/C is a default in D, then

A,-nab{B1),...,-,ab(Bn)-*C

is a monotonic rule.

6. If J? is a first-order sentence, then True => -<ab(B)

is a nonmonotonic rule.

Definition 3.1 An argument structure T of R(A) is

DL-complete if for any first-order sentence A, either

ab(A) or ^ab(A) is in Wff(T).

Theorem 1 Let E be a consistent set of first- order

sentences. E is an extension of A iff there is a DL-

complete argument structure T of 12(A) such that E

is the restriction of Wff(T) to the set of first-order

sentences.

Proof: Let E be a consistent set of first-order sen

tences. According to Reiter's result (Theorem 1 in

[Reiter 80]), E is an extension of A iff E = E0 U Ei U

. . . U En U ..., where Ei, i> 0, is defined as follows:

Eq

•Ei+ l

w

Th(Ei) U {C | A : MBU ■■■, MBn/C € D

where A £ Ei and ->Bi,. . . , -<Bn 0 E}

where Th(Ei) is the closure of Ei under first-order

consequence.

Suppose E is an extension of A, let E' = E U

{ab(B) | ->B € E} U {^ab(B) | -.£ g E}. Obviously,

for any first-order sentence B, either ab(B) or -<ab(B)

is in E', and E is the restriction of E' to the set of

first-order sentences. We now prove that there is an

argument structure T of R(A) such that E' = WK(T).

First we prove that for any <p 6 E' there is an ar

gument for ip. To this end, we inductively prove that

for any i > 0, if tp € Ei, then there is an argument

for tp. If i = 0, then <p € W, thus <p is a base fact

of i2(A). Inductively, suppose we have done the proof

for i. Let <p € -Ei+i, then <p is either in Th(Ei) or

there is a default A : MB\, . . . , MBn/ip in D such that

A (E Ei. The former case is obvious. The later case is

also easy to prove by using the inductive assumption

and the fact that A, -iab(Bi ),..., ->ab(Bn) —» <p and

True —» -<ab(Bk), 1 < Jb < n, are rules. Therefore by

order logic. We think it is neater to use a "rule schema"

to capture first-order deduction than to introduce a bunch

of axioms.

Reiter's result, if tp £ E, then there is an argument for

tp. From this by the definition of E' , it is easy to see

that if tp £ E' , then there is an argument for <p.

Now let T be the set of those arguments such that

all wffs in them (as nodes) are in E'. Obviously E' =

Wff(T). It is easy to check that T is an argument

structure of .R(A).

Conversely, let T be a DL-complete argument struc

ture of R(A) such that E is the restriction of Wff(T)

to the set of first-order sentences. We prove that E

is an extension of A, that is, E = L)Ei. By induction

on i, it is easy to see that Ei C E for each i, that is,

UEi C E. Now let <p 6 E, then there is an argument

p € T for ip. By induction on the number of rules used

in p, we prove that there is an i > 0 such that ip E Ei.

If p is a base fact, then p £ W, that is, p £ Eq- In

ductively, suppose that for any proper subtree p' of p,

if p' is for a first-order sentence, then the sentence is

in UEi. Up is formed by using first-order deduction

rule, then trivially, <p £ UEi. Up is formed by using

the rule A, -iab(Bi), . . ., -<ab(Bn) —> ip, then by induc

tive assumption, there is an i such that A € Ei. But

p £ T, therefore -^ab(Bi), ..., -*ab(Bn) £ Wff(T), so

Bi,...,Bn 0 E, thus tp £ Ei+i. This concludes the

induction proof, thus we have proved that E = LiEi

and E is a default extension of A. ■

We notice the following two features of the trans

formation from default logic to argument systems.

First, whereas default logic makes a distinction be

tween meta-logic default rules and first-order logic,

they are given an equal status in argument systems.

Second, the notion of groundedness of default exten

sions corresponds to that of arguments in argument

systems, and the notion of fixed-points in default logic

corresponds to that of DL-completeness of argument

structures.

It is interesting to notice that for normal default

theories, we do not need the second-order predicate

ab. Let A = (W, D) be a normal default theory, that

is, every member of D has the form A : MB/B. Define

NR(A) as the following set of rules:

1. If A € W, then A is a base fact.

2. If Ai, . . . , An, and B are first-order sentences, and

B is a consequence of A\,. . . ,An in first-order

logic, then A\, . . . , An —» B is a monotonic rule.

3. If A : MB/B is a default in D, then A => B is a
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nonmonotonic rule.

We can prove the following theorem

Theorem 2 A consistent set E of first-order sen

tences is a default extension of the default theory A

iff there is a maximal argument structure T of NR(A)

such thai E = Wff(T), where the notion of maximality

is respect to the set inclusion of Wff(T).

Proof: For the proof of the theorem, it is enough

to notice the direct correspondence between the nor

mal default proofs in [Reiter 80] and the arguments in

NR{A). m

3.2 Autoepistemic Logic

In this subsection, let our language be the traditional

proposition one augmented with a modal operator L.

Throughout this section, let W be a set of wffs of the

form:

LA A ^LBX A ... A ~~LBn D C

where A, B's, and C are wffs without L. According to

the results in [Konolige, 1987], it is enough to consider

the AE-extensions of such W.

For any W, construct R(W) as the set of following

rules:

1. True is a base fact.

2. If LA A -^LB1 A ... A ^LBn D C e W, then

LA, ->LBi, . . . , -iLBn —» C is a monotonic rule.

3. If A\,...,An h B, then A\,...,An —» B is a

monotonic rule, where -4's and B are wffs without

L, and h is the tautological consequence.

4. For any wff A without L, A —» LA is a monotonic

rule.

5. For any wff A without L, True => ->LA and

True => LA are nonmonotonic rules.

Definition 3.2 An argument structure T of R{W)

is AE-complete if for any wff A without L, ~^LA £

Wff(T) iff AgWff(T). 2

2 Readers may notice that the definition of AE-

completeness condition is a little different from the gen

eral definition of completeness conditions outlined in the

last section. The trick here is that we are preventing

from introducing an additional predicate. If we introduce

a second-order predicate in and have the rule schemata

A —* tn(A), -<in(A) —> ^LA, and True => ^in(A), then

AE-completeness will be equivalent to AE'-completeness,

It is easy to see that if T is an AE-complete argu

ment structure, then for any wff A without L, either

LA or -i£,4 must be in Wff(T). But the converse

is generally not true. Notice that for any argument

structure T of R(W) it follows automatically that if

^LA £ Wff(T), then A <£ Wff(T), because A — LA

is a monotonic rule. Thus the AE-completeness con

dition means that if A g' Wff(T) and we have a

choice of using either the rule True => LA or the

rule True => ->LA to expand the argument structure

while maintaining consistency, then we can use the for

mer one only when later on we can deduce A so that

A € Wff(T).

Theorem 3 A consistent stable set E is an AE-

extension of W iff there exists an AE-complete argu

ment structure T of R(W) such that EQ = Wff(T)0j

where E0 (Wff(T)r,) is the restriction of E (Wff(T))

to the set of wffs without the operator L.

Proof: In the proof of the theorem, we need the fol

lowing result about AE-extension. It can be proved

that a stable set E is an AE-extension of W iff

Eq = {if | <p without L and We r- ip} (1)

where h is tautological consequence and We is

WE = {C | LA A iXjBj a ... a -^LBn D C G W,

AeE, and Bu .. . , Bn <£ E}

Return to the proof of the theorem, let E be an

AE-extension of W. Define E' as follows:

E' = E0 U {LA | A £ E0} U {-^LA | A $ E0}

Obviously, E0 = Eo and for any A without L, if A £

E', then ^LA £ E'. Therefore we only need to prove

that there is an argument structure T of R(W) such

that E' = Wff(T).

First we prove that for any (p £ E', there is an ar

gument p for <p such that any subtree (as an argu

ment) of p is also for a wff in E1 . According to the

definition of E' and equation 1, it is enough to prove

this for <p £ We. If <p € WE, then there is a wff

LAA^LBiA.-.ALBn D <? in W such that A £ E0 and

B\, .. ., Bn & Eq. According to the definition of E', we

have LA £ E',->LBi, . . . ,^LBn £ £". Therefore us

ing rules True => LA, True => ~<LBi, 1 < i < n, and

where T is AE'-complete if for any wff .4 without L either

LA or ^LA is in Wff(T), and for any wff B without in

either in{B) or --tn(B) is in Wff(T).
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LA, -iLB\, . . . , ~^LBU —► ip we get an argument for <p

such that any subtree of the argument is also for a wfF

in£".

Now let T be the set of those arguments such that

they and their subtrees are all for wffs in E'. It is

not hard to check that T is an argument structure of

R(W) and E' = Wff(T).

Conversely, let T be an argument structure of R(W)

such that for any A without L, if A g Wff(T), then

-'LA G WfF(T). Let E be the unique stable set such

that E0 = Wff(T)0. We need to prove that E is an

AE-extension of W, that is, equation 1 holds. Let us

denote the right hand side of equation 1 by T}i(We).

It is easy to see that WE C Wff(T)0, thus

Th(WE) C E0. Conversely, if <p G E0, then ip G

WfF(T). By the induction on the numbers of rules used

in the arguments for (p, we can show that ip G Th( WE).

For example, if an argument for <p is formed by using

the rule LA,^LB -» <p, then LA^LB G Wff(T) and

LA A -.IB D (p G W. Therefore A G Wff(T) and

B <£ Wff(T) (otherwise -.LA or 15 will be in Wff(T)).

Thus <p €WE. m

Thus we have reformulated both default logic and

autoepistemic logic in our framework of argument

systems. It is not hard to see that the two refor

mulations are very similar under the correspondence

LA «-» ab(-iA) or ab(A) *-* L^A. The main difference

is that in the systems corresponding to autoepistemic

theories, we have two kinds of nonmonotonic rules

True => LA and True => -^LA, while in those cor

responding to default theories, we have only one kind

of nonmonotonic rules True => -^ab(A). Therefore we

can expect that for autoepistemic theories which do

not contain wffs of the form LA, the rule True => LA

will never be used and in this case autoepistemic ex

tensions will coincide with default extensions. Indeed

we have the following formal result.

Theorem 4 Let W be an autoepistemic theory

such that the elements of W have the form

-iLBi, . . . , -<LBn D C, where B 's and C are wffs with

out L. Lei A — (True, D) be the default theory such

thai D is the following set:

{:M^Blt ..., M^Bn/C \ ^LBX, ..., ~^LBn DCfEW}

For any stable set E, E is an AE-extension of W iff

Eq is a default extension of A.

Proof: Let R'(W) be the subset of R(W) without

the nonmonotonic rules True => LA. Under the cor

respondence LA <-» ab(-^A), T is an AE-complete ar

gument structure of R(W) if and only if T is an ar

gument structure of R'(W) such that for any wff A

without L either LA or -^LA is in Wff(T), and if T

is a DL-complete argument structure o{ R(A). There

fore by Theorem 1 and Theorem 3, if Eu is a default

extension of A, then E is an AE-extension of W.

The converse is proved similarly by the correspon

dence ab(A) «-» L(-iA) and the fact that if Tis an argu

ment structure of R'(W) such that for any A without

L, either LA or ->LA is in Wff(T), then T is a DL-

complete argument structure of i?(A). ■

Autoepistemic (default) theories of the form in the

theorem do not contain prerequisites. For theories that

contain prerequisites, the above theorem is not true.

Counterexamples can be found in [Konolige, 1987].

3.3 Negation as Failure

Negation as failure principle was proposed by Clark

[Clark, 1978]. It is appealing for its efficiency. The

principle can be captured nicely in our framework.

Theoretically, it is enough to study the principle in

a propositional language.

In the following, we first review a simplified ver

sion of Van Gelder's tight tree semantics [Van Gelder,

1986] for general logic programs with negation as fail

ure. Then we propose a translation from logic pro

grams to argument systems and connect them to Van

Gelder's tight tree semantics.

An atom is a primitive proposition. A literal is an

atom or the negation of an atom. A logic program with

negation is a set of clauses with the following form:

A <— Bi, ...,Bn

where A is an atom and B's are literals.

Given a logic program W, Van Gelder associated it

with two sets, SS and GF. Then the meaning of the

program is that atoms in SS are true, atoms in GF are

false, and atoms in neither SS nor GF are unclassified.

The sets SS and GF are defined through a collection

of sets

SSo, GFo, RTq, SSi, GFi, RTi, . . .

which we now describe.

We start with SS0 = GF0 = % and RTo is the set

of tight NF-trees of W. A tight NF-tree (negation as
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failure derivation tree) of W is a tree whose nodes are

literals such that a negated atom must be a leaf, any

internal node must match the head of a rule in W and

the sons of the internal node can be placed in a one-

to-one correspondence with matching subgoals of the

rule, and no node can have an identical ancestor.

For any ordinal k, define (SSk+i,GFk + i, RTk+i)

from {SSk,GFk,RTk) as follows:

• Initialize SSk+i to SSk- For each tree in RTk con

sisting of a single node, add that atom to SSk + i-

• Initialize GFk + i to GFk- For each atom that

matches the root of no tree in RTk , add that atom

to GFH1.

• Initialize RTk+i to RTk. In each tree in RTk+i,

delete all leaves that appear in SSk+1, and delete

all negated atoms (necessary leaves) that appear

in GFk + i- These nodes are considered proved and

the trees "shrink" accordingly.

For each limit ordinal a, we define

SSa = [J SSp, GFa = \J GFp, RTa = f) RTP

0<a P<a 0<a

And finally we have

5S = |JSSa GF = [JGFa

Tight tree semantics can be captured nicely in our

framework. For any program W, define R(W) to be

the set of following rules:

1. True is a base fact.

2. For any clause A <— B\, . . . , Bn in W, if n = 0

then A is a base fact, otherwise B\,...,Bn —* A

is a monotonic rule.

3. For any atom A, True => -A is a nonmonotonic

rule.

Definition 3.3 An argument structure T of R(W) is

NF-complete if for any atom A, either A or -iA is in

Wff(T).

The following propositions verify the relationship

between Van Gelder's tight tree semantics and the ar

gument systems.

Lemma 3.1 A tree p is a tight NF-tree ofW iff p can

be obtained from an argument in R(W) by deleting the

leaves True, which must be the son of a negated atom.

Proof: Trivial from definitions. ■

Theorem 5 For any NF-complete argument structure

T of R{W) and any atom A, if A 6 SS, then A G

Wff(T); if A € GF, then -.A G Wff(T).

Proof: We prove by induction that for any ordinal a,

if A € SSlt , then A is supported by T, and if A € GFa ,

then -iA is supported by T. This is proved by using

Lemma 3.1 and the fact that if an atom matches no

tree in RTa, then there is no argument for the atom,

thus by the NF-completeness of T, the negation of the

atom must be supported by T. ■

The converse to the theorem is not true according

to our simplified definition of SS and GF. Whether

or not it is true according to the full version of the

tight tree semantics in [Van Gelder, 1986] is an open

question.

A special class of logic programs, call stratified pro

grams, has been studied intensively in the literature.

Van Gelder [Van Gelder, 1986] proved that if W is a

stratified program, then there is no unclassified atom,

that is, for any atom A, either A € SS or A 6 GF (but

not both). According to the above theorem, for strat

ified program W, if there is a NF-complete argument

structure of R(W), then it must be unique. The exis

tence of the NF-complete argument structures can be

proved by showing that the following set of arguments

is one: T = {p | p is obtained from a tight NF-tree

whose negated leaves are in GF by extending all its

negated atoms to True by a nonmonotonic rule}.

It is interesting to notice the similarity between

argument systems for default theories and argument

systems for logic programs under the correspondence

->A «-» ->a&(-iA), where A is an atom. Let W be

a program. Let R'(W) be the set of rules obtained

from R(W) by replacing every negated literal ->A by

-iab(-A) and adding the rule schema A —► ab(-<A),

where A is an atom. Again we say that an argument

structure T of R'(W) is DL-complete if for any atom

A, either ab(^A) or ->a&(-.A) is in Wff(T). We have

the following proposition:

Proposition 3.1 Let S be a set of atoms. Then there

is an NF-complete argument structure T of R{W) such

that S is the set of atoms supported by T iff there is

a DL-complete argument structure T" of R'(W) such

that S is the set of atoms supported by T' .

Proof: Let T be a set of arguments in R(W). Let

T' be the set of trees obtained from T by replacing
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every negated literal ->A by -iab(-iA). Then 7" is a

set of arguments in R'(W) by appropriately chang

ing the labels of the arcs. It is easy to see that T is

an NF-complete argument structure of R(W) iff the

monotonic closure of T' is a DL-complete argument

structure of R'{W). ■

Therefore for any program W, the following default

theory A = (P, D) captures the negation as failure

rule:

1. If A *— B\, . . . , Bn € W does not contain negated

atom, then

Bx A . . . A Bn D A £ P

(the implication behaves exactly the same as the

monotonic rule Bi, . . . , Bn —» A in this case).

2. If A*-B1,...,Bm,-.Bm+i,...,-,Bn e W, then

BiA...ABra :M^Bm+l,...,M-nBn/Ae D

It is interesting to notice the difference between the

transformation in [Gelfond, 1987] from logic programs

to autoepistemic theories and the transformation here

from logic programs to default theories. Under Gel-

fond's transformation, a clause

A *— B\, . . . , Bm, -i.Bm+i, . . . , ->Bn

will be transformed into the sentence:

BjA...ABmA ->I5m+1 A ... A -<LBn D A

which is equivalent to the default:

: M-.Bm+1, . . . , M->Bn/(A V -.Bi V ... V -nBm)

according to Theorem 4. Incidently these two transfor

mations lead to the same result for stratified programs.

For non-stratified programs, these two transformations

may lead to different results. In those cases, as we have

shown above, our transformation seems closer to some

procedural semantics for logic programs.

3.4 Circumscription

Finally we come to circumscription, one of the best

well-known formalisms for nonmonotonic reasoning.

In a trivial sense, circumscription can be reformu

lated in our framework because in all cases, the re

sult of circumscription is explicitly represented as a

second-order sentence. What we need to do is just let

the second-order sentence as the base fact and have

a class of monotonic rules corresponding to second-

order deduction. Of course, no one will find this refor

mulation interesting because it sheds no further lights

on either circumscription or argument systems. Intu

itively, any meaningful reformulation of circumscrip

tion should only start at the original first-order the

ory and come up with the result of circumscription

by some monotonic and nonmonotonic rules. In this

subsections we propose a such reformulation.

Throughout this subsection, Let £ be a first-order

language with equality. We consider the circumscrip

tion of P in W with Z allowed to vary, where W is

a sentence, and, for the sake of simplicity, P and Z

are two different unary predicates. All of the following

results can be extended to the cases where P and Z

are two tuples of predicates straightforwardly.

Semantically, circumscribing P in W with the pred

icate Z allowed to vary corresponds to consider the

sentences that are true in all minimal models of W ac

cording to the relation <p which is defined as follows.

Let M\ and Mi be two models satisfying W. Defining

Mi <p M2 iff C can be expanded to £', Mi can be

extended to M[ as a structure of £', and there are two

predicates B(x) and D(x) in C such that

1. For any sentence A in C, M2 (= A iff M[ (=

A(P/B)(Z/D), where A(P/B){Z/D) is the result

of replacing P(x) and Z(x) everywhere in A by

B(x) and D(x), respectively.

2. M[ \= Vx(P(x) D B{x)) A -Mx(B(x) D P(x)).

Condition 1 means that Mi and M2 interpret all the

predicates except P and Z in the same way, and Mi

interprets P and Z in the same way that M\ does for

B and D, respectively. Condition 2 means that P is

"less than" B in M[, therefore the denotation of P in

Mi is "less than" that in M2. We call B and D the

minimizing predicates in C under M[.

Thus M is a minimal model of W (w.r.t. <p) if M

is a model of W and there is not a model M' of W

such that M' <ZP M.

Readers may notice that our definition of "less than"

(<p) is different than the traditional one such as that

in [Lifschitz, 1985]. According the traditional defini

tion, Mi is "less than" Mi, written Mj <p Mi, if

1. the domain of Mi is the same as that of M2.

2. Mi(F) = M2(F) for any symbol F different than

P and Z.
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3. Mi(P) C M2{P).

It is easy to see that if Mi <p M2, then Mi <f> M2.

Conversely, if Mj <f> M2, then there is a structure M[

such that for any ^-sentence A, M2 (= A iff M{ |= A,

and Mi <^ M2. Therefore for the minimal models

that can be captured by first-order theories, it does

not matter whether the minimality is according to <f,

or <p ■ The basic merit of our definition is that it

enables us to compare two structures even when they

do not have the same domain.

In order to capture circumscription in argument sys

tems, we need to expand the language C to C^ by

adding two new unary predicates Q and R. Cor

responding to circumscribe P in W with Z allowed

to vary, we have the following set of rules, written

R(W,P;Z):

1. W is a base fact.

2. W(P/Q)(Z/R) is a base fact.

3. If Ai,...,i4n r- B, then Ai,...,An —► B is a

monotonic rule, where h is the first-order conse

quence and A's and B are sentences in C^ .

4. Vx(P(x) D Q{x)) is a base fact.

5. -iVz(Q(x) D P{x)) —> False is a monotonic rule,

where False is the always false proposition.

6. If A is a sentence in Cx that contains nither Z

nor P, then True => A is a nonmonotonic rule.

Definition 3.4 Let T be an argument structure of

R(W,P;Z). T is CF-complete if for any sentence A

in Coo that contains predicates only from P and Q,

either A € Wff(T) or -.A € Wff(T).

It is easy to see that if T is a CF-complete argument

structure, then Vx(P(x) = Q(x)) must be supported

by T. For otherwise ->Vx(P(x) = Q{x)) must be sup

ported. This means that -iVx(Q(x) D P(E)) must

be supported. But that is impossible for then False

would be supported, and T would not be consistent.

Actually this is the only property of CF-completeness

that we will use in the proofs of the following results.

The following lemma means that if Mi <p M2

and M2 satisfies every sentence in the argument p of

R(W,P; Z), then Mj also satisfies every sentence in p.

Therefore R(W, P\ Z) always generates "sound" argu

ments according to <f,.

Lemma 3.2 Let Mi and M2 be models of W in C,

M2 an extension of M2 in C , and Mi <f> M2 with

the minimizing predicates B and D in C under M[

such that

1. Coo ** a subset of C .

2. B, D, Q, and R are different.

3. M[(Q) = M[{B), M[(R) = M[{D), M'2{Q) =

M2(P), and M'2{R) = M2{Z), where M{X) is

the denotation of X in M .

Then for any argument p in R(W,P;Z), if M'2 (= p,

that is, for every node tp in p, M2 |= <p, then also

M[\=p.

Proof: The lemma can be proved by induction on the

structure of p and the following two facts:

1. For any sentence A that contains neither Z

nor P, M2 (= A iff M2 (= A{Q/P)(R/Z)

iff M[ f= A(Q/B){R/D) iff M[ f= A, where

F(Xi/Yi)(X2/Y2) is the result of replacing Xx

and X2 everywhere in the formula F by Yi and

Y2, repectively.

2. M[ \= Vx(P(x) D Q{x)) iff M{ |= Vx(P(x) D

P(x)).

Theorem 6 For any CF-complete argument structure

T of R(W, P; Z), there is a minimal model ofW such

that it satisfies every C-sentence of Wff(T). Con

versely, if M is a minimal model of W , then there

is a CF-complete argument structure T of R(W, P; Z)

such that M satisfies every C-sentence o/Wff(T).

Proof: Let T be a CF-complete argument structure.

Then Wff(T) must be a consistent set of first-order

sentences. Thus there is a structure M in £«, satisfy

ing Wff(T). By the CF-completeness of T, Vx(P(x) =

Q(x)) must be supported. Thus M interprets P and Q

in the same way. Because W(P/Q)(Z/R) £ Wff(T),

we can assume that M also interprets Z and R in

the same way. We assert that the restriction of M

to C, written M2, must be minimal. Suppose oth

erwise, then there is a model Mi of W such that

Mi <p M2 with minimizing predicates B and D

in C under M[. It is easy to see that we can ex

tend M2 to M'2, and rename B and D if necessary

so that the conditions in Lemma 3.2 axe satisfied.

Then M2 is an extension of M. Therefore M2 satisfies

Wff(T). By Lemma 3.2, M{ must also satisfy Wff(T).

But this is impossible by the CF-completeness of T.
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For then M[ \= Vx(P(z) = Q(x)), which is equiva

lent to M[ (= Vz(P(x) = B(x)), a contradition with

Mi <p M?. Therefore M' is a minimal model of W

and satisfies Wff(T).

Conversely let M is a minimal model of W in C.

We can construct a CF-complete argument structure

T as follows. Let S be the set of C^ sentences that

contains neither P nor Z, and are true in M when Q

and R are replaced everywhere by P and Z, respec

tively. Then all the sentences in S can be assumed

to be true by default. We assert that the monotonic

closure of the set of arguments generated by mak

ing these default assumptions must be a CF-complete

argument structure. First T is consistent, that is,

S' = {W,W(P/Q)(Z/R),Vz(P{x) D Q(x))}uS is

a consistent set of first-order sentences and does not

imply ->Vx(Q(x) D P(x)) ln first-order logic. 5' is

consistent is easy to see because the extension of M

by assigning P and Q, and Z and R the same deno

tations is a model of 5'. We prove that S' does not

imply ->Vx(Q(x) D P(x)) by proving that in fact, sen

tence Vx(Q(x) 3> P(x)) must be a logical consequence

of S' . For otherwise there is a structure M' which

satisfies 5' U {->Vx(Q(x) D P(x))}. Let Mx be the re

striction of M' to C. Then Mj <f> M with the mini

mizing predicates Q and R in Cx under M' . Therefore

Vx(P(x) = Q{x)) is a logical consequence of S'. By

the definition of 5', for any sentence A that contains

only Q, either A G S' or ->A G 5'. Thus T must be

CF-complete. Obviously M satisfies every ^-sentence

in Wff(T). ■

Corollary 6.1 For any C-sentence A, A is true in

all minimal models of W w.r.t. <f> iff -ij4 is not

supported by any CF-complete argument structures of

R(W,P;Z).

4 Some General Remarks

We have defined a theory of argument systems that,

although simple, is sufficient to capture the major ex

isting nonmonotonic logics. The main concepts are

those of inference rules, arguments, argument struc-

turs, and completeness conditions. We noted that the

major existing nonmonotonic logics can be viewed as

particular choices made about the underlying sets of

rules and the completeness conditions.

Notice that the argument systems used in simulating

the exisiting nonmonotonic logics have the following

two features in common:

1. All the nonmonotonic rules in the systems are of

the form: True => <p. This means that the set

of wffs supported by an argument structure can

always be represented as the closure of a subset

of {<p I True => ip is a nonmonotonic rule} under

monotonic rules, that is, all of the nonmonotonic

logics are presumptive. This can be considered a

support for Poole's Theorist [Poole, 1986] which

tries to formalize commonsense reasoning as hy

pothesis formation process.

2. All the systems have some completeness condi

tions which require that for a class of wffs either

they or their negations must be supported by an

argument structure. This suggests that a gener

alized "negation as failure" rule might be useful

in the implementing of these nonmonotonic logics.

For example, for default logic, an argument struc

ture must be complete about the wffs of the form

ab(A). Therefore if we allow second-order predi

cates in logic programs, then default logic can be

simulated by applying the negation as failure rule

to the abnormality predicate.

Some interesting results follows from these reformu

lations. We have shown a new result relating default

logic and autoepistemic logic, and provided a new way

to capture negation as failure rule in default logic.

We believe that more results about the relationships

among the major existing nonmonotonic logic can be

obtained by studying these reformulations.

It is also worth to notice that all of the argument

systems except those corresponding to logic programs

have a class of monotonic rules that captures classical

logic. It may be very interesting to see what happen if

we weaken this class of rules, for example, by restrict

ing ourself on a special class of sentences or a decidable

segment of first-order logic.
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Abstract

This paper attempts four things. It demonstrates

the possibility of accounting for Russell-style and

Clark-style analogical reasoning in an existing

framework for statistical reasoning. It critically

reviews the proposals made by Clark for defeasi

ble analogical reasoning and shows how they can

be understood better simply as defeasible reason

ing. It argues that generalization from the single

case is not as desirable as projection from the sin

gle case; the difference has to do with the defeasi-

bility of the inference. Finally, it muses about the

prospects for an appropriate control strategy for

statistical reasoning limited to a small number of

cases.

1 Introduction.

1.1 The Logical Problem of Analogy.

Analogy has been studied in a variety of activities by

AI authors, notably in problem solving, in learning, and

in common-sense reasoning (consider, for instance, [Win-

ston80], [Kedar-Cabelli86], and [Gentner83]). An excellent

recent review of this work can be found in Stuart Russell's

thesis [Russell87].

Most of the hopes to use analogy are as ampliative,

unsound inference, but inference we are nevertheless will

ing to perform because of epist emological constraints - we

don't know enough to do full induction. In the present

treatment of analogy, I am equally concerned with situa

tions in which our willingness to perform analogical rea

soning derives from computational constraints. We may

not want to include in our inductive reasoning as many

cases as we are capable of recalling and considering. In

the extreme case, we may even want to reason from a sin

gle case. It is appropriate to consider such reasoning from

a single case to be analogy.

Among the many problems that seem to involve anal

ogy, Russell distinguished the logical problem of analogy.

This is the aspect of analogy of most interest here. How

is analogical reasoning justified? Presumably, it is some

form of induction, in the presence of added assumptions.

A property is transferred from source case to target case

in virtue of some shared properties. Apparently, there is

"1 have had useful discussions with Stuart Russell, Ben

Grosof, Guillermo Simari, Josh Tenenberg, Henry Kyburg,

John Pollock, Mike Wellman, Fahiem Bacchus, and Dana Nau

on this subject in that temporal order. Thanks to Michael An

derson for leaving Stuart's thesis on the coffee table.

inductive support for the possession of that property given

the similarity. The interesting challenge is to render those

assumptions in some underlying reasoning framework in

such a way that the single source case contributes in the

inference: it cannot be just that the probability of the

transferred property given the shared properties is known

to be high, because that makes the source case redundant.

Russell's approach was to justify analogical inference in

a deductive framework. My approach will be to cast anal

ogy as a special case of a logically sophisticated kind of

statistical reasoning. Russell had examined as candidates

for the explication of analogy less expressive frameworks

for induction than the one considered here. Part of this

exercise is to relieve his pessimism about the prospects of

an inductive explication of analogy. We should welcome

this relief because we all continue to think of analogy as

inductive. Analogical reasoning so closely resembles induc

tive reasoning that it is a travesty to suggest that there can

be no meaningful reduction. This paper hopes to correct

any misapprehensions about the relation between induc

tive (or statistical) reasoning and analogical reasoning.

More importantly, basing analogy on statistical infer

ence allows the capture of a wider class of common-sense

reasoning. The study of reasoning from a small number of

cases is the natural extension of analogy with a single case.

Philosophers of induction may not see the point of reason

ing from a small number of cases, just as they have often

turned their noses to the special case of analogy. They

might think just to run the induction mill on the cases

available, whether they be one, three, or a thousand, but

here's the point: we are sometimes unwilling to complete

this computation. Our control strategy for arriving at in

teresting partial computations must be informed by what

we know about the legitimacy of inferences from a small

number of cases.

A different example of common-sense reasoning that

extends analogical reasoning is studied by Peter Clark

[Clark88]. Here, the problem is not with the multiplic

ity of cases, but with the multiplicity of shared properties.

Clark's inferences are interesting for a variety of reasons,

one of which is that it uses analogy to amplify defeasible

reasoning. It is Clark's ambitions that most clearly point

out the need to base analogy in an appropriate statistical

framework. What seems to be a complex use of analogy

turns out to be simply the use of specificity in defeasible

statistical reasoning; what seems to be an unquestionably

sound maxim for transferring from source to target turns

out to be improper in the most disturbing and unexpected

statistical way.
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1.2 Russell and Clark on Analogical

Inference.

Russell's deductive account [Russell87] of analogical rea

soning is at once authoritative and demonstrating exem

plary clarity. Peter Clark's recent attempt to general

ize the analogical reasoning paradigm to arbitrate among

conflicting defeasible arguments is refreshing and exciting

[Clark88]. These two papers represent two of the most

formal accounts of analogical reasoning.

Russell is interested in inferences such as

Nationality determines Language

Language(Louis, French)

Nationality(Louis, France)

Nationality(Antoinette, France)

thus,

Language(Antoinette, French)

by the analogy of the target, Antoinette, to the source,

Louis. Louis's language, namely French, determines An

toinette's language to be French, in virtue of their impor

tant similarity. Russell justified this reasoning by taking

the determination relation to mean, roughly,

(w)(y)(z).

(Nationality(w, y) A Language(w, z)) —»

(x). Nationality(x, y) —» Language(x, z).

This makes the inference valid in a first order system.

Peter Clark is interested in inferences such as

Over-Block(x) indicates ->Sand-At(x)

Sand-Nearby(x) indicates Sand-At(x)

Late-Fault(x) indicates Sand-At(x)

Unfavorable-Environment(x) indicates ->Sand-At(x)

Over-Block(welli)

Sand-Nearby( welli )

Late-Fault( welli)

Unfavorable-Environment(welli )

Sand-At(welli)

Over-Block(well2)

Sand-Nearby(well2)

Late-Fault(well2)

Unfavorable-Environment(well2)

thus,

Sand-At(well2)

by the analogy of the target, welfe, to the source, welli.

The resolution of the conflicting arguments in the case

of welli determines the resolution of the conflicting argu

ments in the case of well2. I will say that Sand-Nearby and

Late-Fault are factors that indicate the ultimate conclu

sion. Over-Block and Unfavorable-Environment are fac

tors that counter-indicate the ultimate conclusion. Note

that in Russell's notation, we might have said that Over-

Block(x, true) determines Sand-At(x, false), if Over-Block

had been the lone indicating factor. The easiest way to

translate between Russell and Clark is to consider the case

wherein Russell's relations are bivalent in the second ar

gument (and determinations apply only when values are

true).

Clark is interested in an additional behavior that I will

call "monotonicity of conflict resolution." He thinks that

the above inference should be supported even if

Over-Block(well2)

were omitted as a premise about the target, and even if

Sand-Nearby(welli)

were omitted as a premise about the source. If the target

case contains more indicators of the conclusion and fewer

counter-indicators than the source case, thinks Clark, then

the conclusion should be preserved. Clark formalized this

reasoning, but did not attempt to justify it, deductively or

inductively.

1.3 The Reference Class

The account of statistical reasoning I have in mind is due

to Kyburg [Kyburg61,74,82], though there may be similar

reconstructions with Pollock's competing theory [83,84].

What is crucial about these theories is that they provide a

logic for determining what is called "the reference class."

The account of analogy I am considering could not be given

in theories of enumerative induction, such as considered

by Russell. Nor could it be given in a Bayesian theory of

statistical inference in which determination of the reference

class plays no role.

The problem of determining the reference class be

gins with explicit acknowledgement of multiple statistical

sources. Essentially, choosing the reference class amounts

to choosing the right statistical source on which to base in

ductive judgement. If we think of Neyman-Pearson statis

tics, the closest kin to the problem of choosing the reference

class is the problem of testing for significant difference in

two populations. But the statistician's logic is incomplete;

most often, a single, homogeneous sampling population is

assumed.

When there is information from multiple populations,

or multiple classes, choice of the reference class depends

on how relevant each class is, and how precise the statisti

cal information. If all statistical information is sufficiently

precise, then we try to use information about the most rel

evant class for which there is statistical information. The

Bayesians part company here. Bayesians assume that there

is precise statistical information about all classes; choice is

a matter of maximum relevance. In Kyburg and Pollock,

there may be no statistical information about the class

of maximum relevance; of those for about which there is

information, there may be multiple classes of maximal rel

evance.

It may puzzle why we are interested in choosing among

multiple statistcial sources when analogy reasons from a
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single source. Simply, analogy proceeds with a single

source of imperfect match when there may be alternative

sources and alternative matches. "Why this analogy?"

may be closely related to "Why this class as reference

class?"

Kyburg with Clark Russell

1-

Projectibility

as few as one cue

suggests mm be*

one cmc produces one case produces

havior

generalization generalization

defeasibly indefeasibly indefeasibly

multiple classes multiple determi

nations

multiple determi

nations

more no differential rel

evance

determinations

have ideal rele

vance

specific classes are

more relevant

multiple source

cases

one source case one source case

Kyburg Subjective

Bayes

Sampling

multiple cases or subjective multiple cases

known frequencies estimates suggest suggest mass be

suggest mass be mass behavior havior

havior

defeasibly without

acceptance

at confidence

multiple classes one ideally rele no guidance on

vant source appropriate popu

lation

more condition on no concept of rel

specific classes are all relevant prop evance

more relevant erties

multiple source no source case multiple source

cases cases

2 Constructions.

2.1 Kyburg's Logical Foundations of

Statistical Inference.

Kyburg's account is widely acknowledged among philoso

phers of science, but is quite complex; I assure the reader

that this paper contains no more than the parts of theory

required to follow the later discussion.

Kyburg formalizes reasoning about probabilities given

statements about relative frequencies among classes.

Let me write

[|A|] for {x : A(x)}.

That means [|A A B|] stands for {x : A(x) A B(x)}. Also,

let

be the per cent of [| A|]'s among [|B|]'s.

Consider an example with three statistical sources of

varying precision and relevance:

%(

%(

%(

|Mets-Game|], [|Mets-Win|] ) = (.6, .7]

|Mets-Game A Night-Game|], [|Mets-Win|] ) = [.5, .65]

|(Ax).(x = Tuesday's-Game) |], [|Mets-Win|] )

= [0, 1]

Tuesday's-Game E

Tuesday's-Game €

|Mets-Game|]

|Night-Game|]

Tuesday's-Game € [|(Ax).(x = Tuesday's-Game) |]

%([|A|], [|B|])

apparently,

prob ( Tuesday's-Game € [|Mets-Win|] )

= [.5, .65]

The reference class is [|Mets-Game A Night-Game|], the

most specific class about which adequate statistics are

known.

In the example, there are three candidates for the refer

ence class (or candidate reference classes), for the query

prob( Tuesday's-Game € [|Mets-Win|] ) = ?

That is, there are three sets that satisfy the syntactic re

quirements required for projecting a Mets-Win. These sets

are

|Mets-Game|]

|Night-Game|]

|(Ax).(x = Tuesday's-Game) |].

i.e. , {x : x = Tuesday's-Game}

The last is the most specific class, but the relevant fre

quency is not well known among this class. Of the other

two frequencies reported, there is conflict: i.e. [.6, .7] and

[.5, .65] do not stand in the sub-interval relation, and the

interval [.5, .65] is associated with the more specific class.

Formally, Kyburg takes an "inference structure" for

prob(x G V) to be the collection:

< x, A, V, [p, q] >

(I am suppressing Quinean quotes, but note that

(x) is the universal quantifier in the object lan

guage, and the universal quantifier in the meta

language is spelled out, for all x; similarly, —♦ is

the material conditional in the object language,

and "i/ ... then ..." is the material conditional

in the meta-language).

when it is known that

x€ A

%(A, V) = [p, q]

A MAY-PROJECT V,

(Also note that the first two sentences should be

properly rendered

rx e Ai € KBASE

f%(A, V) = [p, q]i G KBASE
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to make them metalinguistic assertions, like the

third sentence;

fAl MAY-PROJECT f VI;

I will resist this much propriety).

where the last requirement is that A is a candidate refer

ence class for V, i.e. A may project V. I will call V the

target property and x the target individual. There are lots

of classes that will not be candidate reference classes for

V. For instance,

VU {x}

is clearly not a candidate reference class in general. This

restriction is motivated by the same intuitions that lead

to restrictions on what similarities may support analogy.

We might not want [|Bob-Hope-did-not-attend|] to be a

candidate reference class for [|Mets-Win|]. Similarly, we

might not take Russell's P, the property that a and b share

in virtue of which an analogy is made, to be the property

of not being identical to Bob Hope.

It is an axiom of Kyburg's system that

for alt A, B: if (A may-project V)

and

(B MAY-PROJECT V)

then (A PI B) MAY.PROJECT V .

Given a collection of inference structures, {ISi, IS2, . . . },

there will be relations of "domination" among them. In the

example above,

DOMINATES (

< Tuesday's-Game,

[Mets-Game A Night-Game|],

Mets-Win|], [.5, .65] > ,

< Tuesday's-Game,

1Mets-Game|],

Mets-Win|], [.6, .7] >

)•

Let

INF-STRUCTSrV

be the set of inference structures for prob(x € V); there

will be one inference structure per (relevant) statistical

source. Also, let

REFCLASSrv

be the reference class for prob(x 6 V). When x and V are

understood, we drop the indexes.

It is a theorem that

exists p, q s.t.

<X, REFCLASS, V, [p, q]> € INF-STRUCTS,

and

not (

exists IS' s.t.

IS' G INF-STRUCTS

and

DOMINATES (IS', <X, REFCLASS, V, [p, q]>) );

in other words, the inference structure that lists the refer

ence class is undominated in the set of inference structures.

Call the inference structure that lists the reference class

the "reference inference structure." Say that two inference

structures disagree when their intervals don't nest, that is,

DISAGREES (

iff

<x, A, V, [p, q]>,

<x\ A', V, [p', q']>

)

-([P. q] c [p'. q'D

and

-«P'. <T] C [p, q]) ■

Let i-refclass(S) be the reference inference structure for

a particular set of inference structures, S, which may not be

the same as inf-structs. Note that i-refclass(inf-structs)

is REFCLASS.

The following two theorems for Kyburg's system estab

lish how much of Clark's monotonicity of conflict resolu

tion we will believe. The first says that if we remove a

statistical source that disagrees with our ultimate conclu

sion, then the ultimate conclusion remains the same. The

second says that if we add a statistical source that does

not disagree with our ultimate conclusion, then either the

conclusion is unchanged, or the new source becomes the

new conclusion.

if

(ISi € INF-STRUCTS)

and

DISAGREES (IS], REFCLASS)

then

not (

DISAGREES (l-REFCLASs( INF-STRUCTS ISj ), REFCLASS)

And

if

->( ISj € INF-STRUCTS)

and

-■DISAGREES (IS2, I-REFCLASs(lNF-STRUCTs))

then

I-REFCLASS( (iNF-STRUCTS U IS}) )

= I-REFCLASs(lNF-STRUCTs)

= REFCLASS

or

I-REFCLASS( (iNF-STRUCTS U ISi) )

= IS2 .
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Incidentally, this system has been successfully imple

mented and studied as a system of evidential reasoning

[Loui86,88]. These papers also discuss in more detail the

combinations that are appropriate in situations in which

there is more than one undominated class. Combination

of inference structures would take us too far afield, and

there is no analogue in analogical reasoning. It suffices to

say that here is another facet of statistical reasoning that

has not yet been exploited in case-based reasoning (though

Clark's attempts are a move in this direction).

2.2 Reconstruction of Russell's Inference.

Armed with this much understanding of Kyburg's system,

we can now state Russell's and Clark's analogies as special

cases of inferences with this system.

The point is that analogical inferences can be justified

and understood in terms of an existing and accepted sys

tem of statistical reasoning.

The constructions for Clark's inferences are more inter

esting, so do not be dismayed by the triviality of claim

1.

Claim 1. Russell's analogies can be understood as

Kyburgian statistical inference given an example

from the most specific candidate reference class,

and given knowledge that the relative frequency

of the target property is extreme in this class.

P(x, y) DETERMINES Q(x, z)

P(a, y) A Q(a, z)

P(b, y)

thus,

Q(b, z)

becomes

1.1.1. for all y, z:

[|(Ax).P(x, y)|] may.project [|(Ax).Q(x, z)|]

and

for all A, t:

if

(t € [|(Ax).P(x, y)|])

and (t 6 A)

and A may-project [|(Ax).Q(x, z)|]

then

[|(Ax).P(x, y)|] C A

1.1.2. (y)(z).

%( [|(Ax).P(x, y)|], [|(Ax).Q(x, z)|] ) = [1, 1]

v

%( [|(Ax).P(x, y)|], [|(Ax).Q(x, z)|] ) = [0, 0]

1.2. a G [|(Ax).P(x, yi) A (Ax).Q(x, Zl)|]

1.3.b€[|(Ax).P(x,yi)|]

thus,

1.4. PROB(be[|(Ax).Q(x,z1)|])=[l,l]

(the numbering is suggestive of the mapping between the

premises).

Proof of Claim 1. Sufficiency. Without assuming de

tails of Kyburg's system, I can only sketch the proof. The

critical observations are that

o 1.2 and 1.1.2 fix the % of Q's among P's.

o 1.3 says that this leads to an inference structure for

the probability that b is a Q.

o There may be other disagreeing inference structures,

but 1.1. guarantess that they are dominated.

Note that here as in Russell's account, the source case

makes the inference about the target indefeasible. We have

taken the probabilities to be extremes. If b is known not

to be (Ax).Q(x, Zi), then that is an inconsistency, not a

defeater of the analogical inference.

1.1.1 can be weakened by taking just its first conjunct.

1.4 would still be a conclusion if there are no known com

peting inference structures for b's Q-ness or -<Q-ness. But

note that Russell requires that the predicate P reflect

"all the information relevant to the query, ... for exam

ple, ... all the factors that might affect the language a per

son speaks (nationality, country of residence, parents' lan

guage, . . . and so on) " This is reflected in the require

ment in (1.1.1) that [|P(x, y)|] be the most specific candi

date reference class to which any individual will be known

to belong. We require any individual, not just the target

individual, because Russell's determination relation says

nothing about a particular individual. Usually, [|(Ax).(x =

t)|] is taken to be a candidate reference class in Kyburg's

system, for all queries, but this almost surely will not be

the case here. There has to be some reason why, when

we do analogy, we are so certain that the inference from

the putative determining case will not be defeated by an

inference from an even more similar determining case. In

Russell, and here, this certainty is simply imposed by fiat.

The assumption of certainty is relaxed in Clark's study.

Russell worries about what should happen when Louis

speaks two languages, or has two nationalities, and he al

ters the definition of a determination several times to ac

count for this case. Here, too, there would be complica

tions, but I will ignore them and focus only on total deter

minations. Accounts of his other determination relations

could be given, but would just be distracting.

2.3 Reconstruction of Clark's Inference.

Claim 2. Clark's analogies can be understood as

Kyburgian statistical inference in the presence of

multiple statistical sources, when there is knowl

edge about how conflicts were decided for the

source case.

It cannot be understood as using the single case to de

termine the frequency of the target property among the

intersection of candidate reference classes. This is because

even if the single case could determine the frequency, and

we could project from this single case, we could not explain

Clark's insistence on the monotonicity of conflict resolu

tion.

Ai(x) indicates -|Q(x)
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A2(x) INDICATES Q(x)

A3(x) INDICATES Q(x)

A4(x) INDICATES ->Q(x)

Q(a)

Ai(a) A A2(a) A A3(a) A A4(a)

A!(b) A Aa(b) A A3(b) A A4(b)

thus,

Q(b)

becomes

2.1.1. %([|Ax|],[|Q|]) = [0,c]

2.1.2. [|Ai|]may-project[|Q|]

2.2.1. %([|A2|], [|Q|]) = [l-e, 1]

2.2.2. [|A2|] may-project [|Q|]

2.3.1. %([|A3|],[|Q|]) = [l-e, 1]

2.3.2. [|A3|] MAY-PROJECT [|Q|]

2.4.1. %( [|A4|], [|Q|] ) = [0, e]

2.4.2. [|A4|] MAY-PROJECT [|Q|]

2.5. a€ [|Ai A A2 A A3 A A4|]

2.6. Q(a) is acceptable on 2.1 - 2.5;

i.e. PROB2.i_2.5(ae [|Q|] ) > 1 -e

2.7. b € [|Ai A A2 A A3 A A4Q

thus,

2.8. PRoB(b G [|Q|]) > 1 - t

Proof of Claim 2. Sufficiency. The crucial observations

are

o There are as many inference structures for b G [|Q|]>

as for a G [|Q|], given 2.1 - 2.5.

o There may be other reasons for a G [|Q|], but on the

force of the inference structures that 2.1 - 2.5

support, PROB(a G [|Q|]) is high.

o So some inference structure with reference class Y,

with %(Y, [|Q|]) high, dominates other infer

ence structures (whether this reference infer

ence structure is based on 2.2, 2.3, or some

combination of them).

o If this inferece structure is dominating for a G [|Q|]>

then it is dominating for b G [|Q|]-

What is more interesting than sufficiency is the insuffi

ciency of a weakened 2.6. If 2.6 is weakened, so that Q(a)

is simply acceptable, then this doesn't guarantee 2.8. Q(a)

may be acceptable because of some other inference struc

ture for a G [|Q|], and there may be no analogous inference

structure for b G [|Q|]-

Note that monotonicity of conflict resolution is achieved

through the theorems on how i.refclass behaves under

unions and subtractions from inf-structs. If inference

structures dominate each other in such a way that war

rants concluding PROB(b G [|Q|]) exceeds some threshold,

then adding yet another inference structure that agrees

with that conclusion cannot force the threshold lower. This

corresponds to Clark performing the analogy from a source

case that has fewer factors indicating the ultimate con

clusion than the target case, but just as many counter-

indicating factors. Also, if we remove from the set of

inference structures an inference structure that disagrees

with the conclusion about prob (b G [|Q|]), that too cannot

lower the threshold. This corresponds to Clark performing

the analogy from a source case that has as many indicating

factors for the ultimate conclusion, but even more counter-

indicating factors.

It is tempting, but incorrect to take the translation to

be

3.1.1. %([|A1|],[|Q|]) = [0,€]

3.1.2. [|Al|] MAY-PROJECT [|Q|]

3.2.1. %( [|A2|], [|Q|] ) = [1 - e, 1]

3.2.2. [|A2|] MAY-PROJECT [|Q|]

3.3.1. %( [|A,|], [|Q|] ) = [1 -e, 1]

3.3.2. [|A3|] MAY-PROJECT [|Q|]

3.4.1. %( [|A4|], [|Q|] ) = [0, <]

3.4.2. [|A4|] MAY-PROJECT [|Q|]

3.5. %( [|Ax A A2 A A3 A A4|],

[IQO ) = [i - <• 1]

V

%( [|AX A A2 A A3 A A, |],

[IQO ) = [0, <]

3.6. a G [|Ai A A2 A A3 A A4 A Q|]

3.7. b G [|At A A2 A A3 A A4|]

thus,

3.8. PROB(bG [|Q|]) > 1 -e .

First, the single case reported in (3.6) does not establish

which of the disjuncts in (3.5) is true. Suppose, though,

on the basis of (3.6), one of the disjuncts could be made so

probable that it is acceptable, through the observation of

the target case. This requires an additional theorem about

sampling: that most of the candidate reference classes for

some property y that are known to be mostly y or meetly

-<y, can be decided (with high probability) by looking at a

single case. This is a theorem for appropriate e and 6.

3.5.1. (y).

{ x : (%(x, y) = [0, (] V %(x, y) = [1 - e, 1])

A sample(x, y) = <1, 1> },

{ x : %(x, y) = [1 - e, 1] }

)>!-«.

(where, by sample(P, Q) = <s, r>, we mean that

s P's were sampled, of which r were Q's and s - r

were ->Q's).
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Additional knowledge about particular x's and y's, or

for particular sampling procedures, might make 6 even

smaller, for given ( .

When we have a situation like (3.5), and the 6 for which

(3.5.1) is a theorem is small enough to suit our needs (i.e. 1

- 6 is above the threshold of acceptability), then let us

write that Q is single-case-projectible from Ai A . . . A A4;

that is:

[|Ai A... A A^|]i-projects[|Q|].

Then (3.6) decides which disjunct in (3.5) is the right one;

the mass of Ai A ... A A4 is either Q or -<Q, and since a is

a Q, this decides that the bulk of Ai A . . . A A4 is Q with

high probability. So Q(b) could be inferred.

But the monotonicity of conflict resolution would be vi

olated for the following reason. If

%( [|AX A A2 A A3 A A4\], [|Q|] )

= [1-£,1]

%([|Ai|],[|Q|]) = [0,e],

it does not follow that

%( [|A2 A A3 A A4|], [|Q|] )

can be bounded. In particular, it is not necessarily close

to one. If b 6 [|Aj A A2 A A3 A A<|], indeed, Q(b) can

be projected. But if (3.7) is altered, if b is only known

to be in [|A2 A A3 A A4J], no projection is possible. It

could be that most races in which there are Porsches are

not close races, most races in which there are Ferraris are

not close races, but races in which there are both Porsches

and Ferraris are often close races.

So in this formulation of the inference, we cannot weaken

the number of counter-indicating factors for the source

case. It may be that the interaction of two counter-

indicating factors produces a joint indicating factor. Why

could we weaken it in the first reduction of Clark? In that

reduction, the combination of two counter-indicating infer

ence structures can only counter-indicate. So the counter-

indicators for the source could be weakened without dis

turbing the conclusion. Combination of inference struc

tures is related to the cross product of two sets, while joint

effects are related to the intersection of two sets; therein

lies the difference.

Anyway, we do allow the other halfof Clark's monotonic

ity desideratum. We can know one more indicating factor

about b, the target, and continue to draw the conclusion.

Add

3.7.1. b € [|Ai A A2 A A3 A A4 A A5|]

3.7.2. %([|A5|],[|Q|]) = [l-c,l]

3.7.3. [|A5|]may.project[|Q|]

and (3.8) is still a conclusion in Kyburg's system.

3 Discussion.

3.1 Considerations on Clark's Defeasible

Analogical Reasoning.

It is fallacious to propose a reduction of one inference sys

tem as a special case of another, then criticize it because it

appears to make assumptions in the language of the reduc

ing system. It is fallacious because there is no guarantee

that the reduction is the only possible, and there is no

guarantee that ensuing disputes are not defects of the re

ducing system. This is what the Bayesians are sometimes

guilty of doing when they assail Dempsterian inference.

I will not do this. But there are some claims about

Clark's analogical inferences I would like to make, and I

take the reductions to be merely suggestive of the truth of

those claims.

The reason I have belabored the second formulation of

Clark-like inference is that it is an epistemologically more

satisfying account of analogy. It does not capture both

halves of Clark's monotonicity of conflict resolution. But

it is simpler to use the second reduction and not insist on

the ability to project from a source to a target when more

relevant things are known about the source than about

the target (namely, that the source has additional counter-

indicating factors of the ultimate conclusion).

The latter account requires trivial background knowl

edge; it requires almost no assumptions in order to recon

struct Clark's inferences. Domination of inference struc

tures based on specificity of candidate reference classes

does all the work. There are only two specializations. The

first is that when two factors both indicate a conclusion,

they do so with frequency intervals that nest. That is, if

Ai indicates Q, and A2 indicates Q, then %(Aj, Q) and

%(A2, Q) should stand in the (possibly improper) sub-

interval relation. I guaranteed this above by taking all the

intervals for indicating factors to be [1 - e, 1] (and all the

intervals for counter-indicating factors to be [0, e]). This

could have been done in a more general way: by taking

all the intervals for indicators to be anchored on the right

at 1 (and taking all the intervals for counter-indicators to

be anchored on the left at 0). The second specialization

is in (3.5.1), which says that observation of a single case

determines the statistics to be on one extreme or the other,

hence allows projection from that single case. (3.5.1) is a

very natural assumption about sampling, for the appropri

ate 6.

In the former account, which preserves both parts of the

monotonicity of conflict resolution, the source case had to

be treated in a special way. It was not enough to say

in (3.6) that Q(a) was in fact accepted, for instance, by

some fortuitous observation. It had to be that Q(a) was

acceptable, on the basis of a's having properties Ai, A2,

A3, and A4. Q(a) could then be accepted by inference. Or

perhaps that inference was unnecessary because Q(a) had

already been observed; it wouldn't matter which. But it

is not enough to say that Sand-Nearby, and Unfavorable-

Environment, and Sand, among others, all co-occurred at

wellj • It must be that their co-occurrence was not acciden

tal, that this was a special kind of co-occurrence that deter

mines how conflicting arguments of exactly the kind that

were involved are to be resolved, for all future cases, in

cluding well2. It must be that the co-occurrence of Louis's
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Nationality and his Language is not spurious; rather, that

Louis's Nationality and Louis's Language's co-occur rep

resentatively.

3.2 Defeasible Determination and

Defeasible Representativeness.

In the case of Russell-like analogies, since there is no defea-

sibility, the determination relation dictates that any source

example will relate Nationality and Language in a repre

sentative way.

In Clark-like analogies, the stipulation of this represen

tativeness is the intuition that drives the design of the in

ference system. Any source example that involves certain

factors and their resolution is representative of all such

resolutions.

Clark puzzles over how to generalize the formalism so

that cases with the same indicators and counter-indicators

could have resolved differently in past, arriving at dif

ferent ultimate conclusions. He has taken the first step

of introducing defeasibility into determinations. Now a

factor, such as French-Nationality, only appears to deter

mine whether French-Language or ->French-Language; it

is a prima facie determiner. It defeasibly determines, and

the ultimate conclusion about whether French-Language

or -"French-Language in a particular case depends on

what other defeasible determinations play mitigating roles,

such as -iFrench-Nationality-Parents defeasibly determin

ing whether French-Language or -"French-Language.

Clark puzzles over the next step, introducing defeasibil

ity into representativeness. How should conflict resolution

be done defeasibly?

We may consider the inference

Al(x) INDICATES -"QCx)

A2(x) INDICATES Q(x)

A3(x) INDICATES Q(x)

A4(x) INDICATES -'Q(x)

Ai(»i) A A2(ai) A A3(ai) A A^aO A Q(ax)

Ai(a2) A A2(a2) A A3(a2) A A,(a2) A Q(a2)

Ai(a3) A A2(a3) A A3(a3) A A4(a3) A -Q(a3)

Ai(b) A A2(b) A A3(b) A A4(b)

thus,

Q(b)?

Fully defeasible analogical reasoning is apparently just

defeasible reasoning about the reference class, with the

right to project from certain small samples.

3.3 Defeasible Reasoning with Specificity.

Oddly, Clark makes no use of the idea of specificity, which

pervades defeasible statistical reasoning, and defeasible

reasoning in general [Loui87]. If Ai indicates Q, while Ai

A A 2 counter-indicates Q, the latter should supercede the

former for a case t, s.t. Ai(t) A A2(t). This is not a partic

ularly egregious oversight, since Clark's whole philosophy

is to make no a priori distinctions among determining fac

tors; he wants to resolve all conflicts by looking for source

cases that manifest these factors and seeing how their con

flicts were resolved. But he misses an opportunity by not

seeing the source case as a more specific reason than the

indication relation.

He could be faced with the case above, where A2 and A3

are both indicators of Q, and Ai and A4 are both counter-

indicators of Q. There are two potential sources: ai and

a2. ai is an Ai and an A2, as well as a ->Q. a2 is an Ai and

an A2 and an A4, as well as a Q. In this case, though one

source argues for Q and the other for ->Q, so that there

is no majority verdict, taking specificity seriously would

demand the (defeasible) conclusion Q(b). a2 is just more

specific a source than ai.

3.4 Case-Based Generalization versus

Case-Based Projection.

The difference between generalization and projection for

arbitrary cases is that the projection is defeasible. It is

one thing to infer

P DETERMINES Q

P(a) A Q(a)

thus,

(x). P(x) - Q(x)

and quite another to say

Clark mentions that a "majority verdict" could be taken,

in this case, two cases, ai and a2, are in favor of Q, while

the single case, a3, is opposed.

Are we willing to choose Q over -iQ for b when no over

whelming number of past cases are examples of Q? I think

we are not. If the number of cases for Q were overwhelm

ing, say 10 against 1, then perhaps we should project Q(b).

Otherwise, by my lights, there is no sense to the inference,

even if possibly construed as some strong form of analogy.

The only sense I can make of such an inference is that

we are accumulating instances of the class [|Ai A A2 A A3

A A4|], and observing the relative frequency among them

that is is [|Q|]. Our willingness to project from this class

based on a small number of cases includes those times when

we have a sample of 1 among 1 , or 2 among 2, perhaps even

9 among 10; but not 2 among 3, or 5 among 11.

P DETERMINES Q

P(a) A Q(a)

thus,

for all x: if P(x) is known,

then Q(x) is a justified defeasible conclusion

The two are not the same because when h is taken to be

non-monotonic, the deduction theorem disappears. The

former conclusion indefeasibly yields Q from P. The latter

admits defeaters.

What really seems to be desired is the latter.

"Case-based generalization" is a misnomer. Clark and

Russell understand the logic of analogy to be monotonic.

I think this is a mistake.
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4 Control of Statistical

Reasoning Driven by Few

Cases.

The possibility of case-based reasoning suggests new con

trol strategies for statistical reasoning programs. Already

there is a need for studying control issues in programs that

pore over their database in response to a query, to con

struct samples, from which to do reasoning about reference

classes (e.g. the program described in [Loui88]). It makes

little sense to continue to extend sample sizes beyond 10,

or 20, in commonsense reasoning. There is hardly a differ

ence in the intervals that result from a sample of 7 out of

10, and a sample of 14 out of 20. If I had time to examine

20 cases, I would spot at 7 out of 10 for one class, and

spend the rest of my counting time in its subclasses.

A meta-level utility analysis of the expected value of

continued examination of cases is required, no doubt (see

for example, [Russell&Wefald88]).

Prior to doing such an analysis, we should identify what

choices make sense. These choices are determined by

what are our current best arguments for projecting some

property, and what counter-arguments, if constructible,

would be effective rebuttals. Our theory of analogy, or of

more general projection from few cases, is what determines

where to seek counter-arguments.

Consider projecting from the single case:

Porsche(944) A Powerful(944)

Porsche(924)

apparently,

Powerful(924)

Ford(Mustang) A Powerful(Mustang)

Ford(Escort) A ->Powerful(Escort)

it would be contentious whether

for all x, y:

if x € Car-Manufacturers

and y € Performance-Features

then x 1-projects y .

This amounts to attacking the inference that led to the 1-

projectibility relation between Porsche and Powerful, that

is being assumed (in the real world, we probably already

know this relation, so the Ford examples are not going to

sway our opinion).

The Ford example is prima facie evidence that there is

a Car-Manufacturer class that is inhomogeneous in some

Performance-Feature class. This example could be coun

tered by identifying Porsche in a subclass, e.g. European-

Marques, where the Ford example is excluded from this

subclass. And there should be prima facie evidence that

there is homogeneity of members of this class with respect

to kinds of performance features; there should be reason

to believe that a Performance-Feature could be 1-projected

from a European-Car-Marque:

%(

%(

%(

%(

|Saab|], [|Handles|]) = [1 - 6, 1]

|Yugo|], [|Handles|]) = [0, i]

|Lotus|], [|Brakes-Well|]) = [1 - c , 1]

|Daimler-Benz|], [|Slow|]) = [0, e]

There are a few ways in which search can now be di

rected. A counter-argument to this projection could pro

duce counter-examples to the co-occurrence, e.g.

This is a lot of background knowledge, and in the pres

ence of such knowledge we might as well assume that we

also know

Porsche(356) A -.Powerful(356)
%([|Porsche|], [|Powerful|])

which dilutes the relevant statement of relative frequency.

Or it could produce a property that distinguishes putative

target and source, e.g.

VW-Project(924) A -<VW-Project(944)

together with a statement that this property is a counter-

indicating factor, that is, that it indeed leads to an inter

fering inference structure

VW-Project(Bug) A -.Powerful(Bug) .

This amounts to an appeal to the target's membership in

a more specific (i.e. more relevant) class that is apparently

counter-indicating.

A third way to attack the argument is to attack the

determination relation in virtue of which the single case

can be projected. For instance, if one could produce

But it should be clear how the logic could direct the

dialectic. If any of these counter-arguments could be pro

duced, search could next be directed toward finding a re

instating argument, and so forth.

Investigations of control of this kind of reasoning would

also benefit control of purely qualitative defeasible infer

ence, 6uch as [Loui87] and [Pollock87].

How precisely to make control choices appropriate to

this kind of reasoning is the subject of a more ambitious

invesitigation. For our purposes, it is enough to recog

nize this kind of reasoning, and to recognize the relation

between control of choices and the study of how to under

mine analogical inferences.

5 Conclusion.

Modern philosophers of science such as Quine and Ullian

[Quine&Ullian70] and Kyburg [Kyburg61] hold that anal

ogy is an uninteresting special case of induction. AI au

thors have balked at this, preferring to view analogy as
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a more interesting species of deductive reasoning, in Rus- Winston, P. "Learning and Reasoning by Analogy,"

sell's case, or as the resolution of conflicting defeasible ar- CACM 28, 1980.

guments, in Clark's case. I present middle ground. Anal

ogy's problems are best sorted with our most expressive

language and machinery for inductive statistical reason

ing. Case-based reasoning reveals itself as the guide to

dialectical maneuvers in this statistical reasoning.
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Abstract

A way of producing beliefs in non-monotonic

systems, called Plausible World Assumption

(PWA) , is presented. PWA has certain advan

tages compared to Negation as Failure, (TWA,

GCWA. The PWA provides beliefs for

all atoms of the Herbrand base of a given sys

tem leaving no one of them undefined. Most of

the assumptions agree with the majority of the

system models , and so have a good chance to be

approved by the reality. We study a notion of

relative monotonicity , and show that under

PWA a system possesses a high degree of this

desirable feature in the sense that most of its

beliefs are not affected by any change of other

ones.

1 Introduction

In recent years logic became a powerful tool of rapid

development of a wide variety of information process

ing systems, such as Expert Systems, Knowledge-Base

Systems, Deductive Databases.

Example 1.1. Consider a set of clauses

S = {P(a),Q(b),P(x)^R(x)}.

S contains two facts (that P(a) and Q(b) are true in

5), and allows us to derive (by using the axiom

P(x)-*R(x) ) a new fact R(a) . On the other hand, S

provides no grounds for any decision regarding the truth

values of P(b), Q(a), R(b) . Actually these values are

undefined in 5 , or we could say that they are

unknown due to the given state of S . □

Well, we may not be satisfied with such uncertainty

even though it reflects our restricted knowledge of the

real world described by the system. Indeed, we may need

some knowledge or estimate of P(b) for our further

activity. So, we may try to guess or make an assumption

about the value of P(b), which corresponds to our beliefs

provided that the beliefs are consistent with S . For

instance, assuming that P(b) is true implies that R(b) is

true either, or we may believe that both P(b) and R(b)

are false. Thus, we would like to have a systematic

approach to forming our beliefs about unknown facts.

The widely adopted approaches, such as Negation as

Failure [Clark, 1978], Closed World Assumption, CWA

[Reiter, 1978], Circumscription [McCarthy, 1980],

reflect the idea of minimizing sets of positive facts in the

system assuming negation by default (cf. [Reiter, 1980,

Gabbay, 1986]), which can be phrased as "If <|> cannot

be proved true in S , then $ should be assumed false in

S ", or "The only facts that are true in S are the ones

that can be derived from S ", or "If assuming that <|> is

false is consistent with S , then 0 is believed false in

S ". So, in Example 1.1 each one of P(b), Q(a),R(b)

should be assumed false.

Very often negation by default is in accord with real

cases. For instance, if a person name John Smith does not

appear in a company employees list, and the fact of his

employment cannot be derived from the available data,

then John Smith is indeed not employed by the company.

But in general, assuming that all we don't know about in

the world (which is quite a lot) is false, must lead to

conflict with the reality. If a system represents a large

and complex (and probably changing) domain, then the

knowledge of the system designers regarding the domain

may not be exhaustive, making negation by default not

applicable. Negation by default may be viewed as a claim

of our omniscience. However, as we learn more about

real world, it may turn out that some of our beliefs are

wrong, and this discovery in its turn may disprove con

clusions that have been drawn from the wrong beliefs.

This research is supported in pan by Israel National Council

for Research and Development, grants 2454-3-87, 2545-2-87.
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Example 1.2. Consider again Example 1.1 where

P(b), Q(a), R(b) cannot be proved in S :

S\-LP(b), S\-hQ(a), SH-R(b).

(i) Suppose that according to CWA we assumed that

both P(b) and R(b) are false in S , but later on have

discovered that P(b) is actually true. Then we have to

change both our beliefs about P(b) and R(b). Any

consequences of these beliefs must also be checked and

probably corrected.

(ii) We may have assumed that both P(b) and

R (b) are true, which is consistent with S . If it turns out

afterwards that R(b) is false, then again both our

beliefs regarding P(b),R(b) must be changed.

(iii) Now suppose we believe that P (b) is false, but

R (b) is true, which is still consistent with S . In this

case a discovery that any one of these beliefs is mistaken

affects only this particular belief, but no other one in S .

(iv) To exhaust all possible assumptions for P(b),

R(b), note that assuming P(b) = 'true' and

R (b) = 'false' is inconsistent with S .

Regarding Q (a) , any erroneous belief about it

affects no other one in S . □

Example 1 .2 illustrates an important feature of sys

tems with beliefs, which is their non-monotonicity

[Bossu and Siegel, 1985, Gabbay, 1985, McCarthy,

1980, Minker, 1982, Reiter, 1980]. If a system, 5 ,

adopts beliefs about formulae not provable in S , then

new information, C , being consistent with S may con

tradict some previous beliefs and their consequences. So,

it may happen that, for instance, D is true in S but

false in SuC.

Example 1.2 shows that possible assumptions in a

given system differ in their stability against discovery of

wrong beliefs, or in other words, in the degree of their

non-monotonicity. In this sense we would prefer assump

tion (iii) to (i) or (ii).

2 Positive and negative facts

Consider a system, S , as a set of clauses. If a ground

atom P(a) (a is a vector of constants) can be derived

from S , SI— P(a), then P(a) is a positive fact in

S ; if 51 <P(a), then P(d) is a negative fact in

5 . Non-ground clauses are usually referred to as

axioms , and often presented in the form of implication.

We don't presume that the form of an axiom imposes any

priorities on its literals (cf. [Bidoil and Hull, 1986, Przy-

musinski, 1986]).

A ( Herbrand ) interpretation , / , for a system S

is a set of literals, I = {L} , such that for every ground

atom A of the Herbrand base of S , / contains either

A (which means that A is true in / ) or -A (meaning

that A is false). A model \i of S is an interpretation

satisfying S . Let POS, NEG denote, respectively, sets

of positive and negative literals of u. . A model

\i\ = POS i <u NEG i is a minimal model of S (cf.

[Minker, 1982]) if there exists no model

\i2=POS2'uNEG2 such that POS2cPOS}. For

instance, P (a), P (b), Q (a), Q (b), R (a), R (b) is a

model of the system of Example 1.1, while

P(a),Q(b),R(a) is its minimal model, where the

negative literals are not shown explicitly. In the sequel

minimal models will be identified with the sets of their

positive literals.

So, a minimal model of a system S determines a

minimum set of positive facts necessary for satisfying

S . Such a preference for positive facts reflects the situa

tion that relations are usually defined in a system in such

a way that there is fewer positive facts than negative

ones, and so just the positive facts are explicitly stored,

thus minimizing the required storage space. For example,

consider a complete list of faculty presented by relation

FAC (name, department) that stores positive facts

regarding the faculty. If a person name does not appear

in FAC , it means, in the spirit of CWA , that the person

is not a member of the faculty. So, there is no need to

store a large quantity of negative facts stating that, say,

all the students (who usually outnumber the faculty) are

not faculty members.

But suppose that only a partial list of the faculty is

available, PARTFAC(name, department). If trying to

find out the affiliation of Dr. Bright (not appearing in

PARTFAC ) we make a telephone inquiry, we may col

lect a number of negative facts, like

-PARTFAC(Bright,Physics), -PARTFAC (Bright,CS),

-^PARTFAC (Bright, EE), etc. As only a partial

knowledge of the faculty is available, if an individual

does not appear in PARTFAC , we cannot make any

definite conclusion regarding his affiliation. In such situa

tions representation of certain negative facts becomes as

important and meaningful as that of positive ones.

Reiter [1978] has proved that a consistent Horn sys

tem is consistent with CWA , but a direct application of

CWA to a non-Hom system may lead to inconsistency.

To overcome the problem with non-Hom systems

Minker [1982] has introduced the Generalized Closed

World Assumption (GCWA) . Subsequently it has been

extended in a number of works [Gelfond et al., 1986,
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Yahya and Henschen, 1985].

Definition 2.1. (Semantic definition of GCWA

[Minker, 1982]). A ground atom is true in a system S iff

it belongs to all minimal models of S . All such atoms

constitute the set of positive definite atoms (PD) of S .

A ground atom can be assumed false in S iff it appears

in no minimal model of 5 . All such atoms constitute the

set of negative definite atoms (ND) of S . All ground

atoms not in PD u ND belong to the set of indefinite

atoms (ID) of S , such that ID=HB- (PDuND) ,

where HB denotes the Herbrand base of S . Indefinite

atoms are not assigned truth values under the GCWA .

□

GCWA classifies atomic formulae by dividing the

Herbrand base of a system into three disjoint sets: PD,

ND, ID. Following observations are of use in trying to

achieve a more detailed classification.

Observation 2.1. As it is known, SI— L iff

S u {-<L} is inconsistent. However, if for an atom A

neither A nor —A can be proved in S , then there is

certain freedom to assume A true or false, since each

one of these assumptions is consistent with S . We may

try to find out which of the assumptions is better from a

certain point of view. □

Observation 2.2. Let MOD denote the set of all

models of a system S .If S describes adequately a cer

tain part of the real world, then any information about the

world must satisfy S , or in other words, conform to one

of the models belonging to MOD . Consider an atom A

that can be assumed either true or false. Let MOD (A) ,

MOD {-A) denote sets of models of S in which A is

true or false, respectively, such that

MOD = MOD (A) u MOD (-A) . If we believe, say, that

A is false, but it turns out that A is true in the reality,

then we have to correct our belief together with its conse

quences. Willing to ensure that such corrections don't

occur often, and lacking precise knowledge of the

world's behaviour we may reasonably assume that the

more models of S contain A the more likely A is true

in the reality at any moment. So, we should assume

A = 'true' if A is true in the majority of the models of

S , but A = 'false' otherwise. This approach holds also

regarding those atoms whose truth values can be

definitely proved in the system, since for these atoms one

of the subsets of MOD is empty. □

Example 2.1. S ={P (a) v -J> (b),P (a) v -J> (c)} .

This is a Horn system with an empty minimal model

such that PD = 0, ID = 0, ND = {P(a). P(b), P(c)} ,

so P(a),P(b),P(c) all are assumed false under

GCWA.

The system has five models:

m=M>(a),-n/>(&),w(c);,

\i2 = {P(a),^P(b),-J>(c)},

VLi = {P(a),-J>(b),P(c)},

V4 = {P(a),P(b),-J>(c)},

li5 = {P(a),P(b),P(c)},

such that \MOD(P(a))\ =4, \MOD(-nP(a))\ = 1,

I MOD (P (b))\=2, I MOD (-J» (b)) I = 3,

I MOD (P (c)) I = 2, I MOD (-J> (c)) I = 3.

By the argument of Observation 2.2, it is expedient

to assume that P(a) is true. And this belief is justified

by the set of models even stronger than the assumption

that P(b) and P(c) are false. □

3 Kernels vs models

Several models of a system S can be represented by

their common part in the following way.

Definition 3.1. Let k be a partial interpretation of

S . Then k is a kernel of S if (a) every interpretation

/ containing K , k c. I , is a model of S , and (b) no

proper subset of K satisfies (a). We say that a kernel K

represents a set MOD (k) of all models of S contain

ing K . KER(S) denotes a set of all kernels of S such

that every model of S is represented by a kernel

kg KER(S).n

Example 3.1. Consider the system of Example 2.1.

It has two kernels, kx = (P(a)} , k2 = {-J>(b), -tP(c)} ,

representing following models:

MOD (Ki ) = {\i2, lt3.M4.li5i. MOD (k2) = />i , 1^ • D

Theorem 3.1. Let POS(k), NEG(k) denote,

respectively, sets of all positive and negative literals of a

kernel K of S . Then

(a) for every minimal model |i. there is a kernel k

such that POS (k) = p. ;

(b) for every kernel K7 there is a minimal model p.'

such that p' cmsOO ;

(c) there is no minimal model p." and kernel k"

such that POS (k") c|i" ( c denotes a proper subset).

Proof, (a) If p. is a minimal model of S then

M = p. u neg (HB - p) is a model of S , where

neg(SET) = {-L I L e SET} . Let M be represented

by a kernel Ke KER(S), and so, K£Af and

POS (k)q\i. If raS(K)cp then p is not minimal

since POS (k) u neg (HB - POS (k)) is a model of S .

Therefore POS(k) = [l.

(b) Since POSOO u neg (HB - POSOO) is a

model of S , there must exist a minimal model p' of S

such that p' eras0O.
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(c) By the same argument, if P(3S(k")cji" then

u. is not minima], contradicting the premise. □

Now, given a system 5 , we intend to classify the

atoms of its Herbrand base, HB , with regard to then-

occurrence in kernels of S .

Definition 3.2. For all atoms A e HB :

(i) An atom A is a positive (or negative ) fact iff

literal A (resp., —A ) occurs in all kernels of S . Denote

by POSFCT, NEGFCT , respectively, the sets of all

positive and negative facts of S .

(ii) A is a positive (or negative ) belief iff literal

A (resp., —A ) occurs in some but not all kernels, and

-A (resp., A ) occurs in no kernel. Denote by POS-

BEL, NEGBEL , respectively, the sets of all positive and

negative beliefs of S .

(iii) A is a neutral belief iff neither of literals A,

—A occurs in any kernel. Denote by NTRBEL the set

of all neutral beliefs of S .

(iv) A is a group belief iff each literal A, -A

occurs in some kernel. Denote by GRPBEL the set of all

group beliefs of S . □

Example 3.2.

S = {P(a)vQ(b),P(x)v^Q(y)v(x=y)}.

Although this is a non-Horn system, it has a unique

minimal model \iQ = {P(a)}. So, due to GCWA ,

PD = {P(a)} , ND = {P(b), Q(a), Q(b)} ,1D=0.

There are six models:

u., = {P(a), -J>(b), -4(a), -VQ>)},

u.2 = {P(a), -J>{b), -iQ(a), Q(b)},

H3 = {P(a), P(b), -,Q(a), -4(b)},

\i4 = {P(a),P(b),^Q(a),Q(b)},

p.5 = {P (a), P(b\Q (a), -,Q(b)},

\i6 = {P(a),P(b),Q(a),Q(b)},

represented by two kernels:

KX = {P(a),P(b)), K2 = {P(a),^Q(a)},

such that POSFCT = {P (a)} , NEGFCT = 0 ,

POSBEL = {P (b)} , NEGBEL = {Q (a)} ,

NTRBEL = {Q(b)}, GRPBEL = 0. □

Definition 3.3. Let rj be a set of literals contain

ing L e {A, -A} . Then_ r\A denotes a set conjugate

to r\ w.r.t. A , such that ru = Cn - {L}) u {~L} . □

Lemma 3.1. For all atoms A e HB :

(i) A e POSFCT (or A e NEGFCT ) iff A is true

(resp., false) in all models of S .

(ii) If A e POSBEL then the set of all models of S

in which A is true, MOD (A) , dominates the set of all

models of S in which A is false, MOD (—A). If

A e NEGBEL , then MOD(-tA) dominates MOD (A) .

In this sense, if A e POSBEL (or A e NEGBEL ) then

literal A (resp., -A ) occurs in the majority of models

of S.

(iii) A e NTRBEL iff there exists a one-to-one

mapping from MOD (A) onto MOD(-A) . So, if the set

of all models of S , MOD (S) , is finite, then

A e NTRBEL iff A is true in exactly one half of the

models of S .

Proof, (i) If A e POSFCT then by Definition 3.2

literal A occurs in all kernels of S . As every model is

represented by a kernel, A is true in all models of S . If

A & POSFCT then there is a kernel K such that A £ k ,

and a model \i represented by K such that —A e n . By

the same argument, A e NEGFCT iff A is false in all

models of S .

(ii) Let KER \ stand for the set of all kernels of S

containing literal A , and KER2 denote the set of all

kernels of S containing neither A nor —A . If

A e POSBEL , then by Definition 3.2,

KER2=KER(S)-KERl, KER\*<Z>, KER2*0.

Denote by MOD\, MOD2 sets of models represented

by all kernels of KER\, KER2 , respectively. Then

MOD (S) = MOD ! u MOD 2. Let MOD 2(A ),

MOD2(-A) denote the subsets of MOD2 containing,

respectively, literal A or -A . Since literal A occurs

in all kernels of KER i , we have

MOD (A ) = MOD , u MOD2(A ),

MOD (-A) = MOD2(-A) .

As neither A nor -A occurs in any kernel of KER2 ,

for every model u. e MOD 2 there is a model

r| e MOD2 such that r| = \i.A . This establishes a one-

to-one mapping from MOD2(-A), and so from

MOD(-A) onto MOD2{A). The latter is a proper

subset of MOD (A), hence MOD (A) dominates

MOD(-A). If MOD(S) is finite, then

\MOD(A)\ > IA/OD(-A)l . By the same argument, if

A e NEGBEL , then MOD(-A) dominates MOD (A) ,

and for a finite MOD(S),

\MOD(-A)\ > \MOD(A)\ .

(iii) -> : If A e NTRBEL

then KER , = 0, MOD , = 0 , MOD (A) = MOD 2(A),

MOD (—A) = MOD2(-A) , and hence there is a one-to-

one mapping from MOD (A ) on/o MOD (-A ) .

<- : If there is a one-to-one mapping from

MOD (A) onto MOD(-A) , then for every model \i

of S , its conjugate \iA is also a model of S . If we sup

pose now that there is a kernel k containing literal A or

-A , then there must be a model T| represented by k

such that ru is not a model of S — a contradiction.
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Whence A e NTRBEL .

Thus, if MOD (S) is finite, then A e NTRBEL iff

\MOD(A)\ = \MOD(-A)\ = 'A\MOD(S)\ . □

Example 33. S={P(a) vQ(b),-P(a) v-iQ(b)}.

There are 8 models:

\il={P(a),P(b).Q(a), -Q(bV.

\i2 = {P(a),P(b), ~Q (a), -4(b)},

\Li = {P(a), ~^>(b),Q(a), -G(b)},

\i4 = {P(a), -J>(b), -4(a), -4(b)},

\is={^P(a),P(b),Q(a),Q(b)},

V« = {-J>(a),P(b), -&(a), Q(b)},

\n={-J>(a), -TP(b),Q(a),Q(b)},

p8 = (-n/>(a), -J>(b), -4(a), Q(b)},

represented by two kernels:

Ki = {P (a), -4 (b)}, x2 = {-P (a), Q (b)},

which implies the following classification:

POSFCT = NEGFCT = POSBEL = NEGBEL = 0 ,

NTRBEL = {P(b),Q (a)}, GRPBEL = {P (a), Q(b)}. D

In Example 3.3 each of the ground literals of S

occurs in exactly one half of the models, but there is a

significant difference between atoms of GRPBEL and

NTRBEL . The atoms of NTRBEL may assume any

value independently of beliefs about the rest of atoms of

S . Indeed, suppose that a set of beliefs is consistent with

S , and forms a model p containing, say,

P(b)e NTRBEL . Since P(b) occurs in no kernel,

there exists, by Definition 3.1, a model p' = P/>(6) . So,

whatever our other beliefs are, assuming P(b) true or

false is equally justified and consistent with 5 . Consider

now an atom of GRPBEL, e.g., P(a). Since

P (a) t POSFCT u NEGFCT , either of P (a) ,

—P(a) is consistent with S , but if we have already got

certain beliefs regarding other atoms of GRPBEL , then

there might be no freedom for assuming the value of

P(a) . Indeed, in Example 3.3, if we believe that Q(b)

is true, then P(a) is false, but if Q(b) is assumed false,

the P(a) should be believed true. This mutual depen

dence suggests the name group beliefs. The following

procedure computes beliefs for all atoms of GRPBEL :

Procedure ASSUME_GRPBEL ;

1. Choose any kernel k; denote by G the set of

group beliefs occurring in K ;

2. For every atom A e G do

if literal A occurs in k then assume A is true,

else (* i.e., —A e k *) assume A is false;

3. For every atom B e (GRPBEL -G) either assume

B is true or assume B is false.

Lemma 3.2. Any assumption produced by pro

cedure ASSUME GRPBEL is consistent with S .

Proof. By Definition 3.1, the kernel k chosen by

ASSUMEGRPBEL (step 1) represents a model con

taining all the assumptions for the atoms of GRPBEL

produced by the procedure. □

Corollary 3.1. If every kernel of S contains at

most one atom of GRPBEL , then for all atoms of

GRPBEL any assumption (true or false) is consistent

with S .

Proof. By Definition 3.2, for every atom

A e GRPBEL there are kernels Kj, K2 such that

A e Ki, —A e K2 . Let T be any set of assumptions

for all atoms of GRPBEL , and an atom A be true (or

false) in T . By the premise, kernels K\ , K2 contain no

group beliefs except A , hence Kj (resp., K2 )

represents a model of S containing T . □

4 Plausible World Assumption

(a semantic approach)

Consider a logic system S describing a real world.

Some facts of the world are provable in S , but some of

them are not, since S reflects our incomplete knowledge

of the world. Concerning such undefined facts we would

like to have at least certain beliefs about them that would

represent a plausible image of the world. If the system

describes the world adequately, then any specific realiza

tion of the world corresponds to a model of S . So, the

more models of 5 are in accord with our beliefs, the

more plausible is our conception of the world. With this

intention, let us call a Plausible World Assumption

(PWA) the following set of facts and beliefs.

Definition 4.1. (Together with Definition 3.2 pro

vides a semantic definition of PWA ).

(i) For all A e POSFCT assume A is true;

(ii) For all A' e NEGFCT assume A' is false;

(iii) For all B e POSBEL assume B is true;

(iv) For all B' e NEGBEL assume B' is false;

(v) For all £ e NTRBEL either assume E is true or

assume E is false;

(vi) For all F e GRPBEL assume the value produced by

procedure ASSUMEGRPBEL . □

Lemma 4.1. Let PWA(S) denote the set of truth

values assumed due to the PWA for all facts and beliefs

of 5 . Then PWA(S) is a model of S .

Proof. Consider a kernel k chosen by procedure

ASSUMEGRPBEL . For all atoms A occurring in k ,

if A e POSFCT then A e k , and due to Definition 4.1

A is assumed true, PWA (A) = 'true' , else if

A e NEGFCT then -A e k , and PWA (A) = 'false' ,

else if -A e POSBEL then Ask, and
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PWA (A) = 'true' , else if A e NEGBEL then -A e k ,

and PWA (A) = 'false', else if A e GRPBEL then by

Lemma 3.2, PWA(A) satisfies k. Note that k con

tains no atoms belonging to NTRBEL . So, PWA (S)

agrees with k on all its literals, and hence defines a

model of S represented by K . □

PWA(S) is not unique. Definition 4.1 determines a

set of plausible models whose cardinality is at least

2intrbel\ Lemmas 3.1, 3.2, 4.1 imply the following

theorem.

Theorem 4.1. (a) PWA is consistent with Horn

and non-Horn systems;

(b) PWA defines beliefs for all atoms of HB(S)

leaving no one undefined;

(c) For all atoms of POSFCT , NEGFCT , POS-

BEL , NEGBEL , NTRBEL the PWA assigns truth

values that agree with as many models of the system as

possible. D

Corollary 4.1. An assumption different from

PWA (S) may be inconsistent with S .

Proof. By Lemma 3.1, for all atoms

A e POSFCT and fie NEGFCT assuming that A is

false or B is true is inconsistent with S . The following

example shows that violating Definition 4.1 (iii), (iv),

(vi) may also lead to inconsistency. □

Example 4.1. S = {P(a) v -P(b),

-J>0>)v -4(a),P(a)vQ(a),P(b)^Q(a),

P(a)v -40>),P(b)^ -4(b), -G(a)v -Q(b)}.

This system has two kernels:

Kl={P(a),P(b), -4(a)}, K2={^P(b),Q(a), -4(b)},

determining the following classification:

POSFCT = NEGFCT = 0 ,

POSBEL = {P (a )} , NEGBEL = {Q (b)} ,

NTRBEL = 0, GRPBEL = {P (b), Q(a)}.

By Definition 4.1 there are two plausible assump

tions (corresponding to the two possible choices of a ker

nel by procedure ASSUMEGRPBEL ):

PWA1(S) = {P(a),P(b), -4(a), -4(b)},

PWA2(S) = {P(a), -J>(b),Q(a), -,Q(b)}.

The following assumptions, different from

PWA\(S), PWA 2(S), are inconsistent with S :

assi={^P(a),P(b), -4 (a ), ~Q (b)} violates

Definition 4.1 (iii),

ass2 = {P(a), -J>(b), Q(a), Q(b)} violates

Definition 4.1 (iv),

ass 3 = (P (a), P (b), Q (a), -4 (b)} violates

Definition 4.1 (vi). □

Let us consider the relationship between

classifications produced due to PWA and GCWA

(displayed in Figure 1). By Theorem 3.1:

A literal A occurs in every kernel iff it occurs in

every minimal model, hence, POSFCT = PD.

On the other hand, if literal A occurs in no kernel,

then it belongs to no minimal model, so,

NEGFCT u NEGBEL u NTRBEL c ND.

GCWA

PWA <

POSFCT

POSBEL

GRPBEL

NEGFCT

NEGBEL

NTRBEL

PD ND ID

1

Figure 1 .

If literal A occurs in some but not all kernels, then it

may belong to no minimal model or to some but not all

of them. Hence, POSBEL u GRPBEL cNDu ID.

Finally, if literal A belongs to some but not all

minimal modes, then it occurs in some but not all ker

nels, hence, ID <z POSBEL kj GRPBEL.

5 Syntactic definition of PWA

Definitions 3.2, 4.1 present a model theoretic description

of PWA . Now, following the line of [Minker, 1982], we

give a proof theoretic definition of PWA , and show that

both are equivalent.

Definition 5.1. (Syntactic definition of PWA )

Consider a consistent system S , and an atom A . Let

S'(A) denote a set of all clauses C e S such that

S W- (C - {A, -A}) . So, every clause of S%4) con

tains either A or -A . Then

(i) A e POSFCT iff S I— A ;

(ii) A e NEGFCT iff S I A ;

(iii) A e POSBEL iff A C POSFCT and A is a pure

literal in S'(A) , which means that literal A occurs in

S'04),but -a does not;

(iv) A € NEGBEL iff A e NEGFCT and -A is a

pure literal in S"(A) ;

(v) A e NTRBEL iff SJ(A) = 0 ;

(vi) A e GRPBEL iff both A and -A occur in

^(A) . □

Theorem 5.1. The semantic and syntactic

definitions of PWA are equivalent with regard to the
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classification of atoms.

Proof. (i),(ii) 5 I— A (or 5 I A ) iff A

(resp., -A ) belongs to every model, and hence (by

Lemma 3.1) to every kernel of 5 .

(iii) «- : Consider a clause C e S"(A) such that

C =Av D . Since S\-h D , there exists a model p. of

5 falsifying D . Hence A e p. , but an interpretation

/ = p,4 is not a model of 5 since / falsifies C .

Therefore literal A must occur in a kernel representing

p . As Ae POSFCT , there is a model T| containing

-w4 . Then r\' - t\a is also a model. Indeed, r\'

satisfies every clause of S'(A) (since A is a pure literal

in S'iA)) and every clause C'e(S-S'{A)) (since

51— (C - {A, —A} ). Therefore —A occurs in no ker

nel representing r\ , and so in no kernel at all.

-» : Suppose A is not a pure literal in S'iA) that

contains clauses C\,C2 such that C\=AvD\,

C2 = -A v D2 ■ Since S \-h D x and S \-h D2 , there

exist models p , r\ that falsify £> i , D2 , respectively,

such that A e p , -iA e r\ . But neither / 1 = p>i nor

1 2 = t\a 's a model of S , so A occurs in a kernel Kj

representing p , while —A occurs in a kernel k2

representing r| .

(iv) By the same argument as (iii).

(v) <- : If S'(A) = 0 then for all clauses C e S ,

51— (C - fA, -i/U) . Hence, for every model p of 5 ,

its conjugate w.r.t. A , p^ , is also a model of 5 . This

implies (by Lemma 3.1) that neither A nor -A occurs

in any kernel of 5 .

-» : If neither A nor -tA occurs in any kernel, then

for every model p of 5 , p^ is also a model. Suppose

now that S"(A) * 0 , and consider a clause C of S'(A)

containing A or -A . As S\-J- (C - {A, -A}) , there

exists a_ model r| of 5 that falsifies C - {A, -A) .

Hence t^ falsifies C , and so is not a model of 5 — a

contradiction.

(vi) <- : Let both A and -iA occur in S'iA) , and

consider clauses C\,C2e S'(A) such that

C i = A v D i , C2 = -w4 v D2 . By the argument used

in (v), there exist models p, ti of 5 such that A e p ,

-w4 e T| , and neither p^ nor r\A is a model of 5 .

Hence, there must exist kernels K\, k2 such that

A e K] , -A e K2 .

—¥ : Suppose that (a) there are kernels Ki , x2 such

that A e Kj , -A e k2 , but (b) it is not true that both

literals A and -A occur in S'(A) . The latter means

either that S'(A) = 0 (which contradicts (a) by (v)), or

that literal A (or -iA ) is pure in S'(A) , but this con

tradicts (a) by (i)-(iv). □

Example 5.1. S = {P(a), -iQib),

P(x) vfi(4 -J>(x) v Q(y) v -TR(x,y), P(y) v T(y)}.

Clearly, P (a) e POSFCT , Q(b)eNEGFCT. Let us

classify other atoms:

Since f-iG(6), .POO vfiW, -J»(6); is

unsatisfiable, we have 51— P(b), so P(b) e POSFCT .

S'(Q(a)) = {-J>(a)vQ(a)v -tR (a,a),

-J>(b) v Q(a) v -TR(b,a)} , hence Q (a) e POSBEL .

S'(R(a,a)) = {^P(a)vQ(a)v -^R(a,a)} , so

/?(a,a)€^£Gfi£L.

51 tf(a,6) since fP(a), -{?(*),

-iP(a) vg(i)v -Jt(a,b), R(a,b)} is inconsistent,

hence R(a,b)e NEGFCT .

SJ(R (b,a)) = {^P(b)vQ(a)v ^R (b,a)} , so

/?(6,a)€N£GB£L.

51 Ji(b,b) since {^Q(b), P(b)vQ(b),

-P{b)vQ(b)v -TR(b,b),R(b,b)} is inconsistent, so

R(b,b)eNEGFCT.

S'{T{a)) = S'{T{b)) = 0, hence

T(a),T(b) e ATOBEL .

Thus, POSFCT = {P (a), P (b)} ,

W£GECr = ft2 (*), * (a,H fl(W ,

POSBEL = {Q (a);, NEGBEL = {R (a,a), R (b,a)} ,

NTRBEL = ^T(a), T(b)}, GRPBEL = 0 . □

6 Relative monotonicity

Consider a logic system 5 and a set F of all formulae

consistent with 5 . We say that 5 is monotonic if for

all formulae A, B e F , 5 1— A entails

S(J{B}\— A , where I— is the provability relation.

Otherwise 5 is non -monotonic [Bossu and Siegel,

1985, Gabbay, 1985. McCarthy, 1980, Minker, 1982^

Reiter, 1980].

Pure first order logic systems are monotonic, while

Negation as Failure [Clark, 1978], CWA [Reiter, 1978],

GCWA [Minker, 1982] and its extensions [Gelfond et

al, 1986, Yahya and Henschen, 1985], Circumscription

[McCarthy, 1980], Negation as Inconsistency [Gabbay

and Sergot, 1986] are non-monotonic.

Let 51— A mean that A is either a provable fact

in 5 (51— A ) or a belief consistent with 5 , although

not provable in 5 (S\~/-A). Gabbay [1985] studied

restricted monotonicity (RM) such that if 5 1— A and

5 1— B then 5 u {B} \— A . That is, under the RM if

5 is augmented by a formula deducible from 5 due to

the relation I— , this does not affect deducibility of

other formulae deducible from 5 .

We consider a more general type of non-

monotonicity, relative monotonicity , that is characteris-



Plausible World Assumption 273

tic of PWA .

Definition 6.1. (Relative monotonicity). Let V, W

be sets of formulae (not necessarily disjoint). If for all

AeV and all B eW and B * -A , 51— A entail

S u {B} I— A , then V is monotonic w.r.t. W . □

If W is empty for all V , then S is totally non

monotonic, but many non-monotonic systems display

certain degree of relative monotonicity. For instance, due

to RM both V and W are the same set of all formulae

deducible from S . Let FACTS (S), BELS(S),

CONS(S) denote, respectively, sets of truth values of all

facts provable in S , all beliefs in 5 under certain

assumption, all ground literals consistent with S . Then

under Negation as Failure, CWA (for Horn systems), and

GCWA (for Horn and non-Horn systems) FACTS (S) is

monotonic w.r.t. CONS(S), and

FACTS(S)vBELS(S) is monotonic w.r.t. itself. How

ever, BELS(S) is not monotonic wj.t. CONS(S),

which accounts for the impact of wrong beliefs on other

ones in S .

Example 6.1. Consider the system 5 of Example

3.2, and its minimal model \Xq = {P(o)} . According to

GCWA, P(b), Q(a), Q(b) should be believed false, so

FACTS={P(a)}t BELS={^P(b),-iQ(a),^Q(b)},

CONS= {P(a), P(b), -nP(b), Q(a), -,Q(a), Q(b),

-.(? (b)} . Adding to S any literal of CONS does not

change the provability of P(a) , but if S is augmented,

say, by Q(a)e CONS contradicting the initial belief,

then the assumption that P{b) is false must be changed

in BELS . □

Suppose that under certain assumption a set V is

monotonic w.r.t. a set W . Then the larger are V and

W the less troubles are caused by discovering a wrong

belief, and so the higher is the degree of relative mono

tonicity of the system. If V = FACTS (S)u BELS (S)

and W = CONS(S) then S becomes monotonic. This is

the case with first order logic systems, since there are no

beliefs, BELS(S) = 0. The following theorem shows

that PWA possesses the property of relative monotoni

city to a higher degree than the known approaches to sys

tems with beliefs.

Theorem 6.1. Given a system 5 , the set of truth

values assumed due to PWA for all atoms of

HB (5) - GRPBEL(S) is monotonic w.r.t. CONS (S) .

Proof. Suppose that S is augmented by a literal

L e CONS(S) becoming SL=Su{L} . Let

L e {A, -A} , and consider PWA (S) and PWA(SL) .

We have to show that for all atoms of

HB(S)-(GRPBEL(S)v{A}) their truth values in

PWA(SL) agree with those in PWA(S) . Let

MOD (5), KER(S) stand for sets of all models and ker

nels of S , respectively.

(i) Consider A e POSFCT(S) , so A e CONS(S)

and -u4«CCWS(S). Then MOD (SA) = MOD (S) ,

and so KER(SA) = KER(S). Hence

PWA(SA) = PWA(S).

(ii) If A e NEGFCT(S) then by the same argument

PWA(S^) = PWA(S).

(iii) Denote by MOD(S, L) , KER(S, L) , respec

tively, the sets of models and kernels of 5 containing

literal L . If A e POSBEL(S) then every model of SA

is a model of S , but a model (i. of S is a model of SA

iff u. contains A. Hence MOD(SA) = MOD(S, A) ,

and KER(Sa) = {k<j{A} I Ke KER(S)} . This implies

the following PWA classification of 5,4 relatively to

that of 5 :

POSFCT(SA) = POSFCT(S) u (A) ,

NEGFCT(SA) = NEGFCT(S) ,

POSBEL(SA) = POSBEL(S) - {A} ,

NEGBEL(SA) = NEGBEL(S) ,

NTRBEL(SA) = NTRBEL(S) .

Now suppose that the initial belief that an atom

A e POSBEL(S) is true, turned out to be wrong, and so

5 must be augmented by { -A} , becoming 5 _^ .

Then MOD(S ^) = MOD(S, -vl), and

KER(Sa) = {kv{^A} I Ke KER(S) and AiK} .

So, only those kernels of 5 which don't contain A

(augmented in 5 _^ by { -A} ) constitute KER(S _^) .

This implies the following classification:

The atom A , that has been a positive belief in 5 ,

becomes a negative fact in 5 _^ ;

Every atom of POSFCT(S) occurs in every kernel

of 5 ^t , hence POSFCT(S) Q POSFCT(S ^) ;

By the same argument,

NEGFCT(S) £ NEGFCT(S _^) ;

Consider an atom B e POSBEL(S) ; in 5 -^ literal

B may occur either in some but not all kernels, or in all

kernels, or in no kernels, hence POSBEL(S)z

(POSBELiS^) u POSFCT(S^a) u NTRBELiS^));

By the same argument, NEGBEL (5) £

(NEGBELiS.^) kj NEGFCTiS^) u NTRBELiS^));

No atom of NTRBEL(S) occurs in a kernel of

5 ^t , hence NTRBEL(S) c NTRBEL(S ^) .

Thus, the initial assumptions for all atoms of

HB(S) except those of GRPBEL(S) u (A) agree with

PWA{SA) and PWA(S _^) . Concerning an atom of

GRPBEL(S) , its value in PWA (S) may differ from that

in PWAiS^), e.g., if for PWA(S) procedure

ASSUME GRPBEL used a kernel of KER(S) that con

tains A , and so does not belong to KER(S -vi) .
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(iv) The same argument as in (iii) proves that for all

atoms E e NEGBEL(S) , if S is augmented by either

{E} or { —E} , this does not change the initial assump

tions for all atoms of HB(S) except those of

GRPBEL(S)u{E}.

(v) Let an atom A e NTRBEL (S) be assumed true

in PWA (S) , and consider SA . All models of S con

taining A constitute MOD(SA). These models are

represented in S by all kernels of KER(S) . In SA

atom A becomes a positive fact, so

KER (SA) = {K\J{A} I k e KER (S)}. Therefore

PWA(SA) = PWA(S).

If { -A} is added to S , then

MOD(S^) = MOD(S, -tA), so KER(S _^)

= {ku{-A} I K€ KER(S)}. Hence, A becomes a

negative fact in 5 _»4 , while the assumptions for all

other atoms remain unchanged.

By the same argument we reach the same conclusion

regarding an addition to 5 of {B} or { —B} for any

atom B e NTRBEL (S) that is believed false in

PWA(S).

(vi) Consider an atom A e GRPBEL(S) assumed

true (or false) in PWA (5) . By the argument of (iii),(iv),

adding to S either {A} or { -A} does not change the

initial assumption for all atoms of 5 except the

members of GRPBEL(S) . D

Theorem 6.1 implies the following corollary.

Corollary 6.1. If GRPBEL(S) = 0 then S is

monotonic under PWA in the sense that PWA(S) is

monotonic w.r.t. CONS (S) . □

Example 6.2.

SQ = {P(a)v -J>(b),P(a)vQ(a)};

*0\={P(a)}, Ko2 = {^P(b),Q(a)};

POSBEL = {P(a), Q (a)}, NEGBEL = {P(b)},

NTRBEL = {Q (b)} (empty classes are omitted);

PWA(S0) = {P(a), -TP(b),Q(a),Q(b)}.

S^Sovf^Pib)}

= {^P(b),P(a)v -nP(b),P(a)vQ(a)};

k„ = {P(a), -J>(b)}, k12 = { -J>(b), Q(a)};

NEGFCT = {P(b)}, POSBEL = (P(a), Q(a)},

NTRBEL = {Q(b)};

PWA(Sx) = {P(a), ->P(H Q(a), Q(b)} =PWA(S0);

S2=SQv{P(b)}

= {P(b),P(a)v -TP(b),P(a)vQ(a)};

K2l={P(a),P(b)};

POSFCT = (P(a), P(b)}, NTRBEL = {Q (a), Q (b)};

PWA(S2) = {P(a),P(b),Q(a),Q(b)}, which differs

from /WA (S0) only in P(b).

Si=SQu{^Q(b)}

= { ~<t (b), P (a) v ^P (b), P (a) v Q (a)} ;

K3i={P(a), H2W;, Kn = {^P(b),Q(a), -*Q(b)};

NEGFCT = {Q(b)}, POSBEL = {P(a), Q(a)},

NEGBEL = {P(b)};

PWA(S}) = {P(a), ^P(fe), Q(a), -^(b)} , which

differs from PWA(S0) only in Q(b). D

7 Summary

Consider a logic system describing a part of the real

world. Since our knowledge of the domain is, in general,

incomplete, there is a good deal of questions that cannot

be answered definitely in the system. Wishing to form

certain opinion about these undefined facts we have no

choice but to resort to guesses, assumptions, beliefs, that

are more or less in accord with the rest of our knowledge.

Doing so, we should not be surprised when the reality

disproves some of our beliefs, and we have to change

them, and correct consequences drawn from wrong

beliefs. So, incorporating beliefs in a system makes it

non-monotonic. It is only natural that we would like to

make our beliefs vulnerable as little as possible, in the

sense that (a) each belief is as likely to be in accord with

the reality as possible, and (b) a change of a belief affects

as few other beliefs as possible.

We present a way of producing such relatively

stable beliefs, called Plausible World Assumption.

PWA has certain advantageous features compared to well

known approaches to non-monotonic systems, such as

Negation as Failure, Closed World Assumption, General

ized Closed World Assumption.

PWA provides beliefs for all atoms of the Her-

brand base of a given non-Horn system leaving no one of

them undefined.

Under PWA most of the assumptions correspond to

the majority of models of the system, and so have a

good chance to be approved by the reality.

We study a notion of relative monotonicity , and

show that under PWA a system possesses a high degree

of this feature, in the sense that most of its beliefs are not

affected by any change of other ones.

In a given system PWA can coexist with GCWA

and Circumscription. For this purpose PWA should be

applied only to those atoms which are neither governed

by GCWA nor circumscribed. This approach may con

tinue the line of Protected Circumscription [Minker and
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Perlis, 1985].
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Abstract

We investigate the relationship between au

toepistemic logic and default logic. Our ap

proach is syntactic in nature. In each logic

we find three classes of objects - minimal

sets closed under defaults, weak extensions,

extensions for default logic, and minimal sta

ble theories, expansions and robust expan

sions for autoepistemic logic - so that for a

default theory (D,W), E is a minimal set

closed under defaults (resp. weak extension,

extension) if and only if E is the objective

part of a minimal stable theory (resp. expan

sion, robust expansion) for the autoepistemic

interpretation of (D, W). Similar results for

the converse direction hold only in the case of

minimal stable sets and minimal sets closed

under defaults, and expansions and weak ex

tensions. A weaker result holds for robust ex

pansions and extensions. This multilevel cor

respondence between default and autoepis

temic logics pinpoints the exact character of

the equivalence of their expressive powers.

1 Introduction

In this paper we investigate connections between de

fault and autoepistemic logics. Both of these log

ics are nonmonotonic and received considerable at

tention lately as they capture important aspects of

commonsense reasoning ([Reiter, 1980, Moore, 1985,

Marek and Truszczynski, 1988, Konolige, 1988a]).

Default logic uses the language of classical logic. It

deals with default theories - pairs (D,W), where W

is a collection of formulas of a first order language

(initial knowledge) and D is a collection of defaults.

Defaults are context-sensitive inference rules. They al

low derivations of new facts out of previously proven

ones in the presence of an appropriate context. The

'Work partially supported by National Science Foun

dation grant RII 8610671 and the Commonwealth of Ken

tucky EPSCoR program.

context-sensitivity of these rules results in nonmono-

tonicity. Having more facts as initial assumptions may

result in forcing us to consider contexts that block

applicability of previously used rules. The context-

sensitivity of the derivation process results (in some

cases) in generation of many possible sets of conse

quences of a default theory.

Autoepistemic logic is a modal logic with a single

modal operator K. The intended interpretation of K<j>

is "4> is known to a fully introspective agent". This in

terpretation results in some natural requirements on

the total knowledge of the agent (that is the set of

all formulas known to the agent). Reasoning in au

toepistemic logic is also context-sensitive, and there

are (in some cases) many candidates for the agent's

knowledge.

It was believed that the expressive powers of default

and autoepistemic logics are similar [Reiter, 1987] and

an important attempt to capture and formalize this

similarity was undertaken by Konolige [1988a]. His

line of argument can be described as follows. The cen

tral role in both logics is played by certain theories

referred to as extensions (in default logic) and expan

sions (in autoepistemic logic). What one needs is an

embedding of default theories into autoepistemic logic

that would establish a correspondence between exten

sions of a default theory (D, W) and expansions of the

autoepistemic image of (D, W). Konolige found a nat

ural embedding (denoted in our paper irjf) with the

property that extensions of (D, W) are objective parts

of expansions of the corresponding autoepistemic the

ory. He realized, though, that the converse implication

does not hold, i.e., the objective part of an expansion of

the translation of a default theory (D, W) need not to

be an extension of (D, W). Consequently, extensions

and expansions do not form a perfect match under the

translation trj( . At that point there are at least two

possibilities for further studies. One is to strengthen

the notion of expansion within the autoepistemic logic

in order to eliminate those expansions, whose objective

parts are not extensions, thus capturing the precise

expressive power of extensions. This is the direction

taken by Konolige. The other direction is to weaken,

on the default side, the notion of extension to find a
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perfect match for a less expressive notion of expansion.

Both directions are studied in this paper.

One should mention here that one of the most im

portant benefits of having a correspondence between

default logic and autoepistemic logic could be a dis

covery of some semantics for default logic. Autoepis

temic logic possesses a very natural semantics called

list semantics, introduced by Moore [1985] and stud

ied by Konolige [1988a]. This semantics satisfies the

completeness property, i.e., semantical notion of con

sequence has an exact syntactical counterpart. In de

fault logic, as introduced by Reiter, consequence is de

fined syntactically and so far no complete semantics

seems to exist.

The idea of Konolige [1988a] was to strengthen

the notion of expansion by restricting semantical

means used to define expansion. He introduces two

stronger classes of expansions: moderately grounded

and strongly grounded. One of his results claims that

strongly grounded expansions correspond to exten

sions. In this paper, we show that strongly grounded

expansions are not adequate to exactly capture and

reflect properties of extensions. The intuitive expla

nation for this is the following. Defaults are used as

inference rules and there is no explicit mechanism to

put them together to obtain new defaults or new for

mulas. However, after defaults are translated into au

toepistemic logic, they become ordinary autoepistemic

formulas and, hence, may be used together to generate

new facts, both epistemic and not involving knowledge

operator K . An example and more detailed discussion

is given in Section 3. Konolige defines his class of ex

pansions by means of certain autoepistemic valuations

that use stable sets (cf Stalnaker, [1980]) as modal in

dices (contexts). That approach does not prevent for

mulas that are images of defaults from interacting, and

that is precisely why strongly grounded expansions are

not adequate to capture the meaning of extensions.

In this paper, unlike Konolige [1988a], we exploit

syntactical properties of extensions and expansions,

and their similarities. Our point of departure is Re-

iter's operator T(E). We find that T(E) is a fixed

point of a certain operator RD,E which is monotone

and uses E as a parameter. The fixed point equation

of Reiter becomes then a requirement that the param

eter used in the construction of a fixed point be equal

to the fixed point itself. The operator RD,E is proof-

theoretical in its nature. It captures properties of the

notion of a strong default proof using initial knowledge

W, rules D and the context E. A theory E is then

an extension if and only if it coincides with the set of

formulas which possess a strong default proof (with E

serving as the context).

Employing these proof-theoretic observations to au

toepistemic logic, we define two new classes of expan

sions by simulating the process in which agent might

be deriving (autoepistemic) conclusions from a given

set of initial assumptions. These two classes turn out

to be different from the classes of moderately and

strongly grounded expansions of Konolige. We show

that one of these classes, so called robust expansions,

is a perfect match for the class of extensions if, on

the autoepistemic side we restrict the attention to the

theories in a certain normal form (with formulas where

occurrences of K are not nested). So, in the context of

extensions, robust expansions and autoepistemic the

ories in the normal form, expressive powers of default

and autoepistemic logic coincide.

In our second result we take a different approach;

instead of strengthening the notion of expansion, we

weaken the notion of extension. This is done by mim

icking the proof-theoretic method discussed above. We

introduce the notion of a weak default proof (from ini

tial knowledge W, using defaults from D and with

context E). We define E to be a weak extension pre

cisely when E coincides with the collection of formu

las weakly provable with E serving as a context. We

then show that weak extensions exactly correspond to

expansions (without any restrictions on the form of

autoepistemic theories involved).

In addition to these two correspondence results for

default and autoepistemic logic, one relating exten

sions with robust expansions and the other relating

weak extensions with expansions, we also show one

more result of this type. Namely, under the trans

lation of Konolige, minimal sets closed under defaults

on the side of default logic correspond to minimal (but

not in the sense of inclusion) stable theories on the side

of autoepistemic logic (see Section 4.3).

We stress the fact that our approach is syntactical.

In this we follow Reiter [1980] and Etherington [1988],

as opposed to Konolige's semantical approach. Not

only this extends our repertoire of means to study de

fault and autoepistemic logics but it allows to elim

inate the use of "nonclassical" proof systems (such

as K4b used in [Konolige, 1988a]). We also believe

that only syntactical approach may lead eventually to

some automatization of procedures to manipulate de

fault and autoepistemic theories.

It was observed in [Marek and Truszczynski, 1989]

that default logic is connected to the so called sta

ble semantics for general logic programs, and may be

treated as its precursor. It may be of deeper interest to

further investigate the close relationship between logic

programming and default logic which for many years

developed in a complete separation.

Our results support general view about similarity

of default and autoepistemic logic by revealing corre

spondences between extensions and robust expansions

and weak extensions and expansions. However, for

the moment at least, it is unclear whether autoepis

temic theories with nested occurrences of K can be ad

equately interpreted within the default logic by means

of extensions alone.
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The paper is organized as follows. In Section 2 we

recall the basics of both default and autoepistemic log

ics presenting the proof-theoretic approach to the no

tion of default extension (Subsection 2.1), a compact

overview of autoepistemic logic (Subsection 2.2) and

connections between both systems of reasoning (Sub

section 2.3). In Section 3 we introduce proof-based no

tions of expansions for autoepistemic logic and prove

that one of these (so called robust expansions) mim

ics precisely the notion of extension in default logic.

Section 4 deals again with correspondence problem for

expansions, extensions, minimal sets closed under de

faults and stable sets. The results of this section can

be formulated as follows. In each logic (default and au

toepistemic) we find three classes of objects - minimal

sets closed under defaults, weak extensions, extensions

for default logic, and minimal stable theories, expan

sions and robust expansions for autoepistemic logic -

so that for a default theory (D, W), E is a minimal

set closed under defaults (resp. weak extension, exten

sion) for (D, W) if and only if E is the objective part

of a minimal stable theory (resp. expansion, robust

expansion) for irjf(£>, W). Similar results for the con

verse direction hold only in the case of minimal stable

sets and minimal sets closed under defaults, and ex

pansions and weak extensions. A weaker result holds

for robust expansions and extensions. Finally, we con

clude the paper summarizing the results and indicating

directions for further research.

2 Preliminaries

Throughout the paper we consider the language C of

propositional logic (whenever we discuss default logic)

and its extension Cr by the modal operator K (when

ever we talk about the autoepistemic logic). We also

use the following notation: for T C £% we define:

KT = {K<f> : <j> G T), ->T = {-^ : 4> G T}, and

T=£K\T.

2.1 Default logic

Formally, a default is a triple < a,L,w >, where

a,u G C, and £ is a finite subset of C. Formula a

is called the prerequisite of the default, w is called the

conclusion, and the formulas of L are called the jus

tifications. Customarily, we write defaults as s^~, or

"'■h'-'P^ , if L = {Py. , . . . , 0„ } . For a default d we often

denote its prerequisite by p(d), its set of justifications

by j(d) and its conclusion by c(d). Defaults can be

viewed as context-sensitive inference rules. Let E C C.

If p(d) has been proved, and all justifications in j(d)

are "possible" (their negations are not in E), then we

accept the conclusion c(d). Clearly, it depends on the

set 2? - the context - which formulas can be derived.

A default theory is a pair (D, W), where D is a col

lection of defaults and W C £. Let E be a context

(i.e. E C £). By a strong proof of a formula <f> from

the theory W by means of defaults from D and with

respect to the context E, we mean a finite sequence

$li • ••i^n such that 4>n = <j> and, for every 1 < i < n,

(a) <j>i is an element of W or an axiom of logic, or

(b) there are j,k < i such that (j>k = (<f>j =>• <f>i) (i.e.

4>i is derived from <f>j and <j>k by means of modus

ponens), or

(c) there is d G D such that p(d) = <f>j for some j < i,

<t>i = c(d), and for all /? G j(d), ->/3 £ E.

Given (£>, W) and E, let CnD>B(W) be the collec

tion of formulas possessing a strong proof from W by

means of defaults from D and with respect to E. Then

CnD,E(W) is a context-dependent consequence opera

tion. Now we define an operator RD,B (where D is a

collection of defaults and E is a context) as follows:

RD-E(S) = Cn(Su{c(d) : d G D,p(d) G 5,

->(ci) D E = 0}).

Then, we iterate operator RD,E on W:

R%'E(W) = Cn(W),

RS&W) = RP'B(R°>B(W)),

for n > 0. Thus,

RZ+E(W) = Cn(R%-Eu{c(d):d€D,

P(d)eR^B(W),^j(d)nE = <b}).

Finally, we put

r%e(w) = 0 Rn-Em-

n=0

It is easy to see that the operator RDiE is monotone

and finitary. Hence the set R^E{W) is the least fixed-

point of the operator RD,E over W. The connection

of the operator R^E and the notion of strong proof is

given by the following theorem.

Theorem 2.1.1 CnD>E(W) = R%E(W).

The central notion in default logic is that of extension.

We say that a theory E is an extension of (D, W) if

R%E{W) = E. Taking into account Theorem 2.1.1,

we see that E is an extension of (D, W) if and only

if E coincides with the set of formulas possessing a

strong proof out of (D, W) with E itself serving as a

context. The above definition and its proof-theoretic

interpretation do not coincide with the original defini

tion of Reiter [1980]. Let us recall that Reiter defined

an extension as a fixed point of the (nonmonotonic)

operator T, where T(E) is defined as the smallest the

ory T such that:

(a) T is closed under consequence operation for C,

(b) WCT,
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(c) if d G D, p(d) G T and -*j(d) D E = 0. then

c(d) G T.

Then, Reiter defines E to be an extension of (D, W) if

and only if T{E) = E. Both definitions are equivalent.

This follows from the theorem essentially proved by

Reiter [1980].

Theorem 2.1.2 T(E) = R&E(W).

This result, intuitively, says that extensions are (or

at least may be treated as) proof-theoretic in nature.

Thus, extensions in the default logic play the role anal

ogous to that played by sets of consequences in clas

sical logic. Note however that the notion of a strong

proof is weaker than that of classical logic as it takes

the context into account (condition (c) of the defini

tion). Therefore, unlike in classical logic where each

collection of facts determines a unique set of its conse

quences, a default theory may have exactly one exten

sion, many extensions or no extensions at all ([Reiter,

1980]).

The notion of strong proof introduced above may be

further relaxed, by use of conclusions of "generating

defaults", i.e., defaults for which in addition to consis

tency ofjustifications, prerequisite belongs to E. Thus

we allow here the context E to intervene not only on

the negative (justification) side of the default but also

on the positive (prerequisite) side as well. Specifically,

a sequence <j>x,.. .,<f>n is a weak proof of <t> if <f>n = <l>

and, for every 1 < t < n,

(a) fa is an element of W or an axiom of logic, or

(b) there are j,k < i such that fa. = (fa => fa), or

(c) there is d G D such that p(d) G E, for all /? G j(d),

-i/3 g E, and fa = c(d).

The difference between strong and weak proofs lies

in conditions under which defaults are applied in the

proof (condition (c) in both definitions). Unlike in the

strong proof, where the prerequisite of a default has

to be derived in order for the default to be applicable,

in the weak proof it is sufficient that the prerequisite

belongs to E. This allows for the curious situation in

which the "proof of a fact may depend on the fact it

self! (a phenomenon common in autoepistemic logic).

We define Cn%'E(W) be the collection of formulas

possessing a weak proof from W by means of defaults

from D and with context E. Given a default theory

A = (D, W) and an arbitrary theory E C C, define

the collection of generating defaults for E, GD(A,E)

as {d : d G D A p(d) G E A -<j(d) n E = 0}. Also,

for a collection of defaults D define c(D) = {c(d) :

d G D}. The operation GD(A,E) was considered by

Reiter [1980] and Etherington [1988] but only in the

situation when E was an extension of (D, W).

Following the concept of extension introduced

above, we say that E is a weak extension of (D, W)

if and only if E = Cn°<B(W). The relationship be

tween weak extensions and the operation GD(A, •) is

given by the following theorem.

Theorem 2.1.3 E is a weak extension of A =

(£>, W) if and only if

E = Cn(WUc(GD(A,E))).

Proof (outline). One needs to show how a usual (that

is in sense of C) proof of ^ from W U c(GD(A, E)) is

converted to a weak proof of <f> from (D, W) with the

context E, and conversely. We leave the details to the

reader. □

2.2 Autoepistemic logic

Autoepistemic logic is concerned with theories in Ck •

An intended interpretation of a formula K<f> is "<f> ap

pears on the list of sentences accepted by the agent

as known". Due to that interpretation, with the set of

sentences serving as a means of interpreting the modal

operator K, the central role in autoepistemic logic is

played by stable theories ([Stalnaker, 1980]). A set

TCCK is stable if

(a) T = Cn(T),

(b) If 4 G T then K<j> G T,

(c) If <f> $ T then ->K+ G T.

The kernel or objective part of a stable theory T is

its trace on £ , that is TC\C. The following facts were

proved in [Moore, 1985] ((a) and (b)) and in [Marek,

1986] ((c)) They will be used frequently throughout

the paper.

Proposition 2.2.1 (a) IfT is stable then its kernel

is closed under consequence in C.

(b) T is uniquely determined by its kernel; that is if

Tx and T2 are stable, Tx n C = T2 D C, then Tx=T2.

(c) There exists an operator E : V(C) h* V(Ck) such

that, for every theory S C C, E(S) is the unique stable

theory T C CK such that TnC = Cn(S).

An explicit definition of the operator E due to

Marek [1986] is given below. Let £k> be the fragment

of the language Ck consisting of formulas of /(-depth

at most n. (Thus C = Ck,q)- For S C C define:

Eo(S) = Cn(S),

En+x(s) = Cic,n+i n

Cn(En(S) U KEn(S) U -#(£*,„ - En(S))),

and finally,

E(S) = (J En(S).

n=0

The definitions of stable theories and of E(S) are syn

tactical in nature and thus in the spirit of default logic.

One has to notice, however, that the original develop

ment of autoepistemic logic was semantical and based

on a novel semantics for the language Ck ([Moore,

1985]). This semantics can be described as follows.

Let E be the collection of facts known to an agent.
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In addition assume that the agent assigns the value

0 or 1 to elementary propositions (prepositional vari

ables) not involving the modal operator K ; denote this

assignment v. This generates the following semantics

(called list semantics) for Ck- The formulas not in

volving K are evaluated by means of v, the formulas

of the form K<f> which themselves are not within the

scope of operator K are treated as atoms and are eval

uated as follows: K<f> is evaluated as 1 {true) if and

only if <p belongs to E. "Mixed" formulas are evalu

ated according to usual conditions for satisfaction. We

denote by ^=V,E 4> the fact that <p evaluates to 1. Now,

the notions of "i?-tautology" and " £'-entailment" fol

low. Namely, we define \=e <t> if and only if V„ (=„,£ <t>,

and / ^=e <t> if an<i only if V»(Nv,£ I ^r^v.E (P)-

The collection of formulas entailed by / (E is fixed)

may serve as a, semantically defined, consequence of /.

The crucial argument, due to Moore ([Moore, 1985])

goes as follows. Assume that / C Ck is given (think

about / as initial assumptions of an agent, or "all agent

knows" [Levesque, 1987]). Those lists E for which E

coincides with the set of ^-tautologies correctly repre

sent agent's knowledge. Such lists satisfy the equality

E = {</>: I \=E *}.

and are called expansions of /.

The following proposition summerizes basic results

concerning expansions proved in [Moore, 1985].

Proposition 2.2.2 (a) E is an expansion of I if and

only if

E = Cn(IUKEU->KE).

(b) For every I, every expansion of I is stable.

(c) If E is stable then E is the only expansion of its

kernel.

Proposition 2.2.2 guarantees existence of unique ex

pansions for theories ICC. If, however, J contains

non-objective formulas, / may have no expansion, ex

actly one expansion or many expansions. Examples

are given in [Moore, 1985, Marek and Truszczyriski,

1988, Konolige, 1988a] showing that all three general

situations are possible.

As pointed by Moore, every formula <j> of Ck is logi

cally equivalent to a formula f\ 0,- where each 0, is of

the form:

K<j>i V ... V K4>k V -i/fVi V ... V ->Krpr V w.

Here w 6 C and Jb or r or both can be equal 0. It

follows that for every theory J there is a theory Ie

consisting of implications of the form:

(*) K<f>i A ... A K<f>k A -<Ktpi A ... A ->Kipr =J> u

with w € C, such that Cn(I) = Cn(Ic). (We write

such implications as A =>■ w, possibly with indices).

We shall call formulas of the form (*) autoepistemic

clauses (ae-clauses for short). One easily shows that

theories with the same consequences have also the

same expansions. Thus we obtain the following result.

Proposition 2.2.3 For every theory I there exists a

theory 1° consisting of ae-clauses such that Ie has the

same expansions as I.

For a theory / consisting of ae-clauses, we define

W(I) = / fl C (formulas of / without any occurrence

of K) and D(I) = I\W(I) (formulas of / with occur

rences of K).

We say that a formula <p is purely epistemic, if for

every atom p, every occurrence of p is within the scope

of modal operator K.

Example 2.2.4 (a) The formula K{pV->K{r))/\K{s)

is purely epistemic,

(b) The formula K{pW -^K(r)) A s is not purely epis

temic.

We say that <f> is stably equivalent to rp, (in symbols

<j> ~5 i>) if for every stable theory T, <f> 6 T if and only

if %l> G T. Purely epistemic formulas have useful prop

erties with respect to stable theories. The following

facts are proved in [Marek and Truszczynski, 1988].

Proposition 2.2.5 (a) // 4> is purely epistemic then

for every stable theory T, <j> £T or (-><£) € T.

(b) For every <j> € Ck there exists a purely epistemic

tj) such that K—depth oftp is 1 and V> ~s 4>-

By Proposition 2.2.5 (a), <j> ~,s V" implies that ->(j> ~$

-<ip, for purely epistemic <$> and xp. It is also easy to see

that for every tp, rp e CK , {K<f> A Kip) ~s K{<j> A rp).

Thus, we may assume that the formula A in an ae-

clause A ^ u, has at most one positive conjunct K<p.

The following definition is closely related to Kono-

lige's autoepistemic translation of default theories (see

next subsection). A formula <p = Ka A -<K<pi A ... A

-<K<pn =» u>, where ct,w,<pi G C is called an ae-default

(positive part Ka, negative part -^K<pi A ... A ~<K<pn ,

or both may be missing). A theory J is said to be in

the normal form if all formulas in / are ae-defaults.

The next fact can be found both in [Konolige, 1988a]

where it is proved by reference to logic K45 and in

[Marek and Truszczynski, 1988] where it is proved se

mantically.

Proposition 2.2.6 For every theory I there exists a

theory I+ (effectively constructible) consisting of ae-

defaults such that I and I+ possess the same expan

sions and the same stable sets.

2.3 Connections between default and

autoepistemic logics.

With the interpretation of K<p as n<p is known" in

mind, a natural translation of a default d = a ?1' , '^l>

into autoepistemic logic (due to Konolige [l988a]) is:

trK(d) = Ka A ->K^i A ... A ->K->0n =*• w,

as -i/iT-i/? (~V? is "not known") can be interpreted as

"/? is possible". A default theory (D, W) is translated

into an autoepistemic theory as follows:

trK{D,W) = Wu{trK{d):d£D}.
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Notice that trx(D, W) is in the normal form (consists

of ae-defaults). Konolige [1988a] points out that un

der this translation expansions do not correspond to

extensions. The notion of expansion is too weak, as

it allows context (modal index) T to be used both for

generating K<j> if <j> € T and ->K4> if <f> £ T, whereas in

the definition of extension, the context is used only for

the justification part of defaults (that is corresponds

to formulas ->K<f> in the translation) and the prerequi

site part (that corresponds to Kip in the translation)

has to be derived earlier. Formally, Konolige shows the

following fact.

Proposition 2.3.1 If S is an extension of (D, W)

then E(S) is an expansion of trj((D,W). Converse

implication, however, does not hold.

It is easy to give an example showing the second part

of the proposition Consider I = {Kp =>■ p}, possessing

two expansions, E{TAUT) and E(Cn{p)). But, I =

trK(D,W) with W - 0 and D = {^-}, and theory

(D, W) possesses only one extension, TAUT.

In order to find within autoepistemic logic an ob

ject exactly corresponding to the notion of extension

Konolige strengthens the notion of expansion. A start

ing point for his argument is an observation that T is

an expansion of J C Ck if and only if

T = {<t> : I U KT0 U ^K(C - T0) \=ss <t>),

where To = T n C, and \=ss 4> denotes the fact that

\=E <fr for every stable E. Modifying that fixed point

equation Konolige gets two stronger classes of expan

sions. A set T C Ck is moderately grounded in I if

T= {<f> : I UKIU ^K(C -T) \=ss <f>}-

A theory T C Ck is strongly grounded in a normal

form set I C CK (I = {A{ => w< : 1 < i < k}) if

T = {4> : /' U KI' U ^K(C - T) |=ss 4>},

where /' = {A{ => w,- : m £ T}. Konolige shows

that theories moderately grounded in I and strongly

grounded in I (providing I is in normal form) are ex

pansions of J. We refer to them as moderately and

strongly grounded expansions, respectively. Konolige

[l988a] claims that under the translation trK , exten

sions correspond precisely to strongly grounded expan

sions, that is, for every default theory (D,W), and ev

ery S C C, S is an extension of (D, W) if and only if

E(S) is a strongly grounded expansion of trK(D, W).

This claim is, however, wrong. Consider the default

theory ({^-,_;r£},0). It is easy to see that it has

no extensions. The autoepistemic translation of that

theory is / = {Kp =$■ p,-<Kp => p}, and it possesses

one strongly grounded expansion, namely E({p}). The

reason why strongly grounded expansions do not cor

respond to extensions is that defaults work as infer

ence rules, hence, the efTect of every single default is

independent of all the other defaults. On the other

hand, after defaults are translated into autoepistemic

logic, they become formulas and definitions of expan

sions, moderately grounded expansions and strongly

grounded expansions allow for interactions between

them. Those interactions are not necessarily express

ible in terms of default proofs as is precisely the case

in our example. In our example p cannot be derived

if Kp => p or ->Kp ^ p are used separately, but p ob

viously is a consequence of the two formulas together.

Here lies, in our opinion, the most significant differ

ence between defaults and autoepistemic logics. De

faults work as inference rules and their prerequisites

and justifications do not interplay as they are capa

ble to do in the autoepistemic framework. Konolige

tried to eliminate unwanted interactions by eliminat

ing some formulas from / in the definition of strongly

grounded expansion. As our example shows that was

not enough. Later, Konolige [1988b] introduced one

more type of an expansion by replacing set /' in the

definition of strongly grounded expansion by set /"

defined to consist of these formulas Ai ^ w< from J,

where At = K<f>: A ... A K<f>k A -•Kipi A ... A ->tfVv,

for which w G T and ipi £ T, . . ., Vr g T. It turns out

that expansions of that kind (call them supergrounded

in 7) exactly correspond to extensions.

Our results extend the work of Konolige. We in

vestigate connections between default and autoepis

temic logics on several levels. One of them deals with

correspondence between extensions and appropriately

defined expansions. We use a simpler, syntactical ap

proach and eliminate the need for nonclassical proof

systems like AT45 used by Konolige. In the next two

sections we define new classes of expansions by mimic-

ing the process in which extensions are generated. One

of them constitutes a perfect match for extensions.

Thus, this class of expansions coincides with the class

of supergrounded expansions of Konolige (but the defi

nitions are different; our definition relies on properties

of generating defaults). We also discuss relationship

between weak extensions and expansions, and between

minimal sets closed under defaults and minimal stable

sets.

3 Proof-based expansions of

autoepistemic theories

As mentioned above, Konolige [l988a] defines classes

of expansions by means of their semantic properties;

he refers to the satisfaction relation f=t;,T and asso

ciated entailment relations. Here we take a different

approach. Following ideas from logic programming,

reflected in the area of default logic by Reiter's oper

ator RD'E (as an alternative to the original Reiter's

operator T), we apply the "operator" method within

autoepistemic logic. As a result, we get two opera

tors, AT and BT . It turns out that operator AT does

not, in general, eliminate the side effects which led
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Konolige to formulate the notion of supergrounded-

ness (however, with appropriate modifications, it does

- this is the subject of next section) . Our second oper

ator BT is technically more complex and less elegant

but it faithfully simulates constructions from default

logic.

Within autoepistemic logic we have a weak notion

of provability inherited from classical logic in which

every formula of the form Kj> is treated as an atom.

This notion of a proof is very restrictive, in particular

a proof of formula <f> does not allow to derive K<j>. This

problem can be easily solved by adopting the necessi-

tation rule. The real problem is how to incorporate

context into an autoepistemic proof so that axiom (c)

of stability is properly accounted for. Here, we accept

(in the case of both AT and BT) a method inherited

from default logic. We introduce a parameter T (con

text) and add new axioms - all formulas of the form

-K<j> for 4> g T. Thus, proofs become context depen

dent. This incorporation of a context is formalized

below. An operator A is defined by

A(S) = Cn(S U KS).

Intuitively, operator A corresponds to the provability

in modal logic which has both modus ponens and ne-

cessitation rule but no axioms for simplifications of

modalities. The logical axioms in this logic are just

substitutions of tautologies. The operator A is mono

tone and finitizable. By appropriate choice of extralog-

ical axioms (in our case, formulas of the form ->K<j> for

4> & T) we get the desired nonmonotonicity. We iterate

operator A, starting with the theory I\JKW(I)U->KT.

It is precisely here that elements of context dependence

and nonmonotonicity appear. The context intervenes

in negative fashion at the beginning of the construc

tion; subsequently only a monotone operator is ap

plied. Let us define, for I C Ck (initial assumptions)

and theory T C Ck (context)

A%(I) = Cn(I U KW(I) U -KT),

Al(l) = AiAl_.il)) = CniAl_.il) U KA^f))

for n > 0, and let

ATiI) = (J Alii).

n=0

It is easy to see that AT is a fixed point of operator_A

and in fact the least fixed point of A above I U —KT.

Hence the collection ATiI) consists precisely of the

formulas which are provable from I and —KT (here

the context is used in a negative fashion) using classi

cal logic and the necessitation rule. The simplicity of

the construction (it uses rather elementary modal logic

and applies it to the initial knowledge I extended by

some negative facts provided by the context) is rather

surprising here, especially in view of Konolige's appli

cation of the logic A"45. The adequacy of this con

struction follows from the following theorem. Before

we state and prove it we introduce an additional tech

nical assumption that simplifies our reasoning without

any loss of generality.

Remark 3.1 Let iD,W) be a default theory. Define

D' to be the set of defaults obtained from D by re

moving all trivial defaults of the form -^ , and define

W be the set of formulas obtained from W by adding

formulas w, for each default -j^ removed from D. It

is evident that theories (D, W) and (D7, W) have the

same extensions. Moreover, they have the same au

toepistemic translations (tri^D, W) = trjciD', W)).

Therefore, throughout the rest of the section we con

sider only theories (£), W) such that for no w _ C,

-j- € D. Recall that for I C CK, Wil) consists of

all formulas of / that do not involve operator K, and

£>(/) consists of all other formulas from 7. Due to our

restriction on the default theories considered, we have

that Wil) = W, for I = trKiD,W), or equivalently,

that W{trK(D, W)) = W.

Theorem 3.2 If ATiI) = T, then T is an expansion

of I.

Proof: We need to prove that if j4t(7) = T, then

T = Cnil UKTU ^KT). Now, I U -<KT C A$(I) C

ATiI) = T. Moreover, if <f> _ T then, for some n,

<j> € Alii). Consequently, K<f> € Al+1il) C T. This

implies

IUKTU^KTCT.

Since T is closed under Cn (as the union of an as

cending chain of theories closed under Cn), it follows

that

CniIUKTl)-,KT)CT.

To show the converse inclusion we proceed by in

duction to prove that for all n _ Af, Alii) C Cnil U

KT U ->AT). This is certainly_true for n = 0, as

Alii) = Cnil U KWil) U -.AT), (since I C T, we

have_/srW(/) C KI C KT\_ hence, I U KWil) U

-KT C Cnil U KTU -KT)). Assume A£(J) C

Cnil U AT U -KT). Note that since AHl) C T,

we have KAHl) C KT. Hence,

CniAHl) U KAlil)) C Cn^ U AT U -KT),

i.e., Al+1iI)CCniIUKTU-KT). a

An expansion T of I such that ATiI) = T is called

an iterative expansion. Not every expansion is itera

tive. The following example is due to Konolige. For

I = {Kp => p} the expansion EiCnip)) is not itera

tive; adding formulas —K<j> for 4> not in EiCnip)) does

not allow for derivation of p itself.

Although expansions generated by operator AT

from the initial knowledge mimic fairly well the way
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in which strong default proofs work, they are not good

enough; the unwelcome side effects persist. The exam

ple of 7 = {Kp =» p, ->Kp => p} is again an indication

of what happens here. The fact that we allow the for

mulas of / to interplay allows us to derive p regardless

of the context.

Hence we are faced with this alternative: either we

strengthen the operator, finding the means to elimi

nate the interplay between the formulas of J, or we

do not change the operator, but instead modify col

lection 7 in order to eliminate the interplay. In fact

both of these avenues are reasonable and both lead to

the desired result - the reconstruction of the notion of

default extension within the autoepistemic realm. In

the remainder of this section we shall describe the first

possibility. Our construction is, unfortunately, techni

cally complicated. We introduce a new operator BT .

This operator is tailored to capture precisely the proof

procedure of default logic. Because of this, we shall

consider now theories consisting of ae-defaults only

(normal theories), as such theories are images (under

translation trx) of default theories.

Define, for 5 C C,

BIlT(S) = Cn \J Cn({<!>}llSl}KSU^KT),

and iterate this operator over W(I):

Bftl) = Cn(W(I)),

Jl+iM = 5''T(#(/)),

Bl(I) = |J *?(/).

neAf

Finally, put

BT(I) = E{Bl(I)).

The definition of the operator BT is complicated

and requires an explanation. The idea is to force that

the formulas of D(I) are used separately, thus not al

lowing any direct interplay. In addition, after each

stage of the construction we leave only the objective

information obtained during that stage and use that

information only (possibly with a modal operator ap

plied) later in the process. A weak form of an interplay

still remains and has several sources. Firstly, if a for

mula <t> G C is derived at some stage, the formula itself

or K<t> will appear at future stages and will interplay

with other formulas from D(I). Secondly, the negative

knowledge of the form -iK<j>, for <f> £ T, is input into

the construction at the very first stage at once. How

ever, two formulas of D(I) are never used together in

the same derivation. Their objective consequences in

terplay but not the formulas themselves!

The adequacy of this construction is justified by the

two main results of this section (Theorems 3.3 and

3.6). First of them shows that operator BT is a refine

ment of operator AT.

Theorem 3.3 // BT(I) = T, then T is an iterative

expansion of I, that is AT(I) = T. In particular, T is

an expansion of I.

An expansion T of I such that T = BT(7) is called

robust. Later in the section, we shall prove that robust

expansions exactly correspond to extensions. Robust

ness is a property of representation. The fact that

T is a robust expansion of 7 does not imply that T

is a robust expansion of 7+ for a theory 7+ such that

Cn(I) = Cn(I+). This is certainly an unpleasant phe

nomenon. To see how this can happen, let us look at

our standard example 7 = {->Kp =>• p, Kp => p}. The

theory 7+ = {p} which is logically equivalent to 7 pos

sesses a robust expansion, namely E(Cn(p)). Yet 7

has no robust expansion, as can be easily verified. The

fact that the theory {p} possesses a robust expansion

is no accident. In fact we have the following general

fact.

Proposition 3.4 If S C C then the only expansion

E(Cn(S)) ofSis robust.

In order to prove Theorem 3.3 we need an auxiliary

lemma.

Lemma 3.5 If BT(I) = T, then ICT.

Proof: Since I = W(I) U D(I), we need to prove that

W(I) C T and that £>(7) C T. The first inclusion is

obvious (W(I) C Bl(I) C B£(7) C Bt(I) = T).

Now, let <j> G D(I). Then <j> is of the form

Ka A ->K0i A ... A ->K0n => f.

where a,/?,- and 7 G C, and part Ka or negative con-

juncts may be missing.

(a) If a 0 T then, since T is stable (as an expansion

of ££(/)), ^Kot € BT(I) = T. Hence <f> G T.

(b) If for some j < n, /?, G T then Kfy G T (by sta

bility of T) and so, again, <j> £T.

(c) Finally, assume that a £T and for all j < n, fy £

T. Then, as a G T = ^(5^,(7)), and since B*(I)

is closed under consequence, we have a G 5^(7)

(by Proposition 2.2.1). Therefore, for some n G N,

a G 5^(7). But then <j>, Ka, ->K0i,. . . , ->K0n belong

to

Cn({<f>} U Bl{I) U KBl(I) U ^KT).

In this set 7 can be derived, and since 7 belongs to

C, 7 G B*+1(I) C B£(7) C T. But since 7 G T,

4> = Ka A -.tf/?i A ... A ~>K0n => 7 belongs to T as

well, as T is closed under consequence. CI

Proof of Theorem 3.3. Assume T = BT(I) and

denote S = fi^,(7). Hence T = E(S), in particu

lar, T is stable. First, we prove by induction that

for every n, A^(I) C T. For n = 0 we have Aq (7) =

Cn(IUKW(I)\J^KT). By Lemma 3.5, 7 C 7\_ Hence

W(I) C T and, by stability, KW(I) U ->KT C T.

Since T is closed under consequence, Aq (I) C T fol

lows. The induction step is an easy consequence of
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stability of T, we omit details. Now, since AT(I) =

lT=i Al(I), we obtain AT(I) C T.

To complete the proof we need to show the converse

inclusion T C AT(I). We recall that T = E(S) and

our first step is to prove that S C AT(I). To this

end, we show by induction that B„ (7) C A%(I). For

n = 0 we have B$(I) = Cn(W(I)) C Cn(7) C A^jJ).

Assume now that B%(I) C A*(I). Since 7 U -<KT C

j4q and {Aj(/)}nejv is an ascending chain,

ATn+l{I) = Cn(7 U Aj(J) U KATn{I) U -#T).

Hence, we have

Cn{{<f>) U f£(J) U tfltf(7) U ^7<T) C

Cn(7 U ^(7) U A-Aj(Z) U -.tfT) = ^+1(7),

for every <b G 7)(7). This implies that Bj+1(7) C

j4J[+1(7) and completes our inductive argument. Now,

Next, we prove that E(S) C 4T(7). This is done by

induction again. We show that for every n, En(S) C

AT(I). Since E0(S) = Cn{S) = SC AT(I) (as proved

above), the base for the induction is established. So,

assume that E„(S) C AT(I) and recall that

En+l(S) = £*,„+! n

Cn(En(S) U KEn(S) U -rff(CK,n - En(S)),

It follows easily from the definition that AT(I) is closed

under the necessitation rule, i.e., whenever <f> G AT(I)

then also K(j> G AT(I). This shows that out of three

groups of generators for En+\(S) first two are included

in ^(7). Now, if 4> G CK,n - En(S) then 4> <£ E(S) =

T. This follows from the fact established in [Marek,

1986] asserting that

En(S)nCKtn = E(S)nCKin

Hence ->K<j> G ->KT. Now, ->KT C ^(7), hence

-iK<f> C AT(I). Taking all these facts into account, we

find that

Cn(En(S) U KEn(S) U -#(£*,„ - En(S)) C AT(I).

Consequently, En+1(S) C AT(I).

Thus, E(S) = (J~=i^n(5) C AT(I). Hence, T =

AT(I) and T is an iterative expansion of 7. D

The next theorem gives the main result of this sec

tion. It shows that robust expansions exactly corre

spond to extensions.

Theorem 3.6 Let (D, W) be a default theory and I

its Konolige's translation. Let S be closed under Cn.

Then S is an extension of(D,W) if and only if E(S)

is a robust expansion of I.

A corollary immediately follows.

CoroUary 3.7 Let I C Ck be in a normal form and

let (D, W) be a default theory such that trK{D,W) =

7. LetT C Ck be stable. Then T is a robust expansion

of I if and only ifTdC is an extension of(D,W).

The proof of Theorem 3.6 takes up the rest of the

section. It is based on the following two lemmas.

Lemma 3.8 For every closed under consequence the

ory S C C, and every default theory (D, W), if I =

trK(D, W), then R%-S(W) C Sjf(5)(7)-

Proof. We proceed by induction on n. For n = 0,

R°-S(W) = Cn(W) = Cn(W(I)) = B%(S\l) (sec

ond equality follows by Remark 3.1). So, assume that

R%'S(W) C B%iS)(I), and recall that R%£(W) =

Cn(R°>s(W) U F), where

F = {c(d) : d G DAp(d) G R^s(W)AVpej(drl3 £ S).

By the induction hypothesis, R%-S(W) C 7}f(S)(7)-

Moreover, Bn (7) C 5„|j (7). Hence we need to

prove that F C flfjf^T). So, consider a default d G D

such that p(d) G R„lS(W) and -./? g S for every /? G

j(d). By the induction hypothesis, p(d) G Bn (I)

and, consequently, Kp(d) G KBn (7). Also, since

S = E{S) D C, we have -iff 0 E(S) for all /? G j(d).

Hence, -.TC-^ff G -<KE{S) for all /? G j(d). Note that

trK (d) = Kp(d)A-.K->PiA. . .A->K->0„ =► c(d). Thus,

by modus ponens, c(d) G Cn({trK(d)} U KB%(S\l) U

-'KE(S)). In addition, c(d) G £. Consequently, c(d) G

Bf|^(7)- This implies F C 5f|^(7) and completes

the argument for the inductive step and the lemma. D

Lemma 3.9 Let S C C be such that Cn(S) = S. Let

I = tri((D,W), where (D, W) is a default theory, and

let R&S(W) C 5. Then for all n G AT, B%(S)(I) C

R^S(W).

Proof. We proceed by induction on n. For n = 0 we

have Bq{S)(I) = Cn(W(I)) = Cn(W) = R$'S(W).

So, assume that Bn{s)(I) C R%-S{W) and consider

7 G ^{^(7). Then there exists a default d = SiBi^Bx.

such that 7 G Cn(F), where

F = trK{d) U B^ U KB^ U -^KEjS).

If 7 G 7?r» (7) then, by the induction hypothesis,

7 G 7*£'s(7) C 7^(7). So, now assume that y $

Bn (7). Since Bn (I) is closed under consequence,

there is a valuation v of C such that 1^(7) = 0 and

•(0 = 1 for alU G B^S)(I).

Suppose now that -1/?, G 7^(5), for some 1 < i < r.

Extend u to a valuation ri of Ck defining:

• vi(K->0i) = 1,
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• vr{K<j>) = 1 for all <j> G Bn{s\l), and

• vi{K<)>) = 0 for <t> G E{S).

Such a valuation v\ exists since B„ (7) C

R%'S(W) C R&S(W) CSC E(S). Under valua

tion vi, ^1(7) = 0 and vi(£) = 1 for all £ G F, a

contradiction. (The fact that vi{K->^i) — 1 implies

that v(f>/f (d)) = 1, the rest is straightforward.) Hence

-.# g E(S) and so -.# g 5 for all »' < r.

Now, assume that a £ 7?n (7). Extend v to a

valuation vj of £# by setting:

• v7(K<t>) = 1 for <f> G B%(S)(I), and

• v2(K<t>) = 0 for <j> € 1(5) U {a}.

As before, we find that such an extension exists and

that V2(tric(d)) = 1. Hence, v-i has value lonf and

value 0 on 7, a contradiction again.

Thus, a G B%iS\l). Since -#, g 5 for all i < r,

we obtain that Ka A ->K-i(5\ A ... A -iTC ->/?,. belongs to

Cn(F). Consequently, w G Cn(F). In addition, since

by the induction hypothesis, B%(s\l) C R%'S{W),

we obtain a € fi^1 (Vv"). Using again the fact that

-!# g 5 for all »' < r, we obtain that u G Ti^iy).

Now, we claim that 7 G Cn(BIf(,S)(7) U {w}). Oth

erwise, there is a valuation v of C which has value 1

on Bn (7) U {w} and 0 on 7. Extend this valuation

to a valuation 1/ of Ck setting:

• v'(K<j>) = 1 for <j> G flf(S)(/), and

• t/(A» = 0 for 4> G 1(5).

Then 1/(7) = 0 and w'(£) = 1 for all £ G Cn(F)

(t/(w) = 1 implies that t/(<r#(d)) = 1). This is a con

tradiction. Consequently, 7 G Cn(Bn '(I) U {w}) C

0*0 (5«(5) £ fin '5(^) ^ RniSi(W), and u, G

^n+i(^0)- This completes the proof of the lemma. D

Proof of Theorem 3.6. Assume that 5 is an

extension of (D,W). Then 5 = \Jn=iRn'S(w)

and, by Lemma 3.8, 5 C (J~=i B" (5)(0 (where

/ = trj((D, W)). Next, since 5 is an extension of

(£>,iy), Lemma 3.9 applies and |J~=1 fl^(5)(7) Q

lEU^W = S. Hence 5 = Q~i 5n(S)(/)-

This means that £(5) is a robust expansion of 7 =

*rjf(ZW).

Now, assume that E(S) is a robust expansion of

7 = ir/((D, W) and that 5 closed under consequence.

Then 5 = £(5) D C by Proposition 2.2.1. Hence,

by Lemma 3.8, Rl£,S)(W) = \Jn=iR^,S(W) ^

\J^=yBn (7) = 5. Now, Lemma 3.9 applies again

and 5 = B5S)(/) C R%s{W). Thus 5 = r£'S)(W),

i.e., 5 is an extension of (D, W). □

4 Relationships between various

structures in default logic and

autoepistemic logic

In this section we present a broad discussion of inter

connections between default and autoepistemic logic.

Our starting point is an observation by Konolige that

extensions do not form a perfect match for expansions;

expansion is a weaker notion than extension. Our main

goal in this section is to strengthen the notion of ex

pansion so that it corresponds to the notion of exten

sion, and to weaken the notion of extension so that

it corresponds to the notion of expansion. To make it

more precise, we formulate the following two problems.

Problem 4.1 Given a default theory A = (D, W),

find a theory T& C Ck and some epistemic

"structure 1 " for 7^ (related to expansions) such that

for SCC closed under consequence, S is an extension

for (D, W) if and only if E(S) is a "structure 1" for

rA.

We gave one solution to Problem 4.1 in Section 3.

Its technically complex and too "procedural". The

crux of our construction is to simulate faithfully Re-

iter's operator in autoepistemic realm. In this section

we shall give another, more "declarative" and more

elegant solution to this problem.

Our second problem is concerned with the idea of

weakening the notion of extension.

Problem 4.2 Given a theory I C Ck , find a default

theory (Dj, W[) and some "structure^ " for (Dj, Wj)

(related to extensions) such that if T is stable then

T is an expansion for I if and only if T fl Ck is a

"structure^" /or (7)/, W».

Both problems will be solved in this section. Our

solution to Problem 4.1 depends on the solution to

Problem 4.2. Hence we discuss them in this order.

Finally, we discuss interconnections between notions of

default and autoepistemic logics based on the principle

of parsimony (minimal sets closed under defaults) and

stable theories with minimal objective parts. The lack

of space does not permit to provide the proofs of the

results discussed in this section. These proofs will be

included in the full version of the paper.

4.1 Weak extensions and expansions

In Section 2.1 we introduced the notion of weak exten

sion. It is related to the notion of weak proof which,

when using defaults as inference rules, allows to ap

ply context not only to the justification part of the

default (as is the case with strong proofs that define

extensions) but also to the prerequisite part. As each

strong proof is a weak proof we have the following re

sult implicitly present already in [Reiter, 1980],

Theorem 4.1.1 Every extension of(D, W) is a weak

extension of(D,W).
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Due to the "symmetric" way context is used in weak

proofs, weak extensions turn out to correspond exactly

to expansions; note that in the definition of expansion

context is also used "symmetrically".

Theorem 4.1.2 Let (D, W) be a default theory,

(a) If S C C be closed under consequence then S is

a weak extension of (D, W) if and only if E(S) is an

expansion oftrx(D,W).

(b) IfTC Cr is stable then T is an expansion of

trx(D,W) if and only ifTDC is a weak extension of

(D,W).

This theorem is not a solution to Problem 4.2 yet.

Note that it is concerned with the "converse" to Prob

lem 4.2. The theorem shows that if the interpretation

of Konolige is used then weak extensions of a default

theory exactly correspond to expansions of its interpre

tation. In Problem 4.2 we look for an interpretation

of an autoepistemic theory as a default theory. There

is a natural candidate for such interpretation in the

case of autoepistemic theories consisting of ae-defaults

(the converse translation to the one of Konolige). Sit

uation is more complicated if an arbitrary autoepis

temic theory / is considered. In this case we first use

Proposition 2.2.6 to find another theory I+ consist

ing of ae-defaults and having the same expansions as

/ and then apply the converse Konolige translation to

theory I+, to find an appropriate default theory. Let

us note that although I+ is difficult to describe ex

plicitly, it is effectively constructive, algorithms can

be found in [Marek and Truszczynski, 1988]. Let then

ti"di(I) be the default theory constructed from I in the

two steps described above. By Proposition 2.2.6, I+

has the same expansions as I. Thus, the solution to

Problem 4.2 is now an easy consequence of Theorem

4.1.2.

Theorem 4.1.3 For every autoepistemic theory I C

Ck, and for every stable set T C Ck , T is an expan

sion of I if and only ifTC\C is a weak extension of

trd,(I).

Hence, when we speak about weak extensions and

expansions, default and autoepistemic logic are equiv

alent. Let us look why the fact that the defaults are

used as inference rules has no effect here. The reason

is, that the context is used both in the prerequisite

and the justification parts. Let us consider the the

ory {Kp => p,-<Kp => p}, again. The corresponding

default theory is ({^i-i-^},^)- Since the same con

text is used to both parts, one of the defaults is always

applicable and allows to derive p.

Close analysis of the concepts of proof related to the

extensions and weak extensions shows that they differ

in that we do not allow to use the context in the case

of positive part of the default in the case of exten

sion and we do allow it in case of weak extension. Let

us define a prerequisite-free default as one which has

no prerequisite. Similarly, a theory in which all de

faults are prerequisite-free is called prerequisite-free.

We have then the following theorem.

Theorem 4.1.4 For the prerequisite-free default theo

ries notions of weak extension and extension coincide.

Consequently, if I is a theory consisting of ae-defaults

in Ck such that for every formula A =*■ w in I, A has

no positive modal atom, then every expansion of I is

a robust expansion. In particular, objective parts of

expansions of I form an antichain. 1

More results on connection of extensions and weak

extensions can be found in [Zhang and Marek, 1989].

4.2 Declarative form of equivalence of

extensions and robust expansions

In this part of the paper we again look at the equiv

alence problem for extensions and (some) expansions.

The solution to Problem 4.1 we present in this section

differs significantly from the solution given in Section

3. In order to find a perfect match for extensions we

define a class of expansions not by simulating the way

Reiter's operator works and using each autoepistemic

formula separately (i.e., by means of operator BT), but

rather by means of operator AT . However, to eliminate

unwanted interactions of formulas, we apply AT not to

the whole theory but only to its appropriately chosen

part. As in Section 3 we restrict here to autoepistemic

theories consisting of ae-defaults only. Let / be such

a theory and let T C CK. Define GD(I,T) to con

sist of those formulas Ka A ->Ki>\ . . . -iKipk =>« of

/ for which a G T and V< g T for 1 < i < *. This

is the modification of / we alluded to above. We say

that T is a strong iterative expansion of a set of ae-

defaults I if and only if T is an expansion of / and

AT(GD(I,T)) = T. (It can be proved that this is

equivalent to AT(GD(I,T)) = T and / C T.) Set

GD(I, T) is a counterpart to the set of generating de

faults GD(A,S) introduced in Section 2.1. It turns

out that generating defaults play important role in

the solution of Problem 4.1. We have the following

two auxiliary facts explicitly involving the notion of

generating defaults.

Theorem 4.2.1 Let A = (£>, W), I = trK(D,W)

and let T be an expansion of I. Let S = T D C and

assume that D = GD(A,S). Then S is an extension

of A if and only ifT = AT(I).

Theorem 4.2.2 Let A = (D, W) be a default theory

and S its weak extension. LetD' = GD(A,S). Theory

S is an extension for A' = (D't W) if and only if it is

an extension for A.

These two results in combination with Theorems

4.1.2 and 3.2 yield the solution to Problem 4.1.

1 Halina Przymusifiska informed us that she and Michael

Gelfond independently proved the last part of Theorem

4.1.4.
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Theorem 4.2.3 Let (£>, W) be a default theory.

(a) If S C £ is closed under consequence then S is

an extension of(D,W) if and only if E(S) is a strong

iterative expansion oftri((D,W).

(b) IfTC Ck is stable then T is a strong iterative

expansion of trj((D,W) if and only if T D C is an

extension of (D, W).

In the special case of autoepistemic theories con

sisting of ae-defaults only, it is easy to describe the

converse interpretation that will assign a default the

ory to a theory consisting of ae-defaults so that robust

expansions correspond to extensions (Konolige's con

verse translation is adequate for that purpose). Hence,

for that particular case, an analogous result to Theo

rem 4.1.3 holds (see Corollary 3.7). The general prob

lem of interpretation of autoepistemic theories (con

sisting of arbitrary formulas) as default theories so

that extensions correspond to some sort of expansions

is much more difficult. It is unclear how this new

class of expansions should be denned. Note that ro

bust expansions are denned only for theories consisting

of ae-defaults. This definition cannot be extended to

the general case by a construction similar to the one

used in Proposition 2.2.1 because the notion of robust

expansion is "representation-sensitive", i.e., logically

equivalent theories of ae-defaults may have different

robust expansions (see Section 3).

A careful inspection of the argument shows that a

collection of defaults slightly bigger than GD(A,S)

(or GD(I,E(S))) does not lead to harmful interplay

of translations of defaults. This collection was dis

covered by Konolige in [1988b]. The class proposed

by Konolige consists of translations of defaults d such

that conclusion of d belongs to T, and -i/? $? T for

every /? € j(d).

4.3 Structures associated with the parsimony

principle

As pointed by various authors [Etherington, 1988,

Hanks and McDermott, 1986, Reiter, 1980] while

thinking about structures associated with default the

ories an important feature of agent's belief set is its

minimality among sets closed under defaults. It is rea

sonable to consider those minimal sets on their own.

Formally, we say that S G Ck is a minimal set for

a default theory (D, W) if W C S, S is closed under

consequence, and under all defaults from D, i.e.,

V*sdW) € S A V;(<J)-V? £ S => c{d) G 5).

In addition, we require that no proper subset of S has

these properties.

The notion of a minimal set is different from that of

extension. Although not explicitly stated the following

fact is implicit in [Reiter, 1980].

Proposition 4.3.1 Every extension of (D, W) is a

minimal set for (D, W).

Example 4.3.2 Let W = •, D = {-^}. Theory

(D,W) has no extension, but Cn(->p) is a (unique)

minimal set for (D, W).

The existence of minimal sets is an easy consequence

of Zorn's lemma.

Theorem 4.3.3 For every (D, W) there exists a min

imal set.

A natural candidate for the autoepistemic counter

part to minimal sets are stable sets minimal with re

spect to the relation defined as follows: if T\ , Tj are

stable theories then

Ti C T2 iff Ti n C C Ti n C.

The ordering C is non-trivial and, it follows from

[Marek, 1986] that it is isomorphic to the inclusion

ordering among the theories in C closed under conse

quence.

We have now the following two theorems establish

ing exact relationship between minimal sets for default

theories and C-minimal stable sets. The first one is

analogous to Theorems 4.1.2 and 4.2.3, the second one

is analogous to Theorem 4.1.3 and Corollary 3.7.

Theorem 4.3.4 Let (D, W) be a default theory.

(a) If S C C is closed under consequence then S is a

minimal set for (D, W) if and only if E(S) is a C-

minimal stable theory containing trx(D,W).

(b) IfT C Ck is stable then T is a Q-minimal theory

containing trK(D,W) if and only ifTnC is a minimal

setfor(D,W).

Theorem 4.3.5 For every autoepistemic theory I C

Ck, and for every stable set T C Ck, T is Q-minimal

for I if and only ifTC\C is a minimal set for tr,n(I).

5 Conclusions

The problem of relationship between structures nat

urally appearing as possible sets of consequences by

an agent reasoning with defaults and those related to

introspective reasoning has been cleared up in this pa

per. As long as we deal with default theories and their

translations (i.e. ae-defaults) the picture is complete:

extensions correspond to robust (i.e. strongly itera

tive) expansions, weak extensions to expansions and

minimal sets to C-minimal stable sets.

The situation becomes more complicated if we look

at the picture from the autoepistemic side, and in par

ticular if we consider theories I with formulas with

nested occurrences of the operator K. In that case

the situation is this: The exact match is obtained for

expansions and C -minimal stable sets. The problem

with robust expansions is that there is more than one

representation of a given theory / (with nested K) in

form of ae-defaults. Different such representations, al

though logically equivalent, may - and in fact will,

have different representations as default theories, in
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particular with different extensions. This dependence

on syntactic representation (absent in case of arbitrary

expansions and C-minimal stable sets) makes the sit

uation complex.

It is, however, worth mentioning that these results

work for the Konolige's translation only. It is easy to

establish different translations of default theories into

the autoepistemic logic and the results may be quite

different. The Konolige's translation seems to cap

ture, however, the basic intuition that once a formula

is proved, it should be accepted as known. Our re

sults, and those of Konolige as well, show that there is

a potentially rich structure theory for expansions. We

hope that further studies allow for subtler analysis of

the way a fully retrospective agent thinks.

Another aspect of results established in this paper

is that the arguments of Moore [1985] indicating the

difference between default and introspective reason

ings have to be taken with a grain of salt. Although

technically different, both modes of reasoning are bi-

interpretable; in fact we see that respective reasonings

can be simulated in the other theory faithfully. As

concerns the primary modes of reasoning in autoepis

temic logic and default logic by means of extensions

and expansions respectively, the difference seems to

be that whereas the context is used symmetrically in

autoepistemic reasonings of Moore (both on positive

and negative side of context-dependent reasoning), it

is used on the negative side only in the default reason

ings of Reiter.

Our representation of extensions of default theories

by means of fixed points of (parametrized) monotone

operators provides a clear procedure which (at least

in the propositional case) makes the problem of com

puting extensions decidable. It is also obvious, that

search for extensions can be performed without com

plete search through all theories.

Finally, let us notice one more important aspect of

the above research. The Konolige's interpretation and

our result on the perfect match between extensions

and robust expansions provides a semantics for de

fault logic. This is a two-step construction: Firstly we

translate default theory to Ck via Konolige's trans

lation, find expansions of the translation (i.e. cor

rect modal indices for list semantics of Moore) and

then leave only those which are robust. Although the

construction is certainly involved, it provides a start

ing point for the investigations of semantically defined

consequence operators for defaults (i.e. allows to de

fine when default theory entails a default). It is cer

tainly possible to provide other semantics for default

logic. The question of finding one that is both natural

and, possibly, complete remains still open.
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Abstract

Most knowledge representation languages are

based on classes and taxonomic relationships

between classes. Taxonomic hierarchies with

out defaults or exceptions are semantically

equivalent to a collection of formulas in first

order predicate calculus. Although designers

of knowledge representation languages often

express an intuitive feeling that there must

be some advantage to representing facts as

taxonomic relationships rather than first or

der formulas, there are few, if any, technical

results supporting this intuition. We attempt

to remedy this situation by presenting a tax

onomic syntax for first order predicate cal

culus and a series of theorems that support

the claim that taxonomic syntax is superior

to classical syntax.

1 Introduction

Most knowledge representation languages are based on

classes and taxonomic relationships between classes

[Bobrow and Winograd, 1977], [Fahlman, 1979],

[Drachman, 1983], [Brachman ei ai, 1983]. Taxono

mic hierarchies without defaults or exceptions are se

mantically equivalent to a collection of formulas in first

order predicate calculus. Designers of knowledge rep

resentation languages have argued that there are com

putational advantages to representing facts as taxo

nomic relationships rather than first order formulas.

However, these arguments are usually non-technical,

appealing to the reader's intuition and common sense

rather than technical analysis.

We define a taxonomic syntax for first order predi

cate calculus. In this syntax terms are generalized to

the notion of a class expression. Each class expres

sion denotes a subset of the first order domain and

all atomic formulas are simple statements about class

expressions. We show that the quantifier-free taxono

mic literals, i.e. atomic formulas or their negations1

are more expressive than literals of classical first order

logic. For example, there exists a set of two quantifier-

free taxonomic literals that is satisfiable but is not sat

isfied by any finite first order structure — any satis

fiable set of literals in the classical predicate calculus

with equality can be satisfied by some finite structure.

In spite of the increased expressive power of taxono

mic literals, we show that the satisfiability of any set

of quantifier-free taxonomic literals is polynomial time

decidable.

The two basic observations about taxonomic

syntax—that quantifier-free taxonomic literals are

more expressive than classical literals, and that the

satisfiability of a set of quantifier-free taxonomic lit

erals is polynomial time decidable—suggest that tax

onomic syntax is more powerful, in some way, than

classical syntax. However, these observations do not

provide any clear way of taking advantage of taxono

mic syntax in general theorem proving. To show the

value of taxonomic syntax in general theorem prov

ing, we define a "high-level" proof system based on a

strengthened version of the decision procedure for the

decidability of a set of quantifier-free taxonomic lit

erals. The strengthened decision procedure provides

a technical notion of an "obvious" step in a mathe

matical proof; a high-level proof is a sequence of steps

where each step obviously follows from previous steps.

There is a continuum between theorem verification

and theorem proving. No modern theorem proving

system can automatically find proofs of theorems as

hard as the prime factorization theorem in number

theory. A man-machine interactive system, however,

can be used to verify such theorems [Bledsoe, 1977],

[Boyer and Moore, 1979], [Constable el ai, 1985],

[Ketonen, 1984] [McAllester, 1989]. Without power

ful theorem proving mechanisms the amount of user-

provided detail required is so large that non-trivial

verifications are impractical. As the requirement for

1 In taxonomic syntax it is possible for atomic formulas

to contain quantifiers-, the decidability result only applies

to sets of quantifier-free taxonomic literals.
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user-provided detail decreases, a verification system

can make a continuous transformation from being a

proof verifier to a proof finder. Thus the classification

of systems into verifiers and provers is somewhat arbi

trary. A high-level proof system combines the notion

of a user-specified proof with the notion of a sophisti

cated theorem-proving procedure that determines the

correctness of individual proof steps. The decision pro

cedure for proof-step correctness should always termi

nate quickly.

Many of the features of the high-level proof sys

tem introduced here, such as focus objects and rules

of obviousness, are independent of taxonomic syntax.

These features of high-level proof systems were intro

duced by McAllester in the Ontic theorem verification

system, [McAllester, 1989], and found to be effective

in a machine verification of a proof of the Stone rep

resentation theorem for Boolean lattices from the ax

ioms of Zermelo-Fraenkel set theory. The high-level

proof system introduced by McAllester is not based

on taxonomic syntax. In this paper we argue in favor

of taxonomic syntax by comparing the length of high-

level proofs in a system based on classical syntax with

the length of proofs in an analogous system based on

taxonomic syntax. We show that any proof in classi

cal syntax can be translated into a proof of the same

length in taxonomic syntax. Furthermore, we conjec

ture that the converse is not true, i.e., we conjecture

that there exist proofs in taxonomic syntax such that

all classical syntax proofs of the same result are much

longer.

2 Taxonomic Syntax for First Order

Logic

Our taxonomic syntax for first order logic is organized

around classes and taxonomic formulas. Consider a

model of first order logic. Each class expression of

taxonomic syntax denotes a subset of the domain, or

universe of discourse, of the first order model. The

class expressions include ordinary first order terms as

a special case. Under the semantics of taxonomic ex

pressions, terms are class expressions that denote sin

gleton sets. But there are many class expressions that

are not terms in the ordinary sense. For example, a a

predicate symbol P of one argument is a class expres

sion denoting the set of all objects in the first order

domain that satisfy the predicate P. If si . . . Sk are

class expressions, and f is a function symbol which

takes it arguments, then (fs\ . . . «t) is also a class ex

pression and denotes the set of all elements which can

be written as (fxx ...£*) where x, is an element of

the set denoted by s,-. Now consider a fc-ary predicate

symbol R, i.e., a predicate of k arguments. A predi

cate of it arguments can be viewed as a function which

takes it — 1 arguments and returns a set. More specifi

cally, we can write (Rxi . . . xt-i) to denote the set of

all elements y such that R(xi . . . x^-i, y) is true. If

«i . . . Si-i are class expressions then (R Si ... «t_i) is

also a class expression and denotes the union of all sets

of the form (Rxi .. .xt-i) where a;,- is an element of «j.

A class expression completely constructed from vari

ables, constants, and function symbols will be called a

term. Terms always denote singleton sets. In addition

to the class expressions discussed above, taxonomic

syntax allows for classes defined with formulas; one

can construct a class expression that denotes the set of

all objects i that satisfy an arbitrary formula $(x). In

order to ensure that taxonomic syntax is expressively

equivalent to classical first order logic, a distinguished

class expression, A-Thing, always denoted the entire

domain in any first order interpretation.

The formulas of taxonomic syntax include atomic

statements about the taxonomic relationships be

tween class expressions. More specifically, we write

(IS S\ S2) to say that the class «i is a subset of the

class S2- We also write (THERE-EXISTS s) to say that

the class s is non-empty and we write (DETERMINED s)

to say that there is at most one element of the class

s. Finally, we write (INTERSECTS s t) to say that the

class s has a non-empty intersection with the class t.

Definition: A class expression is either

• a variable,

• a constant symbol,

• a monadic predicate symbol,

• a fc-ary function symbol applied to a k

class expressions,

• a Jt-ary predicate symbol applied to it— 1

class expressions,

• a such-that expression of the form

(sxS.T. $(x)) where s is a class ex

pression, x is a variable, and $(x) is a

taxonomic formula,

• or the distinguished class expression

A-Thing.

A taxonomic formula is either

• an is-formula, (IS «i S2), where si and

S2 are class expressions,

• an existence-

formula, (THERE-EXISTS s), where s is

a class expression,

• a determined-formula, (DETERMINED s),

where s is a class expression,

• an

intersection-formula, (INTERSECTS s t),

where s and t are class expressions,

• or a Boolean combination of taxonomic

formulas.
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Formulas of the first three kinds will be called

atomic formulas. A literal is either an atomic

formula or the negation of an atomic formula.

A formula or class expression is quantifier-

free if it does not contain any such-that class

expressions.

Given a model of first order logic and an interpre

tation of every variable as an element of the first or

der domain, each class expression in taxonomic syn

tax can be unambiguously interpreted as a subset of

the first order domain and each formula of taxono

mic syntax can be assigned an unambiguous truth

value. For example, the formula (IS x A-Persori) is

true just in case the value of the variable x is an

element of the set denoted by the class expression

A-Person. The formula (IS y (A-Child-ofx)) is true

just in case the relation the pair <ar, y> is contained

in the relation denoted by A-Child-of. The formula

(IS z (A-Child-of (A-Child-ofx))) is true just in case

there exists some member y of the class (A-Child-ofx)

such that z is a member of the class (A-Child-ofy) .

The formula (IS x (Times 2 A-Number)) is true

just in case x can be written as the product

of 2 and some number, i.e., just in case x is

an even number. The such-that class expression

(A-Person xS.T. (THERE-EXISTS (A-Child-ofx)))

denotes the set of all people who have children.

Our definition of taxonomic formulas does not in

clude classical quantification. All quantification is

done with such-that class expressions. For example,

the formula (THERE-EXISTS (A-Person x S.T. $(x)))

is true just in case there exists some element x of

the class Person such that $(x) is true. Univer

sal quantification can be defined in terms of existen

tial quantification and negation. Alternatively, one

can express universal quantification directly with tax

onomic atomic formulas. For example, the formula

(IS A-Person (A-Person x S.T. $(*))) is true if and

only if $(x) is true for every member x of the set de

noted by A-Person.

3 Satisfiability of Quantifier-Free

Taxonomic Literals

For class expressions constructed purely from func

tions and constants, i.e., for classical terms, the IS

relation is semantically identical to equality. This im

plies that every literal in classical first order logic with

equality is semantically equivalent to some quantifier-

free taxonomic literal. However, most non-trivial

quantifier-free taxonomic literals are not equivalent

to any classical literal. For example, let P be a

monadic predicate symbol and let / be a monadic

function symbol. The pair of literals (IS P f(P))

and (NOT (IS f(P) P)) is satisfiable. For example, P

can be interpreted as the non-negative integers and /

as the function that subtracts one from its argument.

In this case f(P) denotes the set containing the non-

negative integers plus negative one. One can show,

however, that this pair of literals can not be satisfied

by any finite first order structure. Every satisfiable set

of literals in classical first order logic with equality can

be satisfied by some finite structure.

Since quantifier-free taxonomic literals are more ex

pressive than classical literals, it is not immediately

clear whether or not one can efficiently determine the

satisfiability of a set of quantifier-free taxonomic liter

als.

Taxonomic Quantifier-Free Decidabil

ity Theorem: The satisfiability of a

set of quantifier-free taxonomic literals is

polynomial-time decidable.

There is a well known corresponding theorem for

classical first order logic; the satisfiability of a set

of literals in first order logic with equality is poly

nomial time decidable. The classical decision pro

cedure is based on the congruence closure algorithm

[Kozen, 1977], [Downey ei a/., 1980], [Nelson and Op-

pen, 1980]. Unfortunately, the taxonomic decision pro

cedure is significantly more complex than the classical

procedure based on congruence closure. To appreciate

the complexity of the taxonomic satisfiability prob

lem, consider the literals (IS f(P) a), (IS f(Q) b)

and (HOT (IS a b)) where P and Q are monadic predi

cates, / is a monadic function and a and b are constant

symbols. These literals imply that the classes P and Q

must be disjoint: if c, say, was in both P and Q, then

f(c) must equal both a and 6, contradicting the third

literal. Now suppose we add the literals (IS c P),

(IS g(c) Q), (IS g6(P) P) and (IS g7(Q) Q) where

c is a constant symbol, g is a monadic function sym

bol, and gn(s) abbreviates g(g(- ■ ■ g(s))) with n appli

cations of g. All of these literals taken together are

unsatisfiable. To see this it suffices to observe that,

under any interpretation, </36(c) must be a member of

both P and Q.

Any set of quantifier-free taxonomic literals can

be efficiently translated into an equisatisfiable set of

quantifier-free literals that does not contain existence,

determined, or intersection-formulas. More specifi

cally, both positive and negative literals involving ex

istence, determined, and intersection-formulas can be

replaced by literals involving is-formulas and new con

stant and function symbols. For example, the lit

eral (NOT (INTERSECTS P Q)) can be translated into

(IS f(P) a), (IS f(Q) b) and (NOT (IS a b)). Thus,

without loss of generality, one can assume that every

literal involves an is-formula. It turns out that this
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apparent simplification, i.e., the elimination of exis

tence, determined, and intersection-formulas, is not a

simplification at all. Our decision procedure relies on

existence, determined, and intersection formulas. The

decision procedure is based on the following rules of

inference for taxonomic literals and intersection for

mulas. In the following rules s, r, and t range over

class expressions, c ranges over constant symbols, /

ranges over function symbols, and R ranges over both

function and predicate symbols.

(1) (IS S, ll),-(IS 5„ tn)

(15) (INTERSECTS n si), ••• (INTERSECTS r„ 5„)

(IS /(s,,...s„) /(ti,...t„))

(2) (IS r s), (IS s t)

(IS r t)

(3) (IS t 0

(4) (THERE-EXISTS c)

(5) (DETERMINED c)

(6) (THERE-EXISTS si), ••• (THERE-EXISTS s„)

(THERE-EXISTS /(si, ■ ■ ■ s„))

(7) (DETERMINED si ), ■ • ■ (DETERMINED s„)

(DETERMINED /(si, • • • s„))

(8) (NOT (DETERMINED *))

(THERE-EXISTS t)

(9) (THERE-EXISTS R(alt ...«„))

(THERE-EXISTS s<)

(10) (THERE-EXISTS r), (IS r t)

(THERE-EXISTS t)

(11) (DETERMINED t), (IS r l)

(DETERMINED r)

(12) (NOT (IS r t))

(THERE-EXISTS r)

(13) (THERE-EXISTS r), (IS r s), (IS r t)

(INTERSECTS s t)

(14) (INTERSECTS r t), (IS r s)

(16)

(INTERSECTS /(n,...r„) /(«!,...«„))

(INTERSECTS r s)

(INTERSECTS s r)

(17) (INTERSECTS r s)

(THERE-EXISTS s)

(18) (INTERSECTS s /), (DETERMINED s)

(INTERSECTS s <)

(IS s t)

If £ is a set of taxonomic literals the notation

E h $ abbreviates the statement that there exists a

derivation of ^ from E using the above rules of infer

ence. The notation E h° F abbreviates the statement

that there exists some formula * such that E h° ^

and E H> (NOT *). It is not clear that one can quickly

determine whether or not E K> *, or whether E 1-° F.

However, one can readily construct a decision proce

dure for a seemingly more restricted inference relation.

More specifically, the notation EH* abbreviates the

statement that \P can be derived from E using the

above rules such that every class expression appearing

in the derivation of * also appears as a subexpression

of some formula in E. The notation E H F abbrevi

ates the statement that there exists a formula * such

that E H * and E H (NOT *). Section 4 gives a

cubic procedure for determining if E HF. Section 5

contains a proof that if E is a set of quantifier-free tax

onomic literals, and E 1/ F, then E is satisfiable. This

implies that E H F if and only if E K> F and thus the

restricted relation is not really any weaker than the

unrestricted relation.

4 The Decision Procedure

Let E be a set of quantifier-free taxonomic literals

and let T be the set of class expressions that appear

as subexpressions of members of E. The set T of

class expressions can be viewed as a semantic network

where the elements of T are viewed as nodes represent

ing classes. The decision procedure for determining

whether E H F can be viewed as a label-propagation

process on this network. More specifically, it is possi

ble to show that if * is a formula not in E, but SN$,

then * must be a label formula for T as defined below.

Definition: A label formula for a set T

of class expressions is a formula of the

form (THERE-EXISTS s), (DETERMINED s),

(IS s t), or (INTERSECTS s t) where s and

t are members of T.
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Since some of the label formulas involve two mem

bers of T, it is perhaps better to view them as arcs

between nodes rather than labels on nodes. It is pos

sible to determine whether or not E H F by propa

gating labels on the network T. More specifically, one

continues to derive new label formulas until no more

such derivations can be made. If T contains n nodes

then there are 0(n2) label formulas. Thus the process

of deriving new formulas must terminate. If this prop

agation process yields some label formula 9 such that

E contains (NOT *), then E H F, otherwise E 1^ F.

To analyze the running time of the label propaga

tion procedure it is necessary to specify the procedure

in greater detail. In presenting the details of our de

cision procedure we assume that all class expressions

that are applications of a relation or function symbol

involve at most two arguments. Expressions involv

ing more than two arguments can be reformulated in

terms of expressions that involve only two arguments

and thus there is no loss of generality in restricting

applications to two arguments. More specifically, if

there is a function / of more than two arguments then

one simply introduces a new function symbol g and

uniformly replaces every class expression of the form

/(«!, s2...s„) with /(*!, g(s2...s„)). If the new

function g takes more than two arguments the process

can be repeated. In the worst case this transforma

tion process leads to a linear increase in the length of

expressions.

Our procedure runs on a graph-like data structure

where each node represents an expression in T. This

graph-like data structure can be viewed as a directed

acyclic graph (DAG) representation of the class ex

pressions in T. Each node in this graph is a data

structure containing various kinds of information. The

data structure representing a class expression s con

tains fields that are updated whenever a formula of

the form (THERE-EXISTS s) or (DETERMINED s) is de

rived. The data structure representing s also con

tains a list of all the nodes t such that the formula

(IS s t) has been derived, as well as a list of all nodes

w such that (IS w s) has been derived, and a list of all

nodes u such that (INTERSECTS s u) has been derived.

Each time a new label formula is added the procedure

must check to see if this addition can be propagated to

yield further additional label formulas. There are dif

ferent propagation procedures corresponding to each

kind of label formula. For example there is a prop

agation procedure that is called when a new formula

of the form (IS s t) is derived and a different proce

dure that is called when a new formula of the form

(THERE-EXISTS s) is derived.

Each inference rule is implemented by pieces of prop

agation procedures. Since there is no way of knowing

which antecedent will be derived last, each antecedent

of a given rule corresponds to a piece of one of the

propagation procedures. For example, consider the

first rule of the previous section, the monotonicity

rule. For applications involving two arguments, the

rule says that if one can derive (IS s t) and (IS u w),

then one can derive (IS R(s,u) R(t,w)). Each of the

two antecedents of this rule corresponds to a piece of

the procedure for propagating new is-formulas. Con

sider the first antecedent, (IS s t). When a new for

mula (IS s t) is derived a certain piece of the proce

dure for propagating is-formulas finds all expressions

in T of the form R(s, «). Expressions of the form

R(s, u) are stored on a list in the data structure rep

resenting s. For each previously derived formula of

the form (IS u w), a hash table lookup is used to see

if the expression R(t,w) is in T. If so, the formula

(IS R(s,u) R(t,w)) is derived and, provided that this

formula has not been previously derived, the is-formula

propagation procedure is called recursively on the new

formula. Since there is no way of knowing which an

tecedent of the rule will be derived last, there is also

a piece of the procedure for propagating is-formulas

that corresponds to the second antecedent. When a

new is-formula (IS u w) is derived, this piece finds

all expressions in T of the form R(s,u) and then for

each previously derived formula (IS s t) looks for the

expression R(t,w) in a hash table. This may lead to

the recursive addition of another is-formula. Each of

the other rules can also be implemented with pieces of

propagation procedures; one piece for each antecedent

of the rule. Rule 10, for example, can be implemented

as a piece of the procedure for propagating existence

formulas and a piece of the procedure for propagat

ing is-formulas. Rule 15 is analogous to monotonicity

rule and is implemented by pieces of the procedure for

propagating is-formulas. The propagation procedures

are recursive and no queue of outstanding inferences

is required.

The total running time of the propagation process is

equal to sum over all rules of the time spent executing

the pieces of the propagation procedures that corre

spond to that rule. For example, consider the mono

tonicity rule as discussed above. Assuming that hash

table lookups take constant time, the time spent exe

cuting the monotonicity pieces of the is-formula prop

agation procedure is bounded by some constant times

the total number of hash table lookups performed by

these pieces. It is possible to show that for each

term R(s,u) in T, and each pair of derived is-formulas

of the form (IS s t) and (IS u w), there is exactly

one hash table lookup performed by the monotonicity

pieces of the is-formula propagation procedure; at the

point where both is-formulas are derived the expres

sion R.(t, w) will be looked up in the hash table. For a

fixed expression R(s,u) in T, the propagation process

can derive at most n2 pairs of is-formulas of the form
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(IS 8 t) and (IS u w). Therefore, there are at most

n3 hash table lookups performed in the monotonicity

pieces of the is-formula propagation procedure.

Assuming that no application expression has more

than two arguments, each rule can be implemented

so that at most 0(n3) time is spent in the pieces of

the propagation procedures that correspond to that

rule (where n is the number of class expressions in T).

Thus, if applications involve at most two arguments,

the total time spent in the propagation process is at

most 0(n3).

5 Correctness of the Decision

Procedure

Suppose that E is a set of quantifier-free taxonomic lit

erals. This section summarizes a proof that if E ty F

then E is satisfiable and thus the procedure of the pre

vious section can determine the satisfiability of E. The

proof is based on a method for constructing a model

of E from the set of label formulas * such that Eh*.

As pointed out earlier, it is possible that E is satisfi

able and yet there are no finite models of E. Thus, the

method of constructing a model of E must be capable

of yielding infinite models. However, the structure of

the model is somehow completely characterized by the

finite set of formulas * such that EH*.

Let T be the set of class expressions that appear as

subexpressions of formulas in E. The domain elements

in any interpretation of E can be classified into types

depending on their relationships with the class expres

sions in T. More specifically, if d is a domain element

of a model of E, then the T-type of d is defined to

be the set of class expressions s in T such that d is

contained in the set denoted by s. If we view the class

expressions in T as predicates, then the T-type of d is

the set of class expressions that are true of d. More

generally, an T-type is defined to be any subset of the

class expressions in T. If there are n class expressions

in T, then there are 2" different T-types. We say that

an T-type r is inhabited in a particular model of E

if there exists some domain element d of that model

whose T-type is r. Of course, there can be models in

which many of the T-types are not inhabited.

The model we construct will have have the prop

erty that existence formulas and intersection formu

las that are not derivable by label propagation will

be false in the model. This condition places con

straints on the T-types that can be inhabited in

our model. The types consistent with these con

straints are said to be E-inhabitable. More specifi

cally, a E-inhabitable T-type is an T-type r such that

E H (THERE-EXISTS s) for every s in r, if s is in r and

E h (IS s w) then w is in r, and for all s and w in r,

E H (INTERSECTS 8 w). If s is a class expression such

that E H (THERE-EXISTS s), then s* is defined to be

the T-type consisting of all class expressions w such

that E H (IS 8 ir)- If s is a class expression (possibly

outside of T) such that E \f (THERE-EXISTS s) then

s* is defined to be the empty T-type. One can show

that for any class expression 8, s* is a E-inhabitable

T-type. If E H (THERE-EXISTS s) then s* is the least

E-inhabitable T-type that contains s.

It is tempting to define the semantic domain of the

desired model of E to be the set of E-inhabitable types.

Unfortunately, this does not allow for infinite domains

and E may not admit finite models. The need for

infinite domains arises from the need to include "pre

decessors" . If the type r contains a class expression of

the form f(s) where / is a function symbol, then for

any domain element d that inhabits the type r there

must be some predecessor domain element d! that is

an element of the class denoted by s and such that

f(d') equals d. If E H (IS s f(s)) then the need to

include a predecessor for each element of s may force

an infinite domain.

These problems can be solved by taking the do

main elements be pairs of the form <T,a> where r

is a E-inhabitable T-type and a is an expression that

specifies the role played by the domain element. More

specifically, the domain D is inductively defined as fol

lows. Every E-inhabitable type must have at least one

inhabitant in the model. Thus for, every E-inhabitable

type t, D contains the pair <r, 0>. If a type t con

tains a class s such that E H> (DETERMINED «), then

t can have at most one inhabitant; such types will be

called term types. If r is E-inhabitable but is not a

term type then we require that D contain at least two

inhabitants of r; we specify that D contains the pair

<r, 1>. Finally, if D contains the pair <r,a>, and

t contains a class expression of the form /(*i, . . .sn),

where some «? is not a term type, then D contains the

"predecessor" pair <s* , /(«i , . . . sn) *-* <r, a» where

Si is the first class expression among «i, . . . sn such

that s* is not a term type.

To complete the specification of the model of E

we must give the interpretation of constant, function,

and predicate symbols. A constant c is interpreted

to be the pair <c*,0>. A monadic predicate sym

bol P is interpreted to be the set of all pairs <r, q>

where the type r contains the symbol P. A it — ary

predicate symbol R is defined to be the set of tuples

<<s* , 0>, . . . <s*k_l,0>,<T,a» such that r contains

the class expression R(s\, . . . sjt-i). Finally, consider

applying the function denoted by the symbol / to the

arguments <<r1,cr1>, . . . <TjC,aic». Suppose there

exists some argument <Tj,atj> such that r, is not

a term type and let <r,, a;> be the first such argu

ment. Now suppose the expression o,- is a mapping
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/(«!,...«„) ►-+ <<r, /?> and that sj equals r, for each

sj. In this case the value of / on this tuple of argu

ments is defined to be the pair <<r, /?>. If any one of

these conditions is not met, then the value of / on this

tuple of arguments equals <<r, 0> where a is the union

of all types of the form /(«i, . . .«*)* where each Sj is

a member of the type Tj . The rules of obviousness for

intersection-formulas ensure that a is a E-inhabitable

T-type.

Given the rules of inference listed in section 3 it is

possible to prove that under this semantic interpreta

tion the T-type of a pair <r, q> is, in fact, the type r.

In other words, for any class expression s in T, the set

denoted by s under the above interpretation equals the

set of pairs <r, a> such that r contains s. This fact,

and the definition of a E-inhabitable T-type, can be

used to show that the specified interpretation is indeed

a model of E.

6 Expanded Rules of Obviousness

To compare taxonomic and classical syntax more di

rectly, we define two high-level proof systems: one

based on classical syntax and one based on taxonomic

syntax. The system based on taxonomic syntax is con

structed from a modification of the decision procedure

discussed in section 4. This section, and the one that

follows, define the high-level proof system based on

taxonomic syntax. Given the specification for the tax

onomic high-level proof system, the adaptation of that

system to classical syntax is presented in section 9.

The first step in defining the high-level proof sys

tem is to define a technical notion of an obviously true

statement. The obviously true statements are defined

by certain rules of obviousness. Each rule of obvious

ness states that if certain antecedent facts are obvious

then a certain conclusion is also obvious. The rules of

obviousness contain many, but not all, of the inference

rules needed for a complete inference system for first

order taxonomic formulas. The rules of obviousness

include all of the rules of section 3 together with cer

tain additional rules specified in this section. These

additional rules involve a set of variables T called the

focus set. We write E, T h° $ if there exists a deriva

tion of <P from the formulas in E using the expanded

rules of obviousness with focus set T. The notation

E,7 H> F is analogous to the notation E H> F used

above.

In taxonomic syntax there are no explicit quantifiers

in formulas; all taxonomic formulas are either atomic

formulas or Boolean combinations of atomic formulas.

Since there are no quantified formulas, no rules of ob

viousness are needed for quantified formulas. Class

expressions, on the other hand, can involve quanti

fiers. No rules of obviousness have yet been given for

such-that class expressions. Intuitively, the rules of

obviousness for such-that expressions only allow the

such-that quantifier to be instantiated with focus ob

jects. The restriction of the instantiation of quantifiers

to focus objects makes it possible to write a procedure

for determining obviousness. In the following rules the

variable y must be a member of the focus set J7.

(19) (IS (siS.I. $(*)) s)

(20)

(21)

(IS y »)> *(i/)

(IS y (* x S.T. *(*)))

(IS y (« iS.T. *(*)))

*(!/)

In addition to the above rules for such-that expres

sions, the expanded rules of obviousness include rules

for Boolean connectives. We assume that all Boolean

formulas are constructed using the connectives OR and

HOT.

(22) (OR $ *), (NOT $)

(OR $ *), (NOT *)

(23) (NOT (OR $ *))

(NOT $)

(NOT (OR $ *))

(24)

(NOT *)

(NOT (NOT $))

4>

It is possible to construct a decision procedure, sim

ilar to the one presented in section 3, that determines

if E, T H F. This decision procedure is based on the

idea that the derivations of obvious formulas can be

restricted to formulas that only involve certain class

expressions. We define a set T(E,^) that contains

both formulas and class expressions. More specifically,

T(E, T) is defined to be the least set T that contains

the elements of E and T and such that any subexpres

sion of a member of T is also a member of T and for

every such-that class expression (s x S.T. $(x)) in T,

and every variable y in T, the formula $(y) is also in
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T. The notation E, T H 9 is defined by analogy with

EH*. More specifically, "L,T H * if there exists

a derivation of * using the expanded rules of obvi

ousness such that every class expression appearing in

that derivation is a member of T(E, T). The notation

E, T H F is defined by analogy with E H F.

It is possible give a polynomial time procedure for

determining whether or not S,/HF. As in the pre

vious section, this procedure is based on viewing the

set T(E, F) as a set of nodes in a graph analogous

to a semantic network. The decision procedure can

be viewed as a label-propagation procedure. Since the

propagation process is restricted to formulas contain

ing only class expressions in T(E, T), it is possible to

show that every formula * such that T,,3- H * is ei

ther a formula in T, the negation of a formula in T or

a label formula on the class expression in T as defined

in section 4.

Unlike the network described in section 4, the net

work used for the expanded rules of inference contains

nodes that represent formulas as well as nodes that

represent class expressions. A data structure that rep

resents a formula must be updated whenever that for

mula is derived using the rules of obviousness, and up

dated in a different way whenever the negation of the

formula is derived. An analysis similar to that given

in section 4 shows that the propagation process can

be implemented in a way that requires at most 0(n3)

time where n is the number of expressions in T and

assuming that hash table lookups take constant time

and that every application class expression involves at

most two arguments. As discussed in section 4, there

is no loss of generality in assuming that applications

involve at most two arguments.

We have not yet ruled out the possibility that

T.,T ty F and yet E,^ ho F, i.e. the unbounded

inference relation h° may be more powerful than the

inference relation H defined by the bounded label-

propagation mechanism. It turns out, however, that

h° is no more powerful than ht the bounded label-

propagation procedure is a correct decision procedure

for determining whether or not E, T ho F. The proof

that h° is no more powerful than H can not be based

on a proof that H is semantically complete: neither

h° nor H are complete relative to the intended seman

tics of Boolean connectives and such-that class expres

sions. The proof that ho is no more powerful than

H is based on a proof technique that we call pseudo-

semantic. The basic idea is to define a highly non

standard "semantics" such that H can be shown to be

sound and complete relative to that semantics. This

pseudo-semantics must also satisfy the condition that

all of the inference rules that define ho are sound rel

ative the pseudo-semantics. Since K> is sound, and H

is both sound and complete relative to the pseudo-

semantics, The relations H and ho must be the same.

Unfortunately, space constraints do not allow a de

tailed discussion of the pseudo-semantic proof that the

bounded label-propagation procedure is a correct pro

cedure for determining whether E, T K> F.

7 A High-Level Proof System

We define the high-level proof system in a way that fa

cilitates formal understanding and technical analysis.

A more "user-friendly" specification of an analogous

high-level proof system is given in [McAllester, 1989].

In this paper we define a high-level proof to be a se

ries of lines where each line contains a "sequent" of the

form Sh$ where E is a set of formulas and $ is either

a formula or the special token F. The lines of a high-

level proof are divided into two kinds: syntactically

derived lines and unjustified lines. A syntactically de

rived line is a line that can be derived from previous

lines using one of the following four high-level proof

rules. Each high-level proof rule is a form of universal

generalization.2 The need to include rules of universal

generalization in the high-level proof system will be

discussed in section 8. In the following rules x, and

each Xi, must be a variable that does not appear free

in any formula in E or in any of the class expressions

s, t or Si. In the last rule z must be a variable but

there are no restrictions on where z can appear, e.g. z

may appear free in E or any s,-.

E I- (HOT (IS x $))

E h (HOT (THERE-EXISTS s))

E U {(IS n s), (IS i2 s)} h (IS xi x2)

E h {(DETERMINED s)}

Eu{(IS x s), (IS x <)} h F

E h (NOT (INTERSECTS 3 t))

EU{(IS x s)} h (IS x t)

Eh (IS s <)

EU{(IS x, S1),...(IS x„ 3n)} h (NOT (IS z R(xi,...xn)))

Eh (NOT (IS z R(si,...s„)))

2 In a user-friendly version of the high-level proof sys

tem, each high-level rule of universal generalization ap

pears in its contrapositive form; rather than derive a uni

versal statement from a statement about an arbitrary in

dividual, the user-friendly high-level system allows one to

introduce witnesses based on existential statements.
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A line of a high-level proof that is not derived from

previous lines using one of the high-level generalization

rules is called an unjustified line. Each unjustified line

in a high-level proof must be explicitly associated with

a set of variables called the focus set of that line. Con

sider an unjustified line Sh$ with associated focus

set T. Intuitively, each unjustified line must obviously

follow from previous lines in the proof. Let E' be E

plus all formulas previously proven to follow from E,

i.e., all formulas 9 such that the proof contains an ear

lier line of the form rh* where T is a subset of E.

An unjustified line Eh$ with associated focus set T

must follow from previous lines. More specifically, if

$ is the constant F, then we must have T.',T 1-° F.

If $ is some formula other than F, then we must have

E'U{(N0T *)},^r-F.

It is important to be able to quickly determine if a

series of high-level proof lines is acceptable, i.e. that

each unjustified line satisfies the condition specified

above. The cost of determining the acceptability of a

given unjustified line is extremely sensitive to the size

of the focus set T associated with that line. Fortu

nately, it seems that in practice the focus sets associ

ated with individual lines can be kept small.3 More

specifically, suppose that there exists some (large) fo

cus set T such that an unjustified E h $ is acceptable

with associated focus set T. Let E' be E plus all for

mulas proven to follow from E by previous lines of

the proof. Let Q be the maximum level of quantifier-

nesting that appears in a formula in E'. If E I- 0 is

acceptable with a large focus set T, then there exists

a sequence of acceptable unjustified high-level proof

lines that ends in the line Eh $ and where no line

involves more than Q focus objects. If we impose a

bound on the number of focus objects that can be as

sociated with any single unjustified line in a high-level

proof, then the acceptability of a series of high-level

proof lines can be determined in polynomial time.

8 High-Level Completeness

It is possible to show that the high-level proof system

defined in the previous section is complete for first or

der taxonomic formulas. More specifically, if a formula

$ semantically follows from a set of formulas E, then

there exists an acceptable high-level proof that ends

with the line E h $. To prove this result one can

first observe that there exists a high-level derivation

of E h $ if and only if there exists a high-level deriva

tion of E U {(NOT $)} h F. To prove this it suffices to

3In the proof of the Stone representation theorem from

the axioms of set theory, described in [McAllester, 1989], no

unjustified step involved more than ten focus objects. The

proof could probably have been done without ever using a

focus set of more than four objects.

observe that, given an acceptable derivation of E h $,

the line E U {(NOT $)} h F can be immediately added

as an unjustified line with an empty focus set. Simi

larly, given any derivation of E U {(NOT $)} h F, the

line Eh$ can be acceptably added without justifica

tion. To prove the high-level system is complete, we

assume that there is no high-level derivation of E h $

and we show that in this case there exists a model of

E in which $ is false. If there is no high-level deriva

tion of E h $ then there must not be any high-level

derivation of E U {(NOT *)} h F. To prove that there

exists a model of a in which $ is false, it now suffices

to show that, for any set of formulas T, if there is no

derivation of T h F, then there exists some model of

r.

Suppose that there is no high-level derivation of

r h F. One can construct a model of T using tech

niques analogous to those used in standard proofs of

first order completeness. For simplicity we assume

that the set of constant, function and predicate sym

bols in the language is countable and that there is

a countably infinite set of variables. In this case one

can enumerate all taxonomic formulas in an infinite se

quence 0i, 02 ©3 4 Given that there is no deriva

tion of T r- F, one can then construct an infinite se

quence of sets of formulas fij , fi2 ^3 • • ■ by setting fij

equal to T and defining Qj+i as follows:

1. If there exists a derivation of Qj h (NOT Qj) then

set Clj+i equal to Qj.

1. If there is no derivation of Qj I- (NOT Qj), and 0j

is a formula of the form (THERE-EXISTS s), then

let x be some variable that does not appear in s

or Qj and set Qj+i to be Qj U {Qj, (IS x s)}.

3. If there is no derivation of Qj r- (NOT 0;), and 0j

is a formula of the form (NOT (DETERMINED s)),

then let x and y be variables that do not ap

pear free in s or Qj and set flj+i to be Qj U

{0y,(IS x s),(IS y s),(N0T (IS x y))}.

4. If there is no derivation of ilj h (NOT Qj), and

Qj is a formula of the form (INTERSECTS s t),

then let x be some variable that does not ap

pear free in s, t or ilj and set Qj+i to be

fyU{0j,(IS x s),(IS x t)}.

5. If there is no derivation of Qj h (NOT Qj), and 0j

is a formula of the form (NOT (IS s t)) where s is

not a variable, then let x be some variable that

does not appear free in s, t or Qj and set Qj+i to

befiJU{0J-,(IS x s),(NOT (IS x <))}•

6. If there is no derivation of Qj h (NOT Qj) and

Qj is a formula of the form (IS x R(si, . . .sn))

4 The completeness proof can be modified to handle un

countable languages, in which case one constructs a trans-

finite enumeration of formulas.
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where i is a variable, then let j/i , ... yn

be variables that do not appear in Qj or in

any of the class expressions Sj, and set ftj+i

equaltofi;U{ej,(IS x R(yu . . .y;)),(IS yx st),

...(IS y„ s„)}.

7. If there does not exist a derivation of fl;- h

(NOT Qj), and none of the conditions in 2, 3, 4, or

5 above apply, then set Clj+i equal to Q,- U {©j}-

Given the high level proof rules introduced in the

previous section, one can show that each Q; is a finite

set of formulas that contains T and that there does not

exist any derivation of Qj h F. Steps 2, 3, 4, and 5 en

sure that, for every form of existential statement that

becomes included in the constructed set flj+i, there

are variables that act as witnesses to that existential

statement. For example, if fl contains the formula

(THERE-EXISTS s), then there is some variable x such

that Q contains the formula (IS x s). Steps 2, 3, 4,

5, and 6 in the above specification directly correspond

to the five high-level generalization rules presented in

section 7. For each of these steps, the proof of the

consistency of the newly constructed set fij+i relies

on the existence of the corresponding high-level gen

eralization rule. Thus, the generalization rules in the

high-level proof system are needed because they in

directly allow the introduction of witnesses for exis

tential statements. In a user-friendly high-level proof

system the high-level generalization rules can either be

used directly or used in the contrapositive form where

they allow the introduction of new witnesses to previ

ously proven existential statements.

Now let fl be the union of all sets fl;-. It is possible

to show that Q is both consistent and complete. More

specifically, for any formula * exactly one of the two

formulas * and (HOT *) is contained in Q. Further

more, one can show that the set of formulas Q is closed

under all of the rules of obviousness where the rules for

such-that expressions are no longer restricted to focus

objects.

One can now define a first order structure whose do

main consists of equivalence classes of variables. More

specifically, for any variable x we define |x| to be the

set of variables y such that the formula (IS x y) is a

member of Q. The rules of obviousness for is-formulas

ensure that these sets form equivalence classes of vari

ables. We take the domain of the first order structure

to be the collection of equivalence classes of the form

|x|. It is now possible to define an interpretation of

the variables, constants, functions, and predicate sym

bols such that the semantic value of a class expression

s equals the set of classes |x| such that the formula

(IS x s) is a member of Q and such that, for every

formula *, the semantic interpretation makes ^ true

just in case * is a member of Q. This provides an in

terpretation of T. Thus one can establish that if there

is no derivation of T I- F then there exists a semantic

interpretation of T, and similarly, if there is no deriva

tion of E h $, then there exists an interpretation of E

in which $ is false.

9 Taxonomic vs. Classical Syntax

To compare taxonomic and classical syntax we con

sider a high-level proof system analogous to the one

defined in section 7 but based on classical rather than

taxonomic syntax. A high-level proof in the system

based on classical syntax is also a series of lines where

each line is "sequent" E h $. Like the taxonomic

system, the classical system is based on an obvious

ness relation h° and the high-level proof system allows

unjustified lines where each unjustified line must be

explicitly associated with a set of variables called the

focus set for that line. The conditions under which

an unjustified line is acceptable are identical in both

the taxonomic and classical systems except that the

two systems are based on different obviousness rela

tions. Although the obviousness relations underlying

the two systems are different, each of the two obvi

ousness relations is defined by a set of inference rules

called rules of obviousness.

In the classical system the rules of obviousness pre

sented in section 3 are replaced by the standard rules

of inference for equality: reflexivity, symmetry, transi

tivity, and rules that allow the substitution of equals

for equals in terms and atomic formulas. These rules

of inference for equality are complete for classical lit

erals: if the rules can not derive a contradiction form

a set of first order literals, then the set of literals is

satisfiable.

The rules of obviousness that involve Boolean con

nectives are exactly the same in both the taxonomic

and classical systems. In the classical system, we as

sume that the only quantifier is the classical universal

quantifier V. The three taxonomic rules of obviousness

involving such-that class expressions are replaced, in

the classical system, by the following single rule of ob

viousness. In the following rule y must be a variable

in T.

The five high-level taxonomic generalization rules

are replaced, in the classical system, by the following

single high-level generalization rule. In the following

rule x must be a variable that does not appear free in

E.
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Sh*(i)

E 1- Vi*(i)

Unlike taxonomic syntax, the classical rules of ob

viousness involving focus objects makes the relation

ship between focus objects and previously proven

lemmas explicit; the rules of obviousness allow any

previously proven universal lemma to be applied

to any focus object. In the taxonomic system, a

formula of the form Vz$(x) is represented by the

formula (IS A-Thing (A-Thing x S.T. $(*))). If y

is a focus object then the taxonomic rules of ob

viousness allow the derivation of (IS y A-Thing)

and given the above is-formula, one can derive

(IS y (A-Thing x S.T. $(x))). The rules of obvious

ness for such-that expressions then allow the derivation

of $(y). Thus, the above classical rule of universal in

stantiation for focus objects is subsumed by the taxo

nomic rules of obviousness. In fact, all of the methods

of deriving new lines in the classical high-level proof

system are subsumed by methods of deriving new lines

in the taxonomic high-level proof system. This claim

can be formalized by giving a procedure for translat

ing any proof in the classical high-level system into a

corresponding proof in the taxonomic system.

For any classical first order formula $, the taxono

mic translation, T($) of the formula $ is defined by

structural induction by on $. If $ is an atomic formula

of the form R(si,.. .sn) then T($) is the taxonomic

formula (IS sn R(si, . . .s„_i)). T((OR 0 *)) equals

(OR T(0) T(tf)) and T((NOT *)) equals (MOT T(tf)).

If $ is a universal formula Vxty(x), then T($) is

the formula (IS A-Thing (A-Thing x S.T. T(*(x)))).

For any set E of classical first order formulas, T(E) is

the set of taxonomic formulas of the form T(W) for

some * in E. If P is a high-level proof in the classical

high-level proof system, then T(P) is the sequence of

lines derived by translating each unjustified line Eh$

in P to an unjustified line T(E) h T($) leaving the fo

cus set of the line unchanged, and translating each

universal generalization line E r- Vx$(x) to an un

justified line of the form T(E) U {(IS x A-Thing)} r-

(IS x (A-Thing x S.T. $(x))) with focus set {x} fol

lowed by the generalization line T(E) h T(Vx$(x)).

Taxonomic Domination Theorem: The

taxonomic proof system dominates the clas

sical proof system in the sense that for any

acceptable high-level proof P in the classical

system, the proof T(P) is acceptable in the

taxonomic system.

Intuitively, the proof rules of the taxonomic system

include the proof rules of the classical system as a spe

cial case. This is not a surprising result and is not

difficult to prove. We conjecture, however, that the

converse of this theorem does not hold, i.e., the taxo

nomic high-level proof system is not subsumed by the

classical high-level proof system.

Strict Domination Conjecture: For any

(large) constant k there exists a classical first

order formula $ and a taxonomic proof P of

T($) such that the shortest proof of $ in the

classical high-level proof system has length

greater than k times the length of P.

If this conjecture is true, then there would exist a first

order statement and a taxonomic proof of that state

ment such that the shortest classical proof is, say, a

hundred times longer than the taxonomic proof.

10 Conclusion

We have defined a taxonomic syntax for first order

predicate calculus and have presented several techni

cal results describing computational properties of this

syntax. Quantifier-free taxonomic literals are more ex

pressive than literals of classical first order logic and

yet there exists a polynomial time decision procedure

for determining the satisfiability of a set of quantifier-

free taxonomic literals. We have also investigated the

value of taxonomic syntax in general theorem prov

ing. We have define high-level proof systems for both

taxonomic and classical systems and shown that the

taxonomic system subsumes the classical system. Fur

thermore, we conjecture that the reverse is not true,

i.e., that there exist high-level taxonomic proofs such

that any classical high-level proof of the same result is

much longer.
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Abstract

Revising beliefs is a task any intelligent agent

has to perform. For this reason, belief re

vision has received much interest in Artifi

cial Intelligence. However, there are serious

problems when trying to analyze belief revi

sion techniques developed in the field of Arti

ficial Intelligence on the knowledge level. The

symbolic representation of beliefs seems to

be crucial. The theory of epistemic change

shows that a partial knowledge-level analy

sis of belief revision is possible, but leaves

open the question of how this theory is re

lated to belief revision approaches in Artifi

cial Intelligence. In particular, it remains an

open question whether the results achieved in

the knowledge- level analysis are valid. Fur

thermore, the idea of reason maintenance,

which is considered to be essential in AI,

has no counter-part in the theory of epis

temic change. Addressing these problems, it

is shown how to reconstruct symbol-level be

lief revision on the knowledge level.

1 Introduction

Any intelligent agent has to account for a changing

environment and the fact that its own beliefs might

be inaccurate. For this reason, belief revision is a task

central for any kind of intelligent behavior. For in

stance, learning [Diettrich, 1986], diagnosis from first

principles [Reiter, 1987], and interpretation of coun-

terfactuals [Ginsberg, 1986] are all activities requiring

the revision of beliefs.

In Artificial Intelligence, a number of so-called truth-

maintenance systems [Doyle, 1979, McAllester, 1982,

de Kleer, 1986] were developed which support belief

revision. However, the question remains how belief

revision can be described on an abstract level, inde

pendent of how beliefs arc represented and manipu

lated inside a machine. In particular, it is unclear how

'This paper describes research done at the Technical

University of Berlin as part of ESPRIT project 311 and at

IBM Germany as part of the LILOG project.

to describe belief revision on the knowledge level as

introduced by Newell [1981]. Levesque and Brachman

[1986] demanded that every information system should

be describable on the knowledge level without any ref

erence to how information is represented or manipu

lated by the system. However, this seems to be difficult

for belief revision. A large number of authors seem to

believe that a knowledge-level analysis of belief revi

sion is impossible [Diettrich, 1986, Fagin et al., 1983,

Fagin et al., 1986, Ginsberg, 1986]. Considerations of

how beliefs are represented on the symbol level seem

inevitable for belief revision. Reconsidering Newell's

original intentions when he introduced the notion of

the knowledge level, we note that the main idea was de

scribing the potential for generating actions by knowl

edge and not providing a theory of how knowledge or

beliefs are manipulated [Newell, 1981]: ". . . there are

not well-defined structural properties associated with

access and augmentation." Hence, we may conclude

that belief revision is a phenomenon not analyzable

on the knowledge level.

However, the theory of epistemic change and the

logic of theory change developed by Alchourron,

Gardenfors, and Makinson [Alchourron and Makinson,

1982, Alchourron et al., 1985, Makinson, 1985, Makin

son, 1987, Gardenfors, 1988, Gardenfors, 1989], which

will be described briefly in Section 2, show that at

least some aspects of belief revision can be subject to

a knowledge level analysis. Based on some rational

ity postulates any epistemic change operation should

satisfy, various epistemic change operations on deduc

tively closed theories are analyzed—some results of this

investigation will be presented in detail in Section 3.

This approach, which recently received a lot of inter

est in the AI community (e.g. [Gardenfors and Makin

son, 1988, Dalai, 1988]), suffers from some deficiencies,

though. It is not clear how the results of the theory

of epistemic change relate to belief revision as done

in AI. Second, the theory of epistemic change does ig

nore what, is usually called reason maintenance. These

problems will he discussed in Section 4.

In Section 5, some approaches to belief revision in

AI and database theory are presented. These will be

analyzed by adapting the rationality predicates of the

theory of epistemic change, which leads to the conclu
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sion that these approaches satisfy most of the basic

rationality postulates.

Based on that, in Section 6, an explicit reconstruc

tion of symbol-level belief revision in terms of the

theory of epistemic change is given—showing that a

knowledge level analysis of belief revision techniques

as developed in AI is indeed possible. It also shows

that reason maintenance needs not to be integrated as

a primitive notion in any theory of belief revision, but

that it results as a side-effect of the reconstruction,

contrary to the opinion most authors seem to have (cf.

[Ginsberg, 1986, Gardenfors, 1988]).

Finally, in Section 7, we will refine the reconstruc

tion in order to satisfy all rationality postulates—

leading to a belief revision strategy similar to the one

used in the RUP system [McAllester, 1982],

2 The Theory of Epistemic Change

For the following discussion, we will assume a proposi-

tional language C containing propositions x,y,z and

the standard sentential connectives (-i, V, A, —»,

<-»). Sets of propositions will be denoted by A, B, C.

Furthermore, h shall denote classical propositional

derivability1 and Cn should be a function mapping sets

of propositions to sets of propositions by applying h,

dtf

Cn{A) = {x e C\ A \- x} (1)

Formalizing Newell's notions of the knowledge level

in this setting, sets of propositions A closed with re

spect to Cn (i.e. A = Cn(A))—technically speak

ing propotiiional theories—can be identified with

knowledge-level knowledge bases as argued in [Diet-

trich, 1986, Levesque and Brachman, 1986]. Arbitrary,

finite set of propositions B C £ can be identified with

symbol-level knowledge bases.

In the theory of epistemic change [Gardenfors, 1988],

only knowledge-level knowledge bases are considered,

which are called belief sets. Epistemic change opera

tions on such belief sets are

Expansion: the monotonic addition of a belief with

the requirement that the result is again a belief

set (written A + x),

Contraction: the removal of a proposition from a

belief set resulting in a new belief set (written

A^x),

Revision: incorporation of a new proposition into a

belief set under the requirement that the result is

a consistent belief set (written A + x).

'The results presented in the following can be general

ised to conservative extensions of propositional logics, pro

vided they are compact and monotonic (cf. [Gardenfors,

1988, p. 21-26])-

While expansion is a well-defined, unique operation,

namely:

A + x =f Cn(A U {x}) (2)

the other two operations are problematical. An im

mediate criterion for them is that a belief set shall be

changed minimally by an epistemic change operation

(but cf. [Winslett, 1986]). However considering con

traction, given a belief set B and a proposition x, in

general there is no unique greatest belief set C C B

such that C \f x.

The problem of finding intuitively plausible change

operations is approached by formulating sets of ra

tionality postulates any epistemic change operation

should satisfy. A set of such postulates for contraction

can be given as follows (A a belief set, x, y proposi

tions):

(-1) A — x is a belief set (closure);

( — 2) A - x C A (inclusion);

( — 3) If x tf A then A — x = A (vacuity);

(—4) Iftyx, then x $ (A — x) (success);

(-6) // Cn({x}) = Cn({y}) then A - x = A - y

(preservation);

(-6) A C (A - x) + x (recovery);

(-7) {A - x)n{A - y)C A - (x Ay);

(-8) Ifxi A - (xAy), then A - (x Ay) C A - x.

Most of these postulates are straightforward. The

closure postulate ( — 1) tells us that we always get a

belief set when applying — to a belief set and a propo

sition. The in elusion postulate ( — 2) assures that when

a proposition is removed, nothing previously unknown

can enter into the belief set, setting an upper bound

for any possible contraction operation. Postulate (—3)

takes care of one of the limiting cases, namely, that the

proposition to be removed is not part of the belief set,

while the next postulate ( — 4) describes the effect of

the other case. If the proposition to be removed is not

a logically valid one, then the contraction operation

will effectively remove it. The preservation postulate

( — 5) assures that the syntactical form of the proposi

tion to be removed will not effect the resulting belief

set. Any two propositions which are logically equiva

lent shall lead to the same result. Finally, the recovery

postulate (-6) describes the lower bound of any con

traction operation. The contracted belief set should

contain enough information to recover all propositions

deleted. Note that (-6) together with (-l)-(-5) en

tails the following conditional equation:

If x G A then A = (A - x) + x (3)

The two postulates ( — 7) and ( — 8) are less obvi

ous and not as basic as the former ones—a reason for

calling them "supplementary postulates." ( — 7) states

that retracting a conjunction should remove less infor

mation than retracting both conjuncts individually in
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parallel, with (—8) its conditional converse. Although

this does not sound like a strong restriction, not all

conceivable contraction operations satisfy it. In order

to shed some more light on these supplementary pos

tulates, it might be worthwhile to present some prin

ciples derivable from ( — 7) and (— 8).2 First, there is

the following "factoring" condition:

A - (a? A

(A i r) n (A - y) OT

OT (4)

This condition is actually equivalent to ( — 7) and (-8)

if a contraction operation already satisfies ( — 1)-( — 6).

Another interesting property derivable from the sup

plementary postulates is an identity criterion for con

tracted belief sets:

// (* —> y) € A — y and (y —» x) 6 A — x

then A — y = A — x (5)

Turning now to revision, we note that there are two

independent ways to characterize this operation. First,

a set of rationality postulates for revision could be

specified capturing the idea that a revised belief set

should minimally differ from the original belief set, as

done in [Alchourron et a/., 1985]. Second, one could

define the revision operation A + x by first contracting

A with respect to ->x in order to avoid inconsistencies,

and then expanding the result by x:

A-y * (A- e) +

This way of defining a revision operation was proposed

by Levi [1977]. As it turns out, both ways of character

izing revision are equivalent, as shown in [Alchourron

et al., 1985]. Any revision operation satisfying the ra

tionality postulates for revision could be generated by

(6) and a contraction operation satisfying the contrac

tion postulates and vice vena. What should be noted

at this point is that in the case when I—<x (and only in

this case), the revised belief set will be inconsistent—

which cannot be avoided, however.

Parallel to defining revision by contraction, we could

try it the other way around—defining contraction in

terms of revision:3

A - * (1 + »)n a (7)

This means, revision and contraction are interdefin-

able and it suffices to analyze one of these operations.

Whether contraction or revision is taken as the basic

one is mostly a matter of taste and philosophy (cf.

[Makinson, 1985, Dalai, 1988]).

'Proofs for the principles (4) and (5) can be found in

[Gardenfors, 1988].

'Note that the intersection of two belief sets is again a

belief set.

3 Constructing Contraction Functions

Using the rationality postulates, a number of possi

ble contraction functions (and the associated revision

functions) are studied and evaluated in [Alchourron et

al, 1985] and [Gardenfors, 1988].

All of these operations are defined using the family

of maximal subsets not implying a given proposition,

denoted by A [x (pronounced "A less *"):

A[x

<w

{B C A\ B\/x and (8)

if B QC C A then C V x}

Note that all elements of A J. x are again belief sets

because of the maximality condition. Trying to con

struct contraction functions based on A j r, a first idea

could be to take into account all possible outcomes of

removing a proposition, and, since we do not have a

measure of what is a better solution, to choose the

intersection of the outcomes as the result of the con

traction operation. If A [ x is empty—which can only

happen if x is a logically valid proposition—A itself

will be taken as the solution.

a'-x W { fMH •> !

\ A oth

\/x

erwise

(9)

This operation satisfies obviously most of the ratio

nality postulates.4

(6) Lemma 1 Full meet contraction satisfies (— 1)-(— 5).

In order to see that full meet contraction also satis

fies (-6), the following lemma is helpful.

Lemma 2 Let A be a belief set, and let x be a propo

sition such that x g A and \j x, then

Al-x = AnCn({-.r})
(10)

Applying this result to revision by using (6), it be

comes obvious that full meet contraction is most prob

ably not an operation one wants to use. Full meet

contraction removes too much information.

Corollary 3 For a revision operation defined by (6)

and (9), for any x such that ->x G A and \j ->a: it holds

that

A 4- x = Cn({x}) (11)

Nevertheless, full meet contraction satisfies all the

rationality postulates for contraction.

Lemma 4 Full meet contraction as defined by (9) sat

isfies (-l)-(-8).

* In order to make the paper self-contained, I included

proofs for all lemmas in this section in Appendix A.
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Looking for a more reasonable contraction function,

another way to contract a belief set could be to choose

one of the elements in A [x—employing a choice func

tion C—instead of using the intersection over all ele

ments:

clef f C(A[:

A

)
if I/*

otherwise
(12)

It is easy to see that this operation satisfies ( — 1)-

(-6), but the supplementary postulates are not

satisfied unconditionally [Alchourron and Makinson,

1982]. Ignoring this fact for the moment, let us try to

characterize the result of such contraction operations.

As it turns out, the contraction function defined by

(12) generates belief sets which are far too large to be

plausible.

Lemma 5 Let A be a belief set with x G A. Then for

any proposition y:

(*Vy)e A- x or (x V -y) 6 A - x (13)

This property has a rather counter-intuitive conse

quence for revision. Applying again (6), we get the

following result.

Corollary 6 Lei + be a revision operation defined by

using (IS) and (6). Then, for any proposition x and

belief set A with -<x G A:

V G A + x or -'V G + x (14)

This means that by applying maxichoice revision to

an arbitrary belief set, we get all of the sudden a com

plete belief set, provided that ->x 6 A. However, start

ing with an arbitrary belief set in which there may be

no belief in some proposition z or its negation ~<z and

ending up with a belief set in which for all propositions

z, either z or ->z is believed, is clearly something not

desirable.

Viewing full meet contraction and maxichoice con

traction as two extreme points, it might be worthwhile

to explore the "middle ground" between them. histead

of chosing one element from A[r or the entire family

of belief sets, a subfamily of A I x is used to generate

the contracted belief set. For this purpose, let us as

sume a selection function S which selects a subset of

A[x:

■lei f]S(A[:

A

0 if \/x

otherwise

(15)

This contraction function, called partial meet con

traction, unconditionally satisfies the basic postulates,

which can be easily verified.

Lemma 7 Any partial meet contraction operation --

satisfies (— 1)-(— 6).

What is more interesting is that the converse holds

as well. Any operation satisfying ( — 1)-(— 6) is a

partial meet contraction [Gardenfors, 1988, Theo

rem 4.13]. hi order to satisfy the supplementary pos

tulates, some restrictions on S must be imposed. Let

us assume a "preference relation" C over all subsets

of a belief set A independent of x such that for all

B,CC A:

if B eS(A[x) andC G A[x then C QB (16)

in which case the contraction function is called rela

tional contraction.

Lemma 8 Any relational contraction function satis-

fie,(^l)-(^7)

If the relation C is a transitive relation, the corre

sponding contraction function-—called transitively re

lational con traction—satisfies all postulates.

Lemma 9 Any transitively relational contraction

function satisfies (- 1 )-(-'- 8).

Furthermore, it is possible to show that any contrac

tion function satisfying (-l)-(-8) is a transitively re

lational contraction [Gardenfors, 1988, Theorem 4.16].

4 Problems with the Approach

Although the results presented in the previous sections

sound interesting and provide some insights into the

problem of belief revision, it seems arguable whether

the approach could be used in a computational con

text, as in AI or in the database field. The theory

of epistemic change seems to capture only the ideal

ized process of belief revision—ignoring some impor

tant problems of belief revision appearing in the "real

world."

First of all, closed theories cannot be dealt with di

rectly in a computational context because they are too

large. At least, if we deal with them, we would like to

have a finite representation (i.e. a finite nxiomatiza-

tion), and there seems to be no obvious way to derive

a finite representation from a revised or contracted be

lief set in the general case.

Second, it seems to be preferable for pragmatic rea

sons to modify belief bases, i.e. finite sets of proposi

tions, instead of belief sets, i.e. deductively closed the

ories. Propositions in belief bases usually represent

something like facts, observations, rules, laws, etc.,

and when we are forced to change the belief set we

would like to stay as close as possible to the original

formulation of the finite base. In particular, when it

becomes necessary to give up a proposition in the be

lief base, we would like to throw away the consequences

of the retrncted proposition if they are not supported

otherwise, i.e. to perform reason maintenance. More

formally, given a belief base B and propositions x, y G

Cn(B) and assuming that a proposition y is removed

from B to accomplish a contraction Cn(B) — x, then
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we expect that z # (Cn(B) — x) if y was responsible

for z, i.e. z e Cn(B) but z $ Cn(B \ {y}).

For instance, let a be the proposition "the device is

ok," let 6 be the proposition "the ontput voltage is 5 V"

and let us assume we have the base B = {a, (a —» 6)},

i.e. "the device is ok" and "if the device is ok then the

output voltage is 5V." That means that from B we

can infer that "the output voltage is 5V." Now, when

we learn that the device is defect, then together with

o we would like to get rid of b because the reason for

the belief that the output voltage is 5V has vanished.

This, however, cannot be easily accomplished by the

approach described above. On the contrary, since the

theory of the epistemic change formalizes the idea of

keeping as much of the old propositions (in the belief

set) as possible, it seems likely that b will be among the

propositions in the contracted belief set since it does

not contradict ->a. Gardenfors puts it in the following

way [Gardenfors, 1988, p. 67]:

However, belief sets cannot be used to ex

press that some beliefs may be reasons for

other beliefs. (This deficiency was one of the

motivations behind Doyle's TMS . . . ). And

intuitively, when we compare degrees of sim

ilarity between different epistemic states, we

want the structure of reasons or justifications

to count as well.

Actually, viewing this property from a cognitive an

gle, it could be defended by the argument that the

theory of epistemic change models what is called the

coherence theory of belief revision [Gardenfors, 1989].

This means that in the course of revising beliefs the

main emphasis is to arrive at a new coherent set of be

liefs, which may be interpreted as a logically consistent

set of beliefs. Identifying and discarding derived beliefs

when their justifications are undermined, on the other

hand, is not viewed as essential in the coherence theory.

It is argued that it is intellectually much too expensive

to keep track of all justifications—a fact supported by

empirical evidence.

Nevertheless, although this theory may be right in

the general case, in a problem-solving context, as mod

eled in typical AI applications, we usually want reason

maintenance—as e.g. in the toy example given above.

Summarizing, we see that belief revision and reason

maintenance are not genuinely connected with each

other, as it sometimes seems to be perceived in AI

(cf. [Martins and Shapiro, 1988]). However, as will be

shown, it is not necessary to add reason maintenance

as a primitive notion to a theory of belief revision.

Reason maintenance will result as a side-effect when

we choose the "right" contraction operation.

5 Contracting Finite Bases

As spelled out in the previous section, there are good

reasons to perform belief revision on belief bases—

considering the propositions in the base as the ba

sic beliefs. As a matter of fact, such operations were

adopted in an analysis of update semantics for logical

databases [Pagin et al, 1983, Fagin et al., 1986] and in

modelling counterfactnal reasoning [Ginsberg, 1986].

Basically, revision ( + ) and contraction (~) on a be

lief base B is defined in the following way:

B ~ x

B +

m
V C If \/x

B othe

— (B ~ ->*) A x

(17)

(18)

with fl | r being the same operation as defined by

equation (8) without requiring that B is deductively

closed. The guiding idea behind (17) and (18) is that

we want to retain as many old propositions as possible,

and if there are ties, we take the disjunction. More

over, (18) is logically very similar to (6). Obviously,

such change operations realize some form of reason

maintenance, as one can see in (19).

{a,a-*b} {a -. b} \f b (19)

Based on (17) and (18), both Ginsberg [1986] and

Fagin et al. [1983] consider more elaborated versions

of contraction and revision, which distinguish between

different kinds propositions in the belief base. For in

stance, Fagin et al. distinguish between facts and in

tegrity rules in the belief base, and Ginsberg proposes

to protect some propositions against retraction. We

will ignore this issue here. However, one should note

that such a construction is not qualitatively different

from ~ and 4 [Nebel, 1989]. In particular, the results

in this and the next section are valid for such opera

tions.

In trying to relate ~ to — , we see that the rational

ity postulates presented in Section 2 cannot be applied

immediately to ~ since it does not operate on belief

sets. However, it seems possible to adapt the postu

lates to belief bases by setting

A '= Cn{B) (20)

A x =' Cn{B~x) (21)

Thus, in a sense, we view ~ as an implementation of

Lemma 10 Under the assumption of (SO) and (SI),

~ satisfies (— t)-(— 5).

Proof: (-1) holds trivially because of (21). If \f x,

(-2) is satisfied because

Cn( \/ C) = P| Cn(C) (22)

and for all C : Cn(C) C Cn(B). If \j x, (-2) is satisfied

as well since the belief base is not changed. (—3) is
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satisfied because if B 1/ x, then B [ x = {&}■ (—4)

holds because for all C € {B [ x) we have C \f x

and, hence, \/ C \f x. Finally, (-5) holds since for the

determination of B [x the syntactic form of a; does not

matter. ■

Unfortunately, however, the recovery postulate is

not satisfied. For instance, we have

Cn({{a, a -» o} ~ b) U {b}) $ Cn({a, a - 6}) (23)

Trying to find the reason for this unsatisfying behav

ior, one notes that even the weakest possible contrac

tion function on belief sets—full meet contraction—

generates belief sets such that (Lemma 2)

A - x= An Cn({-.x})

which is sufficient for restoring the original belief set

as we have seen in Lemma 4.

Adding a finite conjunct, logically equivalent to

A PI Cn({-ia;}), to the outcome of ~ leads to a new

contraction function which has the desired property:

n. aer J ( V C)A(B^x) «V*

B ~ x = i ciUDir) (24)

\ B otherwise

Lemma 11 Under the assumption of (SO) and (21),

~ satisfies (— 1)-(— 6).

Proof: The satisfaction of (-1), (-3), and ( — 5) can

be shown with the arguments used in the proof of

Lemma 10. That (-2) holds becomes obvious by ob

serving that Cn(B V ->x) and Cn(\/ C) are both sub

sets of Cn(B), and, hence, the set of consequences of

their unions can only be a subset of Cn(B), either.

(-4) holds because for the added conjunct we have

(B V -<x) \f x and no C G B [ x implies x. Finally, ( -6)

holds since Cn(B ~ x) contains Cn{B) D Cn({~>x}),

which is sufficient for recovery as shown in the proof

of Lemma 4. ■

Actually, if revision is the only operation of interest,

it does not make a difference whether we employ ~ or

~. The revision operation + gives identical restilts

(ivrt Cn) regardless of whether ~ or ~ is used.

Theorem 12 The operations ~ and ~ are revision-

equivalent wrt + ols defined hy (18), i.e.

Cn((B ~ -.x) A x) = Cn((B ~ ->x) Ax) (25)

Proof: hi the limiting cases when \- ->x or ->x $

Cn[B), ~ and ~ give the same results trivially. For

the principal case, \f -<x and ->x € Cn(B), we have:

Cn((B ~ -.x) A x) =

= C*(( V <?)A(flVx)A{x})

= Cn{( \/ C)Ax)

= Cn(B ~ -x) + x

This result might raise the question of the value

of the recovery postulate—a problem discussed in

[Makinson, 1987]. Despite the fact that it is neces

sary to establish some of the theoretical results cited

in Section 3, it has some practical value, I believe. In

a setting where revision and contraction are equally

important, as in the case of database updates (cf. [Fa-

gin et at., 1986]), we had better use ~ instead of ~.

Otherwise, more information is lost than intended. In

particular, we might be unable to undo a contraction

operation.

Before we now go on trying to verify that the supple

mentary postulates are satisfied by ~, we will try to es

tablish a connection between belief-base and belief-set

contraction. In [Ginsberg, 1986], as well as in [Fagin

et al, 1983], some thoughts are devoted to the issue of

modifying closed theories, i.e. belief sets. However, by

considering (22) and permitting infinite disjunctions,

it becomes quickly obvious that in the limiting case

when the belief base is a belief set, ~ is identical to full

meet contraction. This kind of contraction is rather

useless, however, as demonstrated by Lemma 2 and

Corollary 3. Thus, Fagin et al. [1983] and Ginsberg

[1986] conclude that belief revision is a phenomenon

which can only be modeled if the syntactic representa

tion of ab elief set (its belief base) is taken into account.

A knowledge-level analysis of belief revision seems to

be impossible.

Addressing this problem, Ginsberg [1986, Sec

tion 8.1] proposes to incorporate reason-maintenance

information into the logic by using derivations as

truth-values. This proposal leads to the desired

results, i.e. changes of belief sets (in the reason-

maintenance style logic) are identical to changes of a

finite belief bases. However, this approach does not

shed too much light onto the relation between modifi

cations of belief sets and modifications of finite belief

bnses.

6 Base Contraction Viewed as Partial

Meet Contraction

Reconsidering the arguments from above, we note that

we are not interested in the particular syntactical form

of a belief base, but we regard the propositions in the

belief base as somehow more important than any de

rived propositions. In particular, given two belief bases

B and B' such that for all x 6 B there exists x' € B'

with Cn{{r}) = Tn({x'}) and vice versa, it is imme

diate that Cv(B ~ y) = Cn(B' ~ y). This means

that it is not the syntactical form of a belief base we

are interested in, but the "logical force" of the propo

sitions in the base. Using this idea, it is tempting to

define a selection function which selects elements from

(A [ x) which contain maximal subsets of B, a set of
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propositions considered as "interesting":

SB{Alx)d= {C <L(Alx)\VC 6 AixC'nB J>CnB}

Based on this selection function, we can define a

partial meet contraction on belief sets which has the

property of being identical to ~ (wrt Cn). In order to

show this, the next lemma proves to be helpful.

Lemma 13 Let A be a belief set and S be any subset

of A such that S \j x. Then

[){C 6 {A [x)\ S C C} = Cn(S U(An Cn({^x})))

Proof: "D": First, by Lemma 2 we know that any

intersection over a subfamily of A I x must contain

(An Cn({->x})). Second, since all C in the subfamily

chosen contain 5, the LHS contains 5. Finally, be

cause the intersection over any subfamily of A [ x is

a belief set, the LHS is a belief set containing 5 and

(An Cn({->x})) and, hence, the right hand side.

"C": Assume the contrary, i.e. there is a y such

that y 6 LHS and y tf RHS. Using set theory and

the properties of Cn, we can transform the RHS in the

following way:

Cn(Sl)(AnCn({^x}))) =

= Cn((SUA)n(SUCn({^x})))

= Cn(AnCn(SVCn{{^x})))

= An Cn(5u {-.*})

Since y £ A because of our assumption, we must have

y tf Cn(S U {"'J:}) and, in particular, ->x \/ y. Using

this, we can derive (x V ->y) \j x, following the same

line of arguments as in the proof of Lemma 2. By that

and the observation that y tf Cn(S), we can conclude

that x $ Cn(S U {(x V -"J/)})- Since adding y to this

set would lead to the derivation of x, there must be a

set E D S U {(x V -.y)} with y $ E and E 6 (A J. x),

which means that y cannot be a member of all sets in

A{x which contain S, and we have a contradiction. ■

Based on this lemma, we can establish the connec

tion between contractions on belief bases and contrac

tions on belief sets.

Theorem 14 Contraction of finite premise sets B us

ing ~ is identical (wrt V ) to a partial meet contraction

— defined by the selection function Sb, *•«•

Cn(B ~ x) = Cn(B) *■ x (26)

Proof: In the limiting cases when h x or x tf Cn(B)

the result is immediate. For the principal case, we note

that

SD(Cn(B)lx)= (J {C£(Cn(B)[x)\DCC}

De(Dlr)

(27)

Applying Lemma 1 3, it follows that

Cn(B) £ x =

= f]5B(Cn(B)[x)

= f| Cn((D)n(Cn(B)nCn({^x})))

= Cn(( f| Cn(D))U(Cn(B)nCn({^x})))

= Cn(( y Cn(D)) A (B V -x))

D6(Blr)

= Cn(B ~ x)

Thus, contrary to the assumptions spelled out in

[Diettrich, 1986, Fagin et al, 1983, Fagin et al., 1986,

Ginsberg, 1986], revision and contraction on finite be

lief bases are not qualitatively different from epistemic

change operations on deductively closed belief sets.

The finite case can be modeled without any prob

lem by a particular selection function. Viewed from

a knowledge-level perspective, the only additional in

formation needed for belief revision is a preference re

lation on sets of propositions. It should be noted, how

ever, that the construction did not lead to an epistemic

change function which satisfies all rationality postu

lates.

Theorem 15 Any partial meet contraction using Sb

satisfies the rationality postulates (- l)-( — 7).

Proof: Because of Lemma 7 and the fact that — con

structed by Sb is a partial meet contraction, ( — 1)-

(-6) are satisfied. That (-7) is satisfied follows from

Lemma 8 and the fact, that Sb satisfies (16), if C is

defined as:

X C Y iff X n B } Y n B (28)

Since Sb is not a transitively relational selection

function, (-8) is not satisfied in general. In order to

give an exnmple where (-8) is violated, let us assume

that Sb is used to define the partial meet contraction

" and that

B - {a,b Ac, a A 6 A d, a Ad}

Setting, x = (a A c) and y = (b A d), we see that

x $ Cn(B) »- (x A y)

but

Cn(B)v (xl\y)£ Cn(B) ^x

because we hove the following relationships:

(a Ac) i Cn(B) £ ((a A c) A (b A d))

a € Cn(B)Z ((a Ac) A (6 Ad))

a i fn(B)^(oAc)
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As can be verified, the factoring condition (4) is vio

lated, as well. So what? Does this result imply that —

defined by using Sb and, hence, ~ is not a reasonable

contraction operation? Actually, it seems to make a

lot more sense than — .

The disadvantage of not having ( — 8) is actually very

subtle. One consequence is that a revision operations

based on ~ violate the respective postulate for revi

sion, which is needed to derive an identity criterion

for revised belief sets similar to (5):

// x S A + y and y G A + x

then A + y = A 4- x (29)

This criterion in turn is is similar to a principle

Stamaker [1968] postulated for the interpretation of

counterfactual conditionals on "neighboring possible

worlds." However, it seems to be difficult to come up

with ail example demonstrating that the violation of

this principle leads to obviously counter-intuitive re

sults.

7 Maxichoice Contraction on Belief

Bases

As we noted above, we could achieve satisfaction of

( — 8) if the ordering C is transitive. Embedding the

partial order defined by set-inclusion in a total order

ing would certainly help. This can be achieved by

starting from an arbitrary total ordering on the propo

sitions in a belief base, for instance.5 Thus, let us as

sume such an ordering < on the propositions of a belief

base B. Furthermore, define C' on 2 :

XC'Y tff Vx€(X\y)3ye(K\X): * <(0O)

This means, in case when X and Y are incomparable

by set-inclusion, we assume Y to be larger than X by

C' iff there is an element in Y which is larger by <

than any element in X which is not in Y . Based on

that, let us define a selection function as follows:

SbAAI*) = {C e (Aix)\WC € (A[x) :

C'nBc'CnB}

Theorem 16 A partial meet contraction defined by

using Sb.< satisfies all rationality postulates.

Proof: Obviously, C' is a transitive relation, and,

thus, the partial meet contraction defined by Sb,< '*

a transitively relational contraction. ■

Another interesting point about <Sn,< is that it is

similar to a maxichoice contraction on belief bases.

'Note that such a construction is fundamentally dif

ferent from the notion of epistemic entrenchment as in

troduced in [Gardenfors, 1988, Gardenfors and Makinson,

1988].

Lemma 17 For partial meet contractions defined by

using <Sn,<, for all x with \f x, there is an E G

(Cn(B)lx) such that

Cn(B) 5 x = Cn{E \J (Cn(B) D Cn({-*}))) (31)

Proof: The main point is that there is exactly one

element in E G (B[x) such that for all C € {B[x) we

have C C' E. Applying Lemma 13, we get the desired

result. ■

From this we can conclude two things. First, maxi

choice contraction on belief bases does not have the

undesirable result as the same operation applied to

belief sets. Second, considering the rationality pos

tulates, it is more "rational" to chose one alternative

of (B I x) than taking the disjunction of all alterna

tives. Furthermore, from a practical point of view, this

strategy has the advantage that the belief base is not

cluttered with disjunctions, but it simply shrinks.

Summarizing, although it might seem arbitrary to

choose one maximal consistent set during a contrac

tion, it is despite its practical value justified because

it is at least as "rational" as using the disjunctions.

Thus, for example, the truth-maintenance system RUP

[McAllester, 1982], which implements this strategy for

belief revision, could be characterized as a "fully ra

tional belief revision system" (modulo its inferential

incompleteness).

8 Conclusion and Outlook

We have shown that belief revision, as exercised in

many applications in AI, is not an activity which can

only be analyzed on the symbol level. Employing the

theory of epistemic change we demonstrated how to re

construct symbol-level belief revision in the theory of

epistemic change—resulting in a knowledge-level anal

ysis of some aspects of belief revision. In particular,

we have shown that reason maintenance is a symbol-

level notion, which although not present in the theory

of epistemic chnnge, appears as a side-effect. Further

more, analyzing the approaches, we noted that chosing

one maximal consistent subset of a belief base seems to

be more rational than taking disjunctions of all max

imal consistent sets—considering the rationality pos

tulates.

However, a number of issues remain unresolved—

of course. For instance, iterated contractions were

ignored because they present serious problems. One

has to provide update operations for the preference re

lation among propositions. Furthermore, implausible

contraction operations, such as {o A 6} ~ a = <t, were

ignored. Choosing the "right" form of the premises

seems to be one of the central tasks before any kind of

belief revision can be applied.
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A Proofs of Lemmas of Section 3

Lemma 1 Full meet contraction satsfies (- 1)-(—5).

Proof: ( — 1) is satisfied because the intersection of

belief sets is a belief set. (-2) is satisfied because for all

E e{A[x), E C A. (-3) holds because A[x = {A},

if A \f x. (-4) holds since for all E G {A \ x), E \f x,

if 1/ x. ( — 5) is satisfied since the syntactical form of x

in A[x is irrelevant. ■

Lemma 2 Let A be a belief set, and let x be a propo

sition such that x G A and \f x, then

A-x - AnCn({^x})

Proofs First, consider the case when y G A and ->x \-

y. Now assume that y $ A — x. That means that

there is a set E g A J. x such that y tf E. Because

of the maximality condition on all such sets, we know

that x G Cn(E U {y})). Using contraposition on our

premise ~>x h y, we get ->y b x and hence x G Cn(E U

{->y}). Together with the previous result, we have

x G Cn(El) {(y V ->y)}) = Cn(E) and a contradiction.

For the case y G A and ->a: 1/ y, we know by con

traposition that ->y \f x and hence x V ->y \f x. Be

cause of the maximality of the sets in A J, x, there

are two sets E' , E" with y 6 E' and (x V -.y) G E" ,

but there can be no set which includes both because

* 6 Cn({y, (x V -.y)}), and thus y i f\{A \ x). ■

Corollary 3 For a revision operation defined by (6)

and (9), for any x such that -iar € A and \f ~>x it holds

thai

A + x = Cn{{x})

Proof: Using (6) and (10) leads to:

A + x = Cn((A n Cn{{x})) U {x})

= Cii^u^Hn ((?«({.}) u{.»)

= Cn(Cn(A U {a;}) H Cn{x})

Since we assumed A I—>x, we know Cn(A U {x}) = £,

and, thus, the result is Cn({x}). ■

Lemma 4 Full meet contraction as defined by (9) sat

isfies (-!)-(-8).

Proof Sketch: Since (-l)-(-5) are obvious, we will

focus on (-6)-(-8). These are satisfied trivially for

the two limiting cases I- x and x £ A. That (-6) holds

in the principal case, x 6 A and \f x, becomes obvious

when substituting the right hand side of equation (10)

for A — x in (-6), which leads to:

A C Cn[{A 0 Cn({-.*})) U {x}) (32)

Now, because for any y 6 A we know that (y V ~^x) G

Cn[{-<x}) and that this together with x implies y, the

right hand side of (32) is clearly a superset of the left

hand side. Furthermore, using Lemma 2, it can be

easily derived that (-7) (it can even be strengthened

to equality) and ( — 8) hold as well. ■

Lemma 5 Let A be a belief set with x G A. Then for

any proposition y:

(x V y) G A - x or (x V -y) G A = x

Proof: In the limiting cases when h x, the lemma

holds trivially. In the other case, we know that y\j x

or ->y \/ x. Thus, because of the maximality of the

elements of A [x, either y or ->y is in A — x. Since for

any z: y h (y V z), the lemma holds. ■

Corollary 6 Let + be a revision operation defined by

using (IS) and (6). Then, for any proposition x and

belief set A with

yG-4-4-x or ->y G+ x

Proof: Expanding A — ->x by x leads by Lemma 5

for all propositions y to

((it Vy) A x) G [A - -<x) + x or

((-is; V -y) A x) G (A - ->x) + x

from which the desired result is immediate. ■

Lemma 7 Any partial meet contraction operation —

satisfies (—})-(— 6).

Proof Sketch: (-l)-( -5) can be easily verified. (-6)

holds because A -'- x nlways contains AC\ Cn({->x}),

which is sufficient for recovery. ■

Lemma 8 Any relational contraction function satis-

fies(-l)-(-7)

Proof: (-l)-(-6) follow from Lemma 7. If h x, \- y,

x $ A, or y <£ A, the proof is immediate. For the other

cases, we have to show that

f)S(Alx)nf]S(Aly) C f|^i(«Ay))

This could be done by showing that

[S(A ix) ii S(A iy)) D S{Al{xAy)



310 Nebel

Assume the contrary, i.e. there is an E f_ RHS, but

E $ LHS. Since we cannot have x,y G E, assume

wig x $ E. Now it could be the case that E $ LHS

because E tf (A I x). However, since x $ E, there

must be D G (A [ x) with E C D. Furthermore,

becaiise (* A y) & D, there is an F € (A [ (x A y)) with

E C D C F, which is a contradiction. This means

E G (A [x). Accepting this, we must have D G (Alx)

with D 2 E. Because D is maximal, either y £ D or

x G C»(Z?U{y}). Thus, D G (Al(xhy)), and because

of relational ty, the premise E G RHS is contradicted.

Lemma 9 Any transitively relational contraction

function satisfies (— 1)-(—8).

Proof: (— 1)-( — 7) follows from Lemma 8. Similar to

the proof above, for the principal case, we will show

that when x $ f]S(A l(x A y)), then

S{Al{*Ay)) D S(Alx)

Assume the contrary, i.e. E G RHS but E $ LHS. Be

cause E is maximal, either y G E or x G Cn(E U {y}),

and hence E G {A i (a: A y)). Since £ ^ LHS, there

is D G {A I (x A y)) with D g E. Because of our

premise x $ f\S[A |(iA y)), there must be at least

one F G S(A I (x A y)) with x tf F, which is also an

element of (A I x). Thus D C F and F C £, and be

cause of transitivity D C. E, which is a contradiction.
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Abstract

Default logic offers a compelling solution to

the problem of reasoning in commonsense do

mains: in uncertain domains, intelligent crea

tures use defaults to "jump" to certain con

clusions, given no information to the con

trary. However, no one in that camp has of

fered a definition of defaults that is testable,

at least in principle. This shortcoming is crit

ical in light of apparent paradoxes and ever-

increasing complexity of the formalisms.

We offer a simple solution to the common-

sense reasoning problem based on a view

that probability is a theory of sound ap

proximate argument. From some probabilis

tic inequalities and knowledge about condi

tional independence, we show it is possible

to make many interesting inferences about

shifts in belief based on probabilistic asso

ciations without numeric probability distri

butions. We can also use this knowledge to

construct coherent models of the world based

on a handful of observations. Most impor

tantly, we can test the correctness of a par

ticular representation by performing a statis

tical experiment. This challenges the claim

that probability is "epistomologically inade

quate" for reasoning in AI domains. In fact,

the criterion of testability challenges the epis-

tomological adequacy of other approaches.

1 Introduction

Default logicians claim that we "jump" to certain con

clusions despite the fact most general rules have nu

merous counterexamples. The classic example is the

"birds fly" problem where we believe birds fly yet emus

'Research supported at various stages by a Natural Sci

ence and Engineering Research Council of Canada post

graduate scholarship, the Institute for Computer Research

at the University of Waterloo and the University of New

Brunswick.

don't. Modelling this kind of reasoning has challenged

researchers for decades.

It is well-known that deductive use of first order

logic does not work: either there are no emus or the

knowledge is inconsistent. Many extensions of first or

der logic have been proposed [Reiter, 1980, McCarthy,

1986, Moore, 1985, Poole et al., 1987] to overcome this.

The formalisms go by many names, but in light of cer

tain equivalence proofs [Grosof, 1985, Konolige, 1987],

it is reasonable to refer to them as default logics. A

unifying theme in all these papers is the idea that we

must be able to accept defeasible conclusions without

sacrificing the attractive semantics of first order logic.

A glance at recent literature raises at least three

questions:

1. The complexity of the solutions seems to have by

far outstripped the apparent simplicity of the ex

amples [Etherington, 1988].

2. There are many different default logics. Repre

senting the "birds fly" default in the obvious way

in different formalisms yields slightly different an

swers. This raises the important question: just

exactly what is a default? To the best of our

knowledge, no one within the camp of default logic

has offered a clear-cut answer to this problem.

Specifically, how could we perform an experiment

to verify whether a sentence a is a default or not?

3. It is questionable whether it is worthwhile even

trying to find a logical solution to the default in

ference problem. Some results suggest there are

problems with the very foundations of default in

ference. It has been believed for some time that

the notion of a default logic must contain a lottery

paradox which arises when we accept sentences

with probability above a certain threshold. It ap

pears that other default logics contain a variation

of Simpson's paradox. We illustrate these prob

lems in detail later.

Here we argue that there is indeed a problem with

some of the default logics but we need not aban

don logic. However, we need not confine ourselves to

logic either: some basic ideas from probability theory

cast light on why problems exist with default logic.
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The same notions provide simple solutions to many

of the problems. Far from sacrificing semantics, we

strengthen the meaning of our representation, for we

believe this to be one of the first testable accounts of

commonsense reasoning.

After presenting a set of problems default logic must

address, we offer a constructive probabilistic solution.

Not only is the system capable of answering queries

about flying birds and grey elephants, it is capable of

constructing coherent models of the world based on a

few observations. We illustrate an interesting proba

bilistic relationship between diagnosis and default in

ference. We see also that there is a correspondence be

tween construction of coherent models and plan recog

nition.

We emphasize that no numerical probabilities are

required, but we must believe that they exist and have

certain properties.

2 Some problems of default logic

It is impossible to precisely say "default logic" contains

this or that paradox, because there are many default

logics and many problems only partially solved. Per

haps we should say these are problems every default

logic must address.

2.1 The multiple extension problem

Poole et al [1986] represent the "birds fly" problem

with the following sets T of facts and V of defaults:

T = {emu —+ bird},

V = {emu —* -'fly,

bird - fly).

(We assume there are some flying emus, that is, we

allow exceptions to exceptions.) For any goal g, an

explanation of g is a subset dofV such that

T U d (= g, and

!F U d is consistent.

But then we can construct consistent explanations that

emus don't fly and that emus do fly! This is the

"multiple extension" [Hanks and McDermott, 1986] or

"wrong answer" problem.

Many solutions exploit "specificity", that is, select

ing the answer that depends on the "most specific"

knowledge. In most presentations, emu would be more

"specific" than bird. So long as all emus are birds,

"most specific" corresponds to implication or the sub

set relation and we are all right. But some default

logicians feel that if emu —► bird were a default, we

should conclude -ifly from bird A emu. (For example,

consider the "unemployed adult student" problem [Re-

iter and Crisculo, 1981, Poole, 1985], which might be

represented as

r= 0.

V = {student —► -<employed,

student —► adult,

adult —* employed}.

Those writers conclude that adult students are unem

ployed.)

But then "specificity" is defined in terms of defaults

and just means partial membership. But this creates

a semantic problem: how can we verify whether emu

is "more specific" than bird?

There seems to be no single solution to the multi

ple extension problem within that framework. Hanks

and McDermott [1986] illustrate "minimizing abnor

mality" doesn't rid us of "unintended interpretations":

it only makes them harder to find. We argue that the

methods of "cancellation laws" [McCarthy, 1986] or

"constraints" [Poole, 1988], that is, explictly pruning

the proof tree, are not much different from explicitly

listing all exceptions and considerably less perspica

cious. This also alters a probabilistic quality of the

defaults: adding "constraints" makes defaults mutu

ally exclusive.

What works well is an idea from probability: con

ditioning on all observations. This appears to be the

direction taken by Geffner [1988] and Delgrande [1988].

We will discuss this later.

2.2 The lottery paradox

Informally stated, the lottery paradox means we gen

erate an inconsistency if we choose to believe all sen

tences with probability greater than some threshold.

As shown by Poole [1989], a qualitative version of this

paradox arises if we allow default "proof by contradic

tion" .

For suppose we argue thus. Tweety is a bird. Then

Tweety is not an emu. For, suppose to the contrary

that Tweety were an emu. Then Tweety, by default,

wouldn't fly. But since Tweety is a bird, Tweety, by

default, does fly, a contradiction.1

As Poole [1989] argues, in many domains it may be

that every subclass is unusual in some respect and as

a consequence we can show that, by default, a bird is

not a member of any subclass of bird, a contradiction.

Even if this possibility does not arise, there are prob

lems. Emus indeed may be rare, but in [Neufeld,

1989a], a simple numerical example is constructed

where most birds fly and most emus don't yet most

birds are emus. As illustrated there and elsewhere, it

is also true that non-birds are non-emus, and therefore

nothing is an emu. This can lead to an unwanted side

effect called the "dingo" paradox [Poole, 1987], where

we assume, by default, that an arbitrary individual

must belong to a class with no known exceptions . See

[Neufeld and Poole, 1988, Neufeld, 1989a] and espe

cially [Kyburg, 1971, Kyburg, 1988, Poole, 1989] for

'Technically, the conclusion follows by using both de

faults, which are not inconsistent, in a resolution proof.
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fuller discussion on lottery paradoxes and default logic.

2.3 Simpson's paradox

Simpson's paradox is usually presented as a problem in

sampling; we have in mind the presentation by Blyth

[1973] where it is stated as a result in deductive prob

ability theory. The problem the default logic commu

nity must address is when to restrict default "proof

by cases". That is, we must be able to handle the

"interacting defaults" [Reiter and Crisculo, 1981]

a V b —+ c,

a —+ ->c,

b —► ->c,

so as to draw a different conclusion from a V 6 than

we would from either disjunct separately. As shown

in some detail by Neufeld and Horton [1989], various

default logics handle this differently.

Some argue this is nit-picking, but Neufeld and Hor

ton [1989] give the following example. Consider a sci

ence faculty where every class contains a large core of

the same science students and a handful of different

arts students. If there are enough classes, there may

be more arts students than science students enrolled

in the faculty; by increasing the the number of classes,

the proportion of arts students in the disjunction may

be made arbitrarily close to one.

If we only know that a student is in some class, it

is easy to construct a default "proof by cases" that by

default she is a science student. But this conflicts with

more general knowledge that a random student from

the disjunction of classes is an arts student. A formal

ism for this type of knowledge must not lose informa

tion about how the student was selected: a disjunction

of uncertainties is different from the uncertainty of a

disjunction!

2.4 What causes these problems?

Of course, all of these problems are closely related. All

contain naive "chaining" or naive use of contraposi-

tives. All result from ignoring two basic ideas from

probablity theory:

1. propositions (or events) condition each other. For

example, if all emus are birds, the probability that

a random individual is an emu actually increases

after we learn it is a bird.

2. We can combine inferences, but we cannot com

bine them as we please. Unadorned default infer

ence lets us combine defaults constrained only by

consistency; probabilistic inferences can be com

bined, but constrained by knowledge about inde

pendence.

3 A probabilistic approach to

commonsense reasoning

Rather than retract defeasible propositions on receipt

of new evidence, we consider a nonnumeric proba

bilistic account of commonsense knowledge, where we

just increase or decrease our belief in propositions as

new knowledge is received. We represent basic beliefs

graphically as follows. Nodes which encode proposi

tions (or binary random variables) are connected by

single or double arcs, with or without a cross. p(a|6)

denotes the conditional probability that a is true given

that b is true. The arcs have the following meanings:

a—*b means p(&|a) > p(b),

a -f+ b means p(->6|a) > p(~,ft),

a => b means 1 = p(b\a) > p(b), and

a fi b means 1 = p{-<b\a) > pi^b).

Following [Chung, 1942], if a and 6 are such that

p(6|a) > p(b), then we say that a favours b. (In some

other writings, we have said that a confirms b. Some

have suggested that we say a supports b or a is relevant

to b.)

We consider only acyclic graphs: this corresponds

to the idea that a proposition cannot influence itself.

We say a is unconditionally independent of b if

p(a\b) = p(a) whenever the conditional probability

is defined. We also say a is conditionally indepen

dent of 6 given c if p(a\bc) = p(a\c) = p(a|-i6c) and

p(a\b-ic) = p(a\-<c) = p(a\-ib-ic) whenever the condi

tional probabilities are defined.

For simplicity, we define these relations on proposi

tions: they extend in the obvious way for random vari

ables with more than two outcomes [Wellman, 1988].

Lastly, the topology of the graph encodes indepen

dence knowledge in the following way. We assume

that the joint probability distribution of all propo

sitions in the graph can be factored into the prod

uct of the conditional probability distributions of each

node given its parents. This is the assumption behind

what are called Bayes' nets, [Pearl, 1986], influence di

agrams [Shachter, 1986], causal networks [Lauritzen

and Speigelhalter, 1988]. This means that a propo

sition is conditionally independent of its predecessors

and siblings whenever the outcomes of all of its imme

diate predecessors are known. In [Neufeld and Poole,

1988] this is called an inference graph; it is based on

the same idea as Wellman's [1986, 1987] qualitative

influence diagrams.

This assumption means we can quickly detect con

ditional independence. Geiger and Pearl [1988] show

that detecting conditional independence is equivalent

to detecting a property on influence diagrams called

d-separability, and furthermore, there are linear algo

rithms [Geiger, 1988] for determining this.

From the definition of conditional independence and

the axioms of probability theory [Cox, 1946], it is pos

sible to derive the following inference rules [Neufeld,

1989b]:

RO (Contraposition) If p(a\b) > p(a), then

p(-.fc)ha) > p(-6).

Rl (Symmetry) If p(a\b) > p(a), then p(6|a) > p(6).
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R2 (Resolution) If p(a\b) > p(a) and p(6|c) > p(b),

and a is conditionally independent of c given b,

then p(a|c) > p(a).

RO shows that we may use "contrapositives" of

links, but R2 states that we cannot chain arbitrarily

on links and contrapositives of links.

Rl is, in our opinion, the most important rule in

terms of offering insight, if we agree that it is reason

able to draw approximate conclusions on the basis of

probabilistic associations. This provides an important

connection between default inference and diagnosis: in

this system, they are exactly the same activity. But

most importantly, this is what gets us out of the lot

tery paradox.

If we combine RO and Rl, we can show that if

p('i\b) > p(a), then p(-<a\->b) > p(-<a). But there are

many more interesting derived inference rules not rel

evant to the example presented here[Neufeld, 1989b].

feathers ily —- airborn

U-^4
bird emu

Figure 1: Birds fly graph.

For completeness, we present a familiar example.

Figure 1 encodes some "commonsense" knowledge

about the "birds fly" domain as an inference graph.

For brevity, we write "birds fly" when we mean "bird

favours fly" . Thus, birds fly and have feathers, flying

things are airborn and emus are birds and don't fly.

We can make the following inferences.

1. Birds fly, emus don't. Here knowledge about de

pendence (or lack of conditional independence)

does not allow transitive inference from emu to

bird to fly, since fly is not conditionally indepen

dent of emu, given bird. Thus, we don't have a

"multiple extension" problem.

2. Birds are airborn. Here the conditional indepen

dence knowledge allows the desired transitive in

ference from bird to fly to airborn since airborn is

conditionally independent of bird given fly. Thus

some "chaining" is allowed.

3. Emus do not vanish. We thus avoid the lottery

paradox and its derivatives. Rather than believ

ing a bird is not a member of some subclass, we

increase belief that a bird is a member of some

subclass. Thus, observing bird increases belief in

emu. This does not mean that birds, by default,

are emus: it means that once we learn something

is a bird, we increase our belief that it is some

particular kind of bird.

4. Non-flying things are not birds Some writers

[Geffner, 1988, Poole, 1988] seem to feel that cer

tain unwanted inferences in default logic could be

eliminated by restricting use of the contraposi-

tive, but this inference seems natural to us. We

believe the problem is with the way sentences are

combined.

5. Feathered things fly Thus, this system easily al

lows the kinds of inferences suggested in [Pearl,

1987], that is, reasoning from effects to effects if

they have a common cause. The association is

natural, but we know of no system other than

Pearl's [1987] C - E system that allows it.

6. Emus are not airborn. Combining rules RO and

Rl lets us "chain" from emu to ->fly to -^airborn.

Once again, we know of no other system that al

lows this inference.

Lastly, for the "arts and science students" example,

this system does not in general favour a conclusion

given a disjunction of propositions when the conclu

sion is favoured by every disjunct. Under certain con

ditions, this inference may be permitted, see [Neufeld

and Horton, 1989] for an example.

To sum up, the system permits interesting forward

and backward inferences. The conditional indepen

dence knowledge encoded in the topology of the graph

provides an elegant mechanism for chaining but also

"blocks" unwanted inferences.2 Not only do the emus

not fly, we show elsewhere [Neufeld, 1989b] that we can

add flemus (rare flying emus) to the graph and still get

the correct inferences. In that same work, we present

the Nixon diamond and the "African and Royal ele

phants" examples from [Sandewall, 1986, Horty et al.,

1987]. While our answers may not agree with the

answers expected by other researchers, our formalism

provides a way of showing why the "expected" answer

is wrong in a statistical sense. (Of course that applies

strictly to this framework; the other researchers do not

intend our semantics.)

We used to suggest that this probabilistic formal

ism seemed to be an interesting partial account of de

faults, whatever else a default may mean. But we are

representing and reasoning about shifts in belief, not

"jumping" to conclusions. It is surprising nonetheless

that these simple semantics appear to produce the ex

pected answer when applied to many of the graphical

examples which appear in the default reasoning liter

ature.

2 In fact, statistical independence is an obvious partial

solution to the "frame" problem.
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4 Defaults and diagnosis

At least two writers in the default camp have tried to

formalize a relationship between default reasoning and

diagnosis. The diagnosis problem adds an interesting

twist to the multiple extension problem. When do

ing diagnosis, the idea that the same symptoms have

several mutually inconsistent diagnoses is not disagree

able, but most writers (and readers) are uncomfortable

with the conclusion that emus, by default, fly.

Providing a uniform treatment of default inference

and diagnosis appears to sacrifice the semantics of one

for the other. Poole et al. [1987] treat default reason

ing as a special case of diagnosis; Reiter [1987] treats

diagnosis as a special case of default inference. The

former approach sacrifices the notion of defaults as

statements of typicality but yields an elegant defini

tion of diagnosis as explanation. The latter approach

retains the notion of defaults as statements of typical

ity but gives, in our view, a less natural definition of

diagnosis.

More precisely, in an early paper, Poole et al. [1987]

put default inference and diagnosis under the umbrella

ofconjectural reasoning and are very specific about not

treating defaults as statements of typicality or high

probability. If we have

T = {bird, cold—* sneeze},

V = {cold, bird -> fly),

then cold is a conjecture that explains sneeze and bird

—► fly is a conjecture that explains fly. On the face of

it, both inferences seem reasonable. Surely we don't

want to believe that people typically have colds, yet

cold seems like an obvious explanation for sneeze and

diagnosis as explanation is an attractive idea. But then

for the "birds fly" graph of Figure 1, "emus fly" is

a legitimate conclusion that must be handled with a

separate theory of "explanation comparators" [Poole,

1985]. In fact, in later work, Poole [1987b] formal

izes the separation of default and diagnositc inference

with the introduction of a new kind of default called a

conjecture.

Reiter [1987] views diagnosis as maximizing normal

ity given observations of abnormal behaviour (symp-

tons). The defaults are statements of normality and

the facts are descriptions of the system under nor

mal and abnormal conditions. Diagnoses are then the

smallest set c of normality conditions such that the as

sumption that every element of c is false together with

the assumption all other normality conditions are true

is consistent with the facts and observations. While

defaults remain statements of typicality, the definition

of diagnosis loses the familiar intuition of reasoning

backward towards causes.

In this probabilistic framework, default inference is

obtained from diagnosis (and vice versa) simply by ex

changing the quantities on either side of the condition

ing bar: they are truly inverses of one another. This

is reasonable since the likelihood ratios are the same

regardless of the direction of reasoning:

P(s\d) _ p(d\s)
p{s) p(d) ■

(Suppose that d is a disease and s a symptom and an

arc is directed from d into s.) Yet diagnostic infer

ence has qualities very different from default inference

because of the nature of the conditional independence

knowledge encoded in the graph: we do not get one

from the other by reversing the direction of all the

arcs in the graph.

The probabilistic framework offers at least three ad

vantages over default-based frameworks.

4.1 Diagnostic heirarchies with exceptions

Relabel the nodes of the "birds fly" graph as in Figure

temperature cough—- red-throat

L-^4
flu H-flU

Figure 2: Diagnostic graph with exceptions.

If we observe cough and temperature, default-based

diagnosis runs into a multiple extension problem. In a

probabilistic framework, only flu is favoured by these

observations. If we observe -<cough and temperature,

only w-flu is favoured, even though flu is a consequence

of uj-/Ju.

4.2 A characterization of simplicity?

Consider Figure 3. It contains a small graph of the

type that appears frequently in the diagnostic litera

ture [Peng and Reggia, 1986], namely, a directed bipar

tite graph with arcs directed from disorders to symp

toms. Suppose we interpret it as an inference graph.

 

Figure 3: A simple diagnostic network.

Now suppose we observe si«2- Intuition favours d?

as an explanation and indeed this is the only diagno

sis favoured by the observations. Interestingly, S\S2
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favours d\ and dz neither separately nor together (al

though si and S2 separately favour d\d$).

This may shed some light on why we prefer the "syn

tactically" simpler explanation d^'. favouring or dis

favouring the conjunction simply requires probabilistic

information not directly available from the graph.

Note that if the graph is interpreted in the system

of Poole et al. [1987], for example, with di elements

of V and all links in F, d? and d\d$ are both minimal

diagnoses.

4.3 Defaults and set covering models

The approach of Poole et al. described above yields an

elegant semantics for diagnosis as explanation when

disorders logically imply symptoms. In fact, the

favourability relation automatically holds between dis

orders and symptoms when this is the case. But to

probabilistically justify diagnoses produced by default

reasoners or set covering algorithms [Peng and Reg-

gia, 1986] when links are not logical, it is necessary to

exploit other knowledge, for example, the "noisy or"

model [Wellman, 1988].

Obviously, some models produce answers inconsis

tent with others: the "noisy or" model cannot be

used in domains where conjunctions exhibit unusual

behaviour. We are not constrained to interpret graphs

according to a uniform semantics: we remark, how

ever, that some attempts to treat models like default

assumptions result in the "multiple extension prob

lem" reincarnated in a probabilistic setting.

5 Coherent models

It may be that an intelligent system only answers

yes/no queries, for example, "Does the evidence sug

gest a thyroid condition?" , "Do birds fly?" . Some sys

tems, for example, robots, are required to construct a

provisional model of the world based on very few ob

servations. This raises the interesting question of how

to combine propositions favoured by a small number

of observations.

This problem was inspired by the notion of a de

fault extension [Reiter, 1980] which can be defined as

the deductive closure of a maximal consistent set of

facts and defaults [Poole, 1988]. The original intuition

seemed to be that an extension corresponded to an

"acceptable set of beliefs" [Reiter, 1980] that could be

discarded on learning new knowledge to the contrary.

But we feel some default extensions are not accept

able. If we interpret Figure 1, for example, as facts

and defaults in the systems of Poole or Reiter, there

is an extension where the emu is flying and airborn,

because it is a typical bird! Logical consistency seems

insufficient for constructing acceptable models. While

we don't want a solution that does makes the unlikely

impossible, we don't want a system that makes the

unlikely acceptable.

Default extensions exhibit other peculiar be

haviours. Observe that bird has a single extension,

whereas emu has two. More specific knowledge seems

to increase rather than decrease confusion! We thus

turn to probabilistic justifications for combining beliefs

as a way of constructing acceptable models.

One possibility might be the "longest" conjunction

of beliefs favoured by the observations. This has a

problem: suppose there is a green (g) flying (/) emu

(e), and emus are always birds (6). Then we have 1 =

p(b\gfe) > p(b). But, by the symmetry rule Rl, then

p{gfc\b) > p(gfe). If we observe a green flying emu, it

is desirable to believe that we are observing a bird, but

if we only observe a bird, it doesn't seem desirable to

consider green flying emu as an acceptable model. The

same probabilistic properties that factor out irrelevant

knowledge in some settings make irrelevant predictions

in others.

Another candidate might be maximal sets of propo

sitions that pairwise favour each other. But then we

cannot combine emu with ->fly and feathers since the

latter pair do not favour each other.

We settle for the following notion. A set of literals

S is coherent if for any e in S, p(e\S — e) > p(e). That

is, the probability of any sentence in S is increased as

a consequence of knowing the other sentences. Then,

a probabilistic extension of s is a maximal coherent set

of sentences S containing s. In the "birds fly" exam

ple, the number of probabilistic extensions decreases as

more knowledge is received. Thus emu has one exten

sion:

{emu,bird,-ifly,feathers,->airborn},

and bird also has

{ bird,feathers,fly, airborn] .

No extension contains both emu and fly.

We explore some interesting uses of probabilistic ex

tensions.

5.1 Diagnosis

For simple graphs like Figure 3, diagnoses are easy to

construct. Where there are many arcs, it may be that

no disorder or combination of disorders is favoured by

the symptoms. (Consider an example pointed out to

us by Paul van Arragon: a graph with two disorders

and two symptoms and arcs directed from both dis

orders to both symptoms.) An alternative to the ap

proach of considering other probabilistic models might

be the following. If a set of observations is not coher

ent, break the set into maximal coherent subsets and

recursively find diagnoses of the smaller sets; then take

the cross product.

5.2 Plan recognition

Kautz [1987] in his thesis investigates plan recognition.

That is, given an observation, infer the entire set of
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Noodles
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Spaghetti
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Fettuccini Spaghetti

Alfredo Pesto

Make

Alfredo

Sauce

Make

Fettuccini

Make

Spaghetti

Make

Chicken

Marinara

Make

Marinara

Figure 4: Kautz's presentation of the cooking world.

activities or plan surrounding the observation. Prob

abilistic extensions seem to be have some interesting

analogies with plans.

Figure 4 illustrates some aspects of Kautz's "cooking

world" . We have factored out temporal information.

In Kautz's diagram, double arrows define an abstrac

tion hierarchy and single arrows define a decomposition

hierarchy. The intuition is that we both generalize and

specialize when making plans. Kautz's goal is inferring

plans from observations. For example, if an agent ob

serves spaghetti or fettuccini being made, she should

be able to infer that boiling will occur and be able to

help or hinder as suits her.

The domain is not complicated. But if we at

tempt to "add semantics" of favourability to Figure 4,

some of the inferences we ought to make are blocked

because of what appears as too many dependencies

among many events. For example, it is impossible to

favour make-sauce given make-noodles even though ev

ery noodle dish has a sauce.

Therefore, before discussing the relationship be

tween plan recognition and probabilistic extensions,

we will first build an inference graph in this domain

from first principles. To begin, we notice that there

are only a handful of random variables in this domain.

Each set of abstraction arrows can be viewed as being

directed from a set of outcomes of a particular ran

dom variable. For example, there is a random variable

Kind-Of-Meal with four outcomes, a random variable

Kind-Of-Sauce with three outcomes, a random vari

able Kind- Of-Noodle with two outcomes, and so on.

We present Figure 5 as a suitable basis for Kautz's

cooking world.

Prepare

Meal

Kind-Of-Dish

Sauce

Boil

1
Noodle

Kind-Of-Noodle I Kind-Of-Sauce

Kind-Of-Meal "

Figure 5: The variables in Kautz's domain.

Note there is no direct arc from Kind-Of-Dish to

Boil or Sauce, as would be the case if we interpreted

Kautz's diagram as an inference graph. We argue that

Sauce is directly affected by Kind-Of-Sauce and only

indirectly by Kind-of-Meal and Kind-Of-Dish. We find

that no inferences are sacrificed, because of the proper

ties of the probabilistic resolution rule. Similarly, Boil

is directly affected by Noodles and not Kind-Of-Dish.

We complete this graph by adding arcs from the var

ious outcomes of the random variables to get Figure

6.

This graph has a much simpler underlying structure

(Figure 5) than apparent from Figure 6 because most

of the arcs between propositions are redundant with

respect to variables.

Using only rules RO to R2, it is possible to make

many interesting inferences. If we observe spaghetti,

we favour boil. Likewise, if we observe fettuccini. If we

observe either spaghetti or fettuccini, we also favour

sauce, and we favour the appropriate sauce for both.
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Figure 6: Kautz's cooking world, the inference graph.

All these inferences are made by repeated application

of the probabilistic resolution rule R2.

We now consider construction of maximal exten

sions. Straightforward code for computing probabilis

tic extensions appears in [Neufeld, 1989a]. It appears

that computing maximal extensions of any observed

event results in plan recognition. For example, if we

observe noodles, the relevant set of maximal proba

bilistic extensions is

{noodles, meal, pasta, spaghetti, pesto,

sauce, boil, spaghetti-pesto) ,

{noodles, meal, pasta, spaghetti, marinara,

sauce, boil, spaghetii-marinara} ,

{noodles, meal, pasta, fettuccini, alfredo,

sauce, boil, fettuccini-alfredo) .

Suppose we observe noodles A marinara. There is

exactly one extension:

{noodles, meal, pasta, spaghetti, marinara,

sauce, boil, spaghetti-marinara] .

We might assume the conjuncts are related since they

are coherent. In this case, the single extension may be

viewed as the single unordered plan that "explains"

the observations.

On the other hand, suppose we know the cook is

simultaneously preparing two different dishes. Then

marinara has two extensions and noodles has three.

We might suspect the cook is preparing two different

dishes if we observe both fettuccini and marinara, since

we can detect that these two observations do not have

the extension property. Therefore, we can generate

separate extensions for each, and propose that they

are parts of separate plans.

There seems to be an interesting relationship be

tween probabilistic extensions and unordered plan

recognition.

5.3 User modelling

An idea suggested by Paul Van Arragon is that the

method of computing maximal extensions can be ap

plied to the task of user modelling. We follow the

same methodology as for plan recognition, but nodes

now encode personality traits instead of actions. Given

only a single observation, we expect that maximal ex

tensions will represent many "typical" user models. As

more observations are made, the number will decrease,

just as the number of maximal extensions decreases in

the "birds fly" domain on receipt of more specific ob

servations and the number of plans recognized in the

cooking world decreases on receipt of observations that

are correlated.

6 Is probability inevitable?

A theorem of Cox [1946] gives strong theoretical ev

idence that standard probability theory lurks behind

every numeric formalism for reasoning about uncer

tainty. The generalization of that work by Aleliunas

[Aleliunas,1988] suggests that the same is true for non-

numeric formalisms. Both results suggest that for

malisms claiming to be new ways about reasoning un

der uncertainty risk either isomorphism (to probabil

ity) or inconsistency. This is certainly food for thought

in light of the apparent paradoxes described earlier.

If we interpret the results of Cox and Aleliunas as

suggesting the inevitability of probability as the sci

ence of sound approximate reasoning, we obtain an
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explanation of why default logics seem to be converg

ing towards probability.

For example, we stated earlier that many newer de

fault logics use the idea of conditioning on all obser

vations. Reiter's [1980] original formalism contains

only facts and defaults. Facts include observations

(Tweety is a bird) as well as "eternal truths" (emus

are birds). There appears to be a need to separate 06-

servations from knowledge. For example, Poole [1985]

distinguishes between the facts T and contingent facts

in order to choose among competing extensions; more

recent formalisms are very explicit. Delgrande [1988]

defines a default theory as a pair < D,C > where D

is a set of necessary and default (conditional) sen

tences and C is a set of contingent sentences. Simi

larly, Geffner [1988] defines a pair <K,E> where K

is a background context and E an evidential context.

Indeed defaults or conditional sentences are grouped

with facts in the system of Delgrande [1988], for ex

ample, who argues that default knowledge must be

consistent with factual knowledge. That is, it is not

permissable to believe the fact "emus don't fly", and

the default "emus do fly" . 3

But then there is a striking similarity between mak

ing an inference about the plausibility of fly given a

context bird in light of a body of knowledge D (which

may contain uncertain knowledge), and making an in

ference about the posterior of fly given the observation

bird and a body of knowledge (an inference graph, for

example, or any other body containing certain and un

certain knowledge.)

Lastly, several default systems are introducing ideas

similar to independence. Delgrande [1988] uses an as

sumption of relevance and Geffner [1988] uses an idea

similar to graph separability to define a notion of ir

relevance. Pearl [1987] describes the C — E system

which appears to encode a test for d-separability in

the inference rules.

7 Other probabilistic approaches

Many others are using probability as a replacement

or semantics for default inference in other ways. For

example, Geffner [1988] explicitly draws on probabil

ity for default inference rules. In [Pearl, 1987b], Pearl

describes his idea off-semantics for inheritance hierar

chies with exceptions, treating defaults as conditional

probabilities close to unity. Bacchus [1988] considers

the inferences possible when links are viewed as condi

tional probabilities greater than c, a domain constant

greater than one-half. Buntine [1988], in a recent work,

presents a qualitative probabilistic system inspired by

Delgrande's [1988] work.

3Some systems [Reiter, 1980, Poole et al., 1987] ignore

contradictory defaults. Poole et al. suggest that we may

be prepared to assume a sentence or its contrary to explain

some observation.

We prefer to think of this as the study of nonnu-

meric probabilistic inference; we observe that these

formalisms all offer testable accounts of commonsense

reasoning.

8 Verifiability of commonsense

reasoning formalisms

We present inference graphs as mathematical objects.

While the performance of the system seems reason

able for the examples in the nonmonotonic literature,

we are cautious about entering sensitive problem do

mains. This system reasons about shifts in belief, but

a belief may shift upwards yet remain very small. For

instance, a pregnant woman may avoid an X-ray even

though the probability of damaging the fetus is small

in absolute terms. This is generally viewed as sensible.

However, the argument that one should buy lottery

tickets because the probability of becoming a million

aire is just as slightly increased, is not as generally

viewed as sensible.

The problem, therefore, of mathematically decid

ing which sentences of favourability (even assuming

no measurement errors) should appear on an inference

graph we presently consider to be very difficult. (That

doesn't prohibit anyone from constructing an infer

ence graph where all nodes and arcs encode knowledge

meaningful to that individual.)

What appears less difficult is verification of inference

graphs once they have been constructed. In a word,

there are many ways of constructing experiments that

to verify whether the knowledge encoded in an infer

ence graph is true in the problem domain. The statis

ticians have many suggestions here.

All the probabilistic systems described in the pre

vious section are testable in this sense and so are

all systems based strictly on first order logic. We

therefore propose that verifiability be a requirement of

any formalism that purports to reason in the so-called

commonsense domain. Although certain "trademark"

[Buntine, 1988] properties of default reasoning can be

drawn from the literature, to our knowledge, no one in

the camp of default logic has proposed any means of

testing the correctness of a representation of a partic

ular problem. We believe that the pressing problem in

knowledge representation is not in deciding upon the

formalism or language, but deciding on how to go from

the problem domain to the formalism and vice versa.

We suggest that a suitable test or experiment would

be described by providing formal definitions for all con

structs such as defaults, abnormality predicates, con

jectures, communication conventions and so on. With

such definitions, proofs of equivalence, where they ex

ist, between formalisms would proceed quickly. More

over, the meaning of differences between formalisms

would also be discovered quickly. The initial work

on probabilistic treatments of defaults suggests that
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some differences will be explained in terms of subtle

independence assumptions or thresholds.

We believe this suggestion to be timely; besides the

various logic-based approaches cited, there are a va

riety of graph-based reasoning formalisms [Sandewell,

1986, Horty et al., 1987] addressing the same problems

and from within that camp there also seems to be dis

agreement on what answers these formalisms ought to

produce. If the experiments we suggest cannot be de

fined, we do not see how even the most trivial aspects

of the debate can be resolved.

9 Conclusions

The most surprising result of this work has been its

simplicity. From just the axioms of probability and

the ideas of conditional independence and favourabil-

ity, we produce a compact knowledge representation

formalism that generates the expected answer for most

problems we have encountered in the default literature.

Furthermore, it does not require numerical probabili

ties, a long standing argument against the use of prob

ability in AI [McCarthy and Hayes, 1969]. Lastly, the

notion of coherent probabilistic extensions seems to

provide a useful tool for constructing acceptable mod

els of the world.

In the discussion of [Lauritzen and Speigelhalter,

1988], Pearl quotes Glen Shafer as saying "probability

is not really about numbers, it is about the structure of

reasoning." We believe that this approach, along with

other nonnumeric probabilistic approaches, supports

this view of probability as a theory of approximate

argument.

We close by repeating that our formalism has the

important advantage over default logics that we can

test the correctness of a representation by performing

a statistical experiment. To the best of our knowl

edge, no one in the default logic camp has described

an equivalent experiment; we believe that it is timely

that such experiments be defined.
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Abstract

This paper presents a planning formalism

called ADL for representing and reasoning about the

effects of actions. ADL integrates the semantics and

much of the expressive power of the situation

calculus with the notational and computational

benefits of the STRIPS language. By combining

aspects of both, ADL overcomes the limited

expressiveness and semantic difficulties of the

STRIPS language without encountering the

computational barriers of the situation calculus.

1. Introduction

The tradeoff between the expressive power of a

representational language and its computational

tractability is well-known in the field of knowledge

representation (e.g., Levesque and Brachman 1985). This

tradeoff likewise extends to the representations used in

automatic planning, as can be seen by comparing the

situation calculus (McCarthy and Hayes 1969) with the

STRIPS operator language (Fikes and Nilsson 1971).

The situation calculus is highly expressive, enabling

one to model quite complex actions. However, the

computational costs that accompany it prevent its use in

solving all but the simplest of problems (e.g., Green

1969). With the STRIPS language, on the other hand, one

can employ an efficient, vivid style of reasoning

(Levesque 1986) in which theorem-proving is

accomplished via database retrievals. The language also

has a very intuitive syntax compared to the situation

calculus, and it frees one from having to specify frame

axioms (c.f., Hayes 1973; Brown 1987). The disadvantage

is that only actions with very simple effects can be

represented. The STRIPS language also suffers from

certain semantic difficulties that lead to unsound inferences

in some cases (Lifschitz 1987a).

The obvious solution to the tradeoff issue is to choose

a formalism that is just adequate for the problem of

interest without being intractable. In view of this

approach, we present a hybrid planning formalism called

ADL (Action Description Language) that integrates the

semantics and much of the expressive power of the

situation calculus with the notational and computational

benefits of the STRIPS language. By combining aspects

of both, ADL overcomes the limited expressiveness and

semantic difficulties of the STRIPS language without

encountering the computational barriers of the situation

calculus.

Syntactically speaking, ADL schemas resemble

STRIPS operators augmented with conditional add and

delete lists. This syntax enables situation-dependent effects

to be described, and yields a level of expressiveness

approaching that of the situation calculus. Like STRIPS,

ADL also embodies a frame assumption that eliminates

the need to specify frame axioms. Thus, one need only

describe the changes made when an action is performed,

not what remains unaltered.

The semantics of ADL and STRIPS, however, arc

quite different. Whereas STRIPS operators define

transformations on formulas, ADL schemas define

transformations on the states themselves (Pednault 1987).

The states in this case are the algebraic structures (i.e.,

Tarskian models, interpretations, etc.) that underlie the

semantics of first-order logic (Shoenfield 1967; Van Dalen

1980). In this respect, the semantics of ADL can be

directly related to the semantics of first-order dynamic

logic (Harel 1979; Kautz 1982).

ADL can also be viewed as providing a convenient

syntax for a restricted form of the situation calculus. For

every ADL schema, there is an equivalent set of axioms in

this restricted form, and vice versa. The restricted form is

interesting in its own right, since it incorporates a

solution to the frame problem that does not rely on

circumscription (c.f., McCarthy 1986; Hanks and

McDermott 1986, 1987; Kautz 1986; Lifschitz 1986,

1987b; Shoham 1986). The appropriate frame axioms are

derived directly from the state-change axioms and reflect

the frame assumption embodied in ADL.

In terms of its computational efficiency, ADL lies

somewhere between STRIPS and the situation calculus.

On one hand, when the initial state is completely known,

an efficient, vivid style of reasoning can be employed.

This style of reasoning combines the use of regression
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operators (Waldinger 1977) with query evaluation

techniques from relational database theory (e.g., UUman

1982; Wiederhold 1983). However, when the initial state

is only partially known, a more general form of theorem-

proving must be used. This increases the computational

complexity. The increase, of course, is inescapable and

will necessarily be present in any representational

language (e.g., Levesque 1986).

2. Parallels with the Situation Calculus

Let us first consider the semantics of ADL and its

relationship to the situation calculus. The situation

calculus is a discipline for constructing first-order theories

about the effects of actions. To use the calculus, an

additional argument is added to every relation and function

whose value can change when an action is performed. This

additional argument ranges over situations and permits one

to reason about the values of relations and functions at

different points in time.

Once situational arguments have been added, axioms

can be written that describe the effects of actions in

different situations. These axioms typically have one of

two forms. Axioms of the first kind describe the changes

made when an action is performed and have the form

Vs[«(s)A(p,(,j) -» Vi(resuU(aj))].

In this schema, s ranges over situations, n(s) describes the

preconditions for the execution of action a, y^resultfas))

describes a condition that becomes true as a result of

performing a in situation s, and <Pi(s) describes the

conditions under which this change takes place. There may

also be some additional quantified variables other than the

situation variable s, depending on the nature of the

formulas n,\\iu and q>i, and on whether a is a

parameterized action.

Axioms of the second kind describe properties of the

world that are not affected by an action. These axioms are

calledframe axioms and have the form

V.s[/r(j)A(p2(j)A\|/2(.0 -» y2(residt(aj))]

where y2(resuit(aj)) is obtained by substituting result(a,s)

for every free occurrence of s in Y2(*)- The formula \j/2

describes a condition that remains unaltered when action a

is performed, while (|>2 describes the circumstances under

which this occurs. As before, n(s) describes the

preconditions for the execution of a.

The semantics of ADL can be viewed as a restricted

form of the situation calculus in which certain constraints

are imposed on the kinds of axioms allowed. The first

constraint of this restricted form is that separate axioms

must be written for each individual relation and function

when describing the effects of an action. Thus, \\rt and \|/2

in the axiom schemas above must be either atomic

formulas or their negations. The second constraint

assumes that the only effects of an action are those

explicitly mentioned in the state-change axioms. This

allows the necessary frame axioms to be derived directly

from these state-change axioms.

Given the first constraint, the state-change axioms for

a relation symbol R will have the following forms:

VjC,,. . . ^[ft^AOCftGCi,. . . ,*„,*)

-*R(X!,. . .jcH,result(a,s)j\

Vxi,...^j[^)A8Jt(x/(. . . ,*„,*)

-» -Ji(xj,. . . jc„result(aj))] . (1)

An aR axiom defines the conditions under which

R(xi,...jc,,,result(aj)) is made true, whereas a 8R axiom

defines the conditions under which R(x1,...^cll,result(a,s))

is made false. Accordingly, we will refer to OLR(xh...jcnj;)

as an add condition for symbol R, while &r(xj,...jch,s)

will be referred to as a delete condition. Note that

aR(xi,...jcmj) and 5jf(x;,...^cB^) cannot both be true for

identical instances of their variables, since the axioms

given above would then be inconsistent.

Without loss of generality, we can assume that there is

exactly one aR and one bR axiom for each relation symbol

R. This can be done, since a collection of axioms of the

form

Vx;,...^^[n(5)A(pn^\|/]

is equivalent to the single axiom

Vxy,...,xB,j[*(s)A(<Piv---v(p,1)-» \|f]

If action a cannot make Rfa , . . . ^.resultia^)) true for any

value of Xi,...,xa,s, then aR(xi,...,xB,s) must be the

formula FALSE. Likewise, if R(xlt...,xn,result(a,s))

cannot be made false, 8s(x1,...^tn,s) must be FALSE.

For function symbols, the state-change axioms have

the following form:

VXy,. . . JCn.yA^A^fiX],. . .JH,y,s)

-+F(xh...jcnsesult(a,s))=y] (2)

where \ip(xl,...jclt,yj) defines the conditions under which

F(x,,...jcH,y,result(aj)) is assigned the value y. For this

reason, \i$(xi,...jcn,y,s) will be referred to as an update

condition for symbol F. Here too we can assume without

loss of generality that there is exactly one Hf formula for

each function symbol F. If F(jc1,...an,re.yu//(a,.s)) is not

assigned a value for any instance of Xi,...,x„,s, then

(Xf(j:1,...^tn,y^) must be the formula FALSE.

Since functions are single-valued, assigning a value to

F(x1,...^cH,result(ats)) automatically causes the "old" value

to be "deleted". This is expressed by the following

theorem, which is derived from Axiom (2):

Vx,,...jn,s[7t(s)A3y(\if(xj,...jc„yj)AF(x1,...jn,s)Tty))

-*F(xh. ..jcnjesult(aj))*F(xi,. . . jnj)]
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Consequently, there is no need for the equivalent of delete

conditions when dealing with functions. Note also that

there can be at most one value of y for which

lLF(xi,...rXH,y,s) is true for each instantiation of the

variables xlt...,xm,s, since otherwise we would be

attempting to assign F(xi,...jc„,result(aj)) more than one

value.

Frame axioms are derived from state-change axioms by

applying the second constraint of the restricted situation

calculus. For a relation symbol R, if R(xi,...jcmj) is true

and R(xl,...jcKsesult(fl,s)) is not explicitly made false,

then we assume that nothing else occurs to make it false.

Similarly, if R (x , , ... ,x „,s) is false and

R(xi,...jc,,,result(aj)) is not explicitly made true, we

assume that nothing else occurs to make it true. The truth

value of R(xl,...jcnfesuh(aji)) will then be the same as

R(xt,...jcHj) in these cases. The appropriate frame axioms

can then be expressed in terms of the add and delete

conditions for R as follows:

Vx/,. . . jn,s[ n(s)AR(xh.. . jcHf)A-i&K(xh. ..jhj)

-»/?(*; ,. . . jcH,result(aj)]

Vxj ,. . . ***[n(s)A-Ji(x, ,. . . jc^j)A-*XK(x, ,. . . jnj)

-» -tR(x, ,. . . ^/esidi(aj;))] . (J)

Together, the state-change and frame axioms imply that

the truth value of R(xi,...jc„,resull(aj)) is completely

determined by the add conditions, the delete conditions,

and the truth value of R(xi,...jcHfs) when action a is

executable.

For function symbols, we assume that the value of

F(xi,...jc„,result(a,s)) will be the same as F(xj,...jch,s)

unless it is explicitly updated. The frame axiom for F is

then

Vx;,. . . shirts)A-,3y(\iF(xh. . . jwj))

-» F(x, ,. . . jL„resull(flj))=F{x,,. . . jchj)] (4)

Note that this axiom and the state-change axiom for F

together imply that, when action a is executable, the value

of F(xlt...jcnsesult(aj)) is completely determined by the

update conditions for F and the value of F(xh...jcnrs).

3 . The Syntax of ADL

The syntax of ADL is designed to provide a convenient

means of specifying the a, 5, \i, and n formulas that

define an action. The syntax resembles that of the

STRIPS operator language augmented with conditional

add and delete lists. The action schemas shown in Figure 1

illustrate this syntax. The first schema, Put(fe,/), models

the blocks-world action of stacking one block atop another

or placing the block on the table. The second schema,

Pour(p,q), is inspired by a mathematical puzzle and

models the action of pouring a liquid from one container

into another until either the first is emptied or the second

is filled to capacity. The third schema, Adjust (a',6',0,

models the action of adjusting the thrust and attitude of a

lunar lander and serves to demonstrate how time and

continuous processes might be modeled.

As the examples illustrate, an ADL schema consists of

an action name, an optional parameter list, and four

optional groups of clauses labeled PRECOND, ADD,

DELETE, and UPDATE. The PRECOND group consists

of a list of formulas that define the preconditions for the

execution of the action. Every formula in the list must be

true when the action is performed; hence, the overall

precondition n is the conjunction of these formulas. If the

list is absent, n is taken to be the formula TRUE,

meaning that the action may be performed in every state.

For instance, the precondition of Poui(p,q) is the formula

TRUE, whereas for ?u\(bj) it is

(b*t)A(MTABLE)A^z-On{z,b)A{l=TABLEs^z-jOn{z,l)).

The a and 8 formulas are specified by the ADD and

DELETE groups, respectively. Each group consists of a

set of clauses of the forms shown in the left hand column

of Table 1. In this table, R is a relation symbol, zx,...,xH

are terms, y is a formula, and z, zk are variable

symbols that appear in terms t ,,...,t„ but do not appear in

the parameter list of the action schema.

Each clause in an ADD group corresponds to an add

condition aR for a relation symbol R. These conditions

are defined in the right hand column of Table 1. The

formula aR that defines the overall add condition for R is

the disjunction of the individual as's. If no add conditions

are specified for R, aK is taken to be the formula FALSE

(i.e., nothing is added to relation R). For example, the

overall add condition aAbove(x,y) for Put(6,/) is the

formula

(x =b A y =/) v 3z [x =b A y =z A Above(/,z)] (5)

The semantics of the DELETE group is similar to the

ADD group, except in this case each clause corresponds to

a delete condition 8> (see Table 1). The disjunction of the

individual &Vs defines the overall delete condition 8R for

relation R. If no delete conditions are specified for R, $R is

taken to be the formula FALSE (i.e., nothing is to be

deleted from R). For example, the overall delete condition

5Above(x,y) for Put(6,0 is the formula

3z [x =b A y =z A z H A-TAbove^.z)] (6)

UPDATE groups are used to specify the n.- formulas

for updating the values of function and constant symbols.

An UPDATE group consists of a set of clauses of the

forms shown in the left hand column of Table 2. In this

table, C is a constant symbol, F is a function symbol,

Xi,...,x„, x are terms, y is a formula, and Z] zk are

variable symbols that appear in terms i1 xm,x but not

in the parameter list of the action schema. Each clause
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Put(b,l) ;;; Place block b on top of object I

Precond b H, b STABLE, Vz -On(z,b), (/ =TABLE v Vz -.OnCz,/))

Add On(&,Q

Above(6,/)

Above(6,z) for all z such that Above(/,z)

Delete: On(b,z) for all z such that z#

Above(ft,z) for all z such that z# A -iAbove(/,z)

Pour(p^) ;;; Pour the contents of vessel p into vessel q

Update: Volume^?) <- min(Capacity(<7), Volume(p) + Volume^?))

Volume(p) «- max(0, Volume(p) - Capacity^) + Volume(^))

AdjusKa'.tf'.O ;;; Set acceleration to a' and attitude to ff at time t'

Precond: t0 < t\ min < a' <, max

Update: t0 <- t'

a(t) <- a' for all / such that / £ t'

6(t) <- ff for all t such that / > t'

vx(0 <- a' sin ff (t-f) + vx (0 for all t such that t > t'

vy(t) *- (g - a' cos ff )(t - 0 + v,(0 for all t such that t > t'

x(t) <- 7**' sin ff (t-t') 2 + vx(0(t - 0 + x(0 for all t such that t > t'

3<0 *- V2(g - a' cos 00 (f-0 2 + Vy(0(t - 0 + x(0 for all f such that t > t'

Figure 1 : Examples of actions formulated in ADL

Clause

K(Ti x«)

*(Xi xjifv)/

^(ti,...,tJforallz1 zk

/?(Ti,...,t„) for all zi,...,zksuch that y

aj;(xi,...>xa)/5jt(j:i>...>rw)

(x,=Ti A- AxM = T„A\|f)

3z1,...,zt(x1=Xi a-ax, = tO

3zi,...,Zt(x1 = X1 A-AX„ = T„AY)

Table 1 . Add/Delete Clauses and Their Meanings

corresponds to an update condition uV for a function

symbol F, or an update condition \ic for a constant

symbol C. These conditions are defined in the right hand

column of Table 2. The disjunction of the individual

update conditions defines the overall update condition

H/r/uc for FIC. If no update conditions are specified for

FIC, then U/VUc is taken to be the formula FALSE (i.e.,

no updates take place for that symbol). For example,

Uvoiume(*.;y) for Pour(p,<7) is the formula

[x = q A y = min(Capacityte), Volume(p) + Volume(^))]

vU = p A y = max(0, Volume(p)

- Capacity^?) + Volume(<7))].

As with the STRIPS language, situational arguments

are not used in ADL. To translate ADL schemas into

equivalent sets of axioms in the situation calculus, it is

necessary to introduce situational arguments in the a, 5,

u, and 7t formulas derived from the schemas. For example,

aAhove(x,y) for Put(6,/) becomes the formula
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Clause \J-R(y)/Vit(xi,...jcn.,y)

C«-x

C<- x if \Jf

C«-x for all Z!,...,zk

C <- x for all zj ,. . . ,zk such that y

^(*i tj^-x

F(x1,...,xn)<-xif\|/

F(t1,...,xJ «- x for all zx zk

F(Xi xj «- x for all z1,...,zksuch that \y

(y=t)

(y=xA\j/)

3z!,...,zk(y=x)

3z, zk(y=XA\|/)

Qci=1lA—AXn = XnAy=X)

(Xi = T, A-A X,, = X„ A y=XA\|/)

3z1,...,2t(x1=T1 A-AXipVH

3z,,...,zt(xi=Xi A-Aj:B = xBAy=xA\jO

Table 2. Update Clauses and Their Meanings

aAboveCw) = (x=bAy=[)v3z[x=bAy=zAAbove(l,zjj\.

Likewise, 8Above0c,y) and n become

SAbove^.}1^) - 3z[x=&A;y=zAz*/A-iAbove(/,z,r)]

n(s) = (b*[)A(b*TABLE)AVz-,On(z,bj)

A(/=7XBL£vVz->On(z,/^)) .

The effect of Put(ft,/) on the Above relation would then be

axiomatized in the situation calculus by two state-change

axioms and two frame axioms:

VbU,y,s[(b*t)A(b*TABLE)AVz-^On(zJ),s))

A(l=TABLEvVz-,On(zJj))

A[(x=bAy=[)v^z(x=bAy=zAAbove(teJ))]

-+Above(x,ysesult(Piit(bJ)j;))]

Vb,lj,y,s[(b*l)A(b*TABLE)AVz-nOn(zJ),s))

A(l=TABLEvVz-^On(z,lj))

A3z[;c=bAy=zAzWa-iAbove(/,z,j)]

-» -iAbove(x,ysesult(Pul(b,[),s))]

VW;c,y,.s[(&W)A(terABLE)AVz-,On(z,M)

a(1=TABLEvVz-Ot\(zJj))

AAboveQc,y,.s)

A-i3z[x=bAy=zAz±lA-.Above(/,za)]

-»Above(jc,y,re.yu/f(Put(fr,/),s))]

Vfe,/^,y.j[(feW)A(fc^7>\BZ.£)AVz-,On(z^^)

A(/=rASL£vVz^On(z,/^))

A-Above(x,y^)

A-[(x=bAy=[)v3z(x=bAy=zAAbove(tef))]

-> -iAbove(x,ysesult(Pul(b,[),s))]

Note that introducing a situational argument to a

constant symbol whose value can change will produce a

function of one argument. For example, the symbol t0 in

the Adjust(a', 0',O schema becomes the function t0(s)

when translating to the situation calculus. Thus, every

occurrence of t0 in the a, 8, p., and n formulas for

Adjust(a\ ff,t') would be replaced by t0{s) in the situation

calculus axiomatization. This was not done for the

symbol TABLE in the axioms given above, since TABLE

does not change interpretation in the blocks world

considered here.

It is readily apparent from Figure 1 and the examples

above that actions can be described more concisely in

ADL than in the situation calculus. Figure 1 also

illustrates that the expressiveness of ADL is significantly

greater than that of the STRIPS language.

4. Reasoning About the Effects of

Actions

Although the situation calculus can be used to reason

about the effects of actions described in ADL, it is more

efficient to use regression operators (Waldinger 1977) for

this purpose. Regression operators for actions described in

ADL are functions mapping formulas to formulas that

produce the necessary and sufficient conditions that must

hold prior to the execution of an action in order for a

given condition to be true afterward. Stated in the

situation calculus, if a"1 is the regression operator for

action a and (p is a formula, then

Vs[n(s)-*(y(result(aj))M'(<p)(s))] (7)

where a'(<p)(s) is the formula obtained by adding the

situational argument s to all relation, function, and

constant symbols in a'(cp) whose values can change, and

y(result(aj)) is obtained by introducing result(a,s) as a

situational argument in (p.

By composing regression operators, we can determine

the necessary and sufficient conditions that must hold in

the initial state of a planning problem in order for a given

condition to be true at some point in a plan. For example,

<p will be true after executing the sequence of actions

af-4,if and only if
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(i.e. a~l('■'(^"■(q))) •")) is true in the initial state. Because

this transformation is possible, all reasoning about the

effects of actions on goals can be performed relative to the

initial state.

The mathematical basis for constructing regression

operators from ADL schemas is provided by their

equivalent axiomatizations in the situation calculus. It is

easy to show that the state-change and frame axioms for a

relation symbol R imply

Vx7l. . .^„^[^5)^(/?(x;,. . . xH,result{aj))

*->[a.R{x,,. . . jhj)v(R(xj,. . . jHts)

a-^Cc,,...,^))])] (8)

Similarly, the state-change and frame axioms for a

function symbol F imply

Vx, ,. . . jc^j^s^iFix, ,. . . jcHjresult{af))=y

^[\iF(x1,...yxn,yfs)v(F(x],...jcH^)=y

A-ayVLF(x1,...rKn^))])]. (9)

Since first-order logic allows the substitution of

equivalent formulas, the theorems above permit any

occurrence of an atomic formula that contains the

situational argument result(a,s) to be replaced by an

equivalent formula involving only the situational

argument 5. By repeated substitution, we are thus able to

transform any formula containing only the situational

argument result(aj) into an equivalent formula containing

only the situational argument s. The formula containing s

therefore defines the necessary and sufficient conditions

that must hold prior to executing action a in order for the

formula containing result(a,s) to be true afterward. This

transformation thus satisfies the definition of a regression

operator as expressed in Formula 7.

The following equations define a class of regression

operators based on the transformations described above.

Other equation sets are also possible; the equations below

may therefore be regarded as a minimally sufficient set. In

the base case, a'Kq)) is given by

(100)

(106)

arUTRUE) = TRUE

al[FALSE] = FALSE

a'[R(.x„...jcH)]=aaR(xI,...jcH)

vWxlt...jQA-Jf,KOc],...jcj] (10c)

a-^Fix,,...^ = y]= \iaF(x,,...jc„y)

v[F(*;,...,xO=yA^3? HaF(xh...s„y)] (lOd)

<rl [C = y ] s ji'(y)v[C = y A-,3y n«(y)] (10c)

<rl[x, = x2] = (x1 = x2) (10/)

where xh...jcn and y are variables. The symbol '= denotes

syntactic equality between formulas. These equations

perform the substitutions allowed by the equivalence

theorems of first-order logic. Superscripts have been

introduced to the a, 5, and [i formulas to emphasize that

these formulas will of course be different for different

action schemas.

For the above substitutions to be logically valid, the

atomic subformulas must contain variable symbols in the

same positions as the variables in Axioms 8 and 9. The

following equations allow any atomic subformula to be

converted to this form:

*'[*(.. .,x,...)] =3z[al[x = z]Aa}[R(...,z,...)]] (10*)

tf1[F(...,t,...) = y]

= 3z[a1[T = z]Aa1[F(...,z,...) = y]] (10A)

a"'h = *2] s 3z fc'fti = zlAa-'fo = *]]. (100

where

(1) x denotes the leftmost term that is not a variable

in the expressions /?(...,x,...) and F(...,x,...)=j\

(2) z does not appear in R(...,x,...), F(...,x,...)=y,

or Xi=x2-

(3) x2 is not a variable.

Finally, the following allow Equations 10a-i to be

applied to all atomic subformulas of a formula:

a'Hp) s-itf'(q))

a"'(<pA\)/) ■ a\<p)Aa\y)

a'1(<PvV)sa'I(<P)v«'1(V)

a'^qx-^y) ■ a"1(q>)«-»a"1(v)

d-'OfrqflfiVxa-'fo)

al(3xq>)m3xal($)

(10;)

(10*)

(10/)

(10m)

(10n)

(10o)

(lOp)

To illustrate the use of regression operators, suppose

that we have constructed the plan Put(fl,C) followed by

Put(A,B) (i.e., put B on top of C then A on top of B).

Suppose that in addition we wish to determine whether

this plan achieves Above(A,D). This is accomplished by

computing Put(fl,O1[Put(,4,B)-1[Above04,£>)]] and then

comparing the result with what is known about the initial

state. From Equation 10 and Formulas 5 and 6,

Put(A,fl)-,[Above04,D)]

* (A=AaD=B) v 3z04=AAD=zAAbove(£,z))

v[Abovc(,4,D)A-i3z[A=AAD=zAz*fl

A-iAbove(B,z)]]

which simplifies to

(D=fl)vAbove(B,D).

Applying P\il(B,C)1 to this result yields
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PutfB.C)-1 [(D=fl)vAbove(£,D)]

= 3z[(FALSEv(D=zA-^3zFALSE))

A(FALSEv(B=zA-3zFALSE))]

v(B=flAD=Ov3z(fl=flAZ>=zAAbove(C,z))

v[Above(B,D)A-az(fl=^AD=zAz*C

A -Above(C,z))]

which simplifies to

(D=B)v(D=C)vAbove(C^).

Thus, A will be above D after executing the plan if and

only if C is above D in the initial state, or D is a

synonym for either B or C.

5. Vivid Reasoning

The efficiency with which one can reason about the

effects of actions described in ADL depends upon what is

known about the initial state. As we have seen, the

regression of a formula can be computed quite efficiently

through a process of substituting atomic subformulas for

other formulas. The cost of comparing a regressed formula

to the initial state, on the other hand, can vary. At one

extreme, in which our knowledge about the initial state is

incomplete and can only be expressed in the form of

unconstrained first-order formulas, the comparison will be

computationally intractable in the general case. At the

other extreme, however, in which we have complete

knowledge of the initial state, an efficient vivid style of

reasoning can be employed.

If we truly have complete knowledge of the initial

state, it should be possible to assign names to all of the

relevant objects and to enumerate the relations and

functions that hold among them. In that case, the relevant

information about the initial state can be encoded as an

algebraic jrrnc/«re(Shoenfield 1967; Van Dalen 1980).

Such a structure has the form

M = (D; r\ rn;f\,...fm; d^ drf

where D is a nonempty set of objects called the domain of

the structure, rx,...,rR are set-theoretic relations on D,

f\,.../„ are set-theoretic functions on D, and d* „...,*/*

are distinguished elements of D. The truth value of a

formula with respect to this algebraic structure (and,

hence, the initial state) can then be determined via a

standard set of evaluation rules (e.g., Shoenfield 1967;

Van Dalen 1980). For example, the algebraic structure

BLK = (£>BLK; OTC moVE;; A&.C'D'IXBL'L)

where

£>BUC ={A,'B,C,'D,TA'BLI£}

MOVL =

r(^rmLty,(v,ra$Lty,(c,ty,(v,WQL,E),(c,'rsi'BL'E)\

models a world consisting of four blocks A, 2, C, and ©

stacked on a table, where blocks A, % and ©are resting

directly on the table and block Cis stacked on top of block

©. The Obirelation specifies which objects are on top of

which other objects, while the %,'BO'VT. relation is the

transitive closure of 09{, If we associate the symbol On

with the 03£ relation, Above with the A'BO'VT. relation,

and A,B,C,D, and TABLE with the distinguished

elements A, «, C, "D, and TA'BL'E, respectively, then the

formula (D = B)V(D = C)vAbove(C,D) from the example

in Section 4 will evaluate true with respect to this

structure (and, hence, this initial state).

Determining the truth value of a formula by means of

evaluation is exactly the kind of vivid reasoning discussed

by Levesque (1986). The evaluation rules found in logic

text books, however, are designed to be mathematically

convenient, not computationally efficient. To obtain the

levels of efficiency necessary in practical applications,

evaluation techniques such as those used in relational

database systems must be employed.

Relational databases and algebraic structures are

conceptually very similar. An algebraic structure can in

fact be represented in a relational database by creating a

database relation for each relation and function in the

structure, and a unary relation to store the domain of the

structure. The evaluation of a formula can then be

expressed as a database query using the relational calculus

(e.g., Ullman 1982; Wiederhold 1983). The relational

calculus employs first-order formulas to define queries,

making the transformation of a formula into a query quite

straight forward. Query optimization techniques (e.g.,

Ullman 1982; Wiederhold 1983) can then be employed to

process the query with much greater efficiency than with

the conventional evaluation rules of first-order logic.

6. Summary and Conclusions

ADL addresses an important issue in knowledge

representation and automatic planning, which is to balance

the expressiveness of a representational language against

its computational costs. The expressive power of ADL

approaches that of the situation calculus, yet its

computational costs compare favorably to those of the

STRIPS language. In particular, when the initial state of a

planning problem is completely known, an efficient vivid

style of reasoning can be employed that makes use of

query optimization techniques developed for relational

database systems. Database techniques are not appropriate,

however, when the initial state is only partially known. In

such instances, a more general form of theorem proving

must be used. This increases computational costs;

however, the increase is inevitable and will necessarily be

present in any representational language (e.g., Levesque

1986).

In addition to its computational properties, ADL has

definite notational advantages and it incorporates a frame
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assumption that eliminates the need to specify frame

axioms. The syntax of ADL is based on the STRIPS

operator language and provides a very intuitive means for

specifying the effects of actions. From a semantic

standpoint, though, ADL is quite different from STRIPS

and can be related to a restricted form of the situation

calculus. This restricted form allows the appropriate frame

axioms to be derived directly from the state-change axioms

in a manner that reflects the frame assumption embodied

in ADL. According to this assumption, only those

changes explicitly mentioned in an ADL schema are

presumed to take place. Consequently, one need only

describe the changes made when an action is performed,

not what remains unaltered.

ADL was originally developed in conjunction with a

planning technique suitable for actions with context-

dependent effects (Pednault 1985, 1986, 1988a, 1988b).

This planning technique is actually independent of ADL

and requires only that regression operators be provided for

each action. ADL complements the technique by allowing

the necessary regression operators to be readily constructed

from descriptions of the effects of actions. As a separate

formalism, ADL has been found to have desirable

computational properties and to be useful in modeling a

wide range of actions, including some that involve

dynamic processes and the passage of time. These features

together with an associated planning technique should

make ADL a useful adjunct to the representational arsenal

available in automatic planning.
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Abstract

In this paper I argue that we do not under

stand the process of default reasoning. A

number of examples are given which serve

to distinguish different default reasoning sys

tems. It is shown that if we do not make

our assumptions explicit we get into trouble

with disjunctive knowledge, and if we make

our assumptions explicit, we run foul of the

lottery paradox. None of the current popular

default reasoning systems work on all of the

examples. It is argued that the lottery para

dox does arise in default reasoning and can

cause problems. It is also shown that some

of the intuitively plausible requirements for

default reasoning are incompatible. How dif

ferent systems cope with this is discussed.

1 Introduction

Default reasoning is the ability to jump to a conclusion

based on the lack of evidence to the contrary. Deduc

tion in standard logic does not allow such reasoning;

if some proposition follows from a set of axioms, it fol

lows from a superset of the axioms. There have been

many proposals for incorporating default reasoning

in logic [Reiter, 1980, McCarthy, 1986, Moore, 1985,

Delgrande, 1987, Poole, 1988]. I assume we use default

reasoning to predict what is true.

In this paper we consider the problem of default

reasoning, and discuss different choices that could be

made in developing a default reasoning system. A set

of examples is presented which indicates that current

default reasoning systems do not work properly.

This is argued in two parts. In the first part (section

2), it is argued that if we do not commit to implicit

assumptions made (for example, acknowledging that

we assumed Tweety is not an emu when we concluded

Tweety could fly) we get into trouble. In the second

part I show how the lottery paradox arises when we

do commit to assumptions.

When considering the lottery paradox, the main in

tuition I rely on is the "one step default" property: if

"birds fly" (however we represent it) is a default and

all we know about an individual is that it is a bird (in

particular, we don't know it doesn't fly), we conclude

it flies. This seems like a minimal property the default

"birds fly" should have.

2 Commitment

Suppose we have d as a default, with exception e. The

first question I want to consider is whether we should

conclude ->e as a side effect of concluding d.

Consider the classic example of birds flying:

Example 1 Suppose we want to use the default

"birds fly" , with emus as exceptions. Suppose we know

Polly is a bird, and know nothing else about Polly. As

"Birds fly" is an assumption, it seems reasonable to

conclude Polly flies. Should we conclude Polly is not

an emu? There have been three different solutions to

this suggested by different systems.

2.1 Non-committal

The first of the possible answers is that we should not

conclude d at all. We should rather conclude only the

disjunct dVe. The rationale is that we do not know

whether the exception e is true, so we do not know

whether d is true. If we cannot say whether e is true,

we should not allow any side effect to the value of e.

This is exactly the situation with circumscription

[McCarthy, 1986] with the exception being "fixed"

during the minimisation.

I would argue this non-committalness loses the very

reason for default reasoning: we can never conclude a

default, but only the disjunct of the possibilities. We

have lost the ability to jump to conclusions. Such a

system is not doing default reasoning at all; we have

just invented a new syntax for disjunctions.

We can never use the "birds fly" default to do what

was originally intended, namely to conclude something

flies from just knowing it is a bird. We would instead

conclude either the bird is an emu or flies. Somehow

we changed the meaning of "birds fly, but emu's are

exceptions" to mean the logical statement "birds are

either emus or fly". With many exceptions we could

only conclude Polly flies if we could prove polly is not

an emu, is not a roast duck, is not in the shell, etc.
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2.2 Non-commitment

An alternate view is we should conclude default d, but

make no commitment as to whether e is true or not.

That is we conclude d, and not conclude ->e. This

occurs, in autoepistemic logic [Moore, 1985] when we

use the formula1:

-iL-id A ->Le =► d

(where the operator L means "know"), to mean that

if we don't know d is false and we don't know e is true,

conclude d.

Similarly, we can use Reiter's semi-normal defaults

(as advocated in [Reiter and Criscuolo, 1981J):

:Af(dA-.c)

d

to mean if d A -ie is consistent, conclude d.

These get funny (and I would argue, incorrect) re

sults, because they are being non-committal about the

assumptions they are making. They do not allow us

to conclude anything about the exception e. Consider

the following example:

Example 2 Suppose by default people's left arms are

usable, but a person with a broken left arm is an excep

tion, and similarly people's right arms are, by default,

usable, but broken right arms are an exception. In Re

iter's notation (ignoring variables, which are irrelevant

to this example) this is

: M(left-hand-usable A -^left-hand-broken)

left-hand-usable

: M (right-hand-usable A -^right-hand-broken)

right-hand-usable

If we know nothing about Matt's left arm, we conclude

(correctly as to what we assumed a default was) his left

arm is usable. If we know his left arm is broken, we

(correctly again) do not conclude his left arm is usable.

Suppose we remember seeing him with a broken left

arm or a broken right arm (we can't remember which).

We add

left-hand-broken V right-hand-broken

In this case we cannot conclude he has a broken left

arm and so conclude his left arm is usable. We also

cannot conclude he has a broken right arm so we con

clude his right arm is usable. We thus conclude both

his left arm and his right arm are usable.

I would argue that this is definitely a bug, being

able to conclude both arms are usable given we know

one of his arms is broken. The problem is we have im

plicitly made an assumption, but have been prevented

from considering what other assumptions we made as

a side effect of this assumption. Somehow we needed

to commit to the implicit assumption that his left arm

was not broken when we used the first default.

This problem of disjunctive exceptions is endemic to

the use of non-normal defaults3.

2.3 Commitment to Assumptions

A third alternative is to conclude d, and as a side effect

conclude ->e. This reflects the idea that in concluding

d, we are assuming e is not true, because if e were true

we could not conclude d.

This is what happens in circumscription when we,

for the "birds fly" example, minimise "ab", with

"emu" varying and specify

Vx(bird(x) A ->a6(i) => flies(x))

Vi(emu(i) =>• ab(x))

or in Theorist [Poole, 1988] make "birds fly(X)' a pos

sible hypothesis and specify as facts

Vx(bird(x) A birds fly(x) => flies(x))

Vi(emu(i) =>■ ->birds fly(x))

When we specify Tweety is a bird, we conclude

Tweety is not an emu3. In the next section I con

sider the question as to whether such side effects can

cause problems.

3 The Lottery Paradox

There is a famous problem which arises if we assume

a proposition is false when its probability falls below

some threshold. The problem arises because the con

junction of a number of likely propositions make be

come very unlikely or even impossible. This is known

as the lottery paradox [Kyburg, 196l].

Suppose we have a threshold of e. If there is a lottery

with > 1/e tickets, we assume each of these will not

win. The conjunction of the assumptions is inconsis

tent. This is usually translated in probability theory

as indicating that commitment is a bad idea.

In this section I show how the lottery paradox nat

urally arises in default reasoning systems4 and can

'This analysis does not change if we use the more mod

ular abnormality notation or use Gelfond's [1988] method

ology for using autoepistemic logic.

3 [Poole, 1988] shows how the use of preconditions in

Reiter's defaults can lead to errors with disjunction. This

example shows non normal defaults lead to errors with

disjunctive knowledge. It is interesting to note that the

simpler, and differently motivated Theorist system corre

sponds exactly to Reiter's normal defaults without precon

ditions [Poole, 1988, theorem 4.1].

In both of these systems we conclude -iemu(c) for any

constant c in our language that we do not know is an emu.

'[Kyburg, 1988, Perlis, 1987] also discuss how the lot

tery paradox can arise in a default reasoning system, but

from a very different perspective.
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potentially cause severe problems for current default

reasoning systems. I then examine some possible re

sponses to this problem.

Consider the following example where the circum

scription convention of using named abnormality is

used, as above. Assume all we are told about Tweety

is that Tweety is a bird.

We start off by writing the sort of birds we may

encounter in our domain and have a formula like6:

Vs bird(x) = emv(x) V penguin(x) V

hummingbird(x) V aandpiper(x) V

albatroas(x) V ... V canary(x)

Now add defaults about birds. For each sort of bird

that is exceptional in some way we will be able to

conclude Tweety is not a bird of that sort.

• We conclude that Tweety is not an emu or a pen

guin because they are exceptional in not flying.

• We conclude Tweety is not a hummingbird as

hummingbirds are exceptional in their sue (con

sider for example the case of making a bird cage

for Tweety; we have to make an assumption about

the sue of birds),

• we conclude Tweety is not a sandpiper as sand

pipers are exceptional in nesting on the ground

(for example, when bush walking and someone

says "look at that bird nest", we have to look

somewhere first; we look up by default if all we

know is the nest belongs to a bird);

• we conclude Tweety is not an albatross as alba

trosses are exceptional in some other way.

If every sort of bird is exceptional in some way, ex

cept for, say, the canary, we conclude Tweety is a ca

nary (as we have ruled out all the other alternatives).

This may or may not be a bad side effect. When we

add the fact canaries are abnormal in being a bright

colour, suddenly nothing works. We can no longer con

clude Tweety flies! flies(Tweety) is no longer in all

minimal models. There is one model in which Tweety

does not fly and in which all of the other abnormalities

are false.

The problem is that local, seemingly irrelevant infor

mation (namely information about how different sorts

of birds are abnormal in different ways) can interact

to make nothing work. When we follow the advertised

way to use these default reasoning systems, we find we

get very strange behaviour. For seemingly unrelated

statements to interact to produce such disastrous side

effects is a bad technical problem.

Unlike McDermott [Hanks and McDermott, 1986,

McDermott, 1987], I do not suggest this is evidence to

give up on the programme of formalising commonsense

*This sort of statement naturally arises in systems

where we assume complete knowledge.

reasoning using logic, but rather use this problem to

shed more light on the phenomenon we are trying to

formalise.

4 Possible Responses

There a number of possible responses to this problem:

4.1 Denial

The first response is denial that this problem will ever

arise in practice. Unfortunately this is an empirical

question and not a theoretical question. We can argue

about this forever, but until we actually go and build

real systems and find out what does happen, the argu

ment will be as irrelevant as trying to determine how

many angels can fit on the head of a pin.

The problem outlined here was discovered by us

ing our Theorist system [Poole et. al., 1987, Poole,

1988], and noticing funny side effects and obscure rea

sons why we should not predict (membership in all

extensions) certain expected outcomes. We are cur

rently building larger systems to determine whether

such problems do arise. Unfortunately we will never

be able to say this problem does not arise in practice,

but only be able to determine it does.

I do not believe the scenario above, considering each

type of bird as being exceptional in some way, is so far

fetched. I would not be surprised, in a large database,

if each subclass of bird is indeed exceptional in some

way. All we need for the above problem to arise is

some way to determine there is no completely typi

cal individual. Once we can determine this, none of

the formalisms (that commit to an assumption) work

correctly. In large knowledge bases, not only would

I expect such situations to arise, but they would be

normal. For example, the "normal" person (who is

175cm tall, has an IQ of 100, has a grade 12 education

and has 2.2 children), does not exist, although we may

want to make these assumptions so we can point out

to others how someone is different to that "normal"

person.

Example S As a natural example, take the well

known default in the legal system namely "people

are presumed innocent unless proven guilty", and the

knowledge that someone is guilty (as there was a crime

committed). This could be represented as

Vz ->ab(innocence, x) => ->guilty(x)

3x guilty(x)

For any particular individual we do not conclude they

are not guilty. I would not like to be the one to explain

to judge Jones that we do not conclude

-iguilty (judge.jones)

but do conclude

-•gxtilty(judge.jones) V ->guilty(jackjthejripper)
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4.2 Technical Patches

I described this as a "technical problem" , and as such

it seems as though it should have a technical solu

tion. I believe the problem is endemic to current ideas

about how defaults work (see section 5 below). There

is good evidence to suggest that any solution to the lot

tery paradox above will not work for the broken arm

problem (the structure of both of them is remarkably

similar, but we expect different answers). I see this

as a challenge to those who like to find technical so

lutions, but I feel as though the problem is we do not

understand the phenomena we are trying to formalise.

Suggestions such as prioritised circumscription [Mc

Carthy, 1986] will not work. There is a symmetry

about this example. The side effect will affect what

ever is the lowest priority default.

One interesting thing can be seen in this example. If

we predict what is in one extension rather than what is

in all extensions (following the definition of extension

in [Reiter, 1980] or [ Poole, 1988]), we find "Tweety

flies" is in one extension. If we add the exceptions

(emu's are abnormal with respect to flying) as facts.

we can also predict Tweety doesn't fly. Poole [1988]

suggests this problem (of having the side effect ex

plicit) could be solved by using "constraints" to prune

the scenarios without being part of the scenarios. This

works if we equate prediction with being in one exten

sion. We can explain Tweety flying, but cannot ex

plain the negation. We can explain each of the other

typical properties of birds; we cannot predict the con

junction of the properties. The use of constraints also

does not let us conclude both of Matt's hands are us

able.

This seems to be a good "technical patch" of the

type we were looking for. However, equating predic

tion with membership in an extension leads to the pe

culiar property of predicting a proposition and also

predicting its negation. Careful structuring of the

knowledge base may help this (see section 4.3), but

this is not a general solution.

If, instead we equate prediction with membership in

all extensions, the use of constraints again does not

work. The conjunction of all of the normal assump

tions about birds is inconsistent; removing the assump

tion Tweety is normal with respect to flying is a way

to make an extension from which we cannot conclude

Tweety flies.

4.S Breaking Conventions

Let us now consider one sort of knowledge it is claimed

defaults capture. This is the idea that default reason

ing models a notion of conventional reasoning. The

reason "birds fly" is a default is that if I tell you

Tweety is a bird, and I do not tell you Tweety can

not fly, I am telling you Tweety can fly. This is the

motivation for autoepistemic reasoning [Moore, 1985,

section 2].

If we take this meaning of default reasoning seri

ously, not only does the lottery paradox above not

arise, but the multiple extension problem in general

does not arise.

According to the defaults as conventions view, the

default "birds fly" means if I add knowledge about a

particular bird, I must assert it doesn't fly if it doesn't

fly. With this convention, if I assert Tweety is a bird,

and I do not assert Tweety does not fly, I am saying

Tweety flies. If Tweety does not fly I have broken the

convention. The knowledge based should be fixed up

just as if I had asserted something that is false.

If there are multiple extensions they are mutually in

consistent, so at most one can be true of the world un

der consideration (the intended interpretation). Thus

one of the extensions must be false in the intended in

terpretation. So either something I added explicitly is

false in the intended interpretation, or else there is a

default which is not applicable in the world under con

sideration. In the latter case, to follow our convention,

I must tell the system about that exception. Multiple

extensions indicate I did not follow the convention.

In the lottery paradox example above, Tweety is

exceptional in at least one of the properties, so to

follow the convention, I should tell you that prop

erty. Thus the lottery paradox example cannot arise.

Moreover, none of the multiple extension problems can

arise. Multiple extensions are thus not a problem to

be solved, but indicate a convention has been broken;

we need to patch up our buggy knowledge base rather

than solve the multiple extension problem.

Automatically enforcing such constraints is not as

difficult as it may, at first, seem. In the Theorist sys

tem [Poole et. al., 1987, Poole, 1988], we can main

tain a knowledge base with only one extension [Poole,

1989a] by ensuring that:

1. When a new default is added to the knowledge

base, if we can explain an instance of the negation

of the default and cannot prove that instance, this

default introduces multiple extensions. If not, we

still only have one extension.

2. When a new fact is added, if we can explain the

negation of the fact with a explanation containing

more than one default and cannot explain it with

a subset of that explanation containing only one

default, the new fact introduced multiple exten

sions.

When we detect we have multiple extensions we can

ask the user to debug the knowledge base by cancelling

one of the defaults [Poole, 1988]. These detection pro

cedures are, in general, undecidable. However it seems

appropriate to assign these to low priority background

processes, which report when they find an inconsis

tency or a multiple extension. Just as people do not

immediately (if at all) realise they have been mislead

(or lied to), these background processes may or may
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not return to report a breaking of a convention.

The importance of this section is that "defaults as

conventions" is a consistent view of defaults; whether

it corresponds to the use of the term default is a dif

ferent question.

4.4 We don't understand the Phenomena.

The fourth response is we do not understand the phe

nomena we are trying to formalise. If we mean some

sort of "typically", the response in section 4.3 does

not seem to be appropriate. If this is the case we must

recognise that the lottery paradox can arise in the for

mal systems defined so far. If we claim the lottery

paradox does not arise in the "commonsense" view of

a default, then the formal systems do not capture our

normal sense of "default". Thus we do not understand

the phenomena we are trying to characterise.

In the next section I show that one intuitive reading

of "birds fly" is incompatible with many of the formal

models of non-monotonic reasoning.

5 One Step Default Property

The property underlying the intuition in the lottery

paradox example is what I call the "one step default

property"6.

I will use the notation "p(as) —* q(x)* is a default to

mean "p's are q's by default" . No meaning should be

placed in this notation. Different systems use different

notations and have different semantics. I intend this

discussion to include all of these notations.

Definition 1 A default reasoning system has the one

step default property if whenever up(x) —* q(x)'

is a default and all that is given about constant c is

"p(c)" (in particular we do not know the truth of q(c))t

it concludes "9(c)".

For example, under this property if I tell you "birds

fly", and all I tell you about Tweety is Tweety is a

bird, if a system has the one step default property

it concludes Tweety flies. This seems like a minimal

property "birds fly" should have.

The following theorem puts a constraint on the type

of systems with this property.

Theorem 1 A default reasoning system cannot have

all of the following properties:

(i) The one step default property.

(ii) If it concludes two answers, it concludes their con

junction. That is, if it concludes "a" and con

cludes "6" , it concludes "o A 6" .

eThis discussion is in terms of parametrized (open) de

faults as is it most natural for this case. However the ar

gument is purely prepositional, and covers propositional

systems as well as systems allowing defaults with free

variables.

(iii) The ability to represent disjunctive knowledge,

and to allow arbitrary (not directly conflicting)

defaults.

(iv) It does not conclude anything known to be false7.

Proof: To prove this it suffices to give

one set of inputs which follow the constraints

given in (iii). By showing that properties (i)

and (ii), lead to a contradiction with (iv),

we demonstrate that a system with all four

properties cannot exist.

Suppose

p{x) -* qi{x)

is a default for t = l..n, and

Vi -^(s) V -,g2(s) V ... V ^qn(x)

is a fact, and we are given

P(c)

By (i) we conclude each "ft(c)", and by (ii)

we conclude their conjunction, which is in

consistent, and so must be false, contravening

(iv). D

Given these four intuitive properties are inconsis

tent, it is interesting to consider which property dif

ferent systems have given up.

(i) is given up in circumscription [McCarthy, 1986].

in any minimal model solution [Shoham, 1987]

and systems which require membership in all ex

tensions [McDermott and Doyle, 1980]. This is

because they want the expressiveness that prop

erty (iii) gives, they need property (ii) by their

very nature, and always reject having inconsistent

extensions or reducing to no models.

(ii) is given up in many probability-based systems

[Neufeld and Poole, 1988, Bacchus, 1989], and in

systems which, for prediction, only require mem

bership in one extension [Reiter, 1980, Moore,

1985, Poole, 1988]. These latter systems seem to

get the one step default property for the wrong

reason, namely by being able to predict a propo

sition and also predict its negation.

(iii) is given up in inheritance systems [Thomason and

Horty, 1988]. These allow (i), (ii) and (iv), how

ever they lack the expressiveness of the richer

logic-based formalisms.

(iv) is not given up by any system I know, although it

is argued [Israel, 1980, Perlis, 1987, Kyburg, 1988]

that commonsense reasoning does indeed require

reasoning under inconsistency.

7 We do not want it to be inconsistent if the facts are

consistent. This property does not constrain the system at

all if the facts given are inconsistent.
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The c-semantics of [Pearl, 1988] fits into this analy

sis in a very interesting way. For this theorem it fails

in property (iii). There is no consistent probability as

signment for the defaults and facts given in the proof.

This could be translated as meaning it solves the prob

lem nicely, but I would claim it means we must treat

seriously the semantics saying there are only infinites-

imally few exceptions. It shows we cannot use the

system if the proportion of exceptions does not have

measure zero. In particular this system does not seem

appropriate to represent "birds fly", as it is not true

there are infinitesimally few birds that don't fly. His

semantics means accepting the "convention* view of

defaults (section 4.3).

Shoham [1987] rejects the one step default prop

erty in his discussion on the lottery paradox. How

ever his discussion indicates that we would not want

to write such defaults, but explicitly rejects the view

of defaults as autoepistemic statements (section 4.3).

Rather than indicating to the user that the knowledge

base is inconsistent, he would rather [Shoham, 1987, p.

392] the system decide that the user was not rational

in adding the default that each lottery ticket would not

win, and so not allow the one step default conclusion.

6 Where to look for a solution

I think there are two areas to look for a solution to

this problem: these are in the areas of probability the

ory, and in comparing logical arguments as to why we

should believe some proposition or not.

0.1 Probability

Pearl [1988] and Cheeseman [1985] argue very logically

and convincingly that probability theory is the correct

way to consider reasoning under uncertainty.

The one step default property is ingrained at the

very foundation of probability theory. p(A\B) = v

only tells us information about A when all we know is

B8 [Pearl, 1988]. Not unsurprisingly, default reason

ing systems based on probability theory (eg. [Geffner,

1988]) end up with different properties than those

based on minimal models or other logical formalisms

which do not have the one step default property.

According to probability theory the lottery paradox

is a problem with commitment to assumptions. The

problem is concluding a proposition is true without

being certain of the proposition. Instead of conclud

ing Tweety flies we could conclude the probability of

Tweety flying is high. The conjunction of the conclu

sions would have probability zero, but we know we can

not conclude the conjunction of propositions is likely

just because the proposition is likely.

One of the promising ideas in this area is to use qual

itative probabilities [Aleliunas, 1988], where instead of

8In particular, if v ^ 0, it tells us nothing about the

value if p(A|BAC).

using numbers we can use more linguistic probability

values in a probability algebra. The relationship be

tween this and notions of default reasoning is not clear.

Another promising idea is that of Neufeld [1988],

where "birds fly" means the probabilistic statement

Tweety being a bird increases our belief in Tweety

flying:

p(flies\bird) > p(flies)

The lottery paradox is overcome by not allowing us to

conclude the belief in the conjunction is increased just

because belief in each proposition is increased.

6.2 Arguments

The second promising area is to consider the role of

logical arguments.

Logic can be seen as the study of arguments; it is the

study of when we should believe an argument based

on the truth of the premises. A valid logical argu

ment is one in which the conclusion must be true if the

premises are true. It has been shown [Poole, 1988] that

defaults can be treated as possible hypotheses that can

be used in the premise of a logical argument. The de

faults are the premises of a logical deduction; we do

not defeat the argument, but defeat the premises (by

showing they are inconsistent). All of the arguments

are standard logical proofs. Multiple extensions in

dicate there is an argument for a proposition and an

argument against a proposition.

A natural way to consider default reasoning is to

compare the arguments for and against some propo

sition. Poole [ 1989a] shows how membership in all

extensions can be seen as a process of dialectics. A

goal is in all extensions if and only if there is a set

of explanations for the proposition such that there is

no scenario inconsistent with all of the explanations.

This can be modelled at two agents having an argu

ment; one agent finds arguments for the goal and the

other agent tries to find a scenario in which all of the

first agent's arguments fall down [Poole, 1989a].

In the example of section 3, given Tweety is a

bird, there is a very short argument that Tweety flies

(namely because Tweety is a bird and "birds fly").

There is a long convoluted argument saying Tweety

does not fly (namely by assuming other normalities of

birds which eliminates all other possible types of birds

Tweety can be, except for the non-flying ones).

It seems reasonable to view reasoning as a process

of evaluating logical arguments (or more precisely the

premises of logical arguments), and preferring more

direct (in some sense) arguments. There is one con

sequence of this way to view the lottery paradox. We

end up with a direct argument that Tweety flies. We

end up with all of the other direct arguments about

Tweety. The problem is the conjunction of these as

sumptions is inconsistent. Although we would pre

dict a number of consequences of our knowledge, we
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may not want to predict the conjunction of these con

sequences. This is exactly the lottery paradox. We

predict any particular lottery ticket is not going to

win. When we conjoin many such predictions prob

lems arise.

One of the reasons the lottery paradox example

is so persuasive is because of our intuitions about

wanting to prefer more specific knowledge [Touret-

sky, 1986, Thomason and Horty, 1988, Poole, 1985,

Geffner, 1988]. One intuition behind specificity is ex

actly the one step default property (we prefer the one

step default that emu's don't fly over the longer ar

gument that emus are birds and birds fly). If this is

so, any method that compares extensions or models

(without regard to the question being asked) is not

going to be the basis for a model of default reasoning

incorporating specificity. Either it says "yes" to the

conjunction of the predictions (which is inconsistent,

and so would predict something known to be false), or

it says "no" to flies(Tweety), and so must find very

circuitous arguments to defeat the direct implication

(which seems antithetical to the notion of preferring

more specific knowledge).

This idea of solving specificity problems by com

paring logical arguments is pursued further in [Poole,

1088b].

7 Conclusion

Rather than suggesting we give up on logic when we

find the default reasoning formalisms do not give the

answers I would like, I have argued that we need to

reconsider the phenomena we are trying to formalise.

The way the lottery paradox can easily arise shows the

fragility of current default reasoning systems. I believe

the right solution is to consider the role of dialectics;

we must compare arguments for and against proposi

tions. However, for logicists to defeat the arguments

that probability theory is the appropriate framework

in which to view this will not be easy. We both need

to understand the problems we are trying to solve.

The other moral of this paper is that we must build

systems to see how our reasoning systems work in prac

tice. The instance of the lottery paradox was found

while using our Theorist implementation [Poole et. al.,

1987], No one understands what other problems will

arise when we start to solve non-trivial problems.
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Abstract

We introduce S-valued extensions of major

non-monotonic formalisms and we prove that

the recently proposed well-founded seman

tics of logic programs is equivalent, for ar

bitrary logic programs, to 3-valued forms of

McCarthy's circumscription, Reiter's closed

world assumption, Moore's autoepistemic lo

gic and Reiter's default theory.

This result not only provides a further jus

tification of the well-founded semantics, as

a natural extension of the perfect model se

mantics from the class of stratified programs

to the class of all logic programs, but it also

establishes the class of all logic programs as

a large class of theories, for which natural

forms of all four non-monotonic formalisms

coincide. It also paves the way for using ef

ficient computation methods, developed for

logic programming, as inference mechanisms

for non-monotonic reasoning.

1 Introduction

The well-founded semantics of logic programs has been

recently introduced in [Van Gelder et al., 1988] as an

extension of the perfect model semantics [Apt et al.,

1987; Gelder, 1987; Przymusinski, 1987; Przymusin

ski, 1988b] from the class of stratified logic programs

to the class of all logic programs.

The author showed [Przymusinski, 1989] that the

well-founded semantics has properties entirely analo

gous to the properties of the perfect model semantics.

In particular, well-founded models are minimal mod

els of the program, as well as iterated fixed points of

natural operators, iterated least models of the program

and preferred models, with respect to a natural prior

ity relation. Moreover, the least fixed point definition

of the well-founded model leads to a natural notion

of dynamic stratification {Sa}a<{ of an arbitrary logic

program.

As a result, the well-founded semantics provides an

attractive alternative to the traditionally used seman

tics of logic programs, based on Clark's completion of

the program [Clark, 1978; Lloyd, 1984; Fitting, 1985;

Kunen, 1987], at the same time eliminating serious

drawbacks of the latter (see [Przymusinski, 1988b]).

The perfect model semantics, however, has one more

very important property. It has been shown (see [Przy

musinski, 1988a]) that for stratified programs the per

fect model semantics is equivalent to suitable forms

of all four major formalizations of non-monotonic rea

soning in Al - McCarthy's circumscription [McCarthy,

1980; McCarthy, 1986], Reiter's closed world assump

tion CWA [Reiter, 1978], Moore's autoepistemic lo

gic [Moore, 1985] and Reiter's default theory [Reiter,

1980] - thus establishing a close link between the ar

eas of logic programming and non-monotonic reason

ing and describing a relatively large class of theories

for which natural forms of different non-monotonic for

malisms coincide.

Originally, it appeared that no extension of this re

sult will be possible for classes of logic programs signif

icantly broader than the class of stratified logic pro

grams. The reason appeared to be the fact that all

four proposed extensions of the perfect model seman

tics - the stable model semantics [Gelfond and Lifs-

chitz, 1988] (based on autoepistemic logic), the de

fault semantics [Bidoit and Froidevaux, 1988] (based

on default logic), the weakly perfect model semantics

[Przymusinska and Przymusinski, 1988] (based on cir

cumscription or or on CWA) and the well-founded

semantics (seemingly not based on any specific non

monotonic formalism, but enjoying the best properties

of them all and also the only one defined for all logic

programs) - turned out to lead to different results.

In this paper we show that, in fact, the well-founded

model semantics is also equivalent to suitable forms of

all four major formalizations of non-monotonic rea

soning. However, in order to achieve this equivalence,

S-valued extensions of non-monotonic formalisms are

needed, which is natural in view of the fact that the

well-founded semantics is, in general, 3-valued. Ac

cordingly, we define such 3-valued extensions of all four

non-monotonic formalisms and we prove that the well-

founded semantics is equivalent to suitable 3-valued

forms of McCarthy's circumscription, Reiter's closed

world assumption, Moore's autoepistemic logic and

Reiter's default theory.

This result not only provides a further justification

of the well-founded semantics, but it also establishes
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a large class of theories - namely the class of all logic

programs - for which natural forms of all four non

monotonic formalisms coincide. It also paves the way

for using efficient computation methods, developed for

logic programming, as inference mechanisms for non

monotonic reasoning. Since the well-founded seman

tics has been shown to have a sound and complete

procedural mechanism, called SLS-resolution ([Przy

musinski, 1988b; Przymusinski, 1989]; see [Kemp and

Topor, 1988; Seki and Itoh, 1988] for a discussion of ef

fective implementations), the equivalence of semantics

implies that SLS-resolution can be used as an infer

ence engine for all four non-monotonic formalisms in

the class of logic programs. The extended 3-valued for

malizations of non-monotonic reasoning are also likely

to have other useful applications, extending beyond

the class of logic programs.

The paper is organized as follows. In the next sec

tion we define 3-valued models of first order theories.

In Section 3 we define 3-valued circumscription and

we prove the equivalence of circumscriptive and well-

founded semantics. In Section 4 we define 3-valued

autoepistemic logic and we show the equivalence of

autoepistemic and well-founded semantics. In Section

5 we briefly discuss 3-valued semantics based on the

closed world assumption and on default theory and

their equivalence to the well-founded semantics. The

full version of the paper, containing complete proofs,

will appear elsewhere.

2 Three-Valued Models

In this section we define 3-valued models of first or

der theories (cf. [Przymusinski, 1989]). Throughout

the paper, we restrict ourselves to Herbrand models,

but our definitions can be easily extended to the non-

Herbrand case. We first define the language t of 3-

valued first order logic.

The alphabet of C consists of (finite or countably infi

nite) sets of constant, predicate and function symbols,

a countably infinite set of variable symbols, the con

nectives -i, V, and —», the existential quantifier 3, and

the usual punctuation symbols. We assume that the

alphabet contains at least one constant and at least

one predicate symbol. A prepositional symbol is a

predicate symbol of arity zero.

The language £, consists of all the well-formed first

order formulae obtained using the alphabet. The Her

brand base He of C is the set of all ground atoms in £..

A sentence is a formula, which does not contain un

bounded variables. A formula is ground if it does not

contain any variables. A theory P is a set of sentences

of t.

By a S-valued interpretation I of the language C we

mean a pair < T; F >, where T and F are disjoint

subsets of the Herbrand base H& of £,. The set T

contains all ground atoms true in I, the set F contains

all ground atoms false in I and the truth value of the

remaining atoms in U = H& — [T U F) is undefined. If

A is a ground atom from He then we write vali(A) = t

(resp. valj (A) = f; resp. valj (A) = u ) if A is true

(resp. false; resp. undefined) in I. We call valj (A) the

truth value of A in I. A 3-valued interpretation of £ is

a 2-valued interpretation of t if all ground atoms are

either true or false in I, i.e. if Hz, = T U F.

If 7, =< T,,Ft >, for s G S, are interpretations,

then by their intersection we mean the interpretation

I =< f]tesT"C\.esF' >■ Clearly, A is true (false)

in I iff it is true (false) in all interpretations I, .

Using the truth values of ground atoms we can re

cursively extend the truth valuation valj to the set of

all sentences as follows.

For any sentences S and V we define:

uaZj(-iS) = -ivalj(S),

where -it = f, -if = t and ->u = u,

vahiSW) = max{valI{S),vali(V)},

•*(5-V)-(*' *-W>-M*)
v ' If, otherwise.

For any formula S(x) with one unbounded variable z

define:

valj(3x S(x)) = max{vah(S(A)) : A e Hc},

where the ordering of truth values is given by t > u >

f and the maximum of an empty set of values is defined

as f.

Definition 2.1 A S-valued interpretation I of t is a

3-valued model of a theory P if vali(S) = t, for all

sentences S in P. If M is S-valued then it is called a

S-valued model of P.

We can now define the remaining connectives (A, =>•

, <-», o) and the universal quantifier V in the usual way:

SAVr = -(-SV-.V);

S =► V = V V ->S;

S «-> V = (5 — V) A {V — S);

5 «► V = (S => V) A (V => 5);

Vx S(x) = -n3x -.S(x).

Notice that:

valt{S A V) = mtn{uo//(5), «a//(V)},

va//(Vx S(x)) = m»n{ua//(5(A)) : A € He}, etc.

Remark 2.1 Although the two implication connec

tives —* and =>■ coincide in S-valued logic, they are

in general different in S-valued logic. For example,

valj (S —» S) = t, regardless of the truth value of S,

but vali(S =>• S) = u, ifvalj(S) = u. This is a reflec

tion of the fact, that in S-valued logic we have several
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different notions of implication, all of which are nat

ural and applicable in different contexts. Similar re

marks apply to the two equivalence connectives «-» and

«>. For example, in [Fitting, 1985; Kunen, 1987] the

equivalence connective "*-*" represents the equivalence

relation needed to build Clark's completion of the pro

gram P, while the equivalence connective "o" is used

in P itself.

In the sequel, by a model we will mean a 3-valued

model. We will point out those instances when inter

pretations are 2-valued.

By a logic program we mean a theory consisting of

universally quantified clauses of the form

V [A «- Bx A . . . A Bm A -.Ci A ... A ->C„)

where m, n>0 and A, Bi's and C/s are atoms1 (see

[Lloyd, 1984]). Following a standard convention, such

clauses will be simply denoted by

A «— Bi, .. .,Bm,-iCi,. .. ,-iCn-

Observe, that an interpretation M is a model of a

program P if and only if for every ground instance

A *— Ki , . . . , Km

of a program clause we have

valM{A) > valM(K! A ... A Km).

Clearly

valM[Ki A ... A Km) = min{valM(Ki) : i < m}.

Remark 2.2 Notice, that in the definition of a pro

gram clause we use the implication symbol «— rather

than <=, because the satisfaction of the condition that

valj (S *— S) = t, regardless of the truth value of S

(see Remark £.1), is essential for logic programming.

In [Przymusinski, 1989] we showed that the well-

founded model of a logic program can be defined as

an iterated least point of a natural operetor and we

used this definition to introduce a dynamic stratifica

tion {Sa : 0 < a < 6} of an arbitrary logic program P.

The dynamic stratification {Sa : 0 < a < 6} of P is

a decomposition of the set of all ground atoms in H^

into disjoint strata Sa.

3 Three-Valued

Circumscription

In this section we define S-valued (parallel and pri

oritized) circumscription and we show that the well

founded semantics of logic programs is equivalent to

the semantics of 3-valued prioritized circumscription

(with respect to priorities determined by dynamic

stratification [Przymusinski, 1989]). This result is an

'The symbol «— denotes reversed implication

extension of earlier results [Lifschitz, 1987; Przymu

sinski, 1987; Przymusinski, 1988b] showing that the

perfect model semantics of stratified logic programs is

equivalent to the semantics of (2-valued) prioritized

circumscription (with respect to priorities determined

by standard stratification).

We use a model-theoretic definition of circumscrip

tion and we limit our attention to Herbrand models,

but our definitions can be easily extended to non-

Herbrand models. The only difference between the

(model theoretic) definition of 2-valued circumscrip

tion - defined in [McCarthy, 1980; McCarthy, 1986;

Lifschitz, 1985; Lifschitz, 1986] - and our definition of

3-valued circumscription consists in the fact that the

former uses only 2-valued minimal models while the

latter uses all 3-valued models of the circumscribed

theory.

Suppose that P is a theory over the language £ and

suppose that R and Z are two disjoint subsets of the

Herbrand base Hz of C. Atoms in R are called mini

mized atoms and atoms in Z are called variable atoms.

Atoms which are neither in R nor in Z are called pa

rameters. We now define 3-valued (R,Z)-minimal mod

els of P.

Definition 3.1 We will say that a model M =<

T;F > is less than a model M' =< T';F' > mod

ulo (R,Z) if both models coincide on parameters, if

THRC T'nR andFnRD F'nR and if at least one

of these inclusions is strict. In other words, M < M'

mod (R,Z) if both models coincide on parameters, dif

fer on the set R of minimized atoms and if M has no

more true facts about R than M' and M has no less

false facts about R than N' . A model M is an (R,Z)-

minimal model of P if there is no model M' less than

M modulo (R,Z).

Thus (R,Z)-minimal models minimize the set of true

atoms in R, while maximizing the set of false atoms in

R, and, at the same time, varying atoms in Z and

keeping the value of parameters fixed. Naturally, in

case of 2-valued models, minimization of the set of

true atoms automatically implies maximization of the

set of false atoms, thus in this case the above definition

coincides with the standard definition.

Any consistent 3-valued interpretation can be

viewed as a function from the Herbrand base Hp to

the three-element set {f,u,t}, ordered by / < u < t.

As observed by Van Gelder, a model M is less than or

equal to a model M' modulo (R,Z) if and only if the

functions M and M' coincide on the set of parameters

and if the function M is strictly less than the function

M' under the usual (pointwise) ordering of functions.

We now give a model-theoretic definition of 3-valued

parallel circumscription.

Definition 3.2 A structure M is called a model of 3-

valued parallel circumscription CIRC3(P;R;Z) of P,

with atoms in R minimized and atoms in Z varied,
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if and only if M is a S-valued (R,Z)-minimal model of

P.

We now turn to 3-valued prioritized circumscription.

Suppose that {5a}o<o<« are disjoint subsets of the

Herbrand base He of £. and suppose that Z is a subset

of He disjoint from all the sets Sa. The collection

{Sa} can be thought of as assigning different priorities

for minimization to the elements of the Herbrand base,

with the highest priority given to the atoms in So, the

next highest to the atoms in Si, etc. Elements of Z

will be called, as before, variable atoms.

Definition 3.3 A structure M is called a model of

3-valued prioritized circumscription CIRC3(P;So >

Si > . . . ; Z) of P, with respect to priorities So > Si >

. . . and with variables Z if and only if for every a < 6,

M is an (Sa , \Jg>a Sp U Z) -minimal model of P.

If Z = 0 then CIRC3(P; S0 > Si > . . . ; Z) will be

simply denoted by CIRC3(P; S0 > Si . . .).

It is easy to see that parallel circumscription is a

special case of prioritized circumscription. Now we

can state the main theorem of this section:

Theorem 3.1 (Equivalence of well-founded and

circumscriptive semantics) Suppose that P is a lo

gic program and {Sa}a<s is its dynamic stratification

(see [Przymusinski, 1989]). Then, the well-founded

model Mp of P coincides with the intersection of all

models of prioritized circumscription CIRC3(P;So >

Si>...>Ss).

Observe that - as it was the case for stratified pro

grams - the prioritization of the Herbrand universe of

the program P, and thus the circumscription policy

used with the theory P, is automatically determined

by the syntactic form of the logic program.

The following example illustrates the differences be

tween 2-valued and 3-valued circumscription.

Example 3.1 Suppose that a logic program P is given

by:

b *— ->a

c *— -<b,p

P — ~>P-

(1)

(2)

(3)

The dynamic stratification of P (see [Przymusinski,

1989]) is given by:

S0 = {a}, Si = {b}, 52 = {c}, S3 = {p}

and the well-founded model Mp is equal to Mo =<

{6};{o, c} >, i.e. atoms 'a' and 'c' are false, 'b'

is true and 'p' is undefined. Mp is the intersection

of two models of S-valued prioritized circumscription

CIRC3{P;S0 > Si> S2> S3) of P, namely M0 and

Mi =< {b,p};{a,c} >. But Mi is the only model

of 2- valued prioritized circumscription CIRC(P;So >

Si > S2 > S3) of P. Consequently, 'p' is true under

S-valued circumscription.

4 Three-Valued Autoepistemic

Logic

In this section we define 3-valued autoepistemic logic

and we show that the well founded semantics of logic

programs is equivalent to the semantics of 3-valued

autoepistemic logic. This result extends an earlier re

sult [Gelfond, 1987] showing that the perfect model

semantics of a stratified logic program P is equivalent

to the semantics of (2-valued) autoepistemic logic.

We will denote by L the autoepistemic belief symbol

[Moore, 1985], also called the belief operator. Preposi

tional symbols of the form LS, i.e. propositions whose

names begin with the belief symbol L, will be called

belief propositions. By an objective formula of a lan

guage £. we mean any formula that does not contain

any belief propositions.

By an autoepistemic language we mean any language

C with the property that its alphabet contains a propo-

sitional symbol LS for any objective sentence S of the

language2. By an autoepistemic theory we mean a the

ory over an autoepistemic language.

Before proceeding with the definition of a 3-valued

autoepistemic extension of an autoepistemic theory P,

we first need to look at the 2-valued definition from a

slightly different angle. The following is a definition of

a standard (2-valued) autoepistemic extension.

Definition 4.1 [Moore, 1985] An autoepistemic ex

tension of an autoepistemic theory P is any theory

E(P) satisfying the condition:

E(P) =

Cn(P U {LS : E(P) |= 5} U {- •LS : E(P) £ S}),

where the S's range over all objective sentences and

Cn(W) denotes the set of all logical consequences of a

theory W.

One can easily see, that in order to construct an

autoepistemic extension of P one only needs to find

an interpretation L of belief propositions LS, i.e. an

assignement of truth values to belief propositions LS,

so that for all objective sentences S, LS is assigned the

value true iff S holds in all models M of P, in which

the interpretation of belief propositions LS is given by

L.

Therefore the definition of a (2-valued) autoepiste

mic extension can be translated into the following

equivalent form.

Denote by L : S —» {t, /} any mapping from the

set 5 of all objective sentences of t into the two ele

ment set {t,f} consisting of truth values true and false.

We can think of L as a 2-valued interpretation of be

lief propositions LS, assigning to LS the value true if

3Here by LS we simply mean a string denoting a propo-

sitional symbol, which begins with an L followed by the

objective sentence S, e.g. the string "L AAB".
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and only if L(S)=t. For a given interpretation L, let

Mod(L) denote the set of all 2-valued models of P, in

which the interpretation of belief propositions LS is

given by L.

For any sentence S let:

ValL(S) u
if VM G Mod(L), M \= S;

if 3M e Mod(L), M |= ->S.

Definition 4.2 By a 2-valued av.toepistem.ic exten

sion of an autoepistemic theory P we mean a pair

(P,L), where L is a 2-valued interpretation of belief

propositions satisfying the condition:

L(S) = Vali,{S), for all objective sentences S.

As shown by the following proposition, the above

definition is equivalent to the standard one.

Proposition 4.1

• // E(P) is an (old) autoepistemic extension of P,

then clearly E(P) uniquely determines the inter

pretation L : S —* {t, /} and the pair (T,L) is a

(new) autoepistemic extension of P.

• // (P,L) is a (new) autoepistemic extension of P,

then

E(P) =

Cn(Pu{LS L(S) = t}u {-LS : L(S) = /})

is an (old) autoepistemic extension of P. Equiva

lent^, E(P) = {S : ValL(S) = t}.

We can now define 3-valued autoepistemic exten

sions of an autoepistemic theory P.

Denote by L : S —* {t, u, /} any mapping from the

set S of all objective sentences of t into the three ele

ment set {t,u,f} consisting of truth values true, unde

fined and false. We can think of L as a S-valued inter

pretation of belief propositions LS, assigning to LS the

value true if L(S)=t, etc. For a given interpretation

L, let Mod3(L) denote the set of all 3-valued models

of P, in which the interpretation of belief propositions

LS is given by L.

For any sentence S let:

Val3L(S)

if WM E Mod3(L), M (= 5;

if 3M 6 Mod3(L), M |= -S;

otherwise.

Definition 4.3 By a S-valued autoepistemic exten

sion of an autoepistemic theory P we mean a pair

(P,L), where L is a S-valued interpretation of belief

propositions satisfying the condition:

L(S) — Val3i,(S), for all objective sentences S.

One can show that 3-valued autoepistemic exten

sions are strictly more expressive than 2-valued exten

sions. To illustrate this point, consider the following

simple example.

Example 4.1 Suppose that the theories P and P' are

defined by:

P : a <= -«a

F : a<-^a.

Then both P and P' have exactly one 2-valued autoepi

stemic extension, given by L(a)=t. On the other hand,

although L is still the only S-valued autoepistemic ex

tension of P, the unique S-valued autoepistemic exten

sion L' of P1 is given by L'(a) = u. Thus S-valued ex

tensions differentiate between the two theories, which

is crucially important if they are to provide the right

semantics for logic programs.

Also, 3-valued extensions often exist when 2-valued

extensions do not.

Example 4.2 Suppose that the theory P is given by:

P : a *— ->Lo.

Then P does not have any 2-valued autoepistemic ex

tension, but its S-valued extension is given by L(a)=u,

reflecting the fact that our beliefs about a are indeter

minate.

From now on, unless stated otherwise, by an auto

epistemic extension we will mean a 3-valued autoepi

stemic extension.

Definition 4.4 Let (P,L) be an autoepistemic exten

sion of P. Sentences S for which Val3i,(S) = t (resp.

Val3L(S) = f; resp. Val3L(S) = u) are said to be

believed (resp. disbelieved; resp. undefined) in (P,L).

We say that a sentence S is believed (resp. disbe

lieved) »'n P if S is believed (resp. disbelieved) in all

autoepistemic extensions (P,L) of P; otherwise we say

that S is undefined. This terminology will be used only

if P has at least one extension.

Proposition 4.2 An objective sentence S is believed

(resp. disbelieved, undefined) in (P,L) iff LS is be

lieved (resp. disbelieved, undefined) in (P,L). More

over, S is disbelieved (resp. believed) in (P,L) iff ->L5

is believed (resp. disbelieved) in (P,L).

Consequently, an objective sentence S is believed

(resp. disbelieved, undefined) in P iff L5 is believed

(resp. disbelieved, undefined) in P. Moreover, S is dis

believed (resp. believed) in P iff -<LS is believed (resp.

disbelieved) in P.

Observe that with 3-valued autoepistemic logic we

are able to talk about uncertain beliefs at the level

of individual extensions. In particular, a theory with

a single extension does not automatically force us to

have all of our beliefs fully determined.

By an autoepistemic logic program we mean an auto

epistemic theory consisting of universally quantified

clauses of the form

V [A «- Bi A . . . A Bm A -LCi A ... A -.LC„)
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where m, n>0 and A, Bi'a are atoms and C/s are

objective sentences. Observe that autoepistemic logic

programs are, in particular, logic programs and there

fore such clauses will also be denoted by

A *— JBi , . . . , Bm, ->LCi, . . . , -,LCn.

In order to show the equivalence between the well-

founded semantics of logic programs and the 3- valued

autoepistemic semantics, we need to translate stan

dard logic programs into autoepistemic logic pro

grams. We follow Gelfond's approach.

Definition 4.5 [Gclfond, 1987] Let P be a logic pro

gram. The autoepistemic logic program P, which we

call the autoepistemic translation of P, consists of all

clauses of the form

A «— Bi, . . . , Bm, ->LCi, . . . , -iLC„,

for all possible ground instances

A «— Bu . . . , Bm, ->Ci, ..., ->Cn

of clauses from P.

Now we can state the main theorem of this section:

Theorem 4.1 (Equivalence of well-founded and

autoepistemic semantics) Suppose that P is a logic

program, Mp is its well-founded Herbrand model and

P is the autoepistemic translation of P. Then for any

ground atom A the following holds:

• A is true in Mp iff A is believed in P;

• A is false in Mp iff A is disbelieved in P;

• A is undefined in Mp iff A is undefined in P.

This result generalizes the result from [Gelfond,

1987] stating that the perfect model semantics coin

cides with the 2-valued autoepistemic semantics (or -

equivalently - with the stable model semantics [Gel-

fond and Lifschitz, 1988]) for stratified logic pro

grams. More generally, it also extends the result from

[Van Gelder et al., 1988] stating that 2-valued well-

founded models coincide with stable models. Observe,

that - as opposed to circumscription - no explicit 'pri

oritization' of ground atoms was necessary to obtain

the equivalence of the two semantics.

As a byproduct of the main theorem we obtain the

following important result:

Theorem 4.2 Every autoepistemic logic program has

at least one S-valued autoepistemic extension.

Analogous result is false for 2-valued autoepistemic

extensions (see Example 4.2).

Example 4.3 ([Van Gelder et al., 1988]) Let the

program P be given by:

a «— ->6

b *-

P

P

"■P

Thus its autoepistemic translation P is given by:

a «— ->Lb

b «— ->La

p +— ->Lp

p ♦— ->La.

The program P has two autoepistemic extensions L\

and L2 :

L1(a) = f, Lt(b) = t, Ll(p) = t

Li{a) = u, Lz(b) = u, L2(p) = «.

Accordingly, 'a', 'b' and 'p' are undefined, as they

should be, according to the well-founded semantics.

However, since only the first extension Lt 15 2-valued,

in the 2-valued autoepistemic semantics (i.e. in the

stable model semantics [Gelfond and Lifschitz, 1988])

'b' and 'p' are believed and 'a' is disbelieved. This il

lustrates one of the discrepancies existing between the

2-valued and S-valued autoepistemic semantics.

Example 4.4 Let the program P be:

a « >a

and thus its autoepistemic translation P is:

a *— -iLa.

P has a S-valued autoepistemic extension given by

L(a)=u. Accordingly, 'a' is undefined in P, again

agreeing with the well-founded semantics. However, no

2-valued extensions exist, and thus the 2-valued auto

epistemic semantics is indeterminate. This illustrates

another discrepancy existing between the S-valued and

S-valued autoepistemic semantics.

5 Three-Valued Default

Theory and CWA

Similarly, 3-valued extensions of the closed world as

sumption and of the default theory can be denned and

shown equivalent to the well-founded semantics. How

ever, due to space limitation, details will be omitted

here and given in the full paper.

We only point out, that due to the close relation

ship existing between autoepistemic logic and default

theory [Bidoit and PVoidevaux, 1988; Konolige, 1987],

3-valued default theory can be introduced in a man

ner analogous to 3-valued autoepistemic logic. Also,

due to the close relationship existing between circum

scription and the closed world assumption [Gelfond et

al., 1986; Gelfond et al., 1988], 3-valued closed world

assumption can be defined analogously to 3-valued cir

cumscription.
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Abstract

One of the problems in non-monotonic rea

soning is the existence of multiple extensions

for a given theory. Certain classes of theo

ries have been identified where a unique ex

tension may be selected and inferences made

using such an extension is considered 'nat

ural'. However,there are several cases where

there is no other alternative and several or all

extensions of a theory have to be considered

when performing inferences. In such cases we

want to be skeptical, that is we are unwill

ing to believe some statement without con

clusive evidence but we are willing to be un

certain in our beliefs. In this paper, we model

skepticism as indefinite information. We first

present some examples which show the need

for skeptical beliefs and show how such infor

mation can be represented naturally by dis

junctive programs. We also present a proof

procedure which can be used to infer answers

from these programs.

1 Introduction

One of the problems in non-monotonic reasoning is

the existence of multiple extensions for a given the

ory [3]. Searching in all extensions of a theory can

be computationally expensive. Certain classes of theo

ries have been identified where a unique extension may

be selected and inferences made using such an exten

sion is considered 'natural' [6, 21]. These are theories

based on Horn clauses which use the concept of strat

ification to identify a unique extension and then use

SLDNF-resolution as the inference mechanism [1, 28].

Prioritized Circumscription has been shown to imply

such stratification techniques. However,there are sev

eral cases where there is no other alternative and sev

eral or all extensions of a theory have to be consid

ered when performing inferences. In such cases we

want to be skeptical, that is we are unwilling to be

lieve some statement without conclusive evidence but

willing to be uncertain in our beliefs [4]. In this pa

per we model skepticism as indefinite information. In

Horn-based programs, it is difficult to represent such

indefinite information, although for some special cases

it may be achieved [15]. Extending Horn programs to

be disjunctive programs1 is an attractive alternative

since indefinite information is represented naturally as

disjunctive clauses. In addition, recent research on

the semantics of disjunctive programs encourages the

study of disjunctive theories as a tool for knowledge

representation [17, 18, 22]. We first present some ex

amples which show the need for skeptical beliefs and

show how such information can be represented natu

rally by disjunctive programs. We also present a proof

procedure which can be used to infer answers from

disjunctive programs. The proof procedure takes ad

vantage of the structure of the program based on its

dependency graph [1] and performs nearly as well as

SLD-resolution [27] when the Horn component of the

program is larger than its disjunctive component.

2 Non-monotonic Reasoning

Non-monotonic reasoning deals with performing infer

ences where conclusions made from a set of facts can

be retracted when new facts are added to the origi

nal theory. The prototypical example is the inference

one makes about birds and their flying capabilities. If

a person knows that tweety is a bird then he or she

can infer that tweety can fly. But if a new fact that

tweety is a penguin is also made known to that per

son, then he or she will retract the original conclusion.

This form of reasoning, where one jumps to conclusion

with available facts, or where one uses certain default

rules to perform reasoning, or where one makes an in-

*This work was supported by the National Science

Foundation under grant number IRI-86-09170 and the

Army Research Office under grant number DAAG-29-85-

K-0-177.

1 A Disjunctive program clause is similar to a Horn

clause but contains a disjunction of atoms in the head.

A formal definition is provided in Section 3.1.
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ference which is consistent with the available facts is

called non-monotonic reasoning. Next, we discuss very

briefly some of the non-monotonic formalisms found in

the literature.

Default Logic: Default Logic was formalized by Re-

iter [25] and consists of classical first order logic aug

mented with default rules. A default theory is defined

as a two-tuple < T,D >, where T is a set of closed

wffs and D is a set of default rules of the form

a:MPi,...,M0„

where a, /3's and 7 are closed wffs. The meaning of the

default rule is that if a holds and each of the /?'s can be

consistently assumed then infer 7. Reiter also defines

the notion of an extension. Informally, an extension

consists of the theory T and additional information

derived using the default rules and forms a consistent

set of inferences. We provide a formal definition of an

extension below:

Definition 1 ([25])

Suppose that < T,D > is a default theory. Lei S be a

set of closed wffs and T(S) be the smallest set satisfying

the following property:

(i) TCT(S)

(ii) T(5) is closed under logical consequence

(Hi) if R is a default rule in D (as described above)

and a G T(S), and ->/?i , . . . ->Pn & S, then 7 e T(S).

A set of wffs E is an extension of< T,D> iffT(E) =

E, i.e. iff E is a fixpoint of the operator T.

We illustrate default logic using the tweety-bird prob

lem.

Example 1 ([25])

T = {bird(tweety) ; ->fly{X) «— penguin(X)}

f bird(X) : Mfly(X) }

U-{ fly(X) J

Now E = {bird(tweety), fly(tweety)} is the only ex

tension of<T,D>.

Consider a new theory T" = TU {penguin(tweety)} .

Then, E' = {bird(tweety),penguin(tweety)} is the

only extension of < T"', D >.

We can see that default logic behaves

non-monotonically.

A default theory can have none, one, or more than one

extension [25]. We are interested in the case where a

default theory has more than one extension.

Non-monotonic Modal Logic: McDermott and

Doyle [13] used modal operators to define the non

monotonic formalism. They augmented first order

logic with a modal operator M where, for a given wff

p, Mp would mean that maybe p is consistent with

everything believed. The modal operator defined by

McDermott and Doyle is different from the one defined

in Reiter's default logic. In Reiter's logic the opera

tor M is allowed only as part of default rules and not

as part of the first order theory or inferences. In Mc

Dermott and Doyle's logic the operator is used in the

sentences of the logic and the conclusions. Moore [19]

extended the non-monotonic logic of McDermott and

Doyle by replacing the maybe operator by an operator

L (where Lp means that p is necessary to be believed).

His logic, autoepistemic logic, is more powerful than

McDermott and Doyle's. We briefly describe McDer

mott and Doyle's non-monotonic formalism.

The language C of the non-monotonic logic con

sists of the first order logic language augmented with

the modal operator M, and allows sentences such as

Mp, -<Mp where p is a first order formula. The logic

uses the monotonic inference rules of modus ponens

and generalization along with a new rule [13] of the

form:

If ^T"1?. then hy Mp

which means that if the negation of a formula is not

derivable from T then it may be consistently inferred

by the formula. Derivability from the logic is defined

as follows:

Definition 2 ([IS])

Let T be the theory and S C C. Let the operator NM

be defined as

NMT(S) = Th(TUAsT(S))

where Ast(S) is the set of assumptions from S given

by

AsT(S) = {Mq I q € Cand-^q <£ S} - Th(A)

and where Th(R) is defined as Th(R) = {p \ RV- p).

S is a fixpoint when NMt(S) = S

The set of provable formulas, TH(T), is given by the

intersection of all fixpoints of NMr-

Example 2 ([13])

The tweety-bird problem can be encoded in McDermott

and Doyle's logic as:

T = {bird(tweety); penguin(X) —► ->fly(X)\

bird(X) A M(fly(X)) - fly(X)}

We have that TH{T) =

{bird(tweety), fly(tweety), Mfly(tweety)}

Consider the new theory T" = Tu{penguin(tweety)}.

Then, TH(T') = {bird(tweety)} .

A non-monotonic theory can have none, one, or more

than one fixpoint.
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Circumscriptive Logic: Circumscriptive theories

perform default inferences by axiomatizing the no

tion of minimal entailment from a first order theory.

McCarthy introduced predicate circumscription [12]

which deal with minimizing the extent (set of values

where the predicate is true) of all the predicates in

the theory and extended it to prioritized circumscrip

tion [11] where the extent of one particular predicate

can be minimized without minimizing the extent of

other predicates. Minker and Perlis [16] introduced

the notion of protected circumscription, where a pred

icate is restricted to be minimized for some values,

and Lifschitz [7] extended prioritized circumscription

to pointwise circumscription, where a predicate is min

imized one point at a time allowing one to determine

if a predicate is true for a possible value. Here, we de

scribe circumscriptive non-monotonic formalism using

McCarthy's prioritized circumscription.

Definition 3 ([11])

Let a tuple P of predicate variables be broken into dis

joint parts P1 , P2, . . . , P*. Let pl, q* be tuples of pred

icate variables similar to P* , and let p, q stand for

p*,...,p* andqi,...,qk respectively. Then define,

k i-l

where VPP', P < P' = Vx, E(P,x) => E(P',x), where

E(P,x) is a wff in which P and a tuple of x of vari

ables occur free. Then, the circumscription of a theory

A by minimizing the predicates in P1 at a higher prior

ity than those of P2 and P2 at a higher priority than

P3 and so on, is defined as Circum(A, Pl > ... >

Pk; P) = A(P) A -<3p(A(p) Ap^P).

Example 3 Let A = {Vx, Px(x) V P2(x)} be a first

order theory with predicates P\ and Pi- We want to

circumscribe the theory by first minimizing Pi before

P2. Then,

Circum(A, P1 > P2;P\P2) = Vx, -P1(x)AVr, P2(x)

That is, the extent of Pi is made as small as possible

(in this case identically false).

In the case of the tweety-bird problem, we can have

two predicates, fly and ab where the ab predicate de

notes an abnormality to flying (such as being a pen

guin). By minimizing ab first with respect to fly, we

reach the same conclusions as reached by the other two

non-monotonic formalisms.

We can characterize the minimal entailment pro

vided by circumscription using minimal models. When

we use predicate circumscription to circumscribe a the

ory T with respect to a predicate P, a formula F is

minimally entailed by the circumscribed theory if and

only if it is true in all models of T which are minimal

in P [12]. There can be more than one model which is

minimal in P. When we use prioritized circumscrip

tion with priority order, P1 > ... > Pk, the formula

F is minimally entailed if and only if F is true in all

models of T which are minimal according to the pri

ority relationship of the predicates. Przymusinski [21]

provides a definition for such models and calls them

preferred models. There can be more than one pre

ferred model for a given prioritized circumscription of

a theory.

3 Horn Programs

A general Horn program2 consists of a finite set of pro

gram clauses of the form

A <- Bx A...ABm A->Bm+1 A... A->P„ n>0

where the As and Bs are atoms. There is a procedu

ral interpretation associated with this set of clauses or

rules. Roughly speaking, this interpretation says that

to solve a positive literal A we have to solve each of the

literals occurring in B\ A . . . A J5m A ->Bm+ 1 A ... A ->Bn ■

On the other hand, if we want to solve a negative lit

eral ->A we attempt to solve A and if we are not able to

solve it we can assume -iA solved, otherwise we assume

no solution for ->A. The rule to solve negative liter

als is know as the Negation as Failure rule [2]. This

interpretation forms the core of SLDNF-resolution, a

proof-procedure to answer queries in general Horn the

ories. There are some semantic problems when we ap

ply the Negation as Failure rule to any general program

and some syntactic restrictions have to be imposed on

the program to obtain an amenable semantics. The

discussion of these problems is outside the scope of

this paper. Nevertheless, we present here the class

of programs where SLDNF-resolution is sound. The

Herbrand Base of a program P, HB(P), and ground

instances are defined as in [8].

Definition 4 ([21]) A program P is locally stratified

if there exists a partition Hi, .. . ,Ha, . . . of HB(P)

where a < 0 for some countable ordinal @, so that for

each ground instance of a rule

A <- Bi A . . . A Bm A ->Bm+i A ... A -ifln

in P, if A belongs to a given partition Hk, then

1. All the positive ground atoms Bi, 1 < i < m be

long to \J{Hj : j < *}.

2. All the negated ground atoms Bi, m + 1 < i < n

belong to {J{Hj : j < k}.

Any partition satisfying 1 and 2 is called a local strat

ification of P. Each element Ha is called a stratum.

The problem with locally stratified programs is that

the property of local stratification is not decidable.

2Sometimes called normal programs.
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Hence, we present a weaker definition of stratification

which covers a smaller class of programs which is de-

cidable.

Definition 5 ([1]) A program P is stratified if there

exists a partition P\, . . .,Pt of the predicates of P, so

that for each rule

A <- Bi A . . . A Bm A -iBm+i A ... A -<Bn

in P, if A belongs to a given partition P*, then

J. All the positive atoms Bi, 1 < i < m belong to

\J{Pj = 3 < k).

2. All the negated atoms Bi, m + 1 < i < n belong

to [J{Pj : j<k}.

Any partition satisfying 1 and 2 is called a stratifica

tion of P. Each element in the partition is called a

stratum.

There is a strong relationship between general Horn

programs and the different models of non-monotonic

reasoning. Some of these results are summarized in

the next section. A discussion of this can be found in

[20].

4 Circumscription and Horn

Programs

In Section 2, we saw that default theories can have

more than one extension, and that non-monotonic

logic theories can reach more than one fixpoint and

that circumscription can lead to more than one mini

mal model. All these cases are variations of the same

problem and we call it the multiple extension problem

[3]. Non-monotonic reasoning systems solve this prob

lem in different ways. In this section, we show how

this problem is taken care of by default logic, non

monotonic logic systems and circumscription. We also

show, through examples, that these approaches might

not be feasible in some cases and propose a solution

which is different from those taken by them.

Consistency-based approaches (McDermott and

Doyle's Non-monotonic Logic [13] and Reiter's Default

Logic [25]) choose a particular extension and use it

to perform inferences. Circumscriptive theories (Mc

Carthy's Predicate Circumscription [12]) include all

extensions and infer positive and negative information

when they are true in all the extensions. But such an

approach leads to expensive computation (searching

all minimal models) and hence techniques have been

identified [11, 7] to confine searching to only one ex

tension for certain classes of theories.

Reiter [24] has shown that for definite Horn pro

grams, circumscription leads to a single extension.

For other classes of programs, circumscriptive theo

ries (Prioritized Circumscription [11]) adopt a priority

order on predicates, such that a predicate with lower

priority is minimized first. Lifschitz [5] has shown that

Prioritized Circumscription leads to a single extension

when the program is stratified Horn [1]. Przymusinski

has also extended prioritization to the domains of the

predicates, and his theory, leads to a single extension

when the program under consideration is locally strat

ified [21]. PROLOG, using SLDNF-resolution, is an

efficient and easy way to compute Prioritized Circum

scription for stratified and locally stratified programs.

The technique of prioritization allows the selection

of one out of multiple extensions based on the syntax

of a program (as in the case of stratification and local

stratification) or on some user-defined priority order.

The advantage of this technique is that the computa

tion is simpler than for predicate circumscription and

the extension chosen is 'natural' [6, 21].

5 Disjunctive Programs and Multiple

Extensions

We are concerned with the types of programs where

the selection of an extension through prioritization

would be unnatural and contrived. That is, the the

ory may not be amenable to stratification and a user

definition of a priority order might not be possible.

Consistency based theories would still work, but with

similar problems. The problem of conflicting default

rules is ubiquitous in work on non-monotonic reason-

ing [3].

Example 4 (Nixon Diamond [26] - Interacting De

faults)

Consider the problem definition in first-order logic:

P(X)+-Q(X)/\-,H(X).

Normally, Quakers are Pacifists.

H(X)<-R(X)A^P(X).

Normally, Republicans are hawks (non-pacifists).

Q(n) A R(n).

Nixon is a Quaker and a Republican.

There are two extensions and it is not easy to find

which is more powerful than the other. A solution

is to include the disjunctive rule H(X) V P(X) <—

R(X) A Q(X). which represents one's belief and in

cludes both extensions. We are then able to come to

the skeptical inference that Nixon is either a Hawk or

a Pacifist, without having to choose among them. This

skepticism results since Nixon, represented by constant

n, is both a Quaker and a Republican. For an individ

ual known only to be a Quaker, we can conclude that

the individual is a Pacifist using the negation as failure

rule.
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Example 5 (Database Problem (Chap. 1 [3]) - Non-

Stratifiability)

Suppose we are told that PanAm is starting a new

low-fare service from San Francisco to the East Coast,

but has not yet decided whether the destination will

be New York or Washington. This information

can be encoded by the rule flight(sf, ny, paOOO) V

flight(sf,w,pa000). We cannot encode this either as

flighi(sf,ny,paQOO) «— -<flight(sf,w,pa000) or as

flight(sf,w,paOOO) *— -iflight(sf,ny,paOOQ) since

there is no motivation in choosing either of them.

Again, a disjunctive or indefinite representation of the

information is needed.

Example 6 (Diagnostic Systems - Temporal Skepti

cism)

Consider the rule that

resistor(X) A ab(X) —■ open(X) V short(X).

From an observed abnormality, ab(r), for a resistor r,

we can infer that r is either open or short. When fur

ther evidence shows that r is not short we can conclude

that open(r). Choosing an extension randomly or pri

oritizing the predicates open and short might lead to

temporal inconsistency with new evidence. Again an

indefinite semantics is needed.

Example 7 (Abductive Reasoning)

Abductive reasoning tries to generate explanations

about the state of the environment. The following rule

is a typical abductive rule: if we know that Q is true

and we also know P —* Q then we assume P. Con

sider the following rules in a medical expert system.

F(X) - P(X).

Normally, fever is caused by Pneumonia.

F(X) - C(X).

Normally, fever is caused by Common Cold.

In an abductive system we should be able to infer that

when there is a fever it is caused either by pneumo

nia or by common cold. After applying the abductive

rule one has to be able to reason with information like

P(X) V C(X). Again, disjunctive inference is useful

and relevant when compared to a less skeptical infer

ence which assumes directly P(X) is true or C(X) is

true but both are not true.

In three of the examples above, prioritization (strat

ification) is not possible. In cases like these, we

might want a system to follow a "skeptical" reasoning

strategy—according to which, at times, it is willing to

refrain from drawing definite conclusions. This kind of

strategy has been explored in another context in [4].

Another way of looking at this is that we have to pro

tect a predicate X from minimizing predicate Y. That

is, if we want to minimize we have to minimize X and

Y together (In Example 1, we have to minimize R and

H together.) Our proposal is to model skepticism, in

the current context, as indefinite information, thereby

circumventing the problem of choosing between con

flicting defaults. Using indefinite clauses as the way

to represent knowledge solves the multiple extension

problem by including all extensions in the deduction

and such a theory is in compliance with predicate cir

cumscription. In Horn-based programming languages,

such as PROLOG, it is difficult to represent such indef

inite information. In our current work, we have been

studying disjunctive logic programs [17, 18], and be

lieve that these provide a promising vehicle for repre

senting indefinite data. Based on this work, we present

in the next section a procedure for answering queries

in such non-stratifiable disjunctive theories.

Przymusinski has developed a general algorithm

which can be used with first order theories and pro

vides circumscriptive inferences. But his algorithm is

computationally expensive. In our approach we con

sider theories that contain both definite and indefinite

clauses. We identify a new way of partitioning the

program based on its dependency graph and develop

a query answering procedure.

6 SLOP-resolution

The basic problem with reasoning in the presence of in

definite information is that making deductions is much

more expensive than with definite or Horn theories.

We present a proof procedure for answering queries

in disjunctive programs [17]. Although we restrict

our attention to disjunctive programs the deduction

mechanism is still complex. However, if we assume

that a large part of the theory is definite and only a

small part is disjunctive we can make use of efficient

algorithms for the definite part. The proof procedure,

called SLOP-resolution, described below, is a variation

of SLD-resolution [27]. SLOP-resolution partitions a

program such that if a partition contains only Horn-

rules the deduction procedure essentially reduces to

SLD-resolution. If the partition contains disjunctive

rules SLOP-resolution tries to minimize the transfer of

information between the partitions. Section 3.1 con

tains some basic definitions. In Section 3.2 we describe

SLOP-resolution and present an example.

6.1 Preliminary Definitions

We consider a disjunctive logic program, P, to consist

of a finite set of program clauses of the form

Ai V ... V An «- Si A ... ABm n > 1, m>0

where the .As and Bs are atoms. The expression on

the left hand side of the implication sign is called the
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head and the one on the right hand side is called the

body of the clause. An indefinite or disjunctive clause

is a program clause with more than one atom in the

head, i.e., n > 1. An assertion or positive clause is a

program clause which has no body. We use either the

notation C = A\ V . . . V Ap or C = {A\, . . . , Ap) to

represent a clause. This allows us to consistently use

the relations G and C between atoms and clauses. A

goal is of the form <— Ci , . . . , C„, n > 0, where the C's

are positive clauses. A definition of a relation symbol

R is the subset of P consisting of all clauses where R

occurs in the head. R is disjunctive in P if R occurs in

the head of a disjunctive clause. A relation Q refers to

a relation R if there is a clause in P with Q in the head

and R either in the head or the body. Given a positive

clause C = A\ V. . .VAP, C ^-subsumes a clause D if 9 is

the most general unifier for {A\ = D\, . . . , Ap = Dp}

where D\ V . . . V Dp is a subclause of D.

Definition 6 The dependency graph of a program P

is the directed graph representing the relation refers.

Let 5i, . . . , S„ be an enumeration of the strongly con

nected components3 of the dependency graph of P.

We say that a portion Si is disjunctive if there is

a disjunctive relation symbol that belongs to S{ oth

erwise we say it is definite. The partition function

Pp : {A(t\, . . . ,t|)| atoms in P] —► {Si, . . . , S„) is de

fined as follows: pp{A{t\, . . . , ij)) = S,- iff A £ Si . □

Example 8 The following is a disjunctive program,

the dependency graph and its strongly connected com

ponents:

P = {t(X) - p(f(X)), p(X) - m{X),

Pif(X)) - q(X), q(X) - m(f(f{X))),

q(X)^p(X), rn(0)Vm(/(/(X)))}

Dependency Graph:

m

Strongly-connected components:

Si ={m}, S2 = {p,q}, S3={t). □

Complete proof procedures for non-Horn theories

that use resolution based on model elimination [10]

are highly expensive due to ancestry resolution and

factoring. Ancestry resolution requires one to keep

track of deduction steps during the proof since some

intermediate steps might be needed to complete the

'Two elements a and b are in the same strongly con

nected component if and only if there is a path between a

and 6 and a path between b and a.

proof. This kind of deduction is both time consuming

since a test is needed to determine if ancestry reso

lution or factoring is applicable and wasteful of space

needed for bookkeeping. In the case of disjunctive pro

grams, ancestry resolution can be characterized using

dependency graphs. For this, we extend the relation

refers to the strongly connected components of P.

Given two strongly connected components S, S', we

say that 5 strongly refers to S' if there is a rela

tion symbol Re S and a relation symbol Q 6 S' such

that R refers to Q. This new relation forms a par

tial order among the strongly connected components.

The main result is that we can isolate ancestry reso

lution inside each strongly connected component and

between immediate successors with respect to the re

fer relation. In the previous example, if we want to

prove something about motgwe do not need ancestry

information about t. This is the key point used in the

proof procedure described in the next section.

6.2 Proof Procedure

In this section we present a refutation proof procedure

similar to SLD-resolution to handle disjunctive pro

grams. The soundness and completeness proof can be

found in [9].

Definition 7 Let P be a disjunctive logic program, G

be a goal. Assume that < is the reflexive and transi

tive closure of the relation strongly refer. An SLOP-

derivation from P with top-goal G consists of a (pos

sibly infinite) sequence of goals Gq = G, G\, . . ., such

that for all i > 0, Gi+i is obtained from

Gi =*- Ci,...,Cm,...,Ck as follows:

(1) Cm is a clause in Gi. (Cm is called the selected

clause)

(2) C «— Bi, . . . , Bq is a program clause in P

(S) C 6-subsumes Cm.

(4) G,+i is equal to

< (Ci, . . . , Cm_i ,

Bx VD| fl, VD„

Cm+i,...,Ck)0 where

Di is a subset of Cm that contains all the atoms

A in Cm such that either Bi refers to A

or pP(A) < pp(Bi). O

Definition 8 An SLOP-refutation from P with top-

goal G is a finite SLOP-derivation of the null clause

D from P with top-goal G. D

In an SLD-derivation step the selected atom is replaced

in the goal by the "correct" instantiation of the body

of a clause in the program. In our case, we attach a

subset of the selected clause in part to transmit the an

cestry information that might be needed by the follow

ing subgoals. Hence, the reduction in ancestry resolu

tion will be reflected in Step (4) of an SLOP-derivation
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where some of the atoms in Cm are not inherited by

the D.-'s. The following is an example of an SLOP-

derivation.

Example 9 Assume the following is part of a depen

dency graph of program P

m t

Suppose now, we are proving the goal <— t V m V s

and we apply a derivation step using the rule t <— p.

The resulting goal is <— p V tV s. Here, p = B\ and

Dy = < V s. We keep t since t refers to p and s since

Pp(s) < Pp(p)- m *• removed since it does not precede

p and p does not refer to it. □

Example 10 Let P be as in Example 5. An SLOP-

refutation for the goal <— t(0) is given below

using t(X) <- p(/(X))

(2)^pjf(0))vt(0)

using p(f(X)) «- q(X)

(S) <- qJQ)_V p(f(0))

using q(X) - m(f(f(X)))

W-m(/(/(0)))V#vK/(0))

using q(X) +- p(X)

(5) - p(0) V m(/(/(0))) V 9(0) V p(/(0))

using p(X) «— m{X)

(6) - m(0) V p(0) V m(/(/(0))) V q(0) V p(/(0))

(V

using m(0) V m(/(/(X)))

Notice how from the second to the third step of the

derivation <(0) is removed from the goal. This is be

cause q does not refer to t and pp(t) < pp(q).

Theorem 1 ([9]) For a disjunctive program P and a

goal *— C\, . . . ,Cn, there is an SLOP-refutaiion from

P with top-goal G iffVCi A . . . A Cn is a logical conse

quence of P. D

In an SLOP-derivation stronger conditions can be im

posed on the D's in Step 4 to decrease the length of the

clauses after each derivation without losing the com

pleteness of the proof procedure. Also, 0-subsumption

between clauses is not unique. This introduces a new

nondeterminism not present in SLD-resolution. There

are some restrictions that can be used to constrain the

number of choices. A description of these aspects can

be found in [9].

G.3 Discussion

SLOP deals with positive information and only posi

tive clauses are deducible. We believe that it is pos

sible to extend SLOP-resolution to handle negative

goals. The Generalized Closed World Assumption

(GCWA) [14] and the Weak GCWA (WGCWA) [22]

provide two alternative approaches to do this. In [22],

Lobo, Minker and Rajasekar present a proof procedure

to compute negative information using the WGCWA

which is similar to SLDNF-resolution [2] and is easily

adapted to SLOP-resolution. New results have been

obtained on the semantics of general disjunctive pro

grams [23] (disjunctive program with negative liter

als in the bodies of the clauses.) A means was sug

gested by the work on stratified Horn programs [1, 28].

Based on the theory of non-monotonic operators de

veloped by Apt, Blair and Walker [1], Rajasekar and

Minker describe a sequence of non-monotonic opera

tors to characterize a declarative semantics (fixpoint

semantics) for stratified disjunctive programs [23]. An

alternative characterization of this semantics based on

the GCWA is also presented. Proof-procedures for

this class of programs are currently under investiga

tion. With these extensions the theory of disjunctive

programs would embody both skeptical and prioritized

knowledge.
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Abstract

Developing suitable representations for formalising

non-trivial domain knowledge has always been cen

tral to AI. Within Naive Physics ie. the task of

encoding experiential knowledge of the world, few

formal theories have appeared that exhibit formal

elegance, conciseness and generality to cover a wide

variety of modelling problems. We outline a first

order formalism being developed that meets these

criteria. The formalism is particularly attractive in

that it provides the user with the means to model

either spatial and/or temporal information as

required. The power of the formalism is illustrated

by modelling the process of phagocytosis of the

amoeba, together with an outline of how many pro

perties of physical entities and relations between

them can be modelled within a unitary framework.

1.0 Introduction

The importance of representation within a formal frame

work has always been a central topic for discussion

within AI. This has been particularly noticeable since

Hayes' [1979, 1985a] call for the development of formal

isms supporting a clean semantics which can be used for

the representation of and reasoning about entities in non-

trivial domains. In the spirit of Hayes' Naive Physics

programme, we outline a concise rigorous formalism

currently being developed. This exploits both topological

and metrical information inherent in descriptions and

explanations encountered in everyday discourse about the

world. The formalism covers the representation of spatial

and temporal topological information, and metrical infor

mation. Noting the controversy Hayes' programme

seems to have engendered [Levesque, 1987] we are

encouraged that this approach actually bodes well for at

least some of the central ideas Hayes advocated.

The main structure of the paper is as follows. Section

2 discusses the need to capture topological and metrical

information, and relates this to assumptions underlying

The financial support of the SERC is gratefully acknowledged.

this and comparable work. Section 3 is a brief overview

of related work. Section 4 covers the formalism itself.

The next two sections outline how empirical information

is added and exploited and how processes are generated.

Finally we illustrate the use of the formalism with a

description of phagocytosis.

2.0 Motivation

Barr [1965], points out that much informal discourse

about the everyday world often exploits topological rather

than geometrical information. This often happens on an

unconscious level but it takes little reflection to see that

this is indeed so. Most descriptions used to inform where

things are, are topological and metrical rather than

geometrical in nature. For example we may say that

something is inside or can go inside something else; or

that in order to get to some place one must go around

some object, or pass over, under or indeed through it.

That geometrical information is used in some everyday

activity is not denied, what we do claim is that in ordinary

circumstances its use is avoided. Since the understanding

and representation of space and time is so fundamental

and underpins much human activity, the construction of a

formalism that can capture sufficient topological and

metrical information yet support some interesting deduc

tions would seem to be a central task in AI.

While we acknowledge that the task of capturing this

very general, experiential knowledge of the world has

much in common with previous attempts to model com

mon sense knowledge and qualitative geometry, it is

important to point out some differences that exist in the

assumptions we have adopted and those which seem to

underpin comparable work. First of all we do not assume

that entities posited in some description or theory of the

world are necessarily those that are exploited by the brain

giving rise to such appropriate behaviour on our part.

While it is true that any theory of the world must posit a

set of entities, one cannot simply assume that entities

posited in a naive theory are appropriate candidates to be

introduced into some formal theory. This is to pay too
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much attention to the notion of representation and to pay

too little attention to the problem of primitive reference,

ie. causal (theories of) reference.

Primitive reference is distinct from reference in the

Fregean sense. Reference applies to the truth valuation

for some proposition, but this assumes primitive reference

being the means by which a name actually gets linked to

some object before that truth valuation is given. This is

not provided by Tarskian semantics, but is assumed.

Only when primitive reference is better understood can

we begin to make the stronger claim that the choice of

entities in a theory have correlates in cognitive function

ing and in common sense activity.

With respect to common sense reasoning in a formal

framework, choice of an appropriate ontology is easily

overlooked - particularly when introspection seems to

provide an 'obvious' set of entities. Hayes [1979] makes

the point that without an appropriate ontology the formal

ism becomes either too complex or too weak for the

modelling problem at hand. But given that simple

descriptions and explanations of and about the world

(including attempts to explain problem solving) do not

necessarily furnish us with the 'right' ontology (or set of

purported rules underlying our decisions), we are at

liberty to use any ontology we like, as long as the end

result is capable of being measured against some agreed

set of criteria by which theories, representations etc. can

be compared. In this respect we do not pay too much

attention to naive descriptions of the world supposedly

giving us an appropriate ontology for a theory of the

world, nor do we assume there is a substratum of 'deep

knowledge' that is worth garnering. Such emphasis indi

cates an assumption that whatever underlies common-

sense knowledge and activity has clear propositional con

tent (which seems to ignore the nature and role of percep

tion). This is related to another troublesome assumption

pervading much AI - that cognition can be adequately

modelled in a solipsistic environment.

Hayes [1979, 1985a] argues for a prolix ontology

within Naive Physics. He also argues that such formal

isms should have good conceptual cover (ie. having

enough concepts to express what one wants to express),

yet be capable of supporting dense inferential links

between the formalism's concept tokens. The latter

motivation stems from model theory, where undesirable

rival models providing an interpretation of an axiomatisa-

tion are systematically eliminated. Strictly speaking this

practice cannot guarantee a reduction of the number of

supporting models. Any interesting first order axiomati-

sation will support a denumerable number of models,

whether broad and dense or not, hence it remains an open

question to what extent the idea of initially assuming a

prolix ontology will help matters.

The primitives and axioms in our formalism have been

kept to a minimum although formal independence of

these has not been established. Although often associated

with the domain of the logician, this practice has uses

within AI and the cognitive disciplines; for given the

deductive paradigm, a formalised theory with its primi

tives, definitions and independent axioms can help cast

light upon a minimum set of entities and conditions

required by a theory, the role of inference and its connec

tion with cognitive functioning.

Although the deductive paradigm has its critics and

limitations eg. see Levesque [1987], if theories concerned

with our experience of the everyday world can be given a

formal axiomatic treatment, we claim that topological and

metrical information must play a significant part. To

reiterate an earlier point, we do not assume the entities

used to interpret our formalism are those that actually

underpin perception and commonsense activity. How

ever, it is interesting to note that many of the abstract con

cepts are, with a little reflection, surprisingly intuitive.

3.0 Related Work

Hayes [1979, 1985a,b] and Welham and Hayes [1984]

discuss the importance of building large scale formalisms

capable of encoding topological and metrical information.

Hayes' [1985b] paper still remains his main contribution

to applied Naive Physics. In this paper Hayes starts to

develop a theory of topology but hits many problems, eg.

capturing the physical relation of 'touching' objects, and

whether or not a face of an object should be treated as a

part of that object. In Welham and Hayes [1984] an

attempt is made to fix some of these problems, in particu

lar how objects can 'touch'. Cunningham [1985]

discusses further problems.

A significant collection of papers dealing with com

monsense knowledge and reasoning appears in Hobbs and

Moore [1985] and Hobbs et al [1985]. The latter includes

work by Kautz who discusses a formalism for the

representation of spatial descriptions and concepts. Hager

tackles the representation of properties of materials, and

Shoham the representation of kinematics and shape.

Many of these papers suffer to some extent from a free

use of "axioms" without demonstrating the worth of the

respective formalisms in terms of interesting deductions.

An alternative approach arises with Leyton's [1988] pro

cess grammar which exploits curvature extreema to infer

basic processes. Transformation of shape is covered but

the modelling is restricted to capturing the geometrical

properties of individual entities. Allen [1981, 1983] and

Allen and Hayes [1985, 1987] develop a theory of time

that exploits topological information, but a unitary for

malism that can capture both spatial and temporal topo

logical information is not considered.
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Outside AI proper, Woodger [1939] makes a

significant attempt to formalise an empirical science. He

develops a formalism including the mereological1

part/whole relation and others, to capture many concepts

central to biology. Mereology also arises in Laguna

[1922], Whitehead [1978] and Tarski's [1956] attempt to

formalise geometry starting with an ontology of solids,

rather than points. Carnap's [1958] axiom systems, pro

vide a good hunting ground for any one interested in

building deductive theories.

4.0 The Formalism

The formalism is expressed in a many sorted logic (msl)

that allows arbitrary ad hoc polymorphism on predicates

and functions. Sort restrictions on variables derive impli

citly from the argument positions they occur in. The logic

LLAMA [Conn, 1987] satisfies these requirements.

Space does not allow a detailed presentation of the logic

or the sort structure and the sort declarations for all of the

non logical symbols we shall employ. We shall briefly

indicate the important sortal restrictions in the text.

Important sorts are REGION, POINT, NULL and

MEASURING SCALE (all mutually disjoint).

The formalism is rooted in a calculus of individuals

developed by Clarke [1981, 1985]. Clarke utilises most

of the mereological definitions that appear in Whitehead

[1978] but from there on his work differs in several

important respects. First Whitehead does not formalise

his theory as does Clarke. The "quasi-Boolean", and

"quasi-topological" operators and predicates used by

Clarke are extensions of Whitehead's system. Finally

Whitehead's assumption that individuals are continuous is

dropped by Clarke.

Our formalism differs from Clarke's in the following

respects. In the first instance Clarke uses second and

even third order variables, while we keep our formalism

strictly first order. We also add many new relations and

functions to Clarke's existing set. Partial functions impli

cit in Clarke are made explicit in a msl, and a null object

is introduced making them total on their domains. The use

of continuity constraints to link intervals over which some

particular property remains constant is new, as is the use

of the calculus for the modelling of basic topological and

metrical processes of the everyday world. Clarke

presents his system as an 'uninterpreted' calculus.

We assume a domain of discourse that has as its basic

set of primitive entities, (spatial and/or temporal) regions

and points, numbers, measures, and a series of constants

of measure. Informally, the basic regions may be thought

to be potentially infinite in number with no restriction as

to the degree of overlapping allowed. Each region coin

cides with a set of incident points, and every region is

contained in a distinguished region called the universe.

Two primitive relations are initially introduced:

'C(x,y)' read as 'x connects with y' and 'B(x.y)' as 'x is

wholly before y'. In order to help develop and guide the

desired intuition needed to understand this formalism, we

follow Clarke's example by providing intuitive interpreta

tions for a sufficient number of relations.

In terms of points incident in regions, C(x,y) holds

when two regions connect; of the incident points con

tained in both regions, at least one incident point is

shared. Similarly B(x,y) holds when one of two regions

are wholly before the other (in time) ie. all the points

incident in one region are also wholly before the points

incident in the other.

We will talk about regions being open and closed.

These are topological concepts. A closed region is one

that contains all its boundary points (more correctly all its

limit points), whereas an object is open if it has no boun

dary points at all. Although we only explicitly refer to

open and closed regions, it is important to point out that

being open and being closed are not mutually exhaustive

properties.

C(x,y) covers all cases of connection between regions

from external contact (or 'touch') to all instances of

mutual penetration including mutual total overlap or iden

tity. Figure 1 illustrates the intended meaning of C(x,y)

with pairs of (topologically closed) regions that satisify

the relation. B(x,y) covers all cases where x is temporally

before y though excluding the case of temporal abutment.

A set of axioms is given that govern C(x,y) and B(x,y):

Vx[C(x,x)AVy[C(x,y)->C(y,x)]]

Vxy[Vz[C(z,x)<-»C(z,y)]-«=y]

VxHB(x,x)AVy[[B(x,y)AB(y,z)]->B(x,z)]]

Vxy[B(x,y)-»

f-.C(x,y)AVzwr[P(z,x)AP(w,y)]->B(z,w)]]]

C(x,y), is totally reflexive and symmetrical. B(x,y) is

irreflexive, asymmetrical and transitive. The relation

P(x,y) is dealt with below.

The basic set of merelogical relations defined in terms

of C(x,y) are given as follows: 'DC(x.y)' is read as 'x is

disconnected from y'; *P(x,y)' as 'x is a part of y';

'PP(x.y)' as 'x is a proper part of y'; 'O(x.y)' as 'x over

laps y' and 'DR(x,y)' as 'x is discrete from y':

DC(x,y) =&. ^C(x.y)

P(x,y) Sdef. Vz[C(z,x)-»C(z,y)]

PP(x,y) =4*. P(x,y)A^P(y,x)

O(x.y) =def. 3z[P(z,x)AP(z,y)]

DR(x,y) =drf. ^O(x.y)

1 "Mereological" comes from a Greek root, meaning part.
DC(x.y) is understood to mean that regions x and y share

no incident point in common; P(x,y) when all the points

incident in x are also incident points in y; PP(x,y) when
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all the points incident in x are also incident points in y,

but not vice versa; 0(x,y) when x and y share at least one

common interior point; and DR(x,y) when either x and y

share no point in common or when x and y share a point

in common but share no interior points (ie. when x and y

share only boundary points).

DC(x,y) implies DR(x,y) but not vice-versa: two

regions may be discrete yet can be disconnected or in

external contact (see Figures 1 and 2). It is also worth

emphasizing here that the overlap relation 0(x,y) does not

capture the physical relation of covering, neither in the

case of surface contact between two objects or optically,

as in the case when one object occludes another; rather,

the intended meaning of overlap is one of varying degrees

of mutual penetration between regions.

Similarly, care is needed with the intuitive understand

ing of the part/whole relations since not all nuances asso

ciated with the concept of something being a part of

something else are necessarily captured with this relation.

In the case of an amoeba which surrounds and completely

engulfs some food source, for that foodsource to be con

sidered as a part of the amoeba in the sense captured by

our formalism, the relation of the foodsource to the

amoeba would be identical to that between the amoebal

protoplasm and the amoeba as a whole. If on the other

hand we wish to describe the foodsource as being inside

the amoeba but forming no part of the amoeba itself, then

the relation P(x,y) cannot be used to capture this notion of

containment. For this additional formal machinery must

be used. This is dealt with in more detail below.

The axioms imply that DC(x,y) is irreflexive and sym

metrical, P(x,y) is totally reflexive, antisymmetric and

transitive, PP(x,y) is irreflexive, asymmetrical and transi

tive, 0(x,y) is totally reflexive and symmetrical, and

DR(x,y) irreflexive and symmetrical.

The distinction between C(x,y) and 0(x,y) provides the

basis for a set of relations that are not commonly associ

ated with calculi of individuals, yet are central for captur

ing a set of desired topological properties. €EC(x,y)' is

read as 'x is externally connected to y', 'TP(x,y)' read as

'x is a tangential part of y' and 'NTP(x,y)' read as 'x is a

nontangential part of y' are now introduced:

EC(x.y) S(le£ C(x,y)A-0(x,y)

TP(x,y) =def. P(x,y)A3z[EC(z,x)AEC(z,y)]

NTP(x.y) -^ P(x,y)A^3z[EC(z,x)AEC(z,y)]

EC(x,y) is to be understood when x and y share a point in

common they share no interior points (ie. when only

boundary points are shared), TP(x,y) when all the points

in x are points of y and some other region z exists such

that x,y and z share a common boundary point, and

NTP(x,y) when all the points in x are points of y but there

is no region z such that x,y and z share a common boun

dary point.

The following theorems arise: EC(x,y) is irreflexive

and symmetrical, TP(x,y) is weakly reflexive and

antisymmetric, and NTP(x,y) antisymmetric and transi

tive. A substantial list of theorems generated from these

definitions and the above axioms can be found in Clarke

[1981]. To compare Clarke's calculus with other calculi

of individuals see Eberle [1970].

A set of configurations satisfying these (and other rela

tions defined below) is given in Figure 1 . For reasons of

clarity we have assumed that the regions in question are

all closed, but it must be emphasised that the formalism

can accommodate both open and closed regions. We also

assume each of the x,y paired regions to be surrounded by

another region z acting as an environment This 'environ

ment' functions as the additional region z in external con

tact with x and y for TP(x,y) to hold, and only in external

contact with y for NTP(x,y) to hold. The existence of this

region is guaranteed by the function c-compl(x) (defined

in section 4.8).

Figure 2 represents the basic lattice which orders the

above relations in terms of their implicational strength.

The weakest and most general relations are directly linked

to T and the strongest directly linked to ± interpreted as

tautology and contradiction respectively.

Twelve additional relations (eleven if identity is

excluded) are added to Clarke's original set. These

include the following: *TPP(x,y)' read as 'x is a tangential

proper part of y', 'NTPP(x,y)' as 'x is a nontangential

proper part of y', 'PO(x,y)' as 'x partially overlaps y',

'x=y' as 'x is identical with y', *TPI(x,y)' read as 'x is a

tangential part of and identical with y' and 'NTPI(x,y)' as

'x is a nontangential part of and identical with y'; together

with inverses of all the asymmetrical relations. Names

and definitions for the inverse relations are not given in

the interest of space.

TPP(x,y) =def. TP(x,y)A^P(y,x)

NTPP(x.y) »,„. NTP(x,y)A^P(y,x)

PO(x,y) =def. 0(x,y)A-1P(x,y)A^P(y,x)

x=y sdef. P(x,y)AP(y,x)

TPI(x.y) -arf. TP(x,y)AX=y

NTPI(x.y) =def. NTP(x,y)AX=y

TPI(x.y) and NTPI(x,y) are simply added to the other

relations to complete the lattice depicted in Figure 2.

At this point we drop the systematic practice of supply

ing intuitive interpretations of relations in terms of

incident points, since the increased complexity of the

linguistic descriptions begins to outweigh their intuitive

usefulness.

TPP(x.y) is irreflexive and asymmetrical, NTPP(x,y)

irreflexive, asymmetrical and transitive, PO(x,y)

irreflexive and symmetrical, x=y totally reflexive, sym

metrical and transitive, and TPI(x.y) and NTPI(x.y)

weakly reflexive, symmetrical and transitive. The identity
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relation x=y captures the non-logical notion of identity

between regions in terms of mutually shared parts.

It is worthwhile pointing out the difference between the

relations NTP(x,y) and NTPP(x.y). This may be confus

ing since they both share the same set of configurations

depicted in Figure 1. A region is nontangential part of

itself iff it has no object externally connected to it, ie:

Vx[NTP(x,x)<-*-,3y[EC(y,x)]]

If NTP(x,x) is true then x is an open region. This is stated

explicitly in the formalism. Because the set of

configurations illustrated in Figure 1 are closed regions,

NTP(x,x) cannot be represented. A boundary (or a least

part boundary) of an object is required for some other

object to externally connect with it NTPP(x.y) should

now be straightforward to understand. As it stands the

above set of relations (excluding the relation B(x,y)) can

support a purely spatial interpretation. It is worth keeping

this interpretation in mind when considering the Boolean

and topological operators.

4.1 The Boolean operators

The prefix "quasi-..." in "quasi-Boolean" (and "quasi-

topological") is used by Clarke to distinguish his set of

operators from those that arise in a complete Boolean

(and closure) algebra. It is common place in calculi of

individuals to refuse to postulate an individual that would

be the analogue of the null element in a standard Boolean

algebra. Clarke's calculus is no exception and supports no

null object. By doing this, Clarke can only prove certain

theorems hold when certain existential preconditions are

satisfied, eg. that a complement exists for a given region

only if it is not the universal region, and that an intersec

tion of two regions exists only if those regions overlap.

This complicates some of his proofs.

Unlike Clarke we introduce a null object as a constant

into our domain allowing us to make all our functions

total. A msl can cope with domain restrictions such as

denying a complement to the universal region, but cannot

deal with the fact that two disconnected regions have no

intersection. While it is possible to use a Russellian

theory of descriptions to eliminate functions contexually

in terms of relations, identity and quantifiers (thereby

resolving the problem of non-existence for certain values

of functions), we choose to use pure functor notation.

This is more compact and perspicuous than relational

notation, and is more in keeping with the motivation to

cut down the search space during mechanised inference.

Ontologically speaking, introducing a null object becomes

questionable2 but its introduction is motivated by prag

matic convenience. In any case we could re-express the

whole formalism using a Russellian analysis and thereby

resolve at least some of the philosophical objections that

may arise. Cohn [1989] shows that a msl allows the null

object to be excluded from being a region (providing

overlapping [Cohn 1987] is allowed).

We add Clarke's sum, complement,3 Universe, and

product operators. In addition we add the null object and

difference operator. 'sum(x,y)' is read as 'the sum of x

and y', 'compl(x)' is read as 'the complement of x', the

constant 'U' is read as 'the universe', *prod(x,y)' is read

as 'the product (or intersection) of x and y', 'N' is read as

'the null object', and *diff(x,y)' is read as 'the difference

of x and y*. The iota operator 'ix' is read as 'the unique x

such that', but as stated before its use here does not neces

sarily indicate a Russellian analysis.4

sum(x.y) =def. iz[Vw[C(w,z)<-KC(w,x)vC(w,y)]]]

compl(x) =def iy[Vz[C(z,y)<-*-iP(z,x)]]

U =drf. w[Vy[C(y,x)]]

prod(x,y) =def. iz[Vw[C(w,z)<->[C(w,x)AC(w,y)]]]

N =drf. ix[Vyz[x=prod(y,z)ADC(y,z)]]

diff(x,y) =def prod(x,compl(y))

4.2 The topological operators

The representational power of this formalism is greatly

increased with the introduction of topological operators.

Clarke defines the interior, closure, exterior operators and

the predicates Open and Closed. To this we add the

boundary operator. *int(x)' is read as 'the interior of x',

'cl(x)' is read as 'the closure of x', 'ext(x)' is read as 'the

exterior of x', 'Open(x)' as 'x is open', 'Closed(x)' as 'x

is closed', and the operator 'bound(x)' is read as 'the

boundary of x'

int(x) =def. iy[Vz[C(z,y)<->3w[NTP(w,x)AC(z,w)]]]

C1(X) =def.

iy[Vz[C(z,y)o3w[-,C(wjnt(compl(x)))AC(z,w)]]]

ext(x) =Mt

iy[Vz[C(z,y)<->3w[NTP(w,compl(x))AC(z,w)]]]

Open(x) Hdef x=int(x)

Closed(x) =def cl(x)=x

bound(x) =def prod(cl(x),cl(compl(x)))

An axiom is added that guarantees that each region has an

2 See Geach [1980] for a humorous yet instructive point that

the temptation to treat "nothing" as a name opens the way to in

numerable fallacies.

3 A justification for defining complement as given and not as:

compl(x) =M. iy[Vz[0(z,x)*-»-,P(z,y)]

as used by Goodman [1966], is that in terms of incident points,

Clarke's operator guarantees that no point in the complement of

an object is incident in the boundary of the object, whereas com

plement as defined by Goodman allows such a model. Since

Clarke introduces points into his ontology, as do we, we choose

Clarke's definition.

4 When we write a(x) =ief lx[0(x)] we mean

VyO(y)<->y=x
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interior and that the intersection of two open regions is

also open:

Vx[3z[NTP(z,x)a

Vy[Vu[-,EC(u,x)A^EC(u,y)]->Vw[-nEC(w,prod(x,y))]]]]

43 Atoms

An atom is a region that has no proper parts: the only part

of an atom is itself. Every region contains an atom.

ATOM(x) »*£ Vy[P(y,x)->y=x]

Vx3y[ATOM(y)AP(y,x)]

If the topological operators are excluded for the moment,

atoms can either externally connect, be identical or be

disconnected. With interiors defined over atomic regions,

this no longer applies. By definition an atom has no parts

other than itself, so if atoms are allowed to have interiors,

the interior of an atomic region must be identical to that

atom, hence atoms become open regions. Defining interi

ors over atomic regions produces an interesting deductive

result, for it can be proved that when two non-atomic

regions externally connect or 'touch', no two atoms

within those regions 'touch'. This formal result casts

some light on the naive conundrum of how if (physical)

atoms are points with fields, (topologically open?), and

atoms make up objects, how is it that objects can 'touch'?

A similar conundrum arises if physical objects are con

strued as sets of points: how is it the two objects can

touch when points can only be discrete or identical? The

formalism supporting open atoms illustrates what may be

seen as an informal fallacy at work, namely the fallacy of

composition. This is the mistake to assume that all the

properties of parts of a whole must belong to that whole.

4.4 Points

Many domains can be adequately modelled using only

regions. However points arc included in the formalism for

the following reasons. Firstly the chosen intuitive

interpretations for the mereological relations are vindi

cated with the introduction of points; secondly, adding

points allows an interesting comparison to be made with

extant formalisms (eg. Allen and Hayes' [1987] formal

ism supports points); and thirdly, the descriptive power of

the formalism increases, eg. enabling the relation

TPP(x.y) to be restricted so that only x,y and z connect at

a single boundary point (see section 4.8)

Clarke introduces points by using second order vari

ables, whereas here only first order variables are assumed.

Initially we constructed points as we did for atoms, but

this generated problems with the part/whole relation and

the intuitive interpretation given for these mereological

relations. In particular if two regions externally connect,

sharing a point in common, and if a point is taken to be a

part region, the two regions must overlap (by definition of

overlap). But externally connected objects do not overlap

(by definition)! Similar problems arise if faces are taken

to be parts of objects, and highlights again a classic prob

lem (eg. Hayes' [1985b] difficulties when treating faces

as parts of objects and his subsequent introduction of the

notion of a directed surface). In order to circumvent this,

points are treated as primitive entities and linked to

regions by means of a new relation.

'rN(x,y)' read as 'x is incident in y' is introduced, and

restricted so that the extensions of its arguments cannot be

of the same geometric dimension, nor is the second argu

ment allowed to be of a lower dimension than the first. In

contrast the part/whole relation is defined so that it can

only take arguments whose extensions have the same

dimension. Thus eg, while a face is allowed to have

parts, the face is not a part of the object which has that

face. But a face can be incident in that object. These sort

restrictions imply that IN(x,y) is irreflexive and asym

metrical. The following axioms relate IN(x,y) to the

mereological relations.

Vxy[C(x,y)<->3z[IN(z,x)AlN(z,y)]]

Vxy[P(x,y)oVz[IN(z,x)->rN(z,y)]]

The following theorem arises:

Vxy[Vz[IN(z,x) <->IN(z,y)] <->x=y]

Identity of points/boundaries is stipulated with the axiom:

Vxy[Vz[IN(x,z)oIN(y,z)]<-»x=y]

When describing eg. plane figures embedded in 3-

space, it is important to realise that any atoms posited in

the plane are to be conceived as open discs and not open

balls.

4.5 Scattered or fragmented vs connected regions

Mereology has been adopted and criticized as an attempt

to deal with the problem of divided reference and provid

ing an adequate treatment of mass terms extensions (see

eg. Bunt [1985], and Pelletier [1979]).

With regard to physical bodies, mass terms relate to

what could be broadly thought of as stuff eg. water, flour

and sand. Count terms relate to things. Grammatically,

mass and count terms are paired with the adjectives "less"

and "fewer" respectively, and whether a term is regarded

as one or the other in some sentence depends upon which

adjective can be correctly applied.

Mereology allows scattered or connected ('one piece')

objects. Individuation of physical objects often appeals to

notions of connectivity or coherence. But there is no logi

cal reason why this must be so. Traditional quantification

theory based on set-theoretic foundations enforces this

conception, since without the part/whole relation, identity

and diversity are the only logical relations that can hold

between objects. Although the notion of a scattered

object might at first seem odd (except perhaps to the

mathematician eg. the disjoint union of two sets) simple
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everyday examples are easy to find. Consider a closed,

pump and conduit system. We can envisage the fluid

passing through a series of chambers in its passage

around the system, yet if we were to view the space taken

up by the fluid at particular points in time, we might well

find a scattered object; yet we tend to talk of that fluid as a

unitary body, eg. 'the fluid in the pump'.

A far more unintuitive result and damaging criticism of

mereology arises from the unrestricted use of the sum

operator, which allows the union of any two objects or

bodies in the universe of discourse. Eberle [1970], points

out that if we assume a domain of physical objects, then

the sum of two distant stars can hardly be considered to

be another individual. Sortal restrictions on the sum

operator might help, eg. restricting scattered objects to

STUFFS, but awkward cases exist eg. when referring to a

broken cup scattered in bits all over the floor.

Clarke defines separated and connected regions as fol

lows: 'SEP(x,y)' is read as 'x is separated from y', and

'CON(x)' as 'x is connected':

SEP(x.y) »det DC(cl(x),y)ADC(x,cl(y))

CON(x) =def, -ayz[sum(y,z)=XASEP(y,z)]

The relation CON(x) denotes those regions that cannot be

divided into two mutually exhaustive disjoint parts.

4.6 Hollow, toroidal, simply connected and multiply

connected regions

Hollow regions are easily definable given disconnected

regions. 'HOL(x)' read as 'x is hollow' is defined as:

HOL(x) =def -,CON(compl(x))

Topologically speaking in 2-space this would generate an

annulus, in 3-space a hollow ball as distinct to solid (or

filled) ball. Note that we do not call a hollow ball in 3-

space a sphere. A sphere is characterised as a region that

is surface only (sec section 4.10).

Modelling multiply connected regions in 3-space,

requires more formal work. Only one class of toroidal

regions have disconnected complements - the prototypi

cal bicycle tyre inner tube. The solid torus does not. We

need some means to express the property of simple con

nectedness.

A simply connected object is one in which every

closed loop incident in that object can be shrunk to a point

within that object. If the object has a hole5 it is clear that

this operation cannot succeed - to shrink the loop would

require it to pass through the boundary. As an everyday

example of what we mean, a potter initially aims to pro

duce a well worked lump of clay with no air pockets -

such an object is simply connected. Subsequent pulling

or compacting the clay will not alter this property, provid

ing that the potter does not join any parts of the surface.

We assume simple connectedness as a primitive property.

'SCON(x)' is read as 'x is simply connected'. We also

assume toroidalness as a primitive property. *MCON(x)'

is read as 'x is multiply connected', 'TOR(x)' is read as

'x is a torus':

MCON(x) =def. CON(x)a-,SCON(x)

TOR(x)->MCON(x)

Taken together with the convex hull operator described

below, toroidal objects provide a useful means with which

to start modelling filters, since a filter is just a multiply

connected object with 'holes' of a particular size. Links

of an ideal chain are also solid toroidal regions, while

linked links of a chain simply have link parts passing

'through' another link's convex hull.

4.7 The convex-hull operator

In many cases we talk about objects being inside others

without the contained object being part of the container.

Thus as a simple example we often talk about water being

inside a cup, or a bird in flight inside some aviary. To be

inside does not necessarily mean the object in question is

completely sealed off from sight. We can model this rela

tion by using the notion of the convex-hull or convex-

cover of a region. Informally, the convex-hull of a body

is that region of space that would be defined if that object

were wrapped in a taught 'cling-film' membrane, or com

pletely sealed by an arbitrarily thin taught rubber mem

brane. In 2-space this would be akin to that region of

space that would be described by a rubber band stretched

to fit around some figure. The convex-hull operator can

be applied to a set of points, or a set of disconnected

regions. However, here we restrict the convex-hull

operator to apply only to individual (one piece) objects.

An object is then said to be inside another iff it is part of

the convex-hull of that object and not part of that object.

The addition of this function allows a richer description to

be given with respect to either disconnected or externally

connected regions. We introduce 'conv(x)', read as 'the

convex hull of x' as a new primitive, give axioms to relate

the function to the rest of the formalism, and define the

relations 'lnside(x.y)' read as 'x is inside y', 'P-

Inside(x.y)' read as 'x is partially inside y', 'Outside(x.y)'

read as 'x is outside y', and *W-Outside(x,y)' read as 'x is

wholly outside y'.

5 Strictly speaking the hole is a property of the surrounding

space.
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VxSCON(conv(x))

VxP(x,conv(x))

Vxy[C(x,y)->C(x,conv(y))]

Vx[conv(x)=conv(conv(x))]

Inside(x,y) =dd_ P(x,conv(y))A-TP(x,y)

P-Inside(x.y) aM PO(x,conv(y)A-,P(x,y)

Outside(x,y) =4^ DR(x,conv(y)A-P(x,y)

W-Outside(x.y) =def DC(x,conv(y))

4.8 'Surround' analogues of the part/whole relations

Consider the pictorial representations ascribed to the

part/whole relations in Figure 1, as nested circles (and not

discs). We could fill and describe them in at least two

ways. In the first case we could fill the inner circle to

make a region, and then fill the other circle so as to make

the inner a part of the outer. But we could equally fill the

configuration so that the inner is surrounded by an outer

annulus or 'crescent' as a discrete region. In the latter

case the two regions would not be related as part to

whole, but one would surround the other.

Given a domain of closed regions we can view this

new surround relation as an instance of external connect

edness. Because containment being entertained here is an

asymmetrical relation, we can see that it seems possible to

define a 'surround' analogue of NTPP(x.y), since clearly

the relation between x and y would be asymmetrical, ie. x

relative to U would always be inside y. We would like to

define a surround analogue of TPP(x,y), but this is impos

sible. This may seem surprising at first, but any difficulty

in seeing this usually arises with the way we have chosen

to represent the proper part relations pictorially. Since no

metric is being assumed, TPP(x,y) is satisfied by all the

configurations in Figure 3. Notice that with respect to the

idea of a surround analogue, either region can be the sur

round of the other; hence the necessary condition of

asymmetry fails, and the asymmetrical surround analogue

of TPP(x,y) becomes indefinable. We call this property

'inversion'. In order to capture some notion of surround

analogue of the proper part relations, we define a new

relation TPPp(x,y) which restricts the connection between

x, y (and external connection to z) to a single point.

A new function is defined: 'c-compl(x)' read as 'the

closed complement of x':

c-compl(x) =def compl(int(x))

c-compl(x), when x is closed, returns a region that

includes x's boundary.

We define 'NTS(z,x)' read as 'z is the nontangential

surround of x' , and *TS(x,y)' read as 'x is tangentially

surrounded by y' as:

NTS(x,y) =def 3z[NTPP(x,z)Ay=prod(c-compl(x),z)]

TS(x,y) =def 3zrTPP(x,z)Ay=prod(c-compl(x),z)]

sion of x and y. We therefore define a surround analogue

of TPP(x.y) so that the x,y, and z satisfying TPP(x.y) are

single point connected only. 'TPPp(x,y)' is read as 'x is a

boundary point connected tangential proper part of y'

and, 'TSp(x,y)' read as 'x is tangentially surrounded by y

(at a point)' is defined as:

TPPp(x.y) ««. P(x,y)A3z[[EC(z,x)AEC(z,y)]A

iu[Point(u)AlN(u,x)AlN(u,y)AlN(u,z)]

TSp(x.y) sM 3z[TPP(x,z)Ay=prod(c-compl(x),z)]Aiu[Point(u)AlN(u,x)AlN(u,y)AlN(u,z)]]

Given the relation between NTPP(x,y) and NTS(x,y)

we envisage the construction and use of a metalevel

rewrite rule indicated by the arrow '=>' (or '<=>' for bi

directional!ty), read as 'can be redescribed as' linking

related wffs, eg. NTPP(x.y) <=> NTS(x.y), which would

allow two modes of description between x and y; either x

as a part of y, or x surrounded by but not part of y. Bi-

directionality is set up between TSp(x,y) and its

part/whole analogue TPPp(x,y)

4.9 Metric spaces

A measure of an object is a relation between that object, a

number and unit of measure. Below we list a few sample

functions used in the formalism: the volume of x 'vol(x)'

takes a body as its argument and maps this to an ordered

tuple; the first element of which is a member from the set

of non-negative real numbers and the second a unit of

measurement cubed, eg. cm3.

The temperature of x, 'temp(x)' takes a body (or sur

face of a body) as its argument and maps this to an

ordered tuple; the first element of which is a member

from the set of reals (within some to be decided range),

and the second a unit of measurement, eg.° C:

The distance function *d(x,y)' read as 'the distance

between x and y' is defined in terms of the diameter of the

smallest sphere (described in section 4.10) that has x and

y as incident points, or in the case of regions x and y, the

diameter of the smallest sphere that externally connects

them both. The relation between a point and a region is

similarly defined. Thus there are three definitions for

d(x,y) depending on the sorts of x and y.

d(x,y) =def. iz[Spherc(z)AlN(x,z)AlN(y,z)A

Vw[Sphere(w)AlN(x,z)AlN(y,z)]-4z<w]

d(x,y) =def. iz[Sphere(z)AEC(z,x)AEC(z,y)A

Vw[Sphere(w)AEC(w,x)AEC(w,y)]-«<w)]

d(x,y) =def. iz[Sphere(z)APoint(x)AlN(x,z)AEC(y,z)A

Vw[Spherc(w)AlN(x,w)AlN(x,z)]->z<w]

As an example of how such functions can be linked to

the extant formalism, we add the following sample

axioms:

As argued above, a surround analogue of TPP(x,y)

requires an additional condition to hold to stop the inver-

Vxy[P(x,y)->vol(x)<vol(y)]

Vxy[C(x,y)<-*d(x,y)=(0,_)
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The distance operator satisifes a set of axioms defining

a metric. We introduce a ternary relation 'N(x,y,z)\ read

as 'x is nearer to y than x is to z' (along the lines of van

Benthem [1982]) and use this relation to define the rela

tion 'E(x,y,z)' read as 'y is as near to x as it is to z':

N(x,y,z) =def. d(x,y)<d(x,z)

E(x,y,z) =def -■N(x,y,z)A-lN(x,z,y)

With appropriate sortal restrictions, additional relations

and axioms from van Benthem can be introduced and

exploited.

4.10 Nested balls and the inverse square law

Many physical phenomena can be modelled by an appeal

to the inverse square law, eg. the variation of the ampli

tude of a radial wave propagating across the surface of a

pond, or the drop in illumination on a surface as the dis

tance between the light source and the surface increases.

The basis for describing the geometry of such phenomena

is rooted in the contruction of a set of uniformally nested

balls each sharing the same centre. The relative distance

between the 'shells' of this set of balls or between a set of

concentric spheres (as a ball without its interior), can be

exploited so as to provide a basis from which estimates of

the intensity of some energy source radiating through the

nest can be made. In order to set this up we first of all

assume 'Ball(x)' read as 'x is a ball' as a primitive, define

a closed ball, concentricity, and then define the nest. 'C-

Ball(x,y)' is read as 'x is a closed ball', 'CP(x,y)' is read

as 'x is a concentric part of y':

C-Ball(x) =dcf Ball(x)AClosed(x)

CP(x,y) =def C-Ball(x)A C-Ball(y) AP(x,y)A

3zuv[DC(z,u)aDC(u,v)aDC(z,v)

EC(z,y)AEC(u,y)AEC(v,y)A

E(x,z,u)aE(x,u,v)]

Vx[C-Ball(x)->3y[C-BaIl(y)A-,(x=y)ACP(x,y)]

The definition of a sphere is simply defined as the differ

ence between a ball and its interior:

Sphere(x) =def, 3y[C-Ball(y)AX=diff(y,int(y))]

5.0 Adding and exploiting empirical information.

Empirical information is added to the basic formalism by

means of a series of axioms that link eg. physical proper

ties of bodies and processes, to the relations, functions,

and linked continuity constraints (described below). For

example, gaseous bodies (not having any well defined

boundary) share some of the formal characteristics of

open regions, and like them can be contained. Wet bodies

(cf. Hayes' [1985b] complex ontology) can be simply

modelled by exploiting the interior function and predicat

ing wetness to some object x and denying this with regard

to its interior. A sponge may be viewed as the type of

object that having a wet surface, has a wet interior (or at

least soon will have!). Of course this is to view the

sponge as a body without interstices; but given the notion

of containment, and of multiply connected bodies, we can

also adopt a finer level of abstraction and view the sponge

as being full of interstices that contain the water, while

the water does not form part of the sponge. Similarly,

filtration may be modelled by stating that of two sub

stances and a filter, the one may overlap the filter, while

the other may not; or by introducing the notion of a multi

ply connected object, and impose a metric on the filter's

holes, and the 'atomic' parts of the two to be filtered sub

stances. Properties such as shear are typically linked to

the change in size of the convex hull of an object over

time, with no change in volume; and being compressed to

a change in both. Space does not allow an empirical for

malism along the above lines to be given, however we

believe the above is sufficient to see how this would

proceed.

6.0 Modelling Processes

We characterise states of affairs and events along the

lines of Galton [1984]. States of affairs are viewed as

descriptions of the world that are dissective (ie. typically

remaining true over their sub-periods), obtain (at

moments), are measurable, can be negated and are homo

geneous; while events are unitary, occur (in intervals),

have individual occurrences, can be counted, have no

negation, and have distinct phases. Thus eg. a description

that preserves some degree of topological continuity over

a period of time can be seen as a state (of affairs), while

two linked states with a change in the topological descrip

tion would be regarded as an event. Processes are then

regarded as a specified sequence of linked state changes.

The table in Figure 5 illustrates permissible topological

transformations between pairs of objects obeying certain

of the mereological relationships. The arrow '-»' indi

cates the direction of transformation allowed; the arrow

'=>' indicates possible re-description. The full table is

not given here for lack of space, but it has a large number

of entries which are blank. If only open objects are con

sidered the reduction in the search space is particularly

dramatic. Addition of taxonomic information, together

with that extracted from the empirical part of the axioma-

tisation, also serves to cut down the number of possible

transformations that two objects can make from one state

to another. This is covered in more detail below.

7.0 A sample modelling problem: phagocytosis (and

exocytosis)

The descriptive power of this formalism can be appreci

ated with the following challenge problem: how to model

the process whereby one object engulfs another and then

discharges that or another object. A familiar example of

this arises in phagocytosis and exocytosis, the processes
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used by cells to approach, surround and engulf particles,

digest them, and then expel the waste material. The

amoeba is often used to illustrate this behaviour, and is

the organism that we adopt in our model.

Figure 4 represents a part sequence of the stages an

amoeba passes through during phagocytosis. The amoeba

approaches a food particle and then projects its pseudopo-

dia to eventually wrap around and engulf the particle. In

so doing a vacuole or fluid filled space (containing the

liquid from its immediate environment) is formed, with

the food particle as part of it Enzymes within the

amoeba are directed to the vacuole and enter into the

vacuole. These break down the food into nutrient and

waste. The nutrient is absorbed into the protoplasm leav

ing the waste in the vacuole. The waste is eventually dis

carded by a similar but inverse process as the amoeba

moves forward.

Space does not allow a complete description of these

processes, although it should be reasonably clear how the

linguistic descriptions can be transformed into formal

ones. Each stage is accompanied with its formal descrip

tion, together with numbered add lists, and delete lists

(signified by "- n").

Processes such as phagocytosis and exocytosis are

named and defined by ordering a series of generalised

state descriptions. The temporal relationship between

such descriptions can be either assumed (as has been done

here) or made explicit by introducing the temporal rela

tions covered by our formalism. It is then a matter of

choice how one wishes to use this information. The "state

and state transformation" method of Green outlined in

Chang and Lee [1973] can be used within our formalism

to find a sequence of actions that will achieve a particular

goal. In this case a state is understood to coincide with a

particular description where the relation between the vari

ous elements of the configuration preserve some sense of

(in this case) topological invariance. Actions are then

construed as functions on states that indicate that one state

can be transformed into another.

The use of continuity-constraint information can follow

a similar pattern of use with the search space further

reduced by the addition of empirical information about

the domain. For example if we know that our objects are

solid, rigid bodies, we know that these bodies cannot

overlap, and as such the only transformations possible are

external connection to being disconnected and vice versa;

if one is the nontangential surround of the other no

transformation can arise! However if one object is

deformable and the other not, then many entries of the

continuity constraint table can be cut from the search

space. It is also interesting to note that the topological

operators allow different 'environments' of objects under

discussion to be separated out. This feature seems partic

ularly useful if we wish to concentrate upon eg. some pro

cess that only arises within the amoeba. Sortal restrictions

can also be exploited so that much 'useless' domain infor

mation need not clutter the search space.

8.0 Work continuing and further work

Using B(x,y) as our primitive, the 13 dyadic relations

common to interval logics (eg. Allen and Hayes [1985,

1987] have been named and defined. We also recognise a

temporal analogue for a disconnected spatial region avail

able within the formalism, and its use when modelling

activities that are eg. punctuated by periods of rest.

Additional modelling problems that have been tackled

with this formalism include the operations of a simple

pump, and the process of filtration. We hope the chal

lenge problem of modelling the 'swooshing machine'

[Hobbs et al, 1985] will be tractable, although this would

require additional work capturing eg. some notion of cau

sation, pressure and gravity.

On the computational side, independence of axioms

within a large scale formalism suggests an interesting area

of research. For example we have found the addition of

lemmas for transitivity substantially reduced the search

space of a standard resolution based theorem prover. The

use of a transitivity table along the lines of Allen [1983] is

envisaged.

9.0 Conclusions

Hayes [1979, 1985a] regarded the attempt to build large-

scale formalisms as a useful test bed for exploring naive

physics. In addition he argued that problems of search,

the efficient management of inference in complex

domains, together with pressures to produce working pro

grams, were in part responsible for a certain lack of gen

eral extendability and usefulness of AI programs. He

suggested control of useless inference (with respect to

some goal state) might be achieved by adding metalevel

information to the deductive interpreter, and anticipating

a rich structure embedded in a naive physical formalism,

thought this might be exploited towards such ends. In this

respect we see our attempt (in the spirit of Hayes' pro

gramme), as a useful benchmark to explore his ideas, and

within which the pragmatic elements of using such large

scale formalisms can be assessed, naive physical or not.

Although the formalism is incomplete, and as yet we

do not have a complete theory to implement, we are

encouraged to see many indications of how unnecessary

inference can be controlled by adopting the approach we

have outlined, apparently vindicating Hayes' expecta

tions. We are confident that the underlying richness of

the concepts captured in this formalism makes it espe

cially attractive as a general representation language

where either static, ie. spatial, or spatial/temporal infor
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iiiation is in abundance.
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Figure 1.
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Figure 3: Inversion of TPP(x.y) (region y is the whole figure)

Figure 2: The basic mereological lattice

 

Figure 5: Part of the continuity/redescription table.
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Abstract

Belief revision has been an active area of re

search in AI and philosophy in recent years.

This paper discusses two philosophical theo

ries of belief revision, namely the coherence

and foundational theories of belief revision.

Unlike most philosophical works which treat

coherence theory and foundational theory as

two opposing theories, we view the founda

tional theory as an extension of the coherence

theory of belief revision. Coherence theory

is based on the intuitive principles of mini

mal change and maximal coherence and foun

dational theory is based on the above two

principles and the foundational thesis which

states that all beliefs are justified beliefs. By

providing a possible-worlds semantics, ax-

iomatization, and soundness and complete

ness results for both the theories, the paper

presents a detailed and formal account of be

lief revision, lacking in most of the earlier

work in this area.

1 Introduction

Belief revision is the process by which an agent re

vises her set of beliefs at the current instant of time,

based on some input from the external world, to move

into the next instant of time, possibly with a differ

ent set of beliefs. Belief Revision has been an active

area of research in AI in recent years [Doyle, 1979,

de Kleer, 1986, Martins and Shapiro, 1988]. Apart

from researchers in AI, philosophers have also shown

an active interest in this area [Harman, 1986, Alchour-

ron et al., 1985, Gardenfors, 1988]. The philosophical

theories of belief revision(BR) fall into two broad cate

gories - coherence theory of belief revision(CTBR) and

foundational theory of belief revision(FTBR).

The foundational theory of beliefs views each belief

as either being self-evident or having a non-circular,

finite sequence of justifications which terminate in a

self-evident belief. FTBR [Harman, 1986] consists of

subtracting any of one's beliefs that do not have a

satisfactory justification, or adding new beliefs that

either need no justification or are justified on the basis

of other justified beliefs one has.

In coherence theory what justifies a belief is not

that it is self-evident, nor that it has been deductively

proved from a self-evident proposition, but that it co

heres with a comprehensive system of beliefs. CTBR

[Harman, 1986] states that one makes minimal changes

to one's belief in order to maintain coherence or elim

inate incoherence. Incoherency is often caused by ex

plicit inconsistency. Thus the two main aims of CTBR

are to maximize coherence and minimize changes.

A couple of examples will clearly illustrate the dif

ference between the two theories. Consider a simple

database with the following facts:

platypus(platty).

platypus(platty) - lives(platty,oz).

By consequential closure the database will also have

the belief lives(platty.oz). Now if one removes the

fact platypus(platty) from the database, the belief that

lives(platty, oz) is no longer justified. FTBR insists

that the unjustified belief lives(platty, oz) should be re

moved, while CTBR requires minimal change which

is obtained by removing platypus(platty) but continu

ing to believe that lives(platty, oz). In this situation

one might argue that FTBR provides the more intu

itive answer. However consider the following example

where CTBR gives the more inuitive answer.

The example given below is a simplified case of

the Reaction Control System (RCS) of the space

shuttle built using the Procedural Reasoning System

(PRS [Georgeff and Lansky, 1986]). Assume that the

database consists of the following facts:

pressure(he-tank, 400psi).

pressure(he-tank, X) A greater-than(X, 300psi)

—► valve(he-tank, closed).

A high pressure (> 300psi) in the helium tank will trig

ger an action which will result in the belief valve(he-

tank, closed). Now if the pressure drops below 300psi

the belief valve(he-tank, closed) is no longer justified.

However one cannot stop believing it, because the he

lium tank is still closed and will remain closed until an

explicit action to open it is carried out. This example
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clearly supports the coherence theory, rather than the

foundational theory.

Most belief revision systems considered in AI, like

TMS [Doyle, 1979], ATMS [de Kleer, 1986] and all

of their descendants follow FTBR. Also most systems

we know of have concentrated mainly on implementa

tion issues. Notable exceptions to this are the work

by Reiter and de Kleer [1987], Brown et.al. [1987]

and Martins and Shapiro [1988] which analyse the log

ical foundations of these systems. The only AI system

based on CTBR is the Procedural Reasoning System

[Georgeff and Lansky, 1986]. The most extensive study

of the logical foundations of CTBR has been carried

out in the area of philosophical logic by Alchourron,

G'ardenfors and Makinson [1985] (henceforth called the

AGM-theory).

The main aim of this paper is to study the seman

tics of belief revision based on both the coherence and

foundational theories. We also briefly discuss situa

tions under which one might prefer coherence theory

over foundational theory and vice versa.

The organization of the paper is as follows. Sec

tion 2 discusses the semantics of the coherence theory

of belief revision. The model theory is based on the

possible-worlds framework, and the axiomatization on

the AGM-theory. The important result of this sec

tion is the soundness and completeness theorem for

CTBR. Before one can discuss the semantics of FTBR

one needs a precise notion of justifications and justified

beliefs. Section 3 presents the semantics of a justified

belief system which formalizes the notion of justified

beliefs, which interestingly enough, is a second-order

concept. The semantics of FTBR is given in section 4

by postulating the foundational equation, which is as

follows:

FTBR = CTBR + disbelief propagation.

Section 5 concludes with a brief discussion on the ap

propriate situations under which one would prefer one

theory over the other and the comparison of our work

with related work.

The work presented here is a part of the first au

thors' dissertation. Due to space constraints the proofs

of the theorems and the applications of the theory will

not be discussed and the interested reader can refer to

the complete report [Rao, 1989].

2 Coherence Theory of Belief

Revision

The underlying logic on which belief revision is carried

out is a modal logic of time-dependent beliefs. The

formula BEL(t,<£) 1 will be used to denote that the

agent believes <f> at time t. A branching time temporal

logic will be used with a standard first-order interpre

tation for time. Quantifying individual constants into

the scope of modal operators is not allowed, but is al

lowed for time constants. The semantics for such a

time-dependent belief system can be given in terms

of a slightly modified Kripke interpretation. The sat

isfaction of belief formulas is given with respect to a

world and a time point which acts like an index into

the course of events defining that world [Cohen and

Levesque, 1987]. The axiomatization is a KD45 ax

iomatization [Chellas, 1980] together with the axioms

of transitivity and backward linearity for time.

Further, we shall treat the BEL operator as a

self-belief operator as in Autoepistemic Logic (AEL)

[Moore, 1985, Konolige, 1988]. A Kripke interpreta

tion with the above interpretation of beliefs will be

called an autoepistemic Kripke interpretation (AKI).

The attractive feature of such a time-dependent AE

belief system is that the stable sets or possible worlds

are uniquely determined by the first-order formu

las and universal AE beliefs (formulas of the form

VrBEL(r,<^)) of the system. This feature will be ex

ploited in discussing the dynamics of the belief system.

Let the agent at time t and world w receive a first-

order formula <f> from the external world. Ruling out

inconsistent possible worlds leaves us with the follow

ing three relationships between the formula <j> and the

world w at time t: (1) the agent believes in <j> at t, (2)

the agent believes in -vj> at t, and (3) the agent does

not believe in <j> nor -><£ at t and hence the agent is un

committed about <f>. By dynamics of belief systems or

belief revision we mean the process by which an agent

moves from one of the three regions (1, 2, or 3) to any

of the other two. Ignoring the trivial transitions of re

maining in the same state we are left with six different

transitions:

1. Expansion: Uncommitted state —► Belief in <j>.

2. N-Expansion: Uncommitted state —► Belief in

3. Contraction: Belief in <j> —<■ Uncommitted state.

4. N-Contraction: Belief in -><j> -+ Uncommitted

state

5. Revision: 2 Belief in -«j> —+ Belief in <j>, and

6. N-Revision: Belief in <p —+ belief in -«j>.

The terminology and approach is an extension of the

AGM-theory. While their approach is non-modal and

at the meta-level, we introduce modal operators and

carry out the analysis at the object level.

Three dynamic modal operators, EXP, CON and REV

are introduced to denote expansion, contraction and

All modal operators introduced in this paper are also

agent-dependent. For the sake of simplicity we ignore the

argument denoting agents. The reader can find the detailed

version in the complete report [Rao, 1989].

2 The word "belief revision" will be used in the more

general sense to denote dynamics of belief systems and the

word "revision" will be used in the more restricted sense

as defined above.
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Figure 1: Selecting the closest worlds

revision respectively. Thus EXP(t, <p, u) is read as 'the

expansion by the agent at t with respect to <f> is u',

where 0 is a first-order sentence and t and u are time

points. In fact, u is the next time point to t. Note

that there can be more than one next instant, as the

underlying temporal logic is a branching time temporal

logic. Strictly speaking there is no need for the modal

operator REV as it can be defined by using EXP and

CON. All other operations can be defined in terms of

EXP and CON.

2.1 Possible-worlds Semantics

The semantics of dynamic operators is based on se

lection functions, which select some possible worlds

as being closer to the current world than the others

[Lewis, 1973]. When the agent performs expansion or

contraction, he is said to move into one of these closer

worlds and designate these worlds as the worlds of the

next time instant(s). Let us say that we have got a

proposition p in some world w at time tl and the agent

expands with r. After expansion, she can move into a

time point t2, where p and r are true or a time point t3

where only r is true or a time point t4 where p, q and

r are true and so on. Amongst the different alterna

tives, we would like the agent to choose only some of

them, based on the the principles of minimal change

and maximal coherence. According to these princi

ples the selection function for expansion, or expansion

function, denoted by £, should choose the time point

t2, where p and r are true. The other time points are

also accessible from tl but all of them have to pass

through t2. Thus t3 can be obtained from t2 after a

contraction with respect to p, and t4 from t2 after an

expansion with respect to q. The result of the selec

tion function is usually a set of time points. This is

illustrated in Figure 1. The rectangular box labelled

tl actually denotes the formulas in world w at time tl.

Similarly the box labelled t2 denotes the formulas in

world w at time t2 and so on. Whenever it is unam

biguous we shall drop the world argument and refer to

the formulas by their time index.

The interpretation for this language and the seman

tics of the dynamic operations are formally defined as

follows:

Definition 1 : A dynamic coherence interpretation is

a tuple, CI = (£ , C, AKI), where AKI is an autoepis-

temic interpretation, S is an expansion function and

C is a contraction function. The autoepistemic Kripke

Interpretation AKI is a tuple, AKI = (W, B, TU, X,

U, M), where W is a set of worlds, B is the accessibility

relation for beliefs, TU is a set of time points, ^ is a

partial order on TU, U is a set of individuals and M is

the meaning function. The expansion and contraction

functions map W, TU and 2^ to 2TU .

The variable assignment VA and term assignment

TA are defined as in standard first-order temporal

logic.

Definition 2 : A dynamic coherence interpretation

CI, satisfies a well-formed formula xp, at world w and

time v with variable assignment VA (written as CI, w,

v |= ^>[VA]) given the following conditions:

1. (a) CI, w, TA(t) \= EXP(t, <j>, u)[VA] iff TA(u) G

£(w, TA(t), \\<p\\CI).

(b) CI, w, v f= EXP(t, <p, u)[VA] iff CI, w, TA(t)

|= EXP(t, <p, u)[VA].

2. (a) CI, w,TA(t) |= CON(t, <j>, u)[VA] iff TA(u) €

C(w, TA(t), \\4>\\CI).

(b) CI, w, v |= CON(t, </>, u)[VA] iff CI, w, TA(t)

|= CON(t, <p. u)[VA].

3. CI, w, v \= REV(t, <?, u)[VA] iff CI, w, v |= CON(t,

~4, x)[VA] and CI, w,v|= EXP(x, <j>, u)[VA].

4. The satisfaction of all the other wff's of this lan

guage are defined in the usual way.

The notation ||0||c/ stands for all the worlds of the

interpretation CI that satisfy <p. More formally, ||0||c/

= {w | CI, w, t \= 4> for all t G TU}. In the above defini

tion <p is a first-order sentence. The unique properties

of AEL allows us to restrict our attention to first-order

sentences rather than arbitrary belief formulas, while

performing expansion, contraction and revision. Con

ditions l.a and 2. a give the satisfaction of the dynamic

formulas at a given world and the time point in which

the operation is being carried out. Conditions l.b and

2.b provide the satisfaction conditions at all other time

points. These conditions are required as we need to

evaluate the truth of the dynamic formulas, not only

at the time point in which they are being carried out,

but also all the other time points as well.

Although we have given the semantics of expansion

and contraction in terms of the selection functions, £

and C, we have not imposed enough semantic condi

tions on these selection functions in order to select the

closest worlds. This is done in the next section by

providing the axioms, whose analogous semantic con

ditions constrain the worlds. A constructive procedure

for S and C is given elsewhere [Rao and Foo, 1988].

2.2 Axiomatization

The axioms of expansion, contraction, and revision

are listed in Appendix - I. The Axiom of Inclusion

(AE1), Axiom of Preservation of Beliefs (AE2),
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Axiom of Trivial Expansion (AE3), and Axiom

of Monotonicity (AE4) enforce the beliefs that the

agent should hold after expansion. But they do not

rule out the possibility of the agent acquiring beliefs

which are in no way related to the belief, say <£, with

respect to which the expansion is being carried out nor

the original world. In other words we need to state that

the only beliefs after expansion are the beliefs before

expansion and the belief in <j> and all its consequences.

This is expressed by the Axiom of Minimization of

Beliefs (AE5). We also need an inference rule (RE1)

which states that expansions with respect to equiva

lent formulas are equivalent.

The Axiom of Exclusion (AC1), Axiom of

Minimization of Beliefs (AC2), and Axiom of

Trivial Contraction (AC3) are satisfied by contrac

tion and are similar to the corresponding axioms of

expansion. The axiom of monotonicity is not satisfied

by contraction. This is because contraction reduces

the beliefs of the agent and is therefore non-monotonic

in nature. The axiom (AC4) states that whatever is

lost during contraction is recovered during expansion.

As we gain as little as possible during expansion (due

to the Axiom of Minimization of Beliefs), we have to

loose as little as possible for the axiom (AC4) to hold.

This implies that the axiom (AC4) performs the func

tion of miniming non-beliefs and is called the Axiom

of Minimization of Non-beliefs (AC4). We also

need an inference rule (RC1) which is analogous to

(RE1).

The Axiom of Revision(ARl) which incorpo

rates the Levi identity [Gardenfors, 1988] states that

revision with respect to <j> is equivalent to contraction

with respect to -><j> followed by expansion with respect

to <j>.

Axioms (AE1) - (AE5) and (AC1) - (AC4) capture

the proof-theoretic notion of minimal change and max

imal coherence for expansion and contraction, respec

tively. Analogous to these axioms one can specify se

mantic conditions that capture the semantic notion of

closest possible worlds [Rao, 1989]. The class of mod

els whose £ (C) selection function satisfies these se

mantic conditions are called ^-models (C-models). We

shall refer to the modal system KD45 together with

the above axioms and inference rules as the Coher

ence Modal System or CS-modal system. We define

the class of coherence T-models as models whose B

relation is a Z?-model (i.e. B is serial, transitive and

euclidean), £ is a £-model and C is a C-model. The

proof of the following theorem and the semantic con

ditions are given in the complete report [Rao, 1989].

Theorem 1 : The coherence modal system or the CS-

modal system is sound and complete with respect to

the class of coherence P-models.

The above result is very important as it establishes,

for the first time, a sound and complete theory of belief

revision.

3 Justified Belief System

The belief system discussed in section 2 is inadequate

for FTBR as it does not model justifications for be

liefs. Beliefs are not only time-dependent, but also

justification-dependent. The word justification is used

in a somewhat broader sense than the usage of justi

fications in TMS. In fact the usage here is closer to

the usage in some philosophical circles [Pappas and

Swain, 1978]. A justification for a formula 0 is a rea

son for believing the formula <j>. A reason that justifies

a formula^ will be taken to be any wff. For example, a

person John believes that the roads will be icy because

he has sufficient reason to believe so - namely that the

forecast predicts snow. Thus the formula roads(icy) is

justified by the formula forecast-predicts(snow).

It is not necessary that a formula be justified by a

single atomic formula. It can be any complex formula.

For example /? can be justified by the formula a A

(a —► /?). A formula can also have multiple justifi

cations. For example, in addition to the above justi

fication the formula /? could also be justified by 7 A

The above justification a A (a —► j3) deductively

implies the formula /?, hence it is called a deductive

justification. TMS and ATMS make use of deductive

justifications extensively. But all justifications need

not be deductive, some of them can be inductive jus

tifications. Consider the belief of John that the train

will be on time today. This belief of John may not be

justified by John being absolutely sure that the train

will be on time or by some other beliefs which de

ductively entail the train being on time. It might be

justified by an inductive argument, namely that John

has been catching the train for over an year and it has

always come on time, so he believes that it will come

on time today also. We shall allow both deductive and

inductive justifications of formulas. Although we allow

inductive justifications we do not describe how such in

ductive justifications can be obtained. For obtaining

such justifications one needs sophisticated mechanisms

of hypothesization and generalization, which is beyond

the scope of this paper. 3

Justifications are also time dependent. Today one

might believe that rising commodity prices is sufficient

to justify the rising value of the Aussie dollar, but later

on one might discover that there are many more factors

involved in the rise of the dollar. This will result in a

corresponding change in justifications.

By the very definition of foundational theory all the

formulas are either incorrigibly justified (i.e. they are

self-evident) or are justified by a non-circular and ter

minating chain of justifications. The onus of providing

such non-circular justifications is on the user. Some

3 Formal theories of hypothesization is an active area of

research in machine learning. Delgrande [1987] describes

an elegant formal theory of hypothesization.
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would prefer the semantics to handle the circularity.

However, this restriction is analogous to the case in

classical logic, where the onus of specifying a consis

tent set of formulas is on the user.

Interestingly enough, an agent is not logically omni

scient with respect to his justified beliefs, even though

he is omniscient with respect to his beliefs. In other

words, the agent's justified beliefs are not closed under

implication, not closed under valid implication and the

agent does not justifiably believe all valid formulas.

This resource-bounded justified belief system will be

discussed first. This will be followed by axioms of de

ductive justifications which force logical omniscience.

An interesting aspect of these axioms is that they al

low the system to derive the (deductive) justifications,

rather than being specified by the user. This partially

alleviates the problem of having the user specify the

justifications for beliefs.

Unfortunately, the need for reasoning about chains

of justifications makes the justified belief system a

second-order modal logic. One needs to quantify over

justifications which are themselves modal formulas. As

a result the semantics as well as the axiomatization

will be second-order. The main disadvantage of such a

logic is that one can give only a weak completeness re

sult. However the logic does shed some new light into

the nature of the foundational theory of belief revision.

To summarize, we shall consider justifications to be

complex formulas which are time dependent. 4 Also

we shall assume that all justifications are either in

corrigibly justified or have a non-circular, terminating

chain of justifications ending at incorrigibly justified

beliefs.

3.1 Syntax of Justified Belief System

The syntax of justified belief system is given by a

second-order language. Apart from the standard prim

itives and operators of the time-dependent belief sys

tem (discussed in section 2), the language consists of

n-place predicate variables and the modal operators

JUSTIFY and JBEL. The set of n-place predicate let

ters, say P, of first-order logic will be referred to as

n-place predicate constants. The modal operator JUS

TIFY^, 0, a) denotes that a is the justification of 0

at time t. JBEL(t, 0, a) denotes that the agent justi

fiably believes in <f> at t because of a. The well-formed

formulas (wff) of the language can now be defined as

follows:

1. If si sn are first-order terms and 0 is an n-

place predicate variable or an n-place predicate

constant then 0(«i sn) is a wff.

2. If t and u are temporal terms, r is a temporal

variable, £ is a predicate variable, <j>i, 02 are wff,

-0i, 0i A 02, BEL(t, 00, JUSTIFY(t, 0i, 02),

JBEL(t, 4>u 02), Wi) Vr(0i) are wff.

Some of the wff of the language are as follows: (a)

JBEL(t, 0, true) - belief in 0 at t is incorrigibly justified,

(b) JBEL(t, <j>, -BEL(t, a)) and (c) V& 3& JUSTIFY(t,

6. 6).

3.2 Semantics of Justified Belief System

The semantics ofjustified belief system is an extension

of the Kripke interpretation. To provide the semantics

of the modal operators JUSTIFY and JBEL, we intro

duce a justification function, denoted by J . As both

the modal operators are time dependent, the justifica

tion function J is also time dependent. As formulas

are evaluated at each world, the function J depends

on the world at which it is being evaluated. The main

purpose of the justification function is to map a given

formula to a set of formulas, each one of which is a

justification for the given formula. It is convenient to

express a formula as a set of worlds where the formula

is true. Thus justification functions are mappings from

a set of worlds to a set of set of worlds. More for

mally, the justification function J, is a mapping from

W (worlds), TU (time points) and 2W (set of worlds)

to 22 (set of set of worlds).

In a Kripke interpretation one specifies the truth

value of atomic formulas for each world, at each

time point, and the accessibility relation B for beliefs.

Based on this the evaluation of all other formulas are

carried out. In a justified belief system, in addition

to the above, one has to specify the J function, giv

ing the justification for each formula (not just atomic

formulas). 5 This requirement is contrary to the tradi

tional philosophical thinking that the meaning of com

plex sentences depend only on the truth conditions of

atomic formulas. We treat justification functions at

the same primitive level as giving the truth condition

to atomic formulas. The justifications are part of the

meaning of sentences of the form 'the agent justifiably

believes 0 because of a' and 'the agent is justified in

<j> by o' and hence should be stated before hand. Our

position is more in line with the philosophy of Pol

lack [1974] who argues that only certain concepts can

be analyzed in terms of truth conditions alone and all

other concepts need justification conditions as well as

truth conditions. Such concepts are called ostensive

concepts. According to his theory of epistemic justifi

cation, one has to specify the justification conditions

as well as the truth conditions for analyzing the mean

ing of sentences.

The process of evaluating the formulas of the justi

fied belief system is illustrated with an example.

4 Justifications are also agent-dependent. Once again we

ignore this dependency for the sake of simplicity.

5 One can introduce a language which is less expressive

than the one given here, by preventing nesting of justifi

cations. For such a language it is sufficient to specify the

justifications of only the atomic formulas.
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Example 1 : Consider the situation where the

formulas platypus(platty) and platypus(platty) —►

lives(platty, oz) are incorrigibly justified and the for

mula lives(platty, oz) is justified by the formula platy-

pus(platty) A (platypus(platty) —► lives(platty, oz) for the

agent at time tl and world WO. From this it is not very

difficult to conclude that the formulas JUSTIFY(tl,

platypus(platty), true), JUSTIFY(tl, platypus(platty) -*

lives(platty, oz), true) and JUSTIFY(tl, lives(platty, oz),

platypus(platty) A (platypus(platty) —► lives(platty, oz)))

will be satisfiable. Also one would expect the for

mula platypus(platty) A (platypus(platty) —► lives(platty,

oz)) to be justified by the conjunction of the formu

las that justify platypus(platty) and platypus(platty) —►

lives(platty, oz). In other words, from the above one

would expect JUSTIFY(tl, platypus(platty) A (platy-

pus(platty) —* lives(platty, oz)), true) to be satisfiable.

In order to provide the meaning of BEL and JBEL

formulas, the accessibility relation B and the truth

value of the atomic formulas at all the accessible

worlds have to be provided. Let us assume that platy-

pus(platty) and platypus(platty) —► lives(platty, oz) are

true in the current world WO and all the accessible

worlds. Therefore, lives(platty, oz) is true in the current

world and all the accessible worlds. Thus the formulas

BEL(tl, platypus(platty)), BEL(tl, platypus(platty) -»

lives(platty, oz)) and BEL(tl, lives(platty, oz)) are satis

fiable. Now how does one evaluate the claim that belief

in lives(platty, oz) is justified? In other words, how

does one evaluate the formula JBEL(tl, lives(platty,

oz), platypus(platty) A (platypus(platty) —» lives(platty,

oz)))? It is reasonable to stipulate that the above for

mula is satisfiable iff the following conditions are sat

isfied,

1. Iives(platty, oz) is believed by the agent at time tl,

2. Iives(platty, oz) is justified by platypus(platty) A

(platypus(platty) —► lives(platty, oz)) for the agent

at time tl, and

3. the justification platypus(platty) A

(platypus(platty) —+ lives(platty, oz)) is justifiably

believed by the agent at time tl,

Notice that the evaluation of JBEL formulas is recur

sive. The recursion ends with incorrigibly justified be

liefs. If we impose the condition that JBEL(tl, true,

true) is always true, then the justified belief in con

dition 3 is satisfied. As condition 1 and 2 are also

satisfied the formula JBEL(tl, lives(platty, oz), platy-

pus(platty) A (platypus(platty) —► lives(platty, oz))) is

also satisfiable. □

In the above example the formula lives(platty, oz) had

to be justified only in the current world (condition 2).

It was not required that lives(platty, oz) be justified by

platypus(platty) A (platypus(platty) —► lives(platty, oz)))

in all the B-accessible worlds. Justifications which sat

isfy the latter condition will be called strong justifica

tions as opposed to weak justifications of the example.

The interpretation JI of the justified belief system

is defined as follows:

Definition 3 : The second order interpretation JI, is

an infinite sequence JI = (W, B, TU, <, U, M, U\, U2,

...) where

1. W, B, TU, •< and U are as defined before.

2. Each Un (n = 1,2,...) is a nonempty set of n+2-

tuple (w, t, «i sn), where t G TU, w £ W and

each of Si, ..., sn G U.

3. M is a tuple M = (Ml, M2, M3) such that the

following conditions are satisfied:

(a) For any individual constant c, Ml(c) G U

(b) For any n-place predicate constant p of P,

M2(p) € UN (n = 1, 2, ..)

(c) For any itemporal constant t, M3(t) G TU

The variable assignment VA is given for predicate vari

ables also. Thus VA = (VAT, VAV, VAP), where VAT,

VAV and VAP are the variable assignments for tempo

ral variables, individual variables and predicate vari

ables, respectively. For example, the variable assign

ment for predicate variables is defined as follows: for

any n-place predicate variable f , VAP(£) G Un- The

term assignment for temporal and first-order terms are

defined in the usual way. For predicate constants and

variables they are an extension of the first-order case.

Definition 4 : A justified interpretation JI, satisfies

a wff %l> under the variable assignment VA at world w

and time v (written as JI, w, v f= ^[VA]) given the

following conditions,

1. JI, w, v |= </>(*!, ...,sn) iff (w, v, TA(s!), ...,

TA(s„)) G TA(<^), where 4> is a predicate constant

or predicate variable.

2. (a) JI, w, TA(t) |= JUSTIFY(t, <j>, a)[VA] iff

|M|f G J(w, TA(t), |H|fO.

(b) JI, w, v (= JUSTIFY(t, 4>, a)[VA] iff JI, w,

TA(t) |= JUSTIFY(t, 4>, a)[VA].

3. (a) JI, w, TA(t) (= JBEL(t, <f>, a)[VA] iff

i. JI, w, TA(t) |= BEL(t, 4>)[VA],

ii. JI, w, TA(t) |= JUSTIFY(t, <f>, o)[VA] and

iii. JI, w, TA(t) [= 3/?JBEL(t, a, 0)[VA).

(b) JI, w, v (= JBEL(t, <)>. o)[VA] iff JI, w, TA(t)

(= JBEL(t, <j>, q)[VA].

4. The satisfaction of formulas of the form -><j>, 4>\ A

(j>2, Vx(</>(x)) and BEL(t, <f>) are as defined earlier

for the Kripke interpretation KI.

The most interesting aspect of the above semantics is

the recursive nature of the operator JBEL. Condition iii

of the definition recursively goes through the chain of

justifications, checking if each one of the justifications

is justifiably believed. According to the foundational

theory such a chain of justification should finally ter

minate at an incorrigibly justified belief. Condition
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3.a.i of an incorrigibly justified belief will be JBEL(t,

true, true), which we take to be trivially satisfied. 6

Condition 3 of the above definition captures the no

tion of weak justification. Strong justification is cap

tured by strengthening condition 3.a.ii of the above

definition. This modification is given below.

3'. (a) JI, w, TA(t) |= JBEL(t. <j>, a)[VA] iff

i. JI, w, TA(t) |= BEL(t, <j>)[VA],

ii. JI, w, TA(t) \= BEL(t, JUSTIFY(t, <b,

cr))[VA] and

iii. JI, w, TA(t) (= 3/?JBEL(t, a. 0)[VA].

Condition 3'.a.ii ensures that <f> is justified by or not

only in the current world, but also in all the in

accessible worlds.

3.3 Axiomatization

The axioms of second-order logic are similar to that of

first-order logic, except that wherever individual vari

ables and individual constants occur, predicate vari

ables and predicate constants can also occur. In addi

tion the following comprehension axiom schema [Rob-

bin, 1969] is needed. This axiom states that every wff

defines a predicate.

3^Vri,..,x„ £(xi xn) = <j>, where f is any

n-place predicate variable not occurring free

in <j> and x\, ..., xn are individual variables.

We shall refer to the above set of modified second-

order axioms as (AJ1) and the modified second-order

inference rules as (RJ1).

The rest of the axioms of justified belief system is

given in Appendix-II. Axiom (AJ2) captures the se

mantics of justified beliefs. It states that the agent at

time t justifiably believes ^ because of a iff the agent

believes in 4>, <j> is justified by a, and a is justifiably

believed because of /?. There is no need for any se

mantic condition for (AJ2) as it directly captures the

semantic conditions 3.a and 3.b of JBEL.

Axiom (AJ2) captures the notion of weak justifica

tion. The semantic conditions 3'.a and 3.b of strong

justifications is captured by axiom (AJ2'). According

to the foundational theory all justified beliefs will ter

minate in an incorrigibly justified belief. By axiom

(AJ2) all incorrigibly justified beliefs end with a for

mula of the form JBEL(t, true, /?). We shall assume

that the formula true is trivially justified by true itself.

This is given by axiom (AJ3). In addition to the above

axioms, one more inference rule is required. As we are

following the minimal model semantics [Chellas, 1980]

for the ^-function, we require the inference rule (RJ2)

which states that if a formula is justified by another

formula a then it is also justified by a semantically

equivalent form of a.

We shall refer to the axioms (AJ1)-(AJ3) and infer

ence rules (RJ1) and (RJ2) as the JS-modal system of

6 An appropriate axiom will be introduced in the next

section to make this so.

a weakly justified belief system. Models of this belief

system whose J function satisfies certain conditions

[Rao, 1989] and whose ZJ-relation is a 6-model, is called

a ,7-model. Replacing definition 3 by 3' gives the JS'-

modal system of a strongly justified belief system and a

corresponding j7'-model.

If in a second-order interpretation JI, each Un

(n=l,2,...) consists of all the n-place predicates on

U, and the interpretation assigns the identity rela

tion among the individuals of U to the predicate con

stant '=', then it is called a principal interpretation

[Rogers, 1971]. The corresponding model is called a

principal model. They are the standard interpreta

tions/models of second-order logic. The other inter

pretations/models are those in which either not all of

the domains of n-place predicates are complete in the

above sense, or some predicate other than the identity

relation is assigned the symbol '='. Such interpre

tations are called secondary interpretations [Rogers,

1971] and their corresponding models, secondary mod

els. Unfortunately the completeness of second-order

logic can be shown only with respect to both the prin

cipal and secondary models, and cannot be shown with

respect to the principal models alone. As secondary in

terpretations are nonstandard interpretations, the re

sulting completeness result is considered a weak com

pleteness result. The soundness and completeness of

the justified belief system can now be stated as follows:

Theorem 2 : The JS-modal system (JS'-modal sys

tem) is sound and complete with respect to the class

of all principal and secondary ^7-models (,7'-models).

3.4 Deductive Justifications

It is interesting to note that the justified belief systems

introduced in the previous sections are not logically

omniscient. The beliefs of the agent are still logically

omniscient, but the justified beliefs of the agent are

not logically omniscient. This is because justified be

liefs are based on minimal model semantics, with very

little restrictions on how the justifications should be

constructed. Thus it is possible for the following for

mulas to be satisfiable.

1. JBEL(t, p, r) A JBEL(t, p — q, s) A -JBEL(t, q, m)

is satisfiable if m is the only formula that justifies

q and m is not believed by the agent at t.

2. p — (q — p) is valid but JBEL(t, p, r) A -JBEL(t,

q —► p, s) is satisfiable if s is the only formula that

satisfies q —► p and s is not believed by the agent

at time t.

3. p V ->p is valid but JBEL(t, p V ->p, r) is satisfiable

if r is the only formula that justifies p V ->p and r

is not believed by the agent at time r.

Various conditions can be imposed on the justifica

tions to reflect how these formulas have been derived.

As the conditions reflect the deductive rules of logic

they will be called deductive justification axioms. The
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axioms discussed in the previous section do not impose

any conditions on how the justifications of conjunctive,

disjunctive and negated formulas relate to the justifica

tions of atomic formulas. These conditions can be im

posed by adopting axioms (AJ4)-(AJ6). Axiom (AJ4)

states that if a justifies 4> then it cannot justify the

negation of fa as well. This prevents logically incon

sistent states from being justified. Axiom (AJ5) states

that the conjunction of formulas <f>\ and fa is justified

by the conjunction of their respective justifications ai

and c*2. Axiom (AJ6) states the same for disjunction

of formulas.

It is interesting to note, that in axiom (AJ5), if fa

is the negation of fa, then a i A 0:2 gives the reason

for the inconsistent formula fa A ->fa. One can trace

the justifications of «i A a^, the justifications for its

justifications and so on, till one ends up at incorrigible

justifications which are responsible for the inconsis

tency. This is similar to the way TMS recursively goes

through the chain of justifications to identify the cul

prits causing the inconsistency. This process is called

dependency-directed backtracking in TMS.

Axiom (AJ7) states how deductive justifications are

to be created. If fa is justified and fa —* fa is jus

tified, then fa is justified by the formula fa A (fa

—► $2)- This is nothing but the principle of modus

ponens. The next two justifications are the axioms

of introspection of justifications. Axiom (AJ8) states

that a formula <j> is justified by a iff the fact that it

is justified is itself incorrigibly justified. Similarly, ax

iom (AJ9) states that a formula <j> is not justified by a

iff the fact that it is not justified is itself incorrigibly

justified.

In addition to the above axioms, the inference rule

(RJ3) which states that all valid formulas are always

incorrigibly justified is also needed. This makes the

system logically omniscient with respect to valid for

mulas.

We shall refer to the axioms (AJ1)-(AJ9) and in

ference rules (RJ1)-(RJ3) as the deductive JS-modal

system of a weakly justified belief system. Models of

this belief system whose J function satisfies the cor

responding semantic conditions and whose ^-relation

is a B-model, is called a deductive J-model. Simi

larly we have deductive JS'-modal system and deduc

tive J '-models for a strongly justified belief system.

Once again the above modal systems are sound and

complete only with respect to both the principal and

secondary models.

Theorem 3 : The deductive JS-modal system (de

ductive JS'-modal system) is sound and complete with

respect to the class of all principal and secondary de

ductive i7-models (j7'-models).

4 Foundational Theory of Belief

Revision

Before discussing the dynamics of justified belief sys

tems, we make a simplifying assumption that justifi

cations do not change from one time to another. In

other words the addition and removal of justifications

will not be discussed. The expansion and contraction

functions discussed in section 2 will not be extended

to handle justification formulas. They will still be re

stricted to first-order formulas. Note that this assump

tion does not prevent the justified beliefs from being

dynamic. As justified beliefs depend on justifications

and beliefs, we study the dynamics of justified beliefs

by keeping the justifications constant, but changing

the beliefs and studying the effects of these changes

on the justified belief system.

In section 2, the dynamics of belief systems was

studied with respect to an autoepistemic belief sys

tem, where the belief operator was treated as a self-

belief operator. Accordingly, the interpretation of be

liefs was with respect to an autoepistemic Kripke in

terpretation, AKI. Similarly a justified belief system

whose belief operator is treated as a self-belief opera

tor will be called & justified autoepistemic belief system

and the corresponding interpretation will be denoted

by AJI. As the dynamics will be discussed with respect

to an justified autoepistemic belief system the dynamic

operations will be restricted to first-order formulas.

The language under discussion for FTBR is the lan

guage of justified belief system together with the dy

namic operators of coherence theory, namely EXP,

CON and REV and analogous dynamic operators of

foundational theory, denoted by FEXP, FCON and

FREV. The wfF's of the language are defined in the

usual way.

4.1 Semantics

The main difference between coherence and founda

tional theories is that the coherence theory does not

concern itself with justifications, while the founda

tional theory does. As a result, CTBR allows beliefs

which are not justified, while FTBR insists that all be

liefs be justified beliefs. In other words, assuming that

one starts at time t with all beliefs being justified be

liefs, FTBR insists that after expansion/contraction,

say at time u, the following expression, which we shall

call the foundational thesis, is satisfied:

BEL(u, </>)-+ JBEL(u, fa a).

In a FTBR, for any time point t whenever a formula

<j> is believed it is justifiably believed and vice versa.

In order to enforce the foundational thesis, after

carrying out expansion/contraction according to the

coherence theory, one should check if there are any

formulas which are believed but are not justifiably

believed. For foundational expansion/contraction all

such formulas should be disbelieved, or removed from
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the current state of beliefs. This process of remov

ing beliefs which are not justifiably believed should be

carried out till all the beliefs in the system are justi

fied beliefs. This process is called disbelief propagation

[Martins and Shapiro, 1988]. In other words, one can

postulate the following equation, which links founda

tional and coherence theories:

FTBR = CTBR + Disbelief Propagation.

This equivalence provides the semantics and axioma-

tization of FTBR. This approach has the advantage

of directly comparing both theories of belief revision.

However, an independent characterization of FTBR

will help in verifying the foundational equation.

As in section 2 the semantics of the operators, FEXP,

FCON, and FREV are given with respect to two se

lection functions T£ and TC, called the foundational

expansion function and foundational contraction func

tion respectively. Both these functions operate on the

current time point, world and a set of worlds where a

given formula is true, and map them to a set of time

points. In section 2, we saw that the selection func

tions f. and C, selected certain time points to be more

closer than others based on the two main principles

of minimal change and maximal coherence. The se

lection functions T£ and TC also select certain time

points to be more closer than others. But the notion

of closeness in the foundational theory depends on the

following three criteria:

1. minimal change - as few beliefs/non-beliefs as is

required should be added or removed

2. maximal coherence - as many beliefs/non-beliefs

as possible should be preserved

3. foundational thesis - all beliefs should be justifi

ably believed

It is quite obvious that what is close according to the

coherence theory and selection functions £ and C may

not be close according to the foundational theory and

selection functions TS and TC, and vice versa. The

following example illustrates the operation of the se

lection functions.

Example 2 : Consider the situation given in Fig

ure 2. Let us say that at time tl one wants to perform

a foundational expansion with respect to the formula

p. Some of the possible worlds at time points t2, t3,

t4, t5 and t6 are shown in the figure. The question

is which one of these worlds should the agent choose?

The world at time t2 satisfies the criteria 1 and 2 of

closeness but not 3. This is because the formulas q

and r are believed but not justifiably believed. Worlds

at t3 and t4 also do not satisfy condition 3, as they

each contain one belief which is not a justified belief,

namely q and r respectively. The world at t5 satisfies

all the three conditions, and hence should be chosen

by the function T£, as the closest world to tl. The

world at t6 satisfies the conditions of minimal change

tl:

->Bp, J(p, true)

Bp —' q, ->Bp-

 

t2:

P. Bp, J(p true)

-.Bp — q, -.Bp— r

1. Bq, J(q -.Bp A -Bp-q)

r, Br, J(r, -.Bp A ->Bp-r)

;, Bs, J(s, true)

t3:

P, Bp,J(P i true)

-.Bp - q. ->Bp- r

-Bq, J(q, -.Bp A -.Bp-*q)

r, Br, J(r. -.Bp A -■Bp-
»0

5, Bs, J(s. true)

t4:

Br, J(r, -.Bp A

5, Bs, J(s, true)

.Bp-r)

p, Bp, J(p, true)

-.Bp — q, -.Bp—-r

q, Bq, J(q, ->Bp A ->Bp—>q)-»q, Bq, J(q, -.Bp A -.Bp—>q)

 

Br, J(r, -.Bp A -.Bp-

>, Bs, J(s, true)

•0

t5;

p, Bp, J(p, true)

-.Bp —♦ q, ->Bp—»r

-.Bq, J(q, -.Bp A ->Bp-q)

->Br, J(r, -.Bp A -iBp—r)

5, Bs, J(s, true)

t6:

P. Bp, J(p , true)

-■Bp— q -iBp— r

-Bq, J(q, -.Bp A -.Bp--q)

-.Br, J(r, -.Bp A ---Bp--0

-Bs, J(s, true)

Figure 2: Example of Foundational Expansion
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Figure 3: Foundational Equation

and foundational thesis but not maximal coherence,

because there is no necessity to give up belief in s. It

is clear from the formulas in tl to t6, that t2 can be

obtained from tl after an expansion with respect to p,

t3 from t2 after a contraction wrt q, t4 from t2 after

a contraction wrt r, t5 from t3 after a contraction wrt

r, t5 from t4 after a contraction wrt q, and t6 from t5

after a contraction wrt s. This is shown in Figure 3.

It is not difficult to deduce from the above that foun

dational expansion involves expansion followed by re

peated contractions of formulas which are believed but

are not justifiably believed. Hence t5 is obtained from

tl after a foundational expansion wrt p. In both fig

ures the time argument has been ignored in the modal

formulas and the selection functions for the sake of

clarity. □

In the above example, foundational expansion re

sulted in an expansion followed by a series of contrac

tions. Similarly foundational contraction results in a

series of contractions.

The above example provides an intuitive picture

as to how the selection function chooses time points

whose worlds satisfy the three conditions of closeness

for a foundational theory. Now we formalize this no

tion. The semantics of the language is given by a dy

namic foundational interpretation, denoted by FI. It

is defined as follows:

Definition 5 : The dynamic foundational interpreta

tion, is a tuple FI = (T£, TC, S, C, AJI), where

• TE and TC map, W (worlds), TU(time points)

and 1W (set of worlds where a formula is true) to

2TU (set of time points).

• £ and C are the same as in the dynamic coherence

interpretation CI, and AJI is the autoepistemic

justified interpretation.

The term assignment and variable assignment re

main the same. The satisfaction of dynamic formulas

of foundational theory, namely FEXP, FCON and FREV

are similar to the satisfaction of EXP, CON and REV;

the only difference is that the evaluation is with respect

to the interpretation FI, rather than CI. The seman

tics of other formulas remain the same. The different

properties of the dynamic operations are captured by

specifying certain semantic conditions on the selection

functions and adopting certain axioms. This is done

in the next section.

4.2 Axiomatization

In this section we shall provide an axiomatization for

foundational expansion and contraction, which will in

turn specify the semantic conditions that are to be

imposed on the selection functions TE and TC. The

axioms are listed in Appendix-Ill.

As we saw earlier foundational expansion is equiva

lent to expansion followed by repeated removal of be

liefs which are not justifiably believed, until there are

no such beliefs. Also foundational contraction is equiv

alent to contraction followed by repeated removal of

beliefs which are not justifiably believed. Thus FEXP

is defined in terms of FCON, and FCON is recursively

defined in terms of itself. These axioms are expressed

by Axiom of Disbelief Propagation in Founda

tional Expansion (AFE1) and the corresponding

axiom for foundational contraction (AFC1). The first

disjunct of both the axioms act like boundary condi

tions and are true when all beliefs are justified beliefs.

The second disjunct performs repeated contractions of

unjustified beliefs. Axiom of Foundational Revi

sion (AFR.1) is similar to (AR.1). In addition the

inference rules (RFE1) and (R.FC1) are also needed.

The axioms are given in Appendix - III and seman

tic conditions in the complete report [Rao, 1989]. The

class of models whose TE {TC) satisfies these semantic

conditions will be called the TS-model (TC-model).

The CS-modal system and the deductive JS-modal

system together with the axioms and inference rules of

foundational expansion, contraction and revision will

be called the foundational modal system or FS-modal

system. We define the class offoundational V-modelas

models which are coherence P-models and dedcutive

,7-models, and whose selection function T£ is a T£-

model and TC is a TC-model. The soundness and

weak completeness of this system is given below:

Theorem 4 : The FS-modal system is sound and

complete with respect to the class of all principal and

secondary, foundational D-models.

5 Comparison and Conclusion

The philosophical debate on whether the coherence

theory models the behavior of a rational agent better

than the foundational theory or vice versa, is inconclu

sive. However this need not deter AI researchers from

adopting either one of them. From an AI persepec-

tive, it seems as if CTBR is better suited for dynamic,

real-time domains, while FTBR can handle the more

traditional domains better than CTBR. There are two

main reasons for prefering CTBR over FTBR for real

time domains:
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• The process of disbelief propagation is time con

suming. In real-time domains where a guaranteed

response time is required (as in PRS [Georgeff and

Lansky, 1986]) it is preferable to postpone disbe

lief propagation till it is explicitly requested by

the agent, as is done in CTBR.

• In planning systems which interleave plan formu

lation and plan execution, it is undesirable (and

in some cases impossible) to disbelieve the cur

rently unjustified formulas, as was illustrated in

the RCS example in the introduction.

The major difference between the CTBRof Alchour-

r6n et al. [1985] and the theory described in section 2

are as follows: (a) the object-level logic of AGM the

ory was a simple propositional logic, whereas in our

case it is a AE belief system, (b) the dynamics was

captured at a meta-level in the AGM theory. This pre

vented them from having strong soundness and com

pleteness results as outlined here, (c) AGM theory

was restricted only to the coherence theory, whereas

we have shown that the principles can be carried over

to the foundational theory as well.

Martins and Shapiro [1988] divide the belief revi

sion problem into five different parts - (a) the inference

problem, (b) the nonmonotonicity problem, (c) depen

dency recording, (d) disbelief propagation and (e) re

vision of beliefs. The inference problem is concerned

with deriving new beliefs, given a set of premises and

certain deductive constraints. The Clause Mainte

nance System of Reiter and de Kleer [1987] and the

algebraic method of Brown et al. [1987] formalize this

problem. In our case this problem can be stated as

follows: how to derive justified beliefs given a set of

incorrigibly justified beliefs and certain deductive con

straints. The deductive justification axioms provide

the constraints and the satisfaction of justified beliefs

is given by the axiom (AJ2). The nonmonotonicity

problem is solved by allowing formulas to be justi

fied by both beliefs and lack of beliefs in other for

mulas. Like TMS the dependccy recording in our case

is justification-based. The process of disbelief propa

gation is captured by the foundational axioms of ex

pansion and contraction. In both TMS and ATMS

the revision of beliefs is carried out after an explicit

declaration of a contradiction. In our case the pro

cess of revision removes the causes for inconsistency,

if any, by contraction and then adds or expands with

the new belief. This avoids reasoning in the presence

of contradiction. The work of Reiter and de Kleer,

and Brown et al. fail to provide a logical analysis of all

the above problems discussed by Martins and Shapiro.

The SWM system of Martins and Shapiro solves all

the problems, except (b), by providing a proof theory

based on relevance logic. The FTBR outlined here pro

vides a model theory and a proof theory, and demon

strates the soundness and weak completeness of such a

theory. The systems TMS, ATMS, CMS and SWM all

perform disbelief propagation and are therefore based

on the foundational theory.

The CTBR outlined here could be implemented as a

theorem proving system. However a more fruitful ap

proach would be to modify existing TMS-like systems.

TMS essentially carries out dependency-directed back

tracking to identify the culprits causing a contradic

tion, removes one of them and then performs disbelief

propagation. A TMS based on coherence theory would

perform dependency-directed backtracking to identify

culprits causing -«j), contract them and then add <j> in

order to perform revision with respect to <j>. However

what remains to be shown is a formal proof that the

above method faithfully reflects the model theory and

proof theory outlined in section 2. A similar proof is

also needed for the FTBR.
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Appendix - I: Coherence Theory of Belief Re

vision

Axioms for Expansion

(AE1) EXP(t,0.u) — BEL(u»

(AE2) EXP(t.^.u) - (BEL(t.a) — BEL(u.a))

(AE3) BEL(t,0) A EXP(t.^.u) — (BEL(t.a) =

BEL(u.t>)).

(AE4) (BEL(t.a) — BEL(v.a)) A

EXP(t.^.u) A EXP(v,ci,y) —

(BEL(u,/3) - BEL(y,/?)).

(AE5) BEL(u,<£) — BEL(t,</>) V (EXP(t,a,u) A

BEL(u, BEL(u.a) — fa)).

(RE1) From h fa = fa infer h EXP(t,<£i,u) =

EXP(t,<fo,u).

Axioms for Contraction

(AC1) CON(t,0,u) — -.BEL(u^)

(AC2) BEL(u,0) -> BEL(t,<^) V (CON(t,a,u) A

BEL(u, -BEL(u, a) — fa)).

(AC3) -BEL(t,<£) A CON(t.0,u) -> (-BEL(t,a) =

-.BEL(u.a)).

(AC4) CON(t,^,u) A EXP(u,<£,v) — (BEL(t.a) —

BEL(v.a)).

(RC1) From h fa = fa infer h CON(t,0i,u) =

CON(t,<^2,u).

Axiom of Revision

(AR1) REV(t,«£,u) — CON(t,-.0.v) A EXP(v,0,u)

Appendix- II: Deductive Justified Belief Sys

tem

(AJ2) JBEL(t, fa a) = BEL(t, fa) A JUSTIFY(t, fa

a) A 3/?JBEL(t, a, /?).

(AJ2') JBEL(t, fa a) = BEL(t, fa) A BEL(t, JUS-

TIFY(t, fa a)) A 3/?JBEL(t, a, /?).

(AJ3) JBEL(t, true, true).

(AJ4) JUSTIFY(t, fa a) — -JUSTIFY(t, ->fa a).

(AJ5) JUSTIFY(t, fa, ai) A JUSTIFY(t, fa, a,) —

JUSTIFY(t, fa A fa, qi A a2).

(AJ6) JUSTIFY(t, fa, ai) A JUSTIFY(t, fa, a2) —

JUSTIFY(t, fa V fa, on V a2).

(AJ7) JUSTIFY(t, fa, an) A JUSTIFY(t, fa — fa,

a2) - JUSTIFY(t, fa, fa A (fa -> fa)).

(AJ8) JUSTIFY(t, fa a) = JUSTIFY(t, JUSTIFY(t,

fa a), true).

(AJ9) -JUSTIFY(t, fa a) = JUSTIFY(t,

-JUSTIFY(t, fa a), true).

(RJ2) From h a = p infer r- JUSTIFY(t, fa a) =

JUSTIFY(t, fa P).

(RJ3) From h <f> infer h Vt(JUSTIFY(t, fa true)).

Appendix - III: Foundational Theory of Belief

Revision

Axiom of Foundational Expansion

(AFE1) FEXP(t, fa u) = (EXP(t, fa u) A (BEL(u, q)

— 3/? JBEL(u, a, /?))) V (EXP(t, fa v) A ((BEL(v, a)

A -3P JBEL(v, a, /?)) -- FCON(v, a, u))).

(RFE1) From h fa = fa infer h FEXP(t, fa, u) =

FEXP(t, fa, u).

Axiom of Foundational Contraction

(AFC1) FCON(t, fa u) = (COI\l(t, fa u) A (BEL(u,

a) - 3p JBEL(u, a, /?))) V (CON(t, fa v) A ((BEL(v.

a) A -3/? JBEL(v, a, /?)) — FCON(v, a, u))).

(RFC1) From h fa = fa infer h FCON(t, fa, u) =

FCOI\l(t, fa, u).

Axiom of Foundational Revision

(AFR1) FREV(t, fa u) = FCOI\l(t, -fa v) A FEXP(v,

fa u).
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Abstract

The paper criticizes arguments recently advanced by

Shoham and McDermott, which purport to

establish the existence of the so-called "Extended

Prediction Problem". We claim that the "problem"

is the product of a mistaken understanding of the

the formal basis of Newtonian mechanics, and has

no real existence. An example is given showing

how, contrary to Shoham and McDermott's

arguments, it is possible to formalise reasoning

about the evolution of physical systems in

continuous time using only classical logic and

differential calculus.

1 Introduction

The "Frame Problem" has now been around for a good

while, but shows no sign of disappearing. In a recent

paper, Yoav Shoham and Drew McDermott ([1988];

hereafter S&McD) give a new angle: they suggest dividing

it up into two separate problems, which they refer to as

the "qualification problem" and the "extended prediction

problem". It is the second of these that will be my

primary concern in the current document: I begin by

summarizing S&McD's arguments.

S&McD's main claim is that there is a problem, the

"extended prediction problem" (EPP). This is supposed to

be the fact that it is difficult to formalize the process of

making predictions over extended periods of time, if the

axioms of a temporal theory are expressed as differential

equations; S&McD claim moreover that the problem is

not the product of a particular temporal formalism, but is

general in nature. To substantiate this statement, they

present arguments purporting to show that the problem

occurs, not only in a conventional framework, but also in

the Hayes "histories" formalism. In a later paper, Shoham

[1988] then goes on to describe his logic of

"Chronological Ignorance" (CI), which (among other

things) is supposed to provide a solution to the EPP.

What is the actual problem supposed to be? S&McD are

happy to agree that Newtonian mechanics is in principle

capable of describing the behaviour of dynamic systems in

continuous time (p. 52-53) l; however, they also claim

that there is no well-defined associated computational

mechanism which formalizes the process of making

predictions. Considering the concrete problem of

predicting the collision of two billiard balls, they write (p.

54):

The "prediction," however, is purely model-

theoretic. No attention was paid to the problem of

actually computing the point of collision. In fact,

it is very unclear how to perform the computation,

since all axioms refer to time points. Somehow

we must identify the "interesting" points in time

or space, and interpolate between them. The

problem seems a little circular, though, since the

identity of the interesting points depends on the

integration. For example, understanding where the

two balls are heading logically precedes the

identification of the collision: if we don't know

that the two balls are rolling towards each other,

there is no reason to expect a something

interesting at the actual collision point.

How do people solve such physics problems? The

inevitable answer seems to be that they "visualize"

the problem, identify a solution in some

mysterious ("analog") way, and only then validate

the solution through physics... (italics in original)

I will take the two paragraphs just quoted as the kernel of

S&McD's claim. Before saying anything else, I think that

it is important to point out that it is an extremely strong

claim: all sorts of people are in the business of doing

temporal reasoning using differential equations, and many

of them would be prepared to defend themselves against

the accusation that they are doing anything that couldn't

be formalised. When the accusation is moreover

exemplified in the trivial problem of predicting the

collision of two billiard balls, the feeling that one is on

theoretically secure ground is so strong as to more or less

1 All page references are to [Shoham & McDermott 88]

except where otherwise stated.
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amount to certainty. Although I naturally don't mean by

to imply that a feeling of certainty proves anything, this

is worth saying, since it motivates most of the reasoning

in the sequel. My counter-claim, then, will be that there is

actually nothing mysterious about the process of making

predictions about continuous-time processes, and that

these can readily be formalized with no more theoretical

apparatus than is afforded by classical logic, together with

the differential and integral calculus.

The remainder of the paper is laid out as follows. In the

next section, I will point out what I regard as several

concrete logical errors in S&McD's analysis of the EPP,

both in the classical and the "histories" frameworks; in

section 3, I will go further to sketch how it is in fact

perfectly possible to predict billiard-ball collisions, using

only classical logic and well-defined and unmysterious

methods of inference. In the last section, I sum up my

conclusions.

2 Specific criticism of Shoham and

McDermott's arguments

I will start with S&McD's treatment of the classical

framework. Firstly, in several places in the argument, it

certainly appears as though S&McD are committing the

cardinal sin of confusing "infinitessimal" with "very

small". Look, for example, at the following passage from

page 59:

The most conservative prediction refers to a very

short interval of time, in fact an instantaneous

one, but that makes it very hard to reason about

more lengthy future periods. For example, if on

the basis of observing a ball rolling we predict that

it will roll just a little bit further, in order to

predict that it will roll a long distance we must

iterate this process many times (in fact, an infinite

number of times). We will call this the extended

prediction problem.

Now at risk of stating the obvious, it is not correct to say

that a differential equation licences prediction "a little bit

forwards", and then talk about doing this "many times - in

fact an infinite number of times". Differential equations

say things about the instantaneous rate of change of

functions; to make predictions about extended periods they

must be integrated. The integration will hold over a period

if the differential equation holds over the same period, but

the length of the period is completely irrelevant.

This is not mere pedantry; S&McD's lack of precision in

expressing themselves is obscuring a crucial point. Since

the differential equations don't directly allow forward

prediction in the first place, the problem is not one of

making an inefficient process more effective, predicting

over a long interval rather than a short one. The problem

is rather how we can justify prediction over any period at

all. This is very much at odds with, for example, the

following passage from p. 60 (my italics):

To summarize, the general extended prediction

problem is that although we may be able to make

predictions about short future intervals, we might

have to make a whole lot of them before we can

predict anything about a substantial portion of the

future.

All right, so why don't we just integrate the differential

equations then? Now S&McD have another argument in

reserve; as we have already seen in the passage quoted in

section 1 above, they claim that we don't know what

interval to integrate over. My second point is, very

simply: This is not a problem. All that needs to be done

is to perform the integration over an interval whose

bounds are left unspecified, except by the restriction that

the differential equation should hold within them; this is

exactly what applied mathematicians normally do in

practice. Call our bounds are ti , t2: then what we get is a

logical formula of the form

conditions on what holds at t] &

the differential equations hold between t] and 12 —>

conditions on what holds at each point between t] and 12-

By using these formulas, together with other facts, we can

deduce the maximal ti and t2 over which the integration is

valid. In the next section I will illustrate how this is done

for the problem with the billiard balls.

My third point concerns the notion of "potential history",

which is, I claim, a somewhat misleading concept. Instead

of talking about "the way things would turn out if

nothing happened" (Shoham's definition of a "potential

history"), it will be quite enough to take "the way things

actually turn out until something happens". Then it will

be possible to reason that either

i) nothing ever does "happen"

ii) there is a first thing that "happens"

In case ii), we will be able to deduce things about when

the aforementioned "first thing" occurs. If this sounds

cryptic, the example in section 3 should make things

clearer.

I now move on to the reformulation of the problem in

Hayes's "histories" framework, dealt with by S&McD in

their section 1.2. The logical fallacies here are of a similar

type to those I have just pointed out, but since the

integration has in effect already been performed they are of

a more transparent nature.
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In one sentence: the way in which S&McD use histories

to express the problem isn't the right one. To back up this

claim, let's start by reviewing the problem. The initial

data is that there are two ROLLING histories, Hll and

H21, of which we are given the prefixes, Hll' and H21'.

(See figures 1, 2 and 3, adapted from S&McD's diagrams

4, 5 and 6).

 

Figure 1

S&McD don't actually define exactly what they mean by a

"prefix", but I suggest the following: it is the intersection

of the history with some suitable given portion S of

space-time. A simple way of defining S would be to let it

be bounded above and below in time by two closely-

spaced instants near the beginning of the period under

consdieration. Anyway, S&McD now go on to say that

we want to predict two "new" ROLLING histories. They

then inquire what these new histories should look like:

either they will extend up to the collision point, or they

won't. I agree with their objection that the second

alternative merely postpones the problem one step, but

their analysis of the first alternative quite fails to hold

water.

 

Figure 2

S&McD's point here is that what we want to say

intuitively is that "the histories persist for as long as

possible" - i.e. until they collide with something - and

that "there only are two histories". They claim that there

is a difficulty with the second part; that there are, actually,

a lot more histories lying around, like for example the

histories HI 1" and H21" which follow just after HI 1' and

H21'. But this is just playing with words; obviously,

every history contains an infinite number of subhistories,

so counting all histories can never get us anywhere. What

we are interested in are the maximal histories in a given

bounded chunk of space-time, which in this domain are

going to be finite in number. Now we can say that there

are exactly two maximal histories in S (the chunk we

intersected with in the last paragraph to define our

prefixes); these are by construction HIT and H21'.

 

Figure 3

If we then move on to consider a larger chunk of space-

time (call it S'), Hll' and H21' are in general no longer

going to be maximal. They will, however, be included in

two unique maximal histories1, which in a sufficiently

large S' will be precisely Hll and H21. It is then fairly

clear how to express our laws of physics so as to make

things work. The rule we need is going to be something

like the following:

Let t] and 12 (with t] < t2) be two times, and let S be the

region of space-time bounded by tj and 12- Assume that

all the maximal histories in S are ROLLING histories,

which touch both boundaries and not each other, and that

there are exactly N such histories. If there are any

collisions after t2, call the earliest time at which one

occurs T, and call the region on space-time bounded by tj

and T, S'. Then there are exactly N+M maximal histories

'Proving the truth of this statement would demand a full

axiomatization of the histories framework, something that

is obviously impractical here. However, the key step would

presumably be an axiom to the effect that the union of two

connected histories of the same kind was a history.
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in S', of which M are COLLISION histories and N are

ROLLING histories. M <N, the intersection of each of the

ROLLING histories with S is a distinct maximal history in

S, and each of the COLLISION histories occurs at time T.

Together with the rule that COLLISION histories occur

precisely when ROLLING histories meet, this will enable

us to predict when the first collision occurs, using

methods that essentially consist of little more than

geometrical calculations in a three-dimensional Euclidean

space.

3 Reasoning in continuous time: an

example

Consider the situation illustrated in figure 4 below. (A

propos S&McD's remarks above about "visualization" (p.

54): the diagram is purely for the benefit of human

readers, and as will be seen contributes nothing to the

proof). We have a billiard table, on which a system of

Cartesian coordinates is defined. At time t=0 there are

three balls: A at (0,2) with velocity vector (0,-2); B at

(1,1) with velocity vector (0,-2); and C at (2,0) with

velocity vector (-2,0). We will assume that balls are point

objects which collide iff their positions coincide, and that

the only forces on balls are those obtaining at times of

collision. Given these assumptions, we want to know

whether there will be any collisions, and if so when the

first one will occur. Since we aren't going to reason past

this point, we don't need to say anything about how balls

behave after a collision, whether they bounce, stick

together, smash or whatever. We reason as follows.

i

!

B

 

1) Either no collision will occur, or else there will be a

first collision. In this case, one of the following will be

true; A and B will be involved in it, B and C will be

involved in it, or C and A will be involved in it. We refer

to these four possibilities as No_collision, AB_first,

BC_first and AC_first, and we refer to the time of the

first collision as Iq with the convention that t<> = °° if

No_colIision obtains. (This is only to make the proof a

little more elegant).

2) For OSKtc no force acts on the balls. So by Newton's

laws, their velocities will be constant during this period,

and thus by performing an elementary integration we have

that A's position at time t is (0,2-2t), B's is (l,l-2t) and

C's is (2-2t,0), O^tc.

3) We want to prove that No_collision doesn't hold, so

we use reduction ad absurdum and assume that it does.

Thus the positions are as given by 2) for all positive t.

We now want to prove that a collision does take place to

get our contradiction; specifically, we try to prove that A

will collide with C. This will be so if we can find a

positive t such that

(0,2-21) = (2-2t,0)

Elementary algebra shows that t = 1 is a (in fact, the

only) solution. So No_collision doesn't hold.

4) We now prove that AB_first doesn't hold. Again,

suppose it did. Then the moment of collision is given by

the equation

(0,2-2tc) = (l,l-2tc)

This gives us that 0 = 1, a contradiction. So AB_first

doesn't hold either.

5) Now prove that AC_first doesn't hold. Once more,

suppose it did. Then just as above, we have that Iq is

given by

(0,2-21^ = (2-2^,0)

Algebra gives us that t^. = 1 . We must now establish that

some other collision occurred at some earlier time, to

obtain our contradiction. Specifically, we try to prove

that B will collide with C. This will be so if we can find

a t' such that

(l,l-2f) = (2-2f,0)

and 0<t'<l. But t = 0.5 is such a solution, and once again

we have a contradiction.

6) We have proved that there will be a collision, so there

must be a first collision. Since AB_first and AC_first

have been proved impossible, by elimination we have

BC_first. Doing the same bit of algebra as in 5) shows

that it occurs at t = 0.5. QED



Did Newton Solve the "Extended Prediction Problem"? 385

Let us consider the structure of this proof. First, in 1), we

hypothesize a time-point tc, which is when the first thing

is going to "happen". The important thing to notice here

is that we don't yet say what tc's value is; we define it in

terms of its properties, namely that a collision occurs

then, and that none occur before. Then in 2) we integrate

the differential equations to get the interval-based

information that will allow us to make predictions. If we

had been working in a histories formalism, the equations

would as indicated earlier "already be integrated", and this

step would have been superfluous. Having got this far, the

remaining steps 3) to 6) are just ordinary monotonia

classical logic, and consist of a proof that tc as described

actually does exist, together with a computation of its

value. It is clear that the methods used are quite general,

and in no way make special use of the billiard-ball

scenario. One incidental point is also worth noting

explicitly: the collision is shown to have occurred at

t=0.5, showing that we really have moved outside the

integers.

To point the moral, the proof above demonstrates that

classical logic and differential calculus are at any rate

sufficient to solve problems of this kind. Shoham

(personal communication) has however advanced another

criticism: he claims that, although the approach I have

just demonstrated is possible, it is less efficient than

using CI.

My answer to Shoham's objection is twofold. Firstly, this

is not what is being said in the original paper; it is a

separate issue, which as far as I can see is nothing to do

with the EPP. Secondly, Shoham has still to demonstrate

that proofs of this kind can be carried out at all in CI. As

he admits himself ([Shoham 1988], p. 320), the methods

he has so far developed are completely dependant on the

use of a discrete model of time; doing CI in continuous

time would require the use of different algorithms, the

complexity of which is thus completely unknown.

Shoham might be right, but he has to present evidence to

prove it; to use a metaphor from another game, the ball is

now back in his court.

4 Conclusions

What I have shown in this paper should not in any way be

regarded as startling or unexpected; it is simply the defence

of what most mathematicians and physicists would

unhesitatingly call the common-sense view, namely that

there is no longer anything mysterious about the EPP. If

we take a broader historical perspective, however, we can

see that the EPP used to be a major problem. It is in fact

closely related to Zeno's paradox, something that caused

philosophers difficulties from Zeno's time until the

seventeenth century; until then, nobody even came close

to explaining how it was possible to use logic to reason

rigorously about continuous change. Indeed, many

prominent thinkers went on record as claiming that such

things were impossible in principle.

The first person to give a plausible account of

mathematical reasoning about continuous processes was

Newton, and even he was unable to do this in a

satisfactorily formal way; this was not achieved until the

nineteenth century analysts - people like Bolzano,

Dedekind, Riemann and Cauchy - finally managed to put

real analysis onto a sound logical footing. Not being an

expert on the history of mathematics, I can't say with

confidence just when the whole enterprise was completed;

but I would be prepared to guess that Russell and

Whitehead still had to tie up a few loose ends in the

Principia Mathematica. The whole process, in other

words, took over two hundred years.

To sum up, then, the EPP is undoubtedly an extremely

important and difficult problem. It is, however, a problem

that has been solved; to suggest otherwise is only to

mock what must surely rank as one of the greatest

achievements in the history of science and mathematics.
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Abstract

This paper explores the synthesis of finite au

tomata that dynamically track conditions in

their environment. We propose an approach

in which a description of the automaton is de

rived automatically from a high-level declara

tive specification of the automaton's environ

ment and the conditions to be tracked. The

output of the synthesis process is the descrip

tion of a sequential circuit that at each clock

cycle updates the automaton's internal state

in constant time, preserving as an invariant

the correspondence between the state of the

machine and conditions in the environment.

The proposed approach allows much of the

expressive power of declarative programming

to be retained while insuring the reactivity of

the run-time system.

1 Introduction

This paper is concerned with the synthesis of finite au

tomata whose internal states are provably correlated

with changing conditions in the environment. In ear

lier work [Rosenschein, 1985, Rosenschein and Kael-

bling, 1986], we investigated the mathematical foun

dations of embedded machines and direct methods of

programming them. Later research was aimed at rais

ing the conceptual level of the programming task by

exploring declarative techniques for synthesizing their

action-selection circuitry [Kaelbling, 1988]. In this pa

per, we extend this line of research to perceptual up

dates, that is, the computations responsible for up

dating the internal information state of the machine.

We present techniques that allow programmers to de

scribe the environment in which a machine is to be

embedded along with conditions to be tracked and

to have these descriptions algorithmically transformed

into provably real-time circuitry for tracking those con

ditions in the environment. Information about these

'This work was supported in part by a gift from the

System Development Foundation.

conditions would be used by other parts of the system

to guide action.

Mainstream theoretical AI has developed models of

information and action based on formalized common-

sense psychology. In this approach, intelligent com

puter systems are modeled as having at their disposal

a set of propositional "beliefs," usually assumed to be

embodied in a set of symbolic expressions, such as log

ical formulas, whose intended semantics are clear to

the designer. Some of these beliefs are provided by

the designer as part of a knowledge base, while others

are produced by the perceptual system at run time.

In addition, the system contains inference procedures

for dynamically deriving new beliefs from old and for

continuously revising beliefs over time in response to

sensory inputs (and perhaps reflection.) In this way,

the designer can arrange for the agent to have access

to a much more complex set of beliefs than could have

been enumerated explicitly in advance. The designer

also provides symbolic representations of the goals the

agent is to pursue. The agent continuously attempts

to deduce which actions it should take to achieve its

goals and then performs those actions.

By modeling the information available to the sys

tem as symbolic facts deducible by the system, the

traditional approach allows the methods of symbolic

logic, including automated symbolic inference, to be

applied to problems in agent design. Of particular

importance is the availability of a clear semantics for

non-numerical data structures that are used to repre

sent qualitative information about the world. These

are attractive features—ones we would like to pre

serve. However, the traditional AI approach also has

some other, less attractive, features which we hope

to eliminate. For example, in applications requiring

continuous, high-speed interaction with the environ

ment, the computational cost of formally deriving facts

from a data base of logical premises and of keeping

the data base consistent with the world is often pro

hibitive. This has been a severe obstacle to building

high-performance embedded computer systems based

on the model of the intelligent agent as symbolic rea

soned

Situated-automata theory is a framework for rec
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onciling the attractive features of AI methods (non-

numerical descriptions of the world) and of control-

theoretic methods (continuous constant-time updating

of internal representations and guaranteed response.)

The central observation of situated-automata theory

is this: It is not the run-time symbols or numbers, per

se, that are of significance, it is the fact that (1) they

are semantically meaningful to the designer, that is,

they stand for well-defined world conditions, and (2)

the machine is designed in such a way that the world

condition represented by the value of an internal lo

cation will indeed hold when that location has that

value.

In this paper, we apply the situated-automata

framework to the problem of synthesizing machines

that track semantically complex conditions in the envi

ronment using constant-time update circuitry. We de

scribe how inference techniques can be used at compile

time to carry out the synthesis automatically, given

symbolic descriptions of the environment and of the

information to be tracked.

Basic concepts:

information

A model of

The mathematical framework of situated-automata

theory takes as its starting point a model of dynamic

systems. Consider a physical or computational system

consisting of a set of locations that can be in different

states over time. These states can be thought of as

actual physical states or as abstract data values that

might be stored in the register of a computer. Let T be

a set of times, L a set of locations, and let each location

a take on values from some set, Da, with compound

locations [a,b] taking on values in Da x £)j. Let the

union of all value domains be designated by D. Each

possible "trajectory" of values can be given by a func

tion w : L x T —► D, in which w(a,t) is the value

of location a at time t in trajectory w. Following the

terminology of possible-worlds semantics, we call these

trajectories "worlds."

In physical or computational systems that operate

according to fixed rules or constraints, not every world

is consistent with the laws of nature. This can be cap

tured mathematically by identifying some designated

subset of worlds that are consistent with the intended

constraints. We shall call this set of possible worlds

W . Let 4>, the set of propositions or world conditions,

be the set of all subsets of W x T. Intuitively, a condi

tion tp G $ corresponds to the set of world-time points

at which that condition holds. We sometimes write

<p(w,t) rather than (w,t) G <p when we wish to assert

that the condition tp holds at w,t.

By definition, <J> has the structure of a Boolean al

gebra of sets: a condition tp can imply (be a sub

set of) another condition ip, we can take the meet,

ip fl ip, of two conditions, and so on. Furthermore,

the structure of $ allows us to define two mathemat

ical objects useful for characterizing world dynamics:

the initial condition <po = {(w, 0) \ w G W) and the

strongest postcondition function S : $ —* $, where

S(<p) = {{w,t + 1) | <p(w,t)}. The initial condition

tpo and the strongest postcondition function S will be

used later to characterize machine synthesis.

The restriction on what is possible gives rise directly

to a notion of information. The information contained

in a location's value is modeled as the strongest propo

sition consistent with that location's having that value.

Formally stated, to every location (or compound loca

tion) a, we associate a function, Ma : Da —♦ $ that

maps a's values into propositions. This function is de

fined as follows: Ma(v) = {(w, t) \ w(a,t) = v}. To

say that a location a has the information that ip in

world w at time t is to say Ma(v) implies y>, in other

words, that the proposition ip is true at each world and

time in which a has the same value it has in world w

at time t.

As defined, the concept of information is very ab

stract, representing the totality of what must be the

case, given that some location in the machine has the

value it does. For this notion to be of practical use, we

must find ways of expressing in understandable terms

particular, more limited, aspects of this total informa

tion content. This is the proper role of logic. By defin

ing logical languages whose formulas express proposi

tions of interest, we can conveniently describe the con

tent of propositions included in an agent's information

state, such as in(book, rooml) V in(book, room.2). Fur

thermore, modal logics of knowledge can be used to

assert facts about the information relation itself, such

as whether particular locations have or do not have

particular information, e.g., -<K(a, in(book,room2)) A

K(b,in(book,room2)), which asserts that location a

does not contain the information that the book is in

room 2, while location 6 does. These logics are ex

plored more fully in [Rosenschein and Kaelbling, 1986]

and [Halpern and Moses, 1985]. In this paper, we

will use letters p,q,. . . and standard logical operators

A, V, . . . in formulas that express the information car

ried in a location's value.

When we wish to consider machines with very large

state sets, we regard the machine as being constructed

from a network of components, with the state set of the

whole machine corresponding to the Cartesian product

of the state set of the individual components. Fortu

nately, there are straightforward techniques for infer

ring informational properties of aggregates from infor

mational properties of their components. For instance,

the following can easily be shown to be valid:

We refer to this property as spatial monotonicity. It

follows that if location a carries the information that

p holds and location 6 carries the information that q

holds, then the aggregate location [a, b] carries the in
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formation that the conjunctive condition p A q holds.

Spatial monotonicity is useful in synthesis because

it means that subsystems can be developed indepen

dently and composed in a meaningful way.

It is important to observe that location a can carry

information about p without explicitly encoding a

symbolic formula representing p; any value of the loca

tion that is systematically correlated with p will suffice.

Different locations might have different states repre

senting the same proposition p, and the same data

values might have different informational significance

at different locations. In general, an infinite number of

formulas will follow from the information contained in

a finite value, but since the formulas need not be sep

arately represented, this causes no problem. Indeed,

the computational complexity of updating a location's

value so that it tracks changing conditions in the envi

ronment is entirely decoupled from the computational

complexity of the symbolic inference problem for the

logical language that expresses the conditions being

tracked. This fact is crucial for understanding how

seemingly complex semantic conditions can be moni

tored in real time.

These considerations lead directly to certain ab

stractions useful for describing how information is rep

resented in machine states and how it is re-represented

as it moves from location to location within a machine.

We call these abstractions informational data types.

3 Informational data types

Recall that the function Ma maps a's values (elements

of Da) to the abstract propositions with which they

are correlated. As such, we can think of it as a "mean

ing" function. It is also useful to consider an inverse

to these meaning functions, namely, "representation"

functions that map propositions back to the data val

ues that encode them. Let us define an informational

data type to be a triple r = (D,M,R), with D being

a set of data values, M a meaning function from D to

$, and R a representation function from $ to D. Intu

itively, if a location is of type r, then whenever it takes

on the value v € D, the world is intended to satisfy

condition M(v), and if the world satisfies condition <p,

it is appropriate for the location to take on the value

R(<p)- These two functions must satisfy the property

that (p implies M(R(<p)) for all <p € $, that is, the rep

resentation map must be consistent with the meaning

map. Since the implication is only one way, the rep

resentation of a world condition in the machine will,

in general, not be information preserving. An extreme

case of this is when M(R(ip)) = true and contains no

information at all. We generally assume R(*p) to be

maximally specific, that is if R(ip) = «,, then there is

no Vj such that M(vj) implies, but is not implied by,

M(vi).

Informational data types provide a way of analyzing

the localization of information in a machine, includ

ing the computational complexity of such localization.

Given two informational data types, T\ = (Di , M\ , R\)

and r2 = {D^,M2,R2), we can define a translation

function that "re-represents" the content implicit in

the values of a location of type t\ in the language

of Ti- Mathematically, the translation function is a

mapping T2l : D\ —► £>2 that is defined as follows:

T%(v) = R2(Mi(v)), i.e., the representation, in the

second "language," of the meaning, in the first "lan

guage," of v. The computability and complexity of

these translations remain to be determined and are

greatly affected by the choice of representation, that

is, by the specific nature of M and R and not merely

by the range of propositions encoded.

Although the informational concepts developed thus

far apply equally to finite and infinite languages, we

shall henceforth restrict our attention to machines hav

ing a finite number of internal locations, each taking

on values from a finite domain. One immediate conse

quence is that all translation functions are computable,

although complexity trade-offs remain. For instance,

since all Boolean functions can be computed by a cir

cuit of depth 2, we could always compute the trans

lation function in constant time—if we were prepared

to tolerate the potentially large number of comput

ing elements that may be required. In the worst case,

an exponential number of gates could be needed and

the constant-time result is merely academic. Our aim,

however, is to control the synthesis process in order to

produce systems that not only track world conditions

but are also practical to design and implement.

In the next section we discuss how informational

data types can be used to approach the synthesis prob

lem.

4 From analysis to synthesis: The

machine induced by world dynamics

One way of using the situated-automata framework is

for the analysis of existing machines: Given the de

scription of an environment and of a machine embed

ded in that environment, we seek to describe the in

formation encoded in its states. For purposes of de

sign, however, we are more interested in the opposite

question: Given a description of the world and of the

information we would like to have encoded in machine

states, how can we design the machine's circuitry in

such a way that states of the machine will actually be

correlated, as desired, with conditions in the world?

At the theoretical level, we can show that the dy

namics of the world, together with the semantics of

the machine's inputs and the intended semantics of

its interned states (expressed as an informational data

type), fully determine a machine whose internal states

carry the desired information by virtue of their ac

tual correlation with the world. To see why this is

the case, imagine we are given an informational data
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type Tin = (An, Mi„,Rin) for the input location of a

machine and an intended data type ra = {Da,Ma, Ra)

for the internal location a. Imagine, further, that we

are given the proposition <po approximating the initial

world condition (in the sense that <po is implied by the

true initial condition), and a function S approximating

the true strongest-postcondition function (in the sense

that S(ip) is implied by the true strongest postcondi

tion of (p for each (p; approximation is the best we can

do, since the world is not fully determined until we

have fixed the embedded automaton.) We now show

how these elements determine a machine that tracks

changing world conditions as desired.

Here a machine will be defined by a pair of domains

Di„ and Da (for inputs and internal states), an initial

value uo £ Da, and a next-state function / : £),-„ x

Da —► Da satisfying the following conditions for all

w,t:

w(a,0) = vq

w(a,t + l) = f(w(in,t),w(a,t))

Given Tj„, ra, <po, and S, we define Do and / as

follows:

v0 = Ra(fo)

f(u,v) = Ra(S(Min(u)nMa(v)))

Intuitively, vq, the initial value of the location a, is

just the representation, in a's data type, of the ini

tial proposition; the value of the next-state function is

determined mathematically by considering the propo

sition associated with the old value of a and with the

input, determining what will be true one time instant

in the future given what is true now, and represent

ing that proposition in the data type of a. Note the

implicit reliance on spatial monotonicity and the sim

ilarity between this construction and the definition of

translation functions in the previous section.

Assuming A/,„ is veridical, it can be shown that

these definitions of i>o and / insure that Ma will be

veridical as well, i.e., that the machine's states will in

deed be correlated with the intended meanings of those

states. Mathematically, we must demonstrate that for

all w,t:

Ma(w(a,t))(w,t).

The proof of this proposition is straightforward and

proceeds by induction on t. (The variable w is uni

versally quantified throughout.) The base case is es

tablished as follows: From the definition of tpo, we

have that ipo(w,0). The soundness of Ra gives us

Ma(Ra(ipo))(w,0), whence Ma(w(a,0))(w,0) follows

immediately from the definition of t»o by simple sub

stitution, since u>(a,0) = v.

The inductive case is established similarly. The in

duction hypothesis is that

Ma(w(a,t))(w,t) ,

and the veridicality of Min gives us

Min(w(in,t))(w,t) .

Conjoining these conditions yields

(Min(w(in,t)) n Ma(w(a,t)))(w,t) .

The definition of S implies that

S(Min(w(in,t))n Ma(w(a,t)))(w,t + I),

and the soundness of Ra guarantees that

Ma(Ra(S(Min(w(in, t)) D Ma(w(a, t)))))(w, t + 1).

Substituting in the definition of /, we get

Ma(f(w(in,t),w(a,t)))(w,t + 1),

from which Ma(w(a,t + l))(w,t + 1) follows immedi

ately.

5 Syntactifying the construction

We have just seen how the dynamics of the envi

ronment, together with the semantics of the inputs

and the intended semantics of the internal state, com

pletely determine the structure of a machine. To be of

practical utility, however, the mathematical construc

tion must be made operational. One approach would

be for the programmer, based on his intuitive under

standing of the task environment, to define the in

duced automaton directly in a conventional program

ming language. Although adequate in principle, this

approach is difficult to apply in practice for complex

domains. For this reason we seek compilation tech

niques that would automate at least part of the syn

thesis process and make the transition from environ

ment description to automaton more transparent to

the programmer.

Although the automaton is mathematically deter

mined by Tin, Ta,<fio, and S, we cannot directly present

these abstract objects to a compiler and must use sym

bolic, often approximate, descriptions. Let us examine

the form these descriptions might take for informa

tional data types (r,n and ra) and for world dynamics

(tpo and 5).

5.1 Specifying informational data types

Consider a machine location x of informational data

type tz = (DX,MX,RX). Let us see how the three

components of the data type might be described to a

compiler.

The value domain Dz is straightforward to describe

using conventional data type declarations. For our

purposes, it will be sufficient to consider only atomic

data types such as Booleans, integers, floats, etc. and

record structures, possibly nested, over these atomic

types. For example, to tell the compiler about the

value domain of location x we might write x: [bool

[int int] iloat] .

The specification of the other two components is

more complex. Let us begin with Mx. Recall that

Mx, the "meaning function" associated with location

x, maps elements of Dx to <I>, the set of propositions,
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where propositions are modeled as sets of world-time

pairs. Recall also that logical formulas can be used to

partially express the content of a proposition, provided

they are taken from a logic that assigns sets of world-

time pairs as the denotation of formulas. Many tem

poral logics will suffice for this purpose. (For one ex

ample, see [Rosenschein and Kaelbling, 1986].) Given

such a logic, formulas parametrized by run-time values

can be used to define a meaning function from values

to propositions.

To see this, let C be the language of some tempo

ral logic, with interpretation function I : C —♦ $ and

provability relation K Assume that among its indi

vidual terms, the language has constants that rigidly

designate values of locations, possibly in addition to

terms that denote location values that vary with world

and time. If v is a data value, we let cv stand for the

rigid designator of value v in the language C.

Let PX(U) be a formula of C with a free variable

U for which value-denoting terms can be substituted.

Each substitution instance Px(cv) is a closed formula

to which the interpretation function 2 can be applied.

The parametric formula PX(U) thus induces a mapping

Mx : Dx —* $ that approximates Mx and is defined as

follows:

Mx(v) = l(Px(cv)) .

The semantic interpretation 2 of the language C is

itself approximated for the compiler by a set, T, of

background facts relative to which the syntactic con

sequences of Px(ctt) are to be derived. To answer

the question "does Mx(u) imply My(v),n the compiler

would attempt to establish T h Px(cu) —► Py(cv) using

deductive techniques.

Having approximated Mx by a formula PX(U) and

a background theory T, we have nearly determined

the third component of the informational data type

as well. Recall that the representation function Rx is

intended to map propositions to elements of the value

domain that best capture them. Since we are encod

ing propositions for the compiler using formulas, we

are interested in functions that map formulas to data

values. If Q is a formula expressing the proposition <p,

candidate representations of tp (relative to T) should

be drawn from the set

Cx(Q) = {v\T\-Q^Px(cv)}.

Intuitively, elements of CX(Q) are the data values

whose meaning is entailed by the information in Q, and

hence by tp. This set must contain at least one element,

since there must be a value in Dx representing true,

which is entailed by every proposition. In practice, it

is convenient to have multiple representations of true,

for instance by uniformly including a boolean valid bit

in all data types. When the valid bit has the value

zero, the meaning of the whole value is taken to be

simply true, regardless of the values of the rest of the

parameters.

If there is more than one element in CX{Q), the mul

tiple values must somehow be combined so that they

might "fit" into the space alloted to x. We call the

functions responsible for combining these values rconj

functions ("representation of the conjunction.") This

function is defined as

rconjx(vi,v2) = Rx(Mt(v1) n Mx(v2)).

Because the choice of Rx, and hence rconj, is under-

determined by the meaning function Mx, the designer

must somewhow stipulate the rconjx function directly

for each type rr. This can be made relatively conve

nient through the use of declarative rules of the form

P-(Vi)AP.(V,)-P.(/(Vi,Va)).

Having specified a binary rconj operator, arbitrary

finite sets of values can be combined in the obvious

way:

rconj*(vi,...,vn) =

rconjx(vi, . ..rconjx(vn_uvn) . . .)

The order of combination does not matter since the

rconj function is commutative due to the commutativ-

ity of the underlying conjunction operator f~l in terms

of which rconj is defined.

Example

We illustrate the concepts above by defining a sam

ple informational data type. Consider a location x of

value type [bool int]. Informally, the first field is

the valid bit, and the second field is intended to rep

resent a lower bound on the age of some individual,

Fred.

The semantics of x can be expressed using the for

mula PX{U) = age(fred, [first(U),second(U)]) under

the intended interpretation:

J(age(fred,[V1,V2}))
true

tp(V2)

if Vk = 0

if Vi = 1

where <p(V2) = {w,t \ age(fred,w,t) >

the number denoted by V2}. Thus, the run-time value

[0, n] at location x would represent the vacuous propo

sition true for any n, the value [1, 14] would represent

that Fred is at least 14 years old, and so on.

An rconj rule for the informational data type might

look like this:

age(fred, [U, , U2]) A age(fred, [V, , V2])

—► age(fred,

[or(Ult Vi), if{Uuif{Vi,max{U2, V2),U2), V2))).

This rule indeed defines a commutative rconj operator

that can be used to combine values of this informa

tional data type in a way consistent with the intended

interpretation.

Furthermore, if the intended model incorporates the

constraint that 18-year olds can vote, we might include

among the background facts an assertion of the form
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age(fred,[UuU,)) ->

can-vote(fred,and(Ui,ge(U2, 18))).

This fact implicitly defines part of a translation func

tion from the age(frtd, —) data type to the can-

voteffred,—) data type. Notice that in this data type,

fred is fixed at compile time. This would be appro

priate if distinct locations were used to store informa

tion about individuals referred to explicitly at compile

time. If Fred's identity were not known until run time,

the run-time parameter would have to take on values

that encoded propositions about Fred, Sam, etc.

5.2 Specifying World Dynamics

As we described above, the compiler is assumed to

have access to a background theory, that is, a set of

assertions describing the environment. This theory

will contain many temporal facts as well as atemporal

facts. By choosing the language C to include appropri

ate temporal operators we can express facts about the

initial condition of the world and about temporal tran

sitions in a way that allows us to approximate the se

mantic objects ipo (initial condition) and S (strongest

postcondition function.)

In the simplest case,the language C need only in

clude the modal operators □, init, and next satisfying

the following semantic properties for all w,t:

w,t\=D(p iff w',t' J= (p for all w',t'

wtt |= init <p iff w, 0 }= <p

w, t (= next if iff w, t + 1 ^ <p

The compiler can answer questions of the form

"does S(Mx(u)) imply My(v)" by establishing T h

a(Px(cu) —* neit Py(cv)) using deductive techniques.

5.3 Synthesis Method

We now describe a compilation method that operates

on the representations discussed above and produces

a circuit description of the desired automaton. The

compiler takes as inputs a description of information

carried by the run-time inputs to the machine and the

internal machine state, as well as a background the

ory containing temporal facts. The compiler operates

by deriving theorems about what is true initially and

about what will be true next at any time, given what

is true at that time. In the course of the derivation,

free variables are instantiated in the manner of logic

programming systems. From the instantiated formulas

the compiler extracts the initial value of the machine's

internal state and the description of a circuit for up

dating the machine's state vector.

More precisely, the compiler's inputs consist of the

following:

• a list [ai, ...,an] of input locations

• a list [&i, ...,6m] of internal locations

• for each input location a, a formula Pa(U) with

free variable U

• for each internal location 6, a formula Pb(U) with

free variable U and a function rconjt,

• a finite set T of facts.

For each internal location 6, the compiler computes

two sets of value terms Ib and Nb defined as follows:

Ib = {e | T h Din,/ P6(e)}

Nh = {e | T h 0(Pai(ai) A ... A P».(6n)

— next A(e))}.

If these sets are infinite, they can be generated and

used incrementally. This is discussed more fully below.

From these collections of sets the compiler computes

the initial value and the update function. The initial

value is computed as follows:

v0 = [rconjt^ht), ..., rconJln(Ibn)],

In other words, the initial value of the state vector

is the the vector of values derived by rconj-'mg val

ues representing the strongest propositions that can

be inferred by the compiler about the initial state of

the environment in the "language" of each of the state

components. Similarly, for the next-state function:

/([«li- ••,<*n],[&li ••-,**.]) =

[rconJl^Ni,), . . . , rconJln(Nbn)].

Here the compiler constructs a vector of expressions

that denote the strongest propositions about what will

be true next, again in the language of the state com

ponents.

In the case of the initial value, since all the terms

are rigid, the rconj values can be computed at com

pile time. In the case of the next-state function, how

ever, the rconj terms will not denote values known at

compile time. Rather, they will generally be nested

expressions containing operators that will be used to

compute values at run time. Assuming the execution

time of these operators is bounded, the depth of the

expressions will provide a bound on the update time

of the state vector.

Without restricting the background theory, we can

not guarantee that the sets h and N/, will be finite.

However, even in the unrestricted case the finiteness

of terms in the language guarantees that whichever el

ements we can derive at compile time can be computed

in bounded time at run time. Furthermore, the syn

thesis procedure exhibits strongly monotonic behav

ior: the more elements of Ib and Nb we compute, the

more information we can ascribe to run-time locations

regarding the environment. This allows incremental

improvements to be achieved simply by running the

compiler longer; stopping the procedure at any stage

will still yield a correct automaton, although not nec

essarily the automaton attuned to the most specific

information available. Since, in general, additional
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rconj operations consume run-time resources, one rea

sonable approach would be to have the compiler keep

track of run-time resources consumed and halt when

some resource limit is reached.

As we have observed, without placing restrictions on

the symbolic language used to specify the background

theory, the synthesis method described above would

hardly be practical; it is obvious that environment-

description languages exist that make the synthesis

problem not only intractable but undecidable. How

ever, as with Gapps [Kaelbling, 1988] and other for

malisms in the logic programming style, by restricting

ourselves to certain stylized languages, practical syn

thesis techniques can be developed.

We have experimented with a restriction of the logi

cal language that seems to offer a good compromise be

tween expressiveness and tractability. This restriction

is to a weak temporal Horn-clause language resembling

Prolog but with the addition of init and next opera

tors. In this language the background theory is given

as facts of the following form:

init q(X,Y).

next q(X,f(X,Y)) :- ql(X,Y) , . . . ,qn(X,Y) .

q(X,f(X,Y)) :- ql(X,Y) qk(X.Y).

For each predicate or function expression, the first ar

gument represents a compile-time term and the second

a run-time term. Facts of the first two sorts assert

temporal facts (the □ operator is implicit), and facts

of the last sort are ordinary instantaneous facts, much

as one would find in a conventional Prolog system,

but with terms syntactically marked as compile-time

or run-time. The rconj rules are given in the following

form:

rconj q(x,i(x,yl,y2)) :- q(x,yl), q(x,y2).

The derivation process proceeds as described above

but uses backward-chaining deduction techniques

adapted from logic programming. Each distinguished

location i has an associated atomic formula schema

p(i,Y). In deriving the initial value vo the compiler

attempts to prove p(i,Y) from the init declarations

and the instantaneous facts. If this succeeds, the ini

tial value of the i'th component of the state vector is

the rconj* of the bindings of Y. If the attempt fails,

the valid bit of that component is set initially to 0.

Similarly, the next-state function for component i is

derived by attempting to prove next p(i,Y) using the

next rules and the instantaneous facts, chaining back

wards and cutting off proofs that traverse more than

one "next" clause. Although the process of finding the

proofs need not be real-time, the circuit that is finally

produced is.

A prototype system, called ruler, has been built

implementing the Horn-clause version of the synthe

sis algorithm. The language resembles Prolog in

many ways, differing mainly in the strong distinc

tion between compile-time and run-time expressions.

Compile-time expressions undergo unification in the

ordinary manner; run-time expressions, by contrast,

are simply accumulated and used to generate the cir

cuit description. RULER was implemented in Lisp as

an extension of the Rex language [Kaelbling, 1987].

Run-time expressions in RULER are allowed to be any

valid Rex expression, and all of the Rex optimiza

tions (common-subexpression eliminiation, constant

folding, etc.) are applied to the resulting circuit de-

sciptions produced by RULER. The RULER system was

run on several small examples involving object track

ing and aggregation, and the synthesis procedure has

proved tractable in our test implementation.

6 Future Directions

Our current research is directed toward extending the

theoretical basis for synthesis and improving the prac

tical utility of tools such as RULER. On the theoretical

side, one important extension is to adapt the synthe

sis techniques to cases where the correlation between

machine states and world conditions is best described

probabilistically. Naive approaches will not work, pri

marily because the spatial-monotonicity property fails

in the probabilistic case. For this reason we have been

exploring design disciplines that reconcile structured

synthesis methods with the inherently non-monotonic

nature of probabilities, preserving the spirit of the

techniques presented in this paper.

On the practical side, experiments with RULER sug

gest needed improvements in several areas. One syn

tactic improvement would be to uniformly suppress

valid bits, since their treatment is so systematic. Freer

syntactic intermingling of compile-time and run-time

expressions and tests would be useful as well. A more

serious practical consideration has to do with helping

the programmer control the combinatorics of the syn

thesis process. As in general logic programming, it is

possible, using RULER, to write programs with unac

ceptable combinatorial behavior. While this is not the

fault of RULER per se and can undoubtedly be amelio

rated by increasing the programmer's experience and

skill in using the tool, there are improvements that can

be made in the system itself, including facilities for de

tecting cycles and redundant proofs. Finally, there is

need to gain practical experience in applying this style

of programming to real problems in visual perception,

sensor fusion, and other similar areas.

7 Related Work

There has been considerable work on the synthesis of

digital machines from temporal logic specifications, for

example, the work by Ben Moskowski [Moszkowski,

1983]. This work considers symbolic specifications

similar to the kind considered here but does not con

nect them directly to an informational account of ma

chine states. The work of Joseph Halpern and his
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asssociates [Halpern and Moses, 1985], on the other

hand, has examined mathematical approaches closely

related to our own for characterizing information in

distributed system, but have so far not addressed is

sues of automated synthesis. Chris Goad [Goad, 1986]

has used partial evaluation to generate efficient algo

rithms for visual recognition. Goad's techniques are

rather domain-specific and do not handle tracking of

conditions over time. There is a rich literature in the

traditional AI paradigm (as well as in formal philoso

phy) on belief revision (see, for example [Doyle, 1979,

de Kleer, 1986]), but little work has addressed the im

plications of real-time update requirements.
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Abstract

Relaxation algorithms of polynomial com

plexity are often used to explicitate con

straint satisfaction problems as much as pos

sible before the application of a backtrack

ing solution algorithm. In order to better

understand this technique, we propose a re

laxation algorithm scheme, which can be in

stantiated to any real relaxation algorithm,

and we study its properties and its complex

ity. Also, we identify the very convenient

class of perfect relaxation algorithms, which

have a complexity linear in the number of

constraints of the problem to which they are

applied and which explicitate the problem to

the point of solving it. Finally, we charac

terize all the classes of constraint satisfaction

problems for which it is easy to find a per

fect relaxation algorithm by mapping them

to the family of all the languages of context-

free graph production systems.

1 Introduction

Networks of constraints are a simple knowledge rep

resentation method, useful for describing those prob

lems whose solution is required to simultaneously sat

isfy several constraints. They are very important in

AI because, for instance, problems like description of

physical systems, scene interpretation and specifica

tion of software can often be naturally expressed as

networks of constraints.

They are described here as labelled graphs, where

nodes represent variables to be assigned, while arcs

(i.e. hyperarcs connected to one, two or more vari

ables) are constraints to be satisfied by the adjacent

variables; constraints connected to k variables are la

belled by relations specifying the acceptable k-tuples

of values of the variables. A solution of a network of

constraints is defined as an assignment of values to

some (say k) variables which can be extended to the

'Supported by a grant from the Italian National Re

search Council.

other (n-k) variables in order to obtain an assignment

to all the variables (n) of the network satisfying all

the constraints. These k selected variables are empha

sized in the same definition of the network with an arc

(called connection arc) connecting them. A network of

constraints is solved if the label of its connection arc

coincides with its solution. Note that this new notion

of network of constraints, where a particular arc is se

lected, is not restrictive. Moreover, it is convenient

for defining networks generated through arc-rewriting

productions.

Unfortunately, both the problem of finding one so

lution and all the solutions of a network of constraints

are NP-hard (both in our definition and in the usual

one). This means that solution algorithms for general

networks of constraints will have exponential worst

case behaviours. But some solution algorithms can

have acceptable performances in the average case.

For example, the generate and test algorithm will

always be exponential, but the backtrack algorithm,

which is the standard solution algorithm for networks

of constraints, is linear in the best case and can be

acceptable on the average. More precisely, the more

the constraints of the -network to be solved are ex

plicit (they reflect the global constraint induced by

the whole network), the more the backtrack algorithm

works well. For this reason, many relaxation algo

rithms have been developed: given a network, they

make some local transformations on it, and return a

new more explicit network.

A relaxation algorithm can be abstractly defined as

the application of some relaxation rules in some order,

until no more changes can be done (we have the stable

network). Each relaxation rule computes the solution

of a subnetwork and possibly modifies, accordingly to

this solution, a constraint of the network, making it

more restrictive.

In this paper, we develop a convenient theory for

representing both networks with k-ary constraints and

general relaxation rules. Also, we define a relaxation

algorithm scheme and we study its properties. In this

way every particular relaxation algorithm can be seen

as an instance of the scheme and can thus inherit its

properties.
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It can be easily shown that both the arc-consistency

([Mackworth. 1977]) and the path-consistency ([Mon-

tanari, 1974]) algorithm can be naturally described

using our formalism, and the same holds also for

some other relaxation algorithms that can be found

in [Freuder, 1978, Freuder, 1982, Seidel, 198l).

Moreover, we show that the stable network obtained

at the end of a relaxation algorithm depends only on

the set of rules and not on their order of application

(i.e. the relaxation rules, if applied an infinite number

of times, satisfy the Church-Rosser property).

The set of rules used by a relaxation algorithm is

called adequate if the stable network is solved, and

perfect if it is adequate and the stable network can

be achieved applying the rules only once, in an order

called a perfect strategy. Perfect strategies are thus

very convenient, provided that the rules are few, and

small.

Also, we characterise particular classes of networks

having relaxation rules of bounded complexity and

where the number of rules needed by any network in

the class is smaller or equal than the number of arcs

in the network. These classes of networks are very in

teresting because, for every network in a class, it is

possible to find a perfect relaxation algorithm which

has linear complexity, even if the linearity coefficient

may vary from class to class. The characterization

of such classes involves the definition of graph pro

duction systems (a kind of context-free graph gram

mar), and shows how each class can be mapped into

the set of graph generated by one of such systems.

Also, the perfect strategy for a network corresponds

to the derivation (in the grapf production system)

of such network. Each network in the characterized

classes has a tree-like structure due to its generation

through context-free production. More precisely, it

can be seen as a tree where each node can be a (even

cyclic) graph. Our result can be thus seen as a gener

alization of a previous one ([Dechter and Pearl, 1988,

Mackworth and Freuder, 1985]) about the existence

of a linear algorithm for the solution of tree networks

(networks that are exactly a tree). In fact here we

can solve with linear complexity, by using a perfect

relaxation algorithm, not only tree networks but also

the much bigger family of all the classes of tree-like

networks. It is also similar to the work described in

[Shenoy and Shafer, 1988], where the perfect relax

ation corresponds to the "computation of marginals".

Also, a perfect relaxation algorithm can be seen as a

reformulation, of a bottom-up algorithm, proposed in

[Montanari and Rossi, 1988a], about the computation

of the exact solution of hierarchical networks.

In section 2 we define networks of constraints in

terms of connection graphs, in section 3 we define re

laxation algorithms and we give some of their funda

mental properties, section 4 treats perfect relaxation

algorithms and defines graph production systems. Fi

nally, section 5 concludes the paper summarizing its

results and arguing a possible relationship of these re

sults with logic programming and metaprogramming.

2 Networks of Constraints

In this section we introduce connection hypergraphs

and networks of constraints. For a more detailed de

scription of networks of constraints and their prop

erties see [Montanari, 1974, Montanari and Rossi,

1988b].

In the following of this paper, we will heavily deal

with hypergraphs and hyperarcs, which are a natural

generalization of graphs and arcs respectively, where

arcs may connect more than two nodes. Thus, to be

simpler, from now on we will use the word graph to

denote both graphs in their normal definition and hy

pergraphs, and the word arc to denote both arcs and

hyperarcs.

Definition 1 (Connection Graph)

A connection graph < a,G > with G =< N,A,c >

consists of:

• a set of nodes N;

• a set of arcs A; A = \Jk Ak is a ranked set, i.e.

h £ Ak implies that h is an arc connected to k

nodes; a € A and is called the connection arc;

• a connection function c : UfcM* —* Nk) where

c(h) =< ii,...,Xfc > ** the tuple of nodes con

nected to h.

Ifc(a) =< xi xh >, A-a= {oi,...,om} and

c(ai) =< xa xik(i) >, for i = l,...,m, then we

will represent the k-connection graph a «— G by writ

ing a(xi,...,Xk) *- ai(xn, . . . , iifc(i)), . . . , am(zml)-

•••.Zmfcfm))-!

Definition 2 (subgraphs)

Given two connection graphs a *— G and b <— F, b «—

F is a subgraph of a *— G if:

• Af Q Aq (remember that b & Ap);

• NF C Na;

• cp = ca on Af .|

Definition S (networks of constraints)

A network of constraints C = a *— G \l is a connection

graph a «— G, where nodes are called variables and

arcs are called constraints, plus a labelling function I :

\Jk(Ak —» p(Uk)), where U is a finite set of values for

the variables of C%

Definition 4 (solution of a network of constraints)

Given a network of constraints C = a *— G \ I where

G =< N,A,c > and n =| N \, let us consider any

ordering of the variables of N, say < X\,...,xn >.

Moreover, given an n-tuple < Vi,...,vn >= v of val

ues ofU, let us setv\<Xil Xlfn> =< i>n vim >.

Then, we define the solution of network C as Sol(C) =

{< Vi,...,v„ >\c(a) svch that, for all b € A, <

vi,...,vn >|c(b)e/(6)}.i
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In words, the solution of a network of constraints is

the set of all the assignments of the variables connected

by the connection arc such that every such assignment

can be extended to an assignment of all the variables

in N which satisfies all the constraints in A.

An obvious, exaustive search algorithm to obtain

the solution Sol(C) of a network of constraints C =

a «— G | / is as follows.

Algorithm ES (exaustive search)

• Initialise Sol(C) to the empty set;

• For every possible assignment v of values to all

the variables in N:

- If, for every constraint 6 in A, v\c(0) € 1(b),

then add v\c{a) to Sol(C).

The worst case time complexity of this algorithm can

be estimated of the order of (| U 1)1*1 | A || JV |.

Definition 5 (solved networks of constraints)

A network of constraints C = a *- G \ I is solved iff

the label of its connection arc is equal to its solution,

i.e. 1(a) = Sol(C).M

Using algorithm ES, an obvious way of solving a

network of constraints C = a «— G \ I is obtaining

Sol(C) with this algorithm and then setting 1(a) to

Sol(C).

In fact, let us introduce the notation l\a/b\, where

( : A —► B is a total function, o € B and b € A, for

indicating the new function V such that l'(b) = a, and

l'(c) = 1(c) for all c € A, c jt b.

Now, the network C.oi = a *- G \ l[Sol(C)/a] is a

solved network, and Sol[Ctot) = Sol{C).

3 Relaxation methods

In this section we define relaxation algorithms as se

quences of local changes to the labelling function of a

given network. We also give the description of a gen

eral relaxation algorithm and we investigate some of

its properties, while characterising two particular and

interesting subclasses of relaxation algorithms.

Definition 6 (relaxation rules)

Given a network of constraints C — a *— G \ I , a

relaxation rule is any subgraph b <— F of a*— G. Ap

plying a relaxation rule ib *— F to C = a *— G \ I

produces a netu network of constraints C, which is:

C' = a - G | l\Sol(b - F J /)/6] •■

Theorem 1 (relaxation rules return equivalent net

works)

Given a network of constraints C = a «— G \ I and a

relaxation rule b *— F, we have:

Sol(a - G 1 1) = Sol(a - G \ l[Sol(b +- F \ l)/b]).U

Definition 7 (stable network)

Given a set R of relaxation rules, a stable network

w.r.t. R is a network C = a*- G \l such that, for all

r in R, r applied to C returns Cm

Lemma 1 (stability and relaxation rules)

Given a network of constraints C = a *— G \ I and

a relaxation rule b «— F, the network C" = o *- G \

l[Sol(b *- F | l)/b] is stable w.r.t. the singleton set

R = {b^F}.*

Definition 8 (strategies)

Given a set R of relaxation rules, a strategy for R is

a string S eR*UR°°. An infinite strategy S is fair if

each rule of R occurs in S infinite times.^

Definition 9 (relaxation algorithms)

Given a network of constraints C = a *— G \l, a set R

of relaxation rules, and a strategy S for R, a relaxation

algorithm is an algorithm which applies to C the rules

appearing in S until

» o stable network (w.r.t. R) is obtained (in

this case, this network will be called C' =

closure(C,S)), or

• S terminates (in this case, the network obtained is

more explicit than C but may be not stable w.r.t.

R).m

A Pascal-like description of a relaxation algorithm

which receives as input a network of constraints C, a

set R = {ri, ...,r„} of relaxation rules, and a strat

egy S = {«i,»a,...} for R, is here given. Note that

the marks are used for recording the rules of R which

have to be applied (because they are adjacent to some

rule which has changed some constraint of the net

work). The set of all the rules adjacent to a given rule

is defined as adj(b <- F) = {6' «- F' in R such that

6e AF>).

Relaxation Algorithm RA(C, R,S):

begin

C" := C;

"mark all the rules in R* ;

i := 1;

while t <| S | do

begin

if "si is marked" then

begin

"unmark Sj";

If C" = d «- H 1 1 and s< = b{ «- F{ then

begin

Coid •— c";

C':=d*-H\l\Sol(b*-F\l)/b];

end;

if C" ^ Coid then "mark all the rules in adj(si)*;

else begin

if "all rules of R unmarked"

then return C";

end;

end;

t :=t + l;

end;

return C";

end.
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Theorem 2 (RA returns an equivalent network)

Given a network of constraints C, a set R of relax

ation rules, and a strategy S for R, the relaxation al

gorithm RA(C, R, S) always returns a network C such

thatSol(C) = Sol(C').m

Moreover, note that, if S is finite, i.e. S =

I] jm, the relaxation algorithm always termi

nates, either in less than or equal to m steps, returning

a network stable w.r.t. R, or in exactly m steps, re

turning a network more explicit than the given one but

not stable w.r.t. R.

If, on the contrary, S is infinite but fair, the follow

ing theorem holds.

Theorem 3 (termination of a relaxation algorithm)

Given a network of constraints C, a set R of relax

ation rules, and a infinite fair strategy S for R, the

relaxation algorithm RA(C, R, S) terminates^

Theorem 4 (time complexity of RA)

The worst case time complexity of algorithm RA is 0(\

U || rmax | (| R | +(Ei=1 w \ adj(3i) \\ U |MMl

)) + dmax(\ R | +(£<=1 m \ adj(Si) \\ U p'>l))),

where \ rmax |= maiJ=ii...ijji | ry |, and \ r}- \ is the

number of variables in rule ry-B

The strategy plays a very important role in obtain

ing a stable network. In fact, if we have a finite strat

egy we may not obtain a stable network. On the con

trary, if 5 is infinite, the obtained network not only

is equivalent to C and stable w.r.t. R, but the follow

ing theorem shows that it does not depend on S, i.e. ,

given C and R, there exists a unique network C" equiv

alent to C and stable w.r.t. R. Thus different infinite

and fair strategies all lead us to the same network.

Theorem 5 (the closure does not depend on S)

Given a network of constraints C and a set R of re

laxation rules, let us consider two infinite and fair

strategies S' and S" for R. Then, closure{C', S') =

closure(C,S"). Thus the closure of C depends only

on R and we will write closure(C, R)-m

It can be easily shown that both the arc-consistency

and the path-consistency algorithm are particular in

stances of RA. A simple transformation of algorithm

RA, when applied to infinite fair strategies, will lead

to a new relaxation algorithm RA'(C, R), in which

the strategy is built during the execution, as usual

in the classical definition of relaxation algorithms. For

RA', it can be shown that the worst case time com

plexity formula reduces to 0(\ U \\ rmax | (| R \

+(£.= i \r\ | adj(si) || U || c(bt) |))), which coin

cides, in every particular instance corresponding to a

real relaxation algorithm, with the already known time

complexity formula for that algorithm.

Thus, RA' is more efficient than RA, but it is equiv

alent to RA only when RA is applied to infinite fair

strategies. In the following, we will be concerned

mainly with finite strategies, thus we will consider RA

as well.

Definition 10 (adequate sets of rules)

Given a network of constraints C and a set R of relax

ation rules, R is adequate for CiffC' = closure(C, R)

is solved.^

In general, given a network C, both arc-consistency

and path-consistency rules may be not adeguate for C.

Definition 11 (perfect sets of rules)

Given a network of constraints C, a set R of relaxation

rules, and a strategy S for R which is a total order

ing of R, R is perfect for C iff RA(C, R, S) returns

C = closure(C, S) and C is solved. S is called a per

fect strategy for R. RA in this case is called a perfect

relaxation algorithm.^

Theorem 6 (RA perfect is linear in | R \)

Given a network of constraints C, a set R of relaxation

rules, and a perfect strategy S for R, RA(C, R, S) has

a worst case time complexity 0(E<=j \r\ \ U |'r,').B

4 Perfect relaxation problems and

graph production systems

In order to have a perfect relaxation algorithm we have

to be able to obtain a perfect strategy first. In this

section we show how to do it in the case of networks

that can be generated by a sequence of replacements

of an arc by a subnetwork.

Definition 12 (replacement)

Given two graphs a «— G and a' *— G', and an arc b

such that b € A, rank(b) = rank(a') and b ^ a, the

replacement of b with a' «— G' in a *— G is the new

graph a «— H = a*— G\a' «— G'/b\ where:

• NH = (tfU^V «"**re c(a')Ec[b);

• Ah — (A\JA')\L where a' Lb;

• en is the union of c and c' .|

The notation Q\e in general denotes the set Q quo

tient the equivalent relation E. In particular, in our

context this means that Nh contains all the nodes in

N plus all the nodes in N' , with the exception that

the nodes in c[a') and those in c(b) are merged. The

same is for An .

Lemma 2 (replacement and solution)

Given a network of constraints C = a ♦— G\c «— H/b]

I , we have: Sol{a — G[c <- H/b] \ I) = Sol(a — G

l[Sol(c*-H\l)/b}).u

That is, replacement and solution satisfy a commu

tative property, in the sense that we can first replace

and then solve or, equivalently, first solve and then

replace. Obviously, the former alternative is more ex

pensive, because we have to solve the entire network

C, while in the latter alternative we have to solve two

networks (C and C") of smaller size.
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Definition IS (perfect relaxation problems)

A perfect relaxation problem a *— G \ I. S is a network

of constraints C = a «— G \ I plus a perfect strategy S

for a set R of relaxation rules for C.g

Definition 14 (perfect uniform relaxation problem)

a *— G. S is a perfect uniform relaxation problem if

a *— G \ I. S is a perfect relaxation problem for any

labelling function /.|

Lemma 3 (a simple perfect uniform relaxation prob

lem)

a *— G. a *— G is a perfect uniform relaxation

problem.i

Theorem 7 (obtaining a new perfect uniform relax

ation problem)

a <— G. S perfect uniform relaxation problem implies

a *— G\c *— H/b]. (c «— H)S perfect uniform relaxation

problem.|

Corollary 1 (obtaining a perfect strategy)

Given a network C in the structured form C = Oi «—

Gi[02 *- G2/b1]...[an...Gn/bn-l] | I, then S =

(a„ +- Gn)(an_i «- G„_i)...(oi «- Gi) is a perfect

strategy for i2.g

Once a perfect strategy S for a given network C is

obtained, the corresponding perfect relaxation prob

lem C.S can be solved by applying the relaxation al

gorithm RA, with the strategy S, to the network C.

The returned network C is equivalent to C, stable

with respect to the rules in S and solved. Thus it is

enough to take the label of the connection arc of C" to

have the solution of the given network C.

To give a complexity result for our algorithm, when

applied to perfect strategies, we define the notion

of graph production systems. They are similar to

context-free (hyper)graph grammars (for a survey and

some related results on graph grammars, see [Ehrig,

1978, Habel and Kreowski, 1987, Montanari and Rossi,

1988a]).

Definition 15 (graph production systems)

A graph production system is a finite set P of connec

tion graphs, called productions^

Definition 16 (language of a graph production sys

tem)

Given a graph production system P, its language L(P)

is the (possibly infinite) set of all connection graphs of

the form at <- Gi[a2 *- G2/6i]...[an ♦- Gn/6n_i]

where 04 . . . G,-, for all i = 1, . . . , n, is a production in

P-U

Note that there are some classes of networks which

cannot be included in the language of any graph pro

duction system. For example, the class of rectangular

lattices cannot (see [Martelli and Montanari, 1972]).

Let us suppose to deal with graph production sys

tems in which there are no empty productions, i.e.

productions which do not add any arc to the given

graph. This restriction is necessary to avoid an infi

nite number of steps to produce a finite graph, and

thus to have a linear relationship between the number

of steps used to generate a graph and the number of

arcs in this graph. Let us call this kind of graph pro

duction system a Greibach graph production system.

Then, the following result holds.

Theorem 8 (RA is linear in the number of arcs)

Given a Greibach graph production system P and a

class of connection graphs GG such that GG C L(P),

algorithm RA, applied on each network C — G \ I,

where G = ai «- Gi[a2 «- G2/6i]...[a„ «- G„/6„_i]

in GG with the corresponding perfect strategy (an «—

G„)(an_i «— G„_i)...(oi «— Gi), has a worst case

time complexity linear with the number of arcs of G ■

5 Conclusions

In this paper we have introduced a general formalism

which can be used for describing any relaxation algo

rithm as the application of some relaxation rules in a

given sequence.

Moreover, we have defined perfect relaxation algo

rithms as relaxation algorithms which not only return

a more explicit network, but also exactly solve the

given network of constraints.

Finally, we have shown that perfect relaxation al

gorithms are very efficient when applied to particu

lar classes of networks. They are all those classes of

networks which are included in the language of some

graph production system (a kind of context-free hy-

pergraph grammar). Each network in a class can be

solved by a perfect relaxation algorithm whose relax

ation rules are directly derivated by the generation of

the network, of bounded complexity and in number

less or equal than the number of arcs of the network.

Due to these properties of the rules, the algorithm re

turns the exact solution of each network with a time

complexity which is linear with its size. Naturally, if

the productions used for generating a network were

given not in a sequential form, but as a tree, our algo

rithm migth have a parallel implementation and so a

time complexity logarithm if. with. the. size of the. giveu

network.

Besides that, note that the basic notation a *— G

used in this paper to represent connection graphs, net

works of constraints and productions reminds logic

programming. In fact, a *— G can be seen as a Horn

clause whose semantics is Sol(a *— G \ I) (if we add

the definition of I as an extensional database). For this

reason, an implementation of our relaxation algorithm

scheme RA has been easily developed in Prolog using

metaprogramming techniques (see [Rossi and Monta

nari, 1988]).
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Abstract

In this paper we outline a general approach

to the study of formalized metareasoning,

not in the sense of explicating the seman

tics of explicitly specified meta-level control

policies, but in the sense of providing a ba

sis for selecting and justifying computational

actions. This research contributes to a de

veloping attack on the problem of resource-

bounded rationality, by providing a means for

analysing and generating optimal computa

tional strategies. Because reasoning about a

computation without doing it necessarily in

volves uncertainty as to its outcome, proba

bility and decision theory will be our main

tools. We develop a general formula for

the utility of computations, this utility be

ing derived directly from the ability of com

putations to affect an agent's external ac

tions. We address some philosophical difficul

ties that arise in specifying this formula, and

some practical difficulties in the application

of the formula to particular problem-solving

systems.

1 Introduction

Blot out vain pomp; check impulse; quench

appetite; keep reason under its own control.

Marcus Aurelius Antoninus

The study of resource-bounded intelligent systems

promises to be a major area of research in AI in the

near future, with the potential for drastic revision of

our understanding of learning, inference and represen

tation. One reason for this is practical: few people

believe that classical, normative models can scale up.

A second, and more fundamental, reason is that ex

isting formal models, by neglecting the fact of limited

resources for computation, fail to provide an adequate

theoretical basis on which to build a science of artifi

cial intelligence. The 'logicist' approach to AI empha

sizes the ability to reach correct conclusions from cor

rect premises. The 'rational agent' approach, derived

from philosophical and economic notions of rational

behaviour, emphasizes maximal achievement of goals

via decisions to act. When resource bounds come into

play, direct implementation of either approach results

in suboptimal performance. Instead, what we want is

an optimal design for a limited rational agent (LRA).

A view of artificial intelligence as a constrained opti

mization problem may therefore be more profitable.1

Our project is the design of robust software architec

tures for goal-driven, resource-limited intelligent sys

tems (also known as ralphs2). Our approach has been

to address the design problem with the finitude of re

sources as a starting point, rather than trying to lop

corners off the deductive model. A major tool of this

research is a normative meta-level theory for the value

of computations, since this allows an agent to allo

cate scarce computational resources optimally; alter

natively, it allows the AI researcher to show the op-

timality of a non-optimizing algorithm for decision

making, and to design such algorithms constructively.

Progress on developing and applying such a theory

forms the main subject matter of this paper.

We begin in section 2 by defining the notion of

real-time problem-solving, and discuss the various ap

proaches that have been taken to the problem of

boundedness in this context. Section 3 introduces

the idea of rational meta-reasoning, wherein compu

tations are treated as actions to be selected among

on the basis of their utilities. In turn, these utilities

are derived from the expected effects of the computa

tions, chief among which are the consumption of time

and/or space and the possible revision of the agent's

intended actions in the real world. A formal model is

set up for the meta-level decision problem, and, in sec

tion 4, we discuss the various situations in which exact

and approximate solutions can be found for the util-

*This research was carried out with support from the

AT&T Foundation and the Computer Science Division of

the University of California, Berkeley. The second author

is supported by a Shell Foundation Doctoral Fellowship.

Mike Braverman did the figures.

1 This view is developed in greater depth in [Horvitz and

Russell, forthcoming].

2Ralphs inhabit the RALPH (Rational Agents with

Limited Performance Hardware) project at Berkeley. The

capability for self-adaptation to improve performance is a

second focus of the project.
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ity equations, as well as some possible approaches to

the significant theoretical tasks that remain unsolved.

Section 5 reports briefly on the results of our imple

mentation efforts, for single-agent and game-playing

search. We conclude with a discussion of future re

search directions.

2 Approaches to bounded rationality

Two conditions conspire to create what has been called

the 'finitary predicament' [Cherniak, 1986]: first, real

agents have only finite computational power; second,

they don't have all the time in the world. The formal

characterization of a 'real-time' problem situation is

the following: the utility of a given action performed

by the system exhibits a significant dependence on the

time at which it is carried out, such that complete so

lutions to the decision problem are usually infeasible.

Typically, the utility of an action will be a decreasing

function of time. Since the time at which an action

can be carried out depends on the amount of deliber

ation required to choose the action to be performed,

there is often a tradeoff between the intrinsic utility

of the action chosen and the time cost of the delib

eration (see section 4.3 below). As AI problems are

scaled up towards reality, virtually all problem situa

tions will become 'real-time'. One aim of this paper

is to develop a methodology for constructing real-time

algorithms that can be used as the 'building blocks'

for more complex systems.

Work in real-time AI has traditionally focused on de

livering AI capabilities in applications demanding high

performance and negligible response times. As a re

sult, designers typically choose a fixed level of desired

output quality, and design their systems to achieve

that level within a fixed time cost. In a recent sur

vey [Laffey et al., 1988], real-time systems are defined

in terms of "the system's ability to guarantee a re

sponse after a fixed time has elapsed, where the fixed

time is provided as part of the problem statement."

Given this view of real-time, the authors are led to

the conclusion that "research which focuses on speed

ing up a version of the algorithm that can guarantee

a response time should be given high priority." As

Dean [1988] has pointed out, this approach leads to a

research strategy based on compile-time optimization

and variants of job scheduling. It seems unlikely that

such an approach will generalize, particularly to cases

of widely varying time pressures and problem com

plexities. In addition, the 'deadline' model of time

pressures is overly restrictive, since in reality there is

almost always a continuous increase in the cost of time.

Laffey et al. [1988] survey a large number of applica

tion programs for real-time AI, and note, somewhat

despairingly, that "Currently, ad hoc techniques are

used for making a system produce a response within a

specified time interval."

A longer tradition of considering the effects of

boundedness on decision-making exists in economics

and the decision sciences, where human characteris

tics must sometimes be considered. Researchers in de

cision analysis, especially Howard [1966], have studied

the problem of the value of information. His ideas

have been applied for example to assess the benefits

of expensive medical diagnostic procedures [Horvitz et

al., 1988]. Simon [1982] made clear the distinction be

tween systems that compute the rational thing to do

(procedural rationality), and systems that simply do

the rational thing (substantive rationality). Procedu

rally rational systems seem to suffer from a good deal

of overhead, both in terms of time and extra cognitive

machinery. A currently popular notion is that all this

deliberation is a waste of time — why don't we just

build agents that "do the right thing" [Brooks, 1986,

Agre and Chapman, 1987]? Substantive rationality,

however, does not come for free; in complex environ

ments it can only be the result of previous compiled

deliberation, on the part of the designer or the agent

itself.

A premise of this research is that flexible, au

tonomous systems in complex environments require

the ability to reason explicitly about the appropri

ate resources to allocate to computation at any point,

and about which computations will be most effec

tive. This premise is shared by several other re

searchers in AI, such as Doyle's 'rational psychology'

project [Doyle, 1988]. In medical decision-making, ra

tional control of probability calculation has been stud

ied by Horvitz [1988] and by Heckerman and Jimi-

son [1987]. Dean [1988] discusses optimal alloca

tion of resources among processes in various resource-

bounded scenarios. Fehling and Breese [1988] have

applied a decision-theoretic approach to the control

of information-gathering actions in a simple robot

scenario. Agogino [1989] has investigated the use

of decision-theoretic modelling of computation in the

control of mechanical systems.

All meta-level systems share a common methodol

ogy for implementation: the base-level problem solver

operates via the explicit formulation and solution of

meta-level problems. In a uniform meta-level ar

chitecture, meta-level problems are formulated us

ing the same language as the base-level problems,

and solved using the same mechanism. This pro

duces systems capable of great flexibility and high-

order reasoning, but introduces the possibility of in

finite regress. Regress is particularly problematic in

the present context, since the metareasoning done to

control problem-solving has costs itself, and therefore

needs to be controlled. Regress has been mentioned

by many researchers concerned with bounded ratio

nality [Doyle, 1988, Horvitz and Russell, forthcoming,

Laird et al., 1987, Fehling and Breese, 1988] but so far

only Lipman [1989] has claimed any progress on the

problem. Clearly we must back off from insisting on

optimal control of all reasoning; some actions, whether

computational or external, will have to be taken with

out being the immediate results of deliberation. For

this reason, among others, two important topics in

the RALPH project are inductive learning of meta-

level policies and compilation of reasoning. Meta-level
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learning is discussed briefly in section 4.5.1; on com

pilation of decision-making see [Russell, forthcoming].

Here we will not worry about the cost of metareason-

ing itself; in practice, we have been able to reduce it

to an insignificant level.

3 Rational metareasoning

The construction of a system capable of rational

metareasoning rests on two basic principles:

1. Computations are to be treated as actions, and

are therefore to be selected among on the basis of

their expected utilities.

2. The utility of a computation is derived from its

expected effects, consisting of:

(a) The passage of time (and associated changes

in the external environment).

(b) The possible revision of the agent's intended

actions in the real world.

The ability of a computation to cause the agent to take

a different course of action, that has been revealed by

the computation to be superior to the agent's original

intention, is the fundamental source of positive util

ity for computations. It is important to emphasize

the obvious fact that the choice of which computation

to make, and whether to continue computing, must

be made in the absence of knowledge of the outcome

of the computation (else the computation would be

pointless). Therefore it will only be possible at best

to perform optimally on average, by computing an ex

pected value of the computation.3

3.1 Notation

• Ail one of a set of possible external actions avail

able to the agent in the current state.

• [X]: the result of taking action X in the current

state, where the action can be internal (a compu

tational action) or external.

• [X, Wj): the result of taking action X in world

state Wj.

• U(W): a real-valued utility function on world sit

uations W (reference to a particular agent is im

plicit).

• Si: one of a set of possible computational actions

available to the agent.

• S: a sequence of computational actions. We will

use T to refer to a potential future sequence of

computational actions, particularly one ended by

an external action.

current state

*Note that we do not make the same assumption about

base level actions. That is, we assume that the outcomes

of individual actions are known with certainty, as in game

playing or puzzle-solving domains, although the utility of

those outcomes may be uncertain. The case of uncertainty

about the outcomes of base level actions will require sepa

rate treatment.

 

Figure 1: The metalevel decision situation

• S.Sji the sequence of actions consisting of se

quence S followed by action Sj.

• Q . the agent's estimate of a quantity Q, calcu

lated in the state resulting from a computation

S.

• a: the agent's current default 'intention'; typi

cally, the externa] action considered so far to have

the highest utility.

• a-p: the external action recommended by a com

putation T.

• /?ii fti ••- the external actions currently ranked

second-best, third-best etc.

3.2 The metalevel decision model

In order for the concept of resource allocation to make

sense, the system in question must have a choice of

computations available to it, each of which can re

turn a decision or affect the ultimate decision made.

The computations may vary along a number of dimen

sions; for our purposes, the amount of time used and

the quality of solution returned will be most signifi

cant. Figure 1 illustrates the choice situation in which

the agent finds itself. The agent's immediate choice is

among the available computations steps Sj . . . St and

the current 'best' external action a, where typically4

a = &TgmaxA{US([A])}.

Here we use U, the agent's utility estimate, rather than

U, the actual utility, since we want a to be the action

that the agent will take, rather than the action that

the agent ought to take. It is important to recall that,

at this stage, we are considering the meta-level choice

from the viewpoint of an external observer, without

suggesting that the agent itself must explicitly set up

and solve the decision problem for every computation.

In particular, we do not assume that the agent has

access to a rapidly-computable, exact utility function

U.

4 Initially, before any deliberation has been done, 0 will

presumably be a constant. For definiteness, we will assume

that ties are broken somehow, perhaps by random choice.
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If the agent takes a computation step, then there

after any sequence of steps may be taken, including

the empty sequence, followed by an external action

cr-p, where T is the complete sequence of computa

tion steps undertaken before acting. The computation

steps can have any grain size, ranging from a single

machine cycle to a multi-week economic simulation.

According to decision theory, an optimal action

is one which maximizes the agent's expected utility,

given by

E[V([Ai])] = £ P(Wj)U([Ai, Wj]). (1)

i

where P(Wj) is the probability that the agent is cur

rently in state Wj . The utility of a computation step

Sj is defined, just as in ordinary decision theory, in

terms of the resulting state [Sj]. Note that a compu

tation directly affects the system's internal state, and

only indirectly the external world (except by consum

ing time), whereas a utility function usually refers only

to aspects of the total situation that are external to the

agent (such as winning a game of chess) or to aspects of

internal state such as happiness that are not generally

accessible to direct computational manipulation.

3.3 The value of computation

We define the net value of a computational action to

be the resulting increase in utility:

V(Sj) = UaSj])-U([a}) (2)

A major distinction that needs to be made in spec

ifying i/([5j]) is between partial and complete compu

tations. A partial computation is one that does not

result in a commitment to external action; whereas a

complete computation does.

If Sj is a complete computation, then the utility

of Sj is just the utility of the action etc chosen as

a result of the computation, given that the action is

carried out after Sj is completed. That is, {/([S,-]) =

Vilas,, [Sj]))- Hence,

V(Sj) = U([aSj,[Sj)})-U([a}) (3)

In the general (partial) case, the computational ac

tion will bring about changes in the internal state of

the agent that will affect the value of possible further

computational actions. In this case, we want to assess

the utility of the internal state in terms of its effect on

the agent's ultimate choice of action. Hence the utility

of the internal state is the expected utility of the base-

level action which the agent will ultimately take, given

that it is in that internal state. This expectation is de

fined by summing over all possible ways of completing

the deliberation from the given internal state. That

is, letting T range over all possible complete compu

tation sequences following Sj , or-p represent the action

chosen by computation sequence T, we have

"(&]) = EW^T-fr-T]])

T

(4)

where P(T) is the probability that the agent will per

form the computation sequence T.

If the agent has a perfectly rational metalevel, then

the computation sequence selected will be the one

maximizing U([aj<, [T]]), and this sequence will have

probability 1 in the above equation.

3.4 Ideal and approximate control

Given a means for calculating the value V of a compu

tation rapidly and exactly, the ideal control algorithm

is as follows:

1. Keep performing the most valuable of the avail

able computations until none have positive value

V.

2. Commit to the action that is preferred according

to the internal state resulting from step 1.

This intuitive definition of the value of a computation,

and the algorithm accompanying it, were proposed in

dependently by Good [1968]. Obviously, the computa

tion of the values V cannot be instantaneous; in fact,

as we describe below, it can be arbitrarily hard. How

ever, in many cases calculation is sufficiently fast to

result in benefits over other control methods. In other

cases, the formulation of a formally correct estima

tion of the value of computation results in a tractable

meta-level after compilation, or forms the basis for

well-motivated approximations.

For the purposes of control of real agents, the equa

tions given above need considerable modification. Usu

ally, the agent only has an exact utility available for a

small subsets of possible states. For example, in chess

only won, lost and drawn games are accurately evalu

ated. However, often the agent does have available an

estimate U of the utility of a state. In the AI litera

ture, such estimation functions are often called evalu

ation functions. We can view the process of decision

making as revising the estimated utility function, by

learning more about the consequences of actions and

their utilities. This is the general picture of delibera

tion about how to act on which we will most closely

focus our attention. For instance, in a game-playing

program, a computation might involve a further ply of

search, followed by back-up of new minimax values for

the top-level move choices. These new backed-up val

ues would give the agent's new estimated-utility func

tion, based on its latest computation. Note, however,

that we make no general assumptions about how the

estimated utility function is arrived at.

4 Calculating the value of

computation

In this section, we will spell out transformations on the

equations given in the previous section, which render

them more useful to a less-than-omniscient designer or

to a limited rational agent that is explicitly reasoning

about its own problem-solving.

Our first job is to replace the function U by the

function U, since we are assuming that the former is
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unknowable, and the agent is able to calculate only

in terms of the latter. This will require some care,

because the function U depends on the stage of the

computation. For reasons that we discuss below, we

choose to replace U in equation 4 by utility estimates

for actions made in the state in which the external

action is taken. Thus, if we assume that the agent

will take whatever action appears best at the time it

decides to act, then equation 4 becomes

USsK[Sj]) = Y, PSSi(V m*x.USs'T([Ai, [Sj.T]])

T

(5)

Then the estimated net value of computation Sj,

from equation 2, is given by

V(5i) = ^S^([5j])-J7S^([a]) (6)

Of course, before the computation Sj is performed,

V(Sj) is a random variable. Although the agent can't

know ahead of time what the exact value of V(Sj) will

be, given sufficient statistical knowledge of the distri

bution of V for similar actions in past situations, the

agent can take its expectation,

E[V(Sj)] = E[US-s>([Sj)) - US-s^[a])] (7)

4.1 Analysis for complete computations

Suppose we know that the agent will act after the com

putation step Sj in question (if it does not act im

mediately); i.e., suppose it is only choosing between

complete computations. Then the utility of Sj will

be equal to the utility of the action o^ believed by

the agent to be optimal after Sj has been carried out,

given that the action is carried out after Sj is com

pleted. That is,

USsi([Sj]) = USsi([aSj,[Sj]]) (8)

In this case, therefore, the net value of Sj is given

by

V(Sj) = USs'{[aSi,[Sj]])) - US-s'([a}) (9)

In sections 4.2-4.4, we show how this formula can

be simplified by employing various assumptions about

the nature of the domain and the search methods em

ployed. The general case of partial computations is

much more complex. In section 4.5, we discuss some

possible approaches to the general case, although we

do not have a complete solution for the general case

at this time.

4.1.1 Discussion

Note that in the above equations we use the later

estimate l/"3^* to evaluate both ors, and a, the new

and the old best moves. The reason for this is most

obvious if we consider the case where asj = a, but

f/s-5>([asJ]) > t/*([a]); i.e., Sj simply revises upward

the estimated utility of a but does not alter the choice

of move. Then the net value of 5, should depend only

on the passage of time spent in deliberation, since the

real intrinsic utility is of course constant. This would

not be the case if we used the later utility estimate for

the new best move and the current utility estimate for

the current best move.5

This points to deep issues which arise from the fact

that the agents we are dealing with have only limited

rationality. For instance, Howard's Information Value

Theory [Howard, 1966] uses a formula which, in the

above context, amounts to defining the expected net

value of Sj as

E(V(Sj)) = E(USsi([*Si, [Sj]}) - US([a})) (10)

This will only be equal to our formula, given in equa

tion 9, provided E(USs>([a])) = E(US([a])). This

coherence condition will hold true of a perfectly ratio

nal agent, since any expected increase in its expected

utility estimate due to further deliberation should al

ready be reflected in the current estimate.

However, for an agent with only limited rational

ity, for instance an agent who relies on a fixed, eas

ily computed evaluation function for his utility esti

mate, it may not be safe to assume that his estimate

is rational in this sense. However imperfect the base-

level problem solver is, we must assume as a premise

that the real utility of carrying out a given action at

a given time won't be changed just by thinking about

it. This principle is even more important in inductive

meta-level learning, wherein the agent evaluates com

putational actions post hoc in order to learn statistical

distributions and a predictive function for the value of

computation (see section 4.5.1). Here, we do not want

to use the formula whose expectation is taken in 10,

since this will lead to erroneous evaluations. Rather,

in such evaluations it is important to use the same esti

mation function for the values of both the new and the

old best actions. For these reasons, we use equation 9

to estimate the net value of a computation. Note that

equation 9 also gives the agent 's best estimate of the

value of the computation, at the time the computation

is completed.

4.2 The variation of estimated utility with

computation

The formula for the value of a computation given in

equation 9 can be evaluated provided we have statisti

cal data concerning the effects of similar computations

carried out in the past.

Briefly, suppose we can characterize Sj as belong

ing to a given class of computations, i.e. suppose Sj

is a particular type of computation, such as an ad

ditional ply of search in an iterative-deepening algo-

6Of course, the desired effect would be obtained if we

used the current estimates for both moves. But then ev

ery computation would have non-positive utility, since by

definition a has a higher current utility estimate than the

other moves.
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rithm, being considered in a particular type of situ

ation, where the situation is characterized by some

pre-determined set of features. Then, using a very

crude approach, we can characterize the distribution

of the random variable V(Sj) to almost any desired

standard of approximation by computing post hoc the

net increase ([([ctSj, [Sj]]) — U([a]) for a large sample

of computations in similar situations drawn from the

same class. Of course, computing the actual increase

for a large sample of similar situations will be much

more expensive than simply carrying out the compu

tation S,- . However, if a large amount of "design time"

is available, in which such statistical sampling can be

done without time pressure, with the resulting distri

butions stored in a parametrized form for later use,

then the cost of applying formula 9 to estimate the

expected net value of computation Sj can be orders of

magnitude cheaper than carrying out 5, itself. In that

case, the expected value calculation will be well worth

doing, since it allows one to select among computa

tions, to prune pointless branches, and to terminate

deliberation in such a way as to maximize the overall

utility of the agent.

This empirical approach can clearly be refined.

The refinements require knowledge of the base-level

decision-making methods of the agent. Essentially, the

principle is this:

1. Typically, a computation under consideration is

known to affect only certain components of the

agent's internal structure; for example, running a

query about proposition p through a belief net

work will affect the probability that the agent as

signs to p.

2. Changes in those components affect the agent's

choice of action in known ways; for example, if the

base-level is decision-theoretic, then a change in

the probability assigned to some action outcome

would affect the expected utility for that action,

and hence the choice of action, in the manner pre

scribed by equation 1.

The empirical component of evaluating computations

arises only in the first of these two stages; the more

specific we can be about the structure of the base level,

the easier it will be to focus on a well-defined, homo

geneous population of computation episodes and the

more accurate our value estimates will become.

Let ptiAvi) be the normalized prior probability den

sity function for the value of U '([A,,[Sj]]), the

future utility estimate after the computation Sj has

been carried out. Let paj be the density function

for {/^'([a]). Sj can in general affect the util

ity estimates for any of the actions A%. Thus, let

u =< tii, . . . ,un >, and let p;(u) be the joint distri

bution for the probability that the actions Ai through

An get new utility estimates «i through u„ respec

tively. Then, taking the expectation of the right-hand

side of equation 9, we have

oo

E(V(Sj))= /max(u)p,(u)du- f upaj(u)du (11)

U -oo

4.3 Time and its Cost

Thus far we have captured the real-time nature of the

environment by explicitly including the situation in

which an action is taken in the argument to the utility

function. We believe that any form of time constraint

can be expressed in this way. However, the inclusion

of this dependence significantly complicates the anal

ysis. Under certain assumptions, it is possible to cap

ture the dependence in a separate notion of the cost

of time, so that the consideration of the quality of an

action can be done separately from considerations of

time pressure.

For many estimated utility functions U, we can de

fine a related function, the estimated intrinsic utility,

denoted by Uj, along with a cost function C, that

expresses the difference between total and intrinsic

utility:6

H^i, [Sj]]) = Ui([Ai]) - C(Ai, Sj) (12)

where Uj^At]) = U([A{]).7

Of course there will always exist a function C which

will satisfy equation 12, if only trivially. In order for

Ui to qualify as an intrinsic utility, it must satisfy a

further constraint. Namely, once the state [Sj] has be

come the new current state, the agent's optimal action

at that time should always be the one with highest in

trinsic utility, independently of the cost C. A sufficient

condition for this is that the cost be independent of the

action:8

U([Ai,[Sj]])=UI([Ai])-C(Sj) (13)

Moreover, in the cases we are considering the change

in actual utility of an action that occurs during some

computation Sj will depend only on \\Sj\\, the length

(in elapsed time) of Sj, and on the course of events in

the outside world during that time. Since, by defini

tion, computations alter only internal state, Sj will not

'Often in AI applications, we begin with an intrin

sic utility function (such as a static evaluation function),

and C is then defined to yield an accurate estimate of

the true utility of an action under various time pressures.

Only 0 is in fact independently definable from empirical

observations.

7 We define intrinsic utility with reference to the current

situation only for convenience; in fact, utility is well-defined

only up to an arbitrary linear transformation.

8This is approximately true in many AI domains such as

game-playing or path-planning in a fixed or slowly chang

ing environment. It will not be true in domains such as

hunting or war, where different possible actions will gain

or lose value at very different rates over time. Even in chess

this condition can sometimes fail, since as time is used up

more complex positions become less valuable.
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affect that course of events, so we can let C, and thus

U, depend on the length of the computation rather

than the computation itself. Thus the cost function,

which we will in this case call TC or "time cost", gives

the loss in utility to the agent due to the temporal

delay in performing any given action:

H^\\S:\\]) = HlM)-TC(\\Si\\) (14)

If such a function TC exists, then we can separate

out the cost and benefit of a computation. We can

therefore rewrite equation 9 as follows:

v([Sj)) = us-s>([<*sASj]])-us-s>([<*])

= tf-5'(K]) - ufs<([<*]) - rc(||s,||)

= A(S,-)-TC(||S,||) (15)

where A denotes the benefit of the computation.

4.4 Subtree Independence

Given a utility estimation function which is separable

into cost and benefit components in the above way, in

many cases we can be more precise about the effects of

a computation and thus obtain a further simplification

of the above equation. Often, the agent design is such

that a given computation affects the utility estimate

of only one action. This is the case of subtree inde

pendence. In many domains, such as standard game-

playing programs using minimax as a back-up method,

this assumption will be straightforwardly true, if we

consider individual node expansions as single compu

tational steps.9 Thus, subtree independence holds if

and only if

frS.Sj

ur'([Ai]) = UfdAi))— fS( (16)

for all actions Ai except at most the one action whose

utility estimate is affected.

In this case, examining equation 11, we see that

there are essentially two distinct cases in which a com

putation can have positive benefit, by changing the

agent's intention. Either further computation about

some currently non-preferred move # causes its util

ity estimate to be raised above that of a, or compu

tation on a causes its utility estimate to be lowered

below that of fa, the current second-best move. Let

us call two such computations Sj and 5* respectively

(see figure 2).

Suppose we are considering the computation Sj,

which affects only the estimated utility of action $.

The search action will only change our preferred move

if uf-Sl([/3i]) > 0fSi([a]), or equivalently, given

'However, if the search space is treated as a graph rather

than a tree, as in some chess and go programs, then the

analysis becomes slightly more complicated. In certain

problem-solving systems the full analysis must be used.

For example, if a computation involves refining a probabil

ity estimate used in an influence diagram, the new value

may affect the utility of all the top-level actions.

 

&?([&}) #?([«])

Figure 2: Effects of computation on action preference

equation 16, only if &f'S'([&}) > Of([a]), (the

shaded region to the right of Uj ([a]) in figure 2). If

this happens, we expect to be better off by an amount

&j(lPi]) ~ &?([<*])— otherwise, there is no gain

since our move preference remains unchanged. Thus

in this case

E[V(S.i)]=L ;
Ptj(x)(x - tf,S([a]))d* - TC(Sj)

(17)

where pij(x) is the probability density function for the

random variable Of Si([0t]).

Similarly, if we perform a computation St that af

fects only the utility estimate of the current best

action, our action preference is changed only if

Uj Sk ([&]), the new expected value of our current pre

ferred move, is less than Uj ([fa])- (Although the new

estimated utility of the new preferred action would be

less than the current estimated utility of the current

preferred action, the agent would still be better off than

it was, since the computation will have revealed that

a is a blunder.) Hence

E[V(Sk)]= / pak(x)(US(fa) - x)dx-TC(Sk)

(18)

where pak(x) is the probability density function for

V?s>([a]).

4.5 Partial computations

If we could always assume that the agent would nec

essarily take the action as^ after performing search

action S; , then calculating the value of computation

would always be as simple as in the above paragraphs.

However, in general this is not the case, since, as long

as the agent does not arrive at complete certainty

about its utility function — which we assume our

agents almost never attain — in state [Sj] the agent

will still have a choice between taking action as, , and

continuing to deliberate (assume, for simplicity, that

there is only one course of computational action open

to the agent at each juncture). Thus the value of the

computation 5, will be the value of having this choice.

There are at least two ways to model the utility of
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being in the state of having a choice between actions,

which we discuss below. We include this section for the

sake of completeness, although the problem of evalu

ating partial computations raises very complex issues

which we have not gotten to the bottom of.

4.5.1 An adaptive approach

If we assume that the agent will be able, when faced

with such a choice, to choose the best option, then

the utility of having a choice between two actions is

just the maximum of the utilities of the two actions.

This is a standard approach taken in decision analysis,

for instance by Howard [1966]. Let S* be the action

of continuing to compute in state [Sj]. Then on this

model, the utility of computational action Sj in the

current state is given by

E[U([S,])] = E[mzx{U([aSj, [Sj]]), U([Sk, [Sj]])}]

(19)

One difficulty with this formula is that it defines the

value of a present computation in terms of the value

of a possible future computation. Moreover, it is usu

ally unreasonable for the agent to assume that it will

necessarily choose the action with maximum utility in

state [Sj].

On the other hand, if we replace U by U in equa

tion 19, we obtain the following:

E(U([Sj])) = E(max{U([aSi, [Sj]]), U([Sk, [Sj]])})

(20)

It might be argued that equation 20 is indeed a prin

ciple of rationality, in the sense that it imposes a con

straint on any extension of U from base-level actions

to computational actions. For it is true almost by def

inition that the agent will pick the action with max

imum U, and hence in a sense equation 20 says that

the agent should value an action the same as it values

the computation that recommended the action.10

In any case, equation 20 still cannot define a unique

extension of U to computational actions because it is

"ungrounded"; i.e. it does not specify how the recur

sion bottoms out. One possible way of overcoming

the non-uniqueness involves specifying a conservative

extension of U from base-level to computational ac

tions. In fact, all we need is a method for arriving

at a reasonable post hoc evaluation of a given compu

tational action, in order to gain knowledge about the

distribution of values by statistical sampling. Note

that at the time we are collecting our sample data, we

can have available to us the complete outcome of any

given decision-making event. Thus, if we are willing

10 Against this it might be argued that if the agent knows

that its estimated-utility function is error-prone, it needn't

think that the right-hand side of equation 20 gives the true

expected utility of the computational action Sj. We have

found it very difficult to settle the sorts of philosophical

questions raised by such considerations, and will not at

tempt to do so here. But we hope the dilemma raised here

might convince the reader, as it has us, that the questions

raised here are very deep.

to assume, solely for the purpose of evaluating sam

ple computations, that our current agent's decisions

between action and computation are correct, then we

can arrive at justifiable numerical values by evaluating

completed computations using equation 15, and back

ing up the values obtained to determine the values of

partial computations. A more detailed description of

this procedure is given in [Russell and Wefald, 1988].

Data derived in the above way will of course be

error-prone, since the whole point of doing the analysis

is that we think that the agent often makes incorrect

judgments concerning when to stop and when to con

tinue computing. But once we have done our sampling

and equipped the agent with decision-theoretic search

control knowledge, it will in a sense no longer be the

same agent, since it will make different, and we hope

better, choices in the same sorts of situations. But

once an initial set of distributions is obtained, it would

be a simple matter for the agent to revise those distri

butions incrementally as it gains more decision-making

experience. In this way, the agent might adaptively

converge on a state in which it would possess accu

rate knowledge of the value of its own computational

procedures.

A number of technical problems need to be solved

before the ideas of this section can be implemented.

The most important one is that we will need to find

easily-computable features of the search trees which

will discriminate situations according to the distribu

tion of the value of further search. We believe that

in game-playing domains, one important such feature

will almost certainly be the conspiracy number of the

search tree, where this is defined here, by a slight al

teration of McAllester's [1988] definition, as the min

imal number of leaf nodes whose values must change

in order to change the current best move choice. It

is clear that as this number increases, the cost of

achieving a given increase in the utility of the cho

sen move increases as well. In this way, we hope to

make McAllester's valuable insights a part of a rig

orous decision-theoretic approach to game-tree search

control.

4.5.2 Probabilistic self-modelling

If we do not wish to assume that the agent will al

ways be able to choose the best action in state [Sj],

we may assume instead that the agent has a certain

probability of taking any given action. This probabil

ity may be directly related to the utility of the action;

in an extreme case, if we assume that the probability

is 1 for the action with highest utility, and 0 for other

actions, we arrive at the model of equation 19. The

better the agent's utility estimator U as an approxi

mation to U, the closer will these probabilities come

to this extreme case, but as long as U remains error-

prone, the probabilities will lie in the open interval

(0,1).

Let Pj(otSj)i Pj(Sk) be respectively the probabili

ties that in state [Sj] the agent will immediately take

the new best action as,, and that it will continue de
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liberation with computational action St- Then on this

model the expected utility of the computational action

Sj is given by

E[U([Sj])] = £[p>(<*S;)tf(K.&]])

+Pj(Sk)U([Sk,[Si)])] (21)

Again, this formula gives the value of a current com

putational action in terms of the value of a future one.

However, if we expand the action S* recursively in a

similar way to the expansion of Sj , and so on, we de

velop the familiar decision tree characteristic of such

situations.

Moreover, if we expand all computational actions

in this way, the right-hand side of equation 21 be

comes the expectation of a sum of terms of the form

Pi1j(ao) + Pk<lk(oti) + ...,, where the a's are se

lected from the base-level actions Ai, and qt repre

sents the probability of reaching the fcth node, that is,

n?Jo(l — Pi)- This expression thus averages over all

possible complete computations (see equation 4).

If we then combine terms corresponding to sit

uations in which the same action is chosen, we

get an expression of the form pi(Ai)U(Ai) +

■ • • , +pn(An)U(A„), where now p, represents the prob

ability that action Ai is eventually chosen after com

pleting the computation. Thus, after transforming the

equation in this way, we can then drop the expectation

sign on the right-hand side:

VS-si([Sj]) = £ Pi8(AtyOS([At][Ai chosen) (22)

where we use the conditional notation to denote infor

mally that the fact of an action being chosen influences

our estimate of its utility, and the fact that the action's

utlity will depend on the time at which it is taken, and

hence on the computation that ends in its being recom

mended. We believe it should be possible in practice

to estimate the various probabilities and conditional

expected utilities involved in this equation, although

we have not yet attempted to implement the ideas of

this section.

4.6 Qualitative behaviour

Before looking at specific applications, we can describe

the qualitative behaviour of any algorithm based on our

approach. Clearly, an agent will tend to forego further

consideration of an action whenever its current esti

mated value and that of the best candidate are too far

apart; in this case, it is unlikely that further computa

tion will provide useful information, since the probabil

ity of changing action preference with any reasonable

amount of extra computation is negligible. But delib

eration may also be pointless if the current estimated

utilities of two actions are too close together; in that

case, it may be unlikely that further computation will

reveal a significant difference between them. In an ex

treme case, the two actions may actually be symmet

ric, or nearly so, so that no amount ofcomputation will

differentiate significantly between them. This case has

AA A. /A.,

(a) terminate (b) terminate (c) continue

Figure 3: Three basic situations

received scant attention in the literature, since many

algorithm designers erroneously assume that the goal

of deliberation is to identify the best action. Lastly,

if there is considerable uncertainty as to the values of

the available actions, and considerable overlap, further

computation is recommended. We illustrate the three

major situations graphically in Figure 3.

5 Applications

In this section we briefly describe how the formulae

above can be realized in a practical system. In our im

plementations to date, we have not attempted to eval

uate accurately all partial computations, but rather

in a number of domains we have obtained quite posi

tive results by employing what we call the single-step

assumption. This is the assumption that, for the pur

poses of evaluation, each possible computation step

can be treated as a complete computation. Thus, we

employ the formulae of sections 4.2-4.4, which result

in very tractable calculations. In order to apply equa

tions 17 and 18 we need information about the dis

tribution of possible effects of a computation on the

system's value estimates for its available act ions. This

information will depend on the nature of the individ

ual domain. Here space permits only the briefest sum

mary of the practical results we have obtained in a few

domains; for precise details of the analysis and imple

mentation involved we must refer the interested reader

to [Russell and Wefald, 1988].

In a search program, computation typically proceeds

by expanding 'frontier nodes' of the partially-grown

search tree. The value estimates for actions are cal

culated by backing up values from the new leaf nodes

through their parenre. The effect on the value esti

mate for an action is therefore composed of two as

pects: the effect on the value of the leaf nodes that

are expanded, and the transmission of this effect back

through the tree. The first component depends on the

nature of the node being expanded, and the nature of

the expansion computation. Statistical information on

the probability distribution can therefore be acquired

by induction on a large sample of similar states using

the same type of expansion computation. The second

component is an analytic function of the state of the

tree (in particular, the current value estimates for the

nodes on the path to the root, and their children) that

depends on the backing-up method used by the search

program.
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For single-agent search with an admissible heuristic,

we have shown [Russell and Wefald, 1988] that only

nodes in the subtree of the current best move should

be expanded; derived a computable formula for the ex

pected benefit for expanding a set ofsuch nodes; shown

that a best-first search (such as A* ) is in fact the best

policy given only the heuristic function; and derived an

optimal stopping criterion for real-time search. Two

common applications of this type of search are the fa

miliar eight-puzzle, and path planning through an en

vironment containing randomly-shaped polygonal ob

stacles. If we model the cost of computation by as

suming a fixed cost-ratio between the cost of an edge

in the search graph and the cost of the corresponding

motion in the external world, we arrive at a figure for

the total cost of a solution to such a problem, by sum

ming the cost of the solution path taken and the cost

of the search employed to find it. We have constructed

an algorithm, called DTA* for "decision-theoretic A"",

which attempts to minimize the expected total solu

tion cost using the ideas discussed here. We have

tested DTA*, for which the cost-ratio is a given pa

rameter, against both A*, which always finds shortest

paths regardless of search cost, and RTA* [Korf, 1987],

which uses a limited search horizon. Typical results for

the eight-puzzle and for a 20-polygon path-planning

problem are shown in figure 4. In these applications,

the cost of the meta-level computations performed by

DTA* was insignificant.

For game-playing, we have derived a formula for the

value of expanding a leaf node that can be computed

with very little overhead, given some simplifying as

sumptions [Russell and Wefald, 1988]. In addition

to the single-step assumption, mentioned above, we

also employ what we have called the "metargreedy as

sumption". This is the assumption that only individ

ual node expansions need be considered as alterna

tive computations (hence the resulting algorithms are

greedy at the meta-level, or "meta-greedy"). These

two assumptions lead to a fairly simple, easily com

putable formula for the expected value of a node ex

pansion, which can be used to control and termi

nate search and has proven quite effective, up to a

point. We call the resulting game-tree search algo

rithm MGSS*. In this case, however, the use of the

single-step and meta-greedy assumptions together im

poses a restriction on the effective search-depth of the

algorithm. This is because as the search tree grows

larger it is highly likely to reach a state such that no

single node expansion can alter the best move choice;

at that point, given our simplifying assumptions, the

algorithm must conclude that no further search can

be worthwhile.11 We call this phenomenon the "meta-

greedy barrier'1. In practice, for the game of Othello

we have found that MGSS* outplays a standard alpha-

beta algorithm searching to depth 3 by roughly 2 to

Eight Puzzle

x: search node cost/move cost

y: total solution cost (moves)

3000-

2500- RTA*[depth 15]

RTA'tdepth 10]

 

DTA*

{ft):Oo CUD 0.15 0.20

Path Planning (log-log scale)

x: search cost/move cost

y: total solution cost (length)

5.000,000-

1 ,000,000 « /

200,000'

RTA*[depth 10] /

40,000. / A* /

8,000 «

/ /

1,600-

320 '

i i i i

0 31 .01 .1 10

Figure 4: 8-puzzle and path-planning performance

"This is the point at which the "conspiracy number" of

the tree, as we nave re-defined this term above, goes from

1 to 2.
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Mass* a-P

Time 1095 sec. 1261 sec.

#nodes 190,077 279,697

#wins 22 10

Table 1: Summary of results for Othello

1, while only doing 2/3 as much search, in terms of

number of nodes generated (results in terms of time

used are slightly less favorable, due to the overhead of

the meta-level computations). The results of a particu

lar 32-game tournament, involving 16 random starting

positions, with each side alternately playing black and

white, are summarized in table 1.

Jeff Conroy has applied our approach to build a

backgammon program, for which the preliminary out

look is quite favorable, especially since deep searches

are not possible in backgammon due to the enormous

branching factor. We are currently working to gen

eralize our formulae to overcome the restrictions men

tioned, and hope to incorporate it into the next version

of Berliner's HITECH system.

6 Further work

In addition to trying to relax the meta-greedy and

single-step assumptions to obtain still better search

control, we are currently pursuing three research di

rections to extend the range of applicability of the

principles of metareasoning we have developed.

The first aims to improve the efficiency of real-time

interleaving of computation and action by preserving

and extending the partial search tree developed by pre

vious deliberations. Our current implementations suc

cessfully alternate deliberation and action, but do not

retain any information between deliberations.

The second project concerns improving the space-

efficiency of selective-search algorithms. The selective

search paradigm has come under criticism because of

the need to keep a significant portion of the search

tree in memory. A recursive, or problem-reduction

algorithm can be implemented that still employs the

metareasoning methods described above yet only keeps

a small number of nodes in memory. The approach is

based on iterative expansion, a generalization of itera

tive deepening. The algorithm is given a current state

and a resource limit (say K nodes of search), and calls

itself on the state's successors with resource alloca

tions &i . . .kn. Depending on the results of the initial

search, the algorithm can increase the resource alloca

tion of some successor by a constant factor a. In this

way the algorithm uses only linear space, and in the

limit wastes a negligible amount of time in repeated

subtree expansions. Further, the cost-benefit compar

ison of possible search steps would be done at the top

level of each recursive call, rather than in a best-first

fashion over the whole subtree.

The third, and most important, research project

is to extend the analysis from evaluation search to

other forms of decision-making computations, and

to construct a general problem-solving architecture

that employs 'normative' control over all its activi

ties. The concept of universal subgoaling [Laird, 1984,

Laird et al., 1987] is intended to capture the notion

of a complete decision model, by making every aspect

of the agent's deliberation recursively open to metar

easoning. In the SOAR system [Laird et al., 1987],

however, the basic deliberation mode is goal-directed

search. We intend to construct a problem-solving ar

chitecture in which decision-theoretic deliberation and

its various possible compilations [Russell, forthcoming]

are the basic modes of computation, and in which

metareasoning is carried out in the principled fashion

outlined above, rather than through human-supplied

meta-level productions.

One can also consider the possibility of applying

these ideas to control search in theorem provers. How

ever, in order to do this one needs something amount

ing to a 'current best move'. As currently imple

mented, theorem provers have no partial informa

tion about the success of the branch under considera

tion. The notions of 'guaranteed solution' and 'proof

must be replaced by tentative/abstract/partial solu

tion and justification. Algorithms using defaults, ab

straction hierarchies and island-driving strategies thus

seem more amenable to meta-level control and there

fore much more robust in the face of complexity.

7 Summary

We see computational resource limitations as a major

influence on the design of optimal agents. This influ

ence has been neglected in classical theories of nor

mative behaviour, with the result that practical Al

systems for non-trivial domains are constructed in an

ad hoc fashion. A formal theory of the value of compu

tation will play a central role in the design of optimal

limited rational agents.

The basic insight behind normative control reason

ing is that computations are actions. Choosing good

actions involves reasoning about outcomes and utili

ties. The utility of a computational action must be

derived from its effect on the agent's ultimate choice

of action in the real world. The next problem is to as

sess this effect without actually performing the com

putation. When the base-level problem-solver oper

ates using value estimates for the real-world actions,

this can be done by using prior statistical knowledge

of the distribution of the new value after the computa

tion in question. The required distributions can be in

duced from direct observation of actual computations.

Estimates of the value of computations can then be

used to optimize a system's overall behaviour in real

time situations. We formalized the notion of real-time

problem-solving in our framework, and identified time

cost as a useful abstraction enabling significant sim

plifications in the theory. We have applied the theory

to analyze both single-agent problem-solving and com

petitive game-playing, in each case yielding new algo
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rithms with improved performance. Performance sys

tems for a variety ofdomains can be derived by making

suitable approximations to the normative formula for

meta-level control, and by proving associated simpli

fying theorems. We indicated some areas for further

research in this vein. We also noted some qualitative

insights into principles of resource allocation, pruning

and termination.

Overall, a decision-theoretic, meta-level architec

ture, particularly one endowed with a varied set of

forms of compiled knowledge, generates a rich space of

possible agent configurations. But more importantly,

the fact that all the components in such a system have

a well-defined semantics, and the fact that they are

connected by normative inferential links, means that

an agent can make well-motivated changes in its own

configuration as it searches the space of possible de

signs for an optimal state.
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Abstract

The paper shows how to combine non

monotonic temporal logic with differential

calculus. A temporal logic is defined where

time is real-valued and not discrete, and

where real-valued, continuous parameters are

used with their derivatives. Differential equa

tions can therefore be used directly as ax

ioms, and need not be transformed into con

fluences. This logic is used for characterizing

common-sense physical systems where some

parameters, or some of their derivatives, are

occasionally discontinuous. Differential cal

culus then serves for characterizing the pa

rameters during time-segments where they

are continuous, and logic is used for charac

terizing the parameters around the disconti

nuity points. Models and preferential entail

ment is defined for this logic. For a simple

scenario example (ball falling into shaft) it

is shown what geometrical and physical ax

ioms are needed, and how the axioms prefer

entially entail the desired common-sense con

clusion.

1 Introduction and Approach

This paper describes how simple physical systems, of

the kinds that we all understand and reason about by

common sense, can be characterized and analyzed us

ing a combination of differential equations and formal

logic. The proposed method is an alternative to the

contemporary standard approach in qualitative rea

soning, which uses discrete value spaces[Hay79] and

confluences[dKB85j .

The method applies to piecewise continuous physi

cal systems, i.e. systems whose possible histories over

time may contain a number of significant time-points

called breakpoints, and where all parameters1 of the

'This research was supported by the Swedish Board of

Technical Development and the IT4 research program

'The set of parameters is defined so that the derivative

of a parameter is also a parameter, recursively. Parameters

system are assumed to be continuous in the intervals

between the breakpoints. At the breakpoints however

the parameters may have discontinuities: the left limit

value al(t) and the right limit value ar(t) are defined

for the parameter a in the breakpoint t, but need not

be equal.

One example where breakpoints arise is when a held

object is let go, so that its vertical acceleration (i.e. the

second derivative of its vertical coordinate) changes

instantly from 0 to -9.81 metric. Another example is

when an amount of water is being heated and reaches

boiling temperature, at which point the first derivative

of its temperature switches from non-zero to zero, in

a sufficiently simplified account.

Differential calculus is a fine instrument for charac

terizing the parameters in their continuous intervals

between the breakpoints, but by its very nature the

differential calculus does not deal well with discontinu

ities. The method described here is to use logic formu

las (= wffs) in a suitable temporal logic for characteriz

ing the behavior of the quantitative parameters around

the breakpoints, and in particular for constraining the

left and right limit values of parameters in breakpoints.

Furthermore a non-monotonic logic is used, since

we need to state a default that the left limit value and

right limit value are equal even in breakpoints if it is

consistent with the axioms for them to be so. More

precisely, we shall use preferential entailment[Sho88]

under a preference relation which chronologically min

imizes the instances of parameter discontinuity. The

proposed preference criterium can be seen as a gener

alization of frame-problem persistence, from the clas

sical view in A.I. of a discrete time axis and discrete

properties, to our approach using real-valued time and

real-valued, piecewise continuous parameters.

One can think of total histories for such a system

as being constructed from parameter segments, each

parameter segment being a continuous function over a

closed finite interval on the real time axis. Each avail

able parameter segment is characterized using differen

tial equations. Non-monotonic logic, using appropri

ate axioms describing the object system and expressing

are real-valued functions of time, corresponding to what is

often called fluents in the A.I. literature.
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physical laws, is used as the gluing agent which puts

the parameter segments together.

2 What is wrong with the standard

approach to qualitative reasoning

The method described here is proposed as an alter

native to the present standard approach to qualita

tive reasoning. The standard approach has evolved

through a sequence of significant papers[Hay79,

dKB85, For81, Kui82], and has developed a consen

sus about its basic tenets. Before the new method

is described in the next section, we shall briefly dis

cuss the reasons for trying something different from

the standard. - The abbreviation QR will be used for

qualitative reasoning, and DC for differential calculus.

2.1 Need for a unified theory of temporal

reasoning

"Qualitative reasoning", "temporal reasoning", and

"knowledge based planning" are now three distinct

areas in A.I. with very little technical overlap. How

ever they are all concerned with phenomena over time,

and it would be very useful to have a unified theory,

presumably based on a temporal logic, which includes

stringent accounts of both qualitative reasoning and

planning. The research reported here is one step to

wards such a unified theory.

2.2 Conceptual economy of being consistent

with other disciplines

The standard approach to qualitative reasoning in

volves the reconstruction, for discrete value spaces, of

many concepts and results from DC: arithmetic for

qualitative values, confluences, a discrete counterpart

of the mean-value theorem, etc. This enterprise is by

far not yet finished; it remains to map geometry, many

remaining physical laws, and so on to the discrete-

value domains. A priori it is much more elegant to

use the original domains of real-valued time and real-

valued parameters as domains for the logic, and to use

the original differential equations as axioms.

2.3 Partial information must influence

axioms, not interpretations

One of the common arguments for the standard ap

proach to QR is that DC descriptions are over-specific

since they assume availability of information we do not

have. This is a faulty argument, simply since equality

is not the only allowable relation between quantities:

inequalities are also a part of the notation! For exam

ple the information that a rolling ball moves forward

with positive velocity, under the influence of friction,

air resistance, and other more or less random factors,

can be just as well conveyed by

dx >0

as by

dx = +

From the model theoretic point of view, the first for

mula allows us to use interpretations where parameters

have real values, whereas the second formula forces us

to use interpretations where the parameter values are

taken from a discrete set. Of course the set of all mod

els will have much greater cardinality if parameters

have real values, but so what?

Scarcity of information about the object system

must be reflected in a scarcity of information in the

set of axioms describing that system, but need not be

reflected in a scarcity of information in each particular

interpretation for the axioms.

2.4 Differential calculus is declarative, and

therefore multi-purpose

Another repeatedly used argument for the standard

approach is that DC descriptions can only be used for

two purposes, namely for finding their analytic solu

tion, or as a basis for numerical calculation to find the

solution in a specific instance. This argument is also

incorrect: deduction is a perfectly appropriate use of

quantitative descriptions, particularly when inequali

ties are involved. One obvious example is when it is

known that

f(a) < c < f(b)

a<b

and that / is continuous in the interval between a and

6, one can conclude

3x[a <x< bAf(x) = c]

Another example is when it is known that

d{t0) < 0

where d is a parameter and therefore a function of

time, and that

dd > k > 0

where k is a constant and is therefore independent of

time, to conclude that

3<i[fi > t0Ad(ti) = 0]

at least with appropriate assumptions regarding break

points and discontinuities.

2.5 Comparing continuous and discrete value

spaces for applications without

breakpoints

There are of course also systems which do not have

breakpoints, or (more precisely) which one chooses

to describe as fully continuous and not having break

points. For such systems, the standard approach us

ing algebraic operations in discrete value spaces has

to compete with logical reasoning about inequalities

(and of course also equalities) in DC. It has never been
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stated explicitly why one should prefer the former over

the latter.

One possible reason might be notational elegance

and conciseness. Discrete value spaces sometimes win

in this respect, since one may write algebraic rules such

as

+ *- = -

instead of the more clumsy logical formula

a >0 A6< 0->a*6 < 0

The algebraic formulation is particularly advantageous

for larger expressions which can be evaluated with dis

crete values for each sub-expression. This however as

sumes that operations such as + and * are always de

fined in the discrete value space, and in particular that

the value of a composite expression is a function of the

values of its components. That is not the case since

for example the value of

+ - +

is undetermined in the discrete value space {+,0,-}.

The problem is aggravated when other landmark val

ues than zero are admitted.

If discrete value spaces are preferred on the grounds

of notational elegance and simplicity, then one would

at least need to know that that advantage really holds

in a systematic comparison, and that no significant

loss of expressiveness occurs as a result. Neither of

those issues has been studied (to my knowledge).

2.6 Inference capability

Yet another of the reasons commonly quoted for the

standard approach to QR is that there are certain con

clusions about the physical systems under considera

tion, which people can easily obtain by common sense,

but which can not be obtained from the DC descrip

tions of such systems. Therefore, it is argued, one

has to develop alternative and A.I.-style descriptions,

based on conceptual representations of the types that

people are assumed to use.

We have already argued that DC descriptions lend

themselves to more kinds of symbolic manipulation

than has often been assumed for the sake of the ar

gument. However there is also a deeper issue: since

the switch from a quantitative to a qualitative sys

tem description involves a loss of information, how can

it possibly enable one to draw more conclusions than

would otherwise have been possible? If something is

being said in the qualitative formulation which can not

be said in the quantitative one, then exactly what is

that something?

The answer must be that additional deductive prin

ciples have been introduced in the QR representation

using the qualitative domain, for example in the guise

of constraint propagation mechanisms which are com

monly used. The exact nature of the new mechanisms

is however unclear, or at least has not usually been

spelled out in clear logical terms in the QR literature.

Our position is that any additional deductive princi

ple which is needed for common sense reasoning about

physical or mechanical systems, should be developed,

if at all possible, for use together with quantitative de

scriptions using DC, and not only for qualitative de

scriptions.

In particular, the results in the present paper show

how frame- problem style persistence methods, can be

adapted and generalized so as to also apply for contin

uous time and continuous parameters.

It is interesting to note that the use of discrete quan

tity spaces did not predominate as much in the early

work on qualitative reasoning. The NEWTON sys

tem of de Kleer[dK177], for example, stores mathemat

ical equations in frames. One of the key points with

NEWTON is that it contains multiple problem solving

techniques, including both qualitative and quantita

tive methods, which can be applied to the conventional

mathematical representation. It is in later papers that

de Kleer and other authors introduce the method of

"preprocessing" the problem statement into formula

tions using a discrete quantity space, which does away

with the possibility to use problem-solving methods

that use the DC representation.

2.7 What is really needed for doing

qualitative reasoning

In summary, we claim that the standard approach to

QR using discrete value spaces, confluences, etc. is a

dead end. It originated from an incorrect analysis of

whether one could, and why one could not obtain com

mon sense conclusions from conventional descriptions

of physical systems using differential calculus.

For fully continuous systems (without breakpoints

i.e. all parameters are continuous at all times), we

believe that reasoning about inequalities, equalities,

and differential equations is sufficient for obtaining

common-sense conclusions.

For object systems which are only piecewise con

tinuous, something however has to be added, namely

a descriptive machinery for characterizing - and con

straining - the values of the parameters around the

breakpoints. Switching from continuous to discrete

value spaces is not an adequate response to that need,

except if it were the only way to introduce logical con

straints at all. In the present paper we show how log

ical constraints on breakpoint values can be directly

combined with descriptions of the object in differen

tial calculus.

3 Example scenario

Consider a simple, vertical two-dimensional mechani

cal system, such as the one illustrated in the following

figure:
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A ball is moving along a horizontal "plane" (actually

a horizontal line) towards a shaft with vertical sides

and a horizontal bottom. Idealized physical laws are

assumed: the ball has zero size; there is no drag so the

ball's horizontal velocity is constant until it reaches an

obstacle, and when the ball reaches the pit its vertical

acceleration changes instantly from zero to -9.81. The

ball bounces perfectly against the walls of the pit, so

that its vertical velocity does not change and its hor

izontal velocity reverses its sign but keeps the mag

nitude. Also the bottom of the shaft absorbs impact

perfectly, so the ball stops its vertical movement with

out bounces when it reaches the bottom.

An obvious common sense conclusion from the sce

nario (scene description + "physical" laws) is that the

ball will end up on the bottom of the shaft. We shall

show below how that common sense conclusion is log

ically entailed by axioms expressed directly in real-

valued calculus.

It may be objected that there are no discontinuities

in actual physical systems. No actual ball starts falling

instantly, nor does it make perfect bounces, or stop in

stantly on the bottom of shafts. This is true but beside

the point, since the piecewise continuous description is

a good approximation for many physical systems, and

in particular can be expected to be good enough as a

basis for reasoning.

In general, many interesting mechanical systems can

be well characterized as having a number of "modes",

"phases", or "states", where differential equations can

be used to characterize the relationships between pa

rameters within each of the modes with sufficiently

good approximation. At the border between the states

those approximations are not sufficient. The simplest

possible way of characterizing the system around the

shift of state is to assume that some of the parameters

are discontinuous there. For common-sense reasoning,

such simple approximations are of particular interest.

4 Interpretations and Formulas

We now proceed to the substance of the new method.

In pursuing the approach that was outlined in the pre

vious sections, the following three things need to be

done first:

1. define the structure of interpretations in the logic

2. define the syntax of logic formulas (= wff)

3. define semantic entailment in this logic

We view the development of an inference system and

inference procedure matching the semantic entailment

as a secondary issue which can be pursued later on,

once semantic entailment has been defined. We also

consider it natural to define interpretations first and

syntax afterwards.

4.1 Interpretations

An interpretation in our logic is a sixtuple

(M,U,S,R,Q,W)

where M is a set of mode symbols, U is a set of pa

rameter symbols closed under d, S C R is a "sparse"

set of time-points (where R is the set of real numbers),

namely the breakpoints, R : (R x M) <—► {T,F} as

signs a truth-value to each mode at each point in time,

Q : (R x U) •—► R similarly assigns a value to each pa

rameter at each point in time, and W is a mapping

from temporal constant symbols to R.

In addition interpretations must satisfy the follow

ing requirements:

1. Q(t, u) as a function of t is continuous over every

interval not containing a member of S,

2. if i g S then d/dt Q(t, u) = Q(t, du),

3. R(t,m) as a function of t is constant over every

interval not containing a member of S.

It is in fact possible to get rid of M and R from

the definition by encoding modes as parameters whose

value is always either of 0 or 1, but only at the expense

of understandability.

4.2 Syntax of logic formulas

We introduce the syntax for formulas by examples

taken from the ball-and-shaft scenario above:

Od7xb = 0

where xj € U is a parameter or "fluent" representing

the horizontal position of the ball, so that Q(t, ij) is

the i-coordinate of the ball at time r. The set U was

assumed to be closed under the syntactic operation of

prefixing a d symbol, so dx\,, d7Xb, etc. are also in U .

The value of Q(t,d2xi,) is the horizontal acceleration

of the ball at time i if t & S, but is not constrained to

equal the acceleration if t G S. The operator D means

that the formula following it is true for all t £ R, and
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has the weakest possible priority so that it extends

to the end of the formula or to the next closing right

parenthesis.

DWall(Xi, m) - dx\ = -dx[ A dy[ = 8yrb

where Wall(x, y) is true iff the point (x,y) in the ver

tical plane is a wall point, i.e. x is either a or 6, and

y is strictly between c and d. Also the / and r "expo

nents" are used to signify left and right limit value as

follows:

Q(t,dx[) = rhmoQ(T,dxb)

is the horizontal velocity of the ball "just before" im

pact against the wall at time t. The whole formula

expresses the idealized physical law that on impact

against the wall, the ball reverses the sign of its hor

izontal velocity component instantly and retains its

vertical velocity.

Notice that both the above axioms can be satisfied in

the same interpretation. There is an apparent conflict

because if the horizontal velocity has a discontinuity,

as the second axiom implies, then the horizontal ac

celeration can not be always zero. However this is not

a problem since Q(t, d2xb) is only required to equal

the horizontal acceleration for those t not in S. If the

interpretation is only constructed in such a way that

the time of bounce to is included in 5, then Q(t, d2xb)

may equal zero also for t = to although d/dt Q(t, dxb)

is not zero for t = to, and is in fact not even defined

there.

OSupp(xb,yb)^dyrb = 0

where Supp(x, y) is true for those points (x, y) located

on a horizontal supporting "surface". This axiom says

that an object which is already on such a support

ing surface stays there, and that an object which falls

onto the surface stops without bouncing back up again.

(However, as we shall see below this axiom has to be

formulated somewhat differently in order to exclude

all interpretations where the object "falls through" the

surface).

It is straightforward to extrapolate the appropriate

syntax for logic formulas from these examples, and to

complete the set of axioms characterizing the applica

tion. However what we have described so far does not

allow one to refer to "observations" i.e. statements

about the value of a parameter at a specific point in

time. The notation so far is only sufficient for char

acterizing physical laws (such as the rule relating the

parameters involved in a perfect bounce) and for de

scribing the physical structure of the scenario, for ex

ample the existence and location of the shaft (assumed

to be held fixed over time). We shall refer to this in

formation as the permanent axioms and write it as n.

4.3 Observation axioms

In addition to the permanent axioms there is also a

need for axioms describing the state of the system at

specific points in time. We shall refer to such axioms

as observation axioms.

An appropriate notation for expressing observations

may be as

[ti] xb < a Ayb =d

for saying that the ball is on the supporting surface

and to the left of the shaft at time t\, or

[ti] dxb > 0

for saying that the ball is moving towards the right

at time t\ . Formulas such as these may be assigned a

value by interpretations as defined above, since the W

component of interpretations assigns a time-point as

value to each time-constant such as t\ .

Actually observations have to be recorded as logical

formulas of the form

[t1]8xb>0AC(dxb)

where C is a predicate saying that the parameter ap

pearing as its argument, is continuous at the present

time-point. We will soon come to the reasons why this

is necessary.

If II is a set of permanent axioms, and T is a set

of observation axioms for one time-point t\, then we

should expect the model set for n U T to be the set of

all "histories" i.e. temporal developments which are

compatible with the observations in I\ The types of

reasoning which are commonly called prediction (tem

poral projection) and postdiction (temporal explana

tion) can therefore be understood as identifying for

mulas a which satisfy

and

n U T (= 3t2[h <t2A [t2] a]

n U T (= 3t2[h >t2A [t2] a]

respectively.

Also if r is a set of observations at two points in

time, the model set and the entailed conclusions can

be interpreted as an explanation of observations (given

that the facts in T have actually been observed, con

clude what must have happened in between). If the

logic is extended so that actions are also admitted,

then the conclusions from n U T in this case may alter

natively be interpreted as a plan (or more precisely, as

a disjunction of all available plans) for getting from the

first "observed" state to the second "observed" state.

In this case the second state is of course the goal state

ment for the plan.

The case where T is the empty set, finally, corre

sponds to the reasoning process called envisioning by

de Kleer[dK177]. In other words, the model set for

n alone should be the set of all possible histories in

the world, as constrained by the laws of "physics" and

physical structure, but not by any particular observa

tions of the state of the system.
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5 Preferred models and entailment

We have now defined the structure of interpretations,

and (outlined) the syntax of logical formulae. We

proceed to the third issue that was specified initially,

namely defining the criteria for the model set, and

therefore the entailment relation for the present type

of logic.

The result is as follows. It is not adequate to use or

dinary, monotonic entailment, where the set of models

for the axioms is simply the set of those interpreta

tions wherein all the axioms are true. The reason is

that the axioms may specify under what circumstances

a parameter must have a discontinuity, e.g. by specify

ing the relationship between its old and new value (like

in the axiom for the perfect bounce above), but it is

difficult or impossible to specify through separate ax

ioms all the cases where a parameter should not have

a discontinuity in those time points belonging to S.

There is therefore a need for a non-monotonic principle

saying that parameters are continuous at break-points

whenever that is consistent with the axioms.

Non-monotonic inference can be characterized in

a model theoretic framework using preference rela

tions over interpretations, as has been demonstrated

by Shoham[Sho88]. A preference relation «C over in

terpretations is defined as follows.

Definition. If J = (M,U,S,R,Q, W) is an interpre

tation, and t is a time point, then the breakset i.e. the

set of discontinuities at time t in J is

breaks{J,t) - {m \ R'(t,m) ? Rr(t,m)}U

{u\Q'(t,u)?Qr(t,u)}

Clearly if t is not in S then the breakset of J at t is

empty.

Definition. If J = (M,U,S,R,Q,W) and J' =

(Af, £/', S', R', Q', W) are interpretations, then we

write J <C J' and say that J is preferred over J' iff

there is some time-point to such that

1) for all t < t0, all m G M and all u&U, R(t, m) =

R'(t,m) and Q(t,u) = Q'(t,u)

2) breaks(J,t) C breaks(J',t).

Definition. If II is a set of permanent axioms i.e.

axioms not containing any explicit references to time-

points, and if a is another logic formula, we say that

II preferentially entails a and write II ^< a iff

Mtn(<, Mod(U)) C Mod(a)

where Mod{<j>) is the set of all interpretations wherein

4> resp. all members of 0 are true, and Min(<gi, s) is

the set of all ^-minimal members of the set s.

This is of course similar to the principle of chrono

logical minimization as introduced by Shoham[Sho88].

The way this definition works is that if there is

some way of satisfying the axioms without disconti

nuity then such an interpretation is preferred. If dis

continuities are necessary i.e. no interpretation with

out discontinuities satisfies all the axioms, then the

definition prefers to have the discontinuities as late as

possible, and secondarily it minimizes the set of dis

continuities which do occur.

The set S of breakpoints is itself not minimized. In

particular if two interpretations are identical except

that one of them has some extra breakpoints in S, but

all the parameters are continuous in the extra break

points, then those two interpretations are equally pre

ferred. Breakpoints without any discontinuity in them

are insignificant.

For example by this definition of entailment, the ax

ioms characterizing the ball-and-shaft scenario will en

tail that the temperature of the ball is continuous as

the ball begins going into the shaft, since there is no

axiom that forces the temperature to be discontinuous

there.

The reason for having continuity as a default is not

only in order to deal with other, independent parame

ters for the same object, such as temperature, but also

and maybe more importantly for dealing with multi

ple objects whose discontinuities occur independently.

In an extended ball-and-shaft scenario there may be

several shafts, and several balls falling asynchronously

into those shafts. One should not need to have axioms

saying that one ball moves continuously when another

ball bounces against the wall in a shaft somewhere else.

This is very similar to the "frame problem" but for a

continuous domain.

Notice also that the preference relation only com

pares interpretations which are identical up to the

point of comparison. One might think of having a

stronger preference relation which minimizes breaksets

chronologically regardless of whether parameter values

are equal. However with such a stronger preference re

lation, the axioms for the ball and shaft scenario would

logically entail that the ball starts as far to the left as

possible, and moves as slowly as possible, since that

postpones as much as possible the time-point for the

first discontinuity. With the definition given above

that problem does not arise.

6 Axioms and conclusions in the ball

and shaft example

Let us illustrate the proposed method for the ball and

shaft example that was introduced in section 2. The

following axioms express the idealized physical laws

that are being used:

1. DSupp(xb,yb) —■ d2yTb = 0

2. DWall(xb,yb) ^ dx[ = -dx[

3. Dd2xb = 0

4. D-.5upp(x6, yb) -* d2yb = -9.81

5. UC{xb) A C{yb)

6. a^Wall(xb, yb) — C(dxb)

The following axioms characterize the physical con

figuration of the surface and the shaft:

7. Da < 6 Ac < d
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8. OSupp(x,y) <-+ (x < aVx > b) Ay = dv a < x <

bAy = c

9. OWall(x, y) *-* (x = aV x - b) Ac < y < d

Finally the following axioms characterize the initial

state of the system at time t\:

10. [ti] xb<aAdxb>0Ayh = dA C(dxb)

Theorems of differential calculus are not needed for

determining semantic entailment, because of the cho

sen definition of interpretations, where parameters are

assumed to be continuous with all their derivatives ex

cept in the break points.

The geometric quantities a, b, c and d are assumed to

be constants with respect to time. If one does not want

to have a separate syntactic type for such constants,

this condition may be expressed by

11. DC(a) Ada = 0

and similarly for b, c and d.

Section 4 above contained some of these axioms as

examples of the syntax. However the common sense

versions of the axioms in section 4 have been revised

slightly. In axiom 2 the consequent dy\ = dyl has been

dropped since the same result is obtained by default.

Also axiom 1 is now expressed in terms of the sec

ond derivative in order to eliminate some non-intended

model histories.

Let us now see how these axioms preferentially entail

that the ball will end up on the bottom of the shaft.

Consider the set of all interpretations which satisy the

scenario and observation axioms (7) - (11), which also

assign the same value to ti, and which have identical

histories up to then for all the parameters. This set

of interpretations will then be further reduced by the

requirement to satisfy the first six axioms, and to be

minimal with respect to the preference relation. The

remaining set is the set of (preferred) model histories.

In every model history the ball moves right at con

stant speed to the shaft, i.e. until xb = a. It is clearly

possible to satisfy all the axioms in such an interpre

tation. Therefore, although there may be other inter

pretations which introduce a breakpoint and a discon

tinuity before the ball reaches the shaft, and although

such interpretations may also satisfy all the axioms,

they can not be minimal with respect to the prefer

ence relation.

Also, in every model history it must be the case that

yb is constantly = d as long as the ball moves along

the support. For, any interpretation where the ball

changes its vertical position obtains a contradiction

between (1) and (4) at the timepoint where the ball

leaves the support.

According to DC there exists some timepoint t2

where xb = a. Necessarily t2 must be a breakpoint,

and some parameter must be discontinuous there,

since otherwise some axiom is violated. Two possi

bilities are of interest:

a) dxb has a discontinuity and becomes negative, all

other parameters are continuous.

b) d2yb has a discontinuity and changes to —9.81,

all other parameters are continuous.

However the first alternative is excluded by axiom

(6), so only the second possibility remains. In fact,

axiom (6) only serves the purpose of ruling out the

first alternative in cases like this one, and is somewhat

contrary to the spirit of our general approach since

we would prefer to obtain parameter continuity by de

fault.

Anyway, in all the model histories the ball continues

with constant dxb. It also has continuous dyb (by de

fault) when it starts going into the shaft, but of course

discontinuous d2yb.

The next breakpoint will be either at the right wall

or on the bottom of the shaft, whichever comes first.

Either of those conditions must occur within finite

time, according to DC. Also, any interpretations with

breakpoints and discontinuities along the way to the

right wall or bottom, will be deselected by the prefer

ence condition. Consider those interpretations where

the ball hits the right wall of the shaft first.

Axiom (2) can only be satisfied if there is a break

point at the time-point when the ball's position satis

fies the predicate for the walls of the shaft, i.e. when

the ball hits the (right) wall. At that breakpoint xb

and yb are continuous (by 5), dxb reverses its sign (by

2), dyb is continuous (by default), and d2xb and d yb

are constant (by 3 and 4).

The ball then bounces back and forth between the

walls of the shaft, with decreasing yb. Eventually yb

reaches the value c, at which point there must again

be a breakpoint. There xb and yb are again contin

uous, dxb is continuous (by default), d2xb remains 0

(by 3), and yb becomes constantly equal to c by the

same argument about second derivatives as when the

ball was travelling along the upper support.

In every model history there is therefore some time

after which the ball is forever at the bottom of the

shaft, and in fact it bounces forever back and forth

there. This was the desired "common sense" conclu

sion, which we however obtained using non-monotonic

logic and differential equations, and while retaining

full mathematical precision.

7 Discussion

The semantics and semantic entailment that have been

defined here does not contain the notion of actions. In

a separate paper [San88] we describe an extension of

the present logic that also contains actions. The ex

tension is non-trivial, since it requires an entailment

criterium which turns out to be significantly more com

plex than the one used here.

The axiomatization of the ball and shaft scenario

uses idealized physical laws where e.g. the ball has

constant horizontal velocity and constant vertical ac

celeration. A more realistic axiomatization would give

bounds for those parameters, instead of giving their
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exact values. For example one of the "laws" could be

that when the ball is unsupported, either its vertical

acceleration is < —9, or its vertical velocity is neg

ative, with a magnitude greater than some constant.

Another axiom could say that when the ball bounces

against the wall, its horizontal velocity has its sign re

versed and its magnitude decreased. A change to such

axioms makes the deductions a bit more cumbersome,

but does not change the essence of what models are

obtained and what is logically entailed by the axioms.

7.1 Observations and continuity

Observation axioms i.e. axioms describing the state

of the system at a particular point in time, are cru

cial for example for stating the system's initial state,

or for specifying the goal state(s) in the extension to

planning. Observation axioms must always be written

with a statement that the observed parameter is con

tinuous at the time of observation, if it is, for example

as in the ball-and-shaft scenario

[h] dxb > 0 A C(dxk)

since otherwise the observation would not be enforced.

Consider an interpretation where the history before <i

arrives continously to a state such that dxt < 0 at

<! . No interpretation of that form should be a model.

However if it has <i as a breakpoint, and assigns a

positive value to dxt, in t\ , then such an interpretation

satisfies all the axioms except the one requiring dx/, to

be continuous in t\.

Therefore also the definition of the continuity pred

icate C(A) is that A', A, and Ar must all be equal in

the given time-point. It is not sufficient to only require

that the left and right limit values be equal.

Of course if observations are recorded at a time

of discontinuity for the parameter, they must specify

whether they refer to the left or the right limit value.

7.2 Open and closed intervals

The main purpose of logic in the tandem of logic

and DC, is to characterize the behavior of parame

ters around their discontinuities. To achieve that pur

pose we need the separate notation for referring to the

left and right limit values a' and aT for a parameter

a. This notation may seem a bit clumsy. However

the problem is not a new one, and in particular one

has the same problem when discrete value spaces are

used. For example, if one wants to characterize the

temperature of water which is brought to boil at time

<i, using a discrete value space consisting of < 100,

= 100, and > 100 degrees Celsius, one must take care

that the "value" is < 100 in the open interval ending

in t\, since presumably it is = 100 at the time <i itself.

Also in order to characterize with a discrete value

space the x and y coordinates of a particle that trav

els along the x axis, and bounces in origo in order to

continue along the y axis, as in the following figure:

• !>

V -Q

,then it is not sufficient to only have two time in

tervals for before and after the bounce-time t0. The x

coordinate of the ball, Xf,, is + at time < to, and is 0

at time > <o- However yj is 0 at time < to and + at

time > to . Therefore, in the standard approach to QR

using discrete value spaces, one has to subdivide the

time axis differently for characterizing x and y, or at

least divide the time axis into the time-point of reflec

tion, plus the two open intervals before and after that

time-point.

Several previous authors have commented on the in

tricacies of dealing with parameters around the end-

points of intervals. Allen[A1184] ascribed such prob

lems to the use of time-points, and quotes it as one of

the reasons why a temporal logic should be based on

intervals rather than time-points.

In the perspective of earlier work, it therefore seems

that the notation proposed here, i.e. using time-points

but with a formula syntax that allows explicit reference

to the left and right limit values of a parameter at a

time-point, represents a reasonable trade-off between

notational precision and notational convenience.

7.3 Naturalness of the axioms

In declarative and logic based approaches, one ideally

wishes that an axiomatization should simply be a set

of statements each of which comes naturally as a de

scription of the application domain. In practice, of

course one must often compromise the ideal already

in order to obtain a complete (or less incomplete) ax

iomatization, as well as for performance reasons in an

implementation when one comes to that point.

In the axioms for the ball and shaft scenario only

the former consideration was involved. Most of the

axioms are the "natural" ones, but the ideal has not

been attained completely. Axiom (1) had to be for

mulated in terms of the second derivative instead of

the natural formulation using the first derivative, in

order to rule out certain unintended model histories

as we have seen. Also the extra axiom (6) had to be

introduced for that same reason.
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In other words, we have approached to, but not fully

arrived at the ideal situation that one could take dif

ferential equations straight from the physics textbook

and use them as axioms in the logic.

7.4 Remaining mathematical groundwork

In this paper we have skipped over certain basic math

ematical issues which would have to be covered in

a fully rigorous account. In particular, we have as

sumed that minimal models always exist (no infinite

sequences of more and more preferred models, except

if the sequence has a limit which is even more pre

ferred). We have also ignored whether problems could

arise if there are infinitely many breakpoints.

8 Conclusion and acknowledgements

Our grand goal is to develop a coherent theory for

temporal reasoning, knowledge based planning, and

qualitative reasoning. The present paper has shown

how the basic intentions of qualitative reasoning can

be achieved within a framework of non-monotonic tem

poral logic. The logical next steps are to proceed to

planning, if possible using the same approach or an

extension of it, and also to try to represent additional

physical scenarios using the same method as for the

ball and shaft scenario.

The work reported here has been catalyzed by regu

lar discussions with Lennart Ljung and his colleagues

in the Division of Automatic Control of our univer

sity. The significance of our group meetings is hereby

acknowledged.
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Abstract

It is shown that in the frame-based language

KL-ONE it is undecidable whether one concept

is subsumed by another concept. In fact a rather

small sublanguage of KL-ONE called %.L%. is

used which has only the concept forming

operators conjunction, value restriction, and

role value maps using only '='. In particular,

number restrictions are not used. The language

AL%.caxi be viewed as an extension of feature

terms without complements and unions, where

features have sets as values instead of elements.

Our result shows that there is a basic difference

between feature terms and KL-ONE, since the

complexity of subsumption switches from

quasi-linear to undecidable if the restriction is

dropped that roles are functional.

1. Introduction

The knowledge representation language KL-ONE

[Brachman and Schmolze, 1985, Brachman et. al., 1985,

Schmolze and Israel, 1983] permits describing concepts on

the basis of unary predicates (concepts, frames) and binary

predicates (roles, slots). It is a language supporting the

definition and exploitation of taxonomical knowledge

including multiple inheritance, and has as advantage a

declarative semantics that permits to compare

implementations. Several KL-ONE-rclatcd languages are

currently being used as the basis of knowledge

representation systems [Brachman and Schmolze, 1985,

von Luck et. al. 1987, Kaczmarek ct. al., 1986, Mac

Gregor, 1988], in particular for natural language

processing.

The terminological component (T-Box) of KL-ONE

gives a potential user the possibility to structure a domain

of interest by using concepts and roles (frames and slots).

Usually, such a description starts by postulating certain

primitive concepts and roles, and afterwards defining

concepts using the operators available. An example for

such concepts may be person, animal, female, male,

thing, and examples for roles are child (has-child) and

father (father-of). New concepts can be defined via

conjunction ("a person that is female"), via value

restriction with respect to some role ("a person with every

male friend is a doctor"), via number restriction ("a person

with more than three children"), via role value maps ("a

man with every child of a child of his father is also a

child"), and some other formation possibilities. It is also

possible to restrict models by some axioms, for example

by requiring that certain concepts are disjoint or that some

concepts form a covering of another concept.

Research in computational linguistics has lead to a

related knowledge representation method as the basis of

unification grammars [Kay, 1985, Shieber, 1986], also

called feature structures. H. Ait-Kaci has independently

developed a very similar mechanism [Ait-Kaci, 1984, Ait-

Kaci and Nasr, 1986] with the intention to apply it in

knowledge representation systems. The so-called *F-terms

are defined and implemented in a Logic Programming

language. A similar device are the feature terms, described

in [Smolka and Ait-Kaci, 1987, Smolka, 1988], where

concepts are called sorts and roles are called features. We

give an example for feature terms: Let car be a sort

symbol (concept) and let speed and age be features

applicable to cars. Then (car n {age i speed)) is a feature

term denoting the set of all cars that have equal age and
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speed. A feature term used in linguistic application may

be (sentence n ((subj number) i (pred number))), which

denotes sentences with agreeing number of subject and

number of predicate. The difference to knowledge

representation £ la KL-ONE is that features denote partial

functions. The term forming rules for feature terms

directly correspond to the concept forming possibilites

conjunction, value restriction and role-value maps

available in KL-ONE. In addition, feature terms may be

defined using a predefined lattice structure on sorts (the

primitive concepts). Indeed, the expressiveness of feature

terms can be viewed as a subset of KL-ONE where all

roles are functional.

The basic service provided by all these languages is a

reasoning facility called 'classification' that informs the

user whether one of his already defined concepts is

subsumed by some other already defined concept. H.

Levesque and R. Brachman strongly argue in several

papers [Brachman and Levesque, 1984, Levesque and

Brachman, 1985, Levesque and Brachman, 1987] that

classification should be executable in polynomial time.

They showed that there is a tradeoff between

expressiveness of the concept description language and the

complexity of the subsumption test. In particular they

proved that reasonably expressive concept description

languages have a co-NP-hard subsumption problem.

In the feature term language the main inference is

called 'unification'. Basically, unification of two feature

terms amounts to computing a simplified representation

of their conjunction and a test, whether this conjunction

denotes a nonempty set. The test for consistency is in fact

a classification problem. It was shown by H. Ait-Kaci

[1984], that classification can be performed in quasi-linear

time. Recently it was shown that the classification

problem for feature terms including negation is co-NP-

complete [Smolka, 1988].

In my opinion, knowledge representation formalisms

that don't admit a polynomial classification algorithm are

nevertheless useful, since for example most NP-complcte

problems permit algorithms that require polynomial time

in average. However, a formalism with an undecidable

subsumption is unsatisfactory, since in this case it may

even be the case that consistency of concepts is not

recursively enumerable. Using a formalism with

undecidable subsumption in practice means that the

corresponding classification is either incomplete or that

further constraints to restrict concept formation are to be

employed. If the latter is the case, then these restriction

should show up in the theory, possibly yielding a

decidable subsumption for the restricted language. A

further argument for decidability of subsumption is that

only in this case it is sensible to combine such a

formalism with a first-order language (A-Box) with the

intention to exploit the mechanisms and algorithms of the

knowledge representation formalism, since otherwise the

T-Box is already as powerful as any programming

language. However, there are some recent approaches

using feature terms as constraints [HOhfeld and Smolka,

1988, Blasius and Hedtstiick, 1988]. These methods use a

lazy classification and can thus tolerate undecidable

subproblems by postponing the decision until further

information is available. Both approaches are restricted to

feature terms, however, an extension to KL-ONE-like

concept terms appears possible.

Although there is agreement that role value maps

provide complications, there are systems allowing them as

descriptive possibility and use them also in the

(incomplete) classification algorithm. For example NIKL

[Kaczmarek eL al., 1986] admits the full expressive power

of role value maps, whereas for example in BACK [von

Luck et. al., 1987] role value maps are strongly restricted.

There are several knowledge representation systems using

feature terms and role value maps in the restricted form of

agreements. Since for feature terms it is known that the

consistency check is quasilincar, and co-NP-compIete if

complements are permitted, the demand which suggests

itself is to extend features to arbitrary binary predicates (or

roles).

In this paper it is shown that subsumption in XOK, a

rather small sublanguage of KL-ONE is undecidable. This

result was a surprise, since the very similar language of

feature terms has a tractable classification problem, and

my and other peoples expectation was that extending

feature terms by set-valued features would only moderately

increase the complexity of classification. This shows that

role value maps in the restricted form are acceptable, but

that their general form as used in KL-ONE should be

restricted.
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For this result, conjunction, value restriction, and role

value maps using only '=' are needed, but not more. The

proof uses the undecidability of the word problem in

groups. This is more convenient than the word problem in

semigroups, since using the latter one can only show

undecidability of subsumption if 'c' is permitted as

comparison operator in role value maps.

Recently, P. F. Patel-Schneider [1989] has shown

that classification in NIKL is undecidable. His

sublanguage of KL-ONE requires more of the

expressiveness of KL-ONE than our sublanguage, such as

role value maps with 'c' as comparison operator, inverse

roles and number restrictions. In the paper it is mentioned

that inverse roles can be omitted, but role value maps

with 'c' seem to be indispensible. K. Schild [Schild,

1988] presents a proof showing that in a in a KL-ONE-

related language that supports only role-dcfinilion

subsumption of roles is undecidable. The language

permits the definition of complements of roles,

composition of roles and conjunction of roles.

The paper is structured as follows: In section 2 the

syntax and semantics of AL%.and of 1A.URC are given. In

section 3 we give the proof of undecidablity of

subsumption by reducing the word problem in groups to

it and furthermore discuss some consequences.

2. The Language %.L%.

In the following we describe the syntax and semantics of

the sublanguage ALHl of the terminological language

KL-ONE [Brachman and Schmolze, 1985, Schmolze and

Israel, 1983] as well as of an extension JLCKC of ALU. in a

slightly modified linear syntax, but the same semantics.

Our language A.L%. allows to construct concept

expressions by the constructors given below, but it docs

not support the definition of roles. Consequently we are

mainly interested in concepts and their relations.

There are disjoint sets of role symbols and concept

symbols. Concept expressions are:

i) concept symbols

ii) C n D, if C and D are concept expressions,

iii) VR:C, if R is a role symbol and C is a

concept expression,

iv) P = Q if P and Q are lists of roles.

Concept expressions in M/Rjasc composed from symbols

and the three methods of construction, possibly by

inserting some brackets when necessary. The concept

expression for the concept "a man with every child of a

child of his father is also a child" would be something like

(man n ((father, child, child) = (child))). In the NIKL-

syntax this would be (and man (all (compose father

child child) child) (all child (compose father child child)

child)).

In the proofs we will use the more expressive

language %.L%C that extends the language AL%. by the

following three formation rules for concepts:

v) C <-i D, if C and D are concept expressions.

vi) 3R:C, if R is a role symbol and C is a

concept expression.

vii) -iC if C is a concept expression.

The language M,%C is an extension of the attributive

concept description language ALC [Schmidt-Schaufi and

Smolka, 1988] by role value maps.

We need some facts about relations, compositions of

relations and applications of relations to sets and

elements. Let R,S be relations over a set M, i.e.,

R,S c MxM.

The composition of R and S is defined as:

R.S := {(x,y) I 3zeM (x,z) e R a (z.y) eS).

The application of a relation R to a set s c M is

defined as follows:

sR := {y I 3x: x e s a (x,y) € R).

The application of R to an element x is defined

analogously:

xR := {y I (x,y) e R}.

Obviously, we have

s(R»S) = (sR)S and x(R«S) = (xR)S

for a set s and an clement x.

The semantics of the roles, concept symbols and concept

expressions is as usual [Lcvcsque and Brachman, 1985,

Levesque and Brachman, 1987, von Luck et. al., 1987].

We give the semantics of the more general language

AL'RC, which includes the semantics of MJR,

An interpretation / is a pair (M, I), where M is a set

and I an interpretation function, such that

i) for every concept symbol C: 1(C) c M

ii) for every role symbol R: I(R) c MxM.
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Lists of roles are interpreted as the composition of

relations:

I((Rl,...,Rn)) = I(Ri).....I(Rn).

We intepret defined concepts as subsets ofM as follows:

I(CnD) = 1(C) n 1(D)

I(CuD) = 1(C) u 1(D)

I(VR:C) = (xeMIVy: (x,y) € I(R) => y e 1(C)}

I(3R:C) = {x € M I 3y: (x,y) e I(R) a y € 1(C)}.

I(P = Q) = {xeMlx(I(P)) = x(I(Q))}

I(-nQ = M-I(C),

where C and D are concepts, R is a role symbol, and P

and Q are lists of roles.

Subsumption and Consistency are defined with respect to

this semantics:

- A concept expression C subsumes a concept

expression D, iff for all interpretations /, we have

1(C) 2 1(D).

- A concept C is consistent, iff there exists an

interpretation /, such that 1(C) * 0, otherwise C is

called inconsistent.

- Two concepts C and D are equivalent, iff C

subsumes D and D subsumes C.

Since we have negation in %.L%C, and since the empty

concept can be defined, subsumption problems in &L%C

are equivalent to inconsistency problems.

2.1 Lemma. Let C, D be concept expressions with

respect to AL%C- Then the following three statements

are equivalent:

i) D subsumes C,

ii) -iD n C is an inconsistent concept,

iii) -iD n C is subsumed by -iD n D (the empty

concept).

Proof. The concept D subsumes C, iff 1(D) a 1(C). This

in turn is equivalent to (M - 1(D)) n 1(C) = 0. Thus i)

is equivalent to ii). Obviously, I(-.D n D) = 0 for all

interpretations /, hence ii) is equivalent to iii). ■

Subsumption is not equivalent to consistency of concepts

in the language &L%, since in !A.L%. all concepts are

consistent. Even if 3R:C and the role-defining operator

(restrict R C) from NIKL are permitted, then all

concepts remain consistent, which follows by considering

a one-element interpretation /= (M,I) with M = {m},

where all concept symbols are interpreted as M and all

roles as {(m, m)}. In this interpretation, the restriction of

a role has no effect, and all defined concepts have M as

extension. Thus all concepts remain consistent.

Let us compare the expressiveness of il&K.and SUJRC with

that other knowledge representation languages:

Obviously, %L%.\% a sublanguage of KL-ONE. AL!R.

has less expressiveness than the sublanguage of NIKL

used by P.F.Patel-Schneider [1989] to show undecidability

of subsumption in NIKL. The j?I.^.-concept VR:C is

equivalent to (all R (restrict R C)) in NIKL and to

(all R C) in JFL [Levesque and Brachman, 1985]. A

concept description using role value maps ((Rj, ... , R„)

= (Si Sm)) is equivalent to the NIKL-expression

(and (all (compose Ri Rn) (compose Si

Sm) (all (compose S\, ... , Sm) (compose Ri

Rn)))- I conjecture that the expressiveness of &L%. is

strictly smaller, since it is not possible to define

functional roles in $£%

There is a close relationship between SUJRjanA feature

terms. M,%.can be seen as feature terms (without negation

and union) with the semantics of features changed from

(partial) functional to arbitrary binary relations. The same

relationship holds between msjRC and feature terms with

complements and union. Of course, the descriptive power

is not really comparable, since for example the rules for

computing with feature terms and concept expressions in

.!?£%: are different [Smolka, 1988, Schmidt-SchauB and

Smolka, 1988]. For example the rule VR:(CuD) -»

(VR:C)u(VR:D) is valid for feature terms, whereas this is

false in MJRC.

3. Subsumption in %L%. is Undecidable.

In this section we will show that subsumption in %JL%. is

undecidable by reducing the word-problem in groups to it.

Since the semantics of A.URC and A£-^.are compatible, it

is sufficient to show that subsumption of AL^rexpressible

concept expressions is undecidable in %£%£. Hence we

will use the language RUHC in the following, but we will

encode the subsumption problem using operators from

Similar as in [Schmidt-SchauB and Smolka, 1988,

Smolka, 1988], wc transform subsumption problems of

A&fcconcepts into a system C of constraints, where every
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single constraint is of one of the forms s c C, x g C,

x e s, s = t. We write x, y, z for element variables, s,t

for expressions of the form xRi...Rn, and C, D for

concept expressions. The reason for using constraints is

that the proofs are far more readable than in linear syntax

manipulating concept expressions and that subsumption

algorithms can be described in an elegant way (cf.

[Schmidt-SchauB and Smolka, 1988]).

Let I = (M, I) be an interpretation. Let a be an

assignment of elements in M to element variables of C.

We assume that a extends the interpretation function I,

i.e., ctC = 1(C), a(xP) := (ax)I(P) for a concept C and a

list of roles P.

Then we say a satisfies C, if the following holds:

for (x € A) € C, we have ax e aA

for (A c B) e C , we have ct(A) c aB

for (A = B) g C, we have ctA = aB.

A constraint system Cis consistent, iff there exists an

interpretation / and an assignment a with respect to this

interpretation such that a satisfies C. Otherwise Cis called

inconsistent.

3.1 Lemma. Let C be a concept expression.

Then C is consistent, iff the constraint system

[x £ C) is consistent.!

There are several rules for replacing concepts and

constraints which make life easier, and which preserve

consistency and inconsistency of constraint systems (cf.

[Schmidt-SchauB and Smolka, 1988, Smolka, 1988]:

-<VR:C) <-» 3R:-,C

-.(3R:Q <-» VR:-C

X G AnB <r* X € A, X G B

x g VR:C <-> xRcC

xg 3R:C *-» y g xR, y g C

where y is a new variable

xg(P = Q) o xP = xQ

In order to show undecidability of subsumption, we use

the undecidability of the word problem in groups [Boone,

1959, Novikov, 1955, Stillwell, 1982]. Such a problem

looks as follows: Let Ri,...,Rn' be the symbols of a

group and let Pi=Qi,...,Pm' =Qm' be the generating

relations of some group. Then the word problem is to test

given strings P and Q, whether P = Q is derivable from

these relations and the axioms for a group. Our aim is to

show that there is a subsumption problem that is

equivalent to this word problem.

In order to avoid clumsy notation for the used groups,

we assume that only associativity is built-in and that the

semi-group-defining relations imply that the semigroup

defined by the relations is a group. If we have given

generating relations under the assumption that all axioms

for a group are built-in, the following procedure gives

relations for semigroups ensuring that the generated

semigroup is an isomorphic group: Add a new symbol Re

standing for the unit, and add for every symbol Rj a new

symbol R"j" for the inverse. Then add the relations: Re°R =

R and R«Re =R for every symbol R g {Re, Rj, K[, i

= l,...tn') and add the relations Ry-Ri = Re and RpRy =

Re for all symbols Rj. The defining relations for the

group are translated as follows: We assume that the words

occurring in the relations are composed of symbols or

inverses of symbols. The unit is translated into Re,

symbols are translated identically and inverses of symbols

are translated by (Ri)"1 -> RJ. Now the new relations

together with the translated generated relations defining the

group provide a semigroup, which is isomorphic to the

original group and has an equivalent word problem.

These considerations permit us to assume in the

following that the symbols are Ri,...,Rn and that the

relations are Pi=Qi Pm=Qm. where the group defining

relations are among these relations. By Q we denote the

free semigroup (which is in fact a group) generated by the

symbols Ri,...,Rn and the relations Pi=Qi,...,Pm=Qm-

This is the semigroup consisting of all congruence-classes

of words from {Ri,...,Rn} , where two words are

congruent, if the least congruence on {Ri Rn) that

contains the relations makes them congruent. For

convenience we denote elements of Q by [P], where P is a

string of symbols and [P] denotes the congruence class

with respect to the defining relations.

We say an equation P = Q is derivable from the

relations, denoted as h P = Q, if it can be generated from

the relations using the following rules:

1) h Pj = Qi for all generating relations.

2) i- P = P for all words P from {Ri,...,Rn}*.

3) h P = Q ifi-Q = P

4) h P = Q if h P = F and h F = Q

5) H PF = QQ' if i- P = Q and i- F = Q'.
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We have [P] = [Q] iff the equation P = Q can be

derived from the relations using rules 1) - 5) [Burns and

Sankappanavar, 1981, Gratzer, 1979]. Note that this

means that for two given words P and Q it is

semidecidable, whether they are congruent by using the

calculus above for enumeration of all derivable equations.

As an example consider the integers, which form a

group with respect to addition. We use the usual notation

of 0,1,-1 and + instead of Re,Ri, Rf and "•". If all

axioms of a group are built-in, then "1" is sufficient as

symbol and there arc no relations. Considered as semi

group, the group of integers is generated by the three

symbols 0,1,-1 and the relations 0+1 = 1, 1+0 = 1, 1+1 =

1+1, 0+(-l) = -1, (-l)+0 = -1, (-l)+(-l) = (-l)+(-l), l+(-l)

= 0, (-1)+1 = 0. A derivable equation is for example

l+(-l) = (-l)+l.

In the following we sometimes use the symbols Rj,

i = 1 n from above also as role symbols. We need an

additional role symbol R that is not among these role

symbols. Furthermore we use Pi, Qi, P, and Q also for

the lists of roles. Thus it depends on the context whether

P or Q is meant as a word in the group or as a list of role

symbols.

Now we define several concepts that are needed for the

subsumption problem encoding the word problem. For

convenience we use n as associative operator and write

lists of roles as composition.

Ci := (R'Rl = R) n... n (R.Rn = R)

C2 := VR:(P1= Qi) n ... n VR:(Pm= Qm)

Now let C := Ci n C2 and let DPq := VR: (P=Q).

The subsumption problem, which we are interested in is

whether Dp_Q subsumes C.

The idea of the construction is to view the relations in the

role value maps as relations that define a semigroup and

then to make deductions using the deduction rules 1) - 5)

above. The concept C2 encodes the relations that are used

to define a particular group, whereas Ci is only technical;

it encodes some fixed point properties that will guarantee

the correctness of deducing new role value maps from the

given ones similar to deducing new equations form given

equations.

Let Cq be the following constraint (coming from C):

Cq:- {xR«Ri = xR xR«Rn = xR,

xRC(Pi=Qi) xRcO^Qm)}.

and let Cq(P,Q) be the following constraint system

(coming from -iDpfQ n Q:

Cg(P,Q) := {y g xR, y e ^(P = Q)} u Cq.

Now we can prove the main result as a sequence of

lemmas.

3.2 Lemma. Dp,Q subsumes C, iff the constraint

system Cg(P,Q) is inconsistent:

Proof. Lemma 2.1 yields that Dp,Q subsumes C iff

(-iDpq) n C is an inconsistent concept, and Lemma

3.1 yields that this is equivalent to the inconsistency

of the constraint system (x e (-iDp.q) n C). Due to

the rules above, we can transform .this constraint

system in several steps as follows:

{x e -n(VR: (P=Q)), xeQn C2)

<=> {x e 3R:-<P=Q), x e Ci, x e C2)

«=> {ye xR, ye ->(P = Q), x e Ci, x e C2).

If we develop the concepts Ci and C2, then we obtain

the constraint system:

( y e xR, ye -,(P = Q), xR-Ri = xR

xR.Rn = xR, xR c (Pi= Qi), ....

xR£(Pm=Qm)},

which is exactly the above defined system Cq(P,Q).

Since all used transformations preserve consistency and

inconsistency, the lemma holds. ■

Now we can prove the crucial fact that the deduction rules

above can be simulated in the constraint system Cc(P,Q).

The basic idea is the use of the additional constraints

xR°Rj = xR, which permit to view lists of roles in the

constraints as words in groups. Without this "technical"

addition, this is impossible.

3.3 Lemma. If P' = Q' is derivable from the relations

defining Q, then for every constraint system Co with

Cq c Co, there exists a constraint system Cq with the

following properties:

i) Q)ZCg'

ii) {xRz(?'=Q'))cCq'

iii) Co is consistent iff Cq is consistent.

Proof. For a constraint system Clct EQ(C) denote the set

{P = QI(xRC(P = Q))e C).

We prove by induction on the length of derivations

using the rules 1) - 5) above that given a constraint
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system C with Co c C and an equation P' = Q'

derivable from EQ(C), the constraint system

{xR c (P= Q')} u C is consistent, iff C is consistent

That the consistency of (xRc (F= Q')) u C implies

the consistency of C, is obvious and hence not

mentioned in the following.

Let Cbe a consistent constraint system containing Co-

1) If P' = Q' is derivable from EQ(C) with rule 1), then

xR c (P'= Q') is a constraint in Co. since Co

contains Cq.

2) For every word P from {Ri,...,Rn} , the constraint

system C u{xR £ (P = P)} is consistent, since

every assignment a satisfies xRc(P = P).

3) For an equation P = Q in EQ(C). it is obvious that

Cu{xR c (Q = P)} is consistent, since for every

assignment a, we have a(P = Q) = a(Q = P).

4) Let P = P' and P' = Q be in EQ(0 and let a be an

assignment that satisfies C. This means

a(xR) c a(P = F) and a(xR) c a(P' = Q). By

the semantics we have that for every element

a € a(xR): a(aP) = a(aP') and a(aP) = a(aQ).

Hence we have also a(aP) = a(aQ), hence

a(xR) c a(P = Q) holds. Thus a satisfies the

constraint system Cu(xRc(Q = P)), hence it is

consistent.

5) Let P = Q and P' = Q' be in EQ(C) and let a be an

assignment that satisfies C. This means

a(xR) ca(P = Q) and a(xR) c a(P' = Q"). Now

the constraints from Ci have to be used! Since

cc(xR»Ri) = oc(xR) for all i=l,...,n, we have also

a(xR.P) = a(xR) = a(xR«Q) by repeated

application. For every a e a(xR) the equation

a(aP) = a(aQ) holds. Furthermore a(aP) c a(xR).

Hence for every element b 6 a(aP), we have

b(aP') = b(aQ'). If we take the union of all sets

b(aP') and b(aQ') where b ranges over the whole

set a(aP), we obtain that a(a(P°P) = a(aQ«Q") for

every a e a(xR). Hence a(xR) c a(P«P' = Q«Q')

holds. Thus a is an assignment that satisfies the

constraint system Cu {xR c (P«P' = Q«Q')}, hence

this constraint system is consistent. ■

3.4 Lemma. Let P and Q be words over {Ri,...,Rn}*.

Then [P] = [Q] iff Cg(P,Q) is inconsistent.

Proof.

"=>": Assume by contradiction that Cg(P,Q) is

consistent. If [P] = [Q] holds in Q, then the rules

1) - 5) are sufficient to derive P = Q from the

relations. Lemma 3.3 shows that there exists a

consistent constraint system Cq containing

Cq(P,Q) u (xR C (P = Q)}. The system Cq(P,Q)

contains the constraints y € xR, ye -i(P = Q),

which contradict the constraint {xR c (P = Q).

Hence Cq(P,Q) is inconsistent

"<="; We show that if [P] # [Q], then C^(P.Q) is

consistent. Therefore we assume that [P] * [Q]. An

interpretation / = (I, M) that satisfies Cq(P,Q) can be

constructed as follows: Let the domain M be

M := [a)u£, where a«§, let I(R) := {(a,g) I g 6 Q),

and let I(Ri) := {(g, g.[RJ) I g 6 Q] for i = 1 n.

The assignment a is defined such that ax := a. This

means that a(xR) = Q. Since multiplication from right

in a group is a bijection, the constraints xR< R\ - xR,

... , xR«Rn = xR are satisfied. The constraints

xR c (Pi = Qi) xR c (Pm = Qm) are also

satisfied, since the equations [Pi] = [Qi], i = l,...,m

hold in g. It remains to be shown that ye -i(P = Q)

and y e xR can be satisfied. The assigment of the

unit 1 q in Q to y, i.e., ay := 1 q gives an element that

is contained in the sets a(xR) and a(-i(P = Q)), since

[P] * [Q] in Q- Hence the thus defined assignment a

satisfies the constraint Cg(P,Q). ■

3.5 Theorem. Subsumption in %L%, and hence in

KL-ONE, is undecidable.

Proof. Obviously the subsumption problem in Lemma

3.2 can be formulated in ALlR, Lemmas 3.2, 3.3, 3.4,

show that the concepts Dp_Q subsumes C, iff

[P] = [Q] with respect to the group defined by the

relations. Now the well-known result that the word

problem in groups is undecidable [Boone, 1959,

Novikov, 1955, Stillwell, 1982] implies that

subsumption is undecidable. ■

Note that the reason for using the undecidability of the

word problem in groups rather than in semigroups or

monoids is that in the proof of Lemma 3.4, the

constraints xR«Ri = xR have to be satisfied, which

requires that multipliciation from right must be surjective.

The result in [Boone, 1959, Novikov, 1955, Stillwell,

1982] shows that there exists a group, such that the word
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problem in this group is undecidablc. In our context this

means, that there exists a fixed concept C such that it is

undecidable whether a given concept Dp.Q subsumes C.

3.6 Corollary. In %.£,%. there exists a fixed concept C,

such that it is undecidable, whether a given concept D

subsumes C.

As a further corollary of Theorem 3.5 we obtain also that

some problems cannot be recursively enumerable, such as

non-subsumption in M,!R.and consistency of concepts in

the language AURC-

3.7 Corollary. Consistency of concepts in AL%£ is not

recursively enumerable.

Proof. Assume for contradiction that the consistent

concepts of SlLliC can be recursively enumerated. Since

the calculus consisting of the S rules for the equations

in groups is complete, it follows from Lemma 3.4

that the inconsistent constraints Cg(P,Q) can be

recursively enumerated. Using Lemma 3.1 the

assumption that consistent concepts of RfKC are

recursively enumerable implies that the consistent

constraint systems Cg(P,Q) can be recursively

enumerated, since Cg(P,Q) is equivalent to

{x 6 -.Dp^ n C}. This means inconsistency of

Cg(P,Q) is decidable, which contradicts Lemma 3.4 and

Theorem 3.5. ■

Of course, this does not hold for ALOl alone, since all

AL^concepts are consistent

Corollary 3.7 has as a curious consequence that we can

give a nonconstructive proof that there must be a

consistent concept that denotes the empty set in all finite

models:

3.8 Corollary. There exists a consistent .flLC^r-concept

C, such that C denotes a nonempty set only in infinite

interpretations.

Proof. Assume, that the corollary is false. Then for

every consistent AC^C-concept C, there exists a finite

interpretation, such that C is interpreted as a nonempty

set. This implies that consistency of concepts would

be recursively enumarable, which contradicts Corollary

3.7. ■

In the following we describe some consequences for

languages that extend the feature term languages in

somme way. Note that our proof of undecidability of

subsumption in AL%.docs not work for the simple feature

term language, since R must be interpreted as a proper

role, which is not possible in the feature term language.

Let us define the language ALlC as an extension of

the feature term language. The language ALlC has

(disjoint) sets of role and feature symbols. The

interpretation of roles is as usual, whereas the

interpretation of a features F should be partial functions,

i.e.,

(a,b) e 1(F) a (a,c) e 1(F) =* b = c.

Concept expressions in ALlC arc:

i) concept symbols

ii) C n D, if C and D are concept expressions,

iii) V R:C, if R is a role symbol and C is a

concept expression,

iv) F:C, if F is a feature symbol and C is a

concept expression,

v) P = Q if P and Q are lists of roles or

features, where the first element may

be a role, whereas all other elements

in the list are features.

The semantics of concept expressions is slightly changed,

the conjunction is (as usual) interpreted as intersection,

but the constructs F:C and P=Q include definedness of

roles and features. Let / = (M, I) be an interpretation, then

I(F:C) := {a e M I 3b e 1(C): (a, b) € 1(F)}

I(P=Q) := {a g M I (3b: b g 1(C): (a, b) g I(P)) a

aI(P) = aI(Q)}

The language J?£9J.* is a slight extension of the (simple)

feature term language. Nevertheless, subsumption is

undecidable:

3.9 Theorem. Subsumption in JULJi is undecidable.

Proof. The proofs of the lemmas 3.1 and 3.2 remain

valid. In the proof of Lemma 3.3 one has to take into

account that the semantics has slightly changed. For 1)

- 4) there are no problems. In the proof of 5) there are

some additons: On has to prove thai the assignment a

has the additional property that a(P°P = Q^Q") * 0,

which holds, since the a(xR) is not empty. The proof

of Lemma 3.4 holds also for the modified semantics

without changes, since the interpretations for the roles

Rj are partial functions in the model construction part.
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Finally Theorem 3.5 with the modified Lemmas 3.1 -

3.4) can be applied and yields that subsumption in

flLVL is undecidable. ■

An extension of the feature term language which should

be investigated is the simple feature term language, where

roles are added, but not permitted , i.e., i) - iv) are as

above, but v) is slightly changed:

v') P = Q if P and Q are lists of features.

I concjecture that subsumption in this language remains

dccidable.

4. Conclusion

We have shown that subsumption of concepts in %L%,

a considerable small sublanguage of KL-ONE, is

undecidable, if the usual standard semantics is used. The

reason for this undecidability result seems to be the

expressive power of role value maps. They are rather

intuitive at first glance, for example they allow the

definition of grand-father in terms of the roles father and

mother, but provide the full power of a programming

language if used excessively.

As mentioned above, subsumption of feature terms

is quasi-linear or co-NP-complete, depending on the

expressiveness [Ait-Kaci, 1984, Ait-Kaci and Nasr, 1986,

Smolka, 1988, Smolka and Ait-Kaci, 1987]. It is

remarkable that role value maps in the feature term

language do not have such a dramatic effect as in %.L%,

The main difference between %.L%.m\& the feature term

language is that roles in the latter always arc functional.

There are several methods to cither overcome the

problem of undecidability or deal with undecidability.

A first ad-hoc possibility to re-establish decidability is

to restrict the expressive power of ALI^or !AL%£ by

discarding role value maps. A language called JXLC, that

allows complements in addition but no role value maps

has been investigated in [Schmidt-SchauB and Smolka,

1988], where it is shown that subsumption becomes

PSPACE-complete in this case. A further possibility is to

syntactically restrict role value maps. For example in

BACK [von Luck ct. al, 1987], the lists of roles in role

value maps are restricted to be lists of one clement.

Another possibility is to permit only role value maps in a

role-defining style, i.e., only the form (R) = (Ri,...,Rn)

is admissable, and there are no double definitions and no

cycles. I suspect that subsumption in !A£,%. becomes

dccidable under these restrictions.

Another direction of research is to use another

semantics for the used constructs. This is a change of the

meaning of the language and hence care should be taken.

Nevertheless it may very well be the case that for small

concepts the standard semantics fits our intuition, whereas

for complex concepts, there may be a choice. Of course,

the undecidability result depends on the imposed semantics

of complex concepts, i.e., on the asymptotic behaviour of

the semantics for large concepts.

Decidability of subsumption of feature terms can be

interpreted as a change in the semantics of !AL%(x SA.LRC,

respectively. The approach to change the usual first-order

logic to a four-valued as in [Patel-Schneider, 1987a, Patel-

Schneider, 1987b] may help in re-establishing decidability

to the price that the meaning of subsumption has changed.

Corollary 3.7 suggests to prevent the formation of

concepts that are consistent only in infinite models or to

change the semantics such that only finite models are to

be considered instead of all including infinite models. This

idea is a remedy to Corollary 3.6 since consistency of

concepts becomes recursively enumerable with respect to

this semantics, but now the status of inconsistency of

concepts or constraint systems is unclear and can be even

worse than before.

A practical useful method is to put subsumption-

problcms in constraints and use constraint-propagation.

The view taken here is that a user is not really interested

in the subsumption relation of some complex concepts or

in the consistency of concept, which hc(shc) has typed in,

rather than in the answer to high-level queries that have as

subproblems such subsumption or consistency tests. The

idea is that the system computes as much as possible or

as much as the user wants and then gives as answer a

system Cof constraints. These answer can be interpreted as

follows: All solutions to Care solution to the query, or if

only a yes/no answer is expected: If C has a solution, then

the answer is yes, otherwise the answer is no. Such an

approach is proposed in [HOhfcld and Smolka, 1988,

Blasius and Hcdtstuck, 1988, Jaffar and Lassez, 1986].
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Abstract

We propose a new family of terminological

knowledge representation (KR) systems that

break the shackles of the one and two place

relations. This family allows the direct rep

resentation of relations whose arity exceeds

two while incorporating the advantages of

current KR systems. We examine KR sys

tems that restrict arity to two or less and find

that, when representing relations of arity>2,

users must go outside the KR system and

are encouraged to use more awkward repre

sentation schemes. After examining the his

torical motivations for this arity<2 restric

tion, we find that the advantages of allow

ing direct representation of n-ary relations

far outweigh the reasons for the restriction.

We sketch a family of n-ary KR systems and

examine one member in detail. The exem

plar system is an extension of the KANDOR

system [Patel-Schneider, 1984] that we call

NARY[KANDOR].

1 Introduction

Semantic Nets, Frames and the more recent termino

logical knowledge representation (KR) systems have

been, and continue to be, of interest in Artificial In

telligence (AI). All of these systems provide devices

for representing one and two place relations, and indi

viduals. Semantic net systems such as that of Quil-

lian [Quillian, 1967] provide Generic Nodes for one

place relations, Links for two place relations, and In

dividual Nodes for individuals. Frame systems such as

FRL [Roberts and Goldstein, 1977] provide Generic

Frames, Slots and Individual Frames. More recent ter

minological KR systems such as KL-ONE [Brachman

and Schmolze, 1985], KRYPTON [Brachman et al.,

1983], NIKL [Moser, 1983, Vilain, 1985], KANDOR

[Patel-Schneider, 1984] and BACK [Luck el al, 1987]

provide Concepts, Roles and Individuals. In addition,

two new KR systems now under development, CLAS

SIC l and LOOM [Mac Gregor, 1988] provide similar

facilities. None of these systems provide facilities for

directly representing three or more place relations.

Yet some relations are naturally expressed with ar

ity greater than two. The give relation relates a giver,

a receiver and an object given. The between relation

relates two objects to a third that is located inbetween

them. The rent relation connects a landlord, tenant,

property, remuneration and, possibly, a period of time.

Also, there is a large class of two and more place rela

tions that, when time is taken into account, have their

arity increased by one. For example, a time-sensitive

location relation relates an object to its location at a

given time. A time-sensitive par<-o/relation connects a

part to its whole at a given time. Of course, arguments

can be made that time should be treated specially, in

which case we stand with our earlier examples. Fi

nally, there are the ternary arithmetic relations such

as plus or times.

The above KR systems present some problems to

the user who must represent relations that have arity

greater than two. The usual approach is to convert

an n-ary relation to a unary relation plus n binary

relations. For example, the give relation can be repre

sented by a unary relation named, say, give- occurrence

that represents giving occurrences, and a binary rela

tion for each argument of give, say, give-giver, give-

receiver and give-object. While this approach may suf

fice, its effective implementation usually requires addi

tional reasoning mechanisms that are not provided by

the above KR systems, and which therefore the user

must provide. We examine these further in the next

section.

Our approach is, initially, to make simple extensions

to the above KR systems such that n-ary relations can

be represented directly. We demonstrate this by ex

tending the KANDOR system [Patel-Schneider, 1984]

in Section 3. The selection of extensions has serious

impact on the complexity of determining subsumption,

a crucial algorithm for the more recent KR systems.

The impact of language design on the complexity of

'Personal communication with Ronald J. Brachman,

August 1988.
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subsumption is discussed in general in [Brachman and

Levesque, 1984]. In Section 4, we discuss its impact

with respect to our work and, in Section 5, we present

the central component of the subsumption algorithm.

In Section 6, we sketch other n-ary KR languages. Fi

nally, in Section 7 we draw conclusions about n-ary

KR systems.

2 Why N-ary?

We continue with the give example except we add the

time of the giving event as a fourth argument. Let

givefgiver, receiver, object,time) represent the giving of

object from giver to receiver during time interval time.

We represent give using only one and two place rela

tions, which is done by introducing five new relations

as explained earlier.

• give-occurrence(occurrence): each element of

give-occurrence corresponds to exactly one tuple

of give and vice versa.

• give-giver(occurrence, giver):

relates each give-occurrence to its giver.

• give-receiver(occurrence, receiver):

relates each give- occurrence to its receiver.

• give-object(occurrence, object):

relates each give-occurrence to its object.

• give-time(occurrence,time):

relates each give-occurrence to the time interval

during which it occurred.

Thus, give(Mary, Joe, Ball, T) is represented as

give-occurrence(GO) A give-giver(GO,Mary)A

give-receiver(GO, Joe) A give-object(GO, Ball)/\

give-time(GO, T)

where GO is introduced to represent this particular

giving occurrence.

However, we must also state that give-giver,

give-receiver, give-object and give-time are total,

single-valued functions.

Vx[give-occurrence(x) =>• 3ygive-giver(x,y)]A

■occurrence(x) => 3ygive-receiver(x,y)]A

■occurrence(x) ^ 3ygive-object(x,y)]A

■ occurrence(x) => 3ygive-time(x,y)]A

give-giver(x,y) A give-giver(x,z) => y — z]A

give-receiver(x,y) A give-receiver(x,z) =>■ y = z]A

give-objeci(x,y) A give-object(x,z) => y = z]A

give-time(x,y) A give-time(x,z) => y = z]

(1)

Vx[give

Vx[give

Vx[give

Vz,y,z

Vz, y, z

Vx,y,z

Vx,V,z

Also, any two give-occurrences that have the same

giver, receiver, object and time are identical.

Vgol,go2,g,r,o,t

I give-occurrence(gol) A give-occurrence(goS)A \

give-giver(gol,g) A give-giver(go2,g)A

give-receiver(gol,r) A give-receiver(go2,r)A

give-object(gol,o) A give-object(go2,o)A

\ give-time(gol,t) A give-iime(go2,t) /

=*■ gol = go2

(2)

Equation (2) is not strictly necessary but prevents

clutter as we will see.

Equation (1) can be expressed in KANDOR and

other similar systems, as we now show for give in

KANDOR.2

(SLOT give-giver PRIMITIVE)

(SLOT give-receiver PRIMITIVE)

(SLOT give-object PRIMITIVE)

(SLOT give-time PRIMITIVE)

(FRAME give-occurrence PRIMITIVE

(EXISTS give-giver 1)

(EXISTS give-receiver 1)

(EXISTS give-object 1)

(EXISTS give-time 1)

(ALL give-giver 1)

(ALL give-receiver 1)

(ALL give-object 1)

(ALL give-time 1))

The semantics of the above is that give-giver,

give-receiver, give-object and give-time each denote a

primitive binary relation, give-occurrence denotes a

primitive unary relation (i.e., a set) where each indi

vidual give-occurrence (call it G) satisfies the following

necessary conditions.

1. G is give-giver related to exactly one other indi

vidual (the giver),

2. G is give-receiver related to exactly one other in

dividual (the receiver),

3. G is give-object related to exactly one other indi

vidual (the object), and

4. G is give-time related to exactly one other indi

vidual (the time).

By examining the semantics of KANDOR (Figure 2),

we see that, if the proper relations are associated with

these primitive terms, equation (1) is a consequence of

the above KANDOR specifications.

However, equation (2) cannot be expressed in KAN

DOR or other similar systems and leads to some diffi

culties when asserting information about individuals.

Let us return to the earlier example of Mary giving a

2 Names in formulas will be written in italics and names

in term specifications will be written in a slanted font.
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ball to Joe during time interval T. In KANDOR, this

is represented with the following.3

(INDIVIDUAL Mary)

(INDIVIDUAL Joe)

(INDIVIDUAL Ball)

(INDIVIDUAL T)

(INDIVIDUAL GO (give-occurrence)

((give-giver Mary)

(give-receiver Joe)

(give-object Ball)

(give-time T)))

We invented an individual give-occurrence, in

this case GO, in order to assert the equivalent of

give(Mary, Joe, Ball, T). Unfortunately, with this ap

proach there can be infinitely many representations of

the same information. Namely, there could be any

number of individual give-occurrence individuals that

represent give(Mary, Joe, Ball, T).

Users of these systems have two choices at this point.

Either they can work with this potential redundancy,

or they can eliminate it. To work with it, queries about

the truth of the literal give(Mary,Joe,Ball,T) require

search since this information may be associated with

any individual give-occurrence. In other words, to de

termine if give(Mary, Joe, Ball, T), one must do the fol

lowing.

(for x in all individual give-occurrence's

is there an x such that

(and (give-giver x Mary)

(give-receiver x Joe)

(give-object x Ball)

(give-time x T)))

This is particularly frustrating in the KL-TWO sys

tem [Vilain, 1985], which uses the RUP [McAllester,

1982] system for representing assertions about individ

uals. In RUP, each literal is stored uniquely, which is

implemented using an efficient hashing scheme. How

ever, to identify the truth of give(Mary, Joe, Ball, T),

one cannot take full advantage of this hashing scheme

since the individual give-occurrence is not known, and

so one must revert to a more costly search.

If a user does not want this informational clutter,

similar additional work must be done, but at the time

of assertion instead of retrieval. Namely, if assertions

about two distinct give-occurrence's determine that

they are equivalent, then the two individuals should

be merged or equated.

In any case, the following is clear.

• There are many relations whose natural arity ex

ceeds two.

3In order to keep the example simple, we took a small

liberty with KANDOR syntax and did not specify the types

of Mary, Joe, Ball and T.

• It is possible to represent relations of arity three

or more in KANDOR and similar systems.

• However, one must go beyond the normal mecha

nisms of these systems to successfully do so.

• This extra work is eliminated if n-ary relations

can be represented directly.

In addition, we will show the following.

• The representation of three or more place rela

tions is much clearer and simpler in an n-ary sys

tem than in a KANDOR-like system.

• The complexity of determining subsumption need

not be increased, but at the cost of limiting ex

pressivity to that of KANDOR. Instead, we ar

gue that increased expressivity is more important

that having a complete, tractable subsumption al

gorithm.

This raises the question: Why haven't researchers

designed n-ary terminological KR systems? While this

question cannot be fully addressed here, one can trace

the origins of the arity<2 restriction back to graphs.

Graphs can only represent nodes and links, i.e., one

and two place relations. Three place relations are

usually depicted using a node and three links, i.e., a

unary relation with three binary relations. Individuals

are special types of nodes connected by special types

of links. Graphs formed the basis of Semantics Net

works, which in turn influenced Frame systems, which

in turn influenced the more recent terminological sys

tems. Throughout the development of these systems,

the arity<2 restriction was maintained. The reasons

for this are not clear, however, historical consistency

played a part as did the fact that graphs were often

used to depict the knowledge contained in these sys

tems.

As these systems evolved, the more recent termi

nological systems such as KANDOR, KL-TWO and

KRYPTON strengthened their connections to first or

der logic and weakened their connections to graphs.

This, in turn, has weakened the arguments for retain

ing the arity<2 restriction, especially when going to

an n-ary scheme involves only modest changes.

The remainder of this paper addresses the following

research questions:

• Can we design n-ary KR systems that are simple

extensions of current KR systems?

• If so, how?

• If so, what does it cost?

In this paper, we demonstrate that we can design such

a system by extending KANDOR.

3 N-ary KANDOR

We will lay out one member of a family of n-ary KR

systems. The family is called NARY; the member is
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<definition> ::= <slot> |<frame> |<individual> |<decomp>

<slot> ::= (SLOT <name>[<superslotname>] [<type>])

<type> ::= <vr>

<frame> ::= (FRAME <name> <superframename>* <prim> <restr>*)

<prim> ::= DEFINED |PRIMITIVE

<restr> ::= <somerestr> |<maxrestr> |<allrestr>

<somerestr> ::= (EXISTS <slotname> [<vr>] [<minimum>])

<maxrestr> ::= (ALL <slotname> <maximum>)

<allrestr> ::= (ALL <slotname> <vr>)

<vr> ::= <genvr> |<indvr>

<genvr> ::= (GENERIC <framename>)

<indvr> ::= (VALUE <val>)

<val> ::= <individualname> |<number> |<string>

<minimum> ::= "a number > 0"

<maximum> ::= "a number > 0"

<individual> ::= (INDIVIDUAL <name> (<framename>+) <slotfiller>*)

<slotfiller> ::= (<slotname> <val>+)

<decomp> ::= (<name> <kind> <decomposedname> DISJOINT <elementname>+ )

<kind> ::= SLOT |FRAME

<. . . name> ::= "a symbol"

A KANDOR specification is a sequence of <definition>'s. Items enclosed in "[ ]" are optional. "*" indicates

zero or more repetitions. "+" indicates one or more repetitions. Use of double quotes indicates a general,

non-syntactic, restriction. <number> and <string> have the obvious meaning. Frames should not be defined

recursively. This specification is taken from [Patel-Schneider, 1984].

Figure 1: Syntax of KANDOR Specifications

called NARY[KANDOR]. Figure 1 shows the term spec

ification language for KANDOR and Figure 2 gives

its semantics as presented in [Patel-Schneider, 1984].

KANDOR has a strong reliance on the arity<2 restric

tion. For example, the optional <type> specification

for slots implicitly restricts the type of the second ar

gument, i.e., it restricts the range. No type restriction

for the first argument is allowed. In the <allrestr>

for frames, the use of a <slotname> implies that the

first argument of the slot refers to individuals of the

given frame and the second argument refers to other

individuals that must match the given <vr>.

In NARY systems, we allow for the specification of

n-ary terms, where each term denotes an n-ary rela

tion. One and two place terms are no longer special as

they are in KANDOR. The syntax of NARY[kandor]

is shown in Figure 3 and its semantics is shown in Fig

ure 4.

We have renamed the EXISTS clause from KAN

DOR to MIN and have split the ALL clause of KAN

DOR into two different types of clauses: MAX and

ALL. MIN specifies that a minimum number of tuples

must exist that meet the given requirements. Sim

ilarly, MAX specifies a maximum number of tuples

that can exist. ALL places type restrictions on el

ements of tuples related to individuals of the type

being specified. As a result, the MAX restriction in

NARY[KANDOR] can specify both a <maximum> and

<vr> while the equivalent restriction in KANDOR can

specify only a <maximum>, but not a <vr>.

Each term specification in NARY[kandor] includes

a name for the term, a list of the formal parameters, a

list of subsumers, an indication of either PRIMITIVE

or DEFINED, and a list of restrictions.

• Each subsumer must have the same arity as the

term being specified (similar to KANDOR but ex

tended to n-ary).

• The indicator identifies the term as either PRIMI
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In a KANDOR knowledge base, let T be the set of frames defined in it, let S be the set of slots defined in

it, let H, be the set of restrictions used in frames in it, and let T be the set of individuals defined in it. A partial

model for a KANDOR knowledge base is a set X>, the set of all individuals, plus a function, £, such that:

• i : T —► tv

S —► (V —> 2V ) where V+ is the disjoint union of D, integers and strings

I —► V (an injective mapping)

where £ must satisfy the following conditions:

1. for slots, s,

(a) £[s](x) C £[<](z) if * is defined with superslot t

(b) i[s](x) C £[f] if s is defined with type /

2. for restrictions

(a) ([« : all /] = {x € 2>|if y € tf«](*)then y G £[/]}

(b) t[s : all t] = {x € D|if y € fl«](*)then y = £[»]}

(c) {[«:<»] = {x € D| |K[f](x)|| <n}

(d) {[• :> n /] = {x e V\ |KW(») 0 {[/]|| > n}

(e)««:>«i] = {*ei>|||eW(x)n«[i]}|| >«}

3. for frames, /,

(a) f [/I = rC=i t\fi\ n nr=i fW if f is defined as /, . . ./„ DEFINED r, . . . r„

(b) {[/] C DLj ^[/il n H^i fN if f >s defined as /, . . ./„ PRIMITIVE n . . . r„

(c) {[/] (~l^[j] = 0 if / and j are members of the same disjoint decomposition.

||5|| denotes the cardinality of set S. This model is partial because it does not account for the definitions of

individuals. This specification is taken from [Patel-Schneider, 1984].

Figure 2: Semantics of KANDOR Specifications

TIVE or DEFINED. As with KANDOR, the spec

ification of a PRIMITIVE term introduces con

ditions that are necessary. The specification of

a DEFINED term introduces conditions that are

both necessary and sufficient.

• Restrictions are considerably more general than

in KANDOR. Any formal parameter can be re

stricted by a TYPE, ALL, MIN or MAX clause.

When restricting other relations using ALL, MIN

or MAX clauses, any argument position can have

its type restricted with a <vr>. (In KANDOR,

type restrictions are done implicitly via subsumers

for frames and can only be done for the second

parameter of slots. Also, EXISTS and ALL re

strictions can only appear on frames (i.e., unary

terms) and implicitly restrict the first (i.e., only)

parameter and the second argument of the given

slot.)

As a result, the syntax of NARY systems requires

that TYPE, ALL, MIN and MAX clauses identify the

parameter and argument being restricted. In addition,

when individuals are specified, the tuples that include

the given individual can have the individual appear in

any argument position (KANDOR requires that the

individual appear in the first argument position).

In NARY[kandor] a term p subsumes a term q if

and only if £[q] C £[p] in all models of the given spec

ifications. A second important relation is that of real

ization, where an individual realizes a unary term if it

must be an instance of that term's denotation. Real

ization is a operation that KANDOR and similar sys

tems perform automatically. In NARY[kandor], an

individual i realizes a term p if and only if £[»'] € £[p]

in all models of the given specifications.

The following are some examples of NARY[kandor].

We first show the give example as a tertiary term.
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<specification>

<term>

<prim>

<restr>

<typerestr>

<allrestr>

<minrestr>

<maxrestr>

<vr>

<genvr>

<indvr>

<val>

<unaryliteral>

<pluralliteral>

<paramorvarname>

<arity>

<minimum>

<maximum>

<individual>

<tuple>

::= <term> |<individual> |<decomp>

::= (TOP <arity>) |

(TERM [<name>] (<paramname>+) <supertermorname>* <prim> <restr>*)

::= DEFINED |PRIMITIVE

::= <typerestr> |<allrestr> |<minrestr> |<maxrestr>

::= (TYPE <paramname> <unarytermorname>+)

::= (ALL <paramname> <pluralliteral> <vr>)

::= (MIN <paramname> <pluralliteral> <minimum> [<vr>])

::= (MAX <paramname> <pluralliteral> <maximum> [<vr>])

::= <genvr> |<indvr>

::= <unaryliteral>

::= (= <varname> <val>)

::= <individualname> |<number> |<string>

::= (<unarytermornamO <paramorvarname>)

::= (<pluraltermorname> <paramorvarname>++)

::= <paramname> |<varname>

::= "an integer > 0"

::= "an integer > 0"

::= "an integer > 0"

::= (INDIVIDUAL <name> <unarytermorname>* <tuple>*)

::= (<termorname> <val>*)

<decomp> ::= (<name> <decomposedtermorname> DISJOINT <termorname>+)

<. . .termornamO

<. . .name>

"either a <term> or the name of a term"

"a symbol"

Additional restrictions:

1. The <name> of a <term> must be supplied for PRIMITIVE terms.

2. The list of formal parameters for a <term> cannot contain duplicates. Their scope is the body of the term's

specification.

3. Each <paramname> in a restriction must be a formal parameter of the term's specification.

4. In <allrestr>'s, <minrestr>'s and <maxrestr>'s,

(a) the <paramname> must appear exactly once in the <pluralliteral>,

(b) all other arguments to <pluralliteral> must be variables that are not formal parameters (their scope is

limited to the body of the given restriction),

(c) the variable used in the <vr> must be one of the variables used in the <pluralliteral> that is not a

formal parameter, and

(d) if <vr> is left out, it defaults to ((TOP 1) v) where v is any of the <varname>'s (i.e., not a

<paramname>) in the <pluralliteral>.

5. In an <individual> specification, the individual's name must appear at least once in each <tuple>.

An NARY[KANDOR] specification is a sequence of <specification>'s where no term is specified more than once.

The syntax is the same as in Figure 1. Terms may not be defined recursively. "++" indicates two or more

repetitions.

Figure 3: Syntax of NARY[kandor] Specifications
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In an NARY[kandor] knowledge base, let T be the set of terms defined, let 7J be the set of restrictions used,

and let 2 be the set of individuals defined. A partial model for an NARY[kandor] knowledge base is a set Z>,

the set of all individuals, plus a function, £, such that:

• £ : T —► 2V where V* =Vi U . . . U VN and N is the highest arity of any term being specified.

• I : Tl —♦ 2V'

• £ : X —► V where this mapping is injective.

where £ must satisfy the following conditions:

1. for restrictions:

(a) £[(TYPE Pj U... tm)] = d1x...xdn

where pj is the j'-th parameter of an n-ary term, dj = £[ti] fl . . . O £[tm] and all other di = V.

(b) £[(ALL p, (f Vl... vm) (t v,))] = {x£ Vn\iy if y G £[/] A r, = yk then y, G fit}}

where pj is the j'-th parameter of an n-ary term, / is the name of the term being restricted whose arity

is m, pj = vk for some unique k, 1 < k < m, all other Vi, 1 < t < m, are distinct variables that are

not parameters of the term, 1 < I < m, and vi ^ pj.

(c) £[(ALL pj {fvj... vm) (= v, z))] = {xe Vn\iy if y G £\f] A Xj = yk then y, = fiz]}

where n, j, pj, m, k, I and v,-, 1 < t < m, are defined as above. This covers the case where the <vr>

is <indvr>.

(d) $[(minP; (/ v, . . . vm) w (t v,))] = {xev»\\\{yez\f]\*j = yk*ytet[t]}\\ > «}

where n, j, pj, m, k and Vi, J < i < m, are defined as above and w is an integer with w > 0.

(e) tf(MIN p. (/ Vl . . . „m) w (= v, 2))] = {x G 2?«| ||{y G ^\f]\Xj = yk*y,= fiz]}\\ > w}

where n, j, p]t m, k, w and »<, J < i < m, are defined as above. This covers the case where the

<vr> is <indvr>.

(f) £[(MAX Pj (/ v, . . . vm) w {t v,))} = {x€Vn\ \\{y G $f\\*j = »* * yi G fit]}\\ < «"}.

where n, j, pj, m, it and i>j, i < t < m, are defined as above and u; is an integer with w> 0.

(g) £[(MAX p; (/!>,... »m) u (= t,, *))] = {x G D"| ||{y G tf/]|*; = Jft A y, = fl*]}|| < u;}

where n, j, p,, m, it, w and Vj, 7 < t < m, are defined as above. This covers the case where the

<vr> is <indvr>.

2. for terms:

(a) £[(TOP „)] = vn

(b) C[(TERM t(Pl...pn)Sj...sk DEFINED n . . . rra)] = fit] = Vn nfisj] n . . .n([sk] nfin] n . . .ns[rm]

(TERM f fa . . . *,) «j . . . 4, PRIMITIVE r2 . . . rm)] =

(]cp»n([Sj]n...n([Sl]n([r1]n...n([rra]

if/ and j are elements of the same disjoint decomposition.

||5|| denotes the cardinality of set S. This model is partial because it does not account for the specifications

of individuals.

Figure 4: Semantics of NARY[kandor] Specifications
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(TERM give (giver receiver object time)

PRIMITIVE)

For comparison, we now repeat the specification of

give from Section 2 using the unary/binary format that

KANDOR requires.

(SLOT give-giver PRIMITIVE)

(SLOT give-receiver PRIMITIVE)

(SLOT give-object PRIMITIVE)

(SLOT give-time PRIMITIVE)

(FRAME give-occurrence PRIMITIVE

(EXISTS give-giver 1)

(EXISTS give-receiver 1)

(EXISTS give-object 1)

(EXISTS give-time 1)

(ALL give-giver 1)

(ALL give-receiver 1)

(ALL give-object 1)

(ALL give-time 1))

It is quite plain that the direct representation of give

as a tertiary term is considerably clearer and simpler

than as a unary relation with four binary relations.

In addition, the tertiary representation eliminates the

problems of informational clutter that can arise when

assertions are made about individuals (as discussed in

Section 2).

Using the tertiary give from above, we now define a

giver of apple seeds, a giver of many apple seeds (i.e.,

> 20), an individual apple seed giver, and a receiver

of only apple seeds.

(TERM apple-seed-giver (asg) person DEFINED

(MIN asg (give asg r as t) 1 (apple-seed as)))

(TERM many-apple-seed-giver (asg) person

DEFINED

(MIN asg (give asg r as t) 20 (apple-seed as)))

(INDIVIDUAL Johnny-apple-seed apple-seed-giver

(give Johnny-apple-seed Mary Apple-Seed-37 T34)

(give Johnny-apple-seed Joe Apple-Seed-82 T65))

(TERM receiver-of-only-apple-seeds (asr) person

DEFINED

(ALL asr (give g asr as t) (apple-seed as)))

Some variables, such as r and t in apple-seed-giver,

are used merely as place holders.

Alternatively, we can define apple-seed-giver by us

ing a restricted version of give that represents the giv

ing of apple seeds.

(TERM give-apple-seed (grot) give DEFINED

(TYPE o appie-seed))

(TERM apple-seed-giver (asg) person DEFINED

(MIN asg (give-apple-seed asg r as t) 1))

As the above example demonstrates,

NARY[kandor] allows for vrdiff specifications [Brach-

man and Levesque, 1984].

The following specifies occurrences of giving an ap

ple to a parent.4

(TERM give-apple-to-parent (grot) give

DEFINED

(TYPE o appie)

(MIN r (offspring r c) 1))

Next, we examine the (somewhat over-used) person,

parent and grandparent example, which needs only

unary and binary terms.

(TERM person (p) PRIMITIVE)

(TERM offspring (parent child) PRIMITIVE

(TYPE parent person)

(TYPE child person))

(TERM parent (p) person DEFINED

(MIN p (offspring p c) 1))

(TERM grandparent (g) person DEFINED

(MIN p (offspring pc) 1 (parent c)))

Finally, we contrast KANDOR and NARY[kandor]

by listing the additional restrictions one needs to apply

to NARY(kandor) to reduce it to the expressive power

of KANDOR.

• The arity of all terms must be one ( "frames" ) or

two ("slots").

• Only unary terms can be DEFINED. All others

must be PRIMITIVE.

• The TYPE restriction can only apply to the sec

ond parameter of binary terms.

• ALL, MIN and MAX restrictions can only apply

to unary terms.

• In an ALL, MIN or MAX restriction, the relation

being restricted must be binary, must have its first

argument apply to the parameter of the term be

ing defined and must have its second argument

further restricted.

• In a MAX specification, the <vr> must be left

out.

• Each tuple in an INDIVIDUAL specification must

have the given individual as the first argument.

Given the context of an n-ary system, some of the

restrictions of KANDOR seem arbitrary. However,

4 It turns out that we can restrict the use of ALL, MIN or

MAX clauses to unary terms only, and still retain the same

expressive power in NARY[KANDOR]. An equivalent spec

ification can always be made using the TYPE restriction.

For example, the following is an equivalent specification of

give-apple- to-parent.

(TERM give-apple- to-parent (grot) give

DEFINED

(TYPE o apple)

(TYPE r (TERM (x) DEFINED

(MIN x (offspring x c) 1))))

However, we find the original syntax easier to read.
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KANDOR was originally designed to have a tractable

and complete subsumption algorithm. While this goal

turns out to have failed [Nebel, 1988], it played an

important role in the design of KANDOR.

4 Subsumption

In any KR system, there is a balance between the

expressiveness of the language versus the complexity

of drawing inferences. In terminological systems, this

balance focuses on the expressivity of the language ver

sus the complexity of subsumption.

KANDOR is moderately expressive yet sub

sumption is not tractable in it [Nebel, 1988].

NARY[kandor] is more expressive than KANDOR

and hence subsumption is not tractable in it. In fact,

subsumption is probably worse in NARY[kandor] be

cause it allows for vrdiff constructs [Brachman and

Levesque, 1984].

There are many ways to address this balance.

KRYPTON [Brachman et a/., 1983] was designed to

have tractable subsumption, which forced it to have

a very weak language. Experience with KL-ONE

[Brachman and Schmolze, 1985] and NIKL [Moser,

1983, Vilain, 1985] was quite different. First, there was

always a sizable community of users for these two sys

tems. Second, user's always wanted more expressive

power, not less, and were very willing to accept incom

plete subsumption algorithms as the cost of greater

expressivity.

Our approach is similar to that of the designers of

KL-ONE and NIKL. We prefer a language with use

ful expressive power even though subsumption is not

tractable. The subsumption algorithm provided would

be tractable (and fast, hopefully), but incomplete. To

help with this incompleteness, we hope to identify re

stricted subsets of the language such that, if an appli

cation remains within that subset, the subsumption al

gorithm will be both tractable and complete. In other

words, if we make these identifications, users who re

main within the restricted subsets are rewarded with

complete subsumption. If users go beyond that sub

set, they must deal with an incomplete yet tractable

subsumption algorithm.

5 Subsumption Algorithm

We now sketch the subsumption algorithm for a subset

of NARY[KANDOR). A full presentation is not possible,

so we outline the algorithm and focus on the central

component that compares two n-ary terms.

When a term is specified to the system, a process is

performed called completion (as is done in the NIKL

system). Completion performs all inheritance opera

tions along with a number of local inference operations

to arrive at an expanded but equivalent form of the

term. This expanded form replaces the original speci

fication.

Let us assume we are completing a specification S.

One way to perform inheritance is to replace all the

names of terms by their respective specifications. For

DEFINED terms, we do not include the term's name in

the new specification. For PRIMITIVE terms, we re

tain the term's name (since the specification is incom

plete, we use the term's name to represent the "rest"

of the meaning of the term). Then a number of simple,

local inference operations are performed. Finally, the

specification is simplified and normalized.

The final form of a specification after completion is

(TERM t(Pl...pn) Sl...sk dp r,... rm)

where each S{ is the name of a primitive term, dp is

either DEFINED or PRIMITIVE, and each r, is a sim

plified, normalized restriction. The names of defined

terms do not appear anywhere in the completed spec

ification.

After completion, we are able to test for subsump

tion. Below, we present the algorithm that compares

two completed specifications to determine whether one

subsumes the other. Using this algorithm, the system

can perform classification, which takes a newly spec

ified term, completes it and compares it to all other

terms in the knowledge base to discover and record

any new subsumption relations.

The algorithm for structural subsump

tion, SS(T''4, TB), makes a structural (i.e., syntactic)

comparison between completed specifications TA and

TB to determine whether TA subsumes TB. SS re

turns either true or false, true indicates that TA

subsumes TB . However, since our algorithm is incom

plete, false merely indicates that the system cannot

show that TA subsumes TB (i.e., it is unknown). SS

depends upon SSR(RA, RB), which structurally com

pares two restrictions to determine whether RA sub

sumes RB . Both algorithms are shown in Figure 5.

Interestingly, these algorithms are very similar to

the algorithm used in KL-ONE [Schmolze and Israel,

1983, Schmolze and Lipkis, 1983] and its successor

NIKL (and is likely similar to other subsumption algo

rithms). A few components of the original algorithm

were generalized to incorporate the n-ary nature of

NARY[KANDOR].

Our presentation of SS and SSR is abbreviated. We

note that we have left out <indvr>, <decomp> and

<individual>. We have not yet done an analysis of

the algorithm's complexity. However, it is certainly

polynomial in the size of the terms and appears to be,

at worst, 0(ns), where n is a measure of the size of

the terms.

6 Other N-ary KR Languages

Many constraints of NARY[kandor] can be relaxed to

produce a family of n-ary languages. The following is

a list of possibilities.
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ss(ta,tb) =

if TA = TB then true

else cond

case TA = (TOP n):

TB = (TOP n) or TB = (TERM [t] (Pl ...pn) sj ...ak dp r, ... rm)

case TB = (TOP n): false

case TA = (TERM [tA] (pf ...pA) sf . ..sAA DEFINED rf ... rAA):

TB = (TERM [tB](Pf...pB)sf...sfB dp rf. .. rBB) and {sf,...!SA)C{sB,...,sfB} and

for each a, 1 < a < mA, there is a 6, 1 < b < mB , such that SSR(r^, rf)

case TA = (TERM iA (pf ...pA) sf ...sAA PRIMITIVE rf . ..rAA):

TB = (TERM[iB](pB...pB)sB...sBB dPrB...rBB)andtAe{sB,...,sBB)

end

SSK(RA,RB)d=

cond

case RA = (TYPE pf tA . . . tAA):

rb _ (TYPE pf if ... t^B) and

for each a, 1 < a < mA , there is a 6, J < b < mB , such that SS(/^, tB)

case RA = (ALL pA (fA vA . . . vA) (tA vA)):

RB = (ALL pf (fB vf ...vB) (iB vB)) and

for some k, 1 < k < m, (pA = v£ and pf = vB) and

SS(/B,//1)andSS(<>11iB)

case RA = (MIN pA (fA vf ... vA) wA (tA vA)):

RB = (MIN pf (fB vf ...vB) wB {tB vf)) and

for some k, 1 < k < m, (pf = vA and pf = vf) and

$S(fAJB) and wA < w* and SS{tA, tB)

case RA = (MAX pf {fA vf . . . vA) wA {tA vA)):

RB = (MAX pf (fB vf ...vB) wB (tB vf)) and

for some k, J < k < m, (pf = vf and pf — vf) and

SS(fB,fA)andwA >wBandSS(tB,iA)

end

Notation:

• The cond executes the first case whose test is true.

• Any item enclosed in [ ] is optional.

• SSR assumes that its arguments are from terms with the same arity. It also knows (via means not shown

here) that each pj is the j'-th parameter of the corresponding term. For SSR to be true, the same parameter

position must be restricted in each clause. Also, the <vr> of each clause must restrict the same argument

position of the corresponding f's.

• For the ALL, MIN and MAX cases,

- / is the name of the term being restricted and m is it's arity,

- Pj = Vk f°r some unique k, 1 < k < m (i.e., the parameter being restricted appears as the Jb-th

argument of/ for some it),

- all other u,, / < i < m where i ^ k (i.e., all arguments of/ except v^), are distinct variables that are

not parameters of the term being specified,

- vi, 1 < I < m, is some variable appearing as the /-th argument to / where vi ^ p} (i.e., v/ is not the

parameter being restricted).

Figure 5: The Structural Subsumption Algorithm
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• Allow multiple parameters to be restricted by

non-unary terms in a TYPE restriction.

• Allow multiple <vr>'s in ALL, MIN and MAX

restrictions.

• Allow other than unary terms in the <vr>'s of

ALL, MIN and MAX restrictions.

• Allow several parameters of the term being re

stricted within a single ALL, MIN or MAX re

striction, or allow one parameter to appear more

than once.

• Allow for subset and/or equality restrictions sim

ilar to those found in KL-ONE and NIKL.

• Allow a richer representation of individuals. For

example, do not require that £ : 2 —► V be in-

jective. Allow for a more expressive language for

assertions about individuals, such as the proposi-

tional calculus that is part of the KL-TWO system

[Vilain, 1985].

• Allow for recursive term specifications. See

[Nebel, 1987] for a discussion of the semantics for

such languages.

By relaxing some or all of these constraints, we can

produce a family of n-ary KR languages. We hope to

explore some of these in the future.

7 Conclusions

N-ary KR systems are possible and need not be com

plicated. In contrast to KANDOR-like systems, n-ary

systems greatly simplify the representation of relations

with arity>2 and eliminate the problems with tracking

individuals in such relations.

We have sketched a family of n-ary systems and

have presented one member, NARY[kandor], that

extends the KANDOR system. The expressiveness

of NARYfKANDOR] is considerably more than that of

KANDOR, which is good for expressiveness and bad

for the complexity of subsumption. However, we argue

that this is a good overall design decision. This argu

ment is based primarily on the KL-ONE and NIKL

experience where users did not want weakly expres

sive systems, even though it meant that complete sub-

sumption could not be computed. For those who are

interested in designing a weaker n-ary system where

subsumption has the same complexity as KANDOR,

we identified the differences between the KANDOR

and NARY[kandor] systems in terms of expressive

power.

Overall, we argue that the KR community should

embrace n-ary systems, with NARY[kandor] serving

as an example of how it might be done.
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Abstract

We would like to build story understanding systems which

are transparent, modular, and extensible. To this end, we

have been working on a new logical approach to narra

tive understanding that features a GPSG-style grammar

and an episodic logic with probabilistic inference rules. The

grammar represents phrase structure and the relationship

between phrase structure and logical form in a modular,

explicit form. The logical representation allows propo-

sitional attitudes, unreliable generalizations, and other

non-standard constructs, providing a uniform, transparent

knowledge representation for both the explicit content of

stories and for the background knowledge needed to under

stand them. It makes systematic use of episodic variables

in the representation of episodic sentences, using these to

capture temporal and causal relationships. The rules of in

ference include probabilistic versions of natural deduction

rules and rules resembling "rule instantiation" in expert

systems. These can be used for predictive, explanatory,

and simulative inference. We illustrate our approach with

nontrivial grammar fragments (including semantic rules),

and with an extended example of forward-chaining infer

ence based on a sentence from "Little Red Riding Hood."

A pilot implementation is able to make many (though not

all) of the inferences we describe.

1 Introduction

Many ideas and systems have been developed for nar

rative understanding, and some of them, e.g., CYRUS

(Kolodner 1981) and BORIS (Lehnert et al. 1983,

Dyer 1983), have shown a remarkable degree of under

standing in complicated human domains. These am-

*Part of this research was done while the authors were at

the Department of Computing Science, University of Alberta,

Edmonton, Canada.

bitious systems, however, are very complex and hard

to extend beyond the few stories they handle. We be

lieve this is so because of insufficient expressiveness

and clarity of the knowledge representations used, for

knowledge about language as well as about the world,

and about inferences warranted by that knowledge.

For example, the meaning representations used of

ten cannot express complex quantification ( "most peo

ple with two or more cars"), logical compounding ("If

he fails, he is either lazy or a fool"), complex concepts

("the type of person who never forgets a slight"), mod

ification ("a nearly invisible pale brown birthmark"),

temporal relations ("He had seen her twice the pre

vious week"), and so on. As well, knowledge about

language and about the world are often buried in pro

cedures (e.g., procedures which seek semantically ap

propriate fillers for frame slots) in a way that makes

it very hard to determine what linguistic and factual

assumptions have been made.

These considerations have led us to an approach to

narrative understanding in which all types of linguis

tic, world and inference knowledge are represented in

an explicit, analyzable form. We have chosen Gen

eralized Phrase Structure Grammar (GPSG) as our

grammatical representation and have been developing

a knowledge representation, called Episodic Logic, for

encoding both the content of narratives and the knowl

edge needed to understand them. GPSG is a particu

larly perspicuous grammatical formalism which is ex

pressively adequate for almost all English grammatical

phenomena, and is relatively easy to use by a parser

and logical-form generator. Episodic logic is expres

sively rich and close enough to surface form so that

the relationship between surface form and logical form

can be specified in a modular, transparent way. It

introduces episodic variables so that implicit, context-

dependent relationships among episodes (events, ac
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tions, situations, etc.) can be made explicit. It

also allows the representation of restricted quantifiers,

propositional attitudes, predicate modifiers, nominal-

ized predicates, and perhaps most importantly, unre

liable generalizations. Such generalizations have re

cently received much attention in the non-monotonic

reasoning literature and elsewhere (e.g., linguistic se

mantics). The practical adequacy of our logic has been

tested on small story fragments.

In the next section, we motivate and explain some

of the unusual features of our logic. In section 3, we

provide glimpses of semantics. Then in section 4, we

sketch the derivation of episodic logical form from sur

face structure using a GPSG grammar. Next, in sec

tion 5, we introduce some inference rules and indicate

their role within our implementation. In section 6, we

illustrate the inference process in story understanding

with an extended example based on a small fragment

of Little Red Riding Hood. In the concluding section,

we comment on related work and assess the progress

made and work still to be done.

2 Episodic Logic

Our initial logical form for English sentences is quite

close to surface structure; it "mimics" noun phrases in

its use of restricted quantifiers, allows for predicate

modification and A-abstraction, and follows English

surface syntax by having the "subject" of a predica

tion precede the predicate. For example, "Every dog

has a tail" would be represented as

(1) (Vi:[r dog] (3y:[y tail] [x have-as-part j/]))1

after predicate disambiguation and quantifier scoping.

(The initial representation computed from the surface

form would be [<V dog> have <3 tail>]. )

Two more features that lead to close conformity be

tween the surface form and our logical form are predi

cate modification and A-abstraction, illustrated by (2)

and (3):

(2) a. Canada is very distant from Australia

b. [Canada (very (Xx[x distant-from Australia]))]

(3) a. the brother of Mary who is a doctor

b. <THE (Xx[[x brother-of Mary] A [x doctor]]) >

Here, the predicate modifier very is a function which

when applied to a predicate yields another, more re

stricted predicate. In (3), the term in b is the unscoped

translation of the phrase in a .

Another distinctive feature of our logic, responsi

ble for its name, is the inclusion of episodic variables.

Whereas examples (1) - (3) dealt with "atemporal" or

"nonepisodic" properties, (4) and (5) below deal with

"episodic" ones, in the representation of which episodic

variables play a key role.

(4) Everyone looked at Mary;

(5) This (event) made her blush.

Note that (5) refers deictically to the episode of every

one looking at Mary, and relates it causally to another

episode, that of Mary's blushing. Using a connective

"**" relating a sentence to the episode it character

izes, we can represent (4) and (5) as

(4') (3el:[el before now]2

[(Vx:[x person][x look-at Mary]) **el])

(5') (3e2:[e2 before now]

[[el cause-of e2] A [[Mary blush] **e2]]).

Thus (4') says that el is an episode with characteriza

tion "Everyone looked at Mary," and similarly for e2

in (5'). A characterizing description is not necessarily

a maximally specific one. That is, "Everyone looked

pointedly at Mary," "Everyone looked at someone," or

even "Some people did something" may all be charac

terizations of one and the same episode.

Our logic also contains a weaker but more funda

mental operator "*" that reads "is a partial descrip

tion of." "* " is essentially an object-language embed

ding of the semantic notion of truth over an episode

or situation. For example, [[Mary blush] *e] entails

the truth of [Mary blush] over episode e. (The blush

ing must extend over the entire episode.) "** " is a

special case of "* " , holding only if the given partial

description characterizes the given situation. To see

the significance of the distinction between "character

izations" and arbitrary partial descriptions of episodes,

suppose that the "**" in (4') were replaced by "*".

Then (as a little thought shows) (4') and (5') would be

true in a situation in which everyone looked at Mary,

laughing derisively, and it was this (more complex)

event that made her blush. Yet we would not say that

(4) and (5) are both true in such a situation; so (4'),

1 We use restricted quantification of the form (Qor:*^), where

Q is a quantifier, a is a variable, and 4 and 4 are formulas. That

is, (Va:**) and (3a:*4) are equivalent to (Va)<t —♦ * and

(3cr)$ A <P, respectively. When there is no restriction <t, we

write (Qot4). Also note that we use square brackets to indicate

predicate infix expressions, round brackets for prefix expressions,

and angle brackets for unscoped operators. Scoping of quanti

fiers and other operators is discussed in Schubert & Pelletier

(1982), Hurum & Schubert (1986), and Hurum (1987,1988).

2 Note the reduction of past tense to a relation placing episode

el before nour (an indexical constant to be immediately replaced

by a term with fixed reference to the time of speech).
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with "**" weakened to "*", would not be a correct

formalization of (4).

Another point to be noted above is the free occur

rence of variable el in (5'), outside the scope of its

quantifier. This is permissible in our logic, thanks to

a "context change" mechanism (Schubert & Pelletier

1988) which "carries forward bindings" of existential

variables out of the scopes of the existential quantifiers,

to subsequent clauses. As Heim(1982), Kamp(1981)

and many others have observed, some such mechanism

seems essential to deal with anaphora in extended dis

course.

This mechanism is also the key to representing

generic conditionals, such as "A wolf is (usually) grey,"

"A child (usually) loves his or her grandmother," or

"When two strangers meet in a deserted region, they

often greet." Generic conditionals take the following

form:

(3Xl(3z2(--- (3***) •■•)))-**.

where $ and * are sentences involving Xi.ij, . . . ,Xk,

and p is a numeric lower bound on frequency (objective

probability). Thus,

(3x[x wolf]) -+.8 [x grey]

says that a wolf is usually grey (or, most wolves are

grey). Similarly, to express that when a predator en

counters a smaller non-predatory animal, he may at

tack it, we would use a generalization involving an ex-

istentially quantified predator, non-predatory animal,

and encounter episode in the antecedent. Generic con

ditionals are often used in causal axioms. In particu

lar, predictive causal axioms assume the occurrence of

some particular type of episode el in the antecedent,

and predict another episode e2 caused by el in the con

sequent. The following is an example of a predictive

axiom:

When a predatory animal sees a non-preda

tory creature of comparable or smaller size,

it may want to attack and eat it.

(3x:[x predatory-animal]

(3y:[[y creature] A ->[y predatory-animal] A

[[y as-big-as x] V [y smaller-than x]]]

(3el[[x see y] **el])))

—►.6 [(3e2:[[(begin e2) during el] A [el cause-of e2]]

[[x want

(To (AeAx'[[x' attack y] **e]))] **e2]) A

(3e3:[[(begin e3) during el] A [el cause-of e3]]

[[a; want

(To (AeAx'[[x' eat y] **e]))] **e3])]3

Equally important are explanatory axioms, such as the

following:

7/ a creature wants to eat some food, it is

likely to be hungry.

(3x(3el[[x want

(To (AeAx'(3y:[y food-for x']

[[x'eaty]**e])))]**el]))

—►.9 (3e2:[[e2 cause-of el] A [e2 same-time el]]

[[x hungry] * e2])

Much of the world knowledge we use in our ex

perimentation is in fact stated as causal axioms like

these. Probabilistic inference rules allow such axioms

to be used to make more or less uncertain inferences

in narrative understanding.

One very general inference rule, resembling those

used in expert systems, is called Rule Instantiation

(RI) (see section 5 for details, where the dual of RI,

called Goal Chaining, is discussed as well). In some

cases, this can be thought of as a general form of modus

ponens with universal instantiation and use of multiple

minor premises (instantiating the antecedent of a uni

versally quantified conditional). However, it also al

lows instantiation of generic conditionals such as those

above. As a simple example, RI allows the inference

(3x[x wolf]) ->,8 [x grey], [W wolf] 9

[W grey]
TT

The superscripted numbers are interpreted as lower

bounds on subjective probabilities (in contrast with

the objective, statistical interpretation of probabilities

modifying the connective in generic conditionals).

Different generalizations may assign different sub

jective probabilities to the same formula. In such a

case, the generalization with the logically more specific

antecedent has precedence (if, in fact, one antecedent

is more specific, i.e., entails the other). Clearly, this

leads to a type of non-monotonicity.

3 Glimpses of Semantics

Episodic logic is inspired in part by Montague's inten-

sional logic, but avoids higher-order types (cf., Chier-

chia & Turner 1988) and dispenses with intension op

erators through the use of an "inherently intensional"

semantics (Schubert & Pelletier 1988).

3 "To" is an attribute forming operator that maps diadic pred

icate intensions to attributes. Two other operators mapping

predicates to individuals are "K" and "Kl," the "kind-forming"

operators (Schubert & Pelletier 1987,1988). Space limitations

prevent further discussion of these operators here.
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Model structures for Episodic Logic are based on

a very liberal ontology of "possible individuals" V .

These include possible situations <S , propositions (i.e.,

possible facts) V and properties Q , and kinds and col

lections of all of these. Our formal semantics treats

episodes and more generally, situations, as a category

of individuals and hence as primitive rather than as

structured (as in Barwise L Perry 1983). The pos

sible situations include possible times I (viewed as

situations with maximal propositional content), and

these in turn include possible worlds W (viewed as un

bounded times). Moments of time and possible worlds

(the usual indices of possibility) are temporally mini

mal and maximal time intervals respectively. Episodes

are temporally bounded situations. They can also

be thought of as parts of (possible) time intervals, in

which some of the propositions true over those inter

vals are true over those situations, some of the propo

sitions false over those intervals are false over those

situations, and the rest are undefined.

Two disjoint relations over T> x S, namely, Actual

and Nonactual, determine what entities are actual and

nonactual relative to a situation. (Together, these are

the participants in the situation.) Times are Actual

relative to exactly one world, and Nonactual relative

to all others.

Various algebraic structures are assumed, including

a boolean lattice structure for propositions and prop

erties and two partial orderings on situations. One

of these partial orderings, C , relates subepisodes to

episodes. Subepisodes may be concurrent with, or dur

ing, the episodes of which they are a part. (The rela

tion "s during s'" is understood in terms of the nesting

of clock-time(s) within clock-time(s'). Here clock-time

is assumed to be denned for all s G S , yielding real

intervals as values. These clock (or calendar) times

must be distinguished from times which are elements

of 1 , i.e., propositionally maximal situations support

ing "everything that happened" over a particular clock

time.) Furthermore, C. forms a join semilattice with

join operator U ; this is understood as joining two

episodes which are Actual relative to some common

time (and hence world) into a larger episode. The sec

ond partial ordering on situations, ■< , is understood

as relating the propositional content of concurrent sit

uations, and is denned by s ^ s' iff s C s' and clock-

time(s) = clock-time(s').

Truth evaluation is done with a context [ J and a

context transformation function (Schubert & Pelletier

1988). A context simultaneously serves the purposes

of an interpretation, a variable assignment function,

and a valuation function. Evaluation of a formula $

in situation s transforms the context to a new con

text, written as $*[ ], which may have new values for

certain variables existentially quantified in 4.

Some sample clauses in the recursive specification

of the conditions satisfied by a "coherent" context

|1 [| are the following. (We use 2 = {0, 1} as truth

values. A —*B denotes the set of partial functions from

A toB.)

1. If a is an individual constant or variable,

|[a| G V or |a| is undefined.

2. If ir is an n-place predicate,

M G V n -+S -+2

(short for V —(Z> — ■ (P —(S —2))- • •)),

with [t]<*1 d»'' = [x]dl< ■'d"'*' whenever both

sides are defined and s,s' < i for some time

i G 1. (The notation [7r]]dl- -''•"' denotes suc

cessive function application M(di) . . . (d„)(s).)

3. If ir is a predicate and a a term,

[(* a)] = Hi"!.

In the remaining clauses 4 and $ are formulas,

a is a variable, and r) a term.

4. J-i^l* = 1 only if for all times i during s

such that Actual (s, i), [4]' = 0

(this becomes "iff" when s is a time)

= 0 only if for some time i during s

such that Actual (s,i), [4J' = 1

= 0 if for some subepisode s'Cs,

[*]'' = 1

These conditions underdetermine |->$J - but

semantic values need not be fully determined in

our theory.

5. [(3a : $#)]* = 1 if for some d G V such that

[*];* = !. i*A*ii:J = i

(This becomes "iff" when s is a time).

|[ Ja-.d is a context obtained from [ j by changing

the interpretation of a to [a] = d, while leaving

the interpretations of all other atomic symbols un

altered. We omit the remaining cases.

6. [$ A *]* = 1 iff [4]* = 1 and 4J|[*]5 = 1

Note the possible context effect of interpreting $

on the subsequent interpretation of \P. Again, we

omit the remaining cases.

7. [4 *TJl' = 1 only if I*]!"! = 1 and Actual(lrj},s)

= 0 only if [4]M = 0 or

Nonactual (M's)

(These conditions become "iff" when s is a time.)
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The truth conditions for "** " are not semantically

defined, but are constrained by various axioms relat

ing "**" to "*", to causal operators, and to predicate

type hierarchies. Two of the most important axioms

are:

□ (Ve[[$**e] — [$ *e]])

D (Ve[[$ *e] -f (Be' : [e' same-time e][$ **e'])]).

Space does not permit the discussion of the semantics

of equality, A-abstraction, predicate modifiers, pred

icate and sentence nominalization, quantifiers other

than 3, disjunction, and conditionals. Also, context

change cannot be discussed in detail. However, a few

comments on the semantics of generic conditionals are

in order. A conditional of form

(3xi(3«a(. -(3***)...)))-„*

is evaluated essentially as in Schubert & Pelletier

(1988). Roughly speaking, ^ is evaluated in all con

texts resulting from "successful" evaluation of the an

tecedent (where each such successful evaluation sup

plies different "bindings" for the existential variables).

The conditional is true if at least a proportion p of

these contexts render V true. Thus, the semantics

of such conditionals is similar to that of conditional

probability statements involving random variables (see

Bacchus 1988a,b).

Entailment is defined as: E ^ ^ iff for all coherent

contexts [ ] and all worlds w e W such that |[$]|M' = 1

for all $6E, l^f" = 1. Some entailments following

from the semantic definitions are (with "during" and

"same-time" interpreted as might be expected from

the above discussion):

[(->$) *r;] |= ->(Be:[e during r;] [$ *e])

[(3a; : $*) *tj] (= (3x(3e:[e same-time n]

[[• A •]*«]))

[[$ A *] * 77] (= [* * V\ A [* * r?]

We should finally remark that many uncertainties

and gaps remain in our semantic theory — as in any

situation theory we are aware of. For instance, we

have not fully formalized the probabilistic constructs

and inferences. However, what is important about our

attempt is that it subsumes classical logic, provides

tentative extensions in several major directions, and

is sufficiently carefully formalized to make future sys

tematic analysis and revision possible. In that sense,

it is at least a step in the right direction.

4 From English to Episodic

Logic

It is one thing to posit a logical form for particular

sentences, but quite another to generate them system

atically through a grammatical/semantic formalism.

An important advantage of our representation is that

it is easily computed from syntactic analyses of input

sentences. For instance, the following are some of the

lexical and phrase structure rules and corresponding

semantic rules involved in the translation of the sen

tence "John realized that Mary was tired":

A. NP —► Mary; Mary

B. A —► tired; tired

C. AP[pred] — A; AeAx[[x A'] **e]

D. V[be, past] —► was;

E. VP — V[be] AP[pred]; AP'

F. VP[-.t,-.e] -» VP[t, -.h];

AsAx(3cr : [r tense' s] ((VP' r) x))

G. S — NP VP; As((VP' s) NP')

H. NP -> that S[tense]; (That (S' speech-time))

I. V[past] —► realized; realize

J. VP — Vftrans] NP; AeAx[[x V* NP'] **e]

K. S -* S PUNC; (S' speech-time)

We now illustrate how the above sentence could be

translated into our logical form by tracing the process

in bottom-up order, although this would not necessar

ily be followed in an actual translation situation. The

translation of adjective "tired" is "tired" as indicated

in rule B. According to rule C, the AP[pred] "tired"

is translated next as AeAx[[x tired] **e]. Note the in

troduction of an episodic variable by this rule ( "** e"

is introduced in XP[pred] formation or in VP forma

tion). The translation of V "was" is vacuous according

to rule D. The combination of AP with V[be] is gov

erned by rule E, according to which the translation of

the VP is the translation of the AP itself, i.e., AeAx[[x

tired] **e]. Next, via rule F tense is incorporated, us

ing lexical translation

past' = before,

with the result

VP[-it,-.e]' = AsAx(3crl : [rl before s]

[[x tired] **rl]).

Note that rule F binds the episodic A-variable by an

3c-quantified episodic variable. We use 3C ("a cer

tain") to indicate that it behaves in part like a def

inite and in part like an indefinite determiner, "t",

"e" , and "h" are features that in effect store semantic

information for "tense," "episode," and "have" (per

fective), respectively. The [-it,-ie] features basically
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signal that further modification of the episodic variable

(e.g., by adverbials) has been closed off by existential

binding. Also, notice that while existentially bind

ing an episodic A-variable, rule F introduces another

A-variable, which will be later bound with reference

time. Then, via sentence rule G, the VP is combined

with the subject NP "Mary" as follows:

S' = As(3crl : [rl before s] [[Mary tired] **rl]).

Now the sentence "Mary was tired" needs a refer

ence time. Since the sentence is an embedded one, we

apply rule H rather than rule K. Assuming the comple

mentizer "that" is an operator which nominalizes its

complement sentence, rule H first supplies a reference

time and then combines "that" with the embedded

sentence "Mary was tired," producing the following

translation:

NP' = (That (3erl : [rl before now]

[[Mary tired] **rl])).

The verb "realized" is translated as "realize" via rule

I. (Modal predications are formed with the "That" op

erator, and treated as ordinary predications with the

nominalized proposition as object.) Next, notice how a

second episodic variable is introduced by rule J, which

forms a VP from a transitive verb and its NP comple

ment. Application of rule J to V ("realize") and NP'

(the nominalized sentence above) gives the following

translation:

VP' = AeAx[[x realize (That

(3crl : [rl before now]

[[Mary tired] **rl]))] **e].

The rest of the analysis goes much the same way:

tense is incorporated into VP of the main clause via

rule F, subject "John" is combined with VP via rule G,

and so on. Each x-variable is ultimately bound by the

appropriate sentence subject, and each episodic vari

able by an existentially quantified episode (this hap

pens either at the VP level or at the S level). The final

translation is

(3cr2:[r2 before now]

[[John realize (That (3crl:[rl before now]

[[Mary tired] **rl]))] **r2]).

Our grammar fragment also handles many combi

nations of tense, aspect and temporal adverbials. The

following are some of the phrase structure rules for

handling perfectives, tense (in addition to rule F in

troduced earlier), durative adverbials and negation.

Tense and Perfective:

1. VP[--e,-ih] -> VP[e, h, stat];

AsAx(3cr:[r extend-to s] ((VP' r) x))

2. VPhe,-.h] — VP[e, h, -stat];

AsAx(3er:[r before s] ((VP' r) x))

3. She.-ih] -> S[e, h, stat];

As(3cr:[r extend-to s] (S' r))

4. S[->e,->h] —♦ S[e, h, -istat];

As(3cr:[r before s] (S' r))

5. S[->e,-.t] -» S[t, -*];

As(3cr:[r tense' s] (S' r))

Notice that in our analysis simple tense has two in

dices, namely, event time and sentence reference time,

while perfective sentences effectively have three. Ref

erence time is the same as the speech time by default.

Also note that we incorporate aspectual classes, distin

guished by "stat" and "-istat" features, into the trans

lation process. This was motivated by the observation

that the translation of perfectives depends on whether

a given construct is stative or not. For example, in

"Mary has been living in this town for twelve years,"

the episode of Mary's living in a certain town extends

to the speech time, whereas in a non-stative perfective

like "Mary has left," the episode does not necessar

ily have to extend to the speech time; it must merely

have occurred sometime before the speech time. Our

aspectual classes are quite rudimentary compared, for

instance, to Moens and Steedman's (1988) who have

a very detailed (but informal) analysis of the interac

tion between temporal reference and aspectual classes.

We follow, e.g., Richards & Heny (1982) in giving tense

wide scope over VP's and adverbials or even sentences.

This is in contrast with Hinrichs (1988) who gives tense

scope only over the predicate that corresponds to the

main verb. Also note one simplification in our trans

lation so far: they treat nominals as expressing atem-

poral (non-episodic) properties.

Durative Adverbials:

6. ADVL[dura4] * P[for] NP;

Ae[(duration-ofe) = NP']

7. VP[-.stat] — VP[stat] ADVL[dura];

AeAx[(ADVL' e) A

[(Ve':[e' during e]

(3e":[e" same-time e'] ((VP' e") x))) **e]]

4 "dura" is a head feature meaning "durative."
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8. VP[->stat] — VP[-.stat] ADVL[dura];

AeAi[(ADVL' e) A

[(3s:[[s (seq episode)] A [s regular] A

[s span e]]

(Ve':[e' element-of s] ((VP' e') i))) **e]]5

9. VPhstat] -► VP[->stat] ADVL[dura];

AeAx[(ADVL' e) A ((VP' e) x)]

Negation:

10. VP — V[aux] ADV[not] VP;

AeAa:[H3e':[e' during e] ((VP' e') x))) **e]

Again aspectual classes play a key role in our trans

lation of sentences with durative adverbials. This is

because when a non-stative S or VP combines with

a durative adverbial, we often need to convert the S

or VP into a repetitive activity so that the resulting

phrase reads "Regularly during the interval of ADVL,

S happens." For example, "John dated Mary" is a per

formance, i.e., non-stative, but when it combines with

the durative adverbial "for two years," it would be in

terpreted as "John dated Mary regularly for two years"

via rule 8. (On the other hand, "John dated Mary for

two hours" would not have such an interpretation -

cf, rule 9.) Similar rules can be used for durative ad

verbials at the sentence level.

Rules for manner and for locative adverbials as well

are not hard to formulate. For example,

Manner and Locative Adverbials:

11. VP -* VP ADVL[manr]; Ae(ADVL' (VP' e))

12. VP —VP ADVL[loc];

AeAx[(ADVL' e) A ((VP' c) x)]

Meaning postulates can be supplied for manner adver

bials which pass the manner adverbials introduced by

rule 11 "through" the ** , and attach it directly to the

verbal predicate.

5 "Seq" is a function that operates on a predicate like

"episode" (or "event") and produces a new predicate that is

a sequence of such things. "Regular" is a predicate that takes a

sequence as an argument and is interpreted such that a regular

sequence of episodes consists of episodes occurring at time in

tervals that conform with some norm for this type of repetitive

episode. Predicate "span" indicates time relationships between

an episode and a sequence of episodes roughly as follows: se

quence a spans episode e, if

[(clock-time (begin e)) -f d] > (clock-time (begin a)) and

[(clock-time (end *)) + d] > (clock-time (end e)),

where d is the size of the "natural period" of sequence s.

While these rules handle fairly complex cases of

tense/aspect/adverbial interactions, we regard our ap

proach to tense and aspect as an interim measure,

ultimately to be replaced by a context mechanism

that propagates a set of reference times "forward" and

"downward" from the preceding text.

5 Making Inferences with

Episodic Logic

Our inference rules fall into three broad categories,

namely, (i) basic inference rules including rule instan

tiation and its dual goal reduction, (ii) narrative infer

ence rules such as causal connection, temporal succes

sion and state persistence, and (iii) simulative infer

ence rules. All of the rules allow for subjective prob

ability bounds on premises and for use of generic con

ditionals.

We have already briefly described Rule Instanti

ation (RI) which is heavily used in input-driven in

ference; its dual Goal Chaining (GC) similarly dom

inates goal-driven inference. We have indicated that

RI has modus ponens as special case, but also allows

instantiation of generic conditionals. In fact, it al

lows arbitrarily many "minor premises" to be matched

against arbitrarily deeply embedded subformulas of a

rule. (Apart from its avoidance of skolemization, it re

sembles Andrews' general matings (1981) and Bibel's

connections (1979).) Schematically, the rule is:

RI (Rule Instantiation)

- Non-probabilistic version -

For fl(a>! 4>m,<&i,...,4V), »!,..., ttm,

ntf i' ■
-»;.

formulas with bound vari

ables standardized apart, and with all

$,'s occurring negatively in i?($i, . . . ,$m.

4Vj , . . . , 4>J,), and all $('s occurring positively

in it:

A(«i,...,*m, *!,...,*'„)

*i,...,¥m,-i*i,...,-i¥;,

Ra(T,...,T,±,...,±)

where substitution a unifies the $j with cor

responding \tj and $| with corresponding *(•.

Ra{J , . . . , T, X, . . . , _L) is then simplified to

eliminate the truth values.

The substitution a applies to certain "matchable"

variables which are V-quantified by a positively occur

ring quantifier, or 3-quantified by a negatively occur

ring quantifier, in i?($i, . . . , $m, $j, . . . , q>'n) or one
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of the $!{. A subformula occurs positively if it lies

within an even number of negations, where "->" , condi

tional antecedents, and V-quantifier restrictions count

as negation, and similarly, for "negatively occurring."

Computing i?CT(T, . . ., T, ±, . . .,±) involves elimina

tion of quantifiers of variables replaced by <r, e.g.,

if 6 is substituted for x, then (Vz:$¥)j/r becomes

[$b/x —* ^b/x]- Details can be found in (Schubert

& Hwang 1989). A probabilistic version of RI results

when the *, or -i*J are allowed to have non-unit lower

subjective probabilities and/or R is a generic condi

tional.

In practice, the rule is implemented roughly as fol

lows. A newly inferred conclusion, corresponding to

one of the ^j or ->¥{, is used to index to the rule

R. An initial determination is then made whether the

instantiation is likely to succeed, and yield a useful

result. If the decision is to instantiate, then the at

tempt to do so is performed by a recursive algorithm

applied to R, which actively seeks to find appropriate

$>i and ->*< instances in the knowledge base to unify

with negatively and positively occurring subformulas

of R. Actually, the \P,- and -i¥J need not even oc

cur explicitly in the knowledge base. They may be

inferred by "specialists" for type taxonomies, tempo

ral relations, or other special classes of relations, or by

limited amount of Prolog-like backchaining.

A rule instantiation typically instantiates the com

plete antecedent of a rule and infers the particularized

consequent. However, it may only match a part of the

antecedent, or match a part of the consequent. As

an example of the latter, a rule which asserts that "A

person who has recently eaten a meal is unlikely to

be hungry" could be instantiated with the fact that a

certain individual is hungry, leading to the conclusion

that he has not eaten for some time.

Before turning to goal-directed inference rules, we

should mention A-conversion, reverse A-conversion,6

and substitution of equals for equals as further deduc

tive rules available in our logic.

For goal-directed inference (e.g., in response to

questions) two general methods are available.7 The

first, Goal Chaining (GC), is the dual of RI. For com-

prehensibility, we state only a special (but frequently

encountered) case.

GC (Goal Chaining)

For R($), * standardized formulas where $

is a positively occurring subformula of i?($):

R($), 9

6 Reverse A-conversion is defined as follows: Let $ be an ex

pression containing an occurrence of term T, where T contains

no occurrences of variables that are bound in $ and free in t.

Then,

* = (Aa*Q/r t),

where a is any variable not occurring in $, and $a/T is the

result of replacing the occurrence of t in question by a.

7 Only the first is currently implemented.

->Rw(-L)

where a differs from a (in RI) in that it

treats variables of \P with positively occur

ring 3-quantifiers or negatively occurring V-

quantifiers as matchable.

Like RI, this is a very general chaining rule, al

lowing not only chaining from rule consequents to an

tecedents, but from any positively occurring subfor

mula to the rest of R($) (negated and suitably instan

tiated).

The second class of goal-directed methods consists

of standard natural deduction rules such as proving

a conditional by assuming the antecedent and deriv

ing the consequent; or proving a negative formula by

assuming the positive and deriving a contradiction;

or proving a universal by proving an "arbitrary in

stance" of it. An interesting future possibility, in the

case of proofs involving assumption-making, is to ac

tivate input-driven inferencing (primarily, RI) once an

assumption has been made, so that its important con

sequences will be worked out, making it easier to com

plete the goal-directed proof.

In our implementation, we use a sophisticated

agenda-driven control structure for goal chaining

(largely borrowed from Econet - see de Haan & Schu

bert 1986) with goals ranked according to estimated

difficulty and new knowledge accessed via concept and

topic hierarchies. The aim here is not so much theo

rem proving power per se, but the ability to get at the

relevant knowledge in a large knowledge base.

A remaining problem is, of course, the principled

handling of probabilities. The state of the art in prob

abilistic inference (e.g., Pearl 1988, Bacchus 1988a) is

not such as to provide concrete technical tools for a

logic as general as episodic logic. We are, however,

successfully using a "noncircularity principle" which

prevents the same knowledge from being used twice

to "boost" the probability of a particular conclusion.

This is done by keeping track of the support set in

a probabilistic inference process. Apart from this,

we use independence assumptions where there are no

known dependencies, and manipulate lower probabili

ties in accord with the laws of probability.

Finally, we mention some narrative and simulative

inference rules (yet to be implemented).
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CC (Causal Connection)

For $ and \P denoting successive sentences in

a narrative:

[77 cause-of t/]8

where <$, * are actions or events, but \P is not a voli

tional action.

For example, given a fragment "John greeted Mary;

Mary was startled," we conclude that John's greeting

is the cause of Mary's being startled, with minimal de

gree of belief .6. We should remark that we are in the

process of reformulating narrative inference rules as

generic conditionals to be used in the same way as nar

rative domain knowledge. For example, the above rule

can be reformulated as a generic conditional along the

following lines: When a text source asserts two event

occurrences in succession, the text source implicates

that the first event caused the second.

An example of a simulative inference rule is:

SIM (Simulative Reasoning)

For r, an individual term; n G find, learn, ...;

$ and W, formulas; 77, an episodic term; K,,

major implications8which are public knowl

edge:

[[r 7T $] ** 77]

{<£>} U K \-f fr

(3e:[[e right-after 77] A [77 cause-of e]]

[[r infer (That *)] ** e])

where hy means "follows automatically by input-

driven inference." Note that in this "simulative reason

ing" rule, the question answerer's own ability to infer

$t from $ via major implications is being attributed

to r, the agent in the antecedent.

6 Episodic Logic and Narrative

Understanding

In outline, story understanding on our view involves

the following interleaved steps for each new sentence:

(1) parsing and logical translation; (2) disambigua

tion (including quantifier scoping and anaphora res

olution); (3) application of all three types of infer

ence rules to the translated input, in combination with

Major implications are the ones that people generally use

for "input-driven" inferences.

stored knowledge (meaning postulates, generic con

ditionals, and other general and specific knowledge);

among other things, this may generate new predictions

and explanations; (4) matching of previous predictions

and explanations with new ones.

We have put these ideas to the test in two ways:

first, by hand-simulating the inference process for a

small fragment of the story of Little Red Riding Hood.

We also have a prototype implementation which ac

cepts logical-form inputs and performs many of the

inferences we have alluded to and is able to answer

simple questions (Schubert et al. 1988). In this sec

tion, we will show how our logic would allow the system

to account for the wolf's decision not to eat Little Red

Riding Hood right away when he first met her, given

a brief excerpt from the story as follows.

In the forest, Little Red Riding Hood met a wolf.

The wolf would have very much liked to eat her,

but he dared not do so on account of some wood

cutters nearby.

Processing this fragment requires extensive reasoning

including inferences based on meaning postulates, pre

dictive inferences, explanatory inferences and simula

tive inferences. For example, to understand the third

sentence, one should be able to explain why the wolf

decided against eating Little Red Riding Hood, and

how the presence of woodcutters nearby affected the

wolf's decision. So, one has to know that when some

agent dares not do something, he must think it possi

ble that his attempt to do it would result in something

unpleasant to himself; then one has to simulate his rea

soning process to guess what unpleasant consequences

he anticipates.

Depending on the degree of sophistication of the

knowledge possessed, people may explain the wolf's

decision in various ways. Correspondingly, depending

on the kind of knowledge provided, our inference ma

chinery can produce various lines of reasoning; this

includes the following, relatively simple line of reason

ing

• Attacking a child is extremely wicked.

• Trying to eat a living creature involves attacking

it, and such an attack is conspicuous and likely to

be noticed by nearby people.

• Doing something extremely wicked is likely to

bring severe punishment, if noticed by anyone.

• So, if the wolf tries to eat Little Red Riding Hood,

the nearby woodcutters may notice it, and he is

likely to be severely punished for it.
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Or, the more sophisticated version

• When a predatory animal eats a non-predatory

creature of comparable size while the creature is

conscious, the predator attacks it as a preparation

for eating it.

• The wolf would attack Little Red Riding Hood

before eating her.

• Attacking a person is a conspicuous action, and is

likely to be noticed by nearby people.

• If people notice a predatory animal attacking a

person, they will most probably want to rescue

the person from the animal.

• To rescue a person from a predatory animal, one

may kill it.

• Thus, the woodcutters may kill the wolf.

Upon reaching the conclusion that it is possible that

the wolf might be killed or severely punished, our in

ference machinery attributes its own ability to infer

that conclusion to the wolf (this is due to our rules

of simulative reasoning). Then it is easily explained

why the wolf decided against eating Little Red Riding

Hood right then and there.

As space limitations do not allow the inclusion of

a detailed analysis, we show in the following only that

part of the reasoning process reaching the conclusion

"The wolf may be severely punished." In working out

the inferences by hand, we assumed a control structure

which systematically combines each new clause with

relevant meaning postulates and other general knowl

edge, and makes relevant narrative inferences. All of

these inferences are based on the explicit, formalized

rules of inference we introduced earlier. After listing

meaning postulates and world knowledge, we show the

logical translation of the story and the reasoning pro

cess.

Meaning Postulates

Ml. To walk, to attack someone, to try to do some

thing, to die, etc., are types of actions.

For $ an action formula:

n [(To AeAx$) action-type]

"To" is an operator forming an action type from a

two-place predicate. An action formula is of form

[[x tt] ** e], where x and e are free, and n is an

action predicate; an action predicate is an expres

sion (P T\ , . . . , rn_i), where P is an n-adic atomic

action predicate, and ri, . . . , r„_i are terms.

M2. If there is a collection of things of some type, then

there is a thing of that type which belongs to that

collection (we regard collections as non-empty by

definition).

For P a monadic predicate:

D (Vx:[x (coll P)] (3y:[y in x][y P]))

"coll" is a function that maps a predicate appli

cable to things into a predicate applicable to col

lections of things.

# An "action" is an (ordered) event-agent pair,

"instantiating" or "realizing" the action type

(To AeAx$), for some $. We use "|" for the

pairing function, e.g., (| e x), where e is an event

and x is an agent. We also allow the infix nota

tion [e | x] instead of (| e x).

For pair p:

(fst p) returns the first of the pair;

(rst p) returns the rest of the pair.

Some meaning postulates regarding actions (<$ is

an action formula as in Ml):

M3. □ (Va[[a instance-of (To AeAx$)]

<->((AeAx$ (fst a)) (rst a))] )

For example,

[[El | John] instance-of (To AeAx [[x eat] **e])]

<->((AeAx[[x eat] **e] El) John)

i.e., <-»[[John eat] **E1]

M4. M3 can be equivalently expressed as:

□ (Ve(Vx[[[e | x] instance-of (To Ae'Ax'S)]

~((Ae'Ax'<l> e) x)] ))

M5. For 5r an action predicate:

D (Ve(Vx[[[x n] **e] —[x do [e | x]]]))

(Remark: Note that [x do [e | x]] is not itself

a description of a bounded episode; rather, it is

an "eternal" truth, if true at all. It can be un

derstood equivalently as saying that [e | x] is an

action, not just an arbitrary event-individual pair,

so that x is the agent of that action.)

World Knowledge

Kl. For a creature to attack a child is extremely

wicked.

(3x:[x creature](3j/:[i/ child](3e[[x attack y] **e])))

-*.9 [[e | x] (extremely wicked)]
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K2. Trying to eat any living creature involves attack

ing it.

(Vy:[[y alive] A [y creature]]

[(To AeAx[[x try

(To Ae'Ax'[[x' eat y] ** e'])] ** e])

involve (To AeAx[[x attack y] ** e])])

K3. If one type of action involves another, then any

creature doing an instance of the first will do an

instance of the second during it.

(Vx:[x creature]

(Val:[al action-type]

(Va2:[[a2 action-type] A [al involve a2]]

(Vel:[[el | x] instance-of al]

(3e2:[e2 during el]

[[e2 | x] instance-of a2])))))

K4. For a sizable creature to attack a sizable thing is

conspicuous (relative to a human observer).

(3x:[x person]

(3y:[[y creature] A ->[y tiny-rel-to x]]

(3z:[[z creature] A ->[z tiny-rel-to y]]

(3e[[y attack z] ** e]))))

—>,9 [[e | y] conspicuous-to x]

By contrast, for an ant to attack something would

not be conspicuous to a human.

K5. If a creature performs a conspicuous action within

plain sight of a person, that person is likely to

notice that action.

(3x:[x creature]

(3y:[y person]

(3el:[[x within-plain-sight-of y] **el]

(3e2:[e2 during el]

[|x do [e2 | x]] A

[[e2 | x] conspicuous-to y]]))))

-►.6 (3e3:[e3 during e2] [[y notice [e2 | x]] **e3])

K6. Doing something extremely wicked may bring se

vere punishment from some group of people, if

noticed by anyone.

(3x:[x creature]

(3y:[y person]

(3el:[[xdo[el | x]] A

[[el | x] (extremely wicked)]]

(3e2 [[y notice [el | x]] **e2]))))

~*.3 (3p:[p (coll person)]

(3e3:[e2 cause-of e3]

[\p (severely (punish x))] ** e3]))

K7. A human is not tiny relative to a wolf, and vice

versa.

(Vx:[x human] (Vy:[y wolf]

[-i[x tiny-rel-to y] A -i[y tiny-rel-to x]] ))

K8. If a creature is near a person and not tiny relative

to the person, it is probably within plain sight of

the person. (This could be improved by assuming

that we are dealing with a daytime episode in an

open setting.)

(3x:[x person]

(3y:[[y creature] A ->[y tiny-rel-to x]]

(3el [[y near x] **el])))

—+.6 (3e2:[e2 same-time el]

[[y within-plain-sight-of x] ** e2])

K9. Woodcutters are humans.

(Vx:[x woodcutter] [x human])

Story

Now, let's work out the possible consequences if the

wolf tries to eat Little Red Riding Hood. (We then

attribute this reasoning to the wolf). The relevant as

sumptions and story facts are as follows (where we use

the convention of having variables in lower case, and

constants in upper case):

# The wolf tries to eat Little Red Riding Hood.

(3el:[nou; during el]

(3xl:[xl wolf] [[xl try

(To AeAx[[x eat LRRH ] ** e])] ** el]))

By Skolemizing {El/el, W/xl}:

51. [now during El]

52. [W wolf]

53. [[W try (To AeAx[[x eat LRRH ] **e])] **E1]

Note that S3 can be rewritten as follows by two

reverse A-conversions:

((Ae'Ax'[[x' try

(To AeAx[[x eat LRRH ] **e])] ** e'] El) W)

# Little Red Riding Hood is a girl and alive.

54. [LRRH girl]

55. [LRRH alive]
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# There are woodcutters nearby.

(3y:[y (coll woodcutter)]

(Vx:[z in y]

(3e2:[El during e2] [[W near a;] **e2])))

By Skolemizing {Cl/y}:

56. [CI (coll woodcutter)]

57. (V*:[x in CI]

(3e2:[El during e2] [[W near x] **e2]))

# Assume the following type-hierarchical knowledge

is available (at least indirectly, via a type "spe

cialist"):

58. [W creature]

59. [LRRH child]

510. [LRRH human]

511. [LRRH creature]

Reasoning Process

- Note that simple time inferences such as

[El during E2] A [E2 during E3] A

[E3 same-time E4] h [El during E4]

will be taken for granted during the inference pro

cess.

- In the following,

RI [A; B] {Subst C/v; Imm-Skol C/v'}

indicates that the subsequent inference(s) has

been made via Rule Instantiation of rule B by

premise(s) A, with variable substitution C/v, and

an existential variable v' in the inferred formula

has been immediately skolemized as C.

RI [S5, Sll; K2] {Subst LRRH/y}:

1. [(To AeAx[[x try

(To Ae'Ax'[[x' eat LRRH] **e'])] **e])

involve (To AeAx[[x attack LRRH] ** e])]

"Trying to eat LRRH involves attacking her. "

RI [; Ml] {Subst [[x try (To Ae'Ax'[[x' eat

LRRH] **e'])] **e]/$}:

2. [(To AeAx [[x try (To Ae'Ax'[[x' eat

LRRH] ** e'])] ** e]) action-type]

"Trying to eat LRRH is an action type. "

RI [; Ml] {Subst [[x attack LRRH] **e]/$}:

3. [(To AeAx[[x attack LRRH] ** e]) action-type]

"Attacking LRRH is an action type. "

RI [S3; M4] {Subst El/e, W/x, [[x try (To Ae'Ax'[[x'

eat LRRH] **e'])] **e]/<&}:

4. [[El | W] instance-of (To AeAx [[x try

(To Ae'Ax'[[x' eat LRRH] ** e'])] ** e])]

"The wolf's trying to eat LRRH is an instance

of someone's trying to eat LRRH ."

RI [S8, 2, 3, 1, 4; K3] {Subst W/x, El/el,

(To AeAx [[x try (To Ae'Ax'[[x' eat

LRRH] **e'])] **e])/al,

(To AeAx[[x attack LRRH] ** e])/a2;

Imm-Skol E2/e2}:

5. [E2 during El]

6. [[E2| W] instance-of

(To AeAx[[x attack LRRH] ** e])]

RI [6; M4] {Subst E2/e, W/x, [[x attack LRRH]/*}:

7. [[W attack LRRH] ** E2]

"The wolf will attack LRRH."

RI [7; M5] {Subst E2/e, W/x}:

8. [W do [E2 | W]]

"The wolf's attack is an action."

RI [S8, S9, 7; Kl] {Subst W/x, LRRH/y, E2/e}:

9. [[E2 | W] (extremely wicked)]9

# Up to here:

The wolf will attack LRRH,

and that's extremely wicked.

RI [S10, S2; K7] {Subst LRRH/x, W/y}:

10. -.[LRRHtiny-rel-to W]

"LRRH is not tiny relative to the wolf. "

RI [S6; M2] {Subst Cl/x, woodcutter/P;

Imm-Skol C2/y}:

11. [C2 in CI]

12. [C2 woodcutter]

"There is a woodcutter."

RI[12;K9] {Subst C2/x}:

13. [C2 human]

"The woodcutter is a human. "

With type-hierarchical knowledge, we get from 13:

14. [C2 person]

RI [13, S2; K7] {Subst C2/x, W/y}:

15. ->[W tiny-rel-to C2]

"The wolf is not tiny relative to the woodcutter. "

RI [14, S8, 15, Sll, 10, 7; K4]

{Subst C2/x, W/y, LRRH/z, E2/e}:

16. [[E2 | W] conspicuous-to C2].9
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# Up to here:

The wolf's attack will be

conspicuous to the woodcutter.

RI [11; S7] {Subst C2/x; Imm-Skol E3/e}:

17. [El during E3]

18. [[WnearC2] ** E3]

"The wolf is near the woodcutter (when he

tries to eat LRRH )."

RI [14, S8, 15, 18; K8]

{Subst C2/x, W/y, E3/el; Imm-Skol E4/e2}:

19. [E4 same-time E3]

20. [[W within-plain-sight-of C2] **E4]6

"The wolf is likely to be within plain sight of

the woodcutter."

RI [S8, 14, 20, (5, 17, 19), 8, 16; K5] {Subst W/x,

C2/y, E4/el, E2/e2; Imm-Skol E5/e3}:

21. [E5 during E4]

22. [[C2 notice [E2 | W]] ** E5]324

# Up to here:

The woodcutter may notice

the wolf's attacking LRRH.

RI [S8, 14, 8, 9, 22; K6] {Subst W/x, C2/y,

E2/el, E5/e2; Imm-Skol C3/p, E6/e3}:

23. [C3 (coll person)]

24. [E5 cause-of E6]

25. [[C3 (severely (punish W))] ** E6].087

# The wolf may be severely punished

by some group of people.

This inference chain can be extended to provide an

explanation for the wolf's decision not to try to eat

LRRH at that point in the story. First, rule K3 would

be slightly augmented so as to express the fact that

if one action involves another, and that other action

has certain consequences, then these are also conse

quences of the first action. Rule K5 would be similarly

augmented to make the "noticing event" e3 a causal

consequence of the event e2 (or action [e2 | x]) noticed.

The "punishing event " E6 in conclusion 25 would then

be inferred to be a consequence of the wolf's attempt

to eat LRRH . Given that being severely punished is

very bad, and that agents generally refrain from ac

tions that they think may have very bad consequences

for them, we would have an explanation for the wolf's

restraint. Note, however, that this requires application

of the simulative inference rule (SIM), i.e., we must at

tribute the above inference chain to the wolf, and draw

further conclusions from this attribution.

7 Concluding Remarks

Our logic is probably the most expressive yet brought

to bear on the problem of narrative understanding.

It makes implicit time and situation dependencies ex

plicit through the use of episodic variables, and admits

unbound "anaphoric" variables and the representation

of generic conditionals.

Our use of episodic variables owes a debt to David

son (1969), but we can "attach" an episodic variable

to any formula, whereas Davidson's method can in

troduce episodes only for atomic formulas. Thus, for

Davidson, there can be no episodes involving quan

tification, such as an episode of everyone in the room

looking at Mary, and no episodes involving negation,

such as an episode of John not eating anything for ten

hours. Yet such episodes can perfectly well be cited as

causal antecedents (e.g., sentences (4) and (5) in sec

tion 2; or "John did not eat anything for ten hours, and

as a result, he was famished"), anaphorically referred

to, quantified over, etc.

We should also mention the Situation Calculus of

McCarthy and Hayes (1969), whose notion of a situa

tion corresponds exactly to our notion of a (possible)

moment of time, and the Event Calculus of Kowalski

(1986), which treats events as individuals as we do.

Like Davidson, however, Kowalski is unable to deal

with events involving quantification and logical com

pounds.

We have provided evidence that our episode-based

logical form can provide a clean foundation for story

understanding. The main advantages of our approach

are as follows:

(a) The representation of phrase structure is modular

and transparent, as is the mapping from phrase

structure to Episodic Logic. The mapping han

dles many combinations of tense, aspect and ad-

verbials.

(b) Episodic Logic is expressively rich — it allows the

content of most English sentences and most world

knowledge to be represented in an intuitively com

prehensible and formally analyzable manner. Re

stricted quantifiers, modal operators, nominaliza-

tion operators, episodic variables, anaphoric vari

ables, and generic conditionals are brought to

gether for the first time in a logic for narrative

understanding.

(c) Being probabilistic, our rules of inference allow

evidence for explanations or predictions to be

weighed, much as in expert systems.
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(d) All types of linguistic and domain knowledge are

strictly separated from parsing and inference con

trol structure, allowing the former to be expanded

and revised independently of the latter.

(e) Hand-simulation of the processing of actual story

fragments, and question-answering, indicates that

our logical framework is epistemologically ade

quate for story understanding.

This last claim, about epistemological adequacy,

may come as something of a surprise. Whatever hap

pened to scripts, plans, TAUs, TOPs, MOPs, etc.?

Are these "higher-level" knowledge structures not es

sential to story comprehension? We do not doubt that

they are. However, we see no sharp divisions between

any of them. The more focused the successive stages of

a script are on an ultimate goal, the more it resembles

a plan. The more abstract its level of description, the

more it resembles a TAU or a TOP, and so on. Fur

thermore, we see no particular obstacle to encoding

all of them as axiomatic knowledge in episodic logic,

in the manner of the examples in section 2. For exam

ple, the M-BORROW MOP (Dyer 1983: 207) can be

cast as a set of generic conditionals along the following

lines. If some person x wants to have some object y

temporarily, which he knows to be in the possession

of some person z, he may well ask z to lend him y

and this may induce z to do so, fulfilling x's goal. If

some person x has some object y on loan from some

person z, then x is obligated to return y to z, and

z will probably want him to do so; etc. We consider

the taxonomy of scripts, plans, MOPs, etc., and their

elaborate subcategorization, more of a potential guide

to control structure - what knowledge is likely to be

useful when - than a guide to representation.

Much work remains to be done on our logic - for in

stance, on the formal semantics of nominalization and

propositional attitudes, and of probabilistic inference.

As well, we need to compose many more rules of trans

lation and compile a substantial body of knowledge

for particular stories. However, our implementation

to date has proved to be very gratifying (EcoLOGlC:

Schubert et al. 1988), and we have incorporated sev

eral techniques into Ecologic which were developed

for an earlier system based on ordinary first-order logic

(ECOSYSTEM: de Haan & Schubert 1986, Miller et al.

1987, Miller & Schubert 1988), facilitating efficient de

duction (both general and specialized) and fast, selec

tive access to knowledge relevant to a particular set of

concepts and topics. "Natural" goal reduction remains

to be implemented, but nonetheless the types of ques

tions handled by EcoNET are also handled by Eco-

LOGlc(e.g., "Did anyone have some cake?" or "Does

grandmother live in a shoe?")
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Abstract

Reasoning with equality can be computation

ally difficult, but is less so when the equal

ity relation for a language is the familiar re

lation of "syntactic equality:" no two dis

tinct ground terms denote the same thing

in the intended model. However, first order

theories often contain existentially quantified

variables which block the use of the syntac

tic equality methods. The existence of a de-

cidable set of terms known to have pairwise

distinct denotations can nevertheless be a

computational advantage. We present an ex

tension of resolution, "SEq resolution," that

builds in the syntactic equality axioms for

just those terms known to be pairwise dis

tinct. In some cases, there is a computational

advantage to respecting the syntactic equal

ity restriction in so far as possible, leaving

only Skolem functions and constants as the

exceptions, and using SEq resolution.

1 Introduction

In a recent book by Wos et al. [1984], the art of au

tomated reasoning is codified in a number of useful

proverbs. One of them is the following:

Employ equality predicates.

This recommendation is surprising to logic program

mers who assiduously avoid equality and other con

gruence (or even equivalence) relations. Consider the

following remark from the logic programming litera

ture:

One of the reasons why logic programming

succeeded where other resolution theorem

*I am grateful to the Canadian Institute for Advanced

Research and the Natural Sciences and Engineering Re

search Council of Canada for supporting this research. I

would like to thank William Demopoulos for valuable dis

cussions of this material. I am also grateful to Hector

Levesque, Alan Mackworth and Ray Reiter for convinc

ing me, some time ago, that I should get clear about this

stuff.

proving had failed (namely in finding a prac

tical application) was that in logic program

ming equality was avoided like the plague.[van

Emden and Yukawa , 1980]

Some knowledge is very hard to represent without any

equality, though. Consider expressing the simple fact

that the only things that have property p are a and b.

With equality, this is easily expressed with a formula

like p(X) «-+ X = aV X = b. Logic programmers

have noticed that a very restricted, computationally

manageable equality relation suffices to express such

things: the familiar "syntactic equality." This relation

is so restricted that complete proof methods using it

do not need to consider transitive chains of equations

or substitutions of distinct terms into any predicate

or function expressions. In this paper we generalize

this idea to full first order resolution. It is a simple

matter to build the syntactic equality theory for any

first order language into an inference rule. In fact, we

propose a more general idea: access to an efficiently

decidable set of terms whose denotations are known

to be pairwise distinct can be a real computational

advantage. This paper shows how extensions of reso

lution and similar strategies can exploit such a set of

terms for computational advantage even when the set

does not include all the terms in the theory. We pro

pose a more specific version of the logic programmers'

maxim:

Avoid non-syntactic equality. That is, try to

minimize the number of terms that are not in

the set of terms whose denotations are known

to be pairwise distinct.

An analysis of some examples that support this rec

ommendation about knowledge representation confirm

what becomes clear with a little reflection on the mat

ter. The apparent tension between our proverb and

Wos's is explained by the observation that while non-

syntactic equality can simplify theories and proofs, it

can make the search for a proof very difficult. When

the search is guided, simplicity is preferable, though

it is of course still nice to have a small search space

- neither humans nor machines are very good at con

sidering too many alternatives. When search is auto
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matic, a small search space is essential for practical

performance. Syntactic equality provides the expres

sive power needed to make a theory and deductions

from it simple, and yet minimizes the search space.

2 A First Example

Consider the following simple theory:

nn(0) Theory HNN

nn(X) — nn(s(X))

where, here and throughout, we use such formulas to

represent their universal closures, and variable names

begin with uppercase letters. Under the obvious in

terpretation, N, this theory says (truly) that 0 and

its successors are natural numbers. Suppose that the

language contains just one other function symbol, the

constant a, and in N neither a nor any of its succes

sors names a natural number. Then our theory has

the nice properties that HNN \fc nn(a), and in fact,

HNN h nn(r) just in case r names a natural num

ber in N. Obviously, though, HNN £ -<nn(a). To

get the latter entailment we need, in the first place,

a necessary condition for natural numberhood like the

following:

Theory NN

nn(X)~ (X = 0V3Y(X = s(Y) A nn(Y)))

And then we need a theory of equality that tells us

that our terms are pairwise distinct, and in particular

that the term a does not have the same denotation as

any other ground term:

X=X Theory SEq(NN)

a # s(X)

0 ? s(X)

X / r for all terms r properly (t)

containing X

s(X) = s{Y) *-* X = Y

(nn(Y)AX = Y)->nn(X)

(Y1 = Y2 A Xj = Yi A X2 = Y2) ^XX=X2

Clearly, we now have NN U SEq(NN) |= -<nn(a), and

NNUSEq(NN)\=->nn{s(a)).

Notice that this theory contains a schema, (f),

with infinitely many instances. In fact this equal

ity theory has a form that is familiar in the logic

programming literature: NN U SEq(NN) is essentially

Clark's completion of the definite clause theory HNN

[Clark, 1978] [Lloyd, 1984]. Clark uses a completion

like this in his characterization of the results that

can be obtained from HNN when Horn clause resolu

tion is extended with the non-monotonic negation-as-

failure rule. We do not need to tangle with negation-

as-failure, though.1 Classical logic gives us entail

ments like those mentioned, and a sound and complete

1 For a consideration of some of the troubles with

negation-as-failure in logic programming, see, for example,

[Flannagan, 1986] [Sheperdson, 1984].

method like resolution allows us to demonstrate such

results.

For present purposes, the interest of equality theo

ries like SEq(NN) is that they serve to force a "free"

interpretation of the terms in the language. In other

words, the terms of the theory satisfy a "unique names

condition," distinct terms (distinct names and distinct

ground function expressions generally) have distinct

denotations. However, the well known proof tech

niques do not allow us to obtain the computational

advantage of syntactic equality in deductions from

AW U SEq(NN) because the theory contains an ex

istential quantifier. When converted to clausal form, a

Skolem function will be introduced for which the syn

tactic equality restriction cannot be presumed to hold.

We will show how to take advantage of the fact that all

the other terms respect the unique names assumption.

We will briefly describe a very simple sound and com

plete specialized inference rule for syntactic equality,

and then modify it to handle theories like the clausal

form of NNL)SEq(NN) in which a subset of the terms

fail to satisfy the syntactic equality restriction.

3 Building in syntactic equality

Because equality vastly increases the search space of

a theorem prover, there has been a good deal of work

on building the standard equality axioms Eq into spe

cial inference rules R in such a way that T r-R S

iff T U Eq \= S. If TU Eq is satisfiable, we say

T is E-satisfiable. A rule R meeting the above con

dition is said to be a sound and complete method

for E-unsatisfiability. Paramodulation is probably

the best known method [Chang and Lee, 1973] [Wos

et a/., 1980]: equalities license the substitution (or

"paramodulations") of distinct terms in any literal at

any point in the deduction. We can use a similar tech

nique to build in the equality axioms that enforce the

unique names condition. We have seen an example of

these axioms in the case of SEq(NN), above. In gen

eral, let the axiomatization of the unique names as

sumption SEq(T) for the language ofT be defined to

comprise the standard equality axioms Eq for the lan

guage, pairwise inequalities for all the constants and

function symbols, all instances off, and for each func

tion symbol an axiom saying that it is a 1-1 function.

Then we say that T is SEq-satisfiable iff T U SEq(T)

is satisfiable. Obviously, then, NN U nn(a) is SEq-

unsatisfiable.2

Building in the (often infinitely many) axioms of

SEq, we can formulate a simple, clausal refutation

method for SEq-unsatisfiability. The sufficient con

dition for identity in our restricted models is easily

expressed. It can be represented simply by the clause:

2 We modify the definition of SEq-satisfiability below

to handle the case where not all terms satisfy the unique

names condition.
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{X = X). A resolution step in which this clause plays

a role can be easily replaced by a rule that has the

same effect - our rule (i) below. The necessary condi

tion on syntactic equality is the tricky part. We want

to say that two things are nonidentical just in case

they are named by distinct terms. The following sim

ple extensions to resolution suffice:

For any clause C,

(i) If t ^ t' € C and <r is the mgu off and t', deduce

(C-{t ± t'})a;

(ii) If t = t' € C and for substitution a, to and t'o

are not unifiable, deduce (C— {t = t'})o.

Theorem 3.1. There is a derivation of □ from

T using resolution together with (i) and (ii) iff T is not

SEq-satisfiable.

Proof: We must show r h □ iff T is SEq-

unsatisfiable. The result for derivations that do not

unify literals containing the equality predicate was es

tablished by Robinson [Robinson, 1965], so we consider

only our special treatment of equality.

When a clause C contains a literal -it = f we allow

the deduction of C— {->i = t'}o just in case o is the

most general unifier of t and t'. This is sound since

X = X is true, and it is complete because two terms

denote the same thing in a model that satisfies our

semantic restriction only when the terms are identical.

When a clause C contains a literal t = t' we allow

the deduction of C—{t = t'}o just in case tcr and t'o

are not unifiable. This is sound because terms that

are not unifiable cannot denote the same thing, under

any assignment to variables, in models that satisfy our

restriction. And it is complete, because two terms can

fail to denote the same thing only if the terms are

distinct. I

Like the axioms of SEq, inference rule (ii) still poses

an efficiency problem. The space of possible substi

tutions that can make a pair of terms distinct is too

large to be managed efficiently. We will make some

headway on this problem below, but we can note here

the logic programmers' strategy. It is just to delay

the evaluation of any positive equation (or any other

non-ground positive literal) in a clause as long as pos

sible - try to resolve against all the other literals first,

in hopes of instantiating the terms in the equations -

and then form a resolvent C—{t = t'} just in case t

and t' are not unifiable.3 That is, we can modify rule

(ii) of our extension to resolution as follows:

(ii') If (t = t') € C and t and t' are not unifiable,

deduce C—{t = t'}.

This strategy is more tractable, but it is obviously not

complete.

4 Skolem functions

With clausal form theorem provers, all problems must

be represented in clausal forms: existentially quanti

fied variables must be replaced by Skolem functions.

When these are introduced, they must be new to the

theory, and so we do not know whether their denota

tions are distinct from those of other terms. For ex

ample, the following is a clausal form of NN in which

a unary Skolem function ski has been introduced:

Theory Cl(NN)

3Compare, for example, the strategy for soundly imple

menting negation-as-failure in [Lloyd, 1984], and the more

general application of similar strategies on otherwise diffi

cult problems in [Naish, 1985].

{-^nn(A), A= 0,A = s(skl(A))}

{A?0,nn(A)}

{^nn(A), nn(skl(A)), A = 0}

{-mn(A),B / s(A),nn(B)}

The first clause tells us that if nn(A) for some A, then

either A is 0 or A is the successor of something in the

domain, viz. skl(A). Obviously, on the intended inter

pretation of the theory, this function must have num

bers as its values, and so we have lost the unique names

property. But since the Skolem function is the only

departure from the unique names restriction, since the

theory still contains a set of terms that satisfies the

restriction, we can still benefit from a specialized rule

of inference that provides standard equality reasoning

when necessary, but which takes advantage of the fact

that many of the terms must have distinct denotations.

4.1 RIJE-NRF resolution

As noted above, there are a number of techniques, such

as paramodulation, for building in the standard equal

ity theories for the language of any theory. We adapt

a technique defined by Digricoli [Digricoli, 1983] [Di-

gricoli and Harrison, 1986] called RUE-NRF resolution

that is like paramodulation in building in standard

equality, but it builds in the equality theory by ex

tending unification in a way more similar to *he e"

unification strategies of Bledsoe [Bledsoe and Hines,

1980] and Morris [Morris, 1969]. ("RUE-NRF " stands

for "resolution by unification and equality" using the

"negative reflexive function".)

In RUE-NRF resolution, if terms t, t' are not uni

fied, they give rise to inequalities in the resolvent. For

example, the RUE resolvent of {p(a,/(6,c))} U A and

{-*p(X,f(X,d))}\jB is AoUBoUD where c is a sub

stitution and D is a disagreement set for p(a, f(b, c))o

and -ip(X,f(X,d))cr. For example, when cr = {X/a},

D can be either of the following two disagreement sets:

{f(b,c) ^ f(a,d)} or {6 ^ a, c ^ d}. The former is

the "topmost" disagreement set. When resolving on

equations, symmetry is captured by obtaining two RUE

resolvents. For example, the RUE resolvents of {ai =

a2}yJA and {&i ^ &2}U5 are {a: ^ &i, a2 ^ b2}\JAuB

and {a2 ^ &i, ai ^ 62} U A Ufl. A NRF resolvent is

essentially the result of RUE resolution with {X = A'},
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which removes an inequality t ^ t' from a clause and

introduces a disagreement set for t,t'. The NRF re

solvent of {/(&, c) ^ /(a, d)} U A is Aa U D where a

is empty and D = {& ^ a, c ^ d). The formal defi

nition of this intuitive approach is not difficult. Defi

nitions and proofs of the soundness and completeness

of RUE-NRF resolution (with factoring) for showing E-

unsatisfiability are presented in [Digricoli, 1983] [Di-

gricoli and Harrison, 1986]. (A nice informal account

appears in [Stickel , 1986].)

4.2 Making RDE-NRF resolution more

efficient

Among the various ways of building the standard

equality axioms into an inference rule, the advantage

of RUE-NRF resolution for present purposes is that it

clearly isolates the problems of restricting the substi

tutions a and the disagreement sets D used to define

the resolvents without losing completeness. The anal

ogous difficulties with finding restrictive and complete

paramodulation strategies show that our options are

limited. We consider restrictions on the disagreement

sets and restrictions on the substitutions, in turn.

The restrictions on disagreement sets are presented

in terms of the following notion:

Definition: A disagreement set D is viable in S

only if one of the following conditions is satisfied:

(a) D is empty, or

(b) for each term Si in each equation in D, there is a

term U in a positive equation in some clause in S

such that either s,- unifies with <,• or they have the

same principal functor and viable disagreement

sets, or

(c) there is a substitution that makes the terms of

each inequality in D identical.

Digricoli then considers restrictions on the difference

sets that are motivated by the following lemma. We

let Eq be the standard equality theory for a theory S.

Definition: An e-chain from t to t' in clausal form

theory S is a sequence of equations each of which oc

curs in some clause in 5, which is instantiated by some

substitution a,

(r0 = ri)(T, (r'j =r2)o, (r2 = r3)<7, ..., (rt_i=rt)<7

where k > 0, r0(r is t, r^a is t' and for all 0 < i < k

either r,<r is identical to r\o- or r,<7 and r,'<r have the

same principal functor and their respective arguments

can be proven equal from S U Eq.

Lemma 4.1. If t and t' are not identical and t = t'

can be proven from Su Eq, then either

(1) t = t' has the form f{ax,...,ak) = /(&i, . . . ,&*)

where for all 0 < » < k, a, = 6, can be proven from

SUEq, or

(2) there is an e-chain from t to t' in S.

Digricoli proves this lemma and uses it to justify two

important pruning strategies:

(Viability) Use only viable disagreement sets, and

when there is a choice among disagreement sets,

always choose the topmost.

(Equality Restriction) RUE resolution of A U {s\ —

s2} and B U {ti ^ <2} is permitted only if at

least one pair in {(fii,<i), <«i,<2), (*2><i), («2,<2)}

is such that its members either unify or have both

the same principal functor and a viable disagree

ment set.

It turns out that the substitutions <t that are used

in RUE-NRF resolution can be restricted to most gen

eral partial unifiers (MGPUs) with two important ex

ceptions. The MGPU is the substitution obtained

from the standard (left-to-right) most general unifier

(MGU) algorithm modified so that instead of failing at

the first nonunifiable expression, it continues to unify

as many constituents as possible. For example, {X/a}

is the MGPU of p(X, 6) and p(a,c). However, this

strategy must be qualified as follows:

(RUE subst) In computing the MGPU of <f>,-*rp in

RUE , always unify an occurrence of a variable X

and a corresponding occurrence of term t except

in the following case: this occurrence of the vari

able is the argument of a function /(..., X, .. .)

and there is a viable disagreement set of <t>, -ij)

containing /(..., X, . . .) ^ /(..., t, . . .).

(NRF subst) When applying NRF to a literal X ± I,

always unify X and t to erase this literal.

When applying NRF to a literal /(ai,...,at) ^

/(&1, . . . ,6*), always unify an occurrence of a vari

able X and a corresponding occurrence of term <

except in the following case: this occurrence of

the variable is the argument of an inner func

tion g(...,X,...) which occurs as or in some a,-

or 6,- 0 < i < k, and there is a viable disagree

ment set of /(ai, . . . ,ajt), /(6i, . . . ,6*), contain

ing g(... ,X, .. .) ^ g(...,t,...).

Let's call the result of restricting RUE-NRF resolution

in the ways Digricoli suggests restricted RUE-NRF reso

lution. Digricoli defends the conjecture that restricted

RUE-NRF resolution is a sound and complete method

for E-unsatisfiability.

4.3 SEq resolution to exploit syntactic

equality

Let Sk be a set of terms such that the ground instances

of the terms in Sk have pairwise distinct denotations.

Let Sk be the set of terms not in Sk. To cover the case

where Sk is non-empty, we modify our earlier defini

tion of SEq-satisfiability as follows.

Definition: Let the axiomatization of ihr unique

names assumption SEq(T) for the language •/ / rela

tive to the set Sk be defined to comprise tin. .-i.uidard
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equality axioms Eq for the language, pairwise inequal

ities for all the constants and function symbols in Sk,

all instances of f in which r is in S~k~, and for each

function symbol in ST an axiom saying that it is a 1-1

function.

Now, we say that T is SEq-satisfiable (relative to Sk)

iff TU SEq(T) is satisfiable.

We can immediately strengthen the previous lemma

in a potentially useful way:

Lemma 4.2. If t and t' are not identical and t = t'

can be proven from SuEq, then either t, t' are unifiable

or at least one of t, t' G Sk.

This follows directly from our definition of Sk. It also

follows that there cannot be two elements t, t' in any e-

chain that are neither unifiable nor elements of Sk. We

can accordingly strengthen condition (b) in the rele

vant notion of viability, which we will now call "strong

viability":

Definition: A disagreement set D is strongly viable

in S only if one of the following conditions is satisfied:

(a) D is empty, or

(b) no equation in D contains non-unifiable terms nei

ther of which is an element of Sk, and for each

term «,- in each equation in D, there is a term t{

in a positive equation in some clause in S such

that either «,- unifies with <,- or they have the

same principal functor and strongly viable dis

agreement sets, or

(c) there is a substitution that makes the terms of

each inequality in D identical.

We can thus strengthen Digricoli's pruning strategies

as follows:

(Strong Viability) Use only strongly viable dis

agreement sets, and when there is a choice among

disagreement sets, always choose the topmost.

(Strong Equality Restriction) RUE resolution of

A U {si = s2} and B U {tx £ t2}

is permitted only if at least one pair in

{{si,ti),(si,t2), (s2i'i)i {s2,t2)} is such that its

members (i) unify, or (ii) at least one of them is

in Sk and they have the same principal functor

and a strongly viable disagreement set.

Digricoli conjectures that restricted RUE-NRF res

olution is a sound and complete method for E-

unsatisfiability.

Theorem 4.2. If restricted RUE-NRF resolution

is a sound and complete method for E-unsatisfiability,

then so is RUE-NRF resolution with our stronger re

strictions.

This result, conditioned on Digricoli's conjecture as

it is, is trivial. We have strengthened only the two

pruning restrictions, and in each case this involves only

minor changes that are straightforwardly justified by

the definition of Sk, the definition of "strong viability,"

and our Lemma 4.2.

We have still built in only the standard axioms of

equality and not the unique names axioms SEq(5fc)

for those terms not in Sk. We cannot use (ii) when Sk

is nonempty. There are equations that allow a simi

lar treatment, though. Consider the following relation

between terms:

Definition: Terms t and t' are distinguished iff ei

ther

(a) t, t' G "Sk~ are distinct constants, or

(b) t, t' G Si: have either different functors or distin

guished arguments.

We can then use the following analog of (ii) to obtain

the effect of all of the pairwise inequalities for terms

in Sk:

(Hi) If {t = t') G C, deduce (C-{t = i'})<7 if to- and

t'tr are distinguished, for any substitution <r

This has exactly the desired effect: an equation of two

terms that are not in Sk cannot be true, and hence

can be eliminated. We can also get a more tractable

incomplete form of this rule, in analogy with (ii'):

(iii') If {t = t') G C, deduce C-{t = t'} if t and t' are

distinguished.

To cover the case where Sk is nonempty, we must

also add a rule which provides the effect of the axioms

that say that functions f £ Sk are 1-1. This is needed

because the arguments of these functions can be ele

ments of Sk about which we may need to reason using

the standard equality rules of RUE-NRF resolution. For

example, with pure syntactic equality s(sfcl) = s(sk2)

would be refuted using (ii) or (ii'), but if s is not a

Skolem function and ski and sk2 are Skolem constants

in Sk, we cannot refute s(skl) = s(sk2) using (iii) or

(iii'). In order to be able to deduce ski — sk2, the

following rule suffices - it just has the same effect as

the inclusion of the relevant axioms would:

(iv) For any clause C, deduce resolvents of C with any

instance of {f(X1,...,Xn) / /(Yi,.. . , Yn), Xx =

Y\, . . . , Xn = Yn} for any n-ary function / in Sk.

We call the strengthened version of RUE-NRF reso

lution together with (iii) and (iv) SEq resolution. SEq

resolution gives us the enormous advantage of syntac

tic equality whenever the set Sk is empty; it gives us

RUE-NRF resolution whenever Sk contains all terms;

and it gives us appropriate intermediate strategies for

the intermediate cases. We have implemented a ver

sion of SEq resolution using the incompMp rule (iii')

in a model elimination system [Loveland, 1978] [Stickel

, 1986].
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nn(s(a))

s(a)=0 s(a)=s(skl(s(a)))

(0=0) -(0=0) 0=s(a) a=skl(s(a))

-nn(skl(s(a))) nn(a)

-nn(s(a)) s(a)=0 a=0 a=s(skl(a))

- (0=0) - (0=0) 0=s(a)

Figure 1: Resolution refutation of nn(s(a))

5 Comparing resolution and SEq

resolution

Consider the problem suggested in §2. This problem is

small enough that we can consider it in detail and dis

play resolution and SEq refutations in a tree format,

making some aspects of the comparison graphically ob

vious. In our refutation trees, each literal immediately

dominates the literals in the resolvent of the resolu

tion step it is involved in, and all of the substitutions

of the proof have been made throughout the tree. The

theory NN U SEq(NN)U {nn(s(a))} is infinite, but we

can get a refutation using only the following subset of

its clausal form:

-mn(A),A = 0,A= s(skl(A))} (cl2)

->A=0,nn(A)} (cl3)

-mn(A),nn(skl(A)),A=0} (cl4)

->nn(A),->B = s(A),nn(B)} (cl5)

A = A} (c4)

->a = 0} (c5)

->a = s(A)} (c6)

-.0 = s(\4)} (c7)

s(A) = s(B), ->A=B} (c9)

->nn(A), ->A=B, nn(B)} (clO)

^A-B, ^C=A, -*D=B, C= D)(cll)

{nn(s(a))}

clause for refutation

{s(a) = 0, s(a) = s(skl(s(a)))}

using literal 1 o/(cl2)

{-A = 0, -C= A, C=s(a), s(a) = s(skl{s(a)))}

using literal 3 o/(cll)

{-C = 0, C = s(a), s(a) = s(skl(s(a)))}

using literal 1 o/(c4)

{0 = s(a), s(a) = s(skl(s(a)))}

using literal 1 o/(c4)

{.(a) = .(.*l(.(a)))}

using literal 1 o/(c7)

{a = sibl(s(a))}

using literal 1 o/(c8)

{-A=skl(s(a)), -C= A, C=a}

using literal 3 of(ell)

{-C = skl{s{a)), C = a}

using literal 1 o/(c4)

{s/kl(s(a)) = a}

using literal 1 o/(c4)

{-mn(stl(s(o))), nn(a)}

using literal 2 of(clO)

{->nn(s(a)), s(a) = 0, nn(a)}

using literal 2 o/(cl4)

{«(o) = 0, nn(a)}

using clause for refutation

{-i4 = 0, -C = A, C= s(a), nn(a)}

using literal 3 of(ell)

{-C = 0, C = s(a), nn(a)}

using literal 1 o/(c4)

{0 = «(o), nn(a)}

{nn(a)}

{a = 0, s(sJfcl(a)) = 0}

{s(skl(a)) = 0}

using literal 1 of(cA)

using literal 1 of(c7)

using literal 1 o/(cl2)

using literal I o/(c5)

{-A= 0, -C = A, C=s(skl(a))}

using literal 3 of(ell)

{-C= 0, C = s(skl(a))}

using literal 1 o/(c4)

{0 = s(skl(a))}

using literal 1 of(c4)

D

using literal 1 of(cl)

This refutation is displayed in Figure 1.

The SEq refutation of the same problem uses only

the following theory:

{^nn(A),A = 0,A = s(skl(A))}(cl2)

{->A=0,nn(A)} (cU)

{->nn(A),nn(skl(A)),A = 0} (cl4)

{-^nn(A),^B = s(A),nn(B)} (c!5)

Here is a refutation of this theory: To shorten the proof, it is convenient to ignore the
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(RUE subst) restrictions and make use of the following

instance of (cl2):4

{->nn(a),a = 0,a=s(skl(a))} (cl2a)

Here is the SEq refutation:

{nn(s(a))}

clause for refutation

{s(a) = 0, nn(skl(s(a)))}

using literal 1 of (cl4)

{nn(skl(s(a)))}

using (Hi')

{-<skl(s(a)) = a, a = s(sfcl(a)), a = 0}

using literal 1 of (cl2a)

{->s(skl(s(a))) = s(a), a = s(skl(a)), a = 0}

using (iv)

{s(a) = 0, -*nn(s(a)), a = s(sfcl(a)), a = 0}

using literal 3 of (cl2)

{-mn(s(a)), a = s(sfcl(a)), a = 0}

using (Hi')

{a = s(skl(a)), a = 0}

using clause for refutation

{a = 0}

using (Hi1)

D

using (Hi1)

This refutation is displayed in Figure 2.

Notice that only one inequality is introduced by

RUE-resolution, in the step that uses (cl2a). Also

notice that in the SEq refutation, the inequalities at

the leaves can all be refuted by the relatively efficient

but incomplete rule (hi'). The steps of the shorter

SEq resolution refutation are not less intuitive than

the steps of the previous proof - on the contrary. This

derives from the fact that syntactic equality is such

an easy idea to grasp, whereas the explicit derivation

of syntactic equality results can be tedious and messy.

The fact that the SEq refutation is shorter is nice, but

unsurprising, given that SEq resolution builds in many

axioms. The difference in proof size shown in this small

example will clearly be multiplied many times in de

ductions that involve extensive reasoning with inequal

ities. Even in a guided search, it is helpful to keep the

reasoning about equations as simple as possible, espe

cially when the number of clauses with equations is

large.5 The existence of a large set Sk obviously helps

simplify equational reasoning.

4Digricoli shows how any refutation r can be trans

formed into another refutation r' that satisfies the (RUE

subst) and (NRF subst) restrictions in §4.4 of [Digricoli,

1983]. Unfortunately, the transformation is infeasible in

general, can dramatically increase the length of the refuta

tion, and has not been shown to be effectively computable

in general. The transformation is infeasible because it in

volves finding a new refutation of a clause not refuted in

the original proof, where we know such a refutation exists

nn(s(a))

s(a)=0 nn(skl(s(a)))

(skl(s(a))=a) a=s(skl(a)) a=0

(s(a)=s(skl(s(a))))

s(a)=0 -nn(s(a))

Figure 2: SEq resolution refutation of nn(s(a))

The maxims stated in the introduction also make it

relevant to compare a problem formulated with syntac

tic equality vs. the "same" problem formulated with

out syntactic equality. It is not hard to construct such

problems. For example, we can choose to formalize an

operation with functions rather than with predicates.

Consider the sum function. If we use a sum func

tion symbol in our formalization of arithmetic, then

we will have infinitely many different terms denoting

each number:

s(0) = s(0)+0 = s(0)+0+0

If we use a sum predicate, on the other hand, we can

respect the syntactic equality restriction, with the ex

ception of necessary Skolem functions and constants.

The equations shown above then correspond roughly

to a proposition like (the universal closure of) the fol

lowing:

s(0) = X

*-* sum(s(0),0,X)

«- 3Y (sum(s(0),0,Y)Asum(Y,0,X))

Comparative studies of alternatives like these have

been done before. It is not really surprising that, even

when we do not use a proof method that builds in any

axioms as SEq resolution does, proofs using a predicate

formulation are sometimes less difficult that proofs us

ing a function formulation. For example, in their work

on group theory Bellin and Ketonen [Bellin and Keto-

nen, 1986] point out that, intuitively, a functional rep

resentation highlights "intensional features," and con

sequently many proofs are substantially simpler when

but not how long it will be.

5 We have applied these techniques to a complex theory

involving equations, as discussed in [Stabler, 1988]. The

theory considered there is a formalization of a theory of

English syntax in which Sfc contains all of the non-Skolem

constants and function symbols.
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we use the "more abstract" predicate representation.6

In theories of sequences and trees, we have a choice

about whether to formalize append as a function or

predicate, and we have found a predicate formulation

respecting syntactic equality to be the most practical

in this case [Stabler, 1988].

6 Conclusions

The thesis of this paper is not surprising. The ex

istence of a substantial, decidable set of terms whose

denotations are known to be pairwise distinct can be a

computational advantage. We have seen how this ad

vantage can be obtained very naturally in one of the

approaches that builds in equality and treats unifica

tion as a special kind of equation-solving. We extended

this approach, RUE-NRF resolution, to SEq resolution,

by building in additional axioms that depend on which

terms are known to be pairwise distinct. SEq resolu

tion prunes its search for proofs of equations by mak

ing use of available information about terms known to

have distinct denotations in the intended model.
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Abstract

In the spirit of Levesque and Brachman[l985],

we study a new class of representations made

popular in the world of reactive planning

Firby, 1987], called indexical-functionals

Agre and Chapman, 1987]. We present a

knowledge level analysis [Newell, 1982] of

some indexical terms that clarifies their logi

cal content and helps us identify the source of

their computational power. In particular, we

demonstrate that indexical terms can be for

malized in a restriction of the situation cal

culus. Indexical theories gain descriptional

as well as computational efficiency by using

terms whose referents are determined in con

text by the perceptual machinery of an agent,

and by selecting those and only those terms

that are essential for determining a course

of action for the agent. We show how in

dexical theories can be synthesized from a

situation calculus description of a planning

problem together with knowledge of the goals

of the agent. This perspective on indexical

terms provides us not only with a way of un

derstanding what their ontological underpin

nings are, but also helps us analyze the con

ditions under which they are useful.

1 Introduction

The intractability of classical planning and the need

to actively monitor plans in a complex, dynamic world

has led to the development of reactive planners that

build plans at execution time based solely on the sit

uation existing then [Firby, 1987]. Several designs for

reactive planners have been proposed in the recent lit

erature: the theory of situated automata and their

combinational circuit compilation by Rosenschein and

"This author was supported by an IBM fellowship.

'This author was supported in part by ONR Contract

N00014-81-K-0004.

Kaelbling [1986], the theory of indexical-functional as

pects in the reactive planner Pengi proposed by Chap

man and Agre, and Rod Brooks' [1987] subsumption

architecture. For the purposes of this paper we fo

cus on the indexical-functionals described by Agre and

Chapman in [1987] with a view to understanding the

assumptions about the world and the planning process

they make in order to contain the complexity of plan

ning in their framework. The results we seek are a

declarative specification of the worlds in which Pengi

style planning works and an analysis of their compu

tational and descriptional efficacy. Our results apply

equally well to the other architectures.

The impetus to perform this analysis comes from

two sources. One, the existence of the fundamen

tal tradeoff between expressiveness and efficiency in

knowledge representation [Levesque and Brachman,

1985] indicates that the computational advantage in

indexical-functional representations ought to come

from expressiveness limitations. If we can identify

them, we can determine the worlds for which they

are an epistemologically adequate formalism. Two,

we would like to design methods for compiling out

indexical-functional aspects from more expressive situ

ation calculus descriptions of the world. Presently the

designers of Pengi synthesize these aspects by hand.

Should the rules of the world change, they will have to

manually reconstruct these indexical-functionals and

the situation-action rules that use them. Specifying

modifications at the level of individual situation-action

rules (or worse circuits) is clumsy and for moderately

complex worlds almost impossible. An analysis of this

representation in terms of situation calculus allows us

to build a compiler for indexical-functional aspects and

thus to specify modifications at a reasonable level of

description.

The designers of Pengi state that "registering and

acting on indexical-function aspects is an alternative

to representing and reasoning about complex domains,

and avoids combinatorial explosions". We demon

strate that indexical-functionals can be constructed

out of the objective ontology of the world assumed by

a situation calculus representation using the processes

of indexicalization and propositionalization. Theo
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ries that contain indexical-functionals simply make dif

ferent expressiveness-computational tradeoffs as com

pared to the full situation calculus.

There are many indexical terms in English, "Me",

"You", "This", "That", "Here", "There", "Now",

"The Car Behind Me" and so on. We begin by in

troducing time indexicals into situation calculus. A

simple example of a time indexical is Now. An agent

that has its present theory of the world expressed in

terms of the logical constant Now alone, is computa

tionally simpler than one that requires expression of

statements about time points in terms of some fixed

time point other than Now. This idea is made rigorous

in Section 2. Section 2.1 introduces the axioms needed

for meaningful introduction of Now in the situation

calculus. In Section 3, we use these axioms to refor

mulate a standard first order predicate logic sentence

that assumes an objective ontology into two indexi

cal ones that use Now. One of the indexical sentences

is tuned for one-step planning, the other is tuned for

execution monitoring. The final step is propositional-

ization that leads to the construction of propositional

theories with their well-known efficiency properties.

The introduction of Now, sets the stage for introduc

ing further indexicals pertaining to space (Here and

There), and to objects ( The Block-that-is-behind-me).

However, introducing additional indexical terms, ne

cessitates making assumptions about the process of

determining their referents. This is the subject of Sec

tion 4.1. In Section 4.2 we discuss the expressive lim

itations of indexicals and present an analysis of the

time and space costs associated with using them for

monitoring and one-step planning. We conclude with

a summary of the main points of the paper in Section

5.

2 A Conceptualization with a View

To use logic one must choose a point of view. Tra

ditional situation calculus starts from a sort of god's

eye or objective point of view. This objective stance

allows one to frame eternal sentences, e.g. "Block A

is on block B at 3:13, May 3rd, 1989". "block A" and

"3:13, May 3rd, 1989" are considered as rigid designa

tors that denote the same things for all time. Eternal

sentences have the nice property that any conjunction

of eternal sentences is also an eternal sentence. If an

agent acquires true beliefs in the form of eternal sen

tences, it can always conjoin these new beliefs to its

old true beliefs without fear of contradiction.

It is also possible to develop a situation calculus

from an agent's subjective point of view. Consider

a subjective ontology. What things and relations are

central to an agent's point of view? First, the current

time seems interesting, Now must be a distinguished

thing for an agent. Tomorrow and Yesterday are im

portant, but less so than Now. The place, Here, must

be something special. If the agent is sitting at its desk

typing, the typewriter in front of it, the chair under it,

the paperback at its elbow, are all central objects. The

agent could have a theory of here-and-now couched in

symbols denoting these various elements of the ontol

ogy of here-and-now.

As a first example of an indexical theory, let us con

sider a rather narrow minded agent that makes one

distinction, and hence deals with one predicate, Rich.

Rich is true when the agent is rich, and false when

the agent is not. Suppose further that the agent owns

AI stock that was worth millions yesterday. Yester

day, the agent could have a theory containing the one

sentence Rich. Today, the stock market fell and the

stock is worth nothing; the agent can add -"Rich to

its supply of facts. The agent seems committed to the

sentence: Rich A ->Rich.

Rich must be made situation dependent. From an

agent's point of view, the current moment (not So,

the first situation) is the most interesting moment, so

we introduce a term Now which now denotes the cur

rent situation. Our agent can maintain -iRich(Now).

The agent's state of richness yesterday can be stated

today if we introduce a function Before which maps

one state to its predecessor: Rich(Bef ore(Now)) No

tice that Rich-Now is a quite useful propositional sym

bol where Rich-SO is not. The question of whether I

am rich now is always fairly relevant, while the ques

tion of being rich at some fixed time loses significance.

In what follows, we will describe how we can convert a

theory that contains a situation-dependent predicate

like Rich expressed in the full situation calculus that

allows access to arbitrary situations, into an indexical

one that allows reference only to the current situation

and its predecessors via the Before function.

Two obstacles prevent the use of Now and Before

and their corresponding symbols Now and Before in

standard situation calculus: first, Before is not de

finable in standard situation calculus as there is no

unique predecessor of a situation; second, it seems

that an agent's theory becomes highly non-monotonic

across time. Rich(Now) was in the theory yesterday,

and it is not today. The first obstacle is overcome

by adding appropriate axioms for situations and Be

fore. The second obstacle is stepped around by accept

ing the idea of having a different, current, theory for

each new situation in time, and considering the issue

of transforming one theory of here-and-now at tj to

another theory of here-and-now at £2-

2.1 The Reformulated Situation Calculus

The need to provide more axioms for the situation cal

culus arises because Before is not explicitly definable

in the standard situation calculus. To see that Before

is not definable consider a world containing a compass

C and four directions in which the compass' needle can

point: TV, E, S and W . The two actions in this world,

Clockwise, and Anti-Clockwise, turn the compass. One



Making Situation Calculus Indexical 469

model of this world has four situations, one for each

direction the needle of the compass can point to.

51 = C(N), 52 - C{E), 53 = C(S), 54 = C{W)

If Before were definable, Before(S2) would have to

be either 51 or 53. But Do(Clockwise, 52) = 51

and Do( Anti-Clockwise, 53) = 51. Clearly there can

be no function defined on these four situations which

picks out the previous situation.

The following axioms restrict the models of situation

calculus to those in which there is a unique previous

situation. The variables al and a2 range over actions,

and si and s2 range over situations.

Intuitively, we would like to define a function

Before which maps a situation into its predecessor,

just as the function "the day before" maps today into

yesterday. This intuition is captured by the following

definition for a relation:

(.4). {(x,y) |3aDo(a,x) = y}

However for many models of situation calculus, this

formula is not functional. The definition becomes

functional if Do satisfies the following sentence.

(B). Vy 3axDo(a, x) = y

=> (Vz Do(a, z) = y => x = z)

After restricting Do in this way, Before is still not de

fined by (.4) for situations which are not in the range of

Do. We choose to introduce an axiom relating Before

and Do which entails (B) and forces Before to agree

with (A):

(ISC1). Va s Before(Do(a,s)) = s

As in our everyday world, given this axiom, each situa

tion has a unique predecessor. However, there may be

several distinct actions which take one situation to the

same successor. Although not necessary for the con

struction, in accord with common intuition, we provide

an axiom which forces situations with distinct histories

to be distinct:

(75C2). Val a2 s al ^ a2

=> Do(al, s) ^ Do(a2, s) optional

Later when we discuss transforming one theory of here-

and-now to the next theory of here-and-now, we will

require that every situation be before some situation,

(that Before be onto) for a soundness condition to

hold:

(75C3). Vsl 3s2 Bef ore(s2) = si

To give an intuition as to what sort of structures these

axioms define, we describe their models as labeled di

rected graphs in which situations are nodes and actions

are labels. Considering the case where there is more

than one situation and more than one action, a model

consists of a set of components as shown in Figure 1.

Notice in this model, components have back arcs. Al

though having back arcs is not inconsistent, we choose

to introduce (75C4) in order to force at least one com

ponent to be acyclic.

(75C4). -i3a s Do(a, s) = SO optional

 

Figure 1: One Model of 75C1 - 75C3

It picks out an initial situation for a set of standard

points, just as 0 picks out an initial element in the

standard points of Peano arithmetic.

Given the notion that a situation has a predecessor,

the identity of the action resulting in a situation be

comes an object of interest1. (J5C5) is a definition of

an additional relation Action-that-generated in terms

of Do.

(75C5). Va si Action-that-generated(sl, a)

<=> 3s2 Do(a, s2) = si definition

Action-that-generated(S, A) is true if performing A

in some situation would result in 5.

A useful consequence of these axioms and definitions

is:

(75C6).

Va s Action-that-generated(s, a) <^=>

Do(a,Before(s)) = s [ISC1,ISC5]

2.1.1 Models

To clarify the content of these axioms, we review

the structures they define. Again, the structures are

described as directed, labeled graphs.

If there is exactly one action, models consist of a set

containing one or more component. Components are

either cycles or infinite chains.

If there are k actions where k > 1 the models differ

depending on which optional axioms are included. If

(75C2) and (75C4) are included, models consist of the

standard component, an infinite fc-ary tree rooted at

50, and zero or more non-standard components which

are fc-ary, possibly defective, trees. A non-standard

component can be defective in the sense that it may

include a back arc. Figure 2 depicts such a model

where k is 3 and there is one defective component.

If (75C2) is not included, models may have multiple

arcs connecting the same pair of nodes in the same

'If (ISC2) is omitted, the identities of the actions which

could have resulted in a situation are objects of interest.
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Figure 2: One Model of /SCI - ISC5

direction. If (ISC4) is not included, some models may

have no cycle free component.

All of these are models that have at most one pre

decessor for each situation, and thus allow the incor

poration of Before.

2.2 Transforming Theories

At each situation an agent is best served by having the

best theory for that situation. In some environments

the best theory for a situation is a theory couched in

the subjective terms denoting the objects present to

the agent in that situation. Each new situation will

have a different theory. The theory of one situation is

not, in general, a subset of the theory of the succeeding

situation. We need a method for generating the cur

rent theory in terms of the current subjective ontology

that describes the preceding situation. For now, only

the term Now changes its reference from situation to

situation We define a translation which, given a the

ory of the previous situation, produces a theory that

is true in the current situation. The translation maps

the term Now in the first theory to a term which des

ignates the same thing in the second theory. Since

Before(Now) now designates the situation which Now

designated in the previous situation, the translation x

maps Now to Before (Now), and all other parameters to

themselves. To generate the theory of a new situation

from the theory of the previous situation one applies

the syntactic translation corresponding to if, replac

ing all occurrences of Now by Before(Now). Figure 3

illustrates this idea.

This transformation has the desirable property that

it is truth preserving.

Lemma 1 Given a set of sentences T , and letting ip

denote the sentence Vsl 3s2 si = Bef ore(s2) (axiom

(JSC2) from above),

and it denote [Now —» Bef ore(Now)], (the replacement

o/Before(Now) for Nowj,

for any sentence (f>:

Tu-f>}M

Rich(Now)

 

-Rich(Now)

Now Now

Figure 3: Transforming Theories of the Past

if and only if

*(T) u {^} N x(*)

This simply says that if Before is onto, any sentence

4> is a logical consequence of a theory T if and only

if the result of replacing all occurrences of Now in 4>

by Before(Now) is a logical consequence of the theory

generated by replacing all occurrences of Now in T by

Before(Now), that is the transformation preserves the

consequences of a theory modulo the shift in designa

tion for Now.

Notice that some sentences may be ones in which

the term Now has been substituted for a universally

quantified situation variable. For such sentences it is

neither necessary nor useful to apply the transforma

tion. The same sentence about Now will be useful in

all situations.

3 Reformulations

Now that we have the apparatus for talking about Now

and Before, we consider formulations which are partic

ularly well suited for one-step planning and plan mon

itoring. In both cases we start with a blocks world

axiom from [Genesereth and Nilsson, 1987]:

Vsxy T(0n(x,y),s) A T(Clear(x), s)

=>T(Clear(y),Do(rj(x,y),t)) (1)

3.1 One-step Planning

For one-step planning, we also need some notion of the

relation between goals and what an agent ought to do

now. We introduce an axiom of rationality.

(JSC7). Va p s T(p, Do(a, Now)) A Goal(p, Now)

A-iT(p, Now) => Must(Now) = a

Which just says that if doing a would result in p, if

one has the goal p, and if p doesn't hold now then one

must do a.
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In one step planning the Goal and properties of Now

are the relevant aspects of the situation, and so the

axiom should be reformulated in those terms.

Resolving (ISC7) and (1), so that we are talking

about goals,

Vx y T(0n(x, y), Now) A T(Clear(x), Now)

A -.T(Clear(y), Now) A Goal(Clear(y), Now)

=> Must(Now) = U(x, y) (2)

Introducing the time indexkal Now has proposition-

alized the situation component of the planning axiom.

We can carry this one step further, by instantiating

the variables x and y with particular blocks.

T(0n(A,B),Now) A T(Clear(A), Now) (3)

A -.T(Clear(B), Now) A Goal(Clear(B), Now)

:=> Must(Now) = U(A,B)

And finally introducing propositional symbols to

make the sentence propositional,

On-A-B A Clear-A

A -iClear-B A Goal-Clear-B

=> Must-U-A-B (4)

Formula (4) is good for one-step planning because

determining the truth value of a set of literals about

Now determines what the agent must do.

3.2 Plan Monitoring

In plan monitoring, the agent considers what was true

in the previous situation, what action was taken, and

what should be true now. Thus the relevant temporal

terms are Now, and Before(Now).

Again we start with the blocks world axiom (1):

Vs x y T(0n(x,y),s) A T(Clear(x), s)

^T(Clear(y),Do(U(x,y),s))

Universally instantiating Bef ore(s) for s:

Vsxy T(On(x,y),Before(s)) (5)

A T(Clear(x),Bef ore(s))

=> T(Clear(y), Do(U(x, y), Before(s)))

Applying (7SC6):

Vsxy T(On(x,y),Before(s))

A T(Clear(x), Bef ore(s))

A Action-that-generated(s, U(x, y))

=> T(Clear(y), s) (6)

Universally instantiating Now for s:

Vx y T(On(x,y),Before(Now))

A T(Clear(x),Bef ore(Now))

A Action-that-generated(Now, U(x, y))

=>T(Clear(y),Now) (7)

Simplifying once, by choosing particular blocks,

T(On(A,B),Before(Now))

A T(Clear(A), Before(Now))

A Action-that-generated(Now, U(A, B))

=> T(Clear(B),Now) (8)

Simplifying again by introducing new propositional

symbols:

On-A-B-Before-Now A Clear-A-Before-Now

A Action-that-generated-Is-U-A-B

=> Clear-B-Now (9)

Formula (9) is good for monitoring plan execution,

since it determines what ought to be the case now in

terms of what was true before.

4 Analysis

4.1 Reference

The introduction of indexicals raises the issue of how

a term refers to an object in the world. According to

traditional Tarskian semantics On(A, B) is true if and

only if A (the block designated by A) is On (the relation

designated by On) B (the block designated by B). This

is fair and good since A, B, and On are considered to

be rigid designators that always pick out the blocks A

and B, and the relation On.

Another kind of denoting expression, the definite

description, has been in disfavor for most of this cen

tury. An example of a definite description in English

is "The mugger behind the door". A direct transla

tion into logic using the similarly unpopular variable

binding operator i is 6m Mugger(m) A Behind(m, Door).

It is easy to see why this form of definite description is

annoying. Suppose we define a new constant symbol

M to stand for the mugger mentioned above. We can

reason as follows: either M is fat or M is not fat. If M is

fat then he can take my money because of his weight

advantage. If M is not fat then he can take my money

by fighting skill. Therefore I'd better run. But this

conclusion is silly since there is no mugger behind the

door.

Russell[l905] argued that this kind of expression

should be translated into logic only in the form of a

proposition such as "the mugger behind the door is

fat" or

3m Mugger(m) A Behind(m, Door)

A (Vn Mugger(n) A Behind! n. Door)

=> m = n) => Fat(m)

Unfortunately, agents cannot subsist on rigid des

ignators and suitably guarded definite descriptions.

Consider an agent that must determine whether

Must(Now) = U(A,B) holds using formula (3):

T(On(A, B), Now) A T(Clear(A), Now)

A -T(Clear(B), Now) A Goal(Clear(B), Now)

=> Must(Now) = U(A,B)
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Presumably the agent has Clear(B) as a goal, so

the fourth literal can be eliminated. It must now look

out into the cruel world. Suppose its builders have

been benevolent and written large A's and B's on each

face of each block. Then as long as the agent can see

one block with A written on it and one block with B

written on it, it can determine the truth of the first two

literals, and can tell what it must do. But suppose the

writing on one block is illegible, there are two blocks

with A's on them, there are no blocks with A's on

them, or there is a block with both A and B on it...

The point is that for an agent in the world there are

no sure-fire rigid designators.

We could follow Russell's suggestion and introduce

,4 and B as unary relations, producing the following:

Bab A(a) A (Val A(al) => a = al) (10)

A B(b) A (Vbl B(bl) => b = bl)

=> (T(0n(a, b), Now) A T(Clear(a), Now)

A -VT(Clear(b),Now) A Goal(Clear(b), Now)

=> Must(Now) = U(a,b))

But who is fooling whom? How is our poor agent

supposed to act on this sentence?

When formulating theories for agents in the world,

we must accept the problems of failed and multiple

reference. Thus A will designate the block that the

agent takes to be A. But once we have accepted non-

rigid designators and rejected Russell's definite de

scriptions, we can easily admit such terms as "the-

bee-that-is-chasing-me", or more formally Lb Bee(b) A

Chasing-me(b).

Notice that there is still major complexity in

"perception". To determine if Red(tb Bee(b) A

Chasing-me(b)), the agent's perception must work out

which is the bee that is chasing me and what its color

is.

4.2 Expressiveness and Computational

Efficiency

The class of theories in the situation calculus that we

can transform to the indexical form is restricted by the

requirement that the theory be consistent with ISC1-

ISC4.. This restriction rules out theories that fix the

number of situations or that make two situations with

distinct histories equivalent.

Claim 1 A theory T can be indexicalized if Tu

{ISCl-ISCj} is consistent.

Sections 3.1 and 3.2 use the axioms of the index

ical situation calculus to generate propositional the

ories that are suited for plan monitoring and 1-step

planning respectively from a theory in the situation

calculus. The previous theorem establishes the class

of theories for which this conversion is possible. We

now show that the compilation methods we use are

sound.

Let / be a transformation performed on a theory T

in the situation calculus that obeys the limitation in

Claim 1. / is sound if

Soundness. TUISC1-ISC6 (= I(T)

We further require that the theory I(T) be proposi

tional, because we wish to gain the computational ad

vantages that reasoning within the propositional frag

ment of logic gives us.

Claim 2 The transformations in Sections 3.1 and 3.2

are sound.

Proof: Follows from the fact that the transformation

/ in both cases is deduction. □

We examine the computational consequences of index-

icalization and propositionalization. First we consider

space requirements. To propositionalize a theory T in

clausal form in a typed logic, one must augment the

language until there are object constants for each ob

ject in each type. The resulting theory T is the set of

all ground instances of all clauses in the original the

ory. The cardinality of this set of clauses is expressed

by the following formula.

IT' =z n \type(v)\

cgT v^Variablcs(c)

Considering one type, V, a clause replicates exponen

tially in the number of variables occurring in it.

I-T-'I _ V~^ i~j,\V(iriablcs(c)\

Even a theory with one clause containing one literal

with one situation variable in propositional form would

contain infinitely many clauses.

Here is where the power of the indexical approach

lies. If the agent can do all its reasoning with a few-

situation terms such as Mow and Bef ore(Now), and a

few world terms This-Block and That-Block, this ex

plosion may not be significant. Essentially we reduce

the size of the theory to

P"| = £ J] l*WPe(»)l

where type(u) = 1 (Now) when v is a situation variable

and type(i;) = n (the number of propositional object

referents, like the-bee-that-is-chasing-me) when v

is an object variable.

Claim 3 Indezicalization is a win in terms of space

only if the number of situation referents and object ref

erents (indexical-functional aspects) is much smaller

than the total number of situations and objects de

scribed in the theory T in the situation calculus.

Suppose we have a theory of cars in the United

States expressed in situation calculus. The straightfor

ward propositionalization of this theory would result
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in another theory whose size is proportional to 200 mil

lion (number of cars in the United States). This theory

allows us to name every car. If however, we restricted

our attention to cars of interest to the agent: The-car-

behind-me, The-car-passing-me etc., we would have a

propositional theory whose size is proportional to the

number of such referents. The power of using these

indexical terms is that it gives us implicit quantifica

tion: the actual referent of the The-car-behind-me is

determined by the perceptual machinery of the agent.

These indexical terms allow access to that part of the

immense propositional theory that is actually needed

by the agent.

If the size of the theory does not explode severely

(which can be ensured by limiting the number of index

ical terms), indexing becomes much more straightfor

ward and efficient. The introduction of propositional

constants for objects and situations ensures that uni

fication can be done in constant time.

Claim 4 The worst case time complexity of reasoning

in the indexicalized theory is exponential in the size of

that theory.

However, a really significant performance improve

ment can be achieved by transforming the propo

sitional theory into a set of equations. This can

be done if the propositional theory can be "direc-

tionalized". We first subdivide the literals in the

theory into the perceptions or the givens (examples

are On-A-B-Before-Now and On-A-B-Now) and the

actions or the conclusions (e.g. Clear-B-Now and

Must-Unstack-A-B). To facilitate the directionaliza-

tion of the reasoning chains in this theory from per

ceptions to actions, we will assume that the conclu

sion literals occur in unnegated form.2 Now, for each

conclusion, we collect all minimal conjunctions of the

givens which imply it, disjoin the set of conjunctions,

and construct a definition of the form Conclusion =

Disjunction of Conjunctions.

Claim 5 The worst case complexity of concluding the

truth of the action literals in the directionalized theory

constructed above is linear in their number.

Proof: Since the truth assignments to the givens

can be determined in constant time by the perceptual

equipment, the complexity of concluding each action

literal in the constructed theory is also a constant. If

there are n action literals, we need O(rc) time to de

termine their truths.

The definitions for the action literals can be straight

forwardly compiled into combinational circuits (AND

gates for conjunctions and OR gates for disjunctions),

then the time complexity for concluding all the action

literals goes to O(l).

This is to avoid problems that arise from negation as

failure.

Claim 6 By compiling the definitions of the action

literals into combinational circuits, we can determine

their truths in constant time.

Note that the two results above depend on the fact

that perception can be done in constant time. This is

actually an assumption that Pengi makes.

Another interesting property of indexicalized theo

ries is that they allow simple descriptions of current

situations. The description of the current situation is

Now in the propositional indexical theory and Do (an

(Do(.... (Do(al, s0))))) in the original theory

expressed in situation calculus (sO is the initial sit

uation). Situations in the past can be accessed by the

Before function in the indexical theory, so that situa

tions far back in the past are rather clumsy to express;

their length is linear in their distance from Now. In the

first-order theory expressed in situation calculus, the

length of a term describing a situation is linear in its

distance from the initial situation sO.

5 Conclusions

This paper provides a principled account of several

forms of indexicality. The introduction of Now is a nec

essary condition for introducing other indexical terms

non-rigidly referring to objects. We present a method

for generating indexical theories from a domain de

scription in situation calculus. Determining the truth

of literals involving indexicals requires that perception

be able to determine their referents. Indexical theories

can be made into propositional ones with good com

putational properties. This benefit comes at the cost

of losing the ability to rigidly refer to arbitrary objects

and situations.

We have shown that indexical-functionals can be ex

plained in terms of a well understood formalism: the

situation calculus. In so doing we have exposed some

of the expressiveness and efficiency trade-offs resulting

from using them.
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Abstract

The use of abstraction in planning is explored

in order to simplify the reasoning task of an

automated agent. An extension of inheri

tance (ISA) hierarchies from object classes to

arbitrary object relations and to the actions

of an agent serves to partition a planning

system into distinct levels. The problem of

maintaining the truth values of assertions at

different levels of representation is addressed

by stating the precise relationship between

the different levels. This gives rise to the fol

lowing correspondence between solutions: for

each abstract solution, there exist isomorphic

specializations at each lower level. Thus, the

presence of abstract solutions strongly con

strains the size of the original search space.

1 Introduction

In order to bring about desired states of the world,

agents must compose actions in a purposeful fashion

over a sustained duration of time. In artificial intel

ligence, the traditional view of planning is as a men

tal model of activity, where the agent's actions are

represented as operations upon data structures that

encode world state. Agents can thus search through

representations of world states for those that satisfy

their goals, rather than the costlier operation of search

ing within the real world itself. Unfortunately, these

mental search spaces typically grow as an exponent of

plan length. To combat this problem, researchers in

planning have attempted to encode problems at dif

ferent levels of abstraction [Alterman, 1987, Kautz,

1987, Knoblock, 1988, Nau, 1987, Sacerdoti, 1974,

Yang and Nau, 1988] Few such researchers have dealt

effectively with the resulting problems of constructing

'This work was supported in part by the Air Force Sys

tems Command, Rome Air Development Center, Griffiss

Air Force Base, New York 13441-5700, and the Air Force

Office of Scientific Research, Boiling AFB, DC 20332 under

Contract Number F30602-85-C-0008 which supports the

Northeast Artificial Intelligence Consortium (NAIC).

and maintaining several coherent views of the world,

and of specifying the relationship between these dif

ferent views. This is especially difficult given that

planning systems manage propositions whose truth

values change over time. This paper summarizes re

search which formalizes one particular type of abstrac

tion, and explores some of the properties and conse

quences of its use. The abstraction is a generaliza

tion of inheritance (ISA) hierarchies [Brachman, 1979,

Hendrix, 1979]. The novelty of this approach emerges

from two main sources: 1) the use of inheritance or

thogonally throughout a planning system, from in

heritance of object types, to relations between object

types, to actions that effect object types; 2) the pre

cise specification of the relation between levels, which

entails the relation holding between solutions derived

at these different levels.

Abstract representations typically differ from lower

level representations by distinguishing between those

aspects of a domain which can be considered de

tails, and those of primary importance. In the de

scribed research, the grouping of object classes into

superclasses is used as the basis for making this dis

tinction. An abstract class is characterized by the

features common to all of its members; details are

taken to be those features that distinguish one sub

class from another. For example, Bottles and Cups

can be considered abstractly as Containers. Com

mon features include the ability of both to hold

liquid and to be poured from; distinguishing fea

tures include that Bottles have narrow necks and

Cups have wide mouths. Object classes are used

as the basis for an inheritance structuring on rela

tions between objects, and actions applied to objects.

Therefore, abstract actions effect relations between

elements of abstract object classes. For example,

one might abstract the predicate InBottle(WineX,

BottleY) to InContainer(LiquidX, ContainerY),

and abstract the operator pourBottle(BottleY) to

pourContainer(ContainerY). Abstract plans are

specialized by choosing, for each abstract step, a con

crete step that achieves the desired effect over a smaller

class of objects.
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Graspable
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Cup Bottle !
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Figure 1: Inheritance Hierarchy

2 Abstracting First-Order Theories

2.1 Predicate Mappings

An extended STRIPS-style language [Fikes and Nils-

son, 1971] is used as the base representation. Actions

are viewed as operations on sets of sentences denoting

world states. Before considering the abstraction of ac

tions, the abstraction of these world states will first be

explored. All theorems are stated without proof; such

proofs can be found in [Tenenberg, 1988].

Figure 1 shows a fragment of a standard ISA-

hierarchy (ignoring for the moment the dotted box).

The nodes denote sets of objects, and the arcs denote

the subset relation. This relation gives rise to inher

itance, for if some property P is true of all elements

of a set named by node Q, then by definition, P will

be true of all elements of each descendant of Q. For

example, anything true of all Containers is true of all

Bottles.

In the described research, the specification of which

object classes are grouped together (e.g., Bottles and

Cups) is made meta-linguistically by using a predicate-

mapping function which renames predicates between

a concrete and an abstract level first-order language.

Placing this function at the meta-level rather than em

bedding it implicitly at the object level allows compar

ison between different abstract class/subclass choices.

No claims are made that, for instance, Bottles are

an inherently concrete level concept, and Containers

are inherently abstract, merely that they are concrete

and abstract with respect to one another. As pictured

in Figure 1, inheritance hierarchies can contain sev

eral levels. The formalism that will be provided fo

cuses on only two levels (termed the concrete and ab

stract), such as that in the dotted box, but is trivially

extendible to arbitrary levels, as will subsequently be

seen.

Formally, predicate mappings are functions that

map predicate symbols from one first-order language

to another. Given two sets of predicate symbols R and

R' , / : R i—► R' is a predicate mapping, where / is

not necessarily 1 — 1. This is extended to a mapping

between two first-order languages, / : L °2-> V , where

the predicates are the only symbols that possibly dis

tinguish L and V , and all non-predicate symbols map

to themselves under /. Two or more concrete predi

cates mapping to the same abstract predicate will be

called analogues. We interpret /_1(t/>) in the obvious

way - as the set of concrete symbols that maps to xp

under /.

2.2 Model Abstraction

Consider the formal semantic models for two

languages1, L and f(L) = L' . Bearing in mind our

intuitive notion of inheritance, when might we want

to say that a model M! for V is an abstraction of a

model M for LI

A reasonable definition is when both models have

the same objects in their universes, the interpreta

tions assigned to the non-predicate symbols are identi

cal, and all tuples of the interpretation of an abstract

predicate P' in M' are exactly those tuples of the in

terpretation of all predicates P in M that map to P'

under /. This is stated formally as follows.

Definition 1 Let M = {U, G) and M' = ([/', G') be

models of languages L and U respectively, (where U

is the universe and G the interpretation function) and

f : L i—* L' be a predicate mapping function. M' is

the abstract model of M through / (that is, M' is

AMj(M)) if and only if by definition

1. U' = U,

2. G'(V') = G(tl>'),

for all non-predicate symbols ip' € L' , and

3. G'(R') = \jRef-i(R')G(R)>

for all symbols R' 6 Predj,*.

Note that neither exceptions nor inductions are cap

tured by the abstraction/specialization relationship

between models. If Cup maps through / to Container,

then it is required, without exception, that every Cup

is a Container in the corresponding models. In addi

tion, each object taken to be a Container must be an

element of the extension of a predicate that maps to

Container (in the corresponding models). No induc

tions are made that allow objects to be Containers

that were not one of the known specializations of

Container.

2.3 Theory Abstraction

The predicate mapping on languages is extended to a

mapping on sets of sentences in these languages (which

'The symbol Predi. will be used to denote the predicate

symbols of language L.
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f(S):

Bottle(x) D Graspable(x)

Cup(x) D Graspable(x)

Bottle(x) D MadeOfGlass(x)

Cup(x) D MadeOiCeramic(x)

Bottle(A) VCup(A)

-iBottle(B)

-•Cup(B)

i(Bottle) = f (Cup) = Container,

f (Graspable) = Graspable,

f (MadeOiGlass) = Breakable

f (MadeOfCeramic) = Breakable

Container(x) D Graspable(x)

Container(x) D Breakable(x)

Container(A)

-iContainer(B)

Figure 2: Predicate Mapping of Clause Set

will be taken to be in clause form2 [Robinson, 1965])

in the obvious way. Intuitively, this amounts to rewrit

ing the original expression and replacing all predicate

symbols by their image under /. By definition, we

take /(O) = D, for every abstraction mapping /. An

example of a clause set rewritten under a predicate

mapping function is provided in Figure 2. Note that

Predi, Pred'L need not be disjoint.

Having considered the abstraction relation between

models, we can similarly consider the abstraction rela

tion between axiomitizations. Given languages L and

f(L) = V , when do want to consider a clause set 5' in

L' to be an abstraction of a clause set S in LP. When

models for the respective clause sets are in the previ

ously defined abstraction relationship:

Definition 2 Let S and S' be sets of clauses in L

and L' , respectively, and let f : L i—► L' be a predicate

mapping function. S' is an abstract clause set of S

through / (thai is, S' is ACS/ of S) if and only if for

every model M that satisfies S, AMj(M) satisfies S' .

A view of this is provided in Figure 3.

One might reasonably inquire, for a given abstrac

tion mapping / and clause set S, if there exists an S'

which is an abstract clause set of S through /? This

question is answered affirmatively in the following sec

tion, where not only is such an S' shown to exist, but

a constructive definition of the strongest such S' is

provided.

2 For simplicity, we will take clauses to be disjunctions of

distinct literals. That is, no literal will appear more than

once in any clause.

 

models

 

Abstract

AMf ACS

 

models
M I *■

 

Concrete

Semantic

Models

Clause

Sets

Figure 3: Relationship of ACS/ to AM/

2.4 Theory Mappings

Suppose we have an axiomitization in the concrete lan

guage that encodes our knowledge about the objects

and relations in the world. In addition, we also have

a predicate mapping function that indicates the cate

gories of objects and relations that we consider anal

ogous. We would like to construct a weaker axiomiti

zation in the abstract language such that

1. it is faithful to the original axiomitization, in that

no statements true in the abstract theory would

be falsified at the concrete level,

2. it contains no contradictions, assuming that the

concrete axiomitization is consistent,

3. it includes abstract assertions that hold of all spe

cializations,

4. it preserves the abstract model property between

the abstract and concrete theories with respect to

the predicate mapping, as defined above.

Note that / itself does not satisfy this criteria, since

it results in too many clauses at the abstract level,

which can result in inconsistency:

Bottle(A),iCup(A) >-../

Container(A), -iContainer(A).

Definition 4, however, satisfies this criteria. In

tuitively, the abstract level never includes axioms

whose specializations distinguish between the anal

ogous predicates. Before presenting this definition,

provability (h) must first be defined.

Definition 3 A (refutation) proof of C from clause

set S is a directed binary tree T = (V, E), where □
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In lie Is the root, leaf nodes are labeled either by elements

of S or by ->C in clause form, and there is an edge

(v,w) £ V if and only if the label of v is the resolvent

under full resolution [Robinson, 1965] from the label of

w and some other clause. If there exists a refutation

proof of C from S, then C is provable from S, denoted

Sr-C.

Note that under this definition, S h C if and only if

S ^ C, since full resolution is a sound and refutation

complete inference rule. In addition, the same clause

can label more than one node of the graph. In par

ticular, this will occur if the clause is used more than

once in a proof.

In the following, for any clause C, \C\ denotes the

number of literals in C, neg(C) denotes the disjunction

of the negative literals of C (or □ if there are none),

and pos(C) denotes the disjunction of the positive lit

erals of C (or □ if there are none).

Definition 4 (Abs Clause Mapping)

Absy(S) = {C'\

for every N £ /-1(neg(C")) having

|neg(C")| distinct literals,

there exists P £ /-1(pos(C")) such that

5 h NVP.}

In the degenerate case where C has no negative lit

erals, the membership condition for C" is not trivially

satisfied. Rather, neg{C') is defined as □, and by def

inition /-1(D) = □. Therefore, if C has no negative

literals then there exists a unique N £ /-1(D) having

no literals, namely D itself, and it is required that there

exist a P £ f~y{pos(C')) such that ShOVR Put

simply, if C" has no negative literals, there must exist

a P £ /-1(pos(C")) such that 5 h P. For example,

Bottle(A) VCup(A) >-+j Container(A).

The case where there are no positive literals in C is

similar; for every N € f~1(neg(C')) having |ne^(C)|

literals, it must be that S \- N. For example,

-iBottle(B),-iCup(B) •->•/ -iContainer(B).

If C" has neither negative nor positive literals, that is,

C — □, then S r- □. Therefore, if 5 is inconsistent, so

is Absj (S). An example of a clause set mapping under

Absj is the deductive closure of /(5) from the simple

example of Figure 2.

The following theorems and corollaries all hold,

proofs of which can be found in [Tenenberg, 1988].

Theorem 1 S' is ACS/ of S if and only if S' C

Absy(S).

Corollary 2 If S' C Abs/(5) then S' is inconsistent

only if S is inconsistent.

Corollary 3 If Absj(S) is consistent then S is con

sistent.

Corollary 4 DC(Absy(5)) = Abs/(5), where DC

denotes deductive closure.

Corollary 5 Abs/(S) is finite if and only if S is the

empty clause set.

Corollary 6 There is no effective procedure for con

structing Absy(5), for arbitrary S and f.

Since every theory S' which is an abstract clause set

of S must be a subset of Absj(S), Theorem 1 states

that Absj is as strong as possible. That is, one could

not augment Absj(S) by adding non-theorems, such

that the resulting clause set is ACS/ of S. As a con

sequence, however, Absj is not practical to use, due

to the infinite size of the abstract clause sets3 and the

non-existence of an effective procedure for computing

it. However, by Theorem 1, since each subset of Absj

is also ACS/ of 5, one can consider subsets of Absj that

do not have its computational problems but that sat

isfy the principles given at the beginning of Section 2.4.

We demonstrate one such subset below, which addi

tionally has a useful proof-theoretic property.

Definition 5 (MembAbs Clause Mapping)

MembAbs/(S) = {C*'|

for every N € /_1(neg(C")) having

|neg(C")| distinct literals,

there exists P £ /_1(pos(C")) such that

NVP€S}

The only difference between MembAbsj and Absj

is that specialized clauses must be elements of the

original clause set in MembAbsj , whereas they can be

derivable from the original clause set in Absj. This

results in the following Lemma:

Lemma 7

If S is a set of atoms, then MembAbs/(S) = f(S).

MembAbsj is computable in the worst case in time

quadratic in the size of S, and by Lemma 7, linear in

the best case. Note that Corollaries 3, 4, 5, and 6 are

not true of MembAbsj .

In addition to the model-theoretic properties asso

ciated with MembAbsj stated above, there is the fol

lowing important proof-theoretic property. The case

where the original clause set, S, is Horn4 will be stated

since it will be required in Section 4, with the more

general case of unrestricted clause sets provided in

[Tenenberg, 1988].

Theorem 8 Let S be a Horn clause set in language

L, f : L *-* L' be a predicate mapping and G' be an

atom in V'. IfT' is a proof of G' from MembAbs/(S),

then there exists a proofT of G from S such that T is

isomorphic to T', and f is a renaming of labels between

the nodes in T and their isomorphic images in T*.

Although it is my (as yet unproven) belief that for

finite 5, there exists finite S' having the same deductive

closure as Absj(S).

4 A Horn clause is a clause in which at most one literal

is unnegated. A Horn clause set is a clause set in which

each clause is Horn.
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This theorem demonstrates that finding an abstract

solution (proof) provides a strong constraint on find

ing a solution to the original problem, since the only

concrete level proofs that need to be pursued are those

that exhibit the isomorphism. That is, given an ab

stract proof, the concrete level search space has been

reduced from the set of all proofs to the set of isomor

phisms of T'.

3 STRIPS

Thus far, abstraction mappings have been explored

with respect to first-order theories. This will be ex

tended to planning systems using a formalization of

the Strips language, which represents actions as oper

ations on first-order knowledge bases. STRIPS has been

used extensively in planning systems [Chapman, 1985,

Sacerdoti, 1977, Waldinger, 1977, Wilkins, 1983]. One

of the few attempts at a rigorous formalization is pro

vided by [Lifschitz, 1986], from which much of the

formalization to be presented has been adapted5 Al

though most planning researchers are conversant in

Strips, I provide a detailed description, since there

are several variants described in the literature, with

some non-trivial differences between them, and be

cause a crisp formalization allows for a precise state

ment of the main definitions and theorems. For those

familiar with STRIPS, the balance of this section can

be skipped, but the following aspects of my definition

should be noted:

1. the inferring of secondary effects is permitted

through the use of a set of static axioms, which are

elements of each world representation (situation),

and hence never deleted,

2. there is a suitable description of the set of initial

situations that characterize the problem space,

3. all elements of the precondition, add, and delete

lists are atomic.

In the original system [Fikes and Nilsson, 1971],

Strips is both a planning language and a stack-based

control structure for searching the plan space. In the

following, all references to Strips refer only to the

language component. In Strips, the world is viewed

as being in a particular state at each moment, and

only through the actions of the agent can the world

change state. The state of the world is represented by

5The main differences are that I have extended Lifs-

chitz's formalization in 3 significant ways. First, I consider

a STRIPS system as defining an entire problem space, not

just a single problem instance. Second, I provide a more

specific semantics in [Tenenberg, 1988] that associates a

set of models with each situation, which provides an inter

pretation of all of symbols of the logic, not just the truth

values of the sentences. And third, I provide a syntactic

condition that is necessary and sufficient for the existence

of a Strips-model for a given Strips system.

a set of sentences in a first-order language, which will

be called a situation, and the actions of the agent are

represented by operators. Associated with each oper

ator is a set of preconditions specifying the conditions

that must be satisfied by a situation in order for the

operator to apply. The effects of each operator are

represented by the deletion and addition of sentences

to the situations in which they apply. STRIPS can thus

be viewed as a knowledge base (KB) manager, where

the effects of an action are realized as operations on

the KB. In particular, suppose one has situation So

and action o, with the associated sentences A0 to be

added, and D0 to be deleted. The new situation re

sulting from applying o to So is (So\D0)UA0, that is,

the old situation minus the deleted sentences, plus the

added sentences. By virtue of this syntactic operation,

those sentences not deleted continue to hold in the new

situation, (the so-called strips assumption [Waldinger,

1977]), without the necessity of a separate axiom and

inference step for each such sentence, as is typically

required in situation calculus approaches [McCarthy

and Hayes, 1969]. The Strips assumption, then, pro

vides a simple approach to handling the frame problem

[McCarthy and Hayes, 1969].

Since some propositions about the world might in-

ferentially depend upon others, this affects the form in

which the world state is encoded so as to facilitate the

change in truth value that might occur as the result

of applying an action. For instance, suppose that in a

typical blocks world scene, there is a stack of blocks.

If the top block is removed from the stack, then the

fact that it is no longer above the remaining blocks

in the stack must be reflected in the axioms used to

represent the world. If Above is encoded explicitly in

the knowledge base, then the operator associated with

removing a block must specify the deletion of all of

the appropriate Above relationships from the KB. Al

ternatively, one could store only the On relationships

in the KB, along with an axiom of the form:

Vx,y. On(x,y) D Above(x.y)

which allows one to infer all of the Above relationships.

In this way, only the single On relation between the top

block and the one just below it need be changed as a

result of the remove action.

This approach will be generalized to all of the ob

ject relationships encoded in the system, and will be

reflected in the description of the syntax of Strips

systems. A predicate will be either primary, meaning

that it is not dependent upon or derivable from any

others, or secondary, meaning that it is derivable from

the primary relations.

A Strips system, E is a quintuple (L, E, O, K, a),

where L is a first-order language, E is a subset of the

predicates of L (E being the primary predicates), O

is a set of operator schemata, AT is a non-empty set

of clauses in language L (the static axioms), and a is
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a set whose elements are sets of ground atoms (the

problem space). There are additional constraints on

K and <r discussed below.

The set K is taken to be Horn in the balance of

this paper. Theorem 9 relies upon the absence of dis

junction at the concrete level. Set K includes those

clauses which hold in every situation. It is required

that every P £ E can occur only in negated literals

of clauses in K, that is, as the antecedent of a Horn

clause. In essence, this ensures that primary atoms

are never derivable in any situation except trivially

through membership.

The set E$ is defined as the set of ground atoms

formed from predicates in E:

Et = {P(x1,...,xn)\P€E,

and X\ xn are ground terms}.

Each element of a is composed from atoms in Ej,.

An operator schema name is an expression which

has the form

operator(argi , arg2, ..., argn)

where operator is a symbol not in L, and the argi are all

variables of L. Associated with each operator schema

name o is an operator schema description (P0, D0,A0),

referred to as the preconditions, deletes, and adds,

which are sets of atoms. The atoms in D0 and A0

must be atoms from E, which insures that only atomic

expressions formed from primary predicates are explic

itly managed by the KB operations. The only variables

occurring in (P0, D0, A0) are the arg, of the associated

operator schema. An operator schema name together

with its description will be called an operator schema.

If 4> is a substitution of terms for variables, and o is an

operator schema, then o<f> is understood in the stan

dard way as the substitution of each variable in o by

its pairing under 4>. We take the set O^ to be the set of

operator schemata in O under all ground substitutions:

0$ = {o<t>\o £ O and <j> is a ground substitution}.

Operator schemata will never occur in expressions par

tially instantiated. An operator is an operator schema

fully instantiated by ground terms. Likewise for oper

ator description and operator name. When the con

text is clear, the term operator will often informally be

used to refer to just the operator schema name under

a particular substitution.

A dynamic situation is a subset of E<f,, denoting

those assertions of a situation that might change truth

value as a result of applying an action. A problem is

a pair p = (Tq,G), where To is a dynamic situation

called the initial dynamic situation, and G, the goal,

is a sentence of L. Unless specified otherwise, G is

taken to be a set (conjunction) of atoms.

A plan is a finite sequence of operator names (fully

instantiated), with the length of the plan being the

number of operator names in the sequence. The length

n plan u = (oj, . . ., o„) defines a sequence of dynamic

situations To,T\, . . . ,Tn, where To is the initial dy

namic situation, and

Ti = (Ti-i\D0i)\jA<fi,l<i<n.

That is, Ti is the dynamic situation T;_i without

the deletes of action o,- but including the adds of ac

tion Oi. This in turn defines a sequence of situa

tions So, S\,. .. ,Sn composed of the dynamic situa

tions unioned with the static axioms, i.e.,

Si =TiUK,0<i< n.

An operator o is applicable in situation S if S r- P0.

The plan u> is accepted in E with respect to So, under

the condition that

5<r-P0.+I)l<t<n.

where 5,- is defined as above. That is, a plan is ac

cepted if each operator is applicable from the situation

in which it is applied. Sn, the final situation achieved

by executing plan u from initial situation So, is called

the result and is denoted Result(u,So). The null plan,

denoted (), will be considered a plan of length zero

accepted in E with respect to every situation, where

Result ((), So) — So- A situation Si is accessible from

So if and only if there exists a plan ui that is accepted

in E with respect to So and Result(ui, So) = Si. The

initial situation is accessible to itself by the existence

of the null plan. Plan w solves problem p = (Tq,G) if

Result(uj,ToL)K)r- G.

A problem is solvable if there exists a plan that solves

it.

The dynamic situations are considered changing pa

rameters of the system. There are only some dynamic

situations that we will want to consider as possible

values for the changing parameters. These are charac

terized by the set a of the quintuple defining E. We

take an to be the set of elements of a, each unioned

with K:

aK = {TuK\T£<r}.

It is required of all Strips systems that an be closed

under operator application. That is, for all S £ <tk

and all o £ Oj, applicable in S, Resuit((o),S) £ <tk-

Under this definition, ok defines the problem space.

That is, all initial situations are drawn from <tk, and

all accessible situations from every S £ ck are them

selves elements of o~k- For the balance of this paper,

the E associated with the concrete level a STRIPS sys

tem will be taken as defined in Figure 4.

Definition 6 A STRIPS system E=(L, E, O, K, a) is

consistent if and only if for every situation S € o"a'-

every situation accessible from S is (logically) consis

tent.
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E:

K

0

Constants: Ci,C2, . . .

Variables: w, x, y, z

Predicates: On, Clear, ^

On, Clear

-.On(TABLE.x)

-■On(x,x)

On(x,y) D ->Clear(y)

On(x,y) Ay ^ z D -iOn(x.z)

On(x,y) Ay ^ TABLE A x / z D -iOn(z.y)

{C,- ^C;|t,iGN and i £ j}

stack(x.y)

P: On(x, TABLE), Clear(y), Clear(x) ,

x # y

D: On(x, TABLE), Clear (y)

A: On(x,y)

unstack(x.y)

On(x.y), Clear(x)

On(x,y)

On(x, TABLE), Clear(y)

{T|K U T is consistent and T C E$\

Figure 4: Example Strips System

A simple example of a Strips system for the stan

dard blocks world is given in Figure 4. Note that the

static axioms serve primarily as integrity constraints

[Reiter, 1978]. Since any goal is trivially derivable

in an inconsistent situation, one would prefer never

to generate such situations through the use of appli

cable operators. This is particularly important with

abstraction, since the abstract solution will be used

in constraining the concrete level search. Thus, being

misled by inconsistencies to believe that the abstract

goal is solved might be excessively costly. There is ad

ditionally a semantic motivation for maintaining the

consistency of Strips systems as one ascends the ab

straction hierarchy. A semantics for STRIPS is pro

vided in [Tenenberg, 1988], which demonstrates the

existence of a STRlPS-model if and only if the corre

sponding Strips system is consistent.

4 Abstract STRIPS Systems

The intent of abstracting Strips systems is similar to

that of abstracting first-order theories—to enable the

agent to perform search within a smaller space. This

requires abstracting all elements of the quintuple that

define the Strips system, the most difficult of which

is the operator set. The intuition associated with ab

stracting the operators is that actions performed on

analogous objects for analogous purposes can be con

sidered the same at the abstract level. These actions

will be determined to be analogous based upon a map

ping and comparison of the preconditions, deletes, and

adds of the actions under the given predicate mapping

function.

The Strips system resulting from abstracting all

operators will have the downward-solution property.

That is, for every abstract plan u' solving abstract

goal G', there exists some specialization u of w', and

G of G' such that u> solves G.

Let £ = (L, E, O, K, a) be a Strips system and / :

L i—► V be a predicate mapping function. The abstract

system £' = (L',E',0',K' ,cr') associated with £ is

itself a Strips system, where K' = MembAbsj(K),

o-' = {f(T)\Teo},

E' = {f(P)\P G E),

under the restriction that all predicates mapping to the

same symbol are either all primary, or all secondary.

The predicate mapping function, /, can be extended

to a mapping on operator schemata by assigning to

each schema name an abstract name, and mapping

each atom of the description to its image under /. For

example, the concrete operator microWave maps to

the abstract operator cook, where / maps the predi

cates in the corresponding positions on the precondi

tion, add, and delete lists:

microWave (x , y , z )

P: In(x,y), InMicroWave(y ,z) , Raw(x),

D: Raw(x),

A: MicroUaved(x)

cook(x,y,z)

P: In(x,y), InCooker(y,z) , Raw(x) ,

D: Raw(x),

A: Cooked(x)

Given operator schema o = opname: (P, D,A), de

fine

f(o) = f(opname):(f(P),f(D),f(A)).

Likewise for instantiated operator schemata. In addi

tion, define

f(0) = {f(o)\o e o}.

This mapping is extended to plans, so that if

w = (oi,...,o„) then f(w) = (/(oi), - . . , /(o„)).

Only a subset of f(O) will be used in the ab

stract level system—in particular, those concrete op

erators that do not distinguish between the analogous

predicates. This is similar to how previously, given

first-order theory 5, only the subset MembAbsj(S) of

f(S) was used for performing abstract level inference.

For instance, in order to map PourFromBottle to

PourFromContainer it is required that PourFromCup

also exist at the concrete level, assuming that cups and

bottles are the only predicates that map to container.
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Abstracting an operator o from E to E' requires that

there exists in E a complete set of analogues of o with

respect to the objects over which o is applied.

The set of abstract level operator schemata, O' £ E',

are defined below. It is assumed that all corresponding

variables in analogous operator schemata in O have

been named identically.

Definition 7 (Operator Abstraction)

O' = {o'\o' £ f(0) and there exists QCO such that

1. for each o £ Q, f(o) — d

2. for each P £ f~1(P0') such that each element of

P is atomic, there exists o £Q such that P = P0,

S. for each o £ Q, for each ground substitution <f>,

for each element di £ D0<f,, for each atomic dj £

f-\f{di)), either dj £ Do4> or K U Po4> h -.dj}.

Informally, for each o' £ O' there exists a subset

Q of the concrete operator schemata, all of which are

analogous and map to o' (under the uniform variable

assignments). In addition each specialization of the

precondition list of o' is the precondition list for some

element of Q. That is, Q is a complete set of analogues.

And for each element of Q, for every deleted atom,

every analogous atom either co-occurs on the delete

list, or its negation is derivable whenever the precon

ditions of this operator hold. This last requirement is

imposed in order to insure a correspondence between

the abstract and concrete levels, since otherwise, if two

analogous propositions hold in some situation at the

concrete level and only one is deleted by an operator o,

then in the corresponding abstract situation, the ab

straction of both propositions will be deleted by the

abstraction of o.

A concrete level problem is abstracted as d —

(T',G') = (/(T),/(G)). Since the abstraction of a

Strips system is itself a Strips system, definitions of

legal situation, plan, consistency, etc., hold for the ab

stract level. Figure 5 illustrates how several operators

in a concrete level kitchen domain can map to the same

operator at the abstract level (assuming the appropri

ate predicate mapping function). Note that several

different predicates have been abstracted in this ex

ample: the cutting surface, the tool, the type of food,

and the type of cutting.

5 Downward-Solution Property

Given the abstract Strips system defined above, the

abstract level will correspond to the concrete level in

a precise way. Each abstract plan is specializable by

an isomorphic concrete plan such that each intermedi

ate abstract situation is MembAbsj of the correspond

ing concrete situation. In addition, each abstract level

precondition proof is specializable by an isomorphic

concrete level precondition proof for the correspond

ing operator. Thus, for every abstract level inference,

there exists a set of isomorphic images that defines the

space of specializations.

Concrete:

sliceMushroomWithSlicer(x,y,z)

P: On(x,z), Countertop(z) , Slicer(y),

Mushroom(x) , Held(y) , Whole(x)

D: Whole (x),

A: Sliced(x)

sliceMushroomWithCheiKnii e(x,y,z)

P: On(x,z), CuttingBoard(z), ChefKniie(y) ,

Mushroom(x) , Held(y) , Whole(x)

D: Whole (x),

A: Sliced(x)

diceHamWithCleaver(x ,y , z)

P: On(x,z), CuttingBoard(z), Cleaver(y) ,

Ham(x), Held(y), Whole(x)

D: Whole(x),

A: Diced(x)

Abstract:

makeInPieces(x,y,z)

P: On(x,z), CuttingSurface(z) , Kniie(y),

Food(x), Held(y), Whole(x)

D: Whole(x),

A: InPieces(x)

Figure 5: Operator Abstraction

Theorem 9 Let E'=(L', E',0', K',<r') be an abstrac

tion through f of the consistent Strips system

X=(L,E,0,K,<t), and let u'=(o\, . . . ,o'n) solve p =

(Tq,G') for some T& £ a'. For every TQ £ a such that

/(Tb) = Tq, there exists a plan w — (oi , . . . , on) accepted

at the concrete level such that

1. /(«) = J,

2. MembAbs/(Result((o1,...,om),T,0UA')) =

Result^ ,...,o'm),T^U K'), 1 < m < n,

3. There exists G £ f~1(G') such that

Result(w,TbU/Oh G,

4- For each proof W of preconditions P0> from

Result((0'1,...,O,70'U*:'),

there exists proof W of preconditions P0m+1 from

Result((oi,...,om),T0U/0

such that W and W are related as in Theorem 8,

0 < m < n.

Figure 6 provides an example of the above theorem

under a standard interpretation of the predicates and

operators and a suitable predicate mapping.

Note that although the stated theorems are between

only two levels, the results extend to additional levels,
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Concrete Abstract

Goal: Goal:

Diced(A) InPieces(A)

Baked(A) Cooked(A)

Plan: Plan:

openFridge(F) openFoodSource(F)

getFromln(A.F) getFromln(A.F)

placeOn(A.C) placeOn(A.C)

getFronOn(K.C) getFromOn(K,C)

sliceHamWKnife(A,K,C) makeInPieces(A,K,C)

placeOn(K.C) placeOn(K.C)

getFromSurface ( A , C ) getFromSurface ( A , C)

putlnPot(A.P) putInVessel(A,P)

putlnMW(P.M) putlnCooker(P.M)

microWave(A,P,M) cook(A,P,M)

Figure 6: Plan Abstraction

since the abstract level is itself a STRIPS systems that

can be abstracted in precisely the same fashion.

Rather than searching in the original problem space,

then, a problem can be abstracted, search can be pur

sued in the abstract space, and an abstract solution, if

found, can be specialized under the constraints of the

above correspondence.

Note that the converse of the downward solution

property does not hold - there might exist problems

that are solvable at the concrete level for which there

exists no abstract solution. In particular, these will

be problems that rely upon distinguishing features of

analogous concrete level classes, for example, a prob

lem requiring the larger size of a conventional oven as

opposed to a microwave.

There is, therefore, a delicate balance between the

generality of the abstract level and its usefulness. One

must trade-off the potential gains of search within in

creasingly simple spaces against the fewer problems

that are solvable within these spaces. I leave it for fu

ture work to develop strategies that can choose predi

cate mappings for which this trade-off is optimized.

6 Related Research

There have been several recent suggestions focused

upon abstracting actions, such as that of [Nau, 1987,

Anderson and Farley, 1988, Alterman, 1987, Kautz,

1987]. All of these researchers propose operators that

inherit preconditions and effects, and yet none con

sider abstract operators to actually be operations on

an abstract representation of the domain. Therefore,

none of their proposals enable the composition of op

erators, and hence the completion of an entire plan,

at the abstract level. Without the ability to compose

abstract operators, the meaning of such abstract op

erators is called into question, as well as the nature

of their contribution to the eventual construction of a

concrete level plan.

There are several potential benefit of the approach

detailed within this paper that enables abstract level

plans to be constructed. First, abstract plans allow a

form of least commitment, since they do not require

specialization of the operations until after the entire

abstract level plan has been obtained. For instance,

this might allow the specification of which kind of con

tainer used in a plan to be pushed closer toward exe

cution time This is reminiscent of Stefik's [1981] con

straint posting. Another advantage is that disjunctive

information which might stymie a low-level planner

need not prevent the formation of an abstract plan.

For instance, if object A is either a bottle or a cup,

planners that require disambiguation before choosing

an action will not be able to proceed, while the plan

ner described above could continue construction of an

abstract plan.

7 Future Directions

One type of abstraction that has been considered in

other work involves the use of operator composition,

typified by Macrops [Fikes et al., 1972]. In this ex

tension of Strips, sequences of operators were param-

etized by replacing constants by variables, and then

stored for possible reuse to solve a subsequent prob

lem. The drawback with this approach is that as the

number of stored plans increases, the likelihood that a

particular one will apply to a given problem decreases.

In addition, the cost of searching the plan library for

an appropriate plan grows prohibitively. It was clear

to these researchers that there was not sufficient in-

dexical structure to the library:

The source of this difficulty is that the

level of detail in a Macrop description does

not match the level of planning at which the

Macrop is to be used. ... It may be neces

sary to consider more sophisticated abstrac

tion schemes involving alteration of predicate

meanings or creation of new predicates.

This suggests that it is difficult to exploit the ab

straction inherent in composing operators if one has

no capability for specifying inheritance types of rela

tionships between the operators. We believe that the

predicate abstraction given here provides just such a

sophisticated abstraction mechanism.

For instance, in the kitchen-world example, the sav

ing of the specialized plan that was developed might

be of little utility, since the same tools and resources

might not be available in a subsequent similar prob

lem. In addition, there is a non-trivial overhead cost

associated with determining if a saved plan is directly

applicable. On the other hand, the abstract plan may
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be of sufficient generality so that its frequent use off

sets the cost associated with saving it.

Abstraction also appears useful for plan adaptation

or repair. That is, if one has a particular plan that

is being executed, errors or unforeseen events might

occur at runtime-the chef's knife is not available, for

instance, or the microwave oven is not functioning. In

this case, then, the hierarchical structure of the plan

provides a basis for quickly repairing the problem on

line. This type of computation can be found in [Alter-

man, 1987] who uses a script-based [Schank and Abel-

son, 1977] problem representation. When a plan step

fails due to the inability to satisfy the precondition of

an operator, an analogous operator is attempted that

has the same abstract effect, but that has a different

specialized precondition. This would amount to using

a cleaver as a substitute for the missing chef knife.

8 Conclusion

This research has centered around the principle that

in any reasoning system using multiple levels of rep

resentation, there should be a precise correspondence

between the different levels. In addition, the man

ner in which inference at one level can guide infer

ence at another level should be made explicit. Such a

specification for planning systems has been hindered

by the difficulty of managing propositions at two dif

ferent levels each of whose truth values might change

over time. This paper addresses these problems by ex

tending the notion of inheritance from object classes,

to relations on object classes, to actions over object

classes. A model-theoretic semantics is presented for

abstracting first-order theories that generalizes ISA-

hierarchies, through the use of a predicate mapping

function. This mapping is then extended to Strips

systems. A powerful inferential relationship between

levels is shown to hold - abstract plan solutions to

problems can be specialized by choosing a specializa

tion of each abstract plan step, and thus concrete so

lutions that are not isomorphic in this fashion need

never be explored.
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Cardinalities and Well Orderings

in a Common-Sense Set Theory
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Abstract

We argue that being a set can be relative to a

theory. We introduce the notion of "actually

constructed" sets, and we define models of

common-sense set theories. We show that

certain common-sense intuitions about

cardinalities and we 1 1 -orderings can be

expressed in our framework by relativising

set-theoretical formulas to the class of

"actual sets". We propose a method of

talking about sets which permits some sets to

be well-ordered without having a cardinality,

and vice versa — to have sets with known

number of elements which do not necessarily

form a well-ordering. In another application,

we explain how certain concepts may involve

some natural numbers, but not others.

1. Introduction: motivation

Set theory may be useful in AI, as J. McCarthy

suggested in his address at IJCAI-85. Since that time

a few books and papers appeared which relate to this

topic. Barwise and Etcbemendy [1987 ] used

ZFC/AFA set theory to analyze self reference and

the liar paradox. Although their work was motivated

by technical problems of situation semantics [Barwise

and Perry 1983], their elegant results can be

interpreted as applications of set theory in AI. Perlis

[1987a, 1987b] proposed modifications of ZFC and

Ackermann set theories (e.g. adding sets of names of

formulas) as a basis for commonsense reasoning.

Delgrande [1987] introduced "reducible" and

"irreducible" (ones whose members we don't know)

sets within a version of ZF, and applied them to an

investigation of learning by examples. The proposals

for logic programming with sets, like LDL [Beeri et al.

1987, Shmueli and Naqvi, 1987] or LPS [Kuper,

1987], express the relevance of set theory for logic

programming and database communities (cf. also

[Ohsuga and Yamauchi, 1985]). Earlier, Schwartz

and his colleagues [Breban et al, 1981, Ferro et al,

1980, Ferro, 1981, Kruchten et al, 1984] proposed a

weak set theory as a specification language (SETL).

A common thread of these different approaches is the

necessity of modifying the classical set theories in

order to deal with specific problems, despite the fact

that the classical set theories provide an intellectual

framework for thinking about sets.

We too will modify classical set theoretic

concepts, but we will not propose a universal set

theory for ail kinds of reasoning about sets. Rather,

we will suggest a way of thinking about cardinalities

and well-orderings of finite sets. The two examples

below motivate our discussion of common-sense set

theory.

Example 1 .

Imagine putting into an empty box 75 black

and 25 white balls. Clearly, there are 100 balls in the

box or — speaking more formally — the cardinality of

the set of balls is 100. After shaking the box, we

would be templed to say that the balls in the box are

not ordered. But this is forbidden by classical set

theory, because any set of finite cardinality is

supposed to have a well-ordering. (We assume "not

ordered" to be a paraphrase of "does not have a well

ordering").

Example 2.

We suggest that the reader perform a small

experiment consisting of looking for two seconds at

the dots at the bottom of the next page. After that the

reader should be able to say that this set is (well)
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ordered. But almost certainly he does not know the

number of dots, although he can assert that there are

more than five of them. Again, classical set theory

says that if a finite set is well-ordered then it does

have a cardinal number which is a natural number.

Of course in any of these examples we could

distinguish between knowing that something (a

cardinality or a well-ordering) exists and being able to

point to one. This would allow us to accept the

standard set theoretical universes as the "real" sets, at

the price of extending the language by adding

modalities. Such an approach however does not seem

to us to be the most natural solution: introducing

modalities usually does not result in clean theories

with natural semantics. After all, the balls in the

box are not well-ordered; they can be, if we take

them out and order them.

We shall propose then a method of talking

about sets which permits some sets to be well-ordered

without having an exact cardinality, and vice versa -

to have sets with known number of elements which do

not necessarily form a well-ordering.

The plan of the paper: The next section introduces a

few set theoretic concepts needed to understand the

main idea of this work. Throughout the paper we will

try to help the reader understand the concepts by

adding illustrations to the text; their purpose is to

describe some of the intuitions we associate with

those concepts. A reader with any knowledge of

axiomatic set theory can safely omit them. Section 3

defines the set-theoretic framework we will work in

(the actually constructed sets). Section 4 redefines the

notions of cardinality and well-ordering. In Section 5

we prove that there can be finite sets without

well-orderings, as well as finite well-orderings which

are not sets. We conclude with a short discussion

about reasoning with common-sense sets, and an

another example which can be well explained in our

theory — why "I have two children" involves the

numbers 2 and 3, but not the number 33323.

2. Basic set theoretical concepts

The purpose of this section is to explain the

vocabulary we use. The descriptions of concepts will

be rather informal. We first describe some entries in a

dictionary of axiomatic set theory (if it were to exist).

Then we give a short description of the main domains

of set theory in general.

Axiomatic set theory

The theory of Zermelo and Fraenkel, denoted by ZF

or ZFC (C standing for the axiom of choice), is the

most important axiomatic set theory. In this theory,

the existence of a set, such as the set of all natural

numbers, is derived from axioms. These axioms are

formulated in the standard first order language

containing additionally the relation of membership e.

For instance, the axiom of infinity says:

(3*)( Oex & Otye.x)(yu\y)ex ))

By rejecting some of the axioms of ZFC, in particular

the axiom of infinity, and slightly reformulating the

other axioms, we obtain a weaker set theory ~ the

theory of Kripke and Platek or KPU. In KPU,

individuals without elements, called points or atoms,

are allowed to exist (while in ZFC the only set

without members is the empty set o). Other concepts

to which we are going to refer throughout the paper

include:

• cardinality — i.e. the number of elements. In

standard set theories, elements of finite sets are

counted as usual, and counting them is not

considered interesting. Counting elements of

infinite sets, like all reals, turns out to be a tricky

problem; the continuum hypothesis is probably the

most discussed question of axiomatic set theory.

Cantor's paradox arises when the set of all sets, if

it were to exist, does not have a cardinality.

• hereditarily finite — the set {w, to u {u}} has only

two elements, hence is finite. It is not hereditarily

finite because the symbol w traditionally denotes

an infinite set — the set of all natural numbers.

• well-ordering — the set of all natural numbers is

well-ordered by the relation of < because it is

linearly ordered and there is no infinite

descending chain of natural numbers

... < .v2 < X] < x0. Rational numbers or all

non-negative reals are not well-ordered by <.
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• natural numbers are typically represented by sets:

0 - o, 1 = {o}, ... , R + l-Aufn), but other

representations are also allowed.

• models of a set theory are collections of sets in

which all axioms of this set theory are true. In

particular, a model must be closed under the pair

formation { x, y } and the union

(J x = \y : 3zex[yez] }. The reader may want to

check that K„[o]'s are not models of set theory.

Set theory does not allow all possible collections of

objects to exist. It describes sets by dividing

multiplicities into "consistent" and "inconsistent"

ones. Thus { X : -> ( XeX ) } (the Russell class of

X's which are not members of themselves) is such an

inconsistent multiplicity, and its existence is forbidden

by the dominant set theories. The discovery of

inconsistent multiplicities led to the development of

axiomatic set theories.

Set theory was created in the XIX century (by G.

Cantor), and axiomatized in the XXth, as a

mathematical theory of finite and actually infinite

sets. It canonizes the main principles accepted by

mathematicians as true about sets. It is remarkable

that most of mathematics can be derived from that

single source, and that the whole of mathematics can

be formalized in it. Together with the results quoted

in the introduction this fact would suggest importance

of set theoretical concepts for AI. But it is also quite

striking that neither "The Oxford Companion to The

Mind" [Gregory, 1987] nor the "Handbook of

Human Intelligence" [Sternberg, 1982] have

"mathematics" (or "set") as an entry. Thus, while set

theory is a very powerful tool, the relevance of

mathematical reasoning and its foundations to the

study of thinking in general — i.e. to artificial

intelligence ~ has not yet been demonstrated beyond

reasonable doubt.

The fact that all the above mentioned attempts

to use set theory in computer science required its

modification, the fact that alternatives to the

Cantorian set theory are being developed by set

theorists [Vopenka, 1979], and the

counter-intuitiveness of many theorems of set theory

suggest that there can be more than one way of

reasoning about sets. We intend to show in the

remainder of this paper that there can be many formal

ways of reasoning about finite sets and their most

elementary properties.

Domains ofset theory

The investigation of sets can be divided into several

topics:

1. Set algebras (dealing with union, intersection,

difference); notice that the membership symbol

does not appear in rules like

A u (BOC) = (AHB) u (AHC)

2. Theories of cardinality (dealing with counting);

typical example would be rules of cardinal

arithmetic like ^5*^7 — Kj.

3. Theories of well-orderings investigating what kind

of sets (e.g. of real numbers) can be well-ordered

and under which conditions.

4. Descriptive set theory, which provides

foundations for the theory of probability and

mathematical analysis.

5. Meta-theories of set theory, dealing with

questions like which axioms systems are

consistent with the existence of the Russellian set

of all sets, or with different versions of the

continuum hypothesis.

Axiomatic set theories try to settle questions

belonging to all these topics, but many of them can be

investigated outside of ZFC or KPU. The theme of

this paper is related to 2, 3 and 5, but the main

distinction between classical set theory and this paper

lies in the domain of investigation — ours is that of

finite sets. This approach of formalizing some basic

intuitions is not inconsistent with Mac Lane's [1981]

appeal for a renewed study of the foundations of

mathematics, where mathematics is to be understood

as the discovery of formal structures underlying the

world and human activities in that world. The

following quote may also be relevant in the context of

using set theories in AI:

The logicism of Frege and Russell tries to reduce

mathematics to logic. This seemed to he an excellent

program, but when it was put into effect, it turned out

that there is simply no logic strong enough to

encompass the whole of mathematics. Thus what

remained from this program is a reduction of

mathematics to set theory. This can hardly be said to

be a satisfactory solution of the problem of

foundations of mathematics since among all

mathematical theories it is just the theory of sets that

requires clarification more than any other.

[Mostowski, 1964]
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3. Sets and classes

Sets are built from atoms; classes are collections of

sets satisfying certain predicates. We keep these basic

premises of classical set theories in our investigation

of sets and classes. We will however have two

categories of sets: potential — corresponding to

hereditarily finite sets of standard set theories, and

actual — those whose existence is postulated by a

particular common-sense theory.

3.1 Language, sets and classes

The theories that we consider are expressed in a

standard first order language of set theory (KPU

[Barwise, 1985] or ZF [Feigner, 1971, Jech, 1978]).

The membership e and two other symbols, # and

[...], will be at the center of our attention. The

symbol # denotes a cardinality function, while [ a , b ,

c , ... ] stands for a well-ordering (an ordered list)

consisting of the just mentioned elements. Also, we

suppose that among the constants of our language we

have an ordered collection Nums (which may be

disjoint with the atoms) of constants denoting

cardinal numerals: zero (0), one (1) , two (2), ... .

The standard set theoretic symbols are defined as

usual. For instance { x } is "the unique y whose

only member is x."

The class of A0 - formulas is the smallest class

containing the atomic formulas and closed under the

connectives and bounded quantification. A formula

<j> is in the class 2, if it has the form

*y\yi-yn ^(y\>'2-y,t)

and 4/ is A0. The class 2 is the smallest class

containing A0 and closed under conjunction,

disjunction, bounded quantification and existential

quantification (cf. [Barwise, 1975]). It follows from

the 2 Reflection Principle (the Theorem below) that

2 formulas are equivalent to 2, formulas (in KPU or

ZF).

Illustration 3.1

• The following are examples of A0-formulas:

- being an unordered pair, a = {b, c] :

bea&cea & Vzea[z = b V: = c]

- being an ordered pair, a = <b, c> :

3xea3yea [a = {x,y} &x = {b} &>-- {x, c] ]

- being a transitive set, Trans(x) :

Vyex Vzey[zex ]

• The formula "each element of a belongs to a

transitive set", Wxea3b[ Trans(b) &xeb] , is in

the class 2 but not 2,;

• An equivalent 2] formula

3c Vxealbec[ Trans(b) &xeb] — says that the

transitive sets b belong to an another set c.

3.2 Potential sets and real sets

We consider objects in a certain domain, some of

which are composite (i.e. sets). A theory T refers to

these objects directly or indirectly. For instance,

Tl. x e y ^=^ x = gold V x = { silver , platinum }

T2. Nat(y) ^^«0V

lx[Nat(x)&y= x u { x } ]

Tl refers directly to the atoms 'gold', 'platinum' and

'silver' , and to the set { 'silver' , 'platinum' } ; and

indirectly to { gold', { 'silver', 'platinum' }}. T2

refers indirectly to the set of all von Neumann

natural numbers greater than 0, and directly to the

atom 0.

In both of these cases no reference is made to any

other sets; the existence of other sets is not postulated

by any of these theories. We believe then that the

universe of potential sets, described by a set theory

like ZF or KPU, should be separated from the

universe of sets actually constructed or referred to by

a given common-sense theory. We assume that there

exists a collection A of primitive objects (atoms),

such that all sets are obtained from atoms by finitely

many applications of the singleton operator { } and

the union operator U . This determines the universe

of potential sets VJA], where

V0[A] = A,

Vn+1[A] = Powcrsct( K„M ] ) ,

VJLA] = U V„[A] .

It is well known that < VJ[A] , e > is a model

of KPU set theory. Thus, our universe of potential

sets is a natural one and classical. But these sets

almost certainly must be treated as platonic (not real)

entities: the set K6[o] has about 2M- ^ elements. It

is time then to turn our attention to the actual sets.
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But before we can formally define them, we have to

write a few paragraphs about classes.

3.3 Classes

Classes are extensions of predicates. For a given

theory T, we can consider the collection Pred( T) of

If

then

all predicates appearing in T.

Pred(P) - (TV ), ... , P„( ) )

Classes = (P,, ... , P„) , where

P, = {(*,..., xn): VJA] h P,<.Xj ..., x„) }.

We say that a theory T is unambiguous if it is

satisfiable over <Vj_A], e > and its classes are

the same under any interpretation (that makes T

true). We assume that all theories refer to finite sets

only, and therefore the natural models of them are

<VJA] , e , Classes >.

For instance, Pred(T2) = ( Nat( ) ) , and the class

Nat (which is the only element of the Classes)

consists of 0,101,10,(011, ... The

theory Tl does not describe any class. Both theories

are unambiguous. The theory T3 below is an

example of an ambiguous theory.

T3. Vx[P(x)

3!.r P(x)

x = gold V x = silver ] ;

(cf. [Barwise, 1975, pp. 15-16]).

Since ( <j> ) A is obtained from <f> by relativization

of all quantifiers to A , the theorem says that a 2,

formula is true if and only if it is true in some set. This

type of fact is called a reflection principle because it

describes a situation in which the truth about the big

universe (of sets) is locally describable. This principle

justifies the equivalence of the two formulas in

Illustration 3.1.

Let T be a satisfiable (over < VjA] , e > )

unambiguous theory. We can now define the referent

Reflt. of a formula $ belonging to T:

Definition. Let Ref,i: be the smallest transitive set

A s.t. ( <J> ) A holds, if it exists; otherwise we set

Refp to be V\ A ] , where n is a smallest

number with the property ( 4> ) ''J A ] . The class

Refs of referents of the theory T is described by

Refs = {Re/* : <J> is a formula of T }.

Note: In the examples we are going to consider that

"smallest transitive set A" will always exist. The only

role the above theorem plays in this paper is to ensure

the correctness of the definition of referents. As we

have tried to explain above, the referents are sets

whose existence is necessary for building a model of

the theory T . Their function is similar to the role of

the Herbrand universe for first order formulas.

3.4 Sets and Classes

Our analysis of sets and classes for a fixed theory T

gives us the structure

c^0(D = < VJ.A] , Sets, e, Classes > ,

where Sets are the sets referred to by the theory T,

and Classes are the classes corresponding to

predicates of T . We have yet to define Sets

formally. We restrict our attention to unambiguous

2, theories. The restriction is a natural one, since 2,

relations on < Vw[ A ] , e > are exactly the

recursively enumerable relations (cf. [Barwise, 1975,

pp.46-51 ], for a more precise formulation of this

fact). Also we know that

Theorem (The 2 Reflection Principle). For any 2

formula <j>,

KPU I— ^^3« (^)".

In particular, we can assume that the u is transitive.

It is natural to suppose that if a theory refers to a set,

it also refers to its elements, elements of its elements,

and so on. Therefore

Sets = TC(Refs) u TC( U Classes)

The TC(x) is the transitive closure operator TC

applied to the set x, and defined as the smallest

transitive set containing x, or as

rCW = xu(Ux)u(UUx)u ....

Illustration 3.4:

. For A - {{a}, \{b}}}, the TC{A) contains

a, {a}, b, lb), {{&}}, but not {*,&}.

• The transitive closure of all odd numbers below

100 will contain all natural numbers smaller than

100.

• The smallest transitive A such that <><->(<?>)•* does

not have to exist, even when <f> belongs to an

unambiguous theory. Consider

Vx\p(x)++[x - {a} Vx = \b) ]] and -,p({a});

this theory is unambiguous but there is no
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smallest transitive set relativising the first

formula; thus its referent is V2[A] (assuming a, b

are atoms).

A counting function for any set a is S^ thus can

be relativised, for instance to the smallest V„[A]

containing a and the cardinality of a (assuming

that numerals are among sets or atoms).

Proposition 1. For any finite transitive set

X c Vj A ] , there exists a theory T such that X =

Sets. ( = SetsT).

Proof. Obvious. Take

w,eX

D

4. Counting, cardinalities and well-orderings

In the previous section, we discussed the structure of

sets and classes. Now we want to say something

about counting and ordering.

4.1 Counting

Siegler and Richards [1982] describe the research

results of Gelman and Gallistel on psychology of

counting. Counting turns out to be a composite

activity based on five principles:

1. one-one — each object must be assigned one

numeral;

2. stable order — numerals must appear in a in a

fixed order;

3. cardinal — the last numeral corresponds to the

cardinal number of the set;

4. abstraction — anything can be counted: concrete

and abstract sets, heterogeneous and

homogeneous sets;

5. order irrelevance ~ the pairing between objects

and and numerals is arbitrary.

The five principles justify the correspondence

between counting and the functional assignment of

numerals to elements of a set. But we can also

observe that people count using other numerals like

"many", not only natural numbers. Neither is the

concept of a finite set clear. Dedekind thought that a

set X is finite if there is no one-to-one function from

X into a proper subset of X (such an X will be called

Dedekind-finite); certainly finite sets are like that,

while natural numbers or reals are not. But it has been

proven by Halpern and Levy (cf. [Feigner, 1971])

that (if ZF is consistent) there exist infinite

Dedekind-finite sets. This shows that our counting

intuitions are imperfect, and that at least in principle

different counting methods could be used.

To allow for these possibilities we may simply assume

that numerals form a separate entity Nums which is

linked with sets by existence of a counting routine

(function) denoted by #. We will show in Section 5

that # does have a very natural interpretation. We

will allow then counting 1, 2, 3, many , or 1, 2, 3,

about 5, about 10 , where about 5 can be

defined as "any number between 4 and 6"; see Fig. 1.

Note: Cardinality function is not a set, and so

{ #z : z e x } is not a set, unless Nums are

admitted as sets, although { z : ttz = 2 & z c x J isa

well-defined set

4.2 Orderings

We used [x , y , z] to denote the well-ordering

consisting of elements x , y , z . We could have

interpreted [...] also as a special function symbol in

order to separate cardinalities from well-orderings;

this is however not necessary. We identify [x , y , z]

with { x , { y , { z }}}. Figure 2 contains a

representation of a four-element well-ordering.

Definition, w well orders x , or w is a well-ordering

with the base x , is defined as

(i) w(0,ni)ow=0 ; wo({x},w)^$>>v= \x]

i.e. the empty set and singletons are well-ordered.

(ii) wo(x,w)<=& (lz,y)[w - {z,y}&z*y&

zex&wo(V(x-\z}),y)]

(y well orders the rest of x ).

(iii) w is a well-ordering

wo(w) <-» ( 3 x ) wo( x,w)

Illustration 4.2:

• Natural numbers, as defined in Section 2, are not

well-orderings according to this definition.

• But if we define
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1 —> 2 > 3 —> manyany -^

o
1 > 2 —> 3 —> many —> many >

Figure 1. Numerals.

Two representations of a non-standard set of numerals 1, 2, 3, many .

O-O, 1 - {O}, ... , n + 1 - {o, {n}},

the new numbers are well-orderings; we have

wo{n,n).

We leave it as an exercise to the reader to change the

above definitions to make the standard natural

numbers well-orderings. For us, it will be slightly

more convenient to use the non-standard definition of

well-ordering. That this makes little difference can be

seen from the next proposition.

D

Proposition 2. wo(w) for finite w iff w is

isomorphic with a finite ordinal (i.e. natural) number.

Proof. By induction. (Note that the isomorphism is in

VJA1, not necessarily in Sets; "natural" means "as

defined in Section 2").

5. The e -structures

We summarize our investigation of simple

common-sense set theories by proposing models for

them. We then return to the two examples to show

that the cardinalities and well-orderings can indeed be

unrelated.

5.1 The models

We may now propose the e- structure *M(T) »

< VJLA], Sets, e, #, [ ], Nums, Classes >

as a model of a common-sense, unambiguous Z,

theory T. We may suppose that the set A of atoms is

given once and for all, and that the interpretation of

# and [ ] is fixed (more about it below);

Classes and Sets depend on the theory T , and are

given by the equations in Section 2.4.

5.2 An interpretation of cardinalities and

well-orderings

The sets of standard set theories can be identified

with trees whose leaves are atoms. When the axiom

of regularity (foundation) is absent, the sets are

directed graphs, cf. [Barwise and Elchemendy, 1987].

For the sake of simplicity, we will discuss well

founded sets only. For a set s, the tree of 5 , T(s), can

be defined as (a,b)eT(s) <-> aeb for a, b eTC({s}) .

The edges of the tree consist here of ordered pairs of

elements of the transitive closure TC({s}) . But we

can imagine another, more interesting interpretation,

according to which all isomorphic sets can have the

same — not just isomorphic — edges. To this end we

need a separate set of edges SE (which can be

thought of, for instance, as the set of all intervals on

the plane with rational endpoints).

A graph is then defined as a triple < V, SE, E >,

where V is a set of vertices, SE is the set of edges ,
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[ a, b, c, d ]

{a, |b, {c, {d}}}}

{b, {c,{dm

ic, {d}}

 

Figure 2. The graph of the well-ordering [ a, b, c, d ].

Well orderings are represented using nested braces. The edges represent the membership. The figure

should create an impression of direction (asymmetry + linear order). Lakoff [1987, p. 362], quoting Mac

Lane [1981, 198?], argues that "basic ideas from mathematics (...) correspond to the kinesthetic image

schemas that arise in the study of linguistic semantics."

and £ is a function from a subset of SE into V x V ;

when (a,b) is in the range of E there is an edge

between a and b. In the case of graphs of sets, we

assume that acb if and only if there is an edge

between a and b; see Fig. 2. The edges

corresponding to the members of the set J can be

defined as

EM(s) = { eeES : 3v[ E(e) = (v,s) ] }.

In classical set theory, a cardinality of a finite

set s is a one-to-one function from a natural number n

onto a set, i.e. it is a set of ordered pairs

{ (0.v0),(l,jr,), ...,(«- U„_i)},

where x/s are all the elements of s. Thus all, say,

three-element sets, although they have the same

cardinality (namely 3), have different cardinality

functions. Thus cardinality is a function from a

number onto the nodes (or from the nodes onto a

number).

In contrast, we define the cardinality function

# as a one-to-one order preserving mapping from the

edges EM(s) of a set s into the numerals Nums ,

whose range is an initial segment of Nums . The last

element of the range of the function is the cardinality

of a given set. Under this definition if graphs of two

different three-element sets are built from the same

edges, the sets have identical cardinality functions.

(But these functions do not belong to the Sets until

we make an assumption about E, SE, V being sets,

and make formulas defining cardinalities part of the

commonsense set theory T).
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Example 5.1.

Figure 3 shows a representation of a four-element set

consisting of three atoms and one two-atom set. The

arrows link the four edges of EM(s) with some

numerals. However, this mapping is not a cardinality

function because it is not order-preserving; it also

violates the stable order principle of Section 4.1. The

other two edges of graph of the set are irrelevant for

counting.

5.3 The examples

We now show that it is possible to express the

non-equivalence of cardinalities and well-orderings

postulated in the examples of Section 1. The

examples, after an obvious formalization, serve as

consistency proofs.

Definition. <j> is (e -) consistent iff there is an e -

structure

£ = < Vu[ A ], Sets, e,#,[], Nums, Classes >

s.t. 5 h (<|>)5"J .

( ( <£ ) Sr" is obtained from <j> by relativizalion of

all quantifiers to Sets, as defined in Section 3.4).

Theorem 2. Let n > I , n e Nums. It is (e-)

consistent that there exists a well-ordering of type n

(i.e. with n elements), the elements of which do not

form a set:

3w( wo(w) & -i Ijc wo(x,w))

Proof. By example. Let n — 26 , let the well-ordering

be given by the dots on page 2, (assuming all dots are

distinct and ordered from left to right). Let the

theory T consist of just one assertion

x - [ a, b, c, d, e, f, g, h, i, j, k, 1, m, n, o, p, q, r, s, t,

u, v, x, w, y, z ]

then clearly x is a well-ordering (isomorphic with

the dots !), but the set

{ a, b, c, d, e, f, g, h, i, j, k, 1, m, n, o, p, q, r, s, t, u, v,

x, w, y, z } does not belong to the Sets.

To see this, consider a shorter well-ordering: y

•= [ a, b, c, d ]. Then Sets = { y , a , { b, { c, { d }}

l,b,ic,id)],c,jd!,d| ; { a, b, c, d} t Sets,

(although { a, b, c, d} is a subclass of Sets ). As

before, the example generalizes easily.

Corollary 3 (for set theorists). There exist finite proper

classes.

Note: The relativizalion to the transitive class of

Sets does not affect many important formulas; this

means that a large portion of mathematics can still be

done within the class of Sets . The concepts which

are preserved are all 2/2, formulas (by the 2

reflection principle); in particular these are: function,

relation, domain of a function/relation, range of a

function/relation, pair, transitivity, ordinal, natural

number, less than, successor of a set etc. (for details

see [Barwise, 1975], pp. 14, 22, 23).

Theorem 1. Let n > 1 , n e Nums. It is (e-)

consistent that there is a set x with n elements which

does not have a well-ordering:

3jt( ttx = n & -> 3w wo(x,w))

Proof. Let n - 100. Let x - { bl , ... , b75 , wl

w25 } . Let the theory T consist just of this

assertion. Then Sets - { x } u x . And clearly, no

well-ordering of x belongs to Sets. The

generalization for other n's is trivial.

6. Discussion

There ir oerhaps no commonsense set theory; rather,

there are commonsense theories of involving sets.

These theories may contradict one another, and some

of them may be belter than others. A couple of

suggestions about using collections of theories in

reasoning are contained in [Zadrozny, 1987,

Zadrozny 198?]. They may also apply in thinking

about sets, with some additional work needed.

We have succeeded in formally describing some

commonsense intuitions about cardinalities and

well-orderings, but the proposed framework is not

complete. In order to make it truly computational one

has to solve two open problems: how to test a theory

for unambiguity (or what are classes of unambiguous

theories), and how to effectively compute referents of

formulas. We don't have much to say about either,

except to note that [Beeri et. al, 1987] and [Shmueli

and Naqvi, 1987] show that making set theory

computational may be a delicate question.
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> 3 —> 4 —> many —>

Figure 3. A function from edges of a set into numerals.

The mapping is not a cardinality function if Nums =

three arrows were shifted one unit to the left.

{1, 2, 3, 4, many] . It would become one if the

6.1 Reasoning with commonsense sets

Cognitive modeling/linguistics

We believe that our theory can be applied in cognitive

modelling as the above examples suggest, and in

computational linguistics ([Manaster-Ramer and

Rounds 198?] can be an inspiration). In the latter

case, one can for instance construct an automaton

which would get tired after processing too long a

sentence (this requires multiple Nums) or to represent

phrases like "a group of people demonstrating at the

City Hall". Then, the question "who was the first

one ?" would be considered plainly nonsensical — it

would not evoke "which well-ordering do you have in

mind ?". (There is no reason to assume that this set

of people is well-ordered, hence there is no

well-ordering of its representation, and vice versa.)

Example 6.1

The non-standard numerals Nums may also be useful

in explaining why the sentence "I have two children"

would involve fewer(n,3) (in the technical sense of

Sadock [1975]) without involving ferver(n,333124) .

Namely,

We can suppose that a given domain D has

associated with it a collection NumalgbrsD of

classes of allowable numerals; for instance,

D « 'human family' would allow counting using

Numt - 1, 2, 3, 4 , or Num2 = 1, 2, 3, many, or

Numz - 1, 2, 3, about 5, about 10 ;

The predicate involve n(problem.numeral) can

be defined as

D «* Domain{problem) & 3 Nums e NumalgbrsD

[numeral e |.M/ms| ],

i.e. a numeral is involved in a problem if it

appears in the universe of one of the counting

algebras associated with a given domain;

In a similar fashion one can define the predicate

involve(problem.relation) ;

Then, since 333124 is not in any class of

numerals associated with counting members of

human families, while 3 appears in every such a

class, the first numeral is not involved in building

a representation for a sentence about "two

children".

□
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6.2 Conclusions

Common-sense reasoning about sets differs from the

deductions of classical set theories. In this note, we

have shown that it is possible to capture some of this

reasoning in a natural, non-classical set theory. In

particular, we have found a natural representation for

the unordered set of balls and the uncountable set of

dots from Section 1. We have also argued that it is

natural to think of cardinality functions not as sets of

ordered pairs, but as mappings from pointers/edges

into classes of numerals. The new representations

permit the separation of reasoning about orderings

from reasoning about cardinalities. Similarly, we are

able to explain at least some simple cases of reasoning

about sets in natural language. Admittedly, the

examples are simple, and for cognitive modeling the

psychological connections would have to be made

more precise. But it is this author's belief that, for

natural language understanding, one has to partition

reasoning about sets into a multitude of theories

about different aspects of being a set: set algebras

(dealing with union, intersection, difference), theories

of cardinality (dealing with counting), theories of

orderings, theories of membership etc. It is quite

probable that such theories cannot be lumped

together into one super-theory of commonsense

reasoning about sets, but that they can be (separately)

modeled in a classical set theory like ZFC or

ZFC/AFA.
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Abstract

The formal study of Nonmonotonic Reason

ing, as we know it, has passed its tenth birth

day, though its antecedents in AI go back

much further. By now, the field has had a

chance to develop recognizable directions and

methodologies. These, in turn, have drawn

adherents and critics. The panel will try to

assess the state of the art, as well as suggest

some alternate approaches. **

The moderator begins with a short synop

sis of some of the issues of concern.1 This

is followed by brief descriptions of the posi

tions of the panelists. These are necessarily

abridged—more detail and other topics will

come out in the discussions.

General Issues

David W. Etherington

At times it is difficult to start reading a new paper on

nonmonotonic reasoning—and yet there are so many

to read. Faced with a dense formal presentation, one

often wonders whether formalisms have taken on a life

of their own, independent of the larger enterprises of

Artificial Intelligence. Contrary to popular belief, per

haps it is not obvious why yet another solution to the

Yale Shooting Problem is in order—not to say that it is

necessarily out of order. In the following, a number of

questions are offered for your approval that, while not

*It should be kept in mind that the asking of these ques

tions does not necessarily entail that there are no satisfac

tory answers!

likely to be answered by any particular paper, might

profitably be kept in mind.

The first question is whether nonmonotonicity is a

phenomenon or an epiphenomenon: Is it a cohesive

thing to be studied in its own right, or does it more

properly arise as an effect of other modalities of rea

soning? Is there any reason to expect that there are

cohesive unifying principles to be elucidated?

A related question concerns the coverage we should

expect from nonmonotonic theories. Given that there

is a phenomenon, should our theories be able to cover

it, or will there always be examples that "fail" (what

ever that means) under any particular theoretical

framework? This amounts to asking whether there

might be some kind of "incompleteness" result that

requires any theory to fall short of treating all kinds

of nonmonotonic reasoning.

Thirdly, research in the area seems to be driven

largely by examples created to show up a perceived

strength (or weakness) of a particular formalism (the

set of such examples grows, but slowly—we still see

a lot of Clyde and Tweety), rather than responding

to examples/needs generated by real-life reasoning. In

part, this is because existing nonmonotonic systems

are too intractable to be put into practice and con

fronted with real-life examples, and in part because the

simple examples provide a wealth of problems. But is

this "inner-directedness" a liability, and is there any

way to remedy it?

This brings up the issue of scaling formal non

monotonic theories up to real problems (merely a

formality?). Most extant theories are intractable—

some don't even have a proof theory—and it is of

ten difficult to tell how large bodies of information
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will (or even should) interact. Some progress is being

made in these areas, but it is ironic that formal theo

ries addressed to the facilitation of reasoning with in

complete and seemingly-conflicting information should

have such persistent problems with intractability and

conflict-resolution.

Finally, how can we tell progress from motion?

How can any theory of nonmonotonic reasoning be

(in)validated? Are there scientific tools that can be

applied to evaluate the semantical (or theoretical) ba

sis for various frameworks, or are there only competing

intuitions? Theorists in the area (notably Ethering-

ton) have been very sanctimonious about the virtue of

having a semantical basis for our theories, but trou

bling cases like the "Clash of Intuitions" [Touretzky

et al, 1987] give the platitudes a hollow ring. Is there

really a theory (not just mathematics), or is there only

competing intuition?

You Can't Default on Theory

Kenneth D. Forbus

My feelings about progress in commonsense reason

ing are mixed. On one hand, there has clearly been

substantial progress. On the other, the main source

of the progress is research in qualitative physics, not

the studies of default and nonmonotonic reasoning

with which this panel is concerned. To me, identify

ing commonsense reasoning with default or nonmono

tonic reasoning seems both inappropriate and inadvis

able. It is inappropriate because default reasoning is

ubiquitous—expert doctors, scientists, and engineers

seem to use it just as often in their professional lives

as when crossing the street. It is inadvisable because

it misleads researchers into thinking they can find a

domain-independent "silver bullet" that will solve the

problem once and for all. To understand commonsense

reasoning involves understanding reasoning about the

physical, social, and mental worlds. While the exis

tence of general-purpose techniques for default reason

ing seems likely, they are not a substitute for having an

adequate theory of the domain to be reasoned about.

I think part of the malaise in the default/nonmono

tonic reasoning community is due to isolation from real

examples of the very phenomena they are trying to

capture. The Yale shooting non-problem is an exam

ple. The controversy seems to be that simple default

reasoning techniques do not suffice to capture our in

tuitions about change and the world. No one should

have been surprised by this. "Intuition" in this context

includes what we may more neutrally call a domain

model. Ignoring the need for such models is the root

of the confusion. The gun can't unload itself? How

do you know? Tomorrow's "brilliant weapons" might

well opt out of killing their owner by unloading them

selves. It is only our theory of guns—left out of the

problem formalization—which makes this conclusion

unreasonable.

It might seem surprising that studying particular

domains might lead to general insights more quickly

than directly attempting general formulations, but this

has been the case in qualitative physics. Qualitative

simulators have for years successfully reasoned about

change, using closed-world assumptions and employing

several different levels of knowledge to prune "anoma

lous extensions". Continuity, for example, is a partic

ularly powerful constraint on systems with continuous

aspects. When we get bogus results, we take it to

mean that our theory, domain model, or code is inad

equate, not that the whole enterprise is doomed. Last

year I successfully extended my temporal inheritance

techniques to include some kinds of reasoning about

changes caused by actions, thus demonstrating that

these techniques have promise for more general prob

lems. There is no shortage of problems remaining, but

the qualitative physics community is optimistic, unlike

the sample of default reasoners I've seen lately.

I believe research on default reasoning is very im

portant. However, if one is serious about formalizing

commonsense reasoning, one must necessarily focus on

that which commonsense is about. For instance, I ex

pect progress on reasoning about general actions to

rely on a better understanding of the notions of agency

and causality, not on yet hairier forms of circumscrip

tion. Research that formalizes the commonsense intu

itions in particular areas is a necessary complement to

studies of general formulations. Such interactions can

be useful to both sides: For instance, Winslett's possi

ble models approach to reasoning about change looks

like a promising way to further generalize the tech

niques used in qualitative physics. If the members of

default reasoning community can overcome a distaste

for the particular, I expect that the current crisis of

confidence will subside as more progress is made.

Thoughts on Nonmonotonic Reasoning

Matthew L. Ginsberg

Let me say first that I remain as enthusiastic as ever

regarding the eventual role in AI of commonsense rea

soning in general and nonmonotonic reasoning in par

ticular - both of these areas seem to have become ac

cepted as central to the eventual success of our disci

pline.

I have therefore chosen to focus on what strike me

as serious problems with current nonmonotonic work;

briefly put, I believe that we have put ourselves in a

position where it is almost impossible for our work to

be validated by anyone other than a member of our

small and ingrown subcommunity of AI.

The reason that this is so important is that valida

tion is what distinguishes science from alchemy. The

fundamental goal of constructing an intelligent artifact

(or turning lead into gold) is a grandiose and difficult
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engineering task. Enthusiastic pursuit of this ambition

is fine, but if we wish to lay claim to a scientific pur

suit, we must identify and solve subproblems that are

recognizably on the critical path between us and our

goal.

The early work on the formalization of commonsense

reasoning was motivated by concerns such as these.

More recently, however, we have lost track of our fun

damental objectives. Instead of focussing on the result

of applying our intuitions to a broad range of problems,

we have focussed on a few trivially simple examples.

Instead of remembering that we are an engineering dis

cipline and concentrating on implementations, we have

ignored our roots and concentrated solely on mathe

matics. (Consider the current fascination with model-

theoretic approaches to nonmonotonic inference.)

I am especially troubled by what seems to me to

be a trend not to formalize our intuitions, but to get

the "right" answers to a small set of simple problems.

What reason is there to believe that a formal system

designed in this fashion will be of use to the AI com

munity as a whole? I am aware, of course, that au

thors generally believe that they have formalized their

intuitions - this is why it always strikes me as sur

prising when there is a wealth of counterexamples to

their suggestions. How many people working on de

scribing action have actually attempted to implement

a planner using their ideas?

The issue here is one of validation. To overcome

these difficulties, I would suggest that simulated do

mains be constructed, and simulated agents should at

tempt to operate in those domains.2 These simulated

agents may fare well, and they may fare poorly; either

way, we will have learned something more significant

than their ability to cope with a now-tired suite of

simplistic examples. An effective alternative would be

for us to tackle reasoning problems of interest to the

industrial community.

To my mind, the nonmonotonic community needs

this ability to test its hypotheses in a rich environment

far more than it needs more progress on theoretical

issues. But for those who insist on continuing to work

in the paradigm we have developed, I would suggest

the following topics:

First, we need to understand causality. Philoso

phers have been wrestling with this for some time

(generally without success), but there is some rea

son to believe that we are more likely than they to

make progress - we have identified some specific ar

eas in which tractable problems appear to depend on

causal notions for their solution. The analysis of inher

ited/ domains would obviously be better, but opera

tion in actual domains is beyond the practical abilities of

existing robotic agents. Note also that we are assuming

that the designers of the agents and of the environment

are different; this will hopefully prevent the agents from

succeeding by exploiting loopholes in the simulation.

itance hierarchies is one such area; the formal meth

ods that have been presented here are struggling to

describe conditions under which the success of one de

fault causes the defeat of another. Reasoning about

action (especially coming to grips with the qualifica

tion problem) is another area where a causal under

standing of the domain is crucial.

Secondly, we need to effectively justify the eventual

role of nonmonotonic reasoning within AI itself. Non

monotonic methods were initially proposed as a way to

speed inference by allowing a reasoning system to jump

to default conclusions, but all of our formal work is

computationally intractable. We need to find and un

derstand situations in which some form of nonmono-

tonicity does lead to a computational speedup. Can

default rules, for example, somehow be used to focus

the search of a conventional theorem prover? Here is

an application where one can imagine that a failed con

sistency check might not matter as much as it does in

some other domains; if nonmonotonic representation

techniques could be used to give a declarative formal

ization of heuristic control rules, that would be signif

icant progress.

Very Brief Reflections

David Israel

Life

What are most people working on nonmonotonic

systems really working on? Defeasible reasoning.

What is defeasible reasoning? Here's a purely nega

tive, partial characterization: Defeasible reasoning is

reasoning in accordance with principles or rules of in

ference, not all of which are guaranteed to be sound

with respect to truth or validity. So it's what all of

us do most of the time. Some of the time, some of us

do some of it well—that is, produce episodes of good

defeasible reasoning. We'd like our systems to do as

well. What do we mean by this?

Here's another way to ask that question: If defeasi

ble rules or principles need not preserve truth or va

lidity (or even consistency?), what should they pre

serve? How about the property of being well-justified

or reasonable? A first, rough, account might go like

this: Imagine that all defeasible rules take the follow

ing form:

From T, infer a unless 6.

We model beliefs by sentences in some fixed £; a,

6 6 £, T C C. A defeasible rule is good just in case,

whenever every belief in T is well-justified, then belief

in a is, too, provided that belief in S isn't. For any

given pair < T, a >, there could many such defealers,

6. Also we are not distinguishing those defeaters that

count against inferring a by supporting -<a from those

that count against T's supporting a. (See [Pollock,

1987] for more on this.)
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But this is all rather bloodless. Imagine our agent is

interested in the question of a, has well-justified beliefs

that <j> for every <f> in T, and is quite unaware of any de-

featers. Then it's OK for the agent to infer a? Even if

there are, in fact, lots of defeaters that it really should

know about? Shouldn't it expend some energy in fig

uring out whether there are any defeaters? Imagine

now the situation changed in the following way: the

agent as yet has no good reason for believing any 6,

though it is aware that there are counterpossibilities.

How much energy should it expend on checking out

those <5's of which it is aware; surely they're not likely

to be equally damaging, if true. How much should

it expend in figuring out whether there any others?

Here the distinction between those that support ->a

and those that more directly undermine the justifica

tory connection between T and a might be important.

All this simply points in the direction of a cru

cial dimension of evaluation for a defeasible reason

ing system: the cost and benefits to an agent, with

given tasks to perform, in a given set of environ

ments, of acting on the basis of reasonable, though per

haps false, conclusions—sometimes in the face of unex

plored, though recognized, counterpossibilities. But,

of course, that's LIFE—not LOGIC.

Logic

Just a brief dissent from what looks to be a band

wagon. Defeasible reasoning, even as roughly charac

terized, sounds like a qualitative form of probabilis

tic or statistical inference, together with a rule of ac

ceptance. That sounds like an apt description of Re-

iter [Reiter, 1980]. But does it sound like a plausible

rendering of the minimization-based systems? Does

it sound like what's going in circumscription, or in

various forms of the closed-world assumption? And

conversely, what does defeasible reasoning, so charac

terized, have to do with minimizing the extensions of

predicates or formulae?

Think of McCarthy's original motivating examples:

the missionaries and cannibals puzzle; the role of in

duction principles and explicit second-order defini

tions, e.g., in characterizing the structure of the nat

ural numbers. The last is especially critical: does the

use of inductive definitions and their strengthenings—

to guarantee, say, that what is being captured is the

least fixed point—have anything to do with reasoning

by statistical or probabilistic inference?

We know there are some connections: the tech

nique of introducing, and then minimizing, abnormal

ity predicates allows one partially to mimic default rea

soning via minimization. And there are partial simu

lations in the other directions as well.

Still, we shouldn't be content with what still seems

a superficial unification. Various technical results

on the strength of minimization point to significant

differences. So, too, does the failure of even nor

mal default inference to be cumulatively transitive,

and hence to be representable by preferential model

structures. Then there is the arguably special case

of default-inheritance networks—see [Thomason and

Horty, 1989] for arguments to the effect that none of

the standard accounts is quite right for them.

Finally, there is the phenomenon of belief revision,

understood as encompassing cases in which some, at

least, of an agent's initial beliefs or "axioms" are

themselves vulnerable to revision. When modeled for

mally, such processes are worse than nonmonotonic;

they don't even satisfy Reflexivity. (See [Gardenfors,

1988] for more on belief revision.) In any case, this

is surely an important phenomenon, yet none of the

mainstream work on nonmonotonic reasoning touches

it directly. Maybe that's because it's too close to real

LIFE.

In conclusion:

• I second Matt Ginsberg's call for attempts at val

idating particular inference systems and policies

in (at least) somewhat realistic situations.

• Let at least a few flowers bloom and don't be too

hasty about stamping out what seem to be weeds.

In Defense of Tweety

Vladimir Lifschitz

Some members of the nonmonotonic community have

expressed dissatisfaction with the slow rate of progress

in this particular area of AI. It's high time, they say,

for Tweety to take off, for Fred to die, and for us

to move from these simplistic examples to something

more impressive and maybe even useful.

It seems to me that we still have a lot to learn from

Tweety and Fred. When the first nonmonotonic for

malisms were proposed in the late seventies, their au

thors illustrated their ideas by several simple problems

that would, they hoped, have elegant nonmonotonic

formalizations. In many cases, such formalizations in

deed have been found, but some of those early exam

ples still haven't been formalized.

For instance, John McCarthy's 1980 circumscription

paper begins with the analysis of the "missionaries and

cannibals" puzzle. This example hasn't been done yet.

At the end of the same paper McCarthy remarks:

"Circumscription may also be convenient for assert

ing that when a block is moved, everything that can

not be proved to move stays where it was. In the

simple blocks world, the effect of this can easily be

achieved by an axiom that states that all blocks ex

cept the one that is moved stay put. However, if there

are various sentences that say (for example) that one

block is attached to another, circumscription may ex

press the heuristic situation better than an axiom."

This is not merely the frame problem. This is a far

more serious challenge—the "ramification problem,"
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that hasn't been even tackled in the literature. (Sev

eral papers on this topic have been written, but noth

ing is published at this time, as far as I know.)

Maybe this is sad, but there is no point in ignoring

this fact and abandoning small unsolved problems in

favor of large unsolved problems.

I'd like to argue, on the other hand, that formal non

monotonic reasoning has made remarkable progress,

and that we have many reasons to be optimistic.

1. We have accumulated a precious collection of toy

examples that are "expandable," in the sense that, be

sides the basic formulation, each of them has many en

hanced versions. For instance, the Hanks/McDermott

shooting story originally illustrated the temporal pro

jection problem, but now its variants are used for

exploring ideas about temporal explanation, causal

anomalies, ramifications, concurrent actions, etc. This

creates a fine environment for debugging and sharp

ening our formalization tools (although an outside ob

server, hearing of Fred and Tweety over and over again

at each AI conference, may get the wrong impression

that no progress is being made).

2. The close relation between nonmonotonic for

malisms and logic programming has been demon

strated both by the theoretical analysis of the se

mantics of logic programs and by experiments with

the nonmonotonic reasoning systems based on the

ideas of logic programming. Nonmonotonic formalisms

were designed as the extensions of first-order logic

that make it more expressive; logic programming lan

guages were originally meant to be the subsets of first-

order logic that make it tractable. Paradoxically, sys

tems of both kinds happen to have much in common.

This is grounds for optimism regarding computational

nonmonotonic reasoning. On the other hand, recent

progress in understanding the declarative meaning of

"negation by failure" in logic programs and deductive

databases would have been impossible without the the

ory of nonmonotonic reasoning.

3. The best of what has been done in this area of

AI strikes me as the perfect blend of pure and applied

research, of mathematics and real life. The patterns

of commonsense reasoning that we are trying to for

malize can be easily explained without using a single

technical term. But some of the work on the proper

ties of nonmonotonic formalisms and on their relation

to each other has led to nontrivial technical mathe

matical results. You get the same feeling as when you

first learn about differential equations, or linear pro

gramming, or the analysis of algorithms—the feeling

of good, clean, healthy science.

4. The mathematics of nonmonotonic reasoning is

now understood much better than before, and this will

have a profound effect on the methodology of research

on the nonmonotonic aspects of commonsense knowl

edge. A few years ago, it was considered normal that

the author of a paper would write a few nice-looking

axioms and defaults, and stop there—without even

trying to check that the formalization actually pro

duced the expected results. He simply didn't know

how to do it. Now we are beginning to see formal

izations accompanied by the theorems that explain

precisely in what sense the formalizations are sound.

This approach, standard in research on the founda

tions of mathematics, guarantees that bugs of the sim

plest kind are uncovered before the paper is submitted

for publication.
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Abstract

The paper surveys several investigations into the

possibility of establishing sound probabilistic se

mantics for various aspects of nonmonotonic

reasoning. One such semantics, based on

infinitessimal probabilities and Adams' condi

tional logic, is discussed at length and shown ca

pable of serving as a universal core for a variety

of dialectic-based nonmonotonic logics.

1. Why Probabilistic Semantics?

Or, Conventions vs. Norms

In nonmonotonic logics, defeasible sentences are usually

interpreted as conversational conventions, as opposed to

descriptions of empirical reality [McCarthy 1986, Reiter

1987]. For example, the sentence "Birds fly" is taken to

express a communication agreement such as: "You and I

agree that whenever I want you to conclude that some

bird does not fly, I will say so explicitly; otherwise you

can presume it does fly." Here the purpose of the agree

ment is not to convey information about the world but

merely to guarantee that in subsequent conversations, all

conclusions drawn by the informed match those intended

by the informer. Once the agreement is accepted by an

agent, the meaning of the sentence acquires a disposition

al character: "If * is a bird and I have no reasons to

presume the contrary, then I am disposed to believe that x

flies." Neither of these interrelations invokes any statisti

cal information about the percentage of birds that fly nor

any probabilistic information about how strongly the

agent believes that a randomly chosen bird actually flies.

This work was supported in part by National Science

Foundation Grant #IRI-8610155 and Naval Research Grant

#N00014-87-K-2029.

However, the probabilistic statement

P [(Fly (x)\ Bird (x)] = High (to read: "If x is a bird, then

x probably flies") offers such a clear interpretation of

"Birds fly", that it is hard to refrain from viewing defeasi

ble sentences as fragments of probabilistic information.

With such declarative statements it is easier to define how

the fragments of knowledge should be put together

coherently, to characterize the set of conclusions that one

wishes a body of knowledge to entail, and to identify the

assumptions that give rise to undesirable conclusions, if

any.

The reasons are several. First, semantics has tradi

tionally been defined as a relation between the speaking

agent and entities external to the agent. Probabilistic in

formation is, by its very nature, a declarative summariza

tion of constraints in a world external to the speaker. As

such, it is empirically testable (at least in principle), it is

often shared by many agents, and conclusions are less

subject to dispute. Second, in many cases, it is the

transference of probabilistic knowledge that is the ulti

mate aim of common conversations, not the speaker's

pattern of dispositions (which are often arbitrary). In such

cases, the empirical facts that caused the agent to commit

to a given pattern of dispositions are more important than

the dispositions themselves, because it is those empirical

facts that the listening agent is about to confront in the fu

ture. Finally, being a centuries-old science, the study of

probabilistic inference has accumulated a wealth of

theoretical results that provide shortcuts between the se

mantics and the intended conclusions. This facilitates

quick generation of meaningful examples and counterex

amples, quick proofs of necessity and/or impossibility,

and thus, effective communication among researchers.

But even taking the extreme position that the only

purpose of default statements is to establish conversation

al conventions, probabilists nevertheless believe that, as

long as we are in the process formulating those conven

tions, we cannot totally ignore their empirical origin. Do
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ing so would resemble the hopeless task of formulating

qualitative physics in total ignorance of the quantitative

laws of physics, or, to use a different metaphor, designing

speech recognition systems oblivious to the laws of

phonetics.

The search for probabilistic semantics is motivated

by the assumption that the conventions of discourse are

not totally arbitrary, but rather, respect certain universal

norms of coherence, norms that reflect the empirical ori

gin of these conventions. Probabilistic semantics, by sum

marizing the reality that compelled the choice of certain

conventions over others, should be capable of revealing

these norms. Such norms should tell us, for example,

when one convention is incompatible with another, or

when one convention should be a natural consequence of

another, examples of both will be illustrated in Section 4.

The benefits of adopting probabilistic norms apply

not only to syntactical approaches to nonmonotonic rea

soning, but also to semantical approaches, such as those

based on preferential models [Shoham 1987]. Inferences

based on preferential models are much less disciplined

than those based on probability, because the preferences

induced on possible worlds are not constrained a priori,

and can, in general, be totally whimsical. Indeed, such a

wide range of syntactical approaches to nonmonotonic

reasoning can be formulated as variants of preferential

models [Shoham 1987], that highly sophisticated restric

tions must be devised to bring preferential models in line

with basic standards of rationality [Lehman and Megidor

1988] (see Section 6.2).

2. Nonmonotonic Reasoning Viewed as

Qualitative Probabilistic Reasoning.

To those trained in traditional logics, symbolic reasoning

is the standard, and nonmonotonicity a novelty . To stu

dents of probability, on the other hand, it is symbolic rea

soning that is novel, not nonmonotonicity. Dealing with

new facts that cause probabilities to change abruptly from

very high values to very low values is a commonplace

phenomenon in almost every probability exercise and, na

turally, has never attracted special attention among proba-

bilists. The new challenge for probabilists is to find ways

of abstracting out the numerical character of high and low

probabilities, and cast them in linguistic terms that reflect

the natural process of accepting and retracting beliefs.

Thus, while nonmonotonic reasoning is commonly

viewed as an extension to standard logic, it can also be

viewed as an exercise in qualitative probability, much like

physicists view current AI research in qualitative physics.

In research on qualitative reasoning, it is customary

to discretize and abstract real quantities around a few

"landmark" values [Kuipers 1986]. For example, the

value 0 defines the abstraction: positive, negative and

zero. In probability, the obvious landmarks are (0, V4, 1),

where 0 and 1 represent FALSE and TRUE, respectively,

and lA represents the neutral state of total ignorance.

However, direct qualitative reasoning about {0, 1}

reduces to propositional logic, while reasoning with the

intervals [0, V4] and [V4, 1] is extremely difficult — to

properly process pieces of evidence and determine if a

given probability should fall above xh requires almost the

full power of numerical probability calculus [Bacchus

1988].

Following the tradition of qualitative reasoning in

physics and mathematics, two avenues are still available

for qualitative analysis:

1. "Perturbation" analysis, to determine the direction of

CHANGE induced in the probability of one proposi

tion as a result of learning the truth of another, and

2. An "order-of-magnitude" analysis of proximities to

the landmark values.

The first approach has been pursued by Wellman [1987]

and Neufeld & Poole [1988], and the second by Adams

[1975], Spohn [1988], Pearl [1988] and Geffner [1988].

2.1 Perturbation Analyses

Both Wellman [1987] and Neufeld & Poole [1988] inves

tigated the logic behind the qualitative relation of

influence or support, namely, the condition under which

the truth of one proposition would yield an increase in the

probability of another. Wellman's analysis focuses on

variables with ordered domains (e.g., "An increase in

quantity a is likely to cause an increase in quantity b .")

as a means of providing qualitative aids to decisions,

planning and diagnosis. Neufeld and Poole, focused on

the relation of confirmation between propositions (e.g.,

Quaker(Nixon) adds confirmation to Pacifist(Nixon) ), and

viewed this relation as an important component of default

reasoning.

Both approaches make heavy use of conditional in

dependence and its graphical representation in the form of

Bayesian networks or influence diagrams [Pearl 1988].

The reason is that, if we define the relation "A supports

B" (denoted 5 04,5)) as

S(A,B) iff P(BIA)>P(B), (1)

then this definition in itself is too weak to yield interesting
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inferences. For example, whereas we can easily show

symmetry S (A , B ) <=> S(B , A ) and contraposition

S (A, B) <=> S(-B,-A), we cannot conclude cumula-

tivity (i.e. that 5 (A aB,C) follows from S(A,B) and

S (A , C)), nor transitivity (i.e., that 5 (A , C) follows from

S (A , B ) and S (B , C)). For the latter to hold, we must as

sume that C is conditionally independent of A , given B ,

P(C\A,B)=P(C\B), (2)

namely, that knowledge of A has no influence on the pro

bability of C , once we know B .

Conditional independence is a 3-place nonmonotonic

relationship that forms a semi-graphoid [Pearl and Verma

1987, Pearl 1988]. Semi-graphoids are structures that

share some properties of graphs (hence the name) but, in

general, are difficult to encode completely, in a compact

way. The assumption normally made in probabilistic rea

soning (as well as in most nonmonotonic logics, though

not explicitly) is that if we represent dependence relation

ships in the form of a directed (acyclic) graph, then any

link missing from the graph indicates the absence of

direct dependency between the corresponding variables.

For example, if we are given two defeasible rules, a -» b

and b -> c , we presume that a does not have any direct

bearing on c , but rather, that c is independent of a , given

the value of b . An important result from the theory of

graphoids states that there is indeed a sound and complete

procedure (called d -separation) of inferring conditional

independencies from such a graph. However, this re

quires that the graph be constructed in a disciplined,

stratified way: Every variable x should draw arrows from

all those perceived to have direct influence on x, i.e.,

those that must be known to render x independent of all

its predecessors in some total order (e.g., temporal). In

practice, this presumes that the knowledge provider has

taken pains to identify all direct influences of each vari

able in the system.

Neufeld and Poole have assumed that if we take iso

lated default statements and assemble them to form a

directed graph, the resulting graph would display all the

dependencies that a stratified graph would. Unfortunately,

this is not always the case, and may lead to unsound con

clusions. For example, from the defaults A -> B ,

C -»-<B, we will conclude (using the d -separation cri

terion) that A is independent of C (there is no directed

path between A and C). In reality, however, any two

classes A and C whose members differ substantially in

one typical property (B vs. -£), cannot be totally in

dependent.

Wellman has circumvented this difficulty by starting

from a well structured Bayesian network, and by defining

"support" in a more restrictive way. Instead of Eq. (1),

Wellman's definition reads:

S+(a,b,G) iff P(B\A,x)ZP(B\x) (3)

where 5+(a ,b,G) stands for "a positively influences b ,

in the context of graph G ", and the inequality should hold

for every valuation x of the direct predecessors of b (in

G ). This stronger definition of support defines, in fact, the

conditions under which inferences based on graphically-

derived dependencies are probabilistically sound. Com

pared with the system of Neufeld and Poole, soundness is

acquired at the price of a more elaborate form of

knowledge specification, namely, the structure of a Baye

sian network.

2.2 Infinitesimal Analysis

Spohn [1989] has introduced a system of belief revision

(called OCF for Ordinal Conditional Functions) which re

quires only integer-value addition, and yet retains the no

tion of conditionalization, a facility that makes probability

theory context dependent, hence nonmonotonic.

Although Spohn has proclaimed OCF to be "non-

probabilistic," the easiest way to understand its power and

limitations is to interpret OCF as an infinitesimal (i.e.,

non-standard) analysis of conditional probabilities.

Imagine an ordinary probability function P defined

over a set W of possible worlds (or states of the world),

and let the probability P (vv) assigned to each world w be

a polynomial function of some small positive parameter e,

for example, a, Pe, ye2 etc. Accordingly, the proba

bilities assigned to any subset A of W , as well as all con

ditional probabilities P(A\B), will be rational functions

of e. Now define the OCF function k(A IB ) as

k(A IB).- lowest n such that lim P(A\B)/e" is finite

£->0

In other words, k(AIB) = /i iff P(A\B) is of the same

order as e", or equivalendy, k(AIB) is of the same

order-of-magnitude as [P(A IB)]-1.

If we think of n for which P (w ) = e" as measuring

the degree to which the world w is disbelieved (or the de

gree of surprise were we to observe w), then k(A IB) can

be thought of as the degree of disbelief (or surprise) in A ,

given that B is true. It is easy to verify that k satisfies the

following properties:

1. K(A) = min {k(w)Iw g A)

2. K(A) = 0orK(-,A) = 0,orboth
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3. k(A u B ) = min {k(A ), k(B ) }

4. k(A nB) = K(A\B) + K(B)

These reflect the usual properties of probabilistic combi

nations (on a logarithmic scale) with min replacing addi

tion, and addition replacing multiplication. The result is a

probabilistically sound calculus, employing integer addi

tion, for manipulating order-of-magnitudes of disbeliefs.

For example, if we make the following correspondence

between linguistic quantifiers and e" :

/>(A) = e° A is believable k(A) = 0

P(A) = e1 A is unlikely k(A) = 1

P(A) = e2 A is very unlikely k(A) = 2

P(A) = e3 A is extremely unlikely k(A) = 3

then Spohn's system can be regarded as a nonmonotonic

logic to reason about likelihood (contrast with the modal

logic of Halpem and Rabin [1987]). It takes sentences in

the form of quantified conditional sentences, e.g., "Birds

are likely to fly", "Penguins are most likely birds",

"Penguins are extremely unlikely to fly," and returns

quantified conclusions in the form of "If Tim is a

penguin-bird then he is extremely unlikely to fly"

The weakness of Spohn's system, shared by numeri

cal probability, is that it requires the specification of a

complete probabilistic model before reasoning can com

mence. In other words, we must specify the k associated

with every world w. In practice, of course, such

specification need not be enumerative, but can use the

decomposition facilities provided by Bayesian networks.

However, this too might require knowledge that is not

readily available in common discourse. For example, us

ing the language of defaults, we must specify

K(p\xi,x2, .... xm) for each proposition p, where

Xi,x2, ... ,xn represents any valuation of the antecedents

of all defaults of the form xt —» p. No symbolic

machinery is provided for drawing conclusions from par

tially specified models, for example, from those that asso

ciate a k merely with each individual default. Such

machinery is provided by the conditional logic of Adams

[1975], to be discussed next.

Adams' logic can be regarded as a variant of Spohn's

OCF system, with input sentences specifying k values of

only 0 and 1. However, instead of insisting on a complete

specification, the logic admits fragmentary statements of

conditional probabilities, treats them as constraints over

the distribution of k, and infers only such statements that

are compelled to acquire high likelihood by virtue of

these constraints.

Due to its importance as a bridge between probabilis

tic and logical approaches, we will provide a more com

plete introduction to Adams' logic, using excerpts from

Chapter 10 of [Pearl 1988]. We will see that the seman

tics of infinitesimal probabilities (called e-semantics in

[Pearl 1988]) leads to a two-level architecture for non

monotonic reasoning :

1. A conservative, consistency-preserving core, em

ploying a semi-monotonic logic, and producing only

inferences that are actually entailed by the input in

formation.

2. An adventurous shell, sanctioning a larger body of

less grounded inferences. These inferences reflect

probabilistic information that is not included in the

input, yet, based on familiar patterns of discourse,

can reasonably be assumed to be implicit in the input.

3. The Conservative Core

3.1 E -Semantics

We consider a default theory T = <F , A> in the form of

a database containing two types of sentences: factual sen

tences (F) and default statements (A). The factual sen

tences assign properties to specific individuals; for exam

ple, p (a ) asserts that individual a has the property p .

The default statements are of the type "p 's are typically

^'s", written p(x) -» q(x) or simply p -*q, which is

short for saying "any individual x having property;? typi

cally has property q ". The properties p,q,r • •• can be

compound boolean formulas of some atomic predicates

P\,P2f- Pn> wiln x as their only free variable. However,

no ground defaults (e.g., p(a) -> q(a)) are allowed in F

and no compound defaults (e.g., p -*(g -»r)) are al

lowed in A. The default statement S' : p -»-*7 will be

called the denial of S : p —> q .

Nondefeasible statements such as "all birds are an

imals" will be written

Birds (x ) a -1 Animal (x ) -> FALSE . This facilitates the

desirable distinction between a generic rule

p(x)=>q(x) (to be encoded in A as

p a-i<7 -» FALSE) and a factual observation

p(a)z>q(a), which must enter F as ->p vq. Indeed,

the information [p(a),p(x)=> q(x)} will give rise to

totally different conclusions (about a) than

( p (a ), -1 p (a ) v q (a ) ] , in conformity with common use

of conditionals. (A more natural treatment of nondefcasi
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ble conditionals, retaining their rule-like character, is

given in [Goldszmidt and Pearl 1989]).

Let L be the language of propositional formulas, and

let a truth-valuation for L be a function t , that maps the

sentences in L to the set {1,0}, (1 for TRUE and 0 for

FALSE,) such that t respects the usual Boolean connec

tives. To define a probability assignment over the sen

tences in L , we regard each truth valuation t as a world w

and define P(w) such that %nvP(w) = *■ This assigns a

probability measure to each sentence s of i via

r(s) = zwPMW(s).

We now interpret A as a set of restrictions on P , in

the form of extreme conditional probabilities,

infinitcsimally removed from cither 0 or 1. For example,

the sentence Bird (x) -> Fly (x) is interpreted as

P (Fly (x ) I Bird (x )) > 1 - e. e is understood to stand for

an infinitesimal quantity that can be made arbitrarily

small, short of actually being zero.

The conclusions we wish to draw from a theory

T = <F , A> are, likewise, formulas in L that, given the

input facts F and the restrictions A, are forced to acquire

extreme high probabilities. In particular, a propositional

formula r would qualify as a plausible conclusion of T,

written F \i r , whenever the restrictions of A force P to

satisfy WmP(r IF) = 1.

c-tO

It is convenient to characterize the set of conclusions

sanctioned by this semantics in terms of the set of facts-

conclusion pairs that are entailed by a given A. We call

this relation t-cntailment (1) formally defined as follows:

Definition: Let VA c stand for the set of distributions

licensed by A for any given e, i.e.,

TAit-=\p:P (v!m)> 1-e if «->v€aI (4)

A conditional statement S: p —> q is said to be e-entailed

by A, if every distribution P £ ?4i£ satisfies

P(q\p)=\-0 (e), (i.e., for every 8 > 0 there exists a

e > 0 such that

P(q\p)>\-h).

every P e TA e would satisfy

( ' Adams (1975) named this p -entailment. However, £-

cntailment better serves to distinguish this from weaker forms of

probabilistic entailment, Section 4.

In essence, this definition guarantees that an e-

entailed statement S is rendered highly probable whenev

er all the defaults in A are highly probable. The connec

tion between e-entailment and plausible conclusions, is

simply:

F fi r iff (F -» r) is E-entailed by A

3.2 Axiomatic Characterization

The conditional logic developed by Adams [1975] faith

fully represents this semantics by qualitative inference

rules, thus facilitating the derivation of new sound sen

tences by direct symbolic manipulations on A. The

essence of Adams' logic is summarized in the following

theorem, restated for default theories in [Geffner and

Pearl 1988].

Theorem 1: Let T = <F , A> be a default theory where

F is a set of ground proposition formulas and A is a set of

default rules, r is a plausible conclusion of F in the con

text of A, written F \i r, iff r is derivable from F using

the following rules of inference:

Rule 1 (Defaults) (p -» q ) e A => p fj q

Rule 2 (Logic Theorems) p z> q => p\g q

Rule 3 (Cumulativity) p [j q , p \i r ==> (p a q ) [j r

Rule 4 (Contraction) p\zq,(p ^q)\^r => p \z r

Rule 5 (Disjunction) p (j r , q \^ r ==> (p v q ) |j r

Rule 1 permits us to conclude the consequent of a de

fault when its antecedent is all that has been learned.

Rule 2 states that theorems that logically follow from a

set of formulas can be concluded in any theory containing

those formulas. Rule 3 (called triangularity in [Pearl

1988] and cautious monotony in [Lehman 1988]) permits

the attachment of any established conclusion (q) to the

current set of facts (p), without affecting the status of any

other derived conclusion (r). Rule 4 says that any con

clusion (r) that follows from a fact set (p) augmented by

a derived conclusion (q) also follows from the original

fact set alone. Finally, rule 5 says that a conclusion that

follows from two facts also follows from their disjunc

tion.

Some Meta-Theorems

T-l (Logical Closure) p\^ q,p Aq z>r => p [j r

T-2 (Equivalent Contexts) p = q , p fj r => q\^r

T-3 (Exceptions) p Aqkr>plz->r => pk^q

T-4 (Right Conjunction) p t r,p (j q => p\iq at
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Some Non-Theorems:

(Transitivity) p => q ,q\ir => p \z r

(Left Conjunction) p \i r , q |j r => p a q \g r

(Contraposition) p \i r=> -ir \i -<p

(Rational Monotony)

pb r, NOT(pb-<7) =>P Atfhrr

This last property (similar to CV of conditional logic)

has one of its antecedents negated, hence, it does not yield

new consequences from A. It is, nevertheless, a desirable

feature of a consequence relation, and was proposed by

Makinson as a standard for nonmonotonic logics [Lehman

and Megidor 1988]. Rational monotony can be esta

blished within probabilistic semantics if we interpret

p -» q as an OCF constraint K(q\p) < K(-,q \p).

The reason transitivity, positive conjunction, and

contraposition are not sanctioned by the e-semantics is

clear: There are worlds in which they fail. For instance,

transitivity fails in the penguin example — all penguins

arc birds, birds typically fly, yet penguins do not. Left

conjunction fails when p and q create a new condition

unshared by either p or q. For example, if you marry

Ann (p) you will be happy (r), if you marry Nancy (q)

you will be happy as well (r), but if you marry both

(p a <?), you will be miserable (—>r). Contraposition fails

in situations where —>p is incompatible with —r . For ex

ample, let p —» r stand for Birds —> Fly . Now imagine a

world in which the only nonflying objects are a few sick

birds. Clearly, Bird -» Fly holds, yet if we observe a

nonflying object we can safely conclude that it is a bird,

hence —or —> p , defying contraposition.

Theorem 2 (A-monotonicity): The inference system

defined in Theorem 1 is monotonic relative to the addition

of default rules, i.e.,

if p (7 r and A q A', then p b r

The proof follows directly from the fact that FA>E c P&,e

because each default statement imposes a new constraint

on P&iE. Thus, the logic is nonmonotonic relative to the

addition of new facts (in F ) and monotonic relative to the

addition of new defaults (in A). Full nonmonotonicity will

be exhibited in Section 4, where we consider weaker

forms of entailment.

3.3 Consistency and Ambiguity

An important feature of the system defined by Rules 1-5

is its ability to distinguish theories portraying inconsisten

cies (e.g., <p -*q,p ->—q>), from those conveying

ambiguity (e.g., <p(a) Aq(a),p ->r,q -*—t>, and

those conveying exceptions (e.g.,

<p(a)/\q(a),p ->-.<7>).

Definition: A is said to be t-consistent if T^ £ is non

empty for every e > 0, else, A is e-inconsistent. Similarly,

a set of default statements {SJ is said to be e-consistent

with A if A u {So} is e-consistent.

Definition: A default statement S is said to be ambigu

ous, given A, if both S and its denial are consistent with

A.

Theorem 3 (Adams, 1975): - If A is e-consistent, then a

statement S :p —» ^ is e-entailed by A iff its denial

S' : p -» -1 q is e-inconsistent with A.

In addition to Rules 1-5 of Theorem 1, the logic also

possesses a systematic procedure for testing e-consistency

(hence, e-entailment), similar to the method of truth-table

proofs in propositional calculus.

Definition: Given a truth- valuation 1, a default statement

p —¥ q is said to be verified under t if t assigns the value

1 to both p and q . p -» q is said to be falsified under I if

p is assigned a 1 and q is assigned a 0.

Theorem 4 (Adams, 1975): Let A be a finite set of de

fault statements. A is e-consistent iff for every non-empty

subset A' of A there exists a truth-valuation t such that no

statement of A' is falsified by t and at least one is verified

under t .

When A can be represented as a network of default

rules, the criterion of Theorem 4 translates into a simple

graphical test for consistency:

Theorem 5 (Pearl, 1987a): Let A be a default network,

i.e., a set of default statements p -*q where both p and

q are atomic propositions (or negation thereof). A is con

sistent iff for every pair of conflicting arcs p\-*q and

1 . p 1 and p 2 are distinct, and

2. There is no cycle of positive arcs that embraces both

px andp2-

Theorem 5 generalizes Touretzky's (1986) consisten

cy criterion to networks containing cycles as well as arcs

emanating from negated proposition, (e.g., —p—>q).



Probabilistic Semantics for Nonmonotonic Reasoning: A Survey 511

3.4 Illustrations

To illustrate the power of e -semantics and, in particular,

the syntactical and graphical derivations sanctioned by

Theorems 1, 3 and 5, consider the celebrated "Penguin

triangle" of Figure 1.

Fly if)

Penguin (p)

 

Bird (b)

T comprises the sentences:

F = {Penguin (Tweety), Bird (Tweety)},

A = {Penguin -> —ifly , Bird -> Fly , Penguin —» Bird};

Although A does not specify explicitly whether penguin-

birds fly, the desired conclusion is derived in three steps,

using Rule 1 and 3 of Theorem 1:

1. Penguin (Tweety) [j -iFly (Tweety) (from Rule 1)

2. Penguin (Tweety) |j Bird (Tweety) (from Rule 1)

3. Penguin (Tweety), Bird (Tweety) (x —Fly (Tweety)

(Applying Rule 3 to lines 1, 2)

Note that preference toward subclass specificity is main

tained despite the defeasible nature of the rule

Penguin ->Bird, which admits exceptional penguins in

the form of non-birds.

We can also derive this result using Theorems 3 and

4 by showing that the denial of the conclusion

p a b —>—i/ is e-inconsislcnt with

A= {p -> —if,b ->f,p -> b) .

Indeed, no truth-valuation of [p,b,f] can verify any

sentence in

A = { p ->->f,p -*b,p Ab -»/ }

without falsifying at least one other sentence.

Applying theorem T-3 to the network of Figure 1

yields another plausible conclusion. Bird -> -> Penguin ,

stating that when one talks about birds one does not have

penguins in mind, i.e., penguins are exceptional kind of

birds. It is a valid conclusion of A because every P in

2^ E must yield P(p\b) = 0 (e). Of course, if the state

ment Bird —» Penguin is artificially added to A, incon

sistency results; as e diminishes below a certain level (1/3

in our case), 2"A| £ becomes empty. This can be predicted

from purely topological considerations (Theorem 5),

since adding the arc Bird —> Penguin would create a cy

cle of positive arcs embracing "bird" and "penguin",

and these sprout two conflicting arcs toward "fly".

Moreover, Theorem 3 implies that if the network be

comes inconsistent by the addition of S then that network

e-entails its denial, S '. Hence, the network of Figure 1 e-

entails Bird -» -Penguin . By the same graphical

method one can easily show that the network also e-

entails the natural conclusion, Fly -»-i Penguin. This

contraposition of Penguin —» -i Fly is sanctioned only

because the existence of flying objects that are not

penguins (i.e., normal birds) is guaranteed by the other

rules in A.

4. The Adventurous Shell

The preceding adaptation of Adams' logic of conditionals

yields a system of defeasible inference with rather unique

features:

1. The system provides a formal distinction between ex

ceptions, ambiguities and inconsistencies and offers

systematic methods of maintaining consistency in da

tabases containing defaults.

2. Multiple extensions do not arise and preferences

among arguments (e.g., toward higher specificity) are

respected by natural deduction.

3. There is no need to specify abnormality relations in

advance (as in circumscription); such relations (e.g.,

that penguin are abnormal birds) are automatically

inferred from the input.

However, default reasoning requires two facilities:

one which forces conclusions to be retractable in the light

of new refuting evidence; the second which protects con

clusions from retraction in the light of new but irrelevant

evidence. Rules 1-5 excel on the first requirement but fail

on the second (The opposite is true in default logics). For

instance, in the example Fig. 1, if we are told that Tweety

is also a blue penguin, the system would retract all previ
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ous conclusions (as ambiguous), even though there is no

rule which in any way connects color to flying.

The reason for this conservative behavior lies in our

insistence that any issued conclusion attains high proba

bility in all probability models licensed by A and one such

model reflects a world in which blue penguins do fly. It is

clear that if we want the system to respect the communi

cation convention that, unless stated explicitly, properties

are presumed to be irrelevant to each other, we need to

restrict the family of probability models relative to which

a given conclusion must be checked for soundness. In

other words, we should consider only distributions which

minimize dependencies relative to A, i.e., they embody

dependencies which are absolutely implied by A, and

none others.

4.1 The Maximum-Entropy (ME) Approach

A traditional way of defining a minimal dependency ex

tension to a given set of constraints is to invoke the

maximum-entropy (ME) method [Jaynes 1979]. The

method amounts to selecting from !PA>E a single-

distribution, PA E , defined by

H(P^E)>H(P) V/>Ef4E

where H(P) is the entropy function

H[P(w)]=-J^,P(w)\ogP(w)

The definition of entailment would then invoke ^j in

stead of 2\ E, and would yield:

Definition: A theory T = <F , A> weakly-entails a con

clusion r , written F \f r , iff

limP4e(rlF)=l.

E-»0

e-cntailment clearly subsumes weak entailment, because

" A.C e ^A. E-

When applied to small default system, the ME

method yields patterns of reasoning which are rather per

vasive in common discourse. For example, if a theory T

involves only three primitive propositions p , q , and r , the

ME approach gives rise to the following patterns of rea

soning:

(1) Accepting Irrelevant Properties (Strengthening

the Antecedents)

If A={<7->r), then q *p\i r

(2) Mediated Inheritance (Weak Transitivity)

If A= {p -+q,q ->r), then p \* r

(3) Left Conjunction

If A= [p ->r,q -»r), then p Aq[* r

(4) Contraposition

If A = {p —> r } , then —r (j —,p

Applying the ME principle to larger systems reveals

intriguing phenomena and challenging possibilities. For

example, if the link in Figure 1 between Penguin and

Bird is mediated by an intermediate property, say Winged

animal, the conclusion -xFly (Tweety) still follows from

F= [Penguin (Tweety), Bird (Tweety)}. In other words,

the intermediate property seems not to weaken the cumu-

lativity rule which gives priority to subclasses over su

perclasses. Strangely, however, the conclusion

Bird (Tweety) no longer follows from F =

[Penguin (Tweety)}. Two competing arguments (paths)

now lead from Penguin to Bird ; transitivity sanctions the

path Penguin —> Winged animal —» Bird , and contrapo

sition sanctions Penguin -» —Fly —» —Bird . As a result,

Tweety's "birdness" becomes ambiguous.

4.2 Dialectic Approaches

The ME approach has several shortcomings, one being its

improper handling of causation [Hunter 1988, Pearl

1988], the second being its computational complexity; no

body yet has been able to extract from this semantics a

complete system of qualitative axioms similar to those en

capsulating e-semanucs.

Dialectic approaches attempt to supplement the pro

babilistic interpretation of defaults with a set of assump

tions about conditional independence drawn on the basis

of the syntactic structure of A. For a default p ->q, these

approaches assume the probability of q to be high not

only when p is all that is known, but also in the presence

of an additional body of evidence which does not provide

an argument against q. This interpretation is closer in

spirit to the syntactic approaches to non-monotonic rea

soning proposed by Reiter [1980] and McDermott and

Doyle [1980], which allow to infer q from p in the ab

sence of 'proofs' for -. q .
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In the systems reported in [Geffner and Pearl 1987]

and [Geffner 1988] these ideas take the form of an addi

tional inference rule, similar to:

Rule 6: Irrelevance

If p —> r e A and I&(q ,->r\p) , then p a q |j r ,

where the predicate /A (q , -> r \p), which reads: "q is ir

relevant to -i r given p ," expresses the conditional in

dependence P (r \p ) = P (r \p , q).

The mechanism for evaluating the irrelevance predi

cate I&(q ,—>r\p) appeals to the set \\r' of wffs formed by

converting each default p -> q in A into a corresponding

material implication p => q . In essence, q is then said to

be relevant to -i r given p , if there is a a set x/ of impli

cations in y which permit an argument for -i r to be

constructed, i.e if y^,p,q h-,r, with the set of wffs

Y u p , (7 being logically consistent. The set \f is called

the support of the argument for -i r . If <? is not relevant

to -i r given p , then <? is assumed to be irrelevant to->r

in that context, and I&(q,—<r\p) thus holds.

This simple extension permits us to infer, for in

stance, that red birds arc likely to fly given a default stat

ing that birds fly, as 'redness' does not induce any argu

ment in support of not flying. Further refinements are in

stalled to insure that arguments for —> r that are blocked

by p (or its consequences) do not bear on the predicate

/A. With this refinement, most examples analyzed in the

literature yield the expected results.

Dialectic approaches constitute an alternative way of

extending the inferential power of the core set of proba

bilistic rules. An advantage of these approaches over

those based on maximum entropy is intelligibility: deriva

tions under this approach can usually be justified in a

more natural fashion. On the other hand, these ap

proaches lack the foundational basis of a principle like

maximum entropy, making it difficult to justify and make

precise the form these extensions should take.

5. Do People Reason with Extreme

Probabilities (or Lotteries and

other Paradoxes of Abstraction)

Ncufeld and Poole [1988] have raised the following ob

jection (so-called "Dingo Paradox") in connection with

the theorem of exceptions (T-3). We saw that the

penguin triangle (Fig. 1) sanctions the conclusion

Bird -> -i Penguin by virtue of the fact that penguins are

an exceptional class of birds (relative to flying). Similar

ly, if "sandpipers" are birds that build nests in sand, we

would conclude Bird —> -i Sandpiper . Continuing in this

manner through all types of birds, and assuming that

every subclass of birds has a unique, distinguishing trait,

we soon end up with the conclusion that birds do not exist

— birds are not penguins, not sandpipers, not canaries...,

thus ruling out all types of birds.

This paradox is a variant of the celebrated Lottery

Paradox [Kyburg 1961]: Knowing that a lottery is about

to have one winner is incompatible with common beliefs

that each individual ticket is, by default, a loser. Indeed,

the criterion provided by e-semantics would proclaim the

overall set of such statements e-inconsistent, since the set

of conditional probabilities

P (Loser (x)\ Ticket (x))> 1-e x = 1,2 N

cannot be satisfied simultaneously for e < 1IN . Perlis

[1987] has further shown that every default logic is bound

to suffer from some version of the lottery paradox if we

insist on maintaining deductive closure among beliefs.

Are these paradoxes detrimental to e-semantics, or to

nonmonotonic logics in general? I would like to argue

that they are not. On the contrary, I view these paradoxes

as healthy reminders that in all forms of reasoning we are

dealing with simplified abstractions of real-world

knowledge, that we may occasionally step beyond the

boundaries of one abstraction and that, in such a case, a

more refined abstraction should be substituted.

Predicate logic and probability theory are two such

abstractions, and e-semantics offers an abstraction that is

somewhere between logic and probability. It requires less

input than probability theory (e.g., we need not specify

numerical probabilities), but more input than logic (e.g.,

we need to distinguish between defaults, a ->b, and

facts, -i a v b). It is more conservative than logic (e.g., it

does not sanction transitivity), but more adventurous than

probability theory (e.g., it admits conclusions even if their

probabilities approach 1 very slowly, such as = (1 - e)*'.

Each abstraction constitutes an expedient

simplification of reality, tailored to serve a specialized set

of tasks. Each simplification is supported by a different

symbol processing machinery and by a set of norms, to

verify whether the simplification and its supporting

machinery are still applicable. The lottery paradox

represents a situation where e-semantics no longer offers

a useful abstraction of reality. Fortunately, however, the

consistency norms help us identify such situations in ad

vance, and alert us (in case our decisions depend critically

on making extensive use of the disjunction axiom) that a

finer abstraction should be in order (perhaps OCF or full
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ledge probability theory).

Probabilities that are infinitesimally close to 0 and 1

are very rare in the real world. Most default rules used in

ordinary discourse maintain a non-vanishing percentage

of exceptions, simply because the number of objects in

every meaningful class is finite. Thus, a natural question

to ask is, why study the properties of an abstraction that

applies only to extreme probabilities? Why not develop a

logic that characterizes moderately high probabilities, say

probabilities higher than 0.5 or 0.9 — or more ambitious

ly, higher than a, where a is a parameter chosen to fit the

domains of the predicates involved? Further, why not

develop a logic that takes into account utility information,

not merely probabilities, thus formalizing reasoning about

actions, in addition to beliefs [Doyle 1988]?

The answer is that any such alternative logic would

be extremely complicated; it would need to invoke many

of the axioms of arithmetics, and would require more in

formation than is usually available. Almost none of the

patterns of reasoning found in common conversation will

remain sound relative to such semantics. Take, for exam

ple, the logic of "majority," namely, interpreting the de

fault rule a —> b to mean "The majority of a 's are b 's,"

or P (b I a ) > 0.5. Only the first two axioms of Theorem 1

remain sound in this interpretation. Even the cumulativity

axiom, which is rarely disputed as a canon of default rea

soning, is flatly violated by some proportions (e.g.,

(p /\q)lp =51%, (p a/-)//j = 51%, ->q A-ir =0, giv

ing (p a q a r)/(p /\q) = 2%.

How, men, do people reason qualitatively about pro

perties and classes, proportions and preferences? It ap

pears that, if the machinery invoked by people for such

tasks stems from approximating numerical information by

a set of expedient abstractions, then the semantics of ex

treme probabilities is one of the most popular among

these abstractions. The axioms governing this semantics

(i.e., Rules 1-5, Theorem 1) appears to have been

thoroughly entrenched as inference rules in plausible rea

soning. For example, from the sentences "Most students

arc males" and "Most students will get an A," the cumula

tivity axiom would infer "Most male students will get an

A." This conclusion can be grossly incorrect, as shown in

the example above, yet it is a rather common inference

made by people, given these two inputs. Separating utili

ties from probabilities is another useful abstraction, com

monly used in reasoning about actions.

Important information about the logic chosen by peo

ple to reason about proportions and actions is provided by

many so called "paradoxes" of statistics. Take, for in

stance, the celebrated Simpson's Paradox [Simpson

1951]. It involves a hypothetical test of the effectiveness

of a certain drug on a population consisting of males and

females, and the numbers are contrived so that this drug

seems to work on the population as a whole, but it has an

adverse effect on males and an adverse effect on females.

A person's first reaction would normally be that of

surprise. Only when we look at the numbers and agree to

interpret the phrase "has a positive effect" as a statement

about an increase in the ratio of recovery to non-recovery

cases do we begin to see that the calculus of proportions

clashes with our intuitive predictions. The surprise with

which people react to Simpson's Paradox suggests that

the disjunction axiom (Rule 5) has been adopted as one of

the canons of plausible reasoning. While this axiom is

not sound relative to the semantics of increased propor

tions (which is also the semantics of "support" as in Eq.

(1)), it is sound relative to the e-semantics. In conclusion,

it appears that the machinery of plausible reasoning is

more in line with the rules of "almost-all" logic than with

those of "support" or "majority" logics.

6. Relations to Possible Worlds Approaches

6.1 The Most Probable World Approach

A straightforward way of relating probabilistic methods to

possible worlds approaches is to assume that we have a

probability function P defined on the set W of possible

worlds, and that at any state of knowledge, beliefs are ful

ly committed to a world that has the highest probability.

Formally, let W* c W be the set of most probable worlds,

W* = {w' I P(w')>P(w)Vw e W] ,

A proposition A is believed if A holds in some w' e W* .

To maintain coherence, we also demand that any set of

propositions that are simultaneously believed, must hold

in the same w* . Non-monotonic behavior is obtained by

conditionalization; given a body of evidence (facts) e , the

probability function P(w) shifts to P(w\e) and this

yields a new set of most probable worlds

W* = {w' \ P(w' \e)>P(w \e)V w e W]

which, in turn, results in a new set of beliefs.

This approach was explored in [Pearl 1987b] where a

world was defined as an assignment of values to a set of

interdependent variables (e.g., assignment of TRUE -

FALSE values to a set of diseases in medical diagnosis),

and the worlds in W* were called most probable explana

tions (MPE). It was shown that the task of finding a most

probable explanation to a body of evidence is no more

complex than that of computing the probability of a single
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proposition. In singly-connected networks (directed trees

with unrestricted orientation) the task can be accom

plished in linear time, using a parallel and distributed

message-passing process. In multiply-connected net

works, the problem is NP-hard, however, clustering, con

ditioning and stochastic simulation techniques can offer

practical solutions in reasonable time if the network is re

latively sparse. Applications to circuit diagnosis are

described in [Geffner & Pearl 1987, Pearl 1988].

The MPE approach provides a bridge between proba

bilistic reasoning and nonmonotonic logic. Like the

latter, the method provides systematic rules that lead from

a set of factual sentences (the evidence) to a set of conclu

sion sentences (the accepted beliefs) in a way that need

not be truth-preserving. However, whereas the input-

output sentences are categorical, the medium through

which inferences are produced is numerical, and the

parameters needed for complete specification of P(w)

may not be readily available. In modeling digital circuits

this problem is not too severe, because all internal rela

tionships are provided with the system's specifications.

However, in medical diagnosis, as well as in reasoning

about everyday affairs, the requirement of specifying a

complete probabilistic model is too cumbersome and can

be justified only in cases where critical decisions are at

stake.

that a state of higher rank is preferred to a state of lower

rank. Lehman and Megidor proved that the entailment re

lation induced by this class of ranked models coincides

exactly with Adams' e-entailment relation defined in Eq.

(4) and, of course, its properties coincide with Rules 1

through 5 of Theorem 1.

It is remarkable that two totally different interpreta

tions of defaults yield identical sets of conclusions and

identical sets of reasoning machinery. (Note that, even if

we equate rank with probability, the interpretation

P(B\A)> 1 — e is different from the preferential interpre

tation, because, for any finite e, the former permits the

most probable world of A to be incompatible with B ).

Based on this coincidence, it is now possible to transport

shortcuts and intuitions across semantical lines. For ex

ample, Theorem 3 establishes a firm connection between

preferential entailment and preferential consistency. Simi

larly, Theorems 4 and 5 determine the complexity of

proving entailment in preferential models.
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6.2 Relation to Preferential Model Semantics

The preferential models approach to nonmonotic reason

ing [Shoham 1987] leaves room for widely different in

terpretations of defaults, ranging from the adventurous to

the conservative. The adventurous approach takes the

statement A —>B to mean: Every world where A aB

holds has a prima facie preference over the corresponding

world where A a -i B holds, everything else being equal

(the terms "world" and "models" are used interchangeably

in the literature). Conflicts are later resolved by extra log

ical procedures [Selman and Kautz 1988]. The conserva

tive school [Lehman and Megidor 1988] [Delgrande

1988] takes A -* B to be a faint reflection of a pre

existing preference relation, saying merely: B holds in all

the most preferred worlds among those compatible with

A . Whether a collection of such faint clues is sufficient to

reveal information (about the preference relation) that en

tails a new statement x —» y , depends on the type of res

trictions the preference relation is presumed to satisfy.

Recently, Lehman and Megidor [1988] have

identified a restricted class of preferential models, whose

entailment relation satisfies a reasonable set of rationality

requirements. In essence, the restriction is that states of

worlds be ranked (e.g., by some numerical score r) such
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